Science.gov

Sample records for mineral water rich

  1. Influence of the consumption pattern of magnesium from magnesium-rich mineral water on magnesium bioavailability.

    PubMed

    Sabatier, Magalie; Grandvuillemin, Antoine; Kastenmayer, Peter; Aeschliman, Jean-Marc; Bouisset, Florilène; Arnaud, Maurice J; Dumoulin, Gilles; Berthelot, Alain

    2011-08-01

    It is generally considered that the absorption of Mg is inversely related to the ingested dose. The objective of the present study was to determine if the mode of administration (bolus v. consumption throughout the day) could influence Mg bioavailability from Mg-rich natural mineral water comparing the same nutritional Mg amount (126 mg). Using a 2 d cross-over design, twelve healthy men were asked to drink 1·5 litres Mg-rich mineral water either as 2 × 750 ml or 7 × 212 ml throughout the day. Two stable isotopes ((25)Mg and (26)Mg) were used to label the water in order to distinguish both regimens. Fractional apparent Mg absorption was determined by faecal monitoring and Mg retention was determined by measuring urinary excretion of Mg isotopes. Higher Mg absorption (50·7 (SD 12·7) v. 32·4 (SD 8·1) %; P = 0·0007) and retention (47·5 (SD 12·9) v. 29·0 (SD 7·5) %; P = 0·0008) from Mg-rich mineral water were observed when it was consumed in seven servings compared with larger servings. Thus, regular water consumption throughout the day is an effective way to increase Mg bioavailability from Mg-rich mineral water.

  2. Does bicarbonated mineral water rich in sodium change insulin sensitivity of postmenopausal women?

    PubMed

    Schoppen, S; Sánchez-Muniz, F J; Pérez-Granados, M; Gómez-Gerique, J A; Sarriá, B; Navas-Carretero, S; Pilar Vaquero, Ma

    2007-01-01

    To study the effects of drinking 0.5 L of two sodium-rich bicarbonated mineral waters (BMW-1 and 2), with a standard meal, on postprandial insulin and glucose changes. And to determine, if the effects vary depending on insulin resistance, measured by homeostasis model assessment (HOMA). In a 3-way randomized crossover study, 18 healthy postmenopausal women consumed two sodium-rich BMWs and a low-mineral water (LMW) with a standard fat-rich meal. Fasting and postprandial blood samples were taken at 30, 60 and 120 min. Serum glucose, insulin, cholesterol and triacylglycerols were determined. Insulin resistance was estimated by HOMA and insulin sensitivity was calculated by quantitative insulin sensitivity check index (QUICKY). Glucose levels did not change. HOMA and QUICKY values were highly inversely correlated (r = -1,000; p < 0.0001). Insulin concentrations showed a significant time effect (p < 0.0001) and a significant water x time interaction (p < 0.021). At 120 min insulin levels with BMW-1 were significantly lower than with LMW (p = 0.022). Postprandial insulin concentrations showed significantly different patterns of mineral water intake depending on HOMA n-tiles (p = 0.016). Results suggests an increase in insulin sensitivity after BMWs consumption. This effect is more marked in the women, who have higher HOMA values. These waters should be considered part of a healthy diet in order to prevent insulin resistance and cardiovascular disease.

  3. Carbonate-mineral/water interactions in sulfide-rich mine tailings

    NASA Astrophysics Data System (ADS)

    Al, Tom A.; Martin, Chris J.; Blowes, David W.

    2000-12-01

    The chemical composition and mineralogy of coatings on carbonate minerals from mine tailings have been studied using aqueous geochemical methods, Time-of-Flight Laser-Ionization Mass Spectrometry (TOF-LIMS) and Transmission Electron Microscopy (TEM). The goal is to study major and trace element partitioning between the aqueous and solid phase, and to infer mechanisms that control the concentrations of elements in the pore water of sulfide-rich mine tailings. Pore-water samples and carbonate-mineral grains were collected from four geochemically distinct zones within the tailings. Oxidation of sulfide minerals near the surface results in a large range in pore-water pH (3.85 to 6.98) and aqueous concentrations of metals and sulfate. With increasing depth in the tailings, mineral-water interactions lead to increasing pH, and decreasing concentrations of metals and sulfate. Calculated mineral saturation indices, trends in the abundance of Ca, Fe, Mg and Mn in TOF-LIMS profiles through the secondary coatings, and electron diffraction patterns obtained from the coatings, suggest that precipitation/dissolution of jarosite-group minerals, gypsum, goethite, akaganéite, amorphous Fe oxyhydroxides and siderite control the aqueous Ca, Fe, Na, K and SO 4 concentrations. The occurrence of secondary coatings on primary minerals is widespread, and reactions with the secondary minerals, rather than the primary mineral substrate, probably represent the principal controls on trace-element distributions in the pore water. The data indicate that adsorption, surface-complexation and co-precipitation reactions are important controls on the concentrations of trace elements in the pore water. The occurrence of siderite coatings on the surface of ankerite grains suggests that Fe-bearing dolomite-structure carbonate minerals dissolve incongruently. This corroborates inferences made by previous workers that solubility differences between calcite and siderite lead to calcite dissolution and

  4. Biomimetic mineral self-organization from silica-rich spring waters

    PubMed Central

    García-Ruiz, Juan Manuel; Nakouzi, Elias; Kotopoulou, Electra; Tamborrino, Leonardo; Steinbock, Oliver

    2017-01-01

    Purely inorganic reactions of silica, metal carbonates, and metal hydroxides can produce self-organized complex structures that mimic the texture of biominerals, the morphology of primitive organisms, and that catalyze prebiotic reactions. To date, these fascinating structures have only been synthesized using model solutions. We report that mineral self-assembly can be also obtained from natural alkaline silica-rich water deriving from serpentinization. Specifically, we demonstrate three main types of mineral self-assembly: (i) nanocrystalline biomorphs of barium carbonate and silica, (ii) mesocrystals and crystal aggregates of calcium carbonate with complex biomimetic textures, and (iii) osmosis-driven metal silicate hydrate membranes that form compartmentalized, hollow structures. Our results suggest that silica-induced mineral self-assembly could have been a common phenomenon in alkaline environments of early Earth and Earth-like planets. PMID:28345049

  5. Biomimetic mineral self-organization from silica-rich spring waters.

    PubMed

    García-Ruiz, Juan Manuel; Nakouzi, Elias; Kotopoulou, Electra; Tamborrino, Leonardo; Steinbock, Oliver

    2017-03-01

    Purely inorganic reactions of silica, metal carbonates, and metal hydroxides can produce self-organized complex structures that mimic the texture of biominerals, the morphology of primitive organisms, and that catalyze prebiotic reactions. To date, these fascinating structures have only been synthesized using model solutions. We report that mineral self-assembly can be also obtained from natural alkaline silica-rich water deriving from serpentinization. Specifically, we demonstrate three main types of mineral self-assembly: (i) nanocrystalline biomorphs of barium carbonate and silica, (ii) mesocrystals and crystal aggregates of calcium carbonate with complex biomimetic textures, and (iii) osmosis-driven metal silicate hydrate membranes that form compartmentalized, hollow structures. Our results suggest that silica-induced mineral self-assembly could have been a common phenomenon in alkaline environments of early Earth and Earth-like planets.

  6. The Consumption of Bicarbonate-Rich Mineral Water Improves Glycemic Control

    PubMed Central

    Murakami, Shinnosuke; Goto, Yasuaki; Ito, Kyo; Hayasaka, Shinya; Kurihara, Shigeo; Soga, Tomoyoshi; Tomita, Masaru; Fukuda, Shinji

    2015-01-01

    Hot spring water and natural mineral water have been therapeutically used to prevent or improve various diseases. Specifically, consumption of bicarbonate-rich mineral water (BMW) has been reported to prevent or improve type 2 diabetes (T2D) in humans. However, the molecular mechanisms of the beneficial effects behind mineral water consumption remain unclear. To elucidate the molecular level effects of BMW consumption on glycemic control, blood metabolome analysis and fecal microbiome analysis were applied to the BMW consumption test. During the study, 19 healthy volunteers drank 500 mL of commercially available tap water (TW) or BMW daily. TW consumption periods and BMW consumption periods lasted for a week each and this cycle was repeated twice. Biochemical tests indicated that serum glycoalbumin levels, one of the indexes of glycemic controls, decreased significantly after BMW consumption. Metabolome analysis of blood samples revealed that 19 metabolites including glycolysis-related metabolites and 3 amino acids were significantly different between TW and BMW consumption periods. Additionally, microbiome analysis demonstrated that composition of lean-inducible bacteria was increased after BMW consumption. Our results suggested that consumption of BMW has the possible potential to prevent and/or improve T2D through the alterations of host metabolism and gut microbiota composition. PMID:26798400

  7. The Consumption of Bicarbonate-Rich Mineral Water Improves Glycemic Control.

    PubMed

    Murakami, Shinnosuke; Goto, Yasuaki; Ito, Kyo; Hayasaka, Shinya; Kurihara, Shigeo; Soga, Tomoyoshi; Tomita, Masaru; Fukuda, Shinji

    2015-01-01

    Hot spring water and natural mineral water have been therapeutically used to prevent or improve various diseases. Specifically, consumption of bicarbonate-rich mineral water (BMW) has been reported to prevent or improve type 2 diabetes (T2D) in humans. However, the molecular mechanisms of the beneficial effects behind mineral water consumption remain unclear. To elucidate the molecular level effects of BMW consumption on glycemic control, blood metabolome analysis and fecal microbiome analysis were applied to the BMW consumption test. During the study, 19 healthy volunteers drank 500 mL of commercially available tap water (TW) or BMW daily. TW consumption periods and BMW consumption periods lasted for a week each and this cycle was repeated twice. Biochemical tests indicated that serum glycoalbumin levels, one of the indexes of glycemic controls, decreased significantly after BMW consumption. Metabolome analysis of blood samples revealed that 19 metabolites including glycolysis-related metabolites and 3 amino acids were significantly different between TW and BMW consumption periods. Additionally, microbiome analysis demonstrated that composition of lean-inducible bacteria was increased after BMW consumption. Our results suggested that consumption of BMW has the possible potential to prevent and/or improve T2D through the alterations of host metabolism and gut microbiota composition.

  8. Sodium-rich carbonated natural mineral water ingestion and blood pressure.

    PubMed

    Santos, Alejandro; Martins, Maria João; Guimarães, João Tiago; Severo, Milton; Azevedo, Isabel

    2010-02-01

    There is a strong positive correlation between sodium chloride intake and hypertension. In industrialized countries the ingestion of carbonated and non-carbonated mineral water is an important source of calorie-free fluids. The mineral content of these waters varies greatly, with many brands containing high levels of sodium. However, some mineral waters contain greater amounts of bicarbonate instead of chloride as the anion associated with the sodium cation. This is relevant because it is well established that the effect of sodium on blood pressure depends on the corresponding anion. Additionally the pressor effect of sodium bicarbonate is much lower than that of equivalent amounts of sodium chloride. The aim of our work was to evaluate the effect of ingesting a sodium-rich carbonated mineral water (Agua das Pedras) on blood pressure values in normotensive individuals. This crossover, non-blinded study evaluated 17 individuals (9 female and 8 male), aged 24-53 years, median body mass index (BMI) < 23, randomly allocated in two groups, ingesting 500 ml/day of Agua das Pedras or Agua Vitalis. Each arm of the study lasted 7 weeks, with 6 weeks of washout between them. Twenty-four hour urinary samples were collected at the beginning and end of each arm to determine pH and sodium and potassium excretion. Blood pressure and body weight were measured weekly throughout the study. A mixed-effects model was used to compare groups (p < 0.05). The Wilcoxon test was used to analyze electrolyte excretion. No differences were observed in blood pressure values between treatments or from baseline values. We found a positive correlation between BMI and blood pressure. The daily ingestion of 500 ml of Agua das Pedras had no effect on blood pressure. A study by Schorr and co-workers found that the ingestion of bicarbonate-rich water (1.5 l/day) had hypotensive effects in an elderly population. However, these results should be verified in hypertensive subjects, who are more likely to

  9. Mineral composition and heavy metal contamination of sediments originating from radium rich formation water.

    PubMed

    Bzowski, Zbigniew; Michalik, Bogusław

    2015-03-01

    Radium rich formation water is often associated with fossil fuels as crude oil, natural gas and hard coal. As a result of fossil fuels exploitation high amount of such water is released into environment. In spite of the high radium content such waters create a serious radiation risk neither to humans nor biota directly. First and foremost due to very high mineralization they are not drinkable at all. But after discharge chemical and physical conditions are substantially changed and sediments which additionally concentrated radium are arising. Due to features of technological processes such phenomenon is very intensive in underground coal mining where huge volume of such water must be pumped into surface in order to keep underground galleries dry. Slightly different situation occurs in oil rigs, but finally also huge volume of so called process water is pumped into environment. Regardless their origin arising sediments often contain activity concentration of radium isotopes exceeding the clearance levels set for naturally occurring radioactive materials (NORM) (Council Directive, 2013). The analysis of metals and minerals content showed that besides radioactivity such sediments contain high amount of metals geochemically similar to radium as barium, strontium and lead. Correlation analysis proved that main mechanism leading to sediment creation is co-precipitation radium with these metals as a sulfate. The absorption on clay minerals is negligible even when barium is not present in significant quantities. Owing to very low solubility of sulfates radium accumulated in this way should not migrate into environment in the neighborhood of a site where such sediment were deposited.

  10. Hydrogeochemical and stable isotopic investigations on CO2-rich mineral waters from Harghita Mts. (Eastern Carpathians, Romania)

    NASA Astrophysics Data System (ADS)

    Kis, Boglárka-Mercedesz; Baciu, Călin; Kármán, Krisztina; Kékedy-Nagy, Ladislau; Francesco, Italiano

    2013-04-01

    There is a worldwide interest on geothermal, mineral and groundwater as a resource for energy, drinking water supply and therapeutic needs. The increasing trend in replacing tap water with commercial bottled mineral water for drinking purposes has become an economic, hydrogeologic and medical concern in the last decades. Several investigations have been carried out worldwide on different topics related to geothermal and mineral waters, dealing with mineral water quality assessment, origin of geothermal and mineral waters, geochemical processes that influence water chemistry and water-rock interaction In Romania, the Călimani-Gurghiu-Harghita Neogene to Quaternary volcanic chain (Eastern Carpathians) is one of the most important areas from the point of view of CO2-rich mineral waters. These mineral water springs occur within other post-volcanic phenomena like dry CO2 emissions, moffettes, bubbling pools, H2S gas emissions etc. Mineral waters from this area are used for bottling, local spas and drinking purposes for local people. The number of springs, around 2000 according to literature data, shows that there is still a significant unexploited potential for good quality drinking water in this area. Within the youngest segment of the volcanic chain, the Harghita Mts., its volcaniclastic aprons and its boundary with the Transylvanian Basin, we have carried out an investigation on 23 CO2-rich mineral water springs from a hydrogeochemical and stable isotopic point of view. The mineral waters are Ca-Mg-HCO3 to Na-Cl type. Sometimes mixing between the two types can be observed. We have detected a great influence of water-rock interaction on the stable isotopic composition of the mineral waters, shown by isotopic shifts to the heavier oxygen isotope, mixing processes between shallow and deeper aquifers and local thermal anomalies. Acknowledgements: The present work was financially supported by the Romanian National Research Council, Project PN-II-ID-PCE-2011-3-0537 and by

  11. Silicon-rich mineral water as a non-invasive test of the 'aluminum hypothesis' in Alzheimer's disease.

    PubMed

    Davenward, Samantha; Bentham, Peter; Wright, Jan; Crome, Peter; Job, Deborah; Polwart, Anthony; Exley, Christopher

    2013-01-01

    There has been a plausible link between human exposure to aluminum and Alzheimer's disease for several decades. We contend that the only direct and ethically acceptable experimental test of the 'aluminum hypothesis', which would provide unequivocal data specific to the link, is to test the null hypothesis that a reduction in the body burden of aluminum to its lowest practical limit would have no influence upon the incidence, progression, or severity of Alzheimer's disease. Herein we are testing the hypothesis that silicon-rich mineral waters can be used as non-invasive methods to reduce the body burden of aluminum in individuals with Alzheimer's disease and a control group consisting of their carers and partners. We have shown that drinking up to 1 L of a silicon-rich mineral water each day for 12 weeks facilitated the removal of aluminum via the urine in both patient and control groups without any concomitant affect upon the urinary excretion of the essential metals, iron and copper. We have provided preliminary evidence that over 12 weeks of silicon-rich mineral water therapy the body burden of aluminum fell in individuals with Alzheimer's disease and, concomitantly, cognitive performance showed clinically relevant improvements in at least 3 out of 15 individuals. This is a first step in a much needed rigorous test of the 'aluminum hypothesis of Alzheimer's disease' and a longer term study involving many more individuals is now warranted.

  12. Free and total magnesium in lymphocytes of migraine patients - effect of magnesium-rich mineral water intake.

    PubMed

    Thomas, J; Millot, J M; Sebille, S; Delabroise, A M; Thomas, E; Manfait, M; Arnaud, M J

    2000-05-01

    Dietary surveys performed in Western countries show magnesium intakes lower than the recommended dietary allowances, suggesting a large prevalence of magnesium deficiency. Low brain magnesium as well as impaired magnesium metabolism have also been reported in various diseases such as migraine. To detect these deficiencies, a non-invasive and sensitive test assessing magnesium status is needed. Because magnesium is an intracellular cation, either total or ionized magnesium (Mg(2+)) of blood cells were suggested as the most adequate tests. Total magnesium levels in plasma, erythrocytes and lymphocytes and Mg(2+) in lymphocytes were analyzed in a group of 29 migraine patients and 18 control subjects. Results show significantly lower concentrations of total magnesium in erythrocytes (50.7+/-4.7 vs. 53.5+/-2.9 mg/l; P<0.01) and of Mg(2+) in lymphocytes (12.0+/-3.5 vs. 14.2+/-3.8 mg/l; P<0.05) in migraine patients as compared to controls. While a significant difference of mean values was noted between migraine patients and controls, an overlap of individual values was observed. These analyses were repeated on migraine patients before and after a 2-week intake of a mineral water containing 110 mg/l magnesium, and a significant increase in all intracellular magnesium concentrations with no effect on plasma magnesium was observed. These increased intracellular magnesium concentrations demonstrate the bioavailability of magnesium from this mineral water. Among the analyzed parameters, Mg(2+) in lymphocytes appears to be the most sensitive index of magnesium deficiency with a 15% decrease in migraine patients when compared to controls and a 16% increase after 2 weeks of a magnesium-rich mineral water intake.

  13. Water, mineral waters and health.

    PubMed

    Petraccia, Luisa; Liberati, Giovanna; Masciullo, Stefano Giuseppe; Grassi, Marcello; Fraioli, Antonio

    2006-06-01

    The authors focus on water resources and the use of mineral waters in human nutrition, especially in the different stages of life, in physical activity and in the presence of some morbid conditions. Mineral water is characterized by its purity at source, its content in minerals, trace elements and other constituents, its conservation and its healing properties recognized by the Ministry of Health after clinical and pharmacological trials. Based on total salt content in grams after evaporation of 1l mineral water dried at 180 degrees C (dry residues), mineral waters can be classified as: waters with a very low mineral content, waters low in mineral content, waters with a medium mineral content, and strongly mineralized waters. Based on ion composition mineral waters can be classified as: bicarbonate waters, sulfate waters, sodium chloride or saltwater, sulfuric waters. Based on biological activity mineral waters can be classified as: diuretic waters, cathartic waters, waters with antiphlogistic properties. Instructions for use, doses, and current regulations are included.

  14. Efficacy and safety of a natural mineral water rich in magnesium and sulphate for bowel function: a double-blind, randomized, placebo-controlled study.

    PubMed

    Bothe, Gordana; Coh, Aljaz; Auinger, Annegret

    2017-03-01

    The present placebo-controlled, double-blind, randomized trial aimed to investigate whether a natural mineral water rich in magnesium sulphate and sodium sulphate (Donat Mg) may help to improve bowel function. A total of 106 otherwise healthy subjects with functional constipation were randomly assigned to consume 300 or 500 mL of a natural mineral water as compared to placebo water, over a course of 6 weeks. The 300-mL arms were terminated due to the results of a planned interim analysis. Subjects documented the complete spontaneous bowel movements, spontaneous and overall bowel movements/week, stool consistency, gastrointestinal symptoms and general well-being in a diary. Change in the number of complete spontaneous bowel movements was defined as the primary outcome. For the 75 subjects in the 500-mL arms, the change in the number of complete spontaneous bowel movements per week tended to be higher in the active group when compared to placebo after 6 weeks (T2 = 1.8; p value = 0.036; one-sided). The mean number of spontaneous bowel movements significantly increased over the course of the study, with significant differences between study arms considering the whole study time (F test = 4.743; p time × group = 0.010, 2-sided). Stool consistency of spontaneous bowel movements (p < 0.001) and the subjectively perceived symptoms concerning constipation (p = 0.005) improved significantly with the natural mineral water as compared to placebo. The daily consumption of a natural mineral water rich in magnesium sulphate and sodium sulphate improved bowel movement frequency and stool consistency in subjects with functional constipation. Moreover, the subjects' health-related quality of life improved. EudraCT No 2012-005130-11.

  15. A Thermodynamic Model for Predicting Mineral Reactivity in Supercritical Carbon Dioxide: I. Phase Behavior of Carbon Dioxide - Water - Chloride Salt Systems Across the H2O-Rich to the CO2-Rich Regions

    SciTech Connect

    Springer, Ronald D.; Wang, Zheming; Anderko, Andre; Wang, Peiming; Felmy, Andrew R.

    2012-09-05

    used to predict the effect of various salts on the water content and water activity in CO2-rich phases on the basis of parameters determined from the properties of aqueous systems. Given the importance of water activity in CO2-rich phases for mineral reactivity, the model can be used as a foundation for predicting mineral transformations across the entire CO2/H2O composition range from aqueous solution to anhydrous scCO2. An example application using the model is presented which involves the transformation of forsterite to nesquehonite as a function of temperature and water content in the CO2-rich phase.

  16. Metal Reduction and Mineral formation by a Psychrotolerant Fe(III)-Reducing Bacterium Isolated from an Iron-Rich Waters near a Hydrothermal Vent

    NASA Astrophysics Data System (ADS)

    Roh, Y.; Vali, H.; Stapleton, R. D.; Fields, M. M.; Phelps, T. J.; Zhou, J.

    2002-12-01

    Although dissimilatory metal reduction and mineral formation under mesophilic and thermophilic conditions are extensively examined, they are poorly understood under low temperature. The objective of this study was to examine metal reduction and mineral formation using a psychrotolerant iron-reducing bacterium (Shewanella alga, PV-4) isolated from iron-rich waters associated with the Naha vents off the Hawaiian coast. The psychrotolerant iron-reducing bacterium was able to use lactate, formate, and hydrogen as an electron donor while reducing Fe(III)-citrate, Fe(III)-EDTA, Co(III)-EDTA, Cr(VI), Mn(IV), and iron oxyhydroxide (FeOOH) at temperatures between 0 and 37°C. The psychrotolerant bacterium exhibited diverse mineral precipitation capabilities including the formation of magnetite (Fe3O4), siderite (FeCO3), and rhodochrosite (MnCO3). Transmission electron microscopic data showed that PV-4 formed mainly superparamagnetic magnetite at temperatures ranging from 0 to 14°C and formed mainly single-domain magnetite at temperatures ranging from 18 to 37°C. This study indicats that iron-reducing bacteria may contribute to the biogeochemical cycling of metals and carbon at low temperatures and may contribute to the natural remnant magnetism of marine sediments.

  17. The Growth of Melt Inclusion- and Water-Rich Zones in Clinopyroxene Phenocrysts of the Powai Ankaramite Flow, Deccan Traps, India: Rapid Closed System Oscillatory Mineral Growth

    NASA Astrophysics Data System (ADS)

    Seaman, S. J.

    2015-12-01

    Water concentrations were measured and mapped using FTIR spectroscopy in clinopyroxene phenocrysts of the Powai ankaramite flow, located near Mumbai, west of the Western Ghats escarpment of the Deccan province, India. Samples were provided by Dr. Hetu Sheth of the Indian Institute of Technology, Mumbai. Chatterjee and Sheth (2015) showed that phenocrysts in the flow were part of a cumulate layer intruded by high-temperature basaltic melt at ~ 6 kb and ~1230oC. Cpx phenocrysts are euhedral and have concentric bands (100 to 200 microns thick) of fine (10-20 micron diameter) melt inclusions. Cpx bands that host melt inclusions have higher concentrations of water than inclusion-free bands. Water concentrations of cpx and ol were used to calculate water concentrations in the melt from which the crystals formed. Water concentrations in the parent magma were between 4.35 and 8.26 wt. % based on water concentrations in cpx, and between 8.24 and 9.41 wt. % based on those in ol. Both Mg and Fe are relatively depleted in the water- and melt inclusion-rich zones in cpx, and Ca is enriched in these zones. We suggest that oscillatory zoning in cpx is a result of repeated growth of cpx in water-richer and water-poorer boundary layers in which water lowered melt viscosity and enhanced diffusion and crystal growth rates. Water-enhanced growth rates may have resulted in preferential capture of melt inclusions preserved in water-rich cpx zones. Mg was preferentially incorporated into the cpx, causing Ca and water to build up in the boundary layer, and Mg and Fe to become relatively depleted in the boundary layer, as discussed for oscillatorially-zoned minerals by Wang and Merino (1993). Application of the equations for growth of oscillatory zones in crystals given by Wang and Merino (1993) to the growth of cpx crystals in the Powai ankaramite indicate that crystal growth occurred relatively quickly, on the order of days, although the width of the boundary zone, which is uncertain

  18. Effects of natural mineral-rich water consumption on the expression of sirtuin 1 and angiogenic factors in the erectile tissue of rats with fructose-induced metabolic syndrome.

    PubMed

    Pereira, Cidália D; Severo, Milton; Rafael, LuIsa; Martins, Maria João; Neves, Delminda

    2014-01-01

    Consuming a high-fructose diet induces metabolic syndrome (MS)-like features, including endothelial dysfunction. Erectile dysfunction is an early manifestation of endothelial dysfunction and systemic vascular disease. Because mineral deficiency intensifies the deleterious effects of fructose consumption and mineral ingestion is protective against MS, we aimed to characterize the effects of 8 weeks of natural mineral-rich water consumption on the structural organization and expression of vascular growth factors and receptors on the corpus cavernosum (CC) in 10% fructose-fed Sprague-Dawley rats (FRUCT). Differences were not observed in the organization of the CC either on the expression of vascular endothelial growth factor (VEGF) or the components of the angiopoietins/Tie2 system. However, opposing expression patterns were observed for VEGF receptors (an increase and a decrease for VEGFR1 and VEGFR2, respectively) in FRUCT animals, with these patterns being strengthened by mineral-rich water ingestion. Mineral-rich water ingestion (FRUCTMIN) increased the proportion of smooth muscle cells compared with FRUCT rats and induced an upregulatory tendency of sirtuin 1 expression compared with the control and FRUCT groups. Western blot results were consistent with the dual immunofluorescence evaluation. Plasma oxidized low-density lipoprotein and plasma testosterone levels were similar among the experimental groups, although a tendency for an increase in the former was observed in the FRUCTMIN group. The mineral-rich water-treated rats presented changes similar to those observed in rats treated with MS-protective polyphenol-rich beverages or subjected to energy restriction, which led us to hypothesize that the effects of mineral-rich water consumption may be more vast than those directly observed in this study.

  19. Weathering Profiles in Phosphorus-Rich Rocks at Gusev Crater, Mars, Suggest Dissolution of Phosphate Minerals into Potentially Habitable Near-Neutral Waters.

    PubMed

    Adcock, Christopher T; Hausrath, Elisabeth M

    2015-12-01

    Abundant evidence indicates that significant surface and near-surface liquid water has existed on Mars in the past. Evaluating the potential for habitable environments on Mars requires an understanding of the chemical and physical conditions that prevailed in such aqueous environments. Among the geological features that may hold evidence of past environmental conditions on Mars are weathering profiles, such as those in the phosphorus-rich Wishstone-class rocks in Gusev Crater. The weathering profiles in these rocks indicate that a Ca-phosphate mineral has been lost during past aqueous interactions. The high phosphorus content of these rocks and potential release of phosphorus during aqueous interactions also make them of astrobiological interest, as phosphorus is among the elements required for all known life. In this work, we used Mars mission data, laboratory-derived kinetic and thermodynamic data, and data from terrestrial analogues, including phosphorus-rich basalts from Idaho, to model a conceptualized Wishstone-class rock using the reactive transport code CrunchFlow. Modeling results most consistent with the weathering profiles in Wishstone-class rocks suggest a combination of chemical and physical erosion and past aqueous interactions with near-neutral waters. The modeling results also indicate that multiple Ca-phosphate minerals are likely in Wishstone-class rocks, consistent with observations of martian meteorites. These findings suggest that Gusev Crater experienced a near-neutral phosphate-bearing aqueous environment that may have been conducive to life on Mars in the past. Mars-Gusev Crater-Wishstone-Reactive transport modeling-CrunchFlow-Aqueous interactions-Neutral pH-Habitability.

  20. Relevance of a Hypersaline Sodium-Rich Naturally Sparkling Mineral Water to the Protection against Metabolic Syndrome Induction in Fructose-Fed Sprague-Dawley Rats: A Biochemical, Metabolic, and Redox Approach

    PubMed Central

    Pereira, Cidália Dionísio; Severo, Milton; Araújo, João Ricardo; Guimarães, João Tiago; Pestana, Diogo; Santos, Alejandro; Ferreira, Rita; Ascensão, António; Magalhães, José; Azevedo, Isabel; Monteiro, Rosário; Martins, Maria João

    2014-01-01

    The Metabolic Syndrome increases the risk for atherosclerotic cardiovascular disease and type 2 Diabetes Mellitus. Increased fructose consumption and/or mineral deficiency have been associated with Metabolic Syndrome development. This study aimed to investigate the effects of 8 weeks consumption of a hypersaline sodium-rich naturally sparkling mineral water on 10% fructose-fed Sprague-Dawley rats (Metabolic Syndrome animal model). The ingestion of the mineral water (rich in sodium bicarbonate and with higher potassium, calcium, and magnesium content than the tap water used as control) reduced/prevented not only the fructose-induced increase of heart rate, plasma triacylglycerols, insulin and leptin levels, hepatic catalase activity, and organ weight to body weight ratios (for liver and both kidneys) but also the decrease of hepatic glutathione peroxidase activity and oxidized glutathione content. This mineral-rich water seems to have potential to prevent Metabolic Syndrome induction by fructose. We hypothesize that its regular intake in the context of modern diets, which have a general acidic character interfering with mineral homeostasis and are poor in micronutrients, namely potassium, calcium, and magnesium, could add surplus value and attenuate imbalances, thus contributing to metabolic and redox health and, consequently, decreasing the risk for atherosclerotic cardiovascular disease. PMID:24672546

  1. A geochemical and geophysical approach to derive a conceptual circulation model of CO2-rich mineral waters: A case study of Vilarelho da Raia, northern Portugal

    NASA Astrophysics Data System (ADS)

    Marques, J. M.; Santos, Monteiro; Graça, R. C.; Castro, R.; Aires-Barros, L.; Mendes Victor, L. A.

    2001-11-01

    The Vilarelho da Raia-Chaves region, located in northern Portugal adjacent to the Spanish border, is characterized by both hot and cold CO2-rich mineral waters issuing from springs and drilled wells. The present paper updates the conceptual circulation model of the Vilarelho da Raia cold CO2-rich mineral waters. Vilarelho da Raia mineral waters, dominated by Na and HCO3 ions, have formed mainly by interaction with CO2 of deep-seated mantle origin. The δ18O, δ2H and 3H values indicate that these waters are the result of meteoric waters infiltrating into Larouco Mountain, NW of Vilarelho da Raia, circulating at shallow depths in granitic rocks and moving into Vilarelho da Raia area. The conceptual geochemical and geophysical circulation model indicates that the hot and cold CO2-rich mineral waters of Chaves (76 °C) and Vilarelho da Raia (17 °C) should be considered manifestations of similar but not the same geohydrological systems. Résumé. La région de Vilarelho da Raia - Chaves, située au Portugal près de la frontière Espagnole, est caractérisée par des eaux carbogazeuses, chaudes et froides, émergeant à des sources et dans des puits. Ce travail constitue une mise au point du modèle conceptuel de circulation des eaux minérales carbogazeuses froides de Vilarelho da Raia. Les eaux minérales de Vilarelho da Raia, dans lesquelles les ions Na and HCO3 sont dominants, résultent principalement d'interactions avec du CO2 d'origine mantellique. Les δ18O, les δ2H, et les teneurs en 3H indiquent que ces eaux proviennent de l'infiltration d'eaux météoriques dans le Mont Larouco au NW de Vilarelho da Raia, circulant à faible profondeur dans les granites en direction de la région de Vilarelho da Raia. Le modèle de circulation géochimique et géophysique conduit à penser que les eaux minérales carbogazeuses chaudes et froides de Chaves (76 °C) et de Vilarelho da Raia (17 °C) doivent être considérées comme des manifestations de systèmes hydrog

  2. Mars: A water-rich planet

    NASA Technical Reports Server (NTRS)

    Carr, Michael H.

    1987-01-01

    Good geomorphic evidence is presented for a planet that was once water rich, and that a lower limit on the amount of water available for a given Martian watershed may be estimated by assuming that the volume of material eroded was equal to the volume of water available. This estimate, coupled with high latitude water estimates of 50 to 100 m gives a global inventory of about 500 m total water in the subsurface. It was emphasized that this is a lower limit as considerable water may be bound in weathered debris and in primary minerals.

  3. Natural mineral waters: chemical characteristics and health effects

    PubMed Central

    Quattrini, Sara; Pampaloni, Barbara; Brandi, Maria Luisa

    2016-01-01

    Summary Water contributes significantly to health and a daily intake of 1.5 to 2 liters of water should be guaranteed, because a good hydration is essential to maintain the body water equilibrium, although needs may vary among people. However, worldwide population is far from the Recommended Allowance for water intake. Among the waters for human uses, there are ‘waters (treated or not), intended for drinking, used for the food and beverages preparation or for other domestic purposes’ and natural mineral waters, that are ‘originated from an aquifer or underground reservoir, spring from one or more natural or bore sources and have specific hygienic features and, eventually, healthy properties’. According to the European Legislation (2009/54/EC Directive), physical and chemical characterization is used to make a classification of the different mineral waters, basing on the analysis of main parameters. Mineral composition enables to classify natural mineral waters as bicarbonate mineral waters, sulphate mineral waters, chloride mineral waters, calcic mineral waters, magnesiac mineral waters, fluorurate mineral waters, ferrous mineral waters and sodium-rich mineral waters. Although the concerns about bottled mineral waters (due to plasticizers and endocrine disruptors), many are the health effects of natural mineral waters and several studies explored their properties and their role in different physiological and pathological conditions. PMID:28228777

  4. Sodium-bicarbonated mineral water decreases aldosterone levels without affecting urinary excretion of bone minerals.

    PubMed

    Schoppen, Stefanie; Pérez-Granados, Ana M; Carbajal, Angeles; Sarriá, Beatriz; Navas-Carretero, Santiago; Pilar Vaquero, M

    2008-06-01

    AIM To assess in healthy postmenopausal women the influence of consuming sodium-bicarbonated mineral water on postprandial evolution of serum aldosterone and urinary electrolyte excretion. Eighteen postmenopausal women consumed 500 ml of two sodium-bicarbonated mineral waters (sodium-bicarbonated mineral water 1 and sodium-bicarbonated mineral water 2) and a low-mineral water with a standard meal. Postprandial blood samples were taken at 60, 120, 240, 360 and 420 min and aldosterone concentrations were measured. Postprandial urinary minerals were determined. Urinary and total mineral excretion and urinary mineral concentrations did not differ except for sodium concentration, which was significantly higher with sodium-bicarbonated mineral water 1 than with low-mineral water (P = 0.005). There was a time effect (P = 0.003) on the aldosterone concentration. At 120 min, aldosterone concentrations were lower with sodium-bicarbonated mineral water 1 (P = 0.021) and sodium-bicarbonated mineral water 2 (P = 0.030) compared with low-mineral water. Drinking a sodium-rich bicarbonated mineral water with a meal increases urinary sodium concentration excretion without changes in the excretion of potassium and bone minerals.

  5. How phyllosilicate mineral structure affects fault strength in Mg-rich fault systems

    NASA Astrophysics Data System (ADS)

    Sánchez-Roa, C.; Faulkner, D. R.; Boulton, C.; Jimenez-Millan, J.; Nieto, F.

    2017-06-01

    The clay mineralogy of fault gouges has important implications for the frictional properties of faults, often identified as a major factor contributing to profound fault weakness. This work compares the frictional strength of a group of Mg-rich minerals common in the Mg-Al-Si-O compositional space (talc, saponite, sepiolite, and palygorskite) by conducting triaxial frictional tests with water or argon as pore fluid. The studied minerals are chemically similar but differ in their crystallographic structure. Results show that fibrous Mg-rich phyllosilicates are stronger than their planar equivalents. Frictional strength in this group of minerals is highly influenced by strength of the atomic bonds, continuity of water layers within the crystals, and interactions of mineral surfaces with water molecules, all of which are dictated by crystal structure. The formation and stability of the minerals studied are mainly controlled by small changes in pore fluid chemistry, which can lead to significant differences in fault strength.

  6. Mineral and water nutrition.

    PubMed

    Beede, D K

    1991-07-01

    In providing minerals to dairy cattle it is important to distinguish between dietary requirements and feeding recommendations. The requirement is the absolute amount of an element needed to meet the animal's metabolic needs for maintenance, growth, pregnancy, and lactation divided by the coefficient of absorption; this is estimated by the factorial method. Actual estimates of requirements for lactating dairy cattle have been determined for Ca and P. The major difficulties in relying on the requirement estimate are that dry matter intake varies and the true absorption coefficient of the mixture of feeds in the ration generally is unknown. Therefore, feeding recommendations, based on feeding graded concentrations of an element, often offer more applicable information. With the exception of Ca and P, the current feeding recommendations for the other macrominerals, Mg, Na, K, Cl and S, have resulted from feeding trials. With certain environmental and physiologic situations the feeding recommendations may vary. For example, during heat stress the dietary K recommendation for the lactating cow should be higher than in cool weather because of increased sweating and decreased feed intake. Another example may be that the source of supplemental Mg may affect what dietary inclusion rate will yield optimal performance and should be recommended. An important consideration in dairy ration formulation in the future will address the interrelationships of the various macrominerals. There is accumulating evidence that shows that different concentrations of Na, Cl, and K may interrelate and affect lactational performance. Many times the naturally occurring concentrations of one or more of these elements may have to be associated with varying concentrations of the others in order to optimize animal performance and health. Much experimentation likely will examine these interrelationships in the future. Supplementation of trace elements in diets of dairy cattle is common practice. This

  7. Recrystallization and stability of Zn and Pb minerals on their migration to groundwater in soils affected by Acid Mine Drainage under CO2 rich atmospheric waters.

    PubMed

    Goienaga, N; Carrero, J A; Zuazagoitia, D; Baceta, J I; Murelaga, X; Fernández, L A; Madariaga, J M

    2015-01-01

    The extent of vertical contamination is intimately related to the soil solution and surface chemistry of the soil matrix with reference to the metal and waste matrix in question. The present research demonstrated the impact that the dissolved CO2 of the meteoric waters, which acidify the environment with pH values below 4, has in the increase of the metal mobility. Although under the given conditions the Zn remains mainly dissolved, the initial PbS and ZnS have evolved into newly formed secondary carbonates and sulphates (i.e., hydrozincite, gunningite, hydrocerussite) that can be found in the efflorescences. The chemical simulation done on the weathering of the original sulphide ores for the formation of these secondary minerals has proved the transient storage mainly of Pb. Nonetheless, many of the minerals formed inside the galleries will be easily dissolved in the next rains and release in an ionic form to the groundwater. The analytical procedure exposed has been proved to be useful not only for the characterization of AMD but also for the prediction of the mobility of metals. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Hydrogeochemical tracing of mineral water in Jingyu County, Northeast China.

    PubMed

    Yan, Baizhong; Xiao, Changlai; Liang, Xiujuan; Wu, Shili

    2016-02-01

    The east Jilin Province in China, Jingyu County has been explored as a potential for enriching mineral water. In order to assess the water quality and quantity, it is of crucial importance to investigate the origin of the mineral water and its flow paths. In this study, eighteen mineral springs were sampled in May and September of 2012, May and September of 2013, and May 2014 and the environment, evolvement, and reaction mechanism of mineral water formation were analysed by hydrochemical data analysis, geochemical modelling and multivariate statistical analysis. The results showed that the investigated mineral water was rich in calcium, magnesium, potassium, sodium, bicarbonate, chloride, sulphate, fluoride, nitrate, total iron, silicate, and strontium, and mineral water ages ranged from 11.0 to more than 61.0 years. The U-shape contours of the mineral ages indicate a local and discrete recharge. The mineral compositions of the rocks were olivine, potassium feldspar, pyroxene, albite, and anorthite and were under-saturated in the mineral water. The origin of mineral water was from the hydrolysis of basalt minerals under a neutral to slightly alkaline and CO2-rich environment.

  9. [Mineral water as a cure].

    PubMed

    Nocco, Priska Binz

    2008-01-01

    The treatment of diseases with mineral spring water belongs to the oldest medical therapies. The "remedy" mineral water is therefore of importance also within the pharmacy. The present pharmacy historical work examines the impact of the use of mineral waters, as well as of their dried components, as therapeutic agents in the 19th and early 20th centuries, i.e. from approx. 1810 to 1930, as well as the contributions given by pharmacists in the development and analysis of mineral water springs. Beside these aspects, the aim here is also to describe the role played by pharmacists in the production of artificial mineral water as well as in the sale and wholesale of natural and artificial mineral water. In the first part of this work the situation in Switzerland and its surrounding countries, such as Germany, France, Italy and Austria, is discussed. The second part contains a case-study of the particular situation in the Canton Tessin. It is known from the scientific literature published at that time that information on mineral water was frequently reported. Starting from the beginning of the 19th century the number of such publications increased tremendously. The major part of them were publications in scientific journals or contributions to medical and pharmaceutical manuals and reference books. In particular the spa-related literature, such as spa-guides, was of growing interest to a broad public. The inclusion of monographs into the Swiss, the Cantonal as well the foreign pharmacopoeias granted a legal frame for the mineral waters and their dried components. These works are of major importance from a pharmacy historical standpoint and represent a unique proof of historical evidence of the old medicinal drug heritage. The most frequently used therapies based on mineral waters were drinking and bath cures. Several diseases, particularly those of a chronic character, were treated with mineral waters. The positive influence of these cures on the recovery of the patients

  10. High-precision direct determination of the 87Sr/ 86Sr isotope ratio of bottled Sr-rich natural mineral drinking water using multiple collector inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Yang, Yue-Heng; Wu, Fu-Yuan; Xie, Lie-Wen; Yang, Jin-Hui; Zhang, Yan-Bin

    2011-08-01

    We describe a precise and accurate method for the direct determination of the 87Sr/ 86Sr isotope ratio of bottled Sr-rich natural mineral drinking water using multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS). The method is validated by the comparative analysis of the same water with and without cation-exchange resin purification. The work indicates that isobarically interfering elements can be corrected for when 87Rb/ 86Sr < 0.05 (Rb/Sr < 0.015), and that the matrix elements (Ca, Mg, K and Na) have no significant effect on the accuracy of the Sr isotope data. The method is simple, rapid, eliminates sample preparation time, and avoids potential contamination during complicated sample-preparation procedures. Therefore, the high sample throughput inherent to the MC-ICP-MS can be fully exploited.

  11. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen J.; Andrews, Alida; Joosten, B. Kent; Watts, Kevin

    2017-01-01

    In an on-going effort to make human Mars missions more affordable and sustainable, NASA continues to investigate the innovative leveraging of technological advances in conjunction with the use of accessible Martian resources directly applicable to these missions. One of the resources with the broadest utility for human missions is water. Many past studies of human Mars missions assumed a complete lack of water derivable from local sources. However, recent advances in our understanding of the Martian environment provides growing evidence that Mars may be more "water rich" than previously suspected. This is based on data indicating that substantial quantities of water are mixed with surface regolith, bound in minerals located at or near the surface, and buried in large glacier-like forms. This paper describes an assessment of what could be done in a "water rich" human Mars mission scenario. A description of what is meant by "water rich" in this context is provided, including a quantification of the water that would be used by crews in this scenario. The different types of potential feedstock that could be used to generate these quantities of water are described, drawing on the most recently available assessments of data being returned from Mars. This paper specifically focuses on sources that appear to be buried quantities of water ice. (An assessment of other potential feedstock materials is documented in another paper.) Technologies and processes currently used in terrestrial Polar Regions are reviewed. One process with a long history of use on Earth and with potential application on Mars - the Rodriguez Well - is described and results of an analysis simulating the performance of such a well on Mars are presented. These results indicate that a Rodriguez Well capable of producing the quantities of water identified for a "water rich" human mission are within the capabilities assumed to be available on the Martian surface, as envisioned in other comparable Evolvable

  12. Mineral/Water Analyzer

    NASA Technical Reports Server (NTRS)

    1983-01-01

    An x-ray fluorescence spectrometer developed for the Viking Landers by Martin Marietta was modified for geological exploration, water quality monitoring, and aircraft engine maintenance. The aerospace system was highly miniaturized and used very little power. It irradiates the sample causing it to emit x-rays at various energies, then measures the energy levels for sample composition analysis. It was used in oceanographic applications and modified to identify element concentrations in ore samples, on site. The instrument can also analyze the chemical content of water, and detect the sudden development of excessive engine wear.

  13. Alkaline mineral water lowers bone resorption even in calcium sufficiency: alkaline mineral water and bone metabolism.

    PubMed

    Wynn, Emma; Krieg, Marc-Antoine; Aeschlimann, Jean-Marc; Burckhardt, Peter

    2009-01-01

    Dietary acid charge enhances bone loss. Bicarbonate or alkali diet decreases bone resorption in humans. We compared the effect of an alkaline mineral water, rich in bicarbonate, with that of an acid one, rich in calcium only, on bone markers, in young women with a normal calcium intake. This study compared water A (per litre: 520 mg Ca, 291 mg HCO(3)(-), 1160 mg SO(4)(-), Potential Renal Acid load (PRAL) +9.2 mEq) with water B (per litre: 547 mg Ca, 2172 mg HCO(3)(-), 9 mg SO(4)(-), PRAL -11.2 mEq). 30 female dieticians aged 26.3 yrs (SD 7.3) were randomized into two groups, followed an identical weighed, balanced diet (965 mg Ca) and drank 1.5 l/d of the assigned water. Changes in blood and urine electrolytes, C-telopeptides (CTX), urinary pH and bicarbonate, and serum PTH were measured after 2 and 4 weeks. The two groups were not different at baseline, and showed a similar increase in urinary calcium excretion. Urinary pH and bicarbonate excretion increased with water B, but not with water A. PTH (p=0.022) and S-CTX (p=0.023) decreased with water B but not with water A. In calcium sufficiency, the acid calcium-rich water had no effect on bone resorption, while the alkaline water rich in bicarbonate led to a significant decrease of PTH and of S-CTX.

  14. Syndepositional shallow-water precipitation of glauconitic minerals

    NASA Astrophysics Data System (ADS)

    Chafetz, H. S.; Reid, A.

    2000-10-01

    Numerous studies have demonstrated that glauconitic minerals predominantly form in water depths of mid-shelf to upper slope in modern oceans. These areas tend to have slow sedimentation rates, another commonly cited requisite for glauconitic mineral precipitation. Cambro-Ordovician strata from the southwestern US are rich in glauconitic minerals. Stratigraphic, sedimentological, and petrographic constraints indicate that the glauconitic minerals are autochthonous. In marked contrast to the modern environments of deposition, these Cambro-Ordovician strata formed under very shallow-water to tidal-flat conditions. The trough cross-stratified deposits of the most glauconitic mineral-rich accumulations (glaucarenites) indicate a high energy environment and probably a normal to high rate of sedimentation. The presence of fibroradiated rims of glauconitic minerals on glauconitic mineral pellets, echinoderm fragments, and quartz grains demonstrates that the Cambro-Ordovician glauconitic minerals precipitated on or in close proximity to the sea floor and prior to calcite precipitation. Consequently, glauconitic minerals must have formed under markedly different conditions in the lower Paleozoic than they do today. Thus, the occurrence of glauconitic minerals in the rock record cannot be used a priori as an environmental indicator of either mid-shelf and deeper water and/or a slow rate of sedimentation.

  15. Reaction kinetics of CO2 carbonation with Mg-rich minerals.

    PubMed

    Kwon, Soonchul; Fan, Maohong; Dacosta, Herbert F M; Russell, Armistead G; Tsouris, Costas

    2011-07-07

    Due to their low price, wide availability, and stability of the resulting carbonates, Mg-rich minerals are promising materials for carbonating CO(2). Direct carbonation of CO(2) with Mg-rich minerals reported in this research for the first time could be considerably superior to conventional liquid extraction processes from an energy consumption perspective due to its avoidance of the use of a large amount of water with high specific heat capacity and latent heat of vaporization. Kinetic models of the reactions of the direct CO(2) carbonation with Mg-rich minerals and within simulated flue gas environments are important to the scale-up of reactor designs. Unfortunately, such models have not been made available thus far. This research was initiated to fill that gap. Magnesium silicate (Mg(2)SiO(4)), a representative compound in Mg-rich minerals, was used to study CO(2) carbonation reaction kinetics under given simulated flue gas conditions. It was found that the chosen sorbent deactivation model fits well the experimental data collected under given conditions. A reaction order of 1 with respect to CO(2) is obtained from experimental data. The Arrhenius form of CO(2) carbonation with Mg(2)SiO(4) is established based on changes in the rate constants of the chosen deactivation model as a function of temperature.

  16. [Legal aspects of mineral waters].

    PubMed

    Callipo, C

    1976-01-01

    The Author takes up the subject of the report in order to carry out a comprehensive legal recognition of the mineral water regulations in Italy and emphasizes that in this field the results of scientific conclusions, or rather of the various scientific branches (medical hydrology, microbiology, chemics, hydrogeology, medical clinics, pharmacology, etc.) supply a cognitive support to the legislator and the substantial contents to the legal standards. He therefore illustrates the two main outlines of the rules, i.e. the hygienic sanitary one and the mineral one: such lay-out is subsequently related to the implementation of the Regions on one hand and to the enforcement of CEE-rules on the other. This has led to the fact that the hygienic-sanitary legislation was confirmed to the State while the mineral one was transferred to the Regions. After having shown up contrasts and expressed the necessity of clearness and uniformity of rules and criteria, the Author connects these requirements mainly with the implementation of hygienic-sanitary surveillance and consequently with the evaluation of the banal bacterical contents under the point of view of merit--i.e. the rules should include the probative results of science--as well as from a point of view of coordinated allotments of competence by the various organisms.

  17. Mineralogy and Geochemical Processes of Carbonate Mineral-rich Sulfide Mine Tailings, Zimapan, Mexico

    NASA Astrophysics Data System (ADS)

    McClure, R. J.; Deng, Y.; Loeppert, R.; Herbert, B. E.; Carrillo, R.; Gonzalez, C.

    2009-12-01

    Mining for silver, lead, zinc, and copper in Zimapan, Hidalgo State, Mexico has been ongoing since 1576. High concentrations of heavy metals have been found in several mine tailing heaps in the Zimapan area, with concentrations of arsenic observed as high as 28,690 mg/kg and levels of Pb as high as 2772 mg/kg. Unsecured tailings heaps and associated acid mine drainage has presented tremendous problems to revegetation, water quality, and dust emission control in the Zimapan area. Although acid mine drainage problems related to weathering of sulfide minerals have been extensively studied and are well known, the weathering products of sulfides in areas with a significant presence of carbonate minerals and their effect on the mobility of heavy metals warrant further study. Carbonate minerals are expected to neutralize sulfuric acid produced from weathering of sulfide minerals, however, in the Zimapan area localized areas of pH as low as 1.8 were observed within carbonate mineral-rich tailing heaps. The objectives of this study are to characterize (1) the heavy metal-containing sulfide minerals in the initial tailing materials, (2) the intermediate oxidation products of sulfide minerals within the carbonate-rich tailings, (3) chemical species of heavy metals within pH gradients between 1.8 and 8.2, the approximate natural pH of limestone, and (4) the mobility of soluble and colloidal heavy metals and arsenic within the carbonate-rich tailings. Representative mine tailings and their intermediate oxidation products have been sampled from the Zimapan area. Mineralogical characterization will be conducted with X-ray diffraction, infrared spectroscopy, electron microscopes and microprobes, and chemical methods. Chemical species will be extracted by selective dissolution methods. Preliminary results have identified calcite as the dominant mineral in the tailing heaps with a pH of 7, suggesting non-equilibrium with the acidic weathering products. Other minerals identified in

  18. Distribution of Water in Nominally Anhydrous Minerals during Metamorphic Reactions

    NASA Astrophysics Data System (ADS)

    Van Lankvelt, A.; Seaman, S. J.; Williams, M. L.

    2014-12-01

    Nominally anhydrous minerals are a reservoir for water in otherwise dry rocks. This water may play a role in facilitating metamorphic reactions and enhancing deformation. In this study, we examined orthopyroxene-bearing granites from the Athabasca Granulite terrane in northern Saskatchewan. These rocks intruded the lower crust (pressures of 1 GPa) at circa 2.6 Ga at temperatures of > 900 ºC and were subsequently metamorphosed at granulite facies conditions (700 ºC and 1 GPa) in the Paleoproterozoic (Williams et al., 2000). One of the primary reactions recorded by these rocks is locally known as the "Mary" reaction and involves the anhydrous reaction: orthopyroxene + Ca-plagioclase = clinopyroxene + garnet + Na-plagioclase. Measurements of water concentrations in both product and reactant assemblages were performed using a Bruker Vertex 70 Fourier transform infrared spectrometer and revealed that there is a slight excess of water in product minerals over reactant minerals. There are two possible explanations for this. The first is that water was derived from an external source, possibly hydrous, likely contemporaneous, mafic dikes. This interpretation is supported by higher concentrations of K, which is essentially absent from the reactant minerals, in the Na-rich rims of plagioclase. However, only modest amounts of external fluids could have been introduced, or amphiboles would have been stabilized at the expense of clinopyroxene (Moore & Carmichael, 1998). An alternative interpretation is that slightly more water-rich minerals reacted more readily, releasing water that was then incorporated into their products, whereas the water-poorer minerals failed to react. Support for this interpretation comes from very low water concentrations in orthopyroxene and plagioclase from an unreacted and undeformed sample. This interpretation suggests that water in anhydrous minerals may catalyze metamorphic reactions, and a lack of water may be critical for preserving metastable

  19. Analysis of Mineral-Rich Suspended Matter in Glacial Lakes Using Simulations and Satellite Data

    NASA Astrophysics Data System (ADS)

    Eder, E.; Dornhofer, K.; Gege, P.; Schenk, K.; Klinger, Ph.; Wenzel, J.; Oppelt, N.; Gruber, N.

    2016-08-01

    The contribution of mineral-rich suspended matter (MSM) to the optics of water bodies is still less treated by bio-optical modeling than that of other water constituents. However, with the increasing number of remote sensing studies on inland waters, optical properties of terrestrial particles gain importance for accurately estimating particle concentrations. We compared two current simulation tools, Hydrolight and WASI, for high MSM concentrations within the realistic context of catchments with glacial erosion. The study area is an extreme form of suspended sediment- dominated Case2 water. We simulated Rrs(0-) spectra with MSM concentrations varying from 5 to 200 g m-3. In a second step, WASI-2D was applied to invert Landsat8. In-situ measured concentrations and reflectance spectra served to assess model performance. Thus, we tested the suitability of the analytical model WASI for high MSM concentrations and point out necessities for future adaptations to (extremely) turbid environments.

  20. Rich Water World an adaptive water management tool

    NASA Astrophysics Data System (ADS)

    van Rheenen, Hans; van den Berg, Wim

    2015-04-01

    Rich Water World an adaptive water management tool based on weather forecasting, sensor data and hydrological modelling. Climate change will cause periods of more extreme rainfall relieved by periods of drought. Water systems have to become more robust and self supporting in order to prevent damage by flooding and drought. For climate proof water management, it is important to anticipate on extreme events by using excellent weather forecast data, sensor data on soil and water, and hydrologic model data. The Rich Water World project has created an Adaptive Water Management Tool that integrates all these data.

  1. Mineral constituents in water and their significance

    USGS Publications Warehouse

    Dover, T.B.

    1950-01-01

    Pure water does not exist in nature. Because water is a powerful solvent, every drop of rain water carries dissolved or suspended material - dust, pollen, and smoke, as well as the atmospheric gases, oxygen, nitrogen and carbon dioxide. When rain falls, the water running over the rocks and percolating through the soil gathers more and more mineral matter in solution. As the uses to which a water supply may be put depend primarily on its mineral content, information concerning the chemical characteristics of water is of importance to each of us. (available as photostat copy only)

  2. [Comparative study of the short-term effect of mineral water on calcium metabolism].

    PubMed

    Vezzoli, Giuseppe; Arcidiacono, Teresa; Puzzovio, Maria; Mora, Stefano

    2010-01-01

    Mineral water may be a useful means to achieve optimal dietary calcium intake, but the effect of different mineral waters on calcium metabolism is unknown. We therefore evaluated calcium excretion in 24-hour urine in 10 healthy individuals (5 women and 5 men) after two weeks of drinking at least 1500 mL/day of mineral water with a low electrolyte content or 1500 mL/day of mineral water rich in calcium and bicarbonate but with a different sodium content. The low-sodium water Sangemini was one of these two mineral waters. Calcium excretion did not significantly increase after intake of the Sangemini mineral water in comparison with the baseline period of low-electrolyte mineral water intake. Conversely, the calcium excretion increased significantly after intake of the second mineral water. The plasma concentration of C-terminal telopeptide of type I collagen and the urinary phosphate excretion decreased after intake of the second mineral water in comparison with the baseline period, whereas they did not decrease after intake of Sangemini water. Therefore, phosphate excretion was higher after drinking Sangemini water than the other studied mineral water. Drinking Sangemini water may have a slight effect on calcium excretion and may not inhibit bone turnover in the short term. The lesser effect of Sangemini water on calcium excretion could be useful in the treatment of osteoporosis.

  3. Water-Signature Mineral Found by Spirit

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This spectrum, taken by the Mars Exploration Rover Spirit's Moessbauer spectrometer, shows the presence of an iron-bearing mineral called goethite in a rock called 'Clovis' in the 'Columbia Hills' of Mars. Goethite contains water in the form of hydroxyl as a part of its structure. By identifying this mineral, the examination of Clovis produced strong evidence for past water activity in the area that Spirit is exploring.

  4. Water-Signature Mineral Found by Spirit

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This spectrum, taken by the Mars Exploration Rover Spirit's Moessbauer spectrometer, shows the presence of an iron-bearing mineral called goethite in a rock called 'Clovis' in the 'Columbia Hills' of Mars. Goethite contains water in the form of hydroxyl as a part of its structure. By identifying this mineral, the examination of Clovis produced strong evidence for past water activity in the area that Spirit is exploring.

  5. Habitability constraints on water-rich exoplanets

    NASA Astrophysics Data System (ADS)

    Noack, Lena; Höning, Dennis; Rivoldini, Attilio; Heistracher, Clemens; Zimov, Nastasia; Journaux, Baptiste; Lammer, Helmut; Van Hoolst, Tim; Hendrik Bredehöft, Jan

    2016-04-01

    This research addresses the characterization, modelling, thermal evolution and possible habitability of water-rich exoplanets. Water is necessary for the origin and survival of life as we know it. In the search for habitable worlds, water-rich planets therefore seem obvious candidates. The water layer on such planets could be hundreds of kilometers deep. Depending on the temperature profile and the pressure gradient, it is likely that at great depths a significant part of the water layer is solid high pressure ice. Whether the solid ice layer extends to the bottom of the water layer, or if a shallow lower ocean forms above the silicate mantle, depends amongst others on the thermal state of the planet. We therefore model the thermal evolution of water-rich planets with a 1D parameterized model. Depth-dependent profiles for thermodynamic properties as well as pressure and gravity are obtained by solving the Poisson equation for the gravity and the hydrostatic pressure equation for pre-defined mass and composition (in terms of iron, silicates and water) [1]. For density, equations of state are applied. For the simulation of the thermal evolution of water-rich planets, several parameters (as initial temperatures or layer thicknesses) are unknown. We therefore employ a quantitatve study with more than 20'000 simulations, where we investigated which parameters have the largest influence on the appearance of a lower ocean, i.e. the possible melting of high-pressure ice by heat flowing out of the silicate mantle [2]. We find that the surface temperature has the largest influence on the thickness of water layers, for which a lower ocean can still form between the high-pressure ice layer and the silicate mantle. For higher surface temperatures, not only entirely liquid oceans are possible for deeper water shells, also a liquid ocean can form under high-pressure ice layers of hundreds of kilometer thickness (for a 1 Earth-mass planet). Deeper down, the lower ocean can still

  6. Nanoconfined water in magnesium-rich phyllosilicates.

    SciTech Connect

    Nenoff, Tina Maria; Durkin, Justin S.; Daemen, Luke L.; Ockwig, Nathan W.; Cygan, Randall Timothy; Greathouse, Jeffery A.

    2009-10-01

    Inelastic neutron scattering, density functional theory, ab initio molecular dynamics, and classical molecular dynamics were used to examine the behavior of nanoconfined water in palygorskite and sepiolite. These complementary methods provide a strong basis to illustrate and correlate the significant differences observed in the spectroscopic signatures of water in two unique clay minerals. Distortions of silicate tetrahedra in the smaller-pore palygorskite exhibit a limited number of hydrogen bonds having relatively short bond lengths. In contrast, without the distorted silicate tetrahedra, an increased number of hydrogen bonds are observed in the larger-pore sepiolite with corresponding longer bond distances. Because there is more hydrogen bonding at the pore interface in sepiolite than in palygorskite, we expect librational modes to have higher overall frequencies (i.e., more restricted rotational motions); experimental neutron scattering data clearly illustrates this shift in spectroscopic signatures. Distortions of the silicate tetrahedra in these minerals effectively disrupts hydrogen bonding patterns at the silicate-water interface, and this has a greater impact on the dynamical behavior of nanoconfined water than the actual size of the pore or the presence of coordinatively-unsaturated magnesium edge sites.

  7. Sulphurous Mineral Waters: New Applications for Health

    PubMed Central

    Carbajo, Jose Manuel

    2017-01-01

    Sulphurous mineral waters have been traditionally used in medical hydrology as treatment for skin, respiratory, and musculoskeletal disorders. However, driven by recent intense research efforts, topical treatments are starting to show benefits for pulmonary hypertension, arterial hypertension, atherosclerosis, ischemia-reperfusion injury, heart failure, peptic ulcer, and acute and chronic inflammatory diseases. The beneficial effects of sulphurous mineral waters, sulphurous mud, or peloids made from sulphurous mineral water have been attributed to the presence of sulphur mainly in the form of hydrogen sulphide. This form is largely available in conditions of low pH when oxygen concentrations are also low. In the organism, small amounts of hydrogen sulphide are produced by some cells where they have numerous biological signalling functions. While high levels of hydrogen sulphide are extremely toxic, enzymes in the body are capable of detoxifying it by oxidation to harmless sulphate. Hence, low levels of hydrogen sulphide may be tolerated indefinitely. In this paper, we review the chemistry and actions of hydrogen sulphide in sulphurous mineral waters and its natural role in body physiology. This is followed by an update of available data on the impacts of exogenous hydrogen sulphide on the skin and internal cells and organs including new therapeutic possibilities of sulphurous mineral waters and their peloids. PMID:28484507

  8. Microbiological characteristics of natural mineral water.

    PubMed

    Schmidt-Lorenz, W

    1976-01-01

    Natural, non-carbonated mineral water is, like every other natural water from a spring, never sterile. However, the microbial level is always very low. But after its bottling, the level rises rapidly and numbers of more than 10,000 to 100,000/ml can be reached. In principle 2 groups of bacteria of very different origin and properties can be found in the microbial flora of the bottled, non-carbonated mineral water. Allochthonous bacteria will get into the water by contamination from the containers, closures, air or the bottling machines. They are mostly transitory as they cannot grow in a substrate with an extremely low nutritive level and die off more or less rapidly. From the hygienic point of view the permanently contaminating flora with Pseudomonas aeruginosa as main representative is more serious. These special gram-negative bacteria are oligocarbotolerant and can therefore multiply in the mineral water of extremely low nutrient level after a certain adaptation. Their effective bacteriological control is possible by colony counting with incubation at +37 degrees C but only just after bottling. The autochthonous microbial flora consists of psychrotrophic and of distinctly oligocarbophilic, mainly gram-negative bacteria such as Achromobacter, Flavobacteria, Pseudomonas as well as gram-positive Arthrobacter-species. According to indirect experiences, this autochthonous microbial flora must be growing in the open system of the underground source and renew itself constantly. The bottling of the natural spring water implies a drastic environmental change from this open system into a closed one. Then the bacteria start multiplying more or less rapidly like in a batch culture. Main reason for this is the extension of the inners surface of the system. The multiplication of bacteria after bottling of a mineral water of extremely low nutrient level therefore is an entirely normal biological process. For this reason, limits of the aerobic colony count at +20 degrees C

  9. Microcoulometric measurement of water in minerals

    USGS Publications Warehouse

    Cremer, M.; Elsheimer, H.N.; Escher, E.E.

    1972-01-01

    A DuPont Moisture Analyzer is used in a microcoulometric method for determining water in minerals. Certain modifications, which include the heating of the sample outside the instrument, protect the system from acid gases and insure the conversion of all hydrogen to water vapor. Moisture analyzer data are compared to concurrent data obtained by a modified Penfield method. In general, there is a positive bias of from 0.1 to 0.2% in the moisture analyzer results and a similarity of bias in minerals of the same kind. Inhomogeneity, sample size, and moisture pick-up are invoked to explain deviations. The method is particularly applicable to small samples. ?? 1972.

  10. Estimation of the reactive mineral surface area during CO2-rich fluid-rock interaction: the influence of neogenic phases

    NASA Astrophysics Data System (ADS)

    Scislewski, A.; Zuddas, P.

    2010-12-01

    Mineral dissolution and precipitation reactions actively participate to control fluid chemistry during water-rock interaction. It is however, difficult to estimate and well normalize bulk reaction rates if the mineral surface area exposed to the aqueous solution and effectively participating on the reactions is unknown. We evaluated the changing of the reactive mineral surface area during the interaction between CO2-rich fluids and Albitite/Granitoid rocks (similar mineralogy but different abundances), reacting under flow-through conditions. Our methodology, adopting an inverse modeling approach, is based on the estimation of dissolution rate and reactive surface area of the different minerals participating in the reactions by the reconstruction the chemical evolution of the interacting fluids. The irreversible mass-transfer processes is defined by a fractional degree of advancement, while calculations were carried out for Albite, Microcline, Biotite and Calcite assuming that the ion activity of dissolved silica and aluminium ions was limited by the equilibrium with quartz and kaolinite. Irrespective of the mineral abundance in granite and albitite, we found that mineral dissolution rates did not change significantly in the investigated range of time where output solution’s pH remained in the range between 6 and 8, indicating that the observed variation in fluid composition depends not on pH but rather on the variation of the parent mineral’s reactive surface area. We found that the reactive surface area of Albite varied by more than 2 orders of magnitude, while Microcline, Calcite and Biotite surface areas changed by 1-2 orders of magnitude. We propose that parent mineral chemical heterogeneity and, particularly, the stability of secondary mineral phases may explain the observed variation of the reactive surface area of the minerals. Formation of coatings at the dissolving parent mineral surfaces significantly reduced the amount of surface available to react

  11. Mars: A water-rich planet?

    USGS Publications Warehouse

    Carr, M.H.

    1986-01-01

    Mars had outgassed at least 0.5 to 1 km of water, 10 to 20 bar of CO2, and 0.1 to 0.3 bar of N2. The volatiles that have been retained are mostly in the cratered uplands. Terrain softening, fretted channels, debris flows, and closed depressions indicate that at least the upper 2 km of the cratered uplands at high latitudes (>30??) contain ice in amounts that exceed the porosity, estimated to be 10-20%. Theoretical studies, and lack of these features in the cratered uplands at low latitudes, suggest that the upper 1 km of the uplands at low latitudes is ice poor. However, valley networks indicate that water was present near the surface early in the planet's history, although in amounts smaller than at high latitudes. The entire upper 1 km, planetwide is estimated to have contained 75-125 m of water at the end of heavy bombardment. The largest sink for water is the megaregolith below 1 km. Episodic eruption of water from the deep megaregolith cut many of the large outflow channels. From the volume of water needed to cut the circum-Chryse channels, and assuming uniform planetwide distribution of water, the deep megaregolith is estimated to have contained at least 350 m of water at the end of heavy bombardment, thereby giving a total minimum inventory of 424-475 m planetwide. Most of the water lost from the low-latitude uplands by diffusion and in cutting the valley networks is now believed to be in the polar layered terrains. Most of the water involved in cutting the outflow channels is in the low-lying northern plains where a variety of features that have been attributed to ground ice is present. A large fraction of the planet's surface has been overplated with water-poor volcanics, of which we have samples in the SNC meteorites. The younger volcanics have reacted extensively with the old volatile-rich basement. Some of the CO2 and N2 outgassed was lost during heavy bombardment by impact erosion of the atmosphere and other processes. The remaining was fixed

  12. Quality assessment of Romanian bottled mineral water and tap water.

    PubMed

    M Carstea, Elfrida; Levei, Erika A; Hoaghia, Maria-Alexandra; Savastru, Roxana

    2016-09-01

    This study reports the evaluation of bottled mineral water characteristics using fluorescence spectroscopy (synchronous fluorescence scans and emission spectra) and physico-chemical analyses. Samples from 14 still mineral water brands were compared to 11 tap waters collected from two Romanian cities. Correlation and factor analyses were undertaken to understand the relationships between the individual components. The concentration of major and minor ions showed great variation between the bottled mineral water samples highlighting the diversity of the water intakes, while in the case of tap water the chemical composition was relatively similar for samples collected in the same city. Fluorescence data showed that the mineral water contained low quantities of organic matter. The humic fraction was dominant in all samples, while the microbial fraction was low in most samples. Synchronous fluorescence scans provided more information, regarding the composition of organic matter, compared to emission spectra. The study evidenced the correlation between fluorescence parameters and major elements and highlighted the potential of using fluorescence for qualitative evaluation of the bottled mineral water quality, as a screening method before undertaking complex analyses.

  13. Modeling CO2-Water-Mineral Wettability and Mineralization for Carbon Geosequestration.

    PubMed

    Liang, Yunfeng; Tsuji, Shinya; Jia, Jihui; Tsuji, Takeshi; Matsuoka, Toshifumi

    2017-07-18

    interfaces displayed a linear correlation, which can in turn explain the constant contact angle on the hydrophilic silica surface. In view of the literature and our study results, a few recommendations seem necessary to construct a molecular system suitable to study wettability with MD simulations. Future work should be conducted to determine the influence of brine salinity on the wettability of minerals with high cation exchange capacity. Mineral trapping is believed to be an extremely slow process, likely taking thousands of years. However, a recent pilot study demonstrated that CO2 mineralization occurs within 2 years in highly reactive basalt reservoirs. A first-principles MD study has also shown that carbonation reactions occur rapidly at the surface oxygen sites of a reactive mineral. We observed carbonate ions on both a newly cleaved quartz surface (without hydrolysis), and a basalt andesine surface after hydrolysis in a CO2-rich environment. Future work should consider the influence of water, gas impurities, and mineral cation type on carbonation.

  14. [Mineral waters from several Brazilian natural sources].

    PubMed

    Rebelo, M A; Araujo, N C

    1999-01-01

    To divulge information on the chemical composition and physical-chemical features of some mineral waters from Brazilian natural sources that will be of useful protocol investigation and patient advice. The survey was based on bottle labels of non-gaseous mineral waters commercially available in the city of Rio de Janeiro. The íon concentration of each mineral was calculated from the salt content. 36 springs were enralled from different states of the country. The pH (25 degrees C), 4.1 to 9.3, varied on dependence of the source and it was linearey correlated with the cations calcium, magnesium and sodium and the anion bicarbonate. It was atributed to high alkalinity (about 70% of bicarbonate in the molecula-gram) of these salts. The calcium (0.3 to 42 mg/l), magnesium (0.0 to 18 mg/l) and bicarbonate (4 to 228 mg/l) contents are relatively low. The mineral content of the Brazilian springs enrolled in this survey is low; about 70% of the sources having calcium and magnesium less than 10 mg/l and 1.0 mg/l, respectively, similar to local tap water.

  15. Simulated space weathering of Fe- and Mg-rich aqueously altered minerals using pulsed laser irradiation

    NASA Astrophysics Data System (ADS)

    Kaluna, H. M.; Ishii, H. A.; Bradley, J. P.; Gillis-Davis, J. J.; Lucey, P. G.

    2017-08-01

    Simulated space weathering experiments on volatile-rich carbonaceous chondrites (CCs) have resulted in contrasting spectral behaviors (e.g. reddening vs bluing). The aim of this work is to investigate the origin of these contrasting trends by simulating space weathering on a subset of minerals found in these meteorites. We use pulsed laser irradiation to simulate micrometeorite impacts on aqueously altered minerals and observe their spectral and physical evolution as a function of irradiation time. Irradiation of the mineral lizardite, a Mg-phyllosilicate, produces a small degree of reddening and darkening, but a pronounced reduction in band depths with increasing irradiation. In comparison, irradiation of an Fe-rich aqueously altered mineral assemblage composed of cronstedtite, pyrite and siderite, produces significant darkening and band depth suppression. The spectral slopes of the Fe-rich assemblage initially redden then become bluer with increasing irradiation time. Post-irradiation analyses of the Fe-rich assemblage using scanning and transmission electron microscopy reveal the presence of micron sized carbon-rich particles that contain notable fractions of nitrogen and oxygen. Radiative transfer modeling of the Fe-rich assemblage suggests that nanometer sized metallic iron (npFe0) particles result in the initial spectral reddening of the samples, but the increasing production of micron sized carbon particles (μpC) results in the subsequent spectral bluing. The presence of npFe0 and the possible catalytic nature of cronstedtite, an Fe-rich phyllosilicate, likely promotes the synthesis of these carbon-rich, organic-like compounds. These experiments indicate that space weathering processes may enable organic synthesis reactions on the surfaces of volatile-rich asteroids. Furthermore, Mg-rich and Fe-rich aqueously altered minerals are dominant at different phases of the aqueous alteration process. Thus, the contrasting spectral slope evolution between the Fe

  16. Natural mineral waters, curative-medical waters and their protection

    NASA Astrophysics Data System (ADS)

    Fricke, M.

    1993-10-01

    In Europe different types of water are marketed, each strictly defined by EC Directive 80/777 (Natural Mineral Water, Spring and Table Water) or 80/778 (Drinking Water). In Germany, an additional type of water is common in the market: curative/medical water. Product quality and safety, registration as medicine, and pharmaceutical control are defined by the German Federal Medicine Act. A medical water is treated as any other medicine and may be sold only in pharmacies. The use of any water in Germany is controlled and strictly regulated by the Federal Water Act (Fricke 1981). The following requirements are set by the act: (1) No water use without a permit, which is limited in time and quantity. (2) No single or juristic person may own water. (3) Water resources of public interest and their recharge areas are to be protected by the definition of water protection zones. (Natural mineral water is not of public interest and therefore is not required to be protected by the definition of water protection zones, although it represents a market value of more than US2 billion. Medical water is of public interest). The definition of water protection zones impacts private property rights and has to be handled carefully. In order to protect water resources, sometimes the economic basis of a traditional industrial and/or agricultural infrastructure is destroyed. The concerns and needs all citizens, including industry, must be considered in analyzing the adequacy of water protection zones.

  17. [Hygienic evaluation of mineralizing lime substances for correction of mineral composition of low-mineral drinking water].

    PubMed

    Rakhmanin, Iu A; Filippova, A V; Mikhaĭlova, R I; Beliaeva, N N; Lamentova, T G; Kumpan, N B; Fel'dt, E G

    1990-08-01

    4 out of 6 mineralizing lime materials that were studied have been recommended for the practical application with the aim to correct the mineral composition of drinking low-mineralized water. The possibility to predict the biological properties of multicomponent mineralizing materials has been established on the basis of results of analysis of their chemical composition.

  18. Uranium immobilization and nanofilm formation on magnesium-rich minerals

    DOE PAGES

    van Veelen, Arjen; Bargar, John R.; Law, Gareth T. W.; ...

    2016-03-18

    Polarization-dependent grazing incidence X-ray absorption spectroscopy (XAS) measurements were completed on oriented single crystals of magnesite [MgCO3] and brucite [Mg(OH)2] reacted with aqueous uranyl chloride above and below the solubility boundaries of schoepite (500, 50, and 5 ppm) at pH 8.3 and at ambient (PCO2 = 10–3.5) or reduced partial pressures of carbon dioxide (PCO2 = 10–4.5). X-ray absorption near edge structure (XANES) spectra show a striking polarization dependence (χ = 0° and 90° relative to the polarization plane of the incident beam) and consistently demonstrated that the uranyl molecule was preferentially oriented with its Oaxial = U(VI) = Oaxialmore » linkage at high angles (60–80°) to both magnesite (101¯4) and brucite (0001). Extended X-ray absorption fine structure (EXAFS) analysis shows that the “effective” number of U(VI) axial oxygens is the most strongly affected fitting parameter as a function of polarization. Furthermore, axial tilt in the surface thin films (thickness ~ 21 Å) is correlated with surface roughness [σ]. Our results show that hydrated uranyl(-carbonate) complexes polymerize on all of our experimental surfaces and that this process is controlled by surface hydroxylation. Lastly, these results provide new insights into the bonding configuration expected for uranyl complexes on the environmentally significant carbonate and hydroxide mineral surfaces.« less

  19. Submarine hydrothermal activity and gold-rich mineralization at Brothers Volcano, Kermadec Arc, New Zealand

    NASA Astrophysics Data System (ADS)

    de Ronde, Cornel E. J.; Massoth, Gary J.; Butterfield, David A.; Christenson, Bruce W.; Ishibashi, Junichiro; Ditchburn, Robert G.; Hannington, Mark D.; Brathwaite, Robert L.; Lupton, John E.; Kamenetsky, Vadim S.; Graham, Ian J.; Zellmer, Georg F.; Dziak, Robert P.; Embley, Robert W.; Dekov, Vesselin M.; Munnik, Frank; Lahr, Janine; Evans, Leigh J.; Takai, Ken

    2011-07-01

    contrast, vent fluids at the Cone site are diffuse, noticeably cooler (≤122°C), more acidic (pH 1.9), metal-poor, and gas-rich. Higher-than-seawater values of SO4 and Mg in the Cone vent fluids show that these ions are being added to the hydrothermal fluid and are not being depleted via normal water/rock interactions. Iron oxide crusts 3 years in age cover the main cone summit and appear to have formed from Fe-rich brines. Evidence for magmatic contributions to the hydrothermal system at Brothers includes: high concentrations of dissolved CO2 (e.g., 206 mM/kg at the Cone site); high CO2/3He; negative δD and δ18OH2O for vent fluids; negative δ34S for sulfides (to -4.6‰), sulfur (to -10.2‰), and δ15N2 (to -3.5‰); vent fluid pH values to 1.9; and mineral assemblages common to high-sulfidation systems. Changing physicochemical conditions at the Brothers hydrothermal system, and especially the Cone site, occur over periods of months to hundreds of years, as shown by interlayered Cu + Au- and Zn-rich zones in chimneys, variable fluid and isotopic compositions, similar shifts in 3He/4He values for both Cone and NW Caldera sites, and overprinting of "magmatic" mineral assemblages by water/rock-dominated assemblages. Metals, especially Cu and possibly Au, may be entering the hydrothermal system via the dissolution of metal-rich glasses. They are then transported rapidly up into the system via magmatic volatiles utilizing vertical (˜2.5 km long), narrow (˜300-m diameter) "pipes," consistent with evidence of vent fluids forming at relatively shallow depths. The NW Caldera and Cone sites are considered to represent stages along a continuum between water/rock- and magmatic/hydrothermal-dominated end-members.

  20. Broccoli Microgreens: A Mineral-Rich Crop That Can Diversify Food Systems.

    PubMed

    Weber, Carolyn F

    2017-01-01

    Current malnourishment statistics are high and are exacerbated by contemporary agricultural practices that damage the very environments on which the production of nutritious food depends. As the World's population grows at an unprecedented rate, food systems must be revised to provide adequate nutrition while minimizing environmental impacts. One specific nutritional problem that needs attention is mineral (e.g., Fe and Zn) malnutrition, which impacts over two-thirds of the World's people living in countries of every economic status. Microgreens, the edible cotyledons of many vegetables, herbs, and flowers, is a newly emerging crop that may be a dense source of nutrition and has the potential to be produced in just about any locale. This study examined the mineral concentration of broccoli microgreens produced using compost-based and hydroponic growing methods that are easily implemented in one's own home. The nutritional value of the resulting microgreens was quantitatively compared to published nutritional data for the mature vegetable. Nutritional data were also considered in the context of the resource demands (i.e., water, fertilizer, and energy) of producing microgreens in order to gain insights into the potential for local microgreen production to diversify food systems, particularly for urban areas, while minimizing the overall environmental impacts of broccoli farming. Regardless of how they were grown, microgreens had larger quantities of Mg, Mn, Cu, and Zn than the vegetable. However, compost-grown (C) microgreens had higher P, K, Mg, Mn, Zn, Fe, Ca, Na, and Cu concentrations than the vegetable. For eight nutritionally important minerals (P, K, Ca, Mg, Mn, Fe, Zn, and Na), the average C microgreen:vegetable nutrient ratio was 1.73. Extrapolation from experimental data presented here indicates that broccoli microgreens would require 158-236 times less water than it does to grow a nutritionally equivalent amount of mature vegetable in the fields of

  1. Broccoli Microgreens: A Mineral-Rich Crop That Can Diversify Food Systems

    PubMed Central

    Weber, Carolyn F.

    2017-01-01

    Current malnourishment statistics are high and are exacerbated by contemporary agricultural practices that damage the very environments on which the production of nutritious food depends. As the World’s population grows at an unprecedented rate, food systems must be revised to provide adequate nutrition while minimizing environmental impacts. One specific nutritional problem that needs attention is mineral (e.g., Fe and Zn) malnutrition, which impacts over two-thirds of the World’s people living in countries of every economic status. Microgreens, the edible cotyledons of many vegetables, herbs, and flowers, is a newly emerging crop that may be a dense source of nutrition and has the potential to be produced in just about any locale. This study examined the mineral concentration of broccoli microgreens produced using compost-based and hydroponic growing methods that are easily implemented in one’s own home. The nutritional value of the resulting microgreens was quantitatively compared to published nutritional data for the mature vegetable. Nutritional data were also considered in the context of the resource demands (i.e., water, fertilizer, and energy) of producing microgreens in order to gain insights into the potential for local microgreen production to diversify food systems, particularly for urban areas, while minimizing the overall environmental impacts of broccoli farming. Regardless of how they were grown, microgreens had larger quantities of Mg, Mn, Cu, and Zn than the vegetable. However, compost-grown (C) microgreens had higher P, K, Mg, Mn, Zn, Fe, Ca, Na, and Cu concentrations than the vegetable. For eight nutritionally important minerals (P, K, Ca, Mg, Mn, Fe, Zn, and Na), the average C microgreen:vegetable nutrient ratio was 1.73. Extrapolation from experimental data presented here indicates that broccoli microgreens would require 158–236 times less water than it does to grow a nutritionally equivalent amount of mature vegetable in the fields of

  2. Effect of organic matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich shale systems

    USGS Publications Warehouse

    Zhang, Tongwei; Ellis, Geoffrey S.; Ruppel, Stephen C.; Milliken, Kitty; Lewan, Mike; Sun, Xun; Baez, Luis; Beeney, Ken; Sonnenberg, Steve

    2013-01-01

    is stronger than for most common clay minerals. Thus, it is expected that CH4 molecules may preferentially occupy surface sites on organic matter. However, active sites on clay mineral surfaces are easily blocked by water. As a consequence, organic-rich shales possess a larger CH4-sorption capacity than clay-rich rocks lacking organic matter. The thermodynamic parameters obtained in this study can be incorporated into model predictions of the maximum Langmuir pressure and CH4- sorption capacity of shales under reservoir temperature and pressure conditions.

  3. [Platelet-riched plasma promotes potential mineralizing capacity of human dental pulp cells in vivo].

    PubMed

    Liu, Zhong-ning; Jiang, Ting; Wang, Yi-xiang

    2011-04-18

    To investigate the biocompatibility of human platelet-rich plasma (PRP) and human dental pulp cells (DPCs), and the effect of human platelet-rich plasma on the mineralization of human dental pulp cells in vivo. DPCs were isolated from healthy dental pulp, and identified by immunostaining of vimentin and cytokeratin. PRP was obtained from healthy volunteer donors by traditional two-step centrifugation. The forth passage of DPCs and PRP were mixed well and activated, and then transplanted subcutaneously in 5-week female nude mice. The groups which were implanted with PRP alone or DPCs alone were used as controls. The animals were sacrificed after 4 weeks and 8 weeks post-transplantation, and the histological and immunohistostaining examinations were used to evaluate the effect of PRP on the mineralization of DPCs. Immunostaining showed that DPCs were positive for vimentin and negative for cytokeratin. In vivo assay showed that the newly formed mineralized tissues were only found in PRP combined with DPCs group after 4 weeks and 8 weeks, while newly formed tissues were not observed in PRP alone or DPCs alone groups. HE staining showed the mineralized tissues were found in PRP+DPCs samples. Immunohistochemistry staining showed these mineralized tissues were positive for osteopontin(OPN), osteocalcin(OC) and collagen I (COLI). PRP had good biocompatibility with DPCs, and could induce the mineralization of DPCs. The study suggests that platelet-rich plasma can be used as a scaffold for pulp capping.

  4. CO2 sequestration in feldspar-rich sandstone: Coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties

    NASA Astrophysics Data System (ADS)

    Tutolo, Benjamin M.; Luhmann, Andrew J.; Kong, Xiang-Zhao; Saar, Martin O.; Seyfried, William E.

    2015-07-01

    To investigate CO2 Capture, Utilization, and Storage (CCUS) in sandstones, we performed three 150 °C flow-through experiments on K-feldspar-rich cores from the Eau Claire formation. By characterizing fluid and solid samples from these experiments using a suite of analytical techniques, we explored the coupled evolution of fluid chemistry, mineral reaction rates, and hydrogeochemical properties during CO2 sequestration in feldspar-rich sandstone. Overall, our results confirm predictions that the heightened acidity resulting from supercritical CO2 injection into feldspar-rich sandstone will dissolve primary feldspars and precipitate secondary aluminum minerals. A core through which CO2-rich deionized water was recycled for 52 days decreased in bulk permeability, exhibited generally low porosity associated with high surface area in post-experiment core sub-samples, and produced an Al hydroxide secondary mineral, such as boehmite. However, two samples subjected to ∼3 day single-pass experiments run with CO2-rich, 0.94 mol/kg NaCl brines decreased in bulk permeability, showed generally elevated porosity associated with elevated surface area in post-experiment core sub-samples, and produced a phase with kaolinite-like stoichiometry. CO2-induced metal mobilization during the experiments was relatively minor and likely related to Ca mineral dissolution. Based on the relatively rapid approach to equilibrium, the relatively slow near-equilibrium reaction rates, and the minor magnitudes of permeability changes in these experiments, we conclude that CCUS systems with projected lifetimes of several decades are geochemically feasible in the feldspar-rich sandstone end-member examined here. Additionally, the observation that K-feldspar dissolution rates calculated from our whole-rock experiments are in good agreement with literature parameterizations suggests that the latter can be utilized to model CCUS in K-feldspar-rich sandstone. Finally, by performing a number of reactive

  5. Microbiological safety of natural mineral water.

    PubMed

    Leclerc, Henri; Moreau, Annick

    2002-06-01

    Natural mineral water originates from groundwater, an oligotrophic ecosystem where the level of organic matter is low and of a very limited bioavailability. The bacterial populations that evolve in these ecosystems are heterotrophic and in starvation-survival state resulting from an insufficient amount of nutrients; for this reason they enter a viable but non-culturable state. After bottling, the number of viable counts increases rapidly, attaining 10(4)-10(5) colony-forming units ml(-1) within 3-7 days. These bacterial communities, identified by culture or with specific probes, are primarily aerobic, saprophytic, Gram-negative rods. Groundwater sources for natural mineral waters are selected such that they are not vulnerable to fecal contamination. Ecological data, especially the diversity and physiological properties of bacterial communities, are essential together with epidemiological studies in order to perform a risk analysis for natural mineral waters. On a continuing basis, the management of microbial risks has to rely on assessment of the heterotrophic plate count and, more specially, on detection of marker organisms, i.e. the classic fecal contamination indicators that have to be absent, and vulnerability indicators for which the occurrence should be as low as possible. It is also recommended to search regularly, but not routinely, for viral and protozoan pathogens.

  6. Biosignatures in Fe- and As-rich acidic water

    NASA Astrophysics Data System (ADS)

    Casiot, C.; Bruneel, O.; Donard, O.; Morin, G.; Leblanc, M.; Personné, C.; Elbaz-Poulichet, F.

    2003-04-01

    The acid waters (pH 2.5-3.5) originating from the Carnoulès mine tailings contain elevated dissolved concentrations of arsenite (As(III)) (50-350 mg.l-1) and ferrous iron (Fe(II)) (˜2000 mg.l-1). In such extreme conditions, a number of microorganisms mainly bacteria can grow and influence water chemistry. In the acidic creek of Carnoulès, twenty to sixty percent of the arsenite initially present in water is removed from the aqueous phase within the first 30 m of the creek, as a result of its precipitation with iron. The precipitates contain 20% As around bacteria-made structures. Isotopic measurements revealed an important isotopic fractionation of iron in the stromatolites, which are enriched in 54Fe compared to the primary ore material. This enrichment may be related to the biologically-mediated oxidation of Fe(II) and subsequent immobilisation of Fe(III) by the bacteria of the Carnoulès creek. XANES analysis of sediments and stromatolite samples showed the formation of As(III)-rich compounds, tooeleite, a rare ferric arsenite sulfate oxy-hydroxide mineral and amorphous mixed As(III)/As(V)-Fe(III) oxyhydroxide compounds. These As(III)-rich compounds are dominant during the wet season; ex-situ experiments showed that the formation of these compounds may be related to the activity of bacterial strains of Acidithiobacillus ferrooxidans that oxidize Fe(II) but not As(III). In contrast, amorphous As(V)-Fe(III) oxy-hydroxides dominate in the sediments during the dry season; they originate from both biotic and abiotic oxidation of As(III). Different strains of As-oxidizing bacteria were isolated from the Carnoulès creek water and identified as strains of the genus Thiomonas.

  7. Mineral water or tap water? An endless debate.

    PubMed

    De Giglio, O; Quaranta, A; Lovero, G; Caggiano, G; Montagna, M T

    2015-01-01

    The consumption of mineral water has been increasing because of the frequent and unjustified reports of the water supply contamination. However some authors have shown that bottled waters are not always better than tap water. Mineral waters are more palatable for organoleptic characteristic because, being pure at source, they do not undergo disinfection treatments and are sometimes enriched with CO2. In fact, they are characterized by their microbial facies subject to changes during the production cycle which can contribute to their contamination. It is necessary to provide people with the tools necessary to operate a critical choice of the type of water to be consumed not exclusively for their organoleptic characteristics or marketing strategies.

  8. Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping

    USGS Publications Warehouse

    Rice, M.S.; Bell, J.F.; Cloutis, E.A.; Wang, A.; Ruff, S.W.; Craig, M.A.; Bailey, D.T.; Johnson, J. R.; De Souza, P.A.; Farrand, W. H.

    2010-01-01

    The Mars Exploration Rover (MER) Spirit has discovered surprisingly high concentrations of amorphous silica in soil and nodular outcrops in the Inner Basin of the Columbia Hills. In Pancam multispectral observations, we find that an absorption feature at the longest Pancam wavelength (1009 nm) appears to be characteristic of these silica-rich materials; however, spectral analyses of amorphous silica suggest that the ???1009 nm spectral feature is not a direct reflection of their silica-rich nature. Based on comparisons with spectral databases, we hypothesize that the presence of H2O or OH, either free (as water ice), adsorbed or bound in a mineral structure, is responsible for the spectral feature observed by Pancam. The Gertrude Weise soil, which is nearly pure opaline silica, may have adsorbed water cold-trapped on mineral grains. The origin of the ???1009 nm Pancam feature observed in the silica-rich nodular outcrops may result from the presence of additional hydrated minerals (specific sulfates, halides, chlorides, sodium silicates, carbonates or borates). Using the ???1009 nm feature with other spectral parameters as a "hydration signature" we have mapped the occurrence of hydrated materials along the extent of Spirit's traverse across the Columbia Hills from West Spur to Home Plate (sols 155-1696). We have also mapped this hydration signature across large panoramic images to understand the regional distribution of materials that are spectrally similar to the silica-rich soil and nodular outcrops. Our results suggest that hydrated materials are common in the Columbia Hills. ?? 2009 Elsevier Inc.

  9. How rich is Australia's minerals endowment and is it adequate to sustain a major role in meeting international demand?

    NASA Astrophysics Data System (ADS)

    Lambert, I. B.

    2012-04-01

    Dr Ian Lambert, Geoscience Australia and Secretary General 34th International Geological Congress Australia has comparative advantages in production of mineral commodities compared to most other countries. These stem from its rich and diverse mineral endowment; availability of regional scale (pre-competitive) geoscience information to lower the risks of exploration; advances in exploration, mining and processing technologies; skilled work force; generally benign physical conditions; and low population density. Building on these strengths, Australia is a major producer and exporter of a wide range of mineral and energy commodities to global markets. Given that demand for most major commodities is likely to continue, and that there will be growing markets for some other commodities, Australia needs to have a strategic view of what is likely to be available for mining. Further, Australia (and the world) needs to be attuned to issues that need to be faced in meeting international demand for commodities in the long term. This presentation outlines how Australia's national minerals inventory is compiled. It discusses trends for Australia's identified mineral resources for major commodities, and how these compare with other major mining nations. It then considers some significant issues in relation to sustaining a strong mining sector - in the medium to long term this requires a strategic approach to achieve goals such as more effective/lower risk exploration particularly in greenfields regions; well-Informed decisions on mining proposals; ongoing significant improvements in efficiencies of energy, water and land use.

  10. [The determination of molecular sulphur in Matsesta mineral water and its analog Novonukutskaya mineral water].

    PubMed

    Khutorianskiĭ, V A; Smirnov, A I; Matveev, D A

    2014-01-01

    The method of microcolumn reversed phase high performance liquid chromatography (rp-HPLC) was employed to determine the content of elemental sulphur in mineral waters. The study envisaged the analysis of the samples of sulphide-containing mineral waters Novonukutskaya and Matsesta obtained by the solid phase extraction technique. Based on these data, the authors discuss the origin and the circulation of sulphur in the hydrogen sulphide sources. The elution conditions selected in this study ensured the high-resolution separation of the octasulphur peak from the peaks of allotropic components of the extract whereas the two-wave detection technique allowed to identify the peaks of molecular sulphur.

  11. Mineral chemistry and origin of spinel-rich inclusions in the Allende CV3 chondrite

    NASA Technical Reports Server (NTRS)

    Kornacki, A. S.; Wood, J. A.

    1985-01-01

    The present electron probe microanalysis of 20 spinel-rich inclusions in Allende indicates that the mineralogy of spinel-rich Allende inclusions is similar to that of fine grained Ca, Al-rich inclusions (CAIs) in ALH-77003 and rims on coarse grained CAIs in Allende. The mineralogy, mineral chemistry, and bulk chemistry of the inclusions indicate that they are not primitive aggregates of crystalline nebular condensates, but rather aggregates of minute concentric objects that are presently interpreted to be a fractionated distillation residue that lost Ca, Si-rich partial melt. It is suggested that interstellar dust aggregates were melted or distilled into Allende inclusions by aerodynamic drag heating, in regions of the nebula where the dust/gas ratio was so enhanced that the local oxygen fugacity was raised by several order of magnitude and liquids became thermodynamically stable.

  12. The thermal evolution of large water-rich asteroids

    NASA Astrophysics Data System (ADS)

    Schmidt, B. E.; Castillo, J. C.

    2009-12-01

    Water and heat played a significant role in the formation and evolution of large main belt asteroids, including 1 Ceres, 2 Pallas, and 24 Themis, for which there is now evidence of surficial water ice (Rivkin & Emery, ACM 2008). Shape measurements indicate some differentiation of Ceres’ interior, which, in combination with geophysical modeling, may indicate compositional layering in a core made up of anhydrous and hydrated silicate and a water ice mantle (Castillo-Rogez & McCord, in press, Icarus). We extend these interior models now to other large, possibly water-rich main belt asteroids, namely Pallas, at mean radius 272 km, and the Themis family parent body, at mean radius 150 km. The purpose of this study is to compare geophysical models against available constraints on the physical properties of these objects and to offer constraints on the origin of these objects. Pallas is the largest B-type asteroid. Its surface of hydrated minerals and recent constraint on its density, 2.4-2.8 g/cm3, seems to imply that water strongly affected its evolution (Schmidt et al., in press, Science). 24 Themis is the largest member of the Themis family that now counts about 580 members, including some of the main belt comets. The large member 90 Antiope has a density of about 1.2 g/cm3, while 24 Themis has a density of about 2.7 +/-1.3 g/cm3. The apparent contrast in the densities and spectral properties of the Themis family members may reflect a compositional layering in the original parent body. In the absence of tidal heating and with little accretional heat, the evolution of these small water-rich objects is a function of their initial composition and temperature. The latter depends on the location of formation (in the inner or outer solar system) and most importantly on the time and duration of accretion, which determines the amount of short-lived radioisotopes available for early internal activity. New accretional models suggest that planetesimals grew rapidly throughout

  13. Microbial control of silicate weathering in organic-rich ground water

    USGS Publications Warehouse

    Hiebert, Franz K.; Bennett, Philip C.

    1992-01-01

    An in situ microcosm study of the influence of surface-adhering bacteria on silicate diagenesis in a shallow petroleum-contaminated aquifer showed that minerals were colonized by indigenous bacteria and chemically weathered at a rate faster than theoretically predicted. Feldspar and quartz fragments were placed in anoxic, organic-rich ground water, left for 14 months, recovered, and compared to unreacted controls with scanning electron microscopy. Ground-water geochemistry was characterized before and after the experiment. Localized mineral etching probably occurred in a reaction zone at the bacteria-mineral interface where high concentrations of organic acids, formed by bacteria during metabolism of hydrocarbon, selectively mobilized silica and aluminum from the mineral surface.

  14. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID...

  15. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID...

  16. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID...

  17. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID...

  18. Treatment of experimental furcation perforations with mineral trioxide aggregate, platelet rich plasma or platelet rich fibrin in dogs' teeth.

    PubMed

    Tawfik, Hosam E; Abu-Seida, Ashraf M; Hashem, Ahmed A; El-Khawlani, Mohammed M

    2016-06-01

    This work evaluates the effect of mineral trioxide aggregate (MTA), platelet rich plasma (PRP) or platelet rich fibrin (PRF) on healing of non-contaminated and contaminated furcation perforations. A total of 192 teeth of 12 dogs was divided into three equal groups according to evaluation period. Each group was further subdivided into MTA, PRP, PRF, negative and positive control subgroups. Each experimental subgroup was further subdivided according to perforation status into non-contaminated and contaminated subdivisions. Root canal therapy was carried out and furcation perforation was made in all teeth except in negative control subgroup. The furcation perforation was repaired immediately in subdivision (1) and after 4 weeks in subdivision (2). The change in vertical bone loss was measured by radiography. Inflammatory cell count, cemental deposition, new bone formation, bone resorption and epithelial proliferation were assessed. Both PRP and PRF demonstrated statistically significant reduction in vertical bone loss and inflammatory cell count than MTA. No significant difference was found between MTA, PRP and PRF in cemental deposition, new bone formation, bone resorption and epithelial proliferation. The non-contaminated teeth demonstrated better treatment outcomes than the contaminated teeth. In conclusion, PRP and PRF are successful treatment options for repairing of furcation perforation in both non-contaminated and contaminated teeth in dogs with superior outcomes in non contaminated teeth.

  19. Clay minerals behaviour in thin sandy clay-rich lacustrine turbidites (Lake Hazar, Turkey)

    NASA Astrophysics Data System (ADS)

    El Ouahabi, Meriam; Hubert-Ferrari, Aurelia; Lamair, Laura; Hage, Sophie

    2017-04-01

    Turbidites have been extensively studied in many different areas using cores or outcrop, which represent only an integrated snapshot of a dynamic evolving flow. Laboratory experiments provide the missing relationships between the flow characteristics and their deposits. In particular, flume experiments emphasize that the presence of clay plays a key role in turbidity current dynamics. Clay fraction, in small amount, provides cohesive strength to sediment mixtures and can damp turbulence. However, the degree of flocculation is dependent on factors such as the amount and size of clay particles, the surface of clay particles, chemistry and pH conditions in which the clay particles are dispersed. The present study focuses on thin clayey sand turbidites found in Lake Hazar (Turkey) occurring in stacked thin beds. Depositional processes and sources have been previously studied and three types were deciphered, including laminar flows dominated by cohesion, transitional, and turbulence flow regimes (Hage et al., in revision). For the purpose of determine the clay behavior in the three flow regimes, clay mineralogical, geochemical measurements on the cores allow characterising the turbidites. SEM observations provide further information regarding the morphology of clay minerals and other clasts. The study is particularly relevant given the highly alkaline and saline water of the Hazar Lake. Clay minerals in Hazar Lake sediments include kaolinite (1:1-type), illite and chlorite (2:1-type). Hazar lake water is alkaline having pH around 9.3, in such alkaline environment, a cation-exchange reaction takes place. Furthermore, in saline water (16‰), salts can act as a shield and decrease the repulsive forces between clay particle surfaces. So, pH and salt content jointly impact the behaviour of clays differently. Since the Al-faces of clay structures have a negative charge in basic solutions. At high pH, all kaolinite surfaces become negative-charged, and then kaolinite

  20. Mineral carbonation in water-unsaturated porous media

    NASA Astrophysics Data System (ADS)

    Harrison, A. L.; Dipple, G. M.; Mayer, K. U.; Power, I. M.

    2014-12-01

    Ultramafic mine tailings have an untapped capacity to sequester CO2 directly from air or CO2-rich gas streams via carbonation of tailings minerals [1]. The CO2 sequestration capacity of these sites could be exploited simply by increasing the supply of CO2 into tailings, such as through circulation of air or flue gas from mine site power plants [1,2]. Mine tailings storage facilities typically have heterogeneously distributed pore water [1], affecting both the reactive capacity of the porous medium and the exposure of reactive phases to CO2 [3]. We examine the physical reaction processes that govern carbonation efficiency in variably saturated porous media using meter-scale column experiments containing the tailings mineral, brucite [Mg(OH)2], that were supplied with 10% CO2 gas streams. The experiments were instrumented with water content and gas phase CO2 sensors to track changes in water saturation and CO2concentration with time. The precipitation of hydrated Mg-carbonates as rinds encasing brucite particles resulted in passivation of brucite surfaces and an abrupt shut down of the reaction prior to completion. Moreover, the extent of reaction was further limited at low water saturation due to the lack of water available to form hydrated Mg-carbonates, which incorporate water into their crystal structures. Reactive transport modeling using MIN3P-DUSTY [4] revealed that the instantaneous reaction rate was not strongly affected by water saturation, but the reactive capacity was reduced significantly. Surface passivation and water-limited reaction resulted in a highly non-geometric evolution of reactive surface area. The extent of reaction was also limited at high water content because viscous fingering of the gas streams injected at the base of the columns resulted in narrow zones of highly carbonated material, but left a large proportion of brucite unreacted. The implication is that carbonation efficiency in mine tailings could be maximized by targeting an

  1. Molecular Typing of Aeromonas Isolates in Natural Mineral Waters

    PubMed Central

    Villari, P.; Crispino, M.; Montuori, P.; Boccia, S.

    2003-01-01

    A total of 103 isolates of Aeromonas spp. were obtained over a 3-year period from a natural mineral water and from surface streams located within the boundaries of the watershed of the natural mineral water wells and were typed by macrorestriction analysis of genomic DNA with XbaI and by pulsed-field gel electrophoresis. All Aeromonas caviae isolates from the natural mineral water belonged to the same clone, and an analogous clonal identity was found among Aeromonas hydrophila isolates. These two clones expressed no hemolytic or cytotoxic activities. Aeromonas isolates from surface waters showed high molecular heterogeneity and were not related to the clones found in the natural mineral water. The presence of aeromonads chronically found in the natural mineral water was a likely consequence of a localized development of a biofilm, with no exogenous contamination of the aquifer. Molecular fingerprinting of drinking water isolates is a useful tool in explaining possible reasons for bacterial occurrences. PMID:12514065

  2. Stable isotopic composition of bottled mineral waters from Romania

    NASA Astrophysics Data System (ADS)

    Bădăluţă, Carmen; Nagavciuc, Viorica; Perșoiu, Aurel

    2015-04-01

    Romania has a high potential of mineral waters resources, featuring one of the largest mineral resources at European and global level. In the last decade, due to increased in consumption of bottled water, numerous brands have appeared on the market, with equally numerous and variable sources of provenance. In this study we have analyzed the isotopic composition of bottled mineral waters from Romania in order to determine their source and authenticity. We have analysed 32 carbonated and 24 non-carbonated mineral waters from Romania. and the results were analysed in comparison with stable isotope data from precipitation and river waters. Generally, the isotopic values of the mineral waters follow those in precipitation; however, differences occur in former volcanic regions (due to deep circulation of meteoric waters and increased exchange with host rock and volcanic CO2), as well as in mountainous regions, where high-altitude recharge occurs.

  3. A Water Rich Mars Surface Mission Scenario

    NASA Technical Reports Server (NTRS)

    Hoffman, Stephen; Andrews, Alida; Joosten, Kent; Watts, Kevin

    2017-01-01

    The surface of Mars once had abundant water flowing on its surface, but now there is a general perception that this surface is completely dry. Several lines of research have shown that there are sources of potentially large quantities of water at many locations on the surface, including regions considered as candidates for future human missions. Traditionally, system designs for these human missions are constrained to tightly recycle water and oxygen, and current resource utilization strategies involve ascent vehicle oxidizer production only. But the assumption of relatively abundant extant water may change this. Several scenarios were constructed to evaluate water requirements for human Mars expeditions to assess the impact to system design if locally produced water is available. Specifically, we have assessed water resources needed for 1) ascent vehicle oxidizer and fuel production, 2) open-loop water and oxygen life support requirements along with more robust usage scenarios, and 3) crew radiation protection augmentation. In this assessment, production techniques and the associated chemistry to transform Martian water and atmosphere into these useful commodities are identified, but production mass and power requirements are left to future analyses. The figure below illustrates the type of water need assessment performed and that will be discussed. There have been several sources of feedstock material discussed in recent literature that could be used to produce these quantities of water. This paper will focus on Mars surface features that resemble glacier-like forms on Earth. Several lines of evidence indicate that some of these features are in fact buried ice, likely remnants from an earlier ice age on Mars. This paper examines techniques and hardware systems used in the polar regions of Earth to access this buried ice and withdraw water from it. These techniques and systems will be described to illustrate options available. A technique known as a Rodriguez Well

  4. Evaluation of minerals content of drinking water in Malaysia.

    PubMed

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water.

  5. The mineral content of tap water in United States households

    USDA-ARS?s Scientific Manuscript database

    The composition of tap water contributes to dietary intake of minerals. The USDA’s Nutrient Data Laboratory (NDL) conducted a study of the mineral content of residential tap water, to generate current data for the USDA National Nutrient Database. Sodium, potassium, calcium, magnesium, iron, copper...

  6. Microbiological monitoring of mineral water commercialized in Brazil

    PubMed Central

    Pontara, André Venturini; de Oliveira, Christianne Dezuani Dias; Barbosa, Amir Horiquini; dos Santos, Rafael Aparecido; Pires, Regina Helena; Martins, Carlos Henrique Gomes

    2011-01-01

    The quality of mineral water commercialized in Brazil regarding the microbial content was analyzed and the results were compared with the standards established by the current legislation. Results demonstrated there was no bacterial contamination, but several types of fungi were found. Therefore, bottled mineral water could be considered a possible route for the transmission of filamentous fungi and yeasts. PMID:24031667

  7. Evaluation of Minerals Content of Drinking Water in Malaysia

    PubMed Central

    Azlan, Azrina; Khoo, Hock Eng; Idris, Mohd Aizat; Ismail, Amin; Razman, Muhammad Rizal

    2012-01-01

    The drinking and mineral water samples obtained from different geographical locations had concentrations of the selected minerals lower than the standard limits, except for manganese, arsenic, and fluoride. The concentrations of manganese and arsenic in two mineral water samples were slightly higher than the standard international recommended limits. One mineral water sample had a fluoride concentration higher than the standard limits, whereas manganese was not detected in nine drinking and mineral water samples. Most of the selected minerals found in the tap water samples were below the international standard limits, except for iron and manganese. The concentrations of iron and manganese in the tap water samples were higher than the standard limits, which were obtained from one and three of the studied locations, respectively. The potable water obtained from various manufacturers and locations in Peninsular Malaysia is safe for consumption, as the minerals concentrations were below the standard limits prescribed by the Malaysian Food Regulations of 1985. The data obtained may also provide important information related to daily intake of these minerals from drinking water. PMID:22649292

  8. Variation of 66 elements in European bottled mineral waters.

    PubMed

    Misund, A; Frengstad, B; Siewers, U; Reimann, C

    1999-12-15

    Fifty-six bottled mineral waters bought at random all over Europe were analysed for 66 chemical elements by ICP-AES, ICP-MS and IC-techniques. Results show that there is a wide spread in the chemical composition of mineral waters. The EEC drinking water safeguard values for chemical constituents do not apply to mineral water, although mineral water is increasingly used for general drinking water purposes. Only 15 of the randomly selected 56 mineral waters would fulfil the drinking water regulations for all parameters where action levels are defined. Differences in chemical composition observed between countries or regions are due to geological environment and to different taste or local regulations of what is mineral water. There are indications that element concentrations for some unwanted constituents (e.g. Pb) are higher in waters sold in glass bottles than in those in plastic bottles. Some elements show a clear regional dependency. Studying the large natural variation in concentration for many of the 66 studied elements it becomes clear that we know little about the natural variation of element concentration in water and the health effects of most elements in drinking water.

  9. Some physicochemical aspects of water-soluble mineral flotation.

    PubMed

    Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D

    2016-09-01

    Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation.

  10. Magnesium-enhanced enzymatically mineralized platelet-rich fibrin for bone regeneration applications.

    PubMed

    Gassling, Volker; Douglas, Timothy E L; Purcz, Nicolai; Schaubroeck, David; Balcaen, Lieve; Bliznuk, Vitaliy; Declercq, Heidi A; Vanhaecke, Frank; Dubruel, Peter

    2013-10-01

    Membranes of the autologous blood-derived biomaterial platelet-rich fibrin (PRF) were mineralized enzymatically with calcium phosphate (CaP) by the incorporation of alkaline phosphatase (ALP) followed by incubation for 3 days in solutions of either 0.1 M calcium glycerophosphate (CaGP) or a combination of CaGP and magnesium glycerophosphate (CaGP:MgGP; both 0.05 M), resulting in the formation of two different PRF-mineral composites. Fourier transform infrared spectroscopy, transmission electron microscopy and selected area electron diffraction examinations showed that the CaP formed was amorphous. Inductively coupled plasma optical emission spectroscopy analysis revealed similar amounts of Ca and P in both composite types, while a smaller amount of Mg (Ca:Mg molar ratio = 10) was detected in the composites formed in the CaGP:MgGP solution, which was supported by the results of energy-dispersive x-ray spectroscopy-based elemental mapping. Scanning electron microscopy (SEM) imaging showed that the mineral deposits in PRF incubated in the CaGP:MgGP solution were markedly smaller. The mass percentage attributable to the mineral phase was similar in both composite types. MTT and WST tests with SAOS-2 cells revealed that incubation in the CaGP:MgGP solution had no negative effect on cytocompatibility and cell proliferation compared to the CaGP solution. Cells on all samples displayed a well-spread morphology as revealed by SEM imaging. In conclusion, the incorporation of Mg reduces mineral deposit dimensions and promotes cell proliferation.

  11. Insights into Collisional between Small Bodies: Comparison of Impacted Magnesium-rich Minerals

    NASA Technical Reports Server (NTRS)

    Lederer, Susan M.; Jensen, E. A.; Strojia, C.; Smith, D. C.; Keller, L. P.; Nakamura-Messenger, K.; Berger, E. L.; Lindsay, S. S.; Wooden, D. H.; Cintala, M. J.; Zolensky, M. E.

    2013-01-01

    Impacts are sustained by comets and asteroids throughout their lives, especially early in the Solar system's history, as described by the Nice model. Identifying observable properties that may be altered due to impacts can lead to a better understanding their collisional histories. Here, we investigate spectral effects and physical shock features observed in infrared spectra and Transmission Electron Microscope (TEM) images, respectively, of magnesium-rich minerals subjected to shock through impact experiments. Samples of magnesium-rich forsterite (Mg2SiO4, olivine), orthoenstatite (Mg2SiO3, pyroxene), diopside (MgCaSi2O6, monoclinic pyroxene), and magnesite (MgCO3, carbonate) were impacted at speeds of 2.4 km/s, 2.6 km/s and 2.8 km/s. Impact experiments were conducted in the Johnson Space Center Experimental Impact Laboratory using the vertical gun. Clear signatures are observed in both the mid-IR spectra (shift in wavelengths of the spectral peaks and relative amplitude changes) of all minerals except magnesite, and in TEM images (planar dislocations) of both the forsterite and orthoenstatite samples. Further discussion on forsterite and enstatite analyses can be found in Jensen et al., this meeting.

  12. Insights into Collisional between Small Bodies: Comparison of Impacted Magnesium-rich Minerals

    NASA Astrophysics Data System (ADS)

    Lederer, Susan M.; Jensen, E. E.; Strojia, C.; Smith, D. C.; Keller, L. P.; Nakamura-Messenger, K.; Berger, E. L.; Lindsay, S. S.; Wooden, D. H.; Cintala, M. J.; Zolensky, M. E.

    2013-10-01

    Impacts are sustained by comets and asteroids throughout their lives, especially early in the Solar system’s history, as described by the Nice model. Identifying observable properties that may be altered due to impacts can lead to a better understanding their collisional histories. Here, we investigate spectral effects and physical shock features observed in infrared spectra and Transmission Electron Microscope (TEM) images, respectively, of magnesium-rich minerals subjected to shock through impact experiments. Samples of magnesium-rich forsterite (Mg2SiO4, olivine), orthoenstatite (Mg2SiO3, pyroxene), diopside (MgCaSi2O6, monoclinic pyroxene), and magnesite (MgCO3, carbonate) were impacted at speeds of 2.4 km/s, 2.6 km/s and 2.8 km/s. Impact experiments were conducted in the Johnson Space Center Experimental Impact Laboratory using the vertical gun. Clear signatures are observed in both the mid-IR spectra (shift in wavelengths of the spectral peaks and relative amplitude changes) of all minerals except magnesite, and in TEM images (planar dislocations) of both the forsterite and orthoenstatite samples. Further discussion on forsterite and enstatite analyses can be found in Jensen et al., this meeting. Funding was provided by the NASA PG&G grant 09-PGG09-0115, NSF grant AST-1010012, and a Cottrell College Scholarship through the Research Corporation.

  13. Iron-rich clay minerals on Mars - Potential sources or sinks for hydrogen and indicators of hydrogen loss over time

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.

  14. Iron-rich clay minerals on Mars - Potential sources or sinks for hydrogen and indicators of hydrogen loss over time

    NASA Technical Reports Server (NTRS)

    Burt, D. M.

    1989-01-01

    Although direct evidence is lacking, indirect evidence suggests that iron-rich clay minerals or poorly-ordered chemical equivalents are widespread on the Martian surface. Such clays can act as sources or sinks for hydrogen ('hydrogen sponges'). Ferrous clays can lose hydrogen and ferric clays gain it by the coupled substitution Fe(3+)O(Fe(2+)OH)-1, equivalent to minus atomic H. This 'oxy-clay' substitution involves only proton and electron migration through the crystal structure, and therefore occurs nondestructively and reversibly, at relatively low temperatures. The reversible, low-temperature nature of this reaction contrasts with the irreversible nature of destructive dehydroxylation (H2O loss) suffered by clays heated to high temperatures. In theory, metastable ferric oxy-clays formed by dehydrogenation of ferrous clays over geologic time could, if exposed to water vapor, extract the hydrogen from it, releasing oxygen.

  15. A new evolved planetary system with water-rich debris: the tip of the iceberg?

    NASA Astrophysics Data System (ADS)

    Raddi, Roberto

    2015-12-01

    The detection of metals in white dwarf atmospheres, with a composition resembling that of Solar system asteroids, is unmistakable evidence for recent or ongoing accretion of planetary debris. We present the spectral analysis of SDSS J1242+5226, which is one of the most heavily metal-polluted white dwarfs. We detect atmospheric traces of hydrogen and eight metals, notably including oxygen. The chemical signature exhibited by the metal abundances matches the building blocks of formed planets. The excess of oxygen with respect to other trace metals, and the large hydrogen mass that we measure, suggest the likely accretion of water-rich exo-planetary debris, making this star the second of its kind. Accumulation of hydrogen with increasing cooling age, in this and other white dwarfs, exceeds the equivalent content in water-ice and hydrated minerals within the Solar system asteroid Ceres. This evidence suggests that water-rich asteroids may be common around other stars.

  16. Iron (II) sorption to mineral surfaces in uranyl and silicate rich media

    SciTech Connect

    Tyler A. Sullens; Cynthia-May S. Gong; Kenneth R. Czerwinski

    2006-01-01

    Abstract - The unique composition of the Yucca Mountain repository site, which contains large concentrations of silicate in an oxidative environment, has required extensive research into compound formation involving uranium and iron(II) under such conditions. The possibility of uranium leakage from within the containment vessels into the near-field ground water, as well as iron leaching from the vessel itself, necessitates study of the individual contributions of these elements for compound formation. By mimicking the known silicate concentration found in surrounding ground water and varying concentrations of both uranyl and iron(II), subsequent precipitation of uranyl silicate phases has shown evidence of iron(II) sorption to the available sites on the mineral surface. The mineralization seems to be driven by the formation of uranyl silicate, in contrast to iron(III)-control of precipitation in the oxidated system. We present characterization of this system using ICP-AES/MS, EDAX, XRD, and single-crystal X-ray diffraction.

  17. Mineral concentrations in bottled water products: implications for Canadians' mineral intakes.

    PubMed

    Bertinato, Jesse; Taylor, Jessica

    2013-01-01

    The popularity of bottled water products (BWPs) is growing in Canada. Concentrations of minerals with important implications for health were compared in different types of BWPs. One sample of each brand and type of plain BWP (purified, remineralized, spring, mineral, and artesian), flavoured BWP, and nutrient-enriched BWP sold in major stores in Ottawa, Ontario, was purchased to allow determination of mineral concentrations by flame atomic absorption or emission spectroscopy. A total of 124 BWPs representing 37 brands were analyzed. In general, spring and mineral water contained higher amounts of magnesium and calcium than did purified, remineralized, artesian, flavoured, or nutrient-enriched water. Most plain BWPs contained little sodium and potassium, whereas 15% to 35% of flavoured and nutrient-enriched products had considerably higher concentrations. Only magnesium and calcium concentrations were highly correlated (r=0.76, p<0.001). Calculation of the percentage of Dietary Reference Intakes that could be supplied by each product revealed that, if they are consumed habitually, many products can contribute substantially to recommended intakes of these minerals. Mineral concentrations in most types of BWP varied, but distinct differences between types of products were identified. Consumers should be aware of the mineral content of BWPs because some could influence intakes of certain minerals significantly.

  18. Minerals leached into drinking water from rubber stoppers

    SciTech Connect

    Kennedy, B.W.; Beal, T.S. )

    1991-06-01

    Drinking water and its delivery system are potential sources of variation in animal research. Concern arose that rubber stoppers used to cork water bottles might be a source of some nutritionally required minerals which could leach into drinking water. Six types of stoppers, each having different compositions, were cleaned with stainless-steel sipper tubes inserted into them and attached to polypropylene bottles filled with either deionized water (pH 4.5) or acidified-deionized water (pH 2.5). After six days of contact, water levels of copper, magnesium, iron, manganese, zinc, chromium, and selenium were determined by atomic absorption spectroscopy. Additionally, three of the stopper types were analyzed for mineral content. Minerals were present in both stoppers and drinking water. Acidified-deionized water generally leached minerals from the stoppers than did deionized water. The black stopper which is commonly used in animal facilities contained and leached measurable levels of some minerals, but it still can be recommended for typical animal husbandry uses, although other types of stoppers would be more suitable for specific nutritional and toxicologic studies.

  19. Water-related minerals in Aureum Chaos, Mars.

    NASA Astrophysics Data System (ADS)

    Sowe, Mariam; Wendt, Lorenz; Kneissl, Thomas; McGuire, Patrick C.; Neukum, Gerhard

    2010-05-01

    Collapsed plateau material, chaotic terrain, and Interior Layered Deposits (ILDs) characterize Aureum Chaos that is located east of Valles Marineris. As elsewhere on Mars, spectrometers on Mars Express (MEX-OMEGA), Mars Reconnaissance Orbiter (MRO-CRISM) and Mars Global Surveyor (MGS-TES) detected water-related minerals (hydrated sulfates, hematite) in association with ILDs. We studied the hydrated minerals by utilizing MRO-CRISM data and co-aligned MEX-HRSC, MRO-HiRISE and MRO-CTX data since their extent indicates where water was present in the past. Hydrated sulfates (mono- and polyhydrated sulfate) crop out below a spectrally neutral cap rock, whereas monohydrated sulfate underlies polyhydrated sulfate (PHS, e.g. epsomite MgSO4 x 7H2O). PHS is detected at elevations below -3600m, monohydrated sulfate (kieserite MgSO4 x H2O) below -4100m, and phyllosilicate below -4000m. In some regions, weathered PHS (e.g. debris fans on scarps) to some extent covers monohydrated sulfate exposures. These regions have a massive, high-albedo texture which otherwise is observed in outcrops that show a monohydrated sulfate signature. Phyllosilicate is present below sulfates or occurs as windblown material but is not associated with ILDs. Ferric oxide is found in both, bedrock and loose material down slope of sulfates. Local thicknesses of hydrated sulfate were determined to 50m on average, in contrast, phyllosilicate-rich knobs are 20m thick on average. The fact that ILDs are mainly buried by mantling deposits and show an abundant cap rock, overlying most of the sulfate-rich ILDs, may explain why sulfates were not found in all CRISM observations. However, the hydrated area as shown by CRISM is ~70km². Since ILDs are heavily eroded and hardly show impact craters on their surfaces, their indicated impact-cratering ages appear very young (Late Amazonian) and hence do not correspond to their formation ages. In order to define the age of the ILDs, we measured impact-cratering ages of

  20. Evaluation of the Aggressiveness of Slovak Mineral Water Sources

    NASA Astrophysics Data System (ADS)

    Vrablíková, Dana; Porubská, Diana; Fendeková, Miriam; Božíková, Jarmila; Kókaiová, Denisa

    2014-07-01

    The aggressive properties of natural waters arise due to their specific physical properties and chemical composition. The latest analyses of certified natural and healing mineral water sources according to Act No. 538/2005 were used for the evaluation. A total of 53 sources in 26 localities were evaluated; they comprised 25 sources of bottled natural mineral and healing waters and 28 sources of natural healing waters in 9 spas. The aggressiveness of the water against concrete was weak (17 sources), medium (17 sources), or none (19 sources). The aggressiveness was mostly caused by low pH values and/or increased SO42- content. Their corrosiveness to metal was mostly very high. The results showed that the disintegration of concrete building constructions, well casings and pipelines could occur in most of the evaluated localities in the case of mineral water contacting them. Therefore, preventive measures are necessary.

  1. Fluorescence spectra of mineral oil-water intermixture

    NASA Astrophysics Data System (ADS)

    Shang, Liping; Xu, Xiaoxuan; Xu, Jingjun; Xia, Daying; Shi, Jinshan

    2005-02-01

    Using highly pure water disposed by Milli-Qlabo purifying system of United States as background water, employing RF540 fluorescence spectrometer and selecting fourteen wavelengths as excitation wavelengths, this paper measured and analyzed excitation spectra and fluorescence spectra of oil-water intermixtures with different concentrations from eight domestic mineral crude oils, seven imported mineral crude oils and eight mineral product oils. Experiment results show that: all of these oils can emit fluorescence in broad range of excitation spectra, but the fluorescence quantum efficiency is different; optimal excitation wavelength is 254nm, while more effective excitation wavelength is 360nm, and the corresponding optimal fluorescence detection wavelengths are 360nm and 460nm; with the increment of concentration, relative intensities of fluorescence also increase linearly, which shows that they have obvious positive correlation and the correlation coefficient is above 0.9. Thus using fluorescence method to directly measure the content of mineral crude oil and product oil in water is feasible. Based on the experimental work, combining transfer characteristic of optical fiber, the ranges of optimal excitation wavelength and detection wavelength of mineral oil in water are confirmed, which founds for the on-line fluorescence measurement with optical fiber of micro-content of mineral oil in water.

  2. Trace metal contamination of mineral spring water in an historical mining area in regional Victoria, Australia

    NASA Astrophysics Data System (ADS)

    Martin, Rachael; Dowling, Kim

    2013-11-01

    Significant global consumption of spring and mineral water is fuelled by perceived therapeutic and medicinal qualities, cultural habits and taste. The Central Victorian Mineral Springs Region, Australia comprises approximately 100 naturally effervescent, cold, high CO2 content springs with distinctive tastes linked to a specific spring or pump. The area has a rich settlement history. It was first settled by miners in the 1840s closely followed by the first commercial operations of a health resort 1895. The landscape is clearly affected by gold mining with geographically proximal mine waste, mullock heaps or tailings. Repeated mineral springs sampling since 1985 has revealed elevated arsenic concentrations. In 1985 an arsenic concentration five times the current Australian Drinking Water Guideline was recorded at a popular tourist spring site. Recent sampling and analyses have confirmed elevated levels of heavy metals/metalloids, with higher concentrations occurring during periods of low rainfall. Despite the elevated levels, mineral water source points remain accessible to the public with some springs actively promoting the therapeutic benefits of the waters. In light of our analysis, the risk to consumers (some of whom are likely to be negatively health-affected or health-compromised) needs to be considered with a view to appropriate and verified analyses made available to the public.

  3. Experimental study on the difference between gas and water permeability of clay-rich fault rocks

    NASA Astrophysics Data System (ADS)

    Duan, Qingbao; Yang, Xiaosong; Chen, Jianye

    2017-04-01

    Gas permeability of clay rich rocks is generally higher than that measured with water as the pore fluid in laboratory. Besides the Klinkenberg gas slippage effect, the swelling and adsorption of clay minerals subjected to water may have strong influences (Faulkner and Rutter, 2000; Duan and Yang, 2014). To better understand the discrepancy between gas and water permeability of clay-rich fault rocks, we performed detail fluid transport property experiments on synthetic smectite-quartz, illite-quartz mixtures and natural fault gouge, as well as clay-deplete sandstones for the comparison purpose. Experiments were conducted on a fluid flow apparatus with effective pressures cycling between 5 and 105 MPa. Each sample was subject to nine pressure cycles (the first eight with nitrogen and the last one with de-ionized water as the pore fluid), along which permeability and porosity of either the dry or water-saturated samples were measured. In a few additional experiments, X-ray diffraction (XRD) analyses were used to examine the hydration state of the smectite before and after the introduction of water. Results show that permeability of all the samples investigated decreases with increasing effective pressure, following a power law relation. Gas permeabilities exhibit strong pore pressure dependence, which can be attributed to the slippage effect. Water permeabilities of the samples are generally lower than the gas results after correction, with a few exceptions for the synthetic samples (clay content ≤10%). The permeability trends observed for samples after the introduction of water can be generally explained by the evolution of sample porosity, as can be obtained from the bulk and solid phase volume measurement results. Take the smectite-quartz synthetic samples for instance. Bulk volume of the samples generally expands after water saturation and XRD results show that almost three layers of water enter the smectite interlayers (001 basal spacing expands from about 14

  4. Comparison of the Mineral Content of Tap Water and Bottled Waters

    PubMed Central

    Azoulay, Arik; Garzon, Philippe; Eisenberg, Mark J

    2001-01-01

    OBJECTIVES Because of growing concern that constituents of drinking water may have adverse health effects, consumption of tap water in North America has decreased and consumption of bottled water has increased. Our objectives were to 1) determine whether North American tap water contains clinically important levels of calcium (Ca2+), magnesium (Mg2+), and sodium (Na+) and 2) determine whether differences in mineral content of tap water and commercially available bottled waters are clinically important. DESIGN We obtained mineral analysis reports from municipal water authorities of 21 major North American cities. Mineral content of tap water was compared with published data regarding commercially available bottled waters and with dietary reference intakes (DRIs). MEASUREMENTS AND MAIN RESULTS Mineral levels varied among tap water sources in North America and among bottled waters. European bottled waters generally contained higher mineral levels than North American tap water sources and North American bottled waters. For half of the tap water sources we examined, adults may fulfill between 8% and 16% of their Ca2+ DRI and between 6% and 31% of their Mg2+ DRI by drinking 2 liters per day. One liter of most moderate mineralization European bottled waters contained between 20% and 58% of the Ca2+ DRI and between 16% and 41% of the Mg2+ DRI in adults. High mineralization bottled waters often contained up to half of the maximum recommended daily intake of Na+. CONCLUSION Drinking water sources available to North Americans may contain high levels of Ca2+, Mg2+, and Na+ and may provide clinically important portions of the recommended dietary intake of these minerals. Physicians should encourage patients to check the mineral content of their drinking water, whether tap or bottled, and choose water most appropriate for their needs. PMID:11318912

  5. Ground-water conditions in Whisky Flat, Mineral County, Nevada

    USGS Publications Warehouse

    Eakin, T.E.; Robinson, T.W.

    1950-01-01

    As a part of the State-wide cooperative program between the Office of the State Engineer of Nevada and the U.S. Geological Survey, the Ground Water Branch of the Geological Survey made a reconnaissance study of ground-water conditions in Whisky Flat, Mineral County, Nevada.

  6. Evidence for influence of mineral weathering on stream water sulphate in Vermont and New Hampshire (USA)

    NASA Astrophysics Data System (ADS)

    Bailey, S. W.; Mayer, B.; Mitchell, M. J.

    2004-06-01

    Mass balance studies in forested catchments in the northeastern USA show that S losses via streamwater SO42- exceed measured atmospheric S inputs. Possible sources of the excess S loss include underestimated dry deposition, mineralization of organic S in soils, desorption of soil sulphate, oxidation of recently formed sulphides and mineral weathering. Evaluating the relative contribution of these sources and processes to SO42- export is important to our understanding of S cycling as well as to policy makers in their evaluation of the efficacy of S emission controls. In order to evaluate the potential for mineral weathering contributions to SO42- export, we measured concentration and isotopic composition (34S and δ18O) of SO42- in stream water, and concentration and δ34S values of four S fractions in bedrock and soil parent material in catchments of varying geological composition. Geological substrates with low S concentrations were represented by catchments underlain by quartzite and granite, whereas geological substrates with high S concentrations were represented by catchments underlain by sulphidic slate, schist and metavolcanic rocks. Catchments with S-poor bedrock had stream-water SO42- concentrations <100 μeq L-1 and isotopic values consistent with those of atmospheric SO42- that had been cycled through the organic soil pool. Catchments with S-rich bedrock had stream-water SO42- concentrations ranging from 56 to 229 μeq L-1. Isotopic values deviated from those of SO42- in atmospheric deposition, clearly indicating a mineral weathering source in some cases, whereas in others spatial variability of mineral δ34S values precluded the isotopic detection of a weathering contribution. These results, along with evidence suggesting formation of secondary sulphate minerals in bedrock weathering rinds, indicate that mineral weathering may be an important source of S in the surface waters of some forested catchments in the northeastern USA.

  7. Water molecules in clay minerals: Thermodynamic functions and hydration

    NASA Astrophysics Data System (ADS)

    Gailhanou, Helène; Amouric, Marc; Olives, Juan; Rogez, Jacques; van Miltenburg, J. C.; van der Berg, G. J. K.; de Weireld, G.; Gaucher, E.; Blanc, P.

    2010-05-01

    Thermodynamic functions and adsorption of water molecules are very important properties for clay minerals. Smectite MX-80 and mixed-layer illite-smectite ISCz-1 were selected. They were first carefully characterized (HRTEM with EDX analysis), revealing original results. Then, the thermodynamic properties of water in clay were obtained by (i) comparison of the thermodynamic properties of anhydrous and hydrated minerals, between 0 and 350 K (adiabatic calorimetry, solution isothermal calorimetry), and (ii) water vapor adsorption isotherms, between 300 and 380 K (magnetic suspension thermobalance). Solution isothermal calorimetry is used to determine the enthalpies of formation of the minerals (1 bar and 298 K). Comparison of the results, for the anhydrous and the hydrated minerals, leads to the enthalpies of hydration at 298 K. Adiabatic calorimetry measurements give the heat capacities of the minerals from 5 to 350 K. Entropies, enthalpies of formation and Gibbs free energies of formation, for the anhydrous and the hydrated minerals, and then, entropies of hydration, enthalpies of hydration and Gibbs free energies of hydration, between 0 and 350 K, are finally obtained. Comparison of two close hydration states leads to the entropy, the enthalpy and the Gibbs free energy of the adsorption reaction: H2O free - H2O adsorbed. The Cp(T) curve, for the heat capacity of water in clay - i.e., the difference between the heat capacities of the hydrated and the anhydrous minerals -, shows that water in clay is a glass at low temperature, undergoes one or two continuous glass transitions between 150 and 270 K, and behaves as free liquid water above 273 K. The two glass transitions might correspond to two types of water molecules: (i) first adsorbed water molecules, bound to the interlayer cations of the clay mineral; (ii) last adsorbed water molecules, not bound to the interlayer cations. In addition, water vapor adsorption isotherms are obtained from 298 to 378 K (magnetic

  8. A Study on the Microbiological Status of Mineral Drinking Water

    PubMed Central

    Aditi, Faria Y.; Rahman, Shafkat S.; Hossain, Md. M.

    2017-01-01

    Introduction: Water-borne diseases constitute a major health burden in Bangladesh. The objective of this study was to assess the overall quality of mineral water samples that obtained from different shops of Dhaka city. Material and Methods: To achieve the above-mentioned objective, methods of heterotrophic plate count (HPC) and total coliform count (TCC) were applied. Moreover, isolated colony from mineral water samples were characterized by using biochemical and antimicrobial susceptibility tests. Results: Different water samples showed different HPC ranged from 1.0×10 to 8.00×102. Antimicrobial sensitivity test of some selected bacteria viz S. intermedius, S. aureus, S. felis and S. Saccharolyticus were performed. It was observed that Staphylococcus spp. isolates were susceptible to erythromycin, tetracycline, norfloxacin and ciprofloxacin. Furthermore, a few Staphylococcus spp. isolates were intermediate resistant to penicillin and oxacillin. However, most of the Staphylococcus spp. isolates were resistant to cefixime. Conclusion: The results indicate that mineral water serves as a reservoir of various bacteria and that people in Dhaka city, who are the consumers of these water, might get diseases. This study emphasizes the need for elaborated microbiological examinations of mineral drinking water commonly used in Dhaka city. PMID:28603564

  9. Collisional Effects on Magnesium-rich Minerals found in Comets and Asteroids

    NASA Technical Reports Server (NTRS)

    Lederer, S.; Jensen, E.; Strojia, C.; Smith, D.; Keller, L.; Berger, E.; Lindsay, S.; Wooden, D.; Cintala, M.; Zolensky, M.

    2014-01-01

    While generally touted to be the least-altered bodies remaining from the age of the solar system's formation, comets and asteroids have undergone evolutionary processing throughout the 4.5-billion-year lifetime of the solar system. They have suffered the effects of collisions by impactors ranging in size from micrometeoroids to other comets and asteroids. As such, we must ask ourselves: can we detect these evolutionary effects remotely through telescopic observations? With this in mind, a suite of experiments were conducted, impacting magnesium-rich minerals as analogues to those that have been detected in the spectra of both asteroid surfaces and in the dust of cometary comae, including forsterite (Mg2SiO4, olivine), orthoenstatite (Mg2SiO3, pyroxene), diopside (MgCaSi2O6, monoclinic pyroxene), and magnesite (MgCO3, carbonate). These minerals were impacted at velocities ranging from 2.0 km/s to 2.8 km/s using the vertical gun in the Experimental Impact Laboratory (EIL) at NASA Johnson Space Center. These speeds mimic typical velocities of impacts occurring in the Kuiper belt [1]. Two classes of projectile were used: spherical alumina ceramic, whose density mimics that of rock, and cylinders made from the same material that they impacted (e.g., forsterite impactors for forsterite targets, etc.). The peak shock pressure varies significantly, depending on the target and impactor materials and the velocity; thus, shock effects differed in targets impacted at the same velocity but with compositionally different projectiles. The results indicate both: (a) how varying the impactor-density might change the outcome from a scientific viewpoint, as well as (b) possible contamination effects of the ceramic projectile in the resultant spectra of the target minerals from an experimental perspective. Temperature effects were also investigated by impacting samples at both 25 deg. and -25 deg. to: (a) probe whether the varying temperatures experienced by small bodies plays a role

  10. Collisional effects on magnesium-rich minerals found in comets and asteroids

    NASA Astrophysics Data System (ADS)

    Lederer, S.; Jensen, E.; Strojia, C.; Smith, D.; Keller, L.; Berger, E.; Lindsay, S.; Wooden, D.; Cintala, M.; Zolensky, M.

    2014-07-01

    While generally touted to be the least-altered bodies remaining from the age of the solar system's formation, comets and asteroids have undergone evolutionary processing throughout the 4.5-billion-year lifetime of the solar system. They have suffered the effects of collisions by impactors ranging in size from micrometeoroids to other comets and asteroids. As such, we must ask ourselves: can we detect these evolutionary effects remotely through telescopic observations? With this in mind, a suite of experiments were conducted, impacting magnesium-rich minerals as analogues to those that have been detected in the spectra of both asteroid surfaces and in the dust of cometary comae, including forsterite (Mg_2SiO_4, olivine), orthoenstatite (Mg_2SiO_3, pyroxene), diopside (MgCaSi_2O_6, monoclinic pyroxene), and magnesite (MgCO_3, carbonate). These minerals were impacted at velocities ranging from ˜2.0 km/s to ˜2.8 km/s using the vertical gun in the Experimental Impact Laboratory (EIL) at NASA Johnson Space Center. These speeds mimic typical velocities of impacts occurring in the Kuiper belt [1]. Two classes of projectile were used: spherical alumina ceramic, whose density mimics that of rock, and cylinders made from the same material that they impacted (e.g., forsterite impactors for forsterite targets, etc.). The peak shock pressure varies significantly, depending on the target and impactor materials and the velocity; thus, shock effects differed in targets impacted at the same velocity but with compositionally different projectiles. The results indicate both (a) how varying the impactor-density might change the outcome from a scientific viewpoint, as well as (b) possible contamination effects of the ceramic projectile in the resultant spectra of the target minerals from an experimental perspective. Temperature effects were also investigated by impacting samples at both 25°C and -25°C to (a) probe whether the varying temperatures experienced by small bodies plays a

  11. Mineralization of sparsely water-soluble polycyclic aromatic hydrocarbons in a water table fluctuation zone

    SciTech Connect

    Holman, H.Y.N.; Tsang, Y.W.; Holman, W.R.

    1999-06-01

    The mineralization potential of sparsely water-soluble polycyclic aromatic hydrocarbons (PAHs) within a highly diesel-contaminated water table fluctuation zone (WTFZ) was investigated using core-scale column microcosms. Experimental conditions mimicked overall seasonal changes in water and oxygen content at the site. During the first aerobic winter, PAH mineralization rates in the freshly contaminated soil were fastest for contaminant [{sup 14}C]-naphthalene which was the least hydrophobic and most water-soluble. Lowering the water table nearly doubled the mineralization rates of all [{sup 14}C]PAHs studied. During the oxygen-poor summer, all mineralization rates were insignificant and failed to respond to water table changes. Neither a return to water-saturated aerobic (winter) conditions nor lowering the water table under aerobic conditions induced detectable mineralization of [{sup 14}C]-naphthalene, but lowering the water table did markedly hasten the still slow mineralization of [{sup 14}C]phenanthrene and [{sup 14}C]anthracene. The time-dependent mineralization behavior and its response to water table fluctuations were explicable in terms of microbial responses to the changing oxygen content and depleting mineral nutrients.

  12. The bacteriological quality of bottled natural mineral waters.

    PubMed

    Hunter, P R; Burge, S H

    1987-10-01

    Fifty-eight bottles of natural mineral water, taken from the point of sale, were bacteriologically examined. No coliforms or Aeromonas sp. were isolated from any sample. High total bacterial counts were found particularly in the still waters. Most of the organisms isolated in the total counts were Gram-negative rods, but Gram-positive organisms were also isolated. Gram-positive cocci were further identified, some of which were known human commensals suggesting contamination of the waters prior to bottling.

  13. [Hyperhydration with low mineral Rocchetta water after extracorporeal lithotripsy].

    PubMed

    Valli, P P; Cesaroni, M; Mearini, L; Rociola, W; Cervelli, B; Porena, M

    2000-04-01

    Both prophylaxis and stone-free status after ESWL are most important goals in treating urinary stone disease, because his high social cost. In order to this situation, we matched two homogeneous groups of patients that underwent ESWL because renal stones: during a one year follow-up with several US controls, daily 1.5 litres of low mineral content water was drank by I group patients; vice versa, daily 3 litres (1st ten days) and afterwards 2 litres of Rocchetta low mineral content water was drank by II group patients. This last kind of approach led to a significant improvement in stone fragments elimination time, in inferior calix stone cure and in stone recurrences rate. So we conclude that hyperhydration using right low mineral content water, is a simple and cheap way to improve both treatment and prophylaxis of urinary stones.

  14. Predicting consumer preferences for mineral composition of bottled and tap water.

    PubMed

    Platikanov, Stefan; Hernández, Alejandra; González, Susana; Luis Cortina, Jose; Tauler, Roma; Devesa, Ricard

    2017-01-01

    The overall liking for taste of water was correlated with the mineral composition of selected bottled and tap waters. Sixty-nine untrained volunteers assessed and rated twenty-five different commercial bottled and tap waters from. Water samples were physicochemical characterised by analysing conductivity, pH, total dissolved solids (TDS) and major anions and cations: HCO3(-), SO4(2-), Cl(-), NO3(-), Ca(2+), Mg(2+), Na(+), and K(+). Residual chlorine levels were also analysed in the tap water samples. Globally, volunteers preferred waters rich in calcium bicarbonate and sulfate, rather than in sodium chloride. This study also demonstrated that it was possible to accurately predict the overall liking by a Partial Least Squares regression using either all measured physicochemical parameters or a reduced number of them. These results were in agreement with previously published results using trained panellists.

  15. Prevention and Therapy of Type 2 Diabetes—What Is the Potential of Daily Water Intake and Its Mineral Nutrients?

    PubMed Central

    Naumann, Johannes; Biehler, Diana; Lüty, Tania

    2017-01-01

    We aim to present an overview of the possible influence of drinking water in general and mineral water in particular in improving glycemic parameters in persons with or without type 2 diabetes. We performed a literature search that produced 15 randomized controlled trials (RCTs) on this topic with mainly small sample sizes. We also discuss relevant observational and animal studies as well as the effects of important supplements in mineral water such as hydrogencarbonate and magnesium. There is low evidence for the positive effects of water or mineral water in improving glycemic parameters in diabetic and non-diabetic persons, and the results are heterogenous, making it difficult to reach an unequivocal conclusion. Meta-analyses of prospective cohort studies and other observational studies, studies with animal models and interventional studies using hydrogencarbonate and magnesium supplements suggest a probable positive effect of drinking water and mineral water in particular on glycemic parameters, supporting the positive results found in some of the RCTs, especially those substituting diet beverages or caloric beverages with water, or those using bicarbonate and magnesium-rich water. Regarding the high prevalence, the associated suffering and the resulting health expenditures of type 2 diabetes, it is imperative to conduct larger and more rigorous trials to answer the question whether drinking water or mineral water can improve glycemic parameters in diabetic and non-diabetic persons. PMID:28829398

  16. Water Loss from Terrestrial Planets with CO2-rich Atmospheres

    NASA Astrophysics Data System (ADS)

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO2 can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO2 atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO2-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ~270 W m-2 (global mean) unlikely to lose more than one Earth ocean of H2O over their lifetimes unless they lose all their atmospheric N2/CO2 early on. Because of the variability of H2O delivery during accretion, our results suggest that many "Earth-like" exoplanets in the habitable zone may have ocean-covered surfaces, stable CO2/H2O-rich atmospheres, and high mean surface temperatures.

  17. Formation of water-soluble metal cyanide complexes from solid minerals by Pseudomonas plecoglossicida.

    PubMed

    Faramarzi, Mohammad A; Brandl, Helmut

    2006-06-01

    A few Pseudomonas species are able to form hydrocyanic acid (HCN), particularly when grown under glycine-rich conditions. In the presence of metals, cyanide can form water-soluble metal complexes of high chemical stability. We studied the possibility to mobilize metals as cyanide complexes from solid minerals using HCN-forming microorganisms. Pseudomonas plecoglossicida was cultivated in the presence of copper- and nickel-containing solid minerals. On powdered elemental nickel, fast HCN generation within the first 12 h of incubation was observed and water-soluble tetracyanaonickelate was formed. Cuprite, tenorite, chrysocolla, malachite, bornite, turquoise, millerite, pentlandite as well as shredded electronic scrap was also subjected to a biological treatment. Maximum concentrations of cyanide-complexed copper corresponded to a solubilization of 42% and 27% when P. plecoglossicida was grown in the presence of cuprite or tenorite, respectively. Crystal system, metal oxidation state and mineral hydrophobicity might have a significant influence on metal mobilization. However, it was not possible to allocate metal mobilization to a single mineral property. Cyanide-complexed gold was detected during growth on manually cut circuit boards. Maximum dicyanoaurate concentration corresponded to a 68.5% dissolution of the total gold added. These findings represent a novel type of microbial mobilization of nickel and copper from solid minerals based on the ability of certain microbes to form HCN.

  18. Enrichment of enzymatically mineralized gellan gum hydrogels with phlorotannin-rich Ecklonia cava extract Seanol(®) to endow antibacterial properties and promote mineralization.

    PubMed

    Douglas, Timothy E L; Dokupil, Agnieszka; Reczyńska, Katarzyna; Brackman, Gilles; Krok-Borkowicz, Malgorzata; Keppler, Julia K; Božič, Mojca; Van Der Voort, Pascal; Pietryga, Krzysztof; Samal, Sangram Keshari; Balcaen, Lieve; van den Bulcke, Jan; Van Acker, Joris; Vanhaecke, Frank; Schwarz, Karin; Coenye, Tom; Pamuła, Elżbieta

    2016-08-10

    Hydrogels offer several advantages as biomaterials for bone regeneration, including ease of incorporation of soluble substances such as mineralization-promoting enzymes and antibacterial agents. Mineralization with calcium phosphate (CaP) increases bioactivity, while antibacterial activity reduces the risk of infection. Here, gellan gum (GG) hydrogels were enriched with alkaline phosphatase (ALP) and/or Seanol(®), a seaweed extract rich in phlorotannins (brown algae-derived polyphenols), to induce mineralization with CaP and increase antibacterial activity, respectively. The sample groups were unmineralized hydrogels, denoted as GG, GG/ALP, GG/Seanol and GG/Seanol/ALP, and hydrogels incubated in mineralization medium (0.1 M calcium glycerophosphate), denoted as GG/ALP_min, GG/Seanol_min and GG/Seanol/ALP_min. Seanol(®) enhanced mineralization with CaP and also increased compressive modulus. Seanol(®) and ALP interacted in a non-covalent manner. Release of Seanol(®) occurred in a burst phase and was impeded by ALP-mediated mineralization. Groups GG/Seanol and GG/ALP/Seanol exhibited antibacterial activity against methicillin-resistant Staphylococcus aureus. GG/Seanol/ALP_min, but not GG/Seanol_min, retained some antibacterial activity. Eluates taken from groups GG/ALP_min, GG/Seanol_min and GG/ALP/Seanol_min displayed comparable cytotoxicity towards MG-63 osteoblast-like cells. These results suggest that enrichment of hydrogel biomaterials with phlorotannin-rich extracts is a promising strategy to increase mineralizability and antibacterial activity.

  19. Drug resistant bacteria in non carbonated mineral waters.

    PubMed

    Massa, S; Petruccioli, M; Fanelli, M; Gori, L

    1995-11-01

    The presence of antibiotic resistant bacteria was revealed among bacteria isolated from non carbonated mineral waters bottled in plastic (PVC) and in glass containers. Heterotrophic plate count values ranged between < 10 and 4.3 x 10(3) and between < 10 and 1.2 x 10(4) colony forming units/ml for the waters bottled in PVC and glass, respectively. The greatest resistance to a single antibiotic, 39.1% of 320 isolates from mineral waters, was found for nalidixic acid. Resistance to the other antibiotics was as follows: ampicillin (26.2%), bacitracin (19.7%), cotrimoxazole (18.7%), streptomycin (15.0%), tetracycline (14.4%), gentamycin (11.6%), chloramphenicol and rifampin (9.7%). The strains resistant to two or more antibiotics (multiple antibiotic resistant, MAR) provided 51% of the total isolates. Identification of 127 MAR strains showed that in the mineral waters gram-positive cocci dominated. The second, third and fourth group of identified MAR phenotypes were, in order to importance, gram-negative non-fermentative rods, gram-positive rods and gram-negative fermentative rods. The importance of the antibiotic resistant bacteria in mineral water is discussed.

  20. Hydrochemical characteristics of natural water and selenium-rich water resources in the Northern Daba Mountains, China.

    PubMed

    Zhao, Chao; Luo, Kunli; Du, Yajun; Tian, Yuan; Long, Jie; Zhao, Xiaofeng; Zhang, Shixi

    2017-04-01

    The Northern Daba Mountains (NDM) of Shaanxi Province, China, are a well-known selenium (Se)-rich area, and the area is also known for endemic fluorine (F) and arsenic (As) poisoning. In order to study the hydrochemical characteristics and trace element contents of the natural waters of this region, 62 water samples were collected from Lan'gao area in the NDM. The hydrochemical composition was principally characterized by Ca·Mg-HCO3·SO4. F and As concentrations ranged from 0.01 to 0.67 mg/L and from 0.33 to 6.29 μg/L, respectively, lower than Chinese national standard and international guidelines for drinking water quality. One year of monitoring proved that F and As in natural water were not the sources of the local fluorosis and arseniasis in the NDM. The average Se concentration in fissure water was 5.20 μg/L. The average Se content of river water was 2.82 μg/L, 14 times that of the world's surface level (0.2 μg/L). The Se content in eight samples reached the Chinese national standards for mineral drinking water quality (>10 μg/L). Contrasting the water samples of May, July, and September in 2015 shows that the Se content is relatively stable and the increase of humidity might be beneficial to increase the content of selenium and strontium in water.

  1. Thin Water and Ice Films at Mineral Surfaces

    NASA Astrophysics Data System (ADS)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-04-01

    Mineral-water and ice interactions play important roles in atmospheric cloud formation. They also affect soil biogeochemistry as well as outer-space processes. In this study, thin water and ice films formed on minerals of varied bulk and surface structure, shape, size and surface roughness were probed by Fourier Transform Infrared Spectroscopy (FTIR) and by Dynamic Vapor Adsorption (DVA). Measurements on several types of iron (oxyhydr)oxides, phyllosilicates, orthosilicates, tectosilicates as well as Arizona Test Dust (ATD) and Icelandic volcanic ash constrained our understanding of the molecular-level nature of mineral surface-water and ice interactions. DVA experiments showed that particle size is the key feature controlling water loadings at 25 ° C. Under this condition, nano-sized particles stabilized the equivalence of no more than ˜6 monolayers of water at the near saturation of water vapor while sub-micron sized particles stabilized several thousand layers. This result can be explained by the greater ability of larger sized particles at driving water condensation reactions. Cryogenic FTIR measurements at -10 and -50 ° C revealed that most minerals acquired the thin ice films with similar hydrogen bonding environments as those formed at room temperature.[1,2] These thin ice films have weaker hydrogen bond environments than hexagonal ice (νOH ≈ 3130 cm-1), a result seen by FTIR through predominant O-H stretching modes at νOH ≈ 3408-3425 cm-1. The water bending region (˜1630 cm-1) also reveals that most thin ice films are rather supercooled forms of water. Only the materials with greatest levels of heterogeneity, namely ATD and volcanic ash, stabilized solid forms of water reminiscent to hexagonal ice. This work thus constrains further our understanding of how interfacial ice is stabilized at mineral surfaces, and opens possibilities for future studies focused on atmospheric gas uptake on mineral- water and ice admixtures. [1] Song, X. and Boily, J

  2. Water in Nominally Anhydrous Minerals from Nakhlites and Shergottites

    NASA Technical Reports Server (NTRS)

    Peslier, Anne H.

    2013-01-01

    Estimating the amount of water in the interior of terrestrial planets has tremendous implications on our understanding of solar nebula evolution, planet formation and geological history, and extraterrestrial volcanism. Mars has been a recent focus of such enquiry with complementary datasets from spacecrafts, rovers and martian meteorite studies. In planetary interiors, water can be dissolved in fluids or melts and hydrous phases, but can also be locked as protons attached to structural oxygen in lattice defects in nominally anhydrous minerals (NAM) such as olivine, pyroxene, or feldspar [1-3]. Measuring water in Martian meteorite NAM is challenging because the minerals are fragile and riddled with fractures from impact processes that makes them break apart during sample processing. Moreover, curing the sample in epoxy causes problems for the two main water analysis techniques, Fourier transform infrared spectrometry (FTIR) and secondary ionization mass spectrometry (SIMS). Measurements to date have resulted in a heated debate on how much water the mantle of Mars contains. SIMS studies of NAM [4], amphiboles [5], and apatites [6-8] from Martian meteorites report finding enough water in these phases to infer that the martian mantle is as hydrous as that of the Earth. On the other hand, a SIMS study of glass in olivine melt inclusions from shergottites concludes that the Martian mantle is much drier [9]. The latter interpretation is also supported by the fact that most martian hydrous minerals generally have the relevant sites filled with Cl and F instead of H [10,11]. As for experimental results, martian basalt compositions can be reproduced using water as well as Cl in the parent melts [12,13]. Here FTIR is used to measure water in martian meteorite minerals in order to constrain the origin of the distribution of water in martian meteorite phases.

  3. Simulated geochemical weathering of a mineral ash-rich biochar in a modified Soxhlet reactor.

    PubMed

    Yao, F X; Arbestain, M Camps; Virgel, S; Blanco, F; Arostegui, J; Maciá-Agulló, J A; Macías, F

    2010-08-01

    Although there are many studies on the characterization of C in biochar and its C sequestration potential, there is little knowledge on the mineral fraction in biochar and its weathering. The latter, however, can have powerful implications on nutrient availability. In the present study, a modified Soxhlet reactor was used to simulate the long-term geochemical weathering of an ash-rich biochar produced from sewage sludge of a non-industrial area in New Zealand. The weathering process took place during a period of 300 h, with and without the addition of humic acid (1.00 g added to 20.00 g of biochar), and the treatments were referred to as treatment BC-HA and BC-B, respectively. Both the leaching kinetics and the transformations within the solid phase were studied. The results revealed that substantial amounts of K (8.5-10.2%) and S (20.2-28.3%) were recovered in the weathering solutions. Noticeable Ca (17.9-20.7%) and P (15.4%) in the solid were released but only a few were recovered in the weathering solutions because of the precipitation. The presence of humic acids increased this dissolution and thus the availability of K, S, Ca, Mg and P, but induced N immobilization. Nitrogen availability was already very low (<1.0% of the total N) due to the probable recalcitrant heterocyclic N structure. The pH of the biochar samples dropped from 8.4 to 7.5; this was mainly attributed to loss of base cations through leaching and probable carbonation of the system. The XPS spectra evidenced the oxidation of C in biochar during the weathering process with the formation of carbonyl and carboxylic functional groups. The results obtained in this study showed some promise for the positive use of modified Soxhlet extractor in simulating the geochemical weathering in ash-rich biochars and providing a better understanding on the kinetics of nutrient release. This will be key information in assessing the added value of biochars as soil amendments. Copyright 2010 Elsevier Ltd. All

  4. The thermodynamic case for a water-rich Mars

    NASA Technical Reports Server (NTRS)

    Clifford, Stephen M.

    1993-01-01

    The geologic evidence for a water-rich Mars has been reviewed, and it has been concluded that it is consistent with an outgassed inventory of H2O equivalent to global ocean 0.5-1 km deep. The most persuasive support for this conclusion comes from the martian outflow channels, whose distribution, size, and range of ages, suggests that a significant body of ground water was present on Mars throughout much of its geologic history. In this abstract, the thermodynamic implications of the outflow channels are considered. The results of this analysis suggest that if the outflow channels were carved by the discharge of ground water in diffusive and thermodynamic equilibrium with the overlying frozen crust, it implies a minimum planetary inventory of water in excess of 300 m. However, if the global inventory of ground water on Mars at the time of outflow channel formation was as high as the 500 m estimate of other researchers, then the total inventory of water on Mars could well exceed 750 m.

  5. Heavy metal-rich wastes sequester in mineral phases through a glass-ceramic process.

    PubMed

    Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M

    2007-08-01

    Certain sludges generated by industry are rich in contaminating elements and are a major environmental problem. In this study, we determine the ability of these contaminating elements to be incorporated into a glass-matrix and in various mineral phases after a crystallization process. The contaminating elements studied were obtained from sewage sludges (SS) and galvanic sludges (GS), our raw materials. The sludge samples were taken from urban wastewater treatment plant in Catalonia (NE Spain) with high levels of phosphorus oxide (P(2)O(5)). In silica glasses, P(2)O(5) acts as a network former. We determined the chemical composition of both the SS and GS, as well as their thermal behaviour by differential thermal analysis and thermal gravimetric analysis (DTA-TG) to obtain their melting curves. The vitreous transition temperature of the obtained glass was established by dilatometer technique at 725 degrees C. The DTA-TG curve of the glass obtained has an exothermal wide peak at 860 degrees C corresponding to crystallization of the two phases: a spinel phase and a phosphate phase. A second exothermal wide peak at 960 degrees C was attributed to the crystallization of aluminium pyroxene, anorthite and fluor-apatite, with two exothermal phenomena attributed to the evolution of these phases. An exothermal peak at 1100 degrees C was attributed to gehlenite crystallization. Scanning electron microscope observations and energy-dispersed X-ray spectroscopy microanalyses of glass-ceramic showed that the contaminating elements were concentrated in the spinel phases, which are the first phases to crystallize during the cooling of glass. Finally, the spinel structure permits the incorporation of all the contaminating elements into it.

  6. Sorption and Transport of Pharmaceutical chemicals in Organic- and Mineral-rich Soils

    NASA Astrophysics Data System (ADS)

    Vulava, V. M.; Schwindaman, J.; Murphey, V.; Kuzma, S.; Cory, W.

    2011-12-01

    Pharmaceutical, active ingredients in personal care products (PhACs), and their derivative compounds are increasingly ubiquitous in surface waters across the world. Sorption and transport of four relatively common PhACs (naproxen, ibuprofen, cetirizine, and triclosan) in different natural soils was measured. All of these compounds are relatively hydrophobic (log KOW>2) and have acid/base functional groups, including one compound that is zwitterionic (cetirizine.) The main goal of this study was to correlate organic matter (OM) and clay content in natural soils and sediment with sorption and degradation of PhACs and ultimately their potential for transport within the subsurface environment. A- and B-horizon soils were collected from four sub-regions within a pristine managed forested watershed near Charleston, SC, with no apparent sources of anthropogenic contamination. These four soil series had varying OM content (fOC) between 0.4-9%, clay mineral content between 6-20%, and soil pH between 4.5-6. The A-horizon soils had higher fOC and lower clay content than the B-horizon soils. Sorption isotherms measured from batch sorption experimental data indicated a non-linear sorption relationship in all A- and B-horizon soils - stronger sorption was observed at lower PhAC concentrations and lower sorption at higher concentrations. Three PhACs (naproxen, ibuprofen, and triclosan) sorbed more strongly with higher fOC A-horizon soils compared with the B-horizon soils. These results show that soil OM had a significant role in strongly binding these three PhACs, which had the highest KOW values. In contrast, cetirizine, which is predominantly positively charged at pH below 8, strongly sorbed to soils with higher clay mineral content and least strongly to higher fOC soils. All sorption isotherms fitted well to the Freundlich model. For naproxen, ibuprofen, and triclosan, there was a strong and positive linear correlation between the Freundlich adsorption constant, Kf, and f

  7. [Mineral oil drinking water pollution accident in Slavonski Brod, Croatia].

    PubMed

    Medverec Knežević, Zvonimira; Nadih, Martina; Josipović, Renata; Grgić, Ivanka; Cvitković, Ante

    2011-12-01

    On 21 September 2008, heavy oil penetrated the drinking water supply in Slavonski Brod, Croatia. The accident was caused by the damage of heat exchange units in hot water supply. The system was polluted until the beginning of November, when the pipeline was treated with BIS O 2700 detergent and rinsed with water. Meanwhile, water samples were taken for chemical analysis using spectrometric and titrimetric methods and for microbiological analysis using membrane filtration and total plate count. Mineral oils were determined with infrared spectroscopy. Of the 192 samples taken for mineral oil analysis, 55 were above the maximally allowed concentration (MAC). Five samples were taken for polycyclic aromatic hydrocarbon (PAH), benzene, toluene, ethylbenzene, and xylene analysis (BTEX), but none was above MAC. Epidemiologists conducted a survey about health symptoms among the residents affected by the accident. Thirty-six complained of symptoms such as diarrhoea, stomach cramps, vomiting, rash, eye burning, chills, and gastric disorders.This is the first reported case of drinking water pollution with mineral oil in Slavonski Brod and the accident has raised a number of issues, starting from poor water supply maintenance to glitches in the management of emergencies such as this.

  8. Contribution of Nutrient Pollution to Water Scarcity in the Water-Rich Northeastern United States

    NASA Astrophysics Data System (ADS)

    Hale, R. L.; Lopez, C.; Vorosmarty, C. J.

    2015-12-01

    Most studies of water stress focus on water-scarce regions such as drylands. Yet, even water-rich regions can be water stressed due to local water withdrawals that exceed supply or due to water pollution that makes water unusable. The northeastern United States (NE) is a water-rich region relative to the rest of the country, as it concentrates about 50% of total renewable water of the country. Yes the NE features relatively high water withdrawals, ~50 km3/yr, for thermo-power generation, agriculture, and industry, as well as to support a human population of about 70 million. At the same time, rivers and streams in the NE suffer from nutrient pollution, largely from agricultural and urban land uses. We asked: to what extent is the NE water stressed, and how do water withdrawals and water quality each contribute to water scarcity across the NE? We used information on county-level water withdrawals and runoff to calculate a water scarcity index (WSI) for 200 hydrologic units across the NE from 1987 to 2002. We used data on surface water concentrations of nitrogen to calculate the additional water necessary to dilute surface water pollution to weak, moderate, and strong water quality standards derived from the literature. Only considering withdrawals, we found that approximately 10% of the NE was water stressed. Incorporating a moderate water quality standard, 25% of the NE was water stressed. We calculated a dilution burden by sectors of water users and found that public utilities faced 41% of the total dilution burden for the region, followed by irrigation users at 21%. Our results illustrate that even water rich regions can experience water stress and even scarcity, where withdrawals exceed surface water supplies. Water quality contributes to water stress and can change the spatial patterns of water stress across a region. The common approach to address scarcity has required the use of inter-basin water transfers, or in the case of water quality-caused scarcity

  9. Mineralizing urban net-zero water treatment: Phase II field ...

    EPA Pesticide Factsheets

    Net-zero water (NZW) systems, or water management systems achieving high recycling rates and low residuals generation so as to avoid water import and export, can also conserve energy used to heat and convey water, while economically restoring local eco-hydrology. However, design and operating experience are extremely limited. The objective of this paper is to present the results of the second phase of operation of an advanced oxidation-based NZW pilot system designed, constructed, and operated for a period of two years, serving an occupied four-person apartment. System water was monitored, either continuously or thrice daily, for routine water quality parameters, minerals, and MicroTox® in-vitro toxicity, and intermittently for somatic and male-specific coliphage, adenovirus, Cryptosporidium, Giardia, emerging organic constituents (non-quantitative), and the Florida drinking water standards. All 115 drinking water standards with the exception of bromate were met in this phase. Neither virus nor protozoa were detected in the treated water, with the exception of measurement of adenovirus genome copies attributed to accumulation of inactive genetic material in hydraulic dead zones. Chemical oxygen demand was mineralized to 90% in treatment. Total dissolved solids were maintained at ∼500 mg/L at steady state, partially through aerated aluminum electrocoagulation. Bromate accumulation is projected to be controlled by aluminum electrocoagulation with separate dispo

  10. Mössbauer and XRD Comparative Study of Host Rock and Iron Rich Mineral Samples from Paz del Rio Iron Ore Mineral Mine in Colombia

    NASA Astrophysics Data System (ADS)

    Fajardo, M.; Pérez Alcázar, G. A.; Moreira, A. M.; Speziali, N. L.

    2004-12-01

    A comparative study between the host rock and the iron rich mineral samples from the Paz del Rio iron ore mineral mine in Colombia was performed using X-ray diffraction and Mössbauer spectroscopy. Diffraction results of the iron rich mineral sample show that goethite, hematite, quartz, kaolinite and siderite are the main phases, and that a small amount of illite is also present. By Mössbauer spectroscopy at room temperature (RT) the presence of all the above mentioned phases was detected except quartz as well as an additional presence of small amount of biotite. The goethite, which appears as four sextets with hyperfine fields of 33.5, 30.5, 27.5 and 18.5 T, respectively, is the majority phase. This result shows the different grades of formation of this oxyhydroxide. The Mössbauer spectrum of this sample at 80 K presents the same phases obtained at RT without any superparamagnetic effect. In this case the goethite appears as two sextets. Diffraction results of the host rock sample show a large amount of quartz and kaolinite and small amounts of illite and biotite, whereas by Mössbauer spectroscopy illite, kaolinite and biotite were detected.

  11. Distribution and speciation of ambient selenium in contrasted soils, from mineral to organic rich.

    PubMed

    Tolu, Julie; Thiry, Yves; Bueno, Maïté; Jolivet, Claudy; Potin-Gautier, Martine; Le Hécho, Isabelle

    2014-05-01

    Selenium adsorption onto oxy-hydroxides mainly controls its mobility in volcanic soils, red earths and soils poor in organic matter (OM) while the influence of OM was emphasized in podzol and peat soils. This work aims at deciphering how those solid phases influence ambient Se mobility and speciation under less contrasted conditions in 26 soils spanning extensive ranges of OM (1-32%), Fe/Al oxy-hydroxides (0.3-6.1%) contents and pH (4.0-8.3). The soil collection included agriculture, meadow and forest soils to assess the influence of OM quality as well. Trace concentrations of six ambient Se species (Se(IV), Se(VI) and 4 organo-Se compounds) were analyzed by HPLC-ICP-MS in three extractants (ultrapure water, phosphate and sodium hydroxide) targeting Se associated to different soil phases. The Kd values determined from ultrapure water extraction were higher than those reported in commonly used short-term experiments after Se-spiking. Correlations of ambient Se content and distribution with soil parameters explained this difference by an involvement of slow processes in Se retention in soils. The 26 Kd values determined here for a wide variety of soils thus represent a relevant database for long-term prediction of Se mobility. For soils containing less than 20% OM, ambient Se solubility is primarily controlled by its adsorption onto crystalline oxy-hydroxides. However, OM plays an important role in Se mobility by forming organo-mineral associations that may protect adsorbed Se from leaching and/or create anoxic zones (aggregates) where Se is immobilized after its reduction. Although for the first time, inorganic Se(IV), Se(VI) and organo-Se compounds were simultaneously investigated in a large soil collection, high Se proportions remain unidentified in each soil extract, most probably due to Se incorporation and/or binding to colloidal-sized OM. Variations of environmental factors regulating the extent of OM-mineral associations/aggregation may thus lead to changes

  12. Mineralogy and geochemistry of efflorescent minerals on mine tailings and their potential impact on water chemistry.

    PubMed

    Grover, B P C; Johnson, R H; Billing, D G; Weiersbye, I M G; Tutu, H

    2016-04-01

    In the gold mining Witwatersrand Basin of South Africa, efflorescent mineral crusts are a common occurrence on and nearby tailings dumps during the dry season. The crusts are readily soluble and generate acidic, metal- and sulphate-rich solutions on dissolution. In this study, the metal content of efflorescent crusts at an abandoned gold mine tailings dump was used to characterise surface and groundwater discharges from the site. Geochemical modelling of the pH of the solution resulting from the dissolution of the crusts was used to better understand the crusts' potential impact on water chemistry. The study involved two approaches: (i) conducting leaching experiments on oxidised and unoxidised tailings using artificial rainwater and dilute sulphuric acid and correlating the composition of crusts to these leachates and (ii) modelling the dissolution of the crusts in order to gain insight into their mineralogy and their potential impact on receiving waters. The findings suggested that there were two chemically distinct discharges from the site, namely an aluminium- and magnesium-rich surface water plume and an iron-rich groundwater plume. The first plume was observed to originate from the oxidised tailings following leaching with rainwater while the second plume originated from the underlying unoxidised tailings with leaching by sulphuric acid. Both groups of minerals forming from the respective plumes were found to significantly lower the pH of the receiving water with simulations of their dissolution found to be within 0.2 pH units of experimental values. It was observed that metals in a low abundance within the crust (for example, iron) had a stronger influence on the pH of the resulting solutions than metals in a greater abundance (aluminium or magnesium). Techniques such as powder X-ray diffraction (PXRD) and in situ mineral determination techniques such as remote sensing can effectively determine the dominant mineralogy. However, the minerals or metals

  13. Criticality of Water: Aligning Water and Mineral Resources Assessment.

    PubMed

    Sonderegger, Thomas; Pfister, Stephan; Hellweg, Stefanie

    2015-10-20

    The concept of criticality has been used to assess whether a resource may become a limiting factor to economic activities. It has been primarily applied to nonrenewable resources, in particular to metals. However, renewable resources such as water may also be overused and become a limiting factor. In this paper, we therefore developed a water criticality method that allows for a new, user-oriented assessment of water availability and accessibility. Comparability of criticality across resources is desirable, which is why the presented adaptation of the criticality approach to water is based on a metal criticality method, whose basic structure is maintained. With respect to the necessary adaptations to the water context, a transparent water criticality framework is proposed that may pave the way for future integrated criticality assessment of metals, water, and other resources. Water criticality scores were calculated for 159 countries subdivided into 512 geographic units for the year 2000. Results allow for a detailed analysis of criticality profiles, revealing locally specific characteristics of water criticality. This is useful for the screening of sites and their related water criticality, for indication of water related problems and possible mitigation options and water policies, and for future water scenario analysis.

  14. Kinetic theory of oxygen isotopic exchange between minerals and water

    USGS Publications Warehouse

    Criss, R.E.; Gregory, R.T.; Taylor, H.P.

    1987-01-01

    Kinetic and mass conservation equations are used to describe oxygen isotopic exchange between minerals and water in "closed" and open hydrothermal systems. In cases where n coexisting mineral phases having different reaction rates are present, the exchange process is described by a system of n + 1 simultaneous differential equations consisting of n pseudo first-order rate equations and a conservation of mass equation. The simultaneous solutions to these equations generate curved exchange trajectories on ??-?? plots. Families of such trajectories generated under conditions allowing for different fluid mole fractions, different fluid isotopic compositions, or different fluid flow rates are connected by positive-sloped isochronous lines. These isochrons reproduce the effects observed in hydrothermally exchanged mineral pairs including 1) steep positive slopes, 2) common reversals in the measured fractionation factors (??), and 3) measured fractionations that are highly variable over short distances where no thermal gradient can be geologically demonstrated. ?? 1987.

  15. Water-Rich Fluid Material Containing Orderly Condensed Proteins.

    PubMed

    Nojima, Tatsuya; Iyoda, Tomokazu

    2017-01-24

    A fluid material with high protein content (120-310 mg mL(-1) ) was formed through the ordered self-assembly of native proteins segregated from water. This material is instantly prepared by the simple mixing of a protein solution with anionic and cationic surfactants. By changing the ratio of the surfactants based on the electrostatic characteristics of the target protein, we observed that the surfactants could function as a versatile molecular glue for protein assembly. Moreover, these protein assemblies could be disassembled back into an aqueous solution depending on the salt conditions. Owing to the water-retaining properties of the hydrophilic part of surfactants, the proteins in this material are in a water-rich environment, which maintains their native structure and function. The inclusion of water also provides functional extensibility to this material, as demonstrated by the preparation of an enzymatically active gel. We anticipate that the unique features of this material will permit the use of proteins not only in solution but also as elements of integrated functionalized materials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. The bacteriological quality of bottled natural mineral waters.

    PubMed Central

    Hunter, P. R.; Burge, S. H.

    1987-01-01

    Fifty-eight bottles of natural mineral water, taken from the point of sale, were bacteriologically examined. No coliforms or Aeromonas sp. were isolated from any sample. High total bacterial counts were found particularly in the still waters. Most of the organisms isolated in the total counts were Gram-negative rods, but Gram-positive organisms were also isolated. Gram-positive cocci were further identified, some of which were known human commensals suggesting contamination of the waters prior to bottling. PMID:3678404

  17. Cholera in Portugal, 1974. II. Transmission by bottled mineral water.

    PubMed

    Blake, P A; Rosenberg, M L; Florencia, J; Costa, J B; do Prado Quintino, L; Gangarosa, E J

    1977-04-01

    During a cholera epidemic, Vibrio cholerae was isolated from two springs which supplied mineral water to a spa and to a commercial water bottling plant. Epidemiologic investigation found that cholera attack rates were 10-fold greater among visitors to the spa than among non-visitors. A subsequent matched-pair case-control study which excluded persons who had visted the spa showed that a history of consumption of the bottled non-carbonated water was significantly more common among bacteriologically confirmed cholera cases than among paired controls.

  18. Minerals

    MedlinePlus

    Minerals are important for your body to stay healthy. Your body uses minerals for many different jobs, including keeping your bones, muscles, heart, and brain working properly. Minerals are also important for making enzymes and hormones. ...

  19. Chemistry of calcium carbonate-rich shallow water sediments in the Bahamas

    SciTech Connect

    Morse, J.W.; Zullig, J.J.; Bernstein, L.D.; Millero, F.J.; Milne, P.; Mucci, A.; Choppin, G.R.

    1985-02-01

    The geochemistry of calcium carbonate-rich sediments from a variety of environments throughout the Bahamas was investigated with particular emphasis on the factors that control the pore water chemistry. Most sediments are supersaturated with respect to aragonite, the most abundant carbonate component. Experimental studies indicate that the observed in situ calcium carbonate ion activity products can often be produced as reversible metastable equilibria between the sediments and seawater. This is interpreted as being the result of interactions between the solutions and the minor high Mg-calcite component present in these sediments. Although the overlying waters are more supersaturated than the pore waters, carbonate dissolution, not precipitation, dominates in these sediments as a result of organic matter oxidation and the resulting increase in P/sub CO/sub 2//. The carbonate sediments of the Bahamas are remarkable for their purity, with the exception of special environments such as mangrove swamps and tidal flats with algal mats. Organic matter and heavy metal content is extremely low. Only minor sulfate reduction is occurring in most sediments. Phosphate is undetectable in all pore waters, probably as a result of adsorption on carbonate mineral surfaces. Other dissolved pore water components such as ammonia and DOC are much lower than typically found in shallow water fine-grained terrigeneous sediments.

  20. Diversity of Bacteria Growing in Natural Mineral Water after Bottling

    PubMed Central

    Loy, Alexander; Beisker, Wolfgang; Meier, Harald

    2005-01-01

    Bacterial growth occurs in noncarbonated natural mineral waters a few days after filling and storage at room temperature, a phenomenon known for more than 40 years. Using the full-cycle rRNA approach, we monitored the development of the planktonic bacterial community in a noncarbonated natural mineral water after bottling. Seven 16S rRNA gene libraries, comprising 108 clones in total, were constructed from water samples taken at various days after bottling and from two different bottle sizes. Sequence analyses identified 11 operational taxonomic units (OTUs), all but one affiliated with the betaproteobacterial order Burkholderiales (6 OTUs) or the class Alphaproteobacteria (4 OTUs). Fluorescence in situ hybridization (FISH) was applied in combination with DAPI (4′,6′-diamidino-2-phenylindole) staining, viability staining, and microscopic counting to quantitatively monitor changes in bacterial community composition. A growth curve similar to that of a bacterium grown in a batch culture was recorded. In contrast to the current perception that Gammaproteobacteria are the most important bacterial components of natural mineral water in bottles, Betaproteobacteria dominated the growing bacterial community and accounted for 80 to 98% of all bacteria detected by FISH in the late-exponential and stationary-growth phases. Using previously published and newly designed genus-specific probes, members of the betaproteobacterial genera Hydrogenophaga, Aquabacterium, and Polaromonas were found to constitute a significant proportion of the bacterial flora (21 to 86% of all bacteria detected by FISH). For the first time, key genera responsible for bacterial growth in a natural mineral water were identified by applying molecular cultivation-independent techniques. PMID:16000770

  1. Diversity of bacteria growing in natural mineral water after bottling.

    PubMed

    Loy, Alexander; Beisker, Wolfgang; Meier, Harald

    2005-07-01

    Bacterial growth occurs in noncarbonated natural mineral waters a few days after filling and storage at room temperature, a phenomenon known for more than 40 years. Using the full-cycle rRNA approach, we monitored the development of the planktonic bacterial community in a noncarbonated natural mineral water after bottling. Seven 16S rRNA gene libraries, comprising 108 clones in total, were constructed from water samples taken at various days after bottling and from two different bottle sizes. Sequence analyses identified 11 operational taxonomic units (OTUs), all but one affiliated with the betaproteobacterial order Burkholderiales (6 OTUs) or the class Alphaproteobacteria (4 OTUs). Fluorescence in situ hybridization (FISH) was applied in combination with DAPI (4',6'-diamidino-2-phenylindole) staining, viability staining, and microscopic counting to quantitatively monitor changes in bacterial community composition. A growth curve similar to that of a bacterium grown in a batch culture was recorded. In contrast to the current perception that Gammaproteobacteria are the most important bacterial components of natural mineral water in bottles, Betaproteobacteria dominated the growing bacterial community and accounted for 80 to 98% of all bacteria detected by FISH in the late-exponential and stationary-growth phases. Using previously published and newly designed genus-specific probes, members of the betaproteobacterial genera Hydrogenophaga, Aquabacterium, and Polaromonas were found to constitute a significant proportion of the bacterial flora (21 to 86% of all bacteria detected by FISH). For the first time, key genera responsible for bacterial growth in a natural mineral water were identified by applying molecular cultivation-independent techniques.

  2. Prevalence and Genetic Diversity of Enterococcus faecalis Isolates from Mineral Water and Spring Water in China

    PubMed Central

    Wei, Lei; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Chen, Moutong; Xue, Liang; Wang, Juan; Ma, Lianying

    2017-01-01

    Enterococcus faecalis is an important opportunistic pathogen which is frequently detected in mineral water and spring water for human consumption and causes human urinary tract infections, endocarditis and neonatal sepsis. The aim of this study was to determine the prevalence, virulence genes, antimicrobial resistance and genetic diversity of E. faecalis from mineral water and spring water in China. Of 314 water samples collected from January 2013 to January 2014, 48 samples (15.3%) were contaminated E. faecalis. The highest contamination rate occurred in activated carbon filtered water of spring water (34.5%), followed by source water of spring water (32.3%) and source water of mineral water (6.4%). The virulence gene test of 58 E. faecalis isolates showed that the detection rates of asa1, ace, cylA, gelE and hyl were 79.3, 39.7, 0, 100, 0%, respectively. All 58 E. faecalis isolates were not resistant to 12 kinds of antibiotics (penicillin, ampicillin, linezolid, quinupristin/dalfopristin, vancomycin, gentamicin, streptomycin, ciprofloxacin, levofloxacin, norfloxacin, nitrofurantoin, and tetracycline). Enterobacterial repetitive intergenic consensus-PCR classified 58 isolates and three reference strains into nine clusters with a similarity of 75%. This study is the first to investigate the prevalence of E. faecalis in mineral water and spring water in China. The results of this study suggested that spring water could be potential vehicles for transmission of E. faecalis. PMID:28670302

  3. Kinetics of mineralization of phenols in lake water.

    PubMed Central

    Jones, S H; Alexander, M

    1986-01-01

    The kinetics of mineralization of phenol and p-nitrophenol in lake water was determined at concentrations from 200 pg/ml to 5 micrograms/ml. The mineralization data were fit by nonlinear regression to equations for 14 kinetic models that describe patterns of biodegradation by nongrowing cells or by microorganisms growing on either the test chemical or other organic substrates. The kinetics od mineralization of phenol in water samples collected in July was best described by first-order models for 0.5 ng of phenol per ml; by Monod-without-growth, logistic, and logarithmic models for 1.0 and 2.0 ng/ml and 5.0 ng/ml to 1.0 micrograms/ml, respectively, if it is assumed that the mineralizing population uses phenol as the sole carbon source for growth; by models (for phenol at concentrations of 2.0 ng/ml to 1.0 micrograms/ml) that assume that the phenol-mineralizing populations do not grow or grow logarithmically or logistically on uncharacterized carbon compounds but metabolize the phenol when present at levels below and above Km, respectively, for that compound; and by a logarithmic model at 5.0 micrograms/ml. Under the test conditions, usually less than 10% of the phenol C that was metabolized was incorporated into microbial cells or retained by other particulate material in the water at substrate concentrations of 10 ng/ml or less, and the percentage increased at higher substrate concentrations.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3755316

  4. Delineation of Magnesium-rich Ultramafic Rocks Available for Mineral Carbon Sequestration in the United States

    USGS Publications Warehouse

    Krevor, S.C.; Graves, C.R.; Van Gosen, B. S.; McCafferty, A.E.

    2009-01-01

    The 2005 Intergovernmental Panel on Climate Change report on Carbon Dioxide Capture and Storage suggested that a major gap in mineral carbon sequestration is locating the magnesium-silicate bedrock available to sequester CO2. It is generally known that silicate minerals with high concentrations of magnesium are suitable for mineral carbonation. However, no assessment has been made covering the entire United States detailing their geographical distribution and extent, or evaluating their potential for use in mineral carbonation. Researchers at Columbia University and the U.S. Geological Survey have developed a digital geologic database of ultramafic rocks in the continental United States. Data were compiled from varied-scale geologic maps of magnesium-silicate ultramafic rocks. These rock types are potentially suitable as source material for mineral carbon-dioxide sequestration. The focus of the national-scale map is entirely on suitable ultramafic rock types, which typically consist primarily of olivine and serpentine minerals. By combining the map with digital datasets that show non-mineable lands (such as urban areas and National Parks), estimates on potential depth of a surface mine, and the predicted reactivities of the mineral deposits, one can begin to estimate the capacity for CO2 mineral sequestration within the United States. ?? 2009 Elsevier Ltd. All rights reserved.

  5. Determination of factors responsible for the bioweathering of copper minerals from organic-rich copper-bearing Kupferschiefer black shale.

    PubMed

    Włodarczyk, Agnieszka; Szymańska, Agata; Skłodowska, Aleksandra; Matlakowska, Renata

    2016-04-01

    The aim of this study was to investigate the bioweathering of copper minerals present in the alkaline, copper-bearing and organic-rich Kupferschiefer black shale through the action of a consortium of indigenous lithobiontic, heterotrophic, neutrophilic bacteria isolated from this sedimentary rock. The involvement of microorganisms in the direct/enzymatic bioweathering of fossil organic matter of the rock was confirmed. As a result of bacterial activity, a spectrum of various organic compounds such as urea and phosphoric acid tributyl ester were released from the rock. These compounds indirectly act on the copper minerals occurring in the rock and cause them to weather. This process was reflected in the mobilization of copper, iron and sulfur and in changes in the appearance of copper minerals observed under reflected light. The potential role of identified enzymes in biodegradation of fossil organic matter and role of organic compounds released from black shale as a result of this process in copper minerals weathering was discussed. The presented results provide a new insight into the role of chemical compounds released by bacteria during fossil organic matter bioweathering potentially important in the cycling of copper and iron deposited in the sedimentary rock. The originality of the described phenomenon lies in the fact that the bioweathering of fossil organic matter and, consequently, of copper minerals occur simultaneously in the same environment, without any additional sources of energy, electrons and carbon.

  6. A microbiological study of bottled mineral water marketed in Ludhiana.

    PubMed

    Lal, M; Kaur, H

    2006-01-01

    The microbiological quality of bottled mineral water marketed in Ludhiana was examined, Twenty three brands were analyzed for presumptive coliform count by multiple tube tests, and E. coli count was confirmed by Eijkman test. Bacterial and fungal loads were tested by membrane filtration test. Out of 23 only one sample (4.4%) showed the presumptive coliform count to be 460 most probable number (MPN)l 1 00ml,and 1 was found to be positive when tested by Eijkman test for Ecoli. In the membrane filtration test three samples (13%) showed more than two types of bacteria. Different types of bacteria isolated included Bacillus sp (19/23). Pseudomonas spp (13123), Ecoli, Klebsiella sp and S.albus one each Fungi was isolated from five of twenty three. (22%) samples. Only one brand of mineral water was unfit for human consumption. The rest of the samples were contaminated with non pathogenic flora.

  7. Minerals and clay minerals assemblages in organic-rich facies: the case study of the Sinemurian-Pliensbachian carbonate deposits of the western Lusitanian Basin (Portugal)

    NASA Astrophysics Data System (ADS)

    Caniço, Ana; Duarte, Luís V.; Silva, Ricardo L.; Rocha, Fernando; Graciano Mendonça Filho, João

    2015-04-01

    The uppermost Sinemurian-Pliensbachian series of the western part of the Lusitanian Basin is composed by hemipelagic carbonates particularly enriched in organic matter. Great part of this succession, considered to be one of the most important potential source rock intervals of Portugal, crops out in the S. Pedro de Moel and Peniche sectors, belonging to the Água de Madeiros and Vale das Fontes formations. In this study, supported by a detailed and integrated stratigraphic framework, we analyzed 98 marly samples (whole-rock mineralogy and clay minerals assemblages) from the aforementioned formations in the S. Pedro de Moel and Peniche sectors. X-ray Diffraction analysis followed the standard procedures and the semi-quantification of the different mineral phases was calculated using MacDiff 4.2.6. The goals of this work are to demonstrate the vertical variability of the mineral composition of these two units and investigate the relationship between the clay minerals assemblages and the content in organic matter (Total organic carbon: TOC). Besides the abundance of calcite and phyllosilicates, whole-rock mineralogy revealed the presence of quartz, potassium feldspar, dolomite, and pyrite (trace amounts). Other minerals like anhydrite, barite and gypsum occur sporadically. The clay minerals assemblages are dominated by illite+illite/smectite mixed-layers (minimum of 59%), always associated with kaolinite (maximum of 37%) and chlorite (maximum of 25%); sporadically smectite occurs in trace amounts. Generally, high TOC levels (i.e., black shale facies with TOC reaching up to 22 wt.% in both units, see Duarte et al., 2010), show a major increase in chlorite and kaolinite (lower values of illite+illite/smectite mixed layers). A kaolinite enrichment is also observed just above the Sinemurian-Pliensbachian boundary (base of Praia da Pedra Lisa Member of Água de Madeiros Formation; values varying between 30 and 37%). This event is associated with a second-order regressive

  8. Chemical exchange in the interior of water-rich exoplanets

    NASA Astrophysics Data System (ADS)

    Tobie, G.; Choblet, G.; Grasset, O.

    2015-10-01

    Since the discovery of the first exoplanet in 1995 [1], the number of detected exoplanets has grown nearly exponentially [2]. We have learnt from the existing dataset that our Solar System is rather unusual. Exoplanet surveys revealed notably that exoplanets intermediate between Earth and Neptune are surprisingly common, while notably absent in the Solar System [3]. Model mass-radius relationships indicate a great diversity of interior composition and atmospheric extent for the Super-Earth/Mini- Neptune-planet class [e.g. 4]. The observed continuum between Earth-sized and Neptune-sized planets challenges our understanding of planet formation and evolution, which has been biased for many years by our vision of the Solar System. Planetary worlds are probably much more diverse than originally thought, with a wide range of water and other volatile content. In the Solar System, there is a strong dichotomy between the inner system with dry planetary objects having a very small volatile fraction (<0.1 %), and the outer solar system where water ice constitutes a large fraction of solid phase (> 20%). The volatile contents among other systems likely vary more gradually, and a large fraction of exoplanets with sizes intermediate between Earth and Neptune may have a water content exceeding several percents. The existence of massive water envelops around these planets may significantly affect the internal evolution and chemical exchanges between the deep interior and the atmosphere [e.g. 5]. Due to the very high-pressure expected inside these water-rich planets, especially for the the most massive ones, most of the water will be in the form of a high-pressure ice phase (ice VII) [6,7], the presence of liquid water being limited only to the first kilometres. The thermal structure and dynamics of these thick icy mantles are expected to control the heat and chemical transport from the silicate-rich interior to the surface [8,9], in a way analogous to the internal processes

  9. Iron bacteria of the genus Siderocapsa in mineral waters.

    PubMed

    Svorcová, L

    1975-01-01

    The occurrence of iron bacteria in mineral waters has been under study. It could be shown that Siderocapsa caronata Redlinger 1931 and S. treubii Molisch 1909 are synonymous, as well as S. eusphaera Skuja 1948 and S. major Molisch 1909, and S. botryoides Berger 1949 and S. monoica 1922. Two new species, S. hexagonata and S. quadrata, have been described. A simplified key for determining the species of the genus Sideracapsa is presented.

  10. Water in the Martian Crust Locked in Hydrated Minerals: A Significant Planetary Reservoir of Water

    NASA Astrophysics Data System (ADS)

    Mustard, J. F.

    2017-10-01

    Calculations for a reservoir of water locked in hydrated minerals is estimated to range from a low of < 20 m global equivalent layer to approximately 1 km for the high end. This is sufficient to strongly impact surface geomorphic processes.

  11. Occurrences of Mineralized Waters and Mineral Springs in Kysuce and Their Meaning for Geotourism

    NASA Astrophysics Data System (ADS)

    Niemiec, Dominik; Marschalko, Marian; Duraj, Miloš; Yilmaz, Işik

    2016-10-01

    Kysuce is a region situated in north-western Slovakia and it borders the Czech Republic on the west and Poland on the north. From the geological point of view, the locality is mainly formed by Tertiary flysch formation. This composition together with the relief of this location created very suitable conditions for occurrences of numerous mineral springs which can be found in this region. The increased concentration of mineral contents in the waters which find their expression not only through taste but also through their typical odour held the interest of local inhabitants already in the past centuries. Currently, they are frequently visited not only by inhabitants of the region but also by visitors to Kysuce. From the geotourism point of view, this region offers more interesting geological phenomena. Some of them, such as a crude oil seep in Korna or occurrences of sandstone and agglomerate stone balls, rank among world unique.

  12. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    USGS Publications Warehouse

    Kane, E.S.; Chivers, M.R.; Turetsky, M.R.; Treat, C.C.; Petersen, D.G.; Waldrop, M.; Harden, J.W.; McGuire, A.D.

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2 production potential at 10 cm depth (14.1 ± 0.9 μmol C g−1 d−1) was as high as aerobic CO2 production potential (10.6 ± 1.5 μmol C g−1 d−1), while CH4 production was low (mean of 7.8 ± 1.5 nmol C g−1 d−1). Denitrification enzyme activity indicated a very high denitrification potential (197 ± 23 μg N g−1 d−1), but net NO-3 reduction suggested this was a relatively minor pathway for anaerobic CO2 production. Abundances of denitrifier genes (nirK and nosZ) did not change across water table treatments. SO2-4 reduction also did not appear to be an important pathway for anaerobic CO2 production. The net accumulation of acetate and formate as decomposition end products in the raised water table treatment suggested that fermentation was a significant pathway for carbon mineralization, even in the presence of NO-3. Dissolved organic carbon (DOC) concentrations were the strongest predictors of potential anaerobic and aerobic CO2 production. Across all water table treatments, the CO2:CH4 ratio increased with initial DOC leachate concentrations. While the field water table treatment did not have a significant effect on mean CO2 or CH4 production potential, the CO2:CH4 ratio was highest in shallow peat incubations from the drained treatment. These data suggest that with continued drying or with a more variable water table, anaerobic CO2 production may be favored over CH4 production in this rich fen. Future research examining the potential for dissolved organic substances to facilitate anaerobic respiration, or alternative redox processes that limit the effectiveness of organic acids as substrates in anaerobic metabolism, would help explain additional

  13. Determination of parathion, aldicarb, and thiobencarb in tap water and bottled mineral water in Mashhad, Iran.

    PubMed

    Rezaee, Ramin; Hassanzadeh-Khayyat, Mohammad; Mehri, Fereshteh; Khashyarmanesh, Zahra; Moallemzadeh, Hamideh; Karimi, Gholamreza

    2012-04-01

    Water is a necessity for life. Currently, because of different contaminations in tap water, most people prefer using bottled mineral waters. Pesticides (e.g., organophophorous, carbamates, etc.) are among the most dangerous chemicals that may be found in drinking waters, which can cause long- and short-term complications. Because all people consume at least 2 L of water per day, water-quality monitoring is vital. In this study, we determined the concentration of three pesticides (aldicarb, parathion, and thiobencarb) in 13 tap-water samples collected from 13 different urban areas and 10 samples of bottled mineral water in Mashhad, a major city in northeast Iran. Samples were analyzed by gas chromatography coupled with a pulsed flame photometric detector after solid-phase extraction. Results showed that 2 of 13 tap-water samples and 2 of 10 bottled mineral water trademarks were contaminated either by parathion or by thiobencarb or both, with concentrations ranging between 0.6 and 0.8 ppb. According to the defined guideline values, determined concentrations of pesticides are below the permissible World Health Organization level for these toxic agents, and it is considered that drinking these tap waters and bottled mineral waters are safe for human consumption.

  14. Geophysical Delination of Mg-Rich Ultramafic Rocksfor Mineral Carbon Sequestration

    USGS Publications Warehouse

    McCafferty, Anne E.; Van Gosen, Brad S.; Krevor, Sam C.; Graves, Chris R.

    2009-01-01

    A similar version of this slide presentation was given at the 2009 Society for Mining, Metallurgy, and Exploration (SME) annual meeting in Denver, Colorado, in February 2009. This presentation was part of the 'Industrial Minerals: Reducing Carbon Footprint in Industrial Minerals' session. Two other related talks were presented in the same session by Sam Krevor of Columbia University. The first talk provided a status report on mineral CO2 sequestration as an industrial process. The second talk presented a national-scale geologic compilation of rocks favorable for mineral CO2 sequestration in the United States. This presentation, an extension of the latter talk, shows how airborne geophysical data can be used to further refine the geologic mapping of ultramafic rocks.

  15. Predicted mineral intake utilizing both water and forage analysis varies by source and location of livestock water in Eastern Montana

    USDA-ARS?s Scientific Manuscript database

    Livestock water can play an important role in contributing to mineral intake of cows grazing rangelands. Mineral analysis of both forage and water is needed to accurately assess mineral intake compared to animal requirements. Therefore, 93 pasture and water source combinations were sampled in May ...

  16. Bacterial flora in bottled uncarbonated mineral drinking water.

    PubMed

    González, C; Gutiérrez, C; Grande, T

    1987-12-01

    A quantitative study of bacterial populations in mineral water was carried out. Samples were stored at 6 and 20 degrees C, and the colony counts were determined on tryptone agar plates incubated at 22 and 37 degrees C. Samples were collected from the spring source in sterile glass flasks and from the bottling factory in conventional plastic and glass containers. In both cases, the initial population (10(1)-10(2) cfu/mL water) increased to 10(5)-10(6) cfu/mL after 3 days storage as determined from plate counts incubated at 22 degrees C. The levels reached by this population were similar to those of samples of mineral water obtained at the market stage. Results from plate counts incubated at 37 degrees C showed that populations in samples collected at the bottling factory reached 10(2)-10(3) cfu/mL. No growth was observed in water collected from spring source. Bacterial multiplication was not stopped even when water was stored at 6 degrees C. Caulobacter was the genus found most frequently in both types of samples, followed by Sphaerotilus-Leptothrix. Acinetobacter calcoaceticus and Pseudomonas fluorescens were frequently found in only two springs, and Pseudomonas putida, Arthrobacter, Aeromonas hydrophilia, and Corynebacterium were isolated less frequently. Janthinobacterium was recovered only once from a single spring. A giant bacterium closely resembling Hyphomicrobium and a budding one similar to Pasteuria were recovered from all samples of a single spring and from some of the commercial samples.

  17. Defluoridation of drinking water using activated titanium rich bauxite.

    PubMed

    Das, Nigamananda; Pattanaik, Pragyan; Das, Rita

    2005-12-01

    The potential of thermally activated titanium rich bauxite (TRB) for adsorptive removal of excess fluoride from drinking water was examined. Adsorption with respect to variation of pH, adsorbent dose, initial fluoride concentration, presence of interfering ions and heat treatment were investigated by batch equilibrium experiments. Thermal activation at moderate temperatures (300-450 degrees C) greatly increased the adsorption capacity of TRB. The rate of adsorption was rapid and maximum level was attained within 90 min. The uptake of fluoride increased with increasing pH, reached to a maximum at pH 5.5-6.5 and thereafter decreased. The adsorption kinetics was found to follow first order rate expression and the experimental equilibrium adsorption data fitted reasonably well to both Langmuir and Freundlich isotherm models. The presence of common interfering ions in drinking water did not greatly affect the uptake of fluoride from aqueous solution indicating F specific sorption behaviour of TRB. Nearly complete desorption of adsorbed fluoride from loaded bauxite was achieved by treating with aqueous solutions of pH > or =11.1 ([NaOH] > or =0.015 mol/dm(3)).

  18. Radium Adsorption to Iron Bearing Minerals in Variable Salinity Waters

    NASA Astrophysics Data System (ADS)

    Chen, M.; Kocar, B. D.

    2014-12-01

    Radium is a common, naturally occurring radioactive metal found in many subsurface environments. Radium isotopes are a product of natural uranium and thorium decay, and are particularly abundant within groundwaters where minimal flux leads to accumulation within porewaters. Radium has been used as a natural tracer to estimate submarine groundwater discharge (SGD) [1], where the ratios of various radium isotopes are used to estimate total groundwater flux to and from the ocean [2]. Further, it represents a substantial hazard in waste water produced after hydraulic fracturing for natural gas extraction [3], resulting in a significant risk of environmental release and increased cost for water treatment or disposal. Adsorption to mineral surfaces represents a primary pathway of radium retention within subsurface environments. For SGD studies, it is important to understand adsorption processes to correctly estimate GW fluxes, while in hydraulic fracturing, radium adsorption to aquifer solids will mediate the activities of radium within produced water. While some studies of radium adsorption to various minerals have been performed [4], there is a limited understanding of the surface chemistry of radium adsorption, particularly to iron-bearing minerals such as pyrite, goethite and ferrihydrite. Accordingly, we present the results of sorption experiments of radium to a suite of iron-bearing minerals representative of those found within deep saline and near-surface (freshwater) aquifers, and evaluate impacts of varying salinity solutions through the use of artificial groundwater, seawater, and shale formation brine. Further, we explore the impacts of pyrite oxidation and ferrihydrite transformation to other iron-bearing secondary minerals on the retention of radium. This work lays the groundwork for further study of radium use as a tracer for SGD, as well as understanding mechanisms of radium retention and release from deep aquifer materials following hydraulic fracturing

  19. Effects of washed platelets vs platelet-rich plasma on the proliferation and mineralization of rat dental pulp cells.

    PubMed

    Zhang, L; Xie, Y H; Lin, B R

    2015-08-14

    We examined the effects of washed platelets (WPLTs) and platelet-rich plasma (PRP) on the proliferation and mineralization of rat dental pulp cells. Rat dental pulp cells were separated, cultured, and identified. Medium containing 1, 10, 100, or 500 mL/L PRP or WPLTs was added to 4th generation cells. The MTS method was used to determine cell proliferation. Alizarin red staining was used to observe the formation of mineralized nodules after cell mineralization and induction for 10 and 20 days under different culture conditions, and the areas of the mineralized nodules formed 20 days after induction were computed. The addition of 1, 10, and 100 mL/L WPLTs or PRP significantly promoted rat dental pulp cell proliferation (P < 0.05) whereas 500 mL/L WPLTs or PRP had no significant effect (P > 0.05). Under the same concentrations, no significant differences on cell proliferation were observed between WPLT and PRP treatments (P > 0.05 in all groups). After 10 days mineralization and culture, the 100 and 500 mL/L WPLT and PRP group positive nodule rates were significantly higher than those of the low concentration and the control groups (P < 0.05). After 20 days, the areas of the mineralized nodules formed in the 100 and 500 mL/L WPLT and PRP groups were significantly larger than those in the control group (P < 0.05). These results demonstrate that both WPLTs and PRP are equally able to significantly promote the proliferation and calcification of rat dental pulp cells under a certain range of concentrations.

  20. Mineral Dissolution and Precipitation due to Carbon Dioxide-Water-Rock Interactions: The Significance of Accessory Minerals in Carbonate Reservoirs (Invited)

    NASA Astrophysics Data System (ADS)

    Kaszuba, J. P.; Marcon, V.; Chopping, C.

    2013-12-01

    Accessory minerals in carbonate reservoirs, and in the caprocks that seal these reservoirs, can provide insight into multiphase fluid (CO2 + H2O)-rock interactions and the behavior of CO2 that resides in these water-rock systems. Our program integrates field data, hydrothermal experiments, and geochemical modeling to evaluate CO2-water-rock reactions and processes in a variety of carbonate reservoirs in the Rocky Mountain region of the US. These studies provide insights into a wide range of geologic environments, including natural CO2 reservoirs, geologic carbon sequestration, engineered geothermal systems, enhanced oil and gas recovery, and unconventional hydrocarbon resources. One suite of experiments evaluates the Madison Limestone on the Moxa Arch, Southwest Wyoming, a sulfur-rich natural CO2 reservoir. Mineral textures and geochemical features developed in the experiments suggest that carbonate minerals which constitute the natural reservoir will initially dissolve in response to emplacement of CO2. Euhedral, bladed anhydrite concomitantly precipitates in response to injected CO2. Analogous anhydrite is observed in drill core, suggesting that secondary anhydrite in the natural reservoir may be related to emplacement of CO2 into the Madison Limestone. Carbonate minerals ultimately re-precipitate, and anhydrite dissolves, as the rock buffers the acidity and reasserts geochemical control. Another suite of experiments emulates injection of CO2 for enhanced oil recovery in the Desert Creek Limestone (Paradox Formation), Paradox Basin, Southeast Utah. Euhedral iron oxyhydroxides (hematite) precipitate at pH 4.5 to 5 and low Eh (approximately -0.1 V) as a consequence of water-rock reaction. Injection of CO2 decreases pH to approximately 3.5 and increases Eh by approximately 0.1 V, yielding secondary mineralization of euhedral pyrite instead of iron oxyhydroxides. Carbonate minerals also dissolve and ultimately re-precipitate, as determined by experiments in the

  1. Ectopic mineralization of cartilage and collagen-rich tendons and ligaments in Enpp1asj-2J mice

    PubMed Central

    Zhang, Jieyu; Dyment, Nathaniel A.; Rowe, David W.; Siu, Sarah Y.; Sundberg, John P.; Uitto, Jouni; Li, Qiaoli

    2016-01-01

    Generalized arterial calcification of infancy (GACI), an autosomal recessive disorder caused by mutations in the ENPP1 gene, manifests with extensive mineralization of the cardiovascular system. A spontaneous asj-2J mutant mouse has been characterized as a model for GACI. Previous studies focused on phenotypic characterization of skin and vascular tissues. This study further examined the ectopic mineralization phenotype of cartilage, collagen-rich tendons and ligaments in this mouse model. The mice were placed on either control diet or the ‘acceleration diet’ for up to 12 weeks of age. Soft connective tissues, such as ear (elastic cartilage) and trachea (hyaline cartilage), were processed for standard histology. Assessment of ectopic mineralization in articular cartilage and fibrocartilage as well as tendons and ligaments which are attached to long bones were performed using a novel cryo-histological method without decalcification. These analyses demonstrated ectopic mineralization in cartilages as well as tendons and ligaments in the homozygous asj-2J mice at 12 weeks of age, with the presence of immature osteophytes displaying alkaline phosphatase and tartrate-resistant acid phosphatase activities as early as at 6 weeks of age. Alkaline phosphatase activity was significantly increased in asj-2J mouse serum as compared to wild type mice, indicating increased bone formation rate in these mice. Together, these data highlight the key role of ENPP1 in regulating calcification of both soft and skeletal tissues. PMID:26910915

  2. [The balneotherapeutic components of sulfide-containing mineral waters].

    PubMed

    Khutoryansky, V A; Gorshkov, A G

    2015-01-01

    It has been suggested in an early study that sulfanes may serve as a source of sulfur contained in hydrogen sulfide sources. We have performed derivatization of sulfanes, known to be present in the "Novonukutskaya" mineral water. The presence of polysulfanes in balneotherapeutic sulfide waters was confirmed by the HPLC-UV and chromato-mass spectrometric techniques. Derivatization of inorganic polysulfides was achieved by using the reaction with methyl iodide. It was shown that polysulfanes contained in the examined samples were metastable and disintegrated into So and H2S. Almost all molecular zero-valent sulfur was present in the form of S8. The application of HPLC allowed to determine the equilibrium concentration of molecular sulfur. The presence of the above compounds in therapeutic sulfide waters raises the question of the mechanism of their curative action. The authors hypothesize that it may be related to the high therapeutic potency of the substances obtained by steam distillation from the "Novonukutskaya" mineral water.

  3. Acid-base balance and hydration status following consumption of mineral-based alkaline bottled water

    PubMed Central

    2010-01-01

    Background The present study sought to determine whether the consumption of a mineral-rich alkalizing (AK) bottled water could improve both acid-base balance and hydration status in young healthy adults under free-living conditions. The AK water contains a naturally high mineral content along with Alka-PlexLiquid™, a dissolved supplement that increases the mineral content and gives the water an alkalizing pH of 10.0. Methods Thirty-eight subjects were matched by gender and self-reported physical activity (SRPA, hrs/week) and then split into Control (12 women, 7 men; Mean +/- SD: 23 +/- 2 yrs; 7.2 +/- 3.6 hrs/week SRPA) and Experimental (13 women, 6 men; 22 +/- 2 yrs; 6.4 +/- 4.0 hrs/week SRPA) groups. The Control group consumed non-mineralized placebo bottled water over a 4-week period while the Experimental group consumed the placebo water during the 1st and 4th weeks and the AK water during the middle 2-week treatment period. Fingertip blood and 24-hour urine samples were collected three times each week for subsequent measures of blood and urine osmolality and pH, as well as total urine volume. Dependent variables were analyzed using multivariate repeated measures ANOVA with post-hoc focused on evaluating changes over time within Control and Experimental groups (alpha = 0.05). Results There were no significant changes in any of the dependent variables for the Control group. The Experimental group, however, showed significant increases in both the blood and urine pH (6.23 to 7.07 and 7.52 to 7.69, respectively), a decreased blood and increased urine osmolality, and a decreased urine output (2.51 to 2.05 L/day), all during the second week of the treatment period (P < 0.05). Further, these changes reversed for the Experimental group once subjects switched to the placebo water during the 4th week. Conclusions Consumption of AK water was associated with improved acid-base balance (i.e., an alkalization of the blood and urine) and hydration status when consumed under

  4. Cl-rich minerals in Archean granulite facies ironstones from the Beartooth Mountains, Montana, USA: Implications for fluids involved in granulite metamorphism

    NASA Technical Reports Server (NTRS)

    Henry, D. J.

    1988-01-01

    The implications of Cl-rich minerals in granulite facies rocks are discussed. Results from ironstones of the Beartooth Mountains, Montana are discussed. It is suggested that CO2-brine immiscibility might be applicable to granulite facies conditions, and if so, then aqueous brines might be preferentially adsorbed onto mineral surfaces relative to CO2.

  5. The Geysers-Clear Lake area, California: thermal waters, mineralization, volcanism, and geothermal potential

    USGS Publications Warehouse

    Donnelly-Nolan, J. M.; Burns, M.G.; Goff, F.E.; Peters, E.K.; Thompson, J.M.

    1993-01-01

    Manifestations of a major thermal anomaly in the Geysers-Clear Lake area of northern California include the late Pliocene to Holocene Clear Lake Volcanics, The Geysers geothermal field, abundant thermal springs, and epithermal mercury and gold mineralization. The epithermal mineralization and thermal springs typically occur along high-angle faults within the broad San Andreas transform fault system that forms the western boundary of the North American plate in this area. The young volcanic rocks overlie Mesozoic marine rocks of the Great Valley sequence which have been thrust above the coeval Franciscan Complex and penecontemporaneously dropped back down along low-angle detachment faults. Geothermal power production has peaked at The Geysers and pressure declines indicate significant depletion of the fluid resource. It is proposed that recently discovered, isotopically shifted steam in the northwest Geysers area indicates the presence not of deep connate water but rather of boiled-down, boron-rich Franciscan evolved meteoric water. This water is likely to be present in limited quantities and will not provide a significant hot water resource for geothermal power production at The Geysers field or from the main Clear Lake volcanic field. -from Authors

  6. Nicotine occurrence in bottled mineral water: analysis of 10 brands of water in Spain.

    PubMed

    González Alonso, S; Valcárcel, Y; Montero, J C; Catalá, M

    2012-02-01

    The presence of pharmaceuticals in surface and drinking water has been evidenced in numerous studies. Despite representing one of the most common consumption sources, to the best of our knowledge, this is the first report on the presence of pharmaceutical compounds in bottled mineral water. Pollution of these sources not only could pose a serious human health risk, but would also warn about the quality of the water in our aquifers, a vital and vulnerable source of water, essential for the future water supply. Fifty eight pharmaceutically active compounds (PhACs) belonging to the 12 main therapeutic groups were analyzed in 10 bottled mineral water brands produced in Spain. Nicotine was detected in concentrations ranging from 7ngL(-1) to 15ngL(-1) in 5 of 10 bottled mineral waters. Despite the low nicotine concentration measured, the presence of this compound in bottled water still raises concern. Health risk assessment researchers have postulated that the risk to adult healthy humans from oral intake of nicotine at low levels is negligible. However, no studies have been conducted to assess the human health risk of vulnerable populations such as pregnant women and newborns. This population is the target of advertising on the purity and quality characteristics of bottled mineral water. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Water Footprint in Nitrate Vulnerable Zones: Mineral vs. Organic Fertilization.

    NASA Astrophysics Data System (ADS)

    Castellanos Serrano, María Teresa; Requejo Mariscal, María Isabel; Villena Gordo, Raquel; Cartagena Causapé, María Carmen; Arce Martínez, Augusto; Ribas Elcorobarrutia, Francisco; María Tarquis Alfonso, Ana

    2017-04-01

    In intensive agriculture, it is necessary to apply irrigation and fertilizers to increase the crop yield. An optimization of water and N application is necessary. An excess of irrigation implies nitrates washing which would contribute to the contamination of the groundwater. An excess of N, besides affecting the yield and fruit quality, causes serious environmental problems. Nitrate vulnerable zones (NVZs) are areas designated as being at risk from agricultural nitrate pollution. They include around 16% of land in Spain and in Castilla-La Mancha, the area studied, represents 45% of the total land. In several zones, the N content of the groundwater could be approximately 140 mg L-1, or even higher [1]. The input of nitrogen fertilizers (mineral or organic), applied with a poor management, could be increased considerably the pollution risks. The water footprint (WF) is as indicator for the total volume of direct and indirect freshwater used, consumed and/or polluted [2]. The WF includes both consumptive water use: blue water (volume of surface and groundwater consumed) and green water (rainwater consumed)). A third element is the water required to assimilate pollution (grey water) [2]. Under semiarid conditions with low irrigation water quality, green WF is zero because the effective rainfall is negligible. Blue WF includes: i) extra consumption or irrigation water that the farmer has to apply to compensate the fail of uniformity on discharge of drips, ii) percolation out of control or salts leaching, which depends on the salt tolerance of the crop, soil and quality of irrigation water, to ensure the fruit yield. In the NVZs, the major concern is grey WF, because the irrigation and nitrogen dose have to be adjusted to the crop needs in order to minimize nitrate pollution. This study focus on the assessment of mineral and organic fertilization on WF in a fertirrigated melon crop under semiarid conditions with a low water quality. During successive years, a melon crop

  8. Cl-rich hydrous mafic mineral assemblages in the Highiș massif, Apuseni Mountains, Romania

    NASA Astrophysics Data System (ADS)

    Bonin, Bernard; Tatu, Mihai

    2016-08-01

    The Guadalupian (Mid-Permian) Highiș massif (Apuseni Mountains, Romania) displays a bimodal igneous suite of mafic (gabbro, diorite) and A-type felsic (alkali feldspar granite, albite granite, and hybrid granodiorite) rocks. Amphibole is widespread throughout the suite, and yields markedly high chlorine contents. Three groups are identified: Cl-rich potassic hastingsite (2.60-3.40 wt% Cl) within A-type felsic rocks and diorite, mildly Cl-rich pargasite to hornblende (0.80-1.90 wt% Cl) within gabbro, and low F-Cl hornblende within gabbro and hybrid granodiorite. Coexisting biotite is either Cl-rich within diorite, or F-Cl-poor to F-rich within A-type felsic rocks. Chlorine and fluorine are distributed in both mafic phases, according to the F-Fe and Cl-Mg avoidance rules. The low-Ti contents suggest subsolidus compositions. Cl-rich amphibole within diorite and A-type felsic rocks yields a restricted temperature range - from 575 °C down to 400 °C, whereas mildly Cl-rich amphibole within gabbro displays the highest range - from 675 to 360 °C. Temperatures recorded by Cl-rich biotite within diorite range from 590 to 410 °C. Biotite within A-type felsic rocks yields higher temperatures than amphibole: the highest values- from 640 to 540 °C - are recorded in low-F-Cl varieties, whereas the lowest values- from 535 to 500 °C - are displayed by F-rich varieties. All data point to halogen-rich hydrothermal fluids at upper greenschist facies conditions percolating through fractures and shear zones and pervasively permeating the whole Highiș massif, with F precipitating as interstitial fluorite and Cl incorporating into amphibole, during one, or possibly several, hydrothermal episodes that would have occurred during a ~ 150 My-long period of time extending from the Guadalupian (Mid-Permian) to the Albian (Mid-Cretaceous).

  9. Effect of fluid intake on skin physiology: distinct differences between drinking mineral water and tap water.

    PubMed

    Williams, S; Krueger, N; Davids, M; Kraus, D; Kerscher, M

    2007-04-01

    It is generally stated that drinking plenty of water has a positive influence on skin condition. However, there is no published scientific study that has investigated this matter. The aim of our exploratory 'before-after' study was to evaluate the in vivo influence of drinking more than 2 L of mineral water or ordinary tap water per day on skin physiology. Ninety-three healthy subjects were included in our prospective study. After an initial run-in phase of 2 weeks to monitor individual drinking habits, subjects had to drink 2.25 L day(-1) of either mineral water (n = 53) or tap water (n = 40) for 4 weeks. Bioengineering in vivo measurements on the volar forearm included sonographic evaluation of skin thickness and density, determination of skin surface pH, assessment of skin surface morphology, and measurement of finger circumference. Eighty-six subjects completed the study. In the mineral water group measurements revealed a statistically significant decrease in skin density. Skin thickness increased slightly, albeit not at a statistically significant level. However, when separately analysing those individuals from the mineral water group, who had routinely drunken comparably little before the start of the study, their skin thickness increased at a statistically significant level. Skin surface pH remained almost unchanged in the physiologically optimal range. In the tap water group, skin density increased significantly, while skin thickness decreased significantly. Skin surface pH decreased at a statistically significant level. While in the mineral water group finger circumference decreased significantly, measurements in the tap water group revealed a statistically significant increase. Objective skin surface morphology did not change in any group. In summary, drinking more than 2 L of water per day can have a significant impact on skin physiology. The exact effects within the skin seem to differ depending on the nature of the water ingested. Randomized

  10. A new method for thioarsenate preservation in iron-rich waters by solid phase extraction.

    PubMed

    Ullrich, Maria K; Misiari, Valentina; Planer-Friedrich, Britta

    2016-10-01

    In order to preserve iron-rich samples for arsenic speciation analysis, mineral acids or EDTA are typically added to prevent oxidation and precipitation of iron. However, when sulfide is present, and thioarsenates ([HAs(V)S(-II)nO4-n](2-), n = 1-4) can form, these methods are unsuitable due to arsenic sulfide precipitation or artifact speciation changes. Here, a new method based on separating the anionic arsenic species from cationic iron in the presence of sulfide via solid phase extraction (SPE) has been investigated. Synthetic solutions containing arsenite, arsenate, monothioarsenate, and trithioarsenate were passed through the anion-exchange resin AG2-X8, after which the resin was washed, eluted, and speciation of each step analyzed by IC-ICP-MS. Retention on the resin of 96.8 ± 0.2%, 98.8 ± 0.2%, and 99.6 ± 0.3% was found for arsenate, monothioarsenate, and trithioarsenate, respectively. Cationic iron (90 μM Fe(II)) was not retained (0.4 ± 0.2%). Uncharged arsenite passed through the resin in the absence of sulfide, while 47.3% of arsenite were retained at tenfold sulfide excess via thiol groups binding to the organic resin structure. Elution with 3 × 15 mL of 0.5 M salicylate, including a soak time, resulted in quantitative recovery of all retained species. Stability of the retained species on the resin was tested with iron-rich, natural waters from a Czech mineral spring. Arsenate, monothioarsenate, dithioarsenate, and trithioarsenate were successfully separated from iron and recovered after 6 d. Thus, SPE presents a viable answer to the problem of preserving arsenic in the presence of both iron and sulfide.

  11. Geochemistry of surface-waters in mineralized and non-mineralized areas of the Yukon-Tanana Uplands

    USGS Publications Warehouse

    Wang, B.; Wanty, R.B.; Vohden, J.

    2005-01-01

    The U.S. Geological Survey (USGS) and Alaska Department of Natural Resources (ADNR) are continuing investigations on element mobility in mineralized and non-mineralized areas of the Yukon-Tanana Upland in east-central Alaska. The chemistry of stream water is evaluated in the context of regional bedrock geology and geologic structure. Sampling sites were located in the Big Delta B2 quadrangle, which includes the mineralized areas of the Pogo claim block. The area is typified by steep, subarctic-alpine, boreal forest catchment basins. Samples were collected from catchments that either cross structural features and lithologic contacts, or are underlain by a single lithology. Waters are generally dilute (< 213 mg/L TDS), and are classified as Ca2+ and Mg2+-HCO3- to Ca2+ and Mg2+-SO42- waters. Gneissic lithologies are more SO42- dominated than the intrusive units. The major-ion chemistry of the waters reflects a rock-dominated aqueous system. Trace-element concentrations in water are generally low; however, As and Sb are detected near mineralized areas but in most cases rapidly attenuated downstream and processes other than simple dilution are controlling the concentrations of these trace elements. There is a tendency toward increasing SO42- concentrations downstream in waters both proximal and distal to mineralized areas. More work is necessary to determine what proportion of the increase in SO42- could be derived from the oxidation of sulfide minerals as opposed to water influenced by the underlying gneissic units.

  12. ARSENIC LEACHING FROM IRON RICH MINERAL PROCESSING WASTE: INFLUENCE OF PH AND REDOX POTENTIAL

    EPA Science Inventory

    This paper presents the effect of pH and redox potential on the potential mobility of arsenic (As) from a contaminated mineral processing waste. The selected waste contained about 0.47 g kg-1 of As and 66.2 g kg-1 of iron (Fe). The characteristic of the wast...

  13. Water-rich planets: How habitable is a water layer deeper than on Earth?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Höning, D.; Rivoldini, A.; Heistracher, C.; Zimov, N.; Journaux, B.; Lammer, H.; Van Hoolst, T.; Bredehöft, J. H.

    2016-10-01

    Water is necessary for the origin and survival of life as we know it. In the search for life-friendly worlds, water-rich planets therefore are obvious candidates and have attracted increasing attention in recent years. The surface H2O layer on such planets (containing a liquid water ocean and possibly high-pressure ice below a specific depth) could potentially be hundreds of kilometres deep depending on the water content and the evolution of the proto-atmosphere. We study possible constraints for the habitability of deep water layers and introduce a new habitability classification relevant for water-rich planets (from Mars-size to super-Earth-size planets). A new ocean model has been developed that is coupled to a thermal evolution model of the mantle and core. Our interior structure model takes into account depth-dependent thermodynamic properties and the possible formation of high-pressure ice. We find that heat flowing out of the silicate mantle can melt an ice layer from below (in some cases episodically), depending mainly on the thickness of the ocean-ice shell, the mass of the planet, the surface temperature and the interior parameters (e.g. radioactive mantle heat sources). The high pressure at the bottom of deep water-ice layers could also impede volcanism at the water-mantle boundary for both stagnant lid and plate tectonics silicate shells. We conclude that water-rich planets with a deep ocean, a large planet mass, a high average density or a low surface temperature are likely less habitable than planets with an Earth-like ocean.

  14. Discharge, water temperature, and water quality of Warm Mineral Springs, Sarasota County, Florida: A retrospective analysis

    USGS Publications Warehouse

    Metz, Patricia A.

    2016-09-27

    Warm Mineral Springs, located in southern Sarasota County, Florida, is a warm, highly mineralized, inland spring. Since 1946, a bathing spa has been in operation at the spring, attracting vacationers and health enthusiasts. During the winter months, the warm water attracts manatees to the adjoining spring run and provides vital habitat for these mammals. Well-preserved late Pleistocene to early Holocene-age human and animal bones, artifacts, and plant remains have been found in and around the spring, and indicate the surrounding sinkhole formed more than 12,000 years ago. The spring is a multiuse resource of hydrologic importance, ecological and archeological significance, and economic value to the community.The pool of Warm Mineral Springs has a circular shape that reflects its origin as a sinkhole. The pool measures about 240 feet in diameter at the surface and has a maximum depth of about 205 feet. The sinkhole developed in the sand, clay, and dolostone of the Arcadia Formation of the Miocene-age to Oligocene-age Hawthorn Group. Underlying the Hawthorn Group are Oligocene-age to Eocene-age limestones and dolostones, including the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. Mineralized groundwater, under artesian pressure in the underlying aquifers, fills the remnant sink, and the overflow discharges into Warm Mineral Springs Creek, to Salt Creek, and subsequently into the Myakka River. Aquifers described in the vicinity of Warm Mineral Springs include the surficial aquifer system, the intermediate aquifer system within the Hawthorn Group, and the Upper Floridan aquifer in the Suwannee Limestone, Ocala Limestone, and Avon Park Formation. The Hawthorn Group acts as an upper confining unit of the Upper Floridan aquifer.Groundwater flow paths are inferred from the configuration of the potentiometric surface of the Upper Floridan aquifer for September 2010. Groundwater flow models indicate the downward flow of water into the Upper Floridan aquifer

  15. Semi-quantitative ion microprobe mass analyses of mineral-rich particles from the upper freeport coal

    USGS Publications Warehouse

    Finkelman, R.B.; Simons, D.S.; Dulong, F.T.; Steel, E.B.

    1984-01-01

    An ion microprobe mass analyzer (IMMA) has been used to analyze semi-quantitatively mineral-rich coal particles from two separate facies of the Upper Freeport coal bed. Accuracy is estimated to be ??? 20% for those elements making up more than 0.1 wt.% of the particles and ??? 50% for elements making up less than 0.1 wt.%. Using IMMA data, we found statistically significant differences between the two samples for five (Fe, Ca, Mn, Li, Ce) of the 25 elements detected. For Li and Mn the differences between the mineral-rich particles within samples were similar to differences found between samples on a whole-coal basis. For Ca and Fe, the differences are attributed to different modes of occurrence, and for Ce, the differences are probably due to an irregular distribution of an inorganic phase. We conclude that the IMMA can be used to obtain semi-quantitative data that may provide insight into the distribution and mode of occurrence of some of the elements in coal. ?? 1984.

  16. The Mineral Content of U.S. Drinking and Municipal Water

    USDA-ARS?s Scientific Manuscript database

    Objective: The mineral composition of tap water may contribute significant amounts of some minerals to dietary intake. The USDA’s Nutrient Data Laboratory (NDL) conducted a study of the mineral content of residential tap water, to generate new current data for the USDA National Nutrient Database. ...

  17. Precise determination of water exchanges on a mineral surface

    SciTech Connect

    Stack, Andrew G.; Borreguero, Jose M.; Prisk, Timothy R.; Mamontov, Eugene; Wang, Hsiu-Wen

    2016-10-03

    Solvent exchanges on solid surfaces and dissolved ions are a fundamental property important for understanding chemical reactions, but the rates of fast exchanges are poorly constrained. In this paper, we probed the diffusional motions of water adsorbed onto nanoparticles of the mineral barite (BaSO4) using quasi-elastic neutron scattering (QENS) and classical molecular dynamics (MD) to reveal the complex dynamics of water exchange along mineral surfaces. QENS data as a function of temperature and momentum transfer (Q) were fit using scattering functions derived from MD trajectories. The simulations reproduce the dynamics measured in the experiments at ambient temperatures, but as temperature is lowered the simulations overestimate slower motions. Decomposition of the MD-computed QENS intensity into contributions from adsorbed and unbound water shows that the majority of the signal arises from adsorbed species, although the dynamics of unbound water cannot be dismissed. The mean residence times of water on each of the four surface sites present on the barite {001} were calculated using MD: at room temperature the low barium site is 194 ps, whereas the high barium site contains two distributions of motions at 84 and 2.5 ps. These contrast to 13 ps residence time on both sulfate sites, with an additional surface diffusion exchange of 66 ps. Surface exchanges are similar to those of the aqueous ions calculated using the same force field: Baaq2+ is 208 ps and SO4aq2- is 5.8 ps. Finally, this work demonstrates how MD can be a reliable method to deconvolute solvent exchange reactions when quantitatively validated by QENS measurements.

  18. Precise determination of water exchanges on a mineral surface

    DOE PAGES

    Stack, Andrew G.; Borreguero, Jose M.; Prisk, Timothy R.; ...

    2016-10-03

    Solvent exchanges on solid surfaces and dissolved ions are a fundamental property important for understanding chemical reactions, but the rates of fast exchanges are poorly constrained. In this paper, we probed the diffusional motions of water adsorbed onto nanoparticles of the mineral barite (BaSO4) using quasi-elastic neutron scattering (QENS) and classical molecular dynamics (MD) to reveal the complex dynamics of water exchange along mineral surfaces. QENS data as a function of temperature and momentum transfer (Q) were fit using scattering functions derived from MD trajectories. The simulations reproduce the dynamics measured in the experiments at ambient temperatures, but as temperaturemore » is lowered the simulations overestimate slower motions. Decomposition of the MD-computed QENS intensity into contributions from adsorbed and unbound water shows that the majority of the signal arises from adsorbed species, although the dynamics of unbound water cannot be dismissed. The mean residence times of water on each of the four surface sites present on the barite {001} were calculated using MD: at room temperature the low barium site is 194 ps, whereas the high barium site contains two distributions of motions at 84 and 2.5 ps. These contrast to 13 ps residence time on both sulfate sites, with an additional surface diffusion exchange of 66 ps. Surface exchanges are similar to those of the aqueous ions calculated using the same force field: Baaq2+ is 208 ps and SO4aq2- is 5.8 ps. Finally, this work demonstrates how MD can be a reliable method to deconvolute solvent exchange reactions when quantitatively validated by QENS measurements.« less

  19. Precise determination of water exchanges on a mineral surface

    SciTech Connect

    Stack, Andrew G.; Borreguero, Jose M.; Prisk, Timothy R.; Mamontov, Eugene; Wang, Hsiu-Wen

    2016-10-03

    Solvent exchanges on solid surfaces and dissolved ions are a fundamental property important for understanding chemical reactions, but the rates of fast exchanges are poorly constrained. In this paper, we probed the diffusional motions of water adsorbed onto nanoparticles of the mineral barite (BaSO4) using quasi-elastic neutron scattering (QENS) and classical molecular dynamics (MD) to reveal the complex dynamics of water exchange along mineral surfaces. QENS data as a function of temperature and momentum transfer (Q) were fit using scattering functions derived from MD trajectories. The simulations reproduce the dynamics measured in the experiments at ambient temperatures, but as temperature is lowered the simulations overestimate slower motions. Decomposition of the MD-computed QENS intensity into contributions from adsorbed and unbound water shows that the majority of the signal arises from adsorbed species, although the dynamics of unbound water cannot be dismissed. The mean residence times of water on each of the four surface sites present on the barite {001} were calculated using MD: at room temperature the low barium site is 194 ps, whereas the high barium site contains two distributions of motions at 84 and 2.5 ps. These contrast to 13 ps residence time on both sulfate sites, with an additional surface diffusion exchange of 66 ps. Surface exchanges are similar to those of the aqueous ions calculated using the same force field: Baaq2+ is 208 ps and SO4aq2- is 5.8 ps. Finally, this work demonstrates how MD can be a reliable method to deconvolute solvent exchange reactions when quantitatively validated by QENS measurements.

  20. Questa Baseline and Pre-Mining Ground-Water Quality Investigation. 13. Mineral Microscopy and Chemistry of Mined and Unmined Porphyry Molybdenum Mineralization Along the Red River, New Mexico: Implications for Ground- and Surface-Water Quality

    USGS Publications Warehouse

    Plumlee, Geoff; Lowers, Heather; Ludington, Steve; Koenig, Alan; Briggs, Paul

    2005-01-01

    This report is one in a series presenting results of an interdisciplinary U.S. Geological Survey (USGS) study of ground-water quality in the lower Red River watershed prior to open-pit and underground molybdenite mining at Molycorp's Questa mine. The stretch of the Red River watershed that extends from just upstream of the town of Red River to just above the town of Questa includes several mineralized areas in addition to the one mined by Molycorp. Natural erosion and weathering of pyrite-rich rocks in the mineralized areas has created a series of erosional scars along this stretch of the Red River that contribute acidic waters, as well as mineralized alluvial material and sediments, to the river. The overall goal of the USGS study is to infer the pre-mining ground-water quality at the Molycorp mine site. An integrated geologic, hydrologic, and geochemical model for ground water in the mineralized but unmined Straight Creek drainage is being used as an analogue for the geologic, geochemical, and hydrologic conditions that influenced ground-water quality and quantity at the mine site prior to mining. This report summarizes results of reconnaissance mineralogical and chemical characterization studies of rock samples collected from the various scars and the Molycorp open pit, and of drill cuttings or drill core from bedrock beneath the scars and adjacent debris fans.

  1. Evaporation pathways and solubility of Fe-Ca-Mg-rich salts in acid sulfate waters. A model for Martian ancient surface waters

    NASA Astrophysics Data System (ADS)

    Sobron, P.; Sansano, A.; Sanz, A.

    2011-12-01

    It has been suggested that Martian iron rich sulfate and oxyhydroxide deposits were precipitated from meltwaters[1], thought to have been acidic. Alternatively, iron(III)-rich hydrated sulfates from oxidized sulfides observed in the outcrops may occur as a result of long-term reactions[4]. Recent analysis of Martian materials support that they come from hydrothermal activity[5], which is highly consistent with the observation of enriched in iron, magnesium, silicon and calcium materials[2]. Independently of the nature of the sulfate formation paths on Mars, characterizing the interaction of saline mineral assemblages and the aqueous solutions necessary for their formation is significance in assessing Mars' hydrological and mineralogical evolution history. In this work we have characterized a layered deposit(Fig. 1) formed from the evaporation of stream water from Rio Tinto, Spain, a relevant Mars analog site[6]. The minerals detected in-situ, confirmed later via high resolution laser Raman spectroscopy in the laboratory, are, from bottom to top: (A) mixture of goethite and probably schwermannite; (B) goethite; (C) mixture of gypsum and highly hydrated ferric sulfates; (D) hexahydrite; and (E) mixture of hexahydrite and epsomite. What we observed in this deposit is the precipitation of relatively insoluble hydroxysulfates (schwermannite admixed with goethite), followed by the precipitation of other relatively insoluble ferric and gypsum, and finally the occurrence of the very soluble Mg-sulfates. We are currently investigating the correlation of this evaporite deposit with the hydrochemistry of the stream water from which it evaporated through dedicated laboratory analysis of natural mineral and aqueous samples. A solubility model including the minerals identified in this work will be reported at the conference. The study of this particular acid sulfate system (with analog mineralogy to that observed in Meridiani[3]) provides constraints on the evaporation pathways

  2. Climate-change-driven deterioration of water quality in a mineralized watershed

    USGS Publications Warehouse

    Todd, Andrew; Manning, Andrew H.; Verplanck, Philip L.; Crouch, Caitlin; McKnight, Diane M.; Dunham, Ryan

    2012-01-01

    A unique 30-year streamwater chemistry data set from a mineralized alpine watershed with naturally acidic, metal-rich water displays dissolved concentrations of Zn and other metals of ecological concern increasing by 100–400% (400–2000 μg/L) during low-flow months, when metal concentrations are highest. SO4 and other major ions show similar increases. A lack of natural or anthropogenic land disturbances in the watershed during the study period suggests that climate change is the underlying cause. Local mean annual and mean summer air temperatures have increased at a rate of 0.2–1.2 °C/decade since the 1980s. Other climatic and hydrologic indices, including stream discharge during low-flow months, do not display statistically significant trends. Consideration of potential specific causal mechanisms driven by rising temperatures suggests that melting of permafrost and falling water tables (from decreased recharge) are probable explanations for the increasing concentrations. The prospect of future widespread increases in dissolved solutes from mineralized watersheds is concerning given likely negative impacts on downstream ecosystems and water resources, and complications created for the establishment of attainable remediation objectives at mine sites.

  3. PGE mineralization in the late Archaean iron-rich mafic-ultramafic Hanumalapur Complex, Karnataka, India

    NASA Astrophysics Data System (ADS)

    Alapieti, T. T.; Devaraju, T. C.; Kaukonen, R. J.

    2008-01-01

    An unusually thick sulfur-poor mineralized zone enriched in platinum-group elements (PGE) is described in the Hanumalapur Complex, Shimoga District, Karnataka State, India. This promising occurrence was discovered in the early 1990s and the best samples at the time of writing have yielded Pt+Pd concentrations in excess of six ppm. The western part of the area concerned belongs to the late Archaean Dharwar Super Group (3000-2500 Ma), while the eastern part is occupied predominantly by a granite-gneiss terrain ˜3000 Ma in age. Ten mafic-ultramafic complexes which host interesting vanadium-bearing titanomagnetite occurrences are encountered in the western part, one of which is the Hanumalapur Complex. The PGE mineralized zone in this complex may be divided into four mineralogically distinctive types, which are, in descending order of PGE content: 1) a silicate-hosted Pd type, 2) a silicate-hosted Pt type, 3) a base-metal sulfide-hosted Pd type, and 4) an oxide-hosted PGE type. The genesis of the mineralization is somewhat unclear at this point of investigation, especially because of complete re-crystallization, but the evidence gathered so far suggests something different than a traditional orthomagmatic model requiring magma mixing processes and resulting in sulfide immiscibility. This is backed-up by the general lack of base metal sulfides in favor of chromite, although pure chlorite-amphibole and chlorite-albite-epidote-amphibole rocks may contain significant PGE concentrations regardless of the amount of chromite. The PGM textures show little evidence of hydrothermal alteration and remobilization, but the PGE mineralogy itself displays some characteristics of fluid action, as it seems that there are some OH-bearing Pt and Pd minerals present.

  4. Mineralogy and metals speciation in Mo rich mineral sludges generated at a metal recycling plant.

    PubMed

    Vemic, M; Bordas, F; Guibaud, G; Joussein, E; Labanowski, J; Lens, P N L; van Hullebusch, E D

    2015-04-01

    In France, more than 250 million metric tons of sludges need to be treated each year. These sludges are either dumped on the landfills or reused as secondary resources in order to preserve natural resources. A large portions of these sludges are mineral sludges, originating from metal recycling plants. In order to estimate their metal recovery potential, these mineral sludges were characterized. Four types of mineral sludge samples were collected from a metal recycling plant (3 from the recycling plant storage areas (bulk storage, barrel storage and storage shed) and 1 from the collection basin). The sludges were characterized, wherein the Mo, Ni, Cr, Co, Zn and W content and speciation were quantified. The samples had pH values between 5.9 and 10.3 with organic matter contents varying between 6.3% (storage shed) and 29.5% (bulk storage) (loss on ignition at 500 °C). Based on their leaching properties, the four mineral sludge samples (in the case of Mo) and the bulk storage sludge (in the case of Ni and Zn) were classified as potentially hazardous regarding the EN 12457-1 and EN 12457-2 method. Mineralogical results reveal that both bulk storage and the storage shed give the highest contributions to the metal content of the collection basin sample. Sequential extraction of the collection basin samples indicated that Mo is bound to the oxidizable and residual fraction, while Ni, Cr and Co were bound to the residual fraction, and Zn to the soluble acid fraction, respectively. W tends to be equally distributed among all extracted fractions. A strong correlation existed between Mo and Co, as well as between Ni, Zn and Cr, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Species Richness Patterns and Water-Energy Dynamics in the Drylands of Northwest China

    PubMed Central

    Zerbe, Stefan; Abdusalih, Nurbay; Tang, Zhiyao; Ma, Ming; Yin, Linke; Mohammat, Anwar; Han, Wenxuan; Fang, Jingyun

    2013-01-01

    Dryland ecosystems are highly vulnerable to climatic and land-use changes, while the mechanisms underlying patterns of dryland species richness are still elusive. With distributions of 3637 native vascular plants, 154 mammals, and 425 birds in Xinjiang, China, we tested the water-energy dynamics hypothesis for species richness patterns in Central Asian drylands. Our results supported the water-energy dynamics hypothesis. We found that species richness of all three groups was a hump-shaped function of energy availability, but a linear function of water availability. We further found that water availability had stronger effects on plant richness, but weaker effects on vertebrate richness than energy availability. We conducted piecewise linear regressions to detect the breakpoints in the relationship between species richness and potential evapotranspiration which divided Xinjiang into low and high energy regions. The concordance between mammal and plant richness was stronger in high than in low energy regions, which was opposite to that between birds and plants. Plant richness had stronger effects than climate on mammal richness regardless of energy levels, but on bird richness only in high energy regions. The changes in the concordance between vertebrate and plant richness along the climatic gradient suggest that cautions are needed when using concordance between taxa in conservation planning. PMID:23840472

  6. Miocene karsts and associated Fe-Zn-rich minerals in Aïn Khamouda (Central Tunisia)

    NASA Astrophysics Data System (ADS)

    Bruyère, Delphine; De Putter, Thierry; Decrée, Sophie; Dupuis, Christian; Fuchs, Yves; Jamoussi, Fakher; Perruchot, Alain; Arbey, François

    2010-04-01

    The karstic system in Aïn Khamouda (Central Tunisia) has been briefly exploited for its Pb-Zn mineralization in the first 20 years of the 20th century. Since then, little work has been dedicated to this system, apart from some detailed mineralogical studies. Here we place the Aïn Khamouda karsts in their regional geological framework, which is marked by the presence of large basinal-scale MVT Pb-Zn deposit (e.g. at the Djebel Chambi, ˜10 km to the south of the study area). The karsts are deepening along faults in Turonian-Coniacian limestone (the Douleb Fm), under a Tortonian sandy cover (the Beglia sand) that is withdrawn within the karst infilling. This makes a Tortonian or post-Tortonian age for the karstification likely, as for other comparable karsts located to the northwest of the study area, in the Algerian Constantinois. In Aïn Khamouda, the mineralization sequence is a variant of the classical gypsum → iron oxide → silicates sequence, with some specific characteristics inherited from the regional Pb-Zn background: a 7 Å Zn-clay (berthierine) has been identified, mixed with halloysite, and calamine minerals (hemimorphite, smithsonite) are found in voids and fractures within the karstic system. Undersaturated meteoric fluids flowing downward meet pre-existing or recently formed base metals sulphides, in the subsurface. In the Aïn Khamouda area, the downward deepening of karsts along major regional faults brings meteoric fluids in contact with base metal sulphides. The oxidation of base metals sulphides results in the release of sulphuric acid, which also accounts for an increased karstification. Late processes occurring in the Beglia sand appear to be complex, though somewhat anecdotic in terms of volumes. They essentially consist in recurring cycles of reduction (among which biochemical reduction of galena) and oxidation (including the formation of jarosite). The study area offers the opportunity to investigate (1) a karstic system where deepening

  7. [Biotests for mineral waters with natural and recombinant luminescent microorganisms].

    PubMed

    Deriabin, D G; Aleshina, E S

    2008-01-01

    We have developed methods of biotesting mineral waters involving use of natural or recombinant luminescent strains with elimination of the effect of salt concentration and pH. To overcome the adverse effect of high salt concentrations, disguising the action of chemical pollutants, a special method of mineral water sample preparation is proposed. In this method, the marine luminescent bacterium Photobacterium phosphoreum (Microbiosensor B17 677f) is used as a test object. Samples to be analyzed are supplemented with NaCl depending on their natural salt concentration to adjust it to 3 g/l. Another approach, more universal and efficient, involves pH adjustment in the samples to 7.5. This value is suitable for application of both Microbiosensor B17 677f and the recombinant Escherichia coli strain harboring the cloned lux operon of P. leiognathi (Ecolum 9). It has been shown that this treatment, retaining the natural luminescence level of the bacterial biosensors, allows bioluminescent detection of exogenous pollutants added to the samples, including benzene and Cr(VI).

  8. Iron oxide mineral-water interface reactions studied by AFM

    SciTech Connect

    Hawley, M.E.; Rogers, P.S.Z.

    1994-07-01

    Natural iron mineral surfaces have been examined in air by atomic force (AFM) and scanning tunneling (STM) microscopies. A number of different surface features were found to be characteristic of the native surface. Even surfaces freshly exposed by crushing larger crystals were found to have a pebbly surface texture caused by the presence of thin coatings of what might be surface precipitates. This finding is interpreted as evidence for previous exposure to water, probably through an extensive network of microfractures. Surface reactions on the goethite crystals were studied by AFM at size resolutions ranging from microns to atomic resolution before, during, and after reaction with distilled water and 0.lN HCl. Immediate and extensive surface reconfiguration occurred on contact with water. In one case, after equilibration with water for 3 days, surface reprecipitation, etching and pitting were observed. Atomic resolution images taken under water were found to be disordered. The result of surface reaction was generally to increase the surface area substantially through the extension of surface platelet arrays, present prior to reaction. This work is being done in support of the site characterization project at Yucca Mountain.

  9. The geochemistry of water near a surficial organic-rich uranium deposit, northeastern Washington State, U.S.A.

    USGS Publications Warehouse

    Zielinski, R.A.; Otton, J.K.; Wanty, R.B.; Pierson, C.T.

    1987-01-01

    The chemistry of three stream, three spring and six near-surface waters in the vicinity of a Holocene organic-rich uranium deposit is described, with particular emphasis on the chemistry of U. Results characterize the solution behavior of uranium as U-bearing water interacts with relatively undecomposed, surficial organic matter. Of the measured major and trace chemical species, only U is consistently highly enriched (17-318 ppb) relative to reported values for regional waters, or to literature values for waters in largely granitic terrains. R-mode factor analysis of the chemical data suggests that most U is present in a soluble form, but that some U is also associated with fine suspended particulates of clay, organic matter, or hydrous oxides. Calculations that apply thermodynamic data to predict U speciation in solution indicate the relative importance of uranyl carbonate and uranyl phosphate complexes. Analysis of more finely filtered samples (0.05 ??m vs. 0.45 ??m), and direct radiographic observations using fission-track detectors suspended in the waters indicate the presence of some uraniferous particulate matter. Application of existing thermodynamic data for uranous- and uranyl-bearing minerals indicates that all waters are undersaturated with U minerals as long as ambient Eh ??? +0.1 v. If coexisting surface and near-surface waters are sufficiently oxidizing, initial fixation of U in the deposit should be by a mechanism of adsorption. Alternatively, more reducing conditions may prevail in deeper pore waters of the organic-rich host sediments, perhaps leading to direct precipitation or diagenetic formation of U4+ minerals. A 234U 238U alpha activity ratio of 1.08 ?? 0.02 in a spring issuing from a hillslope above the deposit suggests a relatively soluble source of U. In contrast, higher activity ratios of 234U 238U (??? 1.3) in waters in contact with the uraniferous valley-fill sediments suggest differences in the nature of interaction between groundwater

  10. Microbial composition in microcosms amended with natural and mineral fertilizers under different water regimes

    NASA Astrophysics Data System (ADS)

    Brad, Traian; Chiriac, Cecilia; Szekeres, Edina; Coman, Cristian; Rudi, Knut; Sandor, Mignon

    2017-04-01

    Twenty microcosm enclosures containing two types of soil (i.e. a rich Chernozemic and a poorer soil) were fertilized with mineral (NPK-complex) and organic (Gülle, manure and a green fertilizer) materials and placed under dry and wet water regimes. After 10, 20 and 30 days of the experiment, soil samples were analyzed for the structure and composition of microbial communities using next generation sequencing techniques (Illumina) and statistical analysis. The differences between bacteria communities in different soil types, and in different fertilization and hydric treatments were analyzed using quantitative phylogenetic distances and the ANOSIM test. The two types of soil especially selected for the structure of microbial communities, while moisture and the type of fertilizer appeared to have a smaller influence on microbial diversity in microcosms. The alpha-diversity indices (species richness, evenness and phylogenetic diversity) had higher values for the poorer soil compared to the rich Chernozemic soil. For both soil types, the highest bacteria diversity values were obtained after fertilization with manure. The microbial communities in the analyzed soils were complex and dominated by sequences belonging to Actinobacteria, Proteobacteria, Acidobacteria and Firmicutes.

  11. Water emission from the chemically rich outflow L1157

    NASA Astrophysics Data System (ADS)

    Vasta, M.; Codella, C.; Lorenzani, A.; Santangelo, G.; Nisini, B.; Giannini, T.; Tafalla, M.; Liseau, R.; van Dishoeck, E. F.; Kristensen, L.

    2012-01-01

    Context. In the framework of the Herschel-WISH key program, several ortho-H2O and para-H2O emission lines, in the frequency range from 500 to 1700 GHz, were observed with the HIFI instrument in two bow-shock regions (B2 and R) of the L1157 cloud, which hosts what is considered to be the prototypical chemically-rich outflow. Aims: Our primary aim is to analyse water emission lines as a diagnostic of the physical conditions in the blue (B2) and red-shifted (R) lobes to compare the excitation conditions. Methods: For this purpose, we ran the non-LTE RADEX model for a plane-parallel geometry to constrain the physical parameters (Tkin, NH2O and nH2) of the water emission lines detected. Results: A total of 5 ortho- and para-H216O plus one o-H218O transitions were observed in B2 and R with a wide range of excitation energies (27 K ≤ Eu ≤ 215 K). The H2O spectra, observed in the two shocked regions, show that the H2O profiles differ markedly in the two regions. In particular, at the bow-shock R, we observed broad (~30 km s-1 with respect to the ambient velocity) red-shifted wings where lines at different excitation peak at different red-shifted velocities. The B2 spectra are associated with a narrower velocity range (~6 km s-1), peaking at the systemic velocity. The excitation analysis suggests, for B2, low values of column density NH2O ≤ 5 × 1013 cm-2, a density range of 105 ≤ nH2 ≤ 107 cm-3, and warm temperatures (≥300 K). The presence of the broad red-shifted wings and multiple peaks in the spectra of the R region, prompted the modelling of two components. High velocities are associated with relatively low temperatures (~100 K), NH2O ≃ 5 × 1012-5 × 1013 cm-2 and densities nH2 ≃ 106-108 cm-3. Lower velocities are associated with higher excitation conditions with Tkin ≥ 300 K, very dense gas (nH2 ~ 108 cm-3) and low column density (NH2O < 5 × 1013 cm-2). Conclusions: The overall analysis suggests that the emission in B2 comes from an extended (

  12. Uranium-rich accessory minerals in the peraluminous and perphosphorous Belvís de Monroy pluton (Iberian Variscan belt)

    NASA Astrophysics Data System (ADS)

    Pérez-Soba, Cecilia; Villaseca, Carlos; Orejana, David; Jeffries, Teresa

    2014-05-01

    The strongly peraluminous, perphosphorous (<0.85 wt% P2O5) and low-Ca granites from the Belvís de Monroy pluton contain the most U-rich monazite-(Ce) and xenotime known in igneous rocks. Along with these accessory minerals, P-rich zircon occurs, reaching uncommon compositions particularly in the more fractionated units of this zoned pluton. Monazite displays a wide compositional variation of UO2 (<23.13 wt%) and ThO2 (<19.58 wt%), positively correlated with Ca, Si, P, Y and REE. Xenotime shows a high UO2 content (2.37-13.34 wt%) with parallel increases of LREE, Ca and Si. Zircon contains comparatively much lower UO2 (<1.53 wt%) but high P2O5 (<14.91 wt%), Al2O3 (<6.96 wt%), FeO (<2.93 wt%) and CaO (<2.24 wt%) contents. The main mechanism of incorporating large U and Th amounts in studied monazite and U in xenotime is the cheralite-type [(Th,U)4+ + Ca2+ = 2(Y,REE)3+] substitution. Zircon requires several coupled mechanisms to charge balance the P substitution, resulting in non-stoichiometric compositions with low analytical totals. Compositional variations in the studied accessory phases indicate that the substitution mechanisms during crystal growth depend on the availability of non-formula elements. The strong P-rich character of the studied granites increases monazite crystallization, triggering a progressive impoverishment in Th and LREE in the residual melts, and consequently increasing extraordinarily the U content in monazite and xenotime. This is in marked contrast to other peraluminous (I-type or P-poor S-type) granite series. The P-rich and low-Ca peraluminous melt inhibits uraninite crystallization, so contributing to the U availability for monazite and xenotime.

  13. A petrogenetic model for the comagmatic origin of chassignites and nakhlites: Inferences from chlorine-rich minerals, petrology, and geochemistry

    NASA Astrophysics Data System (ADS)

    McCubbin, Francis M.; Elardo, Stephen M.; Shearer, Charles K.; Smirnov, Alexander; Hauri, Erik H.; Draper, David S.

    2013-05-01

    Twelve samples belonging to the chassignite and nakhlite subgroups of Martian meteorites were investigated using a variety of micro-beam analytical techniques to gain insight into the petrogenesis of these two meteorite classes. There are a striking number of geochemical similarities between the chassignites and nakhlites, including mineralogy and petrology, crystallization age, cosmic-ray exposure age, and radiogenic isotopic compositions. However, there are also geochemical differences, namely in trace element systematics of pyroxenes, that have led some authors to conclude that the nakhlites are comagmatic with each other, but not comagmatic with the chassignites. On the basis of data presented here, we propose a model in which these differences can be reconciled by the addition of an exogenous Cl-rich fluid to the chassignite-nakhlite magma body shortly after the formation of the cumulate horizon that was sampled by the Chassigny meteorite. This model is supported by the textural and chemical associations of the volatile-bearing minerals apatite, amphibole, and biotite, which record a history starting with the addition of a Cl- and LREE-enriched fluid to the magma body. As the magma continued to crystallize, it eventually reached chloride saturation and degassed a Cl-rich fluid phase. Depending on the provenance of the Cl-rich fluid, this model could explain how the chassignites and nakhlites originated from an LREE-depleted source, yet all exhibit LREE-enriched bulk-rock patterns. Additionally, the model explains the range in oxygen fugacity that is recorded by the chassignites and nakhlites because eventual exsolution and loss of Cl-rich fluid phases near the end of crystallization of the nakhlite sequence leads to auto-oxidation of the magma body due to the preferential partitioning of Fe2+ into the fluid phase.

  14. Recycling of solid waste rich in organic nitrogen from leather industry: mineral nutrition of rice plants.

    PubMed

    Nogueira, Francisco G E; Castro, Isabela A; Bastos, Ana R R; Souza, Guilherme A; de Carvalho, Janice G; Oliveira, Luiz C A

    2011-02-28

    The leather industry produces a large quantity of solid waste (wet blue leather), which contains a high amount of chromium. After its removal from wet blue leather, a solid collagenic material is recovered, containing high nitrogen levels, which can be used as a nitrogen source in agriculture. In order to take more advantage of the collagen, it was enriched with mineral P and K in order to produce NPK formulations. The objective was also to evaluate the efficiency of such formulations as a nutrient supply for rice plants in an Oxisoil, under greenhouse conditions. The application of PK enriched-collagen formulations resulted in N contents in the vegetative parts and grains of rice plants which were equivalent or superior to those obtained with urea and commercial NPK formulations. Copyright © 2010 Elsevier B.V. All rights reserved.

  15. Lettuce facing microcystins-rich irrigation water at different developmental stages: Effects on plant performance and microcystins bioaccumulation.

    PubMed

    Levizou, Efi; Statiris, George; Papadimitriou, Theodoti; Laspidou, Chrysi S; Kormas, Konstantinos Ar

    2017-09-01

    This study investigated the microcystins (MCs)-rich irrigation water effect on lettuce of different developmental stages, i.e. during a two months period, covering the whole period from seed germination to harvest at marketable size of the plant. We followed four lettuce plant groups receiving MCs-rich water (1.81μgl(-1) of dissolved MCs), originating from the Karla Reservoir, central Greece: 1) from seeds, 2) the cotyledon, 3) two true leaves and 4) four true leaves stages, all of which were compared to control plants that received tap water. Lettuce growth, photosynthetic performance, biochemical and mineral characteristics, as well as MCs accumulation in leaves, roots and soil were measured. The overall performance of lettuce at various developmental stages pointed to increased tolerance since growth showed minor alterations and non-enzymatic antioxidants remained unaffected. Plants receiving MCs-rich water from the seed stage exhibited higher photosynthetic capacity, chlorophylls and leaf nitrogen content. Nevertheless, considerable MCs accumulation in various plant tissues occurred. The earlier in their development lettuce plants started receiving MCs-rich water, the more MCs they accumulated: roots and leaves of plants exposed to MCs-rich water from seeds and cotyledons stage exhibited doubled MCs concentrations compared to respective tissues of the 4 Leaves group. Furthermore, roots accumulated significantly higher MCs amounts than leaves of the same plant group. Concerning human health risk, the Estimated Daily Intake values (EDI) of Seed and Cotyledon groups leaves exceeded Tolerable Daily Intake (TDI) by a factor of 6, while 2 Leaves and 4 Leaves groups exceeded TDI by a factor of 4.4 and 2.4 respectively. Our results indicate that irrigation of lettuce with MCs-rich water may constitute a serious public health risk, especially when contaminated water is received from the very early developmental stages (seed and cotyledon). Finally, results obtained for

  16. Large, rich countries dominate the virtual water trade

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2014-07-01

    Making food requires water, and lots of it. From crops to livestock, water is needed at every step, but this water, especially when pumped from the ground or drawn from a river, is not an unlimited resource. Water drawn to irrigate a farm is water not used for something else, and when food is exported, then, in a sense, some of that region's water supply goes with it. Researchers have dubbed the global exchange of water embedded in agricultural commodities the "virtual water trade." Each year, roughly 2 to 3 trillion cubic meters of water enter the virtual water trade—more than is used as water itself for drinking, residential, and industrial uses.

  17. Survival of allochthonous bacteria in still mineral water bottled in polyvinyl chloride (PVC) and glass.

    PubMed

    Moreira, L; Agostinho, P; Morais, P V; da Costa, M S

    1994-09-01

    The mortality of Escherichia coli, Enterobacter cloacae, Klebsiella pneumoniae and Pseudomonas aeruginosa, based on the culturability of these bacteria, was assessed in non-carbonated mineral water, bottled in polyvinyl chloride (PVC) containing the indigenous flora, sterile mineral water bottled in PVC, sterile mineral water in glass containers, and sterile tap water in glass containers. There was a general decrease in the culturability of these organisms in the four test waters, except that Ps. aeruginosa grew in sterile tap water. Escherichia coli and Kl. pneumoniae had the highest mortality rates under the conditions tested, while Ent. cloacae had a very low and constant mortality rate that would have resulted in the persistence of this organism in mineral water for a long period of time. After a sharp initial decrease in culturability, Ps. aeruginosa also had a very low mortality rate in mineral water bottled in PVC.

  18. Oxygen isotope fractionation between hydroxide minerals and water

    NASA Astrophysics Data System (ADS)

    Zheng, Yong-Fei

    The modified increment method has been applied to the calculation of oxygen isotope fractionation factors for hydroxide minerals. The results suggest the following sequence of 18O-enrichment in the common hydroxides: limonite > gibbsite > goethite > brucite > diaspore. The hydroxides are significantly enriched in 18O relative to the corresponding oxides. The sequence of 18O-enrichment in the hydroxides and oxides of trivalent cations is as follows: M(OH)3 > MO(OH) > M2O3. There are also considerable fractionations within the polymorphos of Al(OH)3. The internally consistent fractionation factors for hydroxide-water systems are obtained for the temperature range of 0 to 1200 °C, which are comparable with the data derived from synthesis experiments and natural samples at surficial temperatures. Temperature dependence of oxygen isotope fractionations between goethite, gibbsite, boehmite and diaspore and water are significant enough for the purpose of geothermometry. Thus the hydroxide-water pairs hold great promise of serving as reliable paleothermometers in surficial geological environments.

  19. Sulphurous mineral water oral therapy: effects on erythrocyte metabolism.

    PubMed

    Albertini, Maria Cristina; Teodori, Laura; Accorsi, Augusto; Soukri, Abdelaziz; Campanella, Luigi; Baldoni, Francesco; Dachà, Marina

    2008-10-01

    The ingestion of water containing hydrogen sulphide (H(2)S) is common in spring sulphurous mineral water (SMW) therapy. We hypothesized that observed detrimental effects are related to the alteration of erythrocytes metabolism caused by H(2)S. To verify our hypothesis, we treated 20 healthy volunteers with SMW and evidenced an increase of methemoglobin concentration, an inhibition of both erythrocyte glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and glucose-6-phosphate dehydrogenase (G6PDH) activities. To investigate the mechanism of H(2)S effect on GAPDH activity, an in vitro study was performed by incubating both erythrocytes from 12 healthy volunteers and purified GAPDH with buffered [(35)S]-H(2)S labelled sulphurous water. The interaction between H(2)S and NAD(+)(H), was also investigated. The results indicate that a direct reaction between GAPDH and H(2)S does not occur and the observed decrease of GAPDH activity is to ascribe to the reaction between H(2)S and NAD(+)(H). This may lead to GAPDH inhibition by two ways, namely (i) cellular NAD(+)(H) reduced availability and (ii) catalytic site blockage. In conclusion, our results show that among the detrimental effects of SMW administration are erythrocyte GAPDH and G6PDH activity inhibition and increased methemoglobin concentration. A mechanism to explain the occurrence of these biochemical events is also proposed.

  20. The composition of coexisting jarosite-group minerals and water from the Richmond mine, Iron Mountain, California

    USGS Publications Warehouse

    Jamieson, H.E.; Robinson, C.; Alpers, C.N.; Nordstrom, D.K.; Poustovetov, A.; Lowers, H.A.

    2005-01-01

    Jarosite-group minerals accumulate in the form of stalactites and fine-grained mud on massive pyrite in the D drift of the Richmond mine, Iron Mountain, California. Water samples were collected by placing beakers under the dripping stalactites and by extracting pore water from the mud using a centrifuge. The water is rich in Fe3+ and SO42-, with a pH of approximately 2.1, which is significantly higher than the extremely acidic waters found elsewhere in the mine. Electron-microprobe analysis and X-ray mapping indicate that the small crystals (<10 ??m in diameter) are compositionally zoned with respect to Na and K, and include hydronium jarosite corresponding to the formula (H3O)0.6K0.3 Na0.1Fe3+3 (SO4)2(OH)6. The proton-microprobe analyses indicate that the jarosite-group minerals contain significant amounts of As, Pb and Zn, and minor levels of Bi, Rb, Sb, Se, Sn and Sr. Speciation modeling indicates that the drip waters are supersaturated with respect to jarosite-group minerals. The expected range in composition of jarosite-group solid-solution in equilibrium with the pore water extracted from the mud was found to be consistent with the observed range in composition.

  1. Submarine weathering of silicate minerals and the extent of pore water freshening at active continental margins

    NASA Astrophysics Data System (ADS)

    Scholz, Florian; Hensen, Christian; Schmidt, Mark; Geersen, Jacob

    2013-01-01

    In order to investigate how submarine weathering processes may affect the water balance of sediments at convergent plate margins, six sediment cores were retrieved off Central Chile at water depth between ˜800 and 4000 m. The sediment solid phase was analyzed for its major element composition and the pore fluids were analyzed for dissolved sulfate, sulfide, total alkalinity, major cations, chloride, bromide, iodide, hydrocarbons as well as the carbon isotopic composition of methane. Because of negligible weathering on land, surface sediments off Central Chile are rich in reactive silicate minerals and have a bulk composition similar to volcanic rocks in the adjacent Andes. Deep-sourced fluxes of alkalinity, cations and chloride indicate that silicate minerals are subject to weathering in the forearc during burial. Comparison of deep-sourced signals with data from nearby Ocean Drilling Program Sites reveals two different types of weathering processes: In shallow (tens of meters), methanic sediments of slope basins with high organic carbon burial rates, reactive silicate minerals undergo incongruent dissolution through reaction with CO2 from methanogenesis. At greater burial depth (hundreds of meters), silicate weathering is dominated by authigenic smectite formation. This process is accompanied by uptake of water into the clay interlayers thus leading to elevated salinities in the surrounding pore water. Deep-seated smectite formation is more widespread than shallow silicate dissolution, as it is independent from the availability of CO2 from methanogenesis. Although solute transport is not focused enough to form cold seeps in the proper sense, tectonically induced, diffuse fluid flow transfers the deep-seated signal of smectite formation into the shallow sediments. The temperature-controlled conversion of smectite to illite is considered the most important dehydration process in marine forearc environments (depth of kilometers). However, in agreement with other

  2. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet

    PubMed Central

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-01

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity. PMID:28098768

  3. Preventive Effects of Drinking Hydrogen-Rich Water on Gingival Oxidative Stress and Alveolar Bone Resorption in Rats Fed a High-Fat Diet.

    PubMed

    Yoneda, Toshiki; Tomofuji, Takaaki; Kunitomo, Muneyoshi; Ekuni, Daisuke; Irie, Koichiro; Azuma, Tetsuji; Machida, Tatsuya; Miyai, Hisataka; Fujimori, Kouhei; Morita, Manabu

    2017-01-13

    Obesity induces gingival oxidative stress, which is involved in the progression of alveolar bone resorption. The antioxidant effect of hydrogen-rich water may attenuate gingival oxidative stress and prevent alveolar bone resorption in cases of obesity. We examined whether hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption in obese rats fed a high-fat diet. Male Fischer 344 rats (n = 18) were divided into three groups of six rats each: a control group (fed a regular diet and drinking distilled water) and two experimental groups (fed a high-fat diet and drinking distilled water or hydrogen-rich water). The level of 8-hydroxydeoxyguanosine was determined to evaluate oxidative stress. The bone mineral density of the alveolar bone was analyzed by micro-computerized tomography. Obese rats, induced by a high-fat diet, showed a higher gingival level of 8-hydroxydeoxyguanosine and a lower level of alveolar bone density compared to the control group. Drinking hydrogen-rich water suppressed body weight gain, lowered gingival level of 8-hydroxydeoxyguanosine, and reduced alveolar bone resorption in rats on a high-fat diet. The results indicate that hydrogen-rich water could suppress gingival oxidative stress and alveolar bone resorption by limiting obesity.

  4. IMMOBILIZATION OF HEAVY METALS IN SOILS AND WATER BY A MANGANESE MINERAL

    EPA Science Inventory

    A synthesized Mn mineral used in study on adsorption of heavy metals from water has shown a great adsorption capability for Pb, Cu, Cd, Co, Ni and Zn on this mineral over a pH range from 2 to 8. The retention of Pb on this mineral was as high as 10% of its weight. Application of ...

  5. Evaluation of Water-Mineral Interaction Using Microfluidic Tests with Thin Sections

    NASA Astrophysics Data System (ADS)

    Oh, Y. S.; Ryu, J. H.; Koh, Y. K.; Jo, H. Y.

    2014-12-01

    For the geological disposal of radioactive wastes, geological settings and groundwater conditions are significantly important because of their effects on a radionuclide migration. One of the preferred host rocks for the radioactive waste disposal is crystalline rock. Fractures in crystalline rocks are main fluid pathways. Groundwater reacts with fracture filling minerals in fracture zones, resulting in physicochemical changes in the minerals and groundwater. In this study, fracture filling mineral-groundwater interactions were investigated by conducting microfluidic tests using thin sections at various conditions (i.e., fluid chemistry and flow rate). Groundwater and rock core samples collected from the KAERI Underground Research Tunnel (KURT) located in the Korea Atomic Energy Research Institute (KAERI) were used in this study. Dominant bedrock is two-mica granite, which contains both biotite and muscovite. Secondary minerals (e.g., chlorite, calcite and clay minerals) occur in fracture and alteration zones. In nature, water-mineral interactions generally take long time. Microfluidic tests were conducted to simulate water-mineral interactions in shorter time with smaller scale. Thin sections of fracture filling minerals, minerals from alteration zones, and natural and synthetic groundwater samples were used for the microfluidic tests. Results showed that water-mineral interactions at various conditions caused changes in groundwater chemistry, dissolution of minerals, precipitation of secondary minerals, and formation of colloids, which can affect radionuclide migration. In addition, the fluid chemistry and flow rate affected characteristics of water-rock interactions.

  6. Permeability, porosity, and mineral surface area changes in basalt cores induced by reactive transport of CO2-rich brine

    NASA Astrophysics Data System (ADS)

    Luhmann, Andrew J.; Tutolo, Benjamin M.; Bagley, Brian C.; Mildner, David F. R.; Seyfried, William E.; Saar, Martin O.

    2017-03-01

    Four reactive flow-through laboratory experiments (two each at 0.1 mL/min and 0.01 mL/min flow rates) at 150°C and 150 bar (15 MPa) are conducted on intact basalt cores to assess changes in porosity, permeability, and surface area caused by CO2-rich fluid-rock interaction. Permeability decreases slightly during the lower flow rate experiments and increases during the higher flow rate experiments. At the higher flow rate, core permeability increases by more than one order of magnitude in one experiment and less than a factor of two in the other due to differences in preexisting flow path structure. X-ray computed tomography (XRCT) scans of pre- and post-experiment cores identify both mineral dissolution and secondary mineralization, with a net decrease in XRCT porosity of ˜0.7%-0.8% for the larger pores in all four cores. (Ultra) small-angle neutron scattering ((U)SANS) data sets indicate an increase in both (U)SANS porosity and specific surface area (SSA) over the ˜1 nm to 10 µm scale range in post-experiment basalt samples, with differences due to flow rate and reaction time. Net porosity increases from summing porosity changes from XRCT and (U)SANS analyses are consistent with core mass decreases. (U)SANS data suggest an overall preservation of the pore structure with no change in mineral surface roughness from reaction, and the pore structure is unique in comparison to previously published basalt analyses. Together, these data sets illustrate changes in physical parameters that arise due to fluid-basalt interaction in relatively low pH environments with elevated CO2 concentration, with significant implications for flow, transport, and reaction through geologic formations.

  7. Transformation of dense AgI into a silver-rich framework iodide using thiophenol as mineralizer

    SciTech Connect

    Zhang, Ren-Chun; Zhang, You-Juan; Yuan, Bai-Qing; Miao, Jun-Peng; Pei, Bao-Hua; Liu, Pan-Pan; Wang, Jun-Jie Zhang, Dao-Jun

    2014-12-15

    A new three-dimensional framework iodide, (DabcoH){sub 2}[(Dabco){sub 2}Ag{sub 14}I{sub 16}] (1), was solvothermal synthesized by transformation of dense AgI using p-methylthiophenol as mineralizer, and characterized by elemental analysis, single-crystal and powder X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry analysis, UV–vis diffuse reflectance spectroscopy and fluorescence spectroscopy. Compound 1 crystallizes in the trigonal space group R-3c, a=13.4452(2) Å, c=63.725(2) Å, V=9976.5(4) Å{sup 3}, Z=6. It features a 3D silver-rich [(Dabco){sub 2}Ag{sub 14}I{sub 16}]{sup 2−} anionic framework built up from corner-sharing of hybrid [(Dabco){sub 2}Ag{sub 14}I{sub 19}]{sup 5−} clusters, with protonated DabcoH{sup +} as counterions residing in the channels. UV–vis reflectance spectroscopy reveals the band gap of 1 is 3.3 eV. Compound 1 exhibits a strong photoluminescent emission band at 567 nm upon excitation at 489 nm. - Graphical abstract: A new 3-D iodoargentate was synthesized by transformation of dense AgI in I{sup −}-deficient system using thiophenol as mineralizer. - Highlights: • We have developed a new method to synthesize iodide using thiophenol as mineralizer. • A new 3D iodide, (DabcoH){sub 2}[(Dabco){sub 2}Ag{sub 14}I{sub 16}], was synthesized by transformation of dense AgI under solvothermal condition. • The compound features a 3D Ag–I framework with highest Ag/I ratio. • Compound 1 is a semiconductor with the band gap of 3.3 eV. • Compound 1 exhibits a strong photoluminescent emission band at 567 nm upon excitation at 489 nm.

  8. The effect of mineral bond strength and adsorbed water on fault gouge frictional strength

    USGS Publications Warehouse

    Morrow, C.A.; Moore, Diane E.; Lockner, D.A.

    2000-01-01

    Recent studies suggest that the tendency of many fault gouge minerals to take on adsorbed or interlayer water may strongly influence their frictional strength. To test this hypothesis, triaxial sliding experiments were conducted on 15 different single-mineral gouges with various water-adsorbing affinities. Vacuum dried samples were sheared at 100 MPa, then saturated with water and sheared farther to compare dry and wet strengths. The coefficients of friction, μ, for the dry sheet-structure minerals (0.2-0.8), were related to mineral bond strength, and dropped 20-60% with the addition of water. For non-adsorbing minerals (μ = 0.6-0.8), the strength remained unchanged after saturation. These results confirm that the ability of minerals to adsorb various amounts of water is related to their relative frictional strengths, and may explain the anomalously low strength of certain natural fault gouges.

  9. Gas-rich minerals in the Allende meteorite - Attempted chemical characterization

    NASA Technical Reports Server (NTRS)

    Gros, J.; Anders, E.

    1977-01-01

    A ten-step etching experiment with HNO3 was performed on a chromite-carbon residue from Allende, in order to characterize the HNO3-soluble minor phase 'Q' that contains most of the primordial Ar, Kr, and Xe. Each etch fraction was analyzed by neutron activation analysis for Cr, Fe, Co, Ir, and Au. The results suggest that Q consists of two minerals, each comprising about 5 per cent of the residue. Phase Q1, of Fe/Cr ratio greater than 20, is soluble in cold dilute HNO3 and seems to contain most of the heavy noble gases. It may be an HCl-insoluble sulfide of nominal composition (Fe84Ni12Cr4)Sx. Phase Q2, of Fe/Cr ratio about 0.5 and somewhat enriched in Co, is slowly soluble in hot concentrated HNO3 and seems to be at least an order of magnitude poorer in heavy noble gases than Q1. It may be daubre-elite or an acid-soluble variety of chromite.

  10. Gas-rich minerals in the Allende meteorite - Attempted chemical characterization

    NASA Technical Reports Server (NTRS)

    Gros, J.; Anders, E.

    1977-01-01

    A ten-step etching experiment with HNO3 was performed on a chromite-carbon residue from Allende, in order to characterize the HNO3-soluble minor phase 'Q' that contains most of the primordial Ar, Kr, and Xe. Each etch fraction was analyzed by neutron activation analysis for Cr, Fe, Co, Ir, and Au. The results suggest that Q consists of two minerals, each comprising about 5 per cent of the residue. Phase Q1, of Fe/Cr ratio greater than 20, is soluble in cold dilute HNO3 and seems to contain most of the heavy noble gases. It may be an HCl-insoluble sulfide of nominal composition (Fe84Ni12Cr4)Sx. Phase Q2, of Fe/Cr ratio about 0.5 and somewhat enriched in Co, is slowly soluble in hot concentrated HNO3 and seems to be at least an order of magnitude poorer in heavy noble gases than Q1. It may be daubre-elite or an acid-soluble variety of chromite.

  11. Minerals

    MedlinePlus

    ... whole and enriched grains, like wheat or oats Potassium Potassium (say: puh-TAH-see-um) keeps your muscles ... system working properly. Which foods are rich in potassium? bananas tomatoes potatoes and sweet potatoes, with skins ...

  12. Survey of strontium in mineral waters sold in Japan: relations of strontium to other minerals and evaluation of mineral water as a possible dietary source of strontium.

    PubMed

    Usuda, Kan; Kono, Koichi; Dote, Tomotaro; Watanabe, Misuzu; Shimizu, Hiroyasu; Kawasaki, Takashi; Hayashi, Satsuki; Nakasuji, Kazuo; Fujimoto, Keiichi; Lu, Bo

    2006-07-01

    The concentrations of strontium, calcium, and magnesium in 33 brands of natural mineral waters commercially available in Japan were determined by inductively coupled plasma-atomic emission spectrometry. The geometric mean values were 94.4 microg/L for strontium, 19.1 mg/L for calcium, and 2.82 mg/L for magnesium. Wide confidence intervals of 1.96-4539 microg/L for strontium, 0.865-421 mg/L for calcium, and 0.064-123 mg/L for magnesium were observed. The significant linear relationships among the three elements over a wide distribution range suggest that the synchronized variations of these elements are regulated by the natural ecosystem and not from accidental contamination from human activities or exceptionally high natural sources. Using the results of multiple linear regression analysis, the strontium concentration can be predicted by that of calcium with the appropriate power function. The results of this study suggest that mineral water can be an important nutritional source of strontium. As trace elements imbalance is often found in older patients with chronic renal failure, we propose that close attention of trace elements intake from trendy foods or beverages is necessary to prevent this hidden problem of a rapidly aging society.

  13. [Influence of the ozonation on the elimination of arsenic from natural mineral water intended for bottling].

    PubMed

    Drobnik, Michał; Latour, Teresa

    2006-01-01

    Mineral water--hydrogen carbonat-calcium naturally sparkling water--containing arsenic in concentration above 0.01 mg/dm3 was ozonated. There was experimentally determined the optimal ozonation parameters: ozone dose, a duration of the process and of the contact between ozone and water, concentration of dissolved ozon in water. There was, moreover, determined an exceeding of ozone residual permissible in the obligatory regulations for bottled mineral waters.

  14. Water Solubility in Lower Mantle Minerals and the Role of Peridotite and Basalt in Water Storage in the Lower Mantle

    NASA Astrophysics Data System (ADS)

    Litasov, K.; Ohtani, E.

    2002-12-01

    Recent experimental and theoretical studies suggest water plays a key role in the geodynamics of the Earth's interior. Experimental data on water solubility in minerals of the Earth's mantle suggest that upper mantle, transition zone and lower mantle could have different potential to store water. Transition zone should be an important water reservoir due to significant water solubility in wadsleyite and ringwoodite (Mg,Fe)2SiO4. However, water storage capacity of lower mantle is still very controversial. Meade et al. (1994) reported results of in situ FTIR measurement of water solubility in MgSiO3-perovskite and suggest water content of 60 ppm. Bolfan-Casanova et al. (2000; 2002) showed absence of water (<1 ppm H2O) in MgSiO3-perovskite and 20 ppm H2O in magnesiowustite. In the contrary Murakami et al., 2002 measured 0.1-0.4 wt% H2O in peridotite-related Al-Fe-Mg-perovskite, 0.3-0.4 wt% H2O in Ca-perovskite and about 0.2 wt% H2O in magnesiowustite. Recently, we obtained data on phase relation in hydrous MORB at 20-26 GPa (Litasov and Ohtani, 2002) and found, that stability field of Al-Fe-Mg-perovskite shifts to the lower pressure. This fact suggests that these perovskites of exotic Fe-rich composition may also accommodate water. Our new FTIR data on water solubility in lower mantle minerals at 25 GPa and 1200-1600°C suggest water content in pure MgSiO3-perovskite is <90 ppm (bands at 3397, 3423, 3448, and 3482 cm-1). Water content in Al-Fe-Mg-perovskite (Al2O3=13-17 wt%; Mg#=58-61) observed in MORB is <100 ppm (bands at 3397 and 3423 cm-1). Water content in Al-Fe-Mg-perovskite (Al2O3=5-6 wt.%; Mg#=88-90) observed in peridotite is 1400-1800 ppm (band at 3397 cm-1). Water content in magnesiowustite (Mg0.8Fe0.2O) is 20-60 ppm (band at 3320 cm-1). Therefore, we confirmed that peridotite-related Mg-perovskite is a major water reservoir in the lower mantle; however role of Ca-perovskite and magnesiowustite is not clear. Using data on water solubility in Mg

  15. Transport properties of interfacial Si-rich layers formed on silicate minerals during weathering: Implications for environmental concerns

    NASA Astrophysics Data System (ADS)

    Daval, Damien; Rémusat, Laurent; Bernard, Sylvain; Wild, Bastien; Micha, Jean-Sébastien; Rieutord, François; Fernandez-Martinez, Alejandro

    2015-04-01

    The dissolution of silicate minerals is of primary importance for various processes ranging from chemical weathering to CO2 sequestration. Whether it determines the rates of soil formation, CO2 uptake and its impact on climate change, channeling caused by hydrothermal circulation in reservoirs of geothermal power plants, durability of radioactive waste confinement glasses or geological sequestration of CO2, the same strategy is commonly applied for determining the long term evolution of fluid-rock interactions. This strategy relies on a bottom-up approach, where the kinetic rate laws governing silicate mineral dissolution are determined from laboratory experiments. However, a long-standing problem regarding this approach stems from the observation that laboratory-derived dissolution rates overestimate their field counterparts by orders of magnitude, casting doubt on the accuracy and relevance of predictions based on reactive-transport simulations. Recently [1], it has been suggested that taking into account the formation of amorphous Si-rich surface layers (ASSL) as a consequence of mineral dissolution may contribute to decrease the large gap existing between laboratory and natural rates. Our ongoing study is aimed at deciphering the extent to which ASSL may represent a protective entity which affects the dissolution rate of the underlying minerals, both physically (passivation) and chemically (by promoting the formation of a local chemical medium which significantly differs from that of the bulk solution). Our strategy relies on the nm-scale measurement of the physicochemical properties (diffusivity, thickness and density) of ASSL formed on cleavages of a model mineral (wollastonite) and their evolution as a function of reaction progress. Our preliminary results indicate that the diffusivity of nm-thick ASSL formed on wollastonite surface is ~1,000,000 times smaller than that reported for an aqueous medium, as estimated from the monitoring of the progression of a

  16. Deep ocean mineral water accelerates recovery from physical fatigue

    PubMed Central

    2013-01-01

    Background Deep oceans have been suggested as a possible site where the origin of life occurred. Along with this theoretical lineage, experiments using components from deep ocean water to recreate life is underway. Here, we propose that if terrestrial organisms indeed evolved from deep oceans, supply of deep ocean mineral water (DOM) to humans, as a land creature, may replenish loss of molecular complexity associated with evolutionary sea-to-land migration. Methods We conducted a randomized, double-blind, placebo-controlled crossover human study to evaluate the effect of DOM, taken from a depth of 662 meters off the coast of Hualien, Taiwan, on time of recovery from a fatiguing exercise conducted at 30°C. Results The fatiguing exercise protocol caused a protracted reduction in aerobic power (reduced VO2max) for 48 h. However, DOM supplementation resulted in complete recovery of aerobic power within 4 h (P < 0.05). Muscle power was also elevated above placebo levels within 24 h of recovery (P < 0.05). Increased circulating creatine kinase (CK) and myoglobin, indicatives of exercise-induced muscle damage, were completely eliminated by DOM (P < 0.05) in parallel with attenuated oxidative damage (P < 0.05). Conclusion Our results provide compelling evidence that DOM contains soluble elements, which can increase human recovery following an exhaustive physical challenge. PMID:23402436

  17. Deep ocean mineral water accelerates recovery from physical fatigue.

    PubMed

    Hou, Chien-Wen; Tsai, Yung-Shen; Jean, Wei-Horng; Chen, Chung-Yu; Ivy, John L; Huang, Chih-Yang; Kuo, Chia-Hua

    2013-02-12

    Deep oceans have been suggested as a possible site where the origin of life occurred. Along with this theoretical lineage, experiments using components from deep ocean water to recreate life is underway. Here, we propose that if terrestrial organisms indeed evolved from deep oceans, supply of deep ocean mineral water (DOM) to humans, as a land creature, may replenish loss of molecular complexity associated with evolutionary sea-to-land migration. We conducted a randomized, double-blind, placebo-controlled crossover human study to evaluate the effect of DOM, taken from a depth of 662 meters off the coast of Hualien, Taiwan, on time of recovery from a fatiguing exercise conducted at 30°C. The fatiguing exercise protocol caused a protracted reduction in aerobic power (reduced VO2max) for 48 h. However, DOM supplementation resulted in complete recovery of aerobic power within 4 h (P < 0.05). Muscle power was also elevated above placebo levels within 24 h of recovery (P < 0.05). Increased circulating creatine kinase (CK) and myoglobin, indicatives of exercise-induced muscle damage, were completely eliminated by DOM (P < 0.05) in parallel with attenuated oxidative damage (P < 0.05). Our results provide compelling evidence that DOM contains soluble elements, which can increase human recovery following an exhaustive physical challenge.

  18. Hydrolysis of organic esters at the mineral/water interface

    SciTech Connect

    Torrents, A.

    1992-01-01

    Organic esters are widely used as insecticides and are part of many commercial products and industrial processes. When these compounds are released into the environment, they contaminate natural resources. To assess their fate and transport it is important to explore degradation and retainment processes. Numerous previous studies have studied the role of adsorption in lowering pollutant concentration and retarding pollutant migration into soils. However, adsorption at the mineral/water interface also affects the mechanisms of degradation and reaction rates. This dissertation research focuses on the ability of metal oxides to catalyze ester hydrolysis and a reaction mechanism is proposed. Furthermore, the authors studied the role of natural occurring adsorbates on the reaction rates. The oxides used in this study are amorphous silica (SiO[sub 2]), [gamma]-aluminum oxide (Al[sub 2]O[sub 3]), anatase (TiO[sub 2]), and geothite (FeOOH). These either occur naturally, or are similar to naturally occurring surfaces. The capability of such oxides to catalyze ester hydrolysis was studied in batch reactors. The organic compounds investigated were carboxylic acid esters and organophosphate pesticides. The hydrolysis of several esters was catalyzed by the presence of oxide suspensions; the extent of catalysis was dependent on the ester structure, the metal oxide, and solution composition. Results suggest that catalysis for carboxylate esters occurs via a surface chelate formation between the carbonyl oxygen, a second donor group of the ester and the surface metal. The presence of organic co-solvents appears to diminish the catalytic effect. Inhibition of surface catalysis was also observed from specific adsorption of naturally occurring ions onto the oxide surface. Natural organic matter was also observed to influence surface catalysis. This research suggests that mineral surfaces may have a role in abiotic transformations of organic pollutants.

  19. Investigation of mineral waters and soft drinks in relation to dental erosion.

    PubMed

    Parry, J; Shaw, L; Arnaud, M J; Smith, A J

    2001-08-01

    A range of still and sparkling mineral waters were assessed for their erosive potential together with comparator soft drinks using in vitro dissolution assays with extracted human teeth and powdered hydroxyapatite. Dissolution levels with all of the mineral waters were very low and for several still waters were undetectable. Sparkling mineral waters showed slightly greater dissolution than still waters, but levels remained low and were of the order of one hundred times less than the comparator soft drinks. De-gassing of a sparkling mineral water reduced its dissolution, but the total levels were still relatively low suggesting that carbonation of drinks may not be an important factor per se in respect of erosive potential. The complex and heterogeneous mineral compositions of mineral waters could influence the dissolution equilibrium of apatite in enamel and controlled addition of several ions to ultrapure deionized water was investigated. Calcium ions led to the greatest reduction in hydroxyapatite dissolution, but their effects were moderated by other ions including magnesium and sulphate. Thus, mineral waters appear to offer a safe alternative to more erosive acidic beverages and their complex mineral ion compositions may positively influence any dissolution processes at the tooth surface.

  20. Molecular dynamics simulations of water, solution, and clay mineral-water systems (Invited)

    NASA Astrophysics Data System (ADS)

    Kawamura, K.

    2009-12-01

    Clays and clay minerals together with zeolites are major mineral components in the earth's surface environment. These minerals interact with the atmosphere, natural water, inorganic and organic components in soils, etc. Physicochemical processes in the surface region are generally complex and difficult to understand because of the complicated "molecular" structures and the ambient conditions under wet circumstances. We have investigated the structure and physical/dynamical properties of the mineral-gas/liquid systems by means of molecular simulation methods; molecular dynamics and Metropolis Monte Carlo methods. Swelling of smectite and adsorption of inorganic molecules in clay minerals and zeolites, etc. were simulated and analyzed on the basis of the atomic and molecular processes. We have developed atomic and molecular interaction models of inorganic systems. The models compose of electrostatic, short range repulsive, van der Waals and covalent (radial and angular) terms with respect to all the elements appeared in the mineral-water systems. All of our molecular dynamics simulations (MD) were performed with full degree of freedom of atom motions. Using the model for H2O molecule, the structure and physical properties such as density, diffusion coefficients, etc. of ice polymorphs and water are well reproduced. Alkaliharide aqueous solutions and gas hydrates and their (hydrophobic) solutions are also reasonably simulated. Clay mineral-water interactions are particularly important to understand the mechanical and chemical processes in the environments, in order to develop nano-composite materials, and to use clays in engineering applications. Absorption and swelling are the most remarkable properties of clay minerals, specially smectite. We have investigate these properties by means of molecular simulation methods using various clay minerals-water/solution systems. The swelling curves, the relation between humidity and the basal spacings, were reproduced

  1. Influence of Seasonal and Geochemical Changes on the Geomicrobiology of an Iron Carbonate Mineral Water Spring

    PubMed Central

    Hegler, Florian; Lösekann-Behrens, Tina; Hanselmann, Kurt; Behrens, Sebastian

    2012-01-01

    Fuschna Spring in the Swiss Alps (Engadin region) is a bicarbonate iron(II)-rich, pH-neutral mineral water spring that is dominated visually by dark green microbial mats at the side of the flow channel and orange iron(III) (oxyhydr)oxides in the flow channel. Gradients of O2, dissolved iron(II), and bicarbonate establish in the water. Our goals were to identify the dominating biogeochemical processes and to determine to which extent changing geochemical conditions along the flow path and seasonal changes influence mineral identity, crystallinity, and microbial diversity. Geochemical analysis showed microoxic water at the spring outlet which became fully oxygenated within 2.3 m downstream. X-ray diffraction and Mössbauer spectroscopy revealed calcite (CaCO3) and ferrihydrite [Fe(OH)3] to be the dominant minerals which increased in crystallinity with increasing distance from the spring outlet. Denaturing gradient gel electrophoresis banding pattern cluster analysis revealed that the microbial community composition shifted mainly with seasons and to a lesser extent along the flow path. 16S rRNA gene sequence analysis showed that microbial communities differ between the flow channel and the flanking microbial mat. Microbial community analysis in combination with most-probable-number analyses and quantitative PCR (qPCR) showed that the mat was dominated by cyanobacteria and the channel was dominated by microaerophilic Fe(II) oxidizers (1.97 × 107 ± 4.36 × 106 16S rRNA gene copies g−1 using Gallionella-specific qPCR primers), while high numbers of Fe(III) reducers (109 cells/g) were identified in both the mat and the flow channel. Phototrophic and nitrate-reducing Fe(II) oxidizers were present as well, although in lower numbers (103 to 104 cells/g). In summary, our data suggest that mainly seasonal changes caused microbial community shifts, while geochemical gradients along the flow path influenced mineral crystallinity. PMID:22865064

  2. An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults.

    PubMed

    Toxqui, Laura; Vaquero, M Pilar

    2016-06-28

    Water intake is essential for health maintenance and disease prevention. The effects of an intervention with two mineral waters, sodium-bicarbonated mineral water (BW) or control mineral water low in mineral content (CW), on cardiometabolic risk biomarkers were studied. In a randomised-controlled crossover-trial, sixty-four moderately hypercholesterolaemic adults were randomly assigned to consume 1 L/day of either BW (sodium, 1 g/L; bicarbonate, 2 g/L) or CW with the main meals for eight weeks, separated by an eight-week washout period. Blood lipids, lipid oxidation, glucose, insulin, aldosterone, urine pH, urinary electrolytes, blood pressure, body weight, fluid intake, energy, and nutrients from total diet and beverages were determined. Total cholesterol, LDL cholesterol, and glucose decreased (p < 0.01), oxidised LDL tended to decrease (p = 0.073), and apolipoprotein B increased during the intervention, without water type effect. Energy and carbohydrates from beverages decreased since soft drinks and fruit juice consumptions decreased throughout the trial. BW increased urinary pH (p = 0.006) and reduced calcium/creatinine excretion (p = 0.011). Urinary potassium/creatinine decreased with both waters. Consumption of 1 L/day of mineral water with the main meals reduces cardiometabolic risk biomarkers, likely to be attributed to a replacement of soft drinks by water. In addition, BW does not affect blood pressure and exerts a moderate alkalizing effect in the body.

  3. An Intervention with Mineral Water Decreases Cardiometabolic Risk Biomarkers. A Crossover, Randomised, Controlled Trial with Two Mineral Waters in Moderately Hypercholesterolaemic Adults

    PubMed Central

    Toxqui, Laura; Vaquero, M. Pilar

    2016-01-01

    Water intake is essential for health maintenance and disease prevention. The effects of an intervention with two mineral waters, sodium-bicarbonated mineral water (BW) or control mineral water low in mineral content (CW), on cardiometabolic risk biomarkers were studied. In a randomised-controlled crossover-trial, sixty-four moderately hypercholesterolaemic adults were randomly assigned to consume 1 L/day of either BW (sodium, 1 g/L; bicarbonate, 2 g/L) or CW with the main meals for eight weeks, separated by an eight-week washout period. Blood lipids, lipid oxidation, glucose, insulin, aldosterone, urine pH, urinary electrolytes, blood pressure, body weight, fluid intake, energy, and nutrients from total diet and beverages were determined. Total cholesterol, LDL cholesterol, and glucose decreased (p < 0.01), oxidised LDL tended to decrease (p = 0.073), and apolipoprotein B increased during the intervention, without water type effect. Energy and carbohydrates from beverages decreased since soft drinks and fruit juice consumptions decreased throughout the trial. BW increased urinary pH (p = 0.006) and reduced calcium/creatinine excretion (p = 0.011). Urinary potassium/creatinine decreased with both waters. Consumption of 1 L/day of mineral water with the main meals reduces cardiometabolic risk biomarkers, likely to be attributed to a replacement of soft drinks by water. In addition, BW does not affect blood pressure and exerts a moderate alkalizing effect in the body. PMID:27367723

  4. A Mineral-Rich Extract from the Red Marine Algae Lithothamnion calcareum Preserves Bone Structure and Function in Female Mice on a Western-Style Diet

    PubMed Central

    Aslam, Muhammad Nadeem; Kreider, Jaclynn M.; Paruchuri, Tejaswi; Bhagavathula, Narasimharao; DaSilva, Marissa; Zernicke, Ronald F.; Goldstein, Steven A.; Varani, James

    2010-01-01

    The purpose of this study was to determine whether a mineral-rich extract derived from the red marine algae Lithothamnion calcareum could be used as a dietary supplement for prevention of bone mineral loss. Sixty C57BL/6 mice were divided into three groups based on diet: the first group received a high-fat Western-style diet (HFWD), the second group was fed the same HFWD along with the mineral-rich extract included as a dietary supplement, and the third group was used as a control and was fed a low-fat rodent chow diet (AIN76A). Mice were maintained on the respective diets for 15 months. Then, long bones (femora and tibiae) from both males and females were analyzed by three-dimensional micro-computed tomography (micro-CT) and (bones from female mice) concomitantly assessed in bone strength studies. Tartrate-resistant acid phosphatase (TRAP), osteocalcin, and N-terminal peptide of type I procollagen (PINP) were assessed in plasma samples obtained from female mice at the time of sacrifice. To summarize, female mice on the HFWD had reduced bone mineralization and reduced bone strength relative to female mice on the low-fat chow diet. The bone defects in female mice on the HFWD were overcome in the presence of the mineral-rich supplement. In fact, female mice receiving the mineral-rich supplement in the HFWD had better bone structure/function than did female mice on the low-fat chow diet. Female mice on the mineral-supplemented HFWD had higher plasma levels of TRAP than mice of the other groups. There were no differences in the other two markers. Male mice showed little diet-specific differences by micro-CT. PMID:20180099

  5. A mineral-rich extract from the red marine algae Lithothamnion calcareum preserves bone structure and function in female mice on a Western-style diet.

    PubMed

    Aslam, Muhammad Nadeem; Kreider, Jaclynn M; Paruchuri, Tejaswi; Bhagavathula, Narasimharao; DaSilva, Marissa; Zernicke, Ronald F; Goldstein, Steven A; Varani, James

    2010-04-01

    The purpose of this study was to determine whether a mineral-rich extract derived from the red marine algae Lithothamnion calcareum could be used as a dietary supplement for prevention of bone mineral loss. Sixty C57BL/6 mice were divided into three groups based on diet: the first group received a high-fat Western-style diet (HFWD), the second group was fed the same HFWD along with the mineral-rich extract included as a dietary supplement, and the third group was used as a control and was fed a low-fat rodent chow diet (AIN76A). Mice were maintained on the respective diets for 15 months. Then, long bones (femora and tibiae) from both males and females were analyzed by three-dimensional micro-computed tomography (micro-CT) and (bones from female mice) concomitantly assessed in bone strength studies. Tartrate-resistant acid phosphatase (TRAP), osteocalcin, and N-terminal peptide of type I procollagen (PINP) were assessed in plasma samples obtained from female mice at the time of sacrifice. To summarize, female mice on the HFWD had reduced bone mineralization and reduced bone strength relative to female mice on the low-fat chow diet. The bone defects in female mice on the HFWD were overcome in the presence of the mineral-rich supplement. In fact, female mice receiving the mineral-rich supplement in the HFWD had better bone structure/function than did female mice on the low-fat chow diet. Female mice on the mineral-supplemented HFWD had higher plasma levels of TRAP than mice of the other groups. There were no differences in the other two markers. Male mice showed little diet-specific differences by micro-CT.

  6. Mineralizing urban net-zero water treatment: Field experience for energy-positive water management.

    PubMed

    Wu, Tingting; Englehardt, James D

    2016-12-01

    An urban net-zero water treatment system, designed for energy-positive water management, 100% recycle of comingled black/grey water to drinking water standards, and mineralization of hormones and other organics, without production of concentrate, was constructed and operated for two years, serving an occupied four-bedroom, four-bath university residence hall apartment. The system comprised septic tank, denitrifying membrane bioreactor (MBR), iron-mediated aeration (IMA) reactor, vacuum ultrafilter, and peroxone or UV/H2O2 advanced oxidation, with 14% rainwater make-up and concomitant discharge of 14% of treated water (ultimately for reuse in irrigation). Chemical oxygen demand was reduced to 12.9 ± 3.7 mg/L by MBR and further decreased to below the detection limit (<0.7 mg/L) by IMA and advanced oxidation treatment. The process produced a mineral water meeting 115 of 115 Florida drinking water standards that, after 10 months of recycle operation with ∼14% rainwater make-up, had a total dissolved solids of ∼500 mg/L, pH 7.8 ± 0.4, turbidity 0.12 ± 0.06 NTU, and NO3-N concentration 3.0 ± 1.0 mg/L. None of 97 hormones, personal care products, and pharmaceuticals analyzed were detected in the product water. For a typical single-home system with full occupancy, sludge pumping is projected on a 12-24 month cycle. Operational aspects, including disinfection requirements, pH evolution through the process, mineral control, advanced oxidation by-products, and applicability of point-of-use filters, are discussed. A distributed, peroxone-based NZW management system is projected to save more energy than is consumed in treatment, due largely to retention of wastewater thermal energy. Recommendations regarding design and operation are offered.

  7. The interaction between decomposition, net N and P mineralization and their mobilization to the surface water in fens.

    PubMed

    Geurts, Jeroen J M; Smolders, Alfons J P; Banach, Artur M; van de Graaf, Jan P M; Roelofs, Jan G M; Lamers, Leon P M

    2010-06-01

    Worldwide, fens and peat lakes that used to be peat-forming systems have become a significant source of C, N and P due to increased peat decomposition. To test the hypothesis that net nutrient mineralization rates may be uncoupled from decomposition rates, we investigated decomposition and net mineralization rates of nutrients in relation to sediment and pore water characteristics. We incubated 28 non-calcareous peat sediments and floating fen soils under aerobic and anaerobic conditions. We also tried to find a simple indicator to estimate the potential nutrient mobilization rates from peat sediments to the water layer by studying their relation with sediment and pore water characteristics in 44 Dutch non-calcareous peat lakes and ditches. Decomposition rates were primarily determined by the organic matter content, and were higher under aerobic conditions. However, highly decomposed peat sediments with low C:P and C:N ratios still showed high net nutrient mineralization rates. At Fe:PO(4) ratios below 1molmol(-1), PO(4) mobilization from the sediment to the water layer was considerable and linearly related to the pore water PO(4) concentration. At higher ratios, there was a strong linear correlation between the Fe:PO(4) ratio and PO(4) mobilization. Hence, measuring Fe and PO(4) in anaerobic sediment pore water provides a powerful tool for a quick assessment of internal PO(4) fluxes. Mobilization of mineral N was largely determined by diffusion. Total sediment Fe:S ratios gave an important indication of the amount of Fe that is available to immobilize PO(4). Pore water Fe concentrations decreased at ratios <1molmol(-1), whereas pore water PO(4) concentrations and PO(4) mobilization to the water layer increased. As PO(4) mobilization rates from the sediment to the water layer contribute to almost half of the total P load in Dutch peat lakes and fens, it is of pivotal importance to examine the magnitude of internal fluxes. Dredging of the nutrient-rich upper

  8. Water-bearing minerals on mars: source of observed mid-latitude water?

    SciTech Connect

    Bish, D. L.; Carey, J. W.; Fialips, C. I.

    2003-01-01

    The Odyssey spacecraft documented the existence of heterogeneously distributed hydrogen at martian mid-latitudes, suggesting that large areas of the near-equatorial highlands contain near-surface deposits of 'chemically and/or physically bound H20 and/or OH' in amounts up to 3 .8% equivalent H20. Shallow occurrences of water ice are not stable near the martian equator, making the hydrogen deposits at these latitudes somewhat enigmatic. Clay minerals and zeolites have both been proposed as possible water-bearing constituents on Mars, and both are common terrestrial alteration products of hydrovolcanic basaltic ashes and palagonitic material comparable to those that may be widespread on Mars. Smectites within martian meteorites, attributed to hydrous alteration on Mars rather than on Earth, provide direct evidence of clay minerals from Mars. In addition, new thermal emission spectrometer (TES) data provide good evidence for unspecified zeolites in martian surface dust [6] . The nature of the hydrogen-containing material observed in the equatorial martian regolith is of particular importance to the question of whether hydrous minerals have formed in the past on Mars. Also, whether these minerals exist in a hydrated (i .e., containing H2O molecules in their structures) or dehydrated state is a crucial question . The existence of hydrous minerals is also important in connection with their possible role in affecting the diurnal variation of the martian atmosphere, in their potential role in unraveling the paleohydrology and paleobiology of Mars, and in their possible use as a water resource to support exploration of the martian mid-latitudes.

  9. Efficacy and tolerability of hydrogen carbonate-rich water for heartburn

    PubMed Central

    Beer, André-Michael; Uebelhack, Ralf; Pohl, Ute

    2016-01-01

    requested and were analyzed as ITT population. The occurrence of heartburn was statistically significantly reduced at wk 6 in both the ITT and the PP populations. At wk 6, the mean number of heartburn episodes/week decreased by 5.1 episodes (P < 0.001) and the mean duration of heartburn symptoms by 19 min (ITT) (P = 0.002). The frequency of heartburn symptoms was reduced in 89.6% of the patients (P < 0.001), and the duration of symptoms in 79.2% of patients (ITT) (P < 0.001). All dimensions of the RDQ (heartburn, regurgitation, gastro-esophageal reflux disease symptoms, dyspepsia) showed a significant improvement at 6 wk. Likewise, disease-specific quality of life improved significantly (QOLRAD, GIQLI). Overall, 89.4% of patients rated the efficacy of the test water as “good” or “very good”, as did the investigators for 91.5% of the patients. There were no serious AEs. After 6 wk, systolic and diastolic blood pressure values decreased slightly but significantly [-3.5 and -3.0 mmHg, respectively (P = 0.008 and P = 0,002)]. Ninety-six percent of patients and investigators for the same percentage of patients rated the tolerability of the water as “good” or “very good”. CONCLUSION: The data demonstrate effectiveness of a hydrogen carbonate-rich mineral water in alleviating heartburn frequency and severity, thereby improving quality of life. The water has excellent tolerability. PMID:26909240

  10. Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed

    USGS Publications Warehouse

    Manning, Andrew H.; Verplanck, Philip L.; Caine, Jonathan S.; Todd, Andrew S.

    2013-01-01

    Recent studies suggest that climate change is causing rising solute concentrations in mountain lakes and streams. These changes may be more pronounced in mineralized watersheds due to the sensitivity of sulfide weathering to changes in subsurface oxygen transport. Specific causal mechanisms linking climate change and accelerated weathering rates have been proposed, but in general remain entirely hypothetical. For mineralized watersheds, a favored hypothesis is that falling water tables caused by declining recharge rates allow an increasing volume of sulfide-bearing rock to become exposed to air, thus oxygen. Here, we test the hypothesis that falling water tables are the primary cause of an increase in metals and SO4 (100-400%) observed since 1980 in the Upper Snake River (USR), Colorado. The USR drains an alpine watershed geologically and climatologically representative of many others in mineralized areas of the western U.S. Hydrologic and chemical data collected from 2005 to 2011 in a deep monitoring well (WP1) at the top of the USR watershed are utilized. During this period, both water table depths and groundwater SO4 concentrations have generally increased in the well. A numerical model was constructed using TOUGHREACT that simulates pyrite oxidation near WP1, including groundwater flow and oxygen transport in both saturated and unsaturated zones. The modeling suggests that a falling water table could produce an increase in metals and SO4 of a magnitude similar to that observed in the USR (up to 300%). Future water table declines may produce limited increases in sulfide weathering high in the watershed because of the water table dropping below the depth of oxygen penetration, but may continue to enhance sulfide weathering lower in the watershed where water tables are shallower. Advective air (oxygen) transport in the unsaturated zone caused by seasonally variable recharge and associated water table fluctuations was found to have little influence on pyrite

  11. Particle Size Controls on Water Adsorption and Condensation Regimes at Mineral Surfaces

    NASA Astrophysics Data System (ADS)

    Yeşilbaş, Merve; Boily, Jean-François

    2016-08-01

    Atmospheric water vapour interacting with hydrophilic mineral surfaces can produce water films of various thicknesses and structures. In this work we show that mineral particle size controls water loadings achieved by water vapour deposition on 21 contrasting mineral samples exposed to atmospheres of up to ~16 Torr water (70% relative humidity at 25 °C). Submicrometer-sized particles hosted up to ~5 monolayers of water, while micrometer-sized particles up to several thousand monolayers. All films exhibited vibrational spectroscopic signals akin to liquid water, yet with a disrupted network of hydrogen bonds. Water adsorption isotherms were predicted using models (1- or 2- term Freundlich and Do-Do models) describing an adsorption and a condensation regime, respectively pertaining to the binding of water onto mineral surfaces and water film growth by water-water interactions. The Hygroscopic Growth Theory could also account for the particle size dependence on condensable water loadings under the premise that larger particles have a greater propensity of exhibiting of surface regions and interparticle spacings facilitating water condensation reactions. Our work should impact our ability to predict water film formation at mineral surfaces of contrasting particle sizes, and should thus contribute to our understanding of water adsorption and condensation reactions occuring in nature.

  12. Particle Size Controls on Water Adsorption and Condensation Regimes at Mineral Surfaces

    PubMed Central

    Yeşilbaş, Merve; Boily, Jean-François

    2016-01-01

    Atmospheric water vapour interacting with hydrophilic mineral surfaces can produce water films of various thicknesses and structures. In this work we show that mineral particle size controls water loadings achieved by water vapour deposition on 21 contrasting mineral samples exposed to atmospheres of up to ~16 Torr water (70% relative humidity at 25 °C). Submicrometer-sized particles hosted up to ~5 monolayers of water, while micrometer-sized particles up to several thousand monolayers. All films exhibited vibrational spectroscopic signals akin to liquid water, yet with a disrupted network of hydrogen bonds. Water adsorption isotherms were predicted using models (1- or 2- term Freundlich and Do-Do models) describing an adsorption and a condensation regime, respectively pertaining to the binding of water onto mineral surfaces and water film growth by water-water interactions. The Hygroscopic Growth Theory could also account for the particle size dependence on condensable water loadings under the premise that larger particles have a greater propensity of exhibiting of surface regions and interparticle spacings facilitating water condensation reactions. Our work should impact our ability to predict water film formation at mineral surfaces of contrasting particle sizes, and should thus contribute to our understanding of water adsorption and condensation reactions occuring in nature. PMID:27561325

  13. [Legal requirements, quality criteria, therapeutic interest and dietetics of mineral waters: study of the case of the natural mineral water of Evian].

    PubMed

    de Preneuf, J M

    1984-01-01

    The considerable increase in mineral water sales as a daily drink reflects more or less the continued confidence in spa treatments, and this has caused the Public Authorities to set up very strict regulations in this field. We explain the main provisions of these regulations, compare mineral water with ordinary drinking water and complete this report with a study on the representative case of Evian Mineral water since it is the most exported water in the world. We emphasize the key points regarding the origin of the water which must be very well protected, its mineralization leading to its part played in dietetics and daily consumption, its use in spas and the research on its therapeutic effects, its bottling and the controls enabling its original high quality to be maintained. The conclusion reviews the motivations for the mineral water consumer: taste, quality, favorable effects on health. These motivations linked together have a varying importance according to the persons or situations involved. They result in precise requirements to be met by the producing companies in three fields: quality, advertising, credibility and scientific research.

  14. Deconstructing responses of dragonfly species richness to area, nutrients, water plant diversity and forestry.

    PubMed

    Honkanen, Merja; Sorjanen, Aili-Maria; Mönkkönen, Mikko

    2011-06-01

    Understanding large-scale variation in species richness in relation to area, energy, habitat heterogeneity and anthropogenic disturbance has been a major task in ecology. Ultimately, variation in species richness results from variation in individual species occupancies. We studied whether the individual species occupancy patterns are determined by the same candidate factors as total species richness. We sampled 26 boreal forest ponds for dragonflies (Odonata) and studied the effects of shoreline length, water vascular plant species density (WVPSD), availability of nutrients, intensity of forestry, amount of Sphagnum peat cover and pH on dragonfly species richness and individual dragonfly species. WVPSD and pH had a strong positive effect on species richness. Removal of six dragonfly species experiencing strongest responses to WVPSD cancelled the relationship between species richness and WVPSD. By contrast, removal of nine least observed species did not affect the relationship between WVPSD and species richness. Thus, our results showed that relatively common species responding strongly to WVPSD shaped the observed species richness pattern whereas the effect of least observed, often rare, species was negligible. Also, our results support the view that, despite of the great impact of energy on species richness at large spatial scales, habitat heterogeneity can still have an effect on species richness in smaller scales, even overriding the effects of area.

  15. Determination of water in NIST reference material for mineral oils

    PubMed

    Cedergren; Nordmark

    2000-07-15

    The accuracy of the reference concentrations of moisture in electrical insulating oil RM 8506 and lubricating oil RM 8507 (both of mineral type) and specified by the National Institute of Standards and Technology (NIST) as containing 39.7 and 76.8 ppm (w/w) water, respectively, has recently been the subject of debate in this journal. To shed some further light on this controversy, we report in this correspondence results for these oils obtained by two additional methods, one based on specially designed reagents for diaphragm-free Karl Fischer (KF) coulometry and the other based on the concept of stripping at elevated temperature/continuous KF coulometry. A positive interference effect was shown to take place for RM 8506 when the direct coulometric method was used. If the results are corrected for this, the values including six different procedures varied in the range 13.5-15.6 ppm (w/w). For RM 8507, all values were between 42.5 and 47.2 ppm (w/w), which means that the values recommended by NIST for both reference oils using volumetric titration are about twice as high as those obtained with the other techniques. A possible explanation for this discrepancy is presented.

  16. Substitutional Doping for Aluminosilicate Mineral and Superior Water Splitting Performance

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Fu, Liangjie; Shu, Zhan; Yang, Huaming; Tang, Aidong; Jiang, Tao

    2017-07-01

    Substitutional doping is a strategy in which atomic impurities are optionally added to a host material to promote its properties, while the geometric and electronic structure evolution of natural nanoclay mineral upon substitutional metal doping is still ambiguous. This paper first designed an efficient lanthanum (La) doping strategy for nanotubular clay (halloysite nanotube, HNT) through the dynamic equilibrium of a substitutional atom in the presence of saturated AlCl3 solution, and systematic characterization of the samples was performed. Further density functional theory (DFT) calculations were carried out to reveal the geometric and electronic structure evolution upon metal doping, as well as to verify the atom-level effect of the La doping. The CdS loading and its corresponding water splitting performance could demonstrate the effect of La doping. CdS nanoparticles (11 wt.%) were uniformly deposited on the surface of La-doped halloysite nanotube (La-HNT) with the average size of 5 nm, and the notable photocatalytic hydrogen evolution rate of CdS/La-HNT reached up to 47.5 μmol/h. The results could provide a new strategy for metal ion doping and constructive insight into the substitutional doping mechanism.

  17. Do rock fragments participate to plant water and mineral nutrition?

    NASA Astrophysics Data System (ADS)

    Korboulewsky, Nathalie; Tétégan, Marion; Besnault, Adeline; Cousin, Isabelle

    2010-05-01

    Rock fragments modify soil properties, and can be a potential reservoir of water. Besides, recent studies showed that this coarse soil fraction is chemically active, release nutrients, and could therefore be involved in biogeochemical nutrient cycles. However, these studies carried out on rock fragments, crushed pebbles or mineral particles do not answer the question whether the coarse soil fraction has significant nutritive functions. Only a couple of studies were conducted on plants, one on grass and the other on coniferous seedlings. This present work attempted to assess if pebbles may act as water and nutrient sources for poplar saplings, a deciduous species. Remoulded soils were set up in 5 L-pots with three percentages of pebbles: 0, 20, and 40% in volume. We used, as substrate either fine earth or sand (quartz), and as rock fragments either calcareous or inert pebbles (quartz). Additional modalities were settled with sand mixed with 20 and 40% pebbles enriched with nutrients. Both fine earth and calcareous pebbles were collected from the Ap horizon of a calcareous lacustrine limestone silty soil located in the central region of France. After cleaning, all pebbles were mixed to reach a bulk density in pots of 1.1 g/cm3 for the fine earth and 1.5 g/cm3 for the sand. Ten replicates were settled per modality, and one cutting of Populus robusta was planted in each. The experiment was conducted under controlled conditions. All pots were saturated at the beginning of the experiment, then irrigated by capillarity and controlled to maintain a moderate water stress. Growth and evapotranspiration were followed regularly, while water stress status was measured by stomatal conductivity every day during two drying periods of 10 days. After three months, plants were collected, separated in below- and above-ground parts for biomass and cation analysis (Ca, Mg, K). Results showed that pebbles can participate to plant nutrition, but no reduction of water stress was observed

  18. Consequences of CO2-rich water intrusion into the Critical Zone

    NASA Astrophysics Data System (ADS)

    Gal, Frédérick; Lions, Julie

    2017-04-01

    From a geochemical point of view, the sensitivity of the Critical Zone to hazards is not only linked to its proximity to the surface. It may also be linked to - albeit less common - intrusion of upward migrating fluids. One of the hazard scenarios to observe these pathways in surface environments is the occurrence of CO2-rich fluid leakage from deeper horizons and especially leakage from reservoir in the case of underground storage such as Carbon Storage applications. Much effort is done to prevent this risk but it necessary to consider the mitigation of this leak to insure safe storage. Numerous active or planned CO2 storage sites belong to large sedimentary basins. In that perspective, a CO2 injection has been performed in a multi-layered - carbonated aquifer (Beauce aquifer) from the Paris basin as this basin has been considered for such applications. The aquifer mineralogy of the targeted site is dominated by calcite (95 to 98%) with traces of quartz and clay minerals. Around 10,000 liters of CO2 were injected at 50 m depth during a series of gaseous pulsed injections for 5 days. After 3 days of incubation in the aquifer, the groundwater was pumped during 5 days allowing the recovery of 140 m3 of backward water. Physico-chemical parameters, major and trace elements concentrations and dissolved CO2 concentrations were monitored to evaluate water-rock interactions occurring within the aquifer and impacts onto water quality. Main changes that were observed during the CO2 release are in good agreement with results from previous experiments performed worldwide. A strong decrease of the pH value (2 units), a rise of the electrical conductivity (2 fold) and changes in the redox conditions (from oxidising to less oxidising) are monitored few hours after the initiation of the pumping. The dissolution of CO2 induces a drop of pH that favours water-rock interaction processes. The kinetic of reactions appears to be dominated by the dissolution of carbonate, mainly calcite

  19. Minerals

    NASA Astrophysics Data System (ADS)

    Wenk, Hans-Rudolf; Bulakh, Andrei

    2004-06-01

    This introduction to mineralogy for undergraduate and graduate students in geology and materials science has been designed for a semester course. Covering all aspects of mineralogy in an integrated way, it links mineral properties with broader geological processes, and conveys their economic importance throughout the text. Handy reference tables and a glossary of terms make this study an indispensable guide for the next generation of mineralogy students.

  20. [Pay attention to the human health risk of drinking low mineral water].

    PubMed

    Shu, Weiqun

    2015-10-01

    The consumption of low mineral drinking water has been increasing around the world with the shortage of water resources and the development of advanced water treatment technologies. Evidences from systematic document reviews, ecological epidemiological observations, and experimental drinking water intervention studies indicate that lack of minerals in drinking water may cause direct or indirect harm to human health, among which, the associations of magnesium in water with cardiovascular disease, as well as calcium in water with osteoporosis, are well proved by sufficient evidence. This article points out that it is urgent to pay more attention to the issues about establishment of health risk evaluation system on susceptible consuming population, establishment of lab evaluation system on water quality and health effect for non-traditional drinking water, and program of safety mineralization for demineralized or desalinated water and so on.

  1. Effects of hydrogen-rich water on depressive-like behavior in mice.

    PubMed

    Zhang, Yi; Su, Wen-Jun; Chen, Ying; Wu, Teng-Yun; Gong, Hong; Shen, Xiao-Liang; Wang, Yun-Xia; Sun, Xue-Jun; Jiang, Chun-Lei

    2016-03-30

    Emerging evidence suggests that neuroinflammation and oxidative stress may be major contributors to major depressive disorder (MDD). Patients or animal models of depression show significant increase of proinflammatory cytokine interleukin-1β (IL-1β) and oxidative stress biomarkers in the periphery or central nervous system (CNS). Recent studies show that hydrogen selectively reduces cytotoxic oxygen radicals, and hydrogen-rich saline potentially suppresses the production of several proinflammatory mediators. Since current depression medications are accompanied by a wide spectrum of side effects, novel preventative or therapeutic measures with fewer side effects might have a promising future. We investigated the effects of drinking hydrogen-rich water on the depressive-like behavior in mice and its underlying mechanisms. Our study show that hydrogen-rich water treatment prevents chronic unpredictable mild stress (CUMS) induced depressive-like behavior. CUMS induced elevation in IL-1β protein levels in the hippocampus, and the cortex was significantly attenuated after 4 weeks of feeding the mice hydrogen-rich water. Over-expression of caspase-1 (the IL-1β converting enzyme) and excessive reactive oxygen species (ROS) production in the hippocampus and prefrontal cortex (PFC) was successfully suppressed by hydrogen-rich water treatment. Our data suggest that the beneficial effects of hydrogen-rich water on depressive-like behavior may be mediated by suppression of the inflammasome activation resulting in attenuated protein IL-1β and ROS production.

  2. Effects of hydrogen-rich water on depressive-like behavior in mice

    PubMed Central

    Zhang, Yi; Su, Wen-Jun; Chen, Ying; Wu, Teng-Yun; Gong, Hong; Shen, Xiao-Liang; Wang, Yun-Xia; Sun, Xue-Jun; Jiang, Chun-Lei

    2016-01-01

    Emerging evidence suggests that neuroinflammation and oxidative stress may be major contributors to major depressive disorder (MDD). Patients or animal models of depression show significant increase of proinflammatory cytokine interleukin-1β (IL-1β) and oxidative stress biomarkers in the periphery or central nervous system (CNS). Recent studies show that hydrogen selectively reduces cytotoxic oxygen radicals, and hydrogen-rich saline potentially suppresses the production of several proinflammatory mediators. Since current depression medications are accompanied by a wide spectrum of side effects, novel preventative or therapeutic measures with fewer side effects might have a promising future. We investigated the effects of drinking hydrogen-rich water on the depressive-like behavior in mice and its underlying mechanisms. Our study show that hydrogen-rich water treatment prevents chronic unpredictable mild stress (CUMS) induced depressive-like behavior. CUMS induced elevation in IL-1β protein levels in the hippocampus, and the cortex was significantly attenuated after 4 weeks of feeding the mice hydrogen-rich water. Over-expression of caspase-1 (the IL-1β converting enzyme) and excessive reactive oxygen species (ROS) production in the hippocampus and prefrontal cortex (PFC) was successfully suppressed by hydrogen-rich water treatment. Our data suggest that the beneficial effects of hydrogen-rich water on depressive-like behavior may be mediated by suppression of the inflammasome activation resulting in attenuated protein IL-1β and ROS production. PMID:27026206

  3. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in mineral water and tap water.

    PubMed

    Gellrich, Vanessa; Brunn, Hubertus; Stahl, Thorsten

    2013-01-01

    The aims of the present study were to determine PFAS (perfluoroalkyl and polyfluoroalkyl substances) concentrations in various sources of water intended for human consumption, use these data to calculate the possible uptake via water as well as to estimate the water related health risk to consumers. A total of 177 water samples (119 mineral waters, 26 tap water samples, 18 spring water samples and 14 raw (untreated) water samples) were analyzed using liquid chromatography tandem mass spectrometry for the presence of 10 or 19 PFASs, respectively. PFAS concentrations above the limit of detection of 1 ng/L were found in 52% of all samples. Short-chain PFASs with less than 8 carbon atoms were responsible for 58% of the total PFAS contamination. The highest concentration (sum of PFASs) of 42.7 ng/L was detected in tap water. The calculated maximum uptake of both components for which a tolerable daily intake (TDI) level exists were 0.17 ng/kg bodyweight/day for PFOS (perfluorooctane sulfonic acid) and 0.21 ng/kg bodyweight/day for PFOA (perfluorooctane carboxylic acid). In regard to the model calculations made here (TDI for adults and for infants), the uptake of PFOS and PFOA via consumption of water can be considered negligible. Supplemental materials are available for this article. Go to the publisher's online edition of Journal of Environmental Science and Health, Part A to view the supplemental file.

  4. Interaction among minerals, organics and water in comets: insights from Antarctic micrometeorites

    NASA Astrophysics Data System (ADS)

    Nagahara, Hiroko; Noguchi, Takaaki; Yabuta, Hikaru; Itoh, Shoichi; Sakamoto, Naoya; Mitsunari, Takuya; Okubo, Aya; Okazaki, Ryuji; Nakamura, Tomoki; Tachibana, Shogo; Terada, Kentaro; Ebihara, Mitsuru; Imae, Naoya; Kimura, Makoto

    2016-04-01

    The evolution and interaction of inorganic materials and organic materials are one of the crucial issues of space science, which is also a main topic of current planetary missions. In order to clarify the early stage of evo-lution of primitive materials in the solar system, we have carried out a comprehensive study on micrometeorites collected from the Antarctica virgin snow with SEM, TEM, Carbon-, N-, and O-XANES, and SIMS. On the basis of observation, we estimate the primary materials and the sequence of aqueous reaction in the inorganic and organic materials. The most primitive materials are GEMS (amorphous silicate with Fe-metal and sulfide), small olivine and low-Ca pyroxene, and pyrrhotite, which are embedded in organic materials. The or-ganic materials are macromolecules being rich in C=O groups with subordinate amount of C≡N and/or C=N-C groups, and they accompany D and 15N enrichments. Due to the heavy hydrogen and nitrogen isotopic composi-tions, the organics are estimated to be originated at very low temperature in the molecular cloud or a prestellar environment, which also generated various organic molecules. The aqueous alteration reaction started at first in organic materials, where N-heterocycle, δD, and δ15N are lost and the organics become aromatic-rich. GEMS altered next, where metallic Fe dissolved into water to form Fe-rich saponite remaining Mg-rich amorphous silicate (Stage I). The aromaticity of the organics increases, and the chemical nature of organics becomes close to insoluble organic materials in primitive chondrites. Then, sulfide in GEMS, small olivine and low-Ca pyroxene grains, and Fe-rich saponite react with water to form Mg-rich saponite and Fe-hydroxide (Stage II). Sulfur may have been incorporated into phyllosilicate and/or organics or flew away. Finally, heterogeneous phyllosilicates at Stage II were homogenized to be Mg-rich saponite with formation of carbonate and loss of organics (Stage III). Carbon to form carbonate were

  5. Extensive, water-rich magma reservoir beneath southern Montserrat

    NASA Astrophysics Data System (ADS)

    Edmonds, M.; Kohn, S. C.; Hauri, E. H.; Humphreys, M. C. S.; Cassidy, M.

    2016-05-01

    South Soufrière Hills and Soufrière Hills volcanoes are 2 km apart at the southern end of the island of Montserrat, West Indies. Their magmas are distinct geochemically, despite these volcanoes having been active contemporaneously at 131-129 ka. We use the water content of pyroxenes and melt inclusion data to reconstruct the bulk water contents of magmas and their depth of storage prior to eruption. Pyroxenes contain up to 281 ppm H2O, with significant variability between crystals and from core to rim in individual crystals. The Al content of the enstatites from Soufrière Hills Volcano (SHV) is used to constrain melt-pyroxene partitioning for H2O. The SHV enstatite cores record melt water contents of 6-9 wt%. Pyroxene and melt inclusion water concentration pairs from South Soufriere Hills basalts independently constrain pyroxene-melt partitioning of water and produces a comparable range in melt water concentrations. Melt inclusions recorded in plagioclase and in pyroxene contain up to 6.3 wt% H2O. When combined with realistic melt CO2 contents, the depth of magma storage for both volcanoes ranges from 5 to 16 km. The data are consistent with a vertically protracted crystal mush in the upper crust beneath the southern part of Montserrat which contains heterogeneous bodies of eruptible magma. The high water contents of the magmas suggest that they contain a high proportion of exsolved fluids, which has implications for the rheology of the mush and timescales for mush reorganisation prior to eruption. A depletion in water in the outer 50-100 μm of a subset of pyroxenes from pumices from a Vulcanian explosion at Soufrière Hills in 2003 is consistent with diffusive loss of hydrogen during magma ascent over 5-13 h. These timescales are similar to the mean time periods between explosions in 1997 and in 2003, raising the possibility that the driving force for this repetitive explosive behaviour lies not in the shallow system, but in the deeper parts of a vertically

  6. Sulphate-bicarbonate mineral waters in the treatment of biliary and digestive tract diseases.

    PubMed

    Fraioli, A; Menunni, G; Petraccia, L; Fontana, M; Nocchi, S; Grassi, M

    2010-01-01

    The authors point out the therapeutic properties of sulphate-bicarbonate mineral waters. After summarizing the general mechanism of action of mineral waters, the main indications of such waters in thermal treatment are examined including: biliary sand, biliary dyskinesia, functional dyspepsia, irritable colon, chronic primitive constipation. The dysfunctions of biliary and digestive tracts are growing, mainly in the affluent world, because of the increase for stress, dietary habits, modern life style. Now they affect from 2,4% of general population to 7% of men and 20% of women, according to different studies. Mineral waters can improve symptoms and care some physiopathological underlying mechanisms. Authors stress the efficacy of sulphate-bicarbonate mineral waters in the therapy of biliary dyskinesias, namely gallbladder hypokinesia and Oddi's sphincter spasm, caused by their content in SO4 = anion and Mg++ cation and related effects on paracrine-endocrine gastrointestinal system. In addition, they report the effects of sulphate-bicarbonate mineral waters in the lithogenic bile (sand bile), because of their diluting and washing activity. Among the sulphate-bicarbonate mineral waters, the Authors outline the well-documented therapeutic activity of Acqua Santa and Fucoli of Chianciano Terme. Acqua Santa has stimulating effect on cholecystis's motility, as proved by controlled clinical trials. Finally, the therapeutic use of sulphate-bicarbonate mineral water is discussed in functional dyspepsia, chronic primitive constipation and irritable bowel syndrome.

  7. Comparison of formation mechanism of fresh-water and salt-water lacustrine organic-rich shale

    NASA Astrophysics Data System (ADS)

    Lin, Senhu

    2017-04-01

    Based on the core and thin section observation, major, trace and rare earth elements test, carbon and oxygen isotopes content analysis and other geochemical methods, a detailed study was performed on formation mechanism of lacustrine organic-rich shale by taking the middle Permian salt-water shale in Zhungaer Basin and upper Triassic fresh-water shale in Ordos Basin as the research target. The results show that, the middle Permian salt-water shale was overall deposited in hot and dry climate. Long-term reductive environment and high biological abundance due to elevated temperature provides favorable conditions for formation and preservation of organic-rich shale. Within certain limits, the hotter climate, the organic-richer shale formed. These organic-rich shale was typically distributed in the area where palaeosalinity is relatively high. However, during the upper Triassic at Ordos Basin, organic-rich shale was formed in warm and moist environment. What's more, if the temperature, salinity or water depth rises, the TOC in shale decreases. In other words, relatively low temperature and salinity, stable lake level and strong reducing conditions benefits organic-rich shale deposits in fresh water. In this sense, looking for high-TOC shale in lacustrine basin needs to follow different rules depends on the palaeoclimate and palaeoenvironment during sedimentary period. There is reason to believe that the some other factors can also have significant impact on formation mechanism of organic-rich shale, which increases the complexity of shale oil and gas prediction.

  8. Natural mineral bottled waters available on the Polish market as a source of minerals for the consumers. Part 1. Calcium and magnesium.

    PubMed

    Gątarska, Anna; Tońska, Elżbieta; Ciborska, Joanna

    2016-01-01

    Natural mineral waters may be an essential source of calcium, magnesium and other minerals. In bottled waters, minerals occur in an ionized form which is very well digestible. However, the concentration of minerals in underground waters (which constitute the material for the production of bottled waters) varies. In view of the above, the type of water consumed is essential. The aim of the study was to estimate the calcium and magnesium contents in products available on the market and to evaluate calcium and magnesium consumption with natural mineral water by different consumer groups with an assumed volume of the consumed product. These represented forty different brands of natural mineral available waters on Polish market. These waters were produced in Poland or other European countries. Among the studied products, about 30% of the waters were imported from Lithuania, Latvia, Czech Republic, France, Italy and Germany. The content of calcium and magnesium in mineral waters was determined using flame atomic absorption spectrometry in an acetylene-air flame. Further determinations were carried out using atomic absorption spectrometer--ICE 3000 SERIES-THERMO-England, equipped with a GLITE data station, background correction (a deuterium lamp) as well as other cathode lamps. Over half of the analysed natural mineral waters were medium-mineralized. The natural mineral waters available on the market can be characterized by a varied content of calcium and magnesium and a high degree of product mineralization does not guarantee significant amounts of these components. Among the natural mineral waters available on the market, only a few feature the optimum calcium-magnesium proportion (2:1). Considering the mineralization degree of the studied products, it can be stated that the largest percentage of products with significant calcium and magnesium contents can be found in the high-mineralized water group. For some natural mineral waters, the consumption of 1 litre daily may

  9. Multi-Generational Drinking of Bottled Low Mineral Water Impairs Bone Quality in Female Rats

    PubMed Central

    Zeng, Hui; Wang, Lingqiao; Wang, Dahua; Luo, Jiaohua; Zhang, Liang; Huang, Yujing; Chen, Ji-an; Shu, Weiqun

    2015-01-01

    Background Because of reproductions and hormone changes, females are more sensitive to bone mineral loss during their lifetime. Bottled water has become more popular in recent years, and a large number of products are low mineral water. However, research on the effects of drinking bottled low mineral water on bone health is sparse. Objective To elucidate the skeletal effects of multi-generational bottled water drinking in female rats. Methods Rats continuously drank tap water (TW), bottled natural water (bNW), bottled mineralized water (bMW), or bottled purified water (bPW) for three generations. Results The maximum deflection, elastic deflection, and ultimate strain of the femoral diaphysis in the bNW, bMW, and bPW groups and the fracture strain in the bNW and bMW groups were significantly decreased. The tibiae calcium levels in both the bNW and bPW groups were significantly lower than that in the TW group. The tibiae and teeth magnesium levels in both the bNW and bPW groups were significantly lower than those in the TW group. The collagen turnover markers PICP (in both bNW and bPW groups) were significantly lower than that in the TW group. In all three low mineral water groups, the 1,25-dihydroxy-vitamin D levels were significantly lower than those in the TW group. Conclusion Long-term drinking of low mineral water may disturb bone metabolism and biochemical properties and therefore weaken biomechanical bone properties in females. Drinking tap water, which contains adequate minerals, was found to be better for bone health. To our knowledge, this is the first report on drinking bottled low mineral water and female bone quality on three generation model. PMID:25803851

  10. Multi-generational drinking of bottled low mineral water impairs bone quality in female rats.

    PubMed

    Qiu, Zhiqun; Tan, Yao; Zeng, Hui; Wang, Lingqiao; Wang, Dahua; Luo, Jiaohua; Zhang, Liang; Huang, Yujing; Chen, Ji-an; Shu, Weiqun

    2015-01-01

    Because of reproductions and hormone changes, females are more sensitive to bone mineral loss during their lifetime. Bottled water has become more popular in recent years, and a large number of products are low mineral water. However, research on the effects of drinking bottled low mineral water on bone health is sparse. To elucidate the skeletal effects of multi-generational bottled water drinking in female rats. Rats continuously drank tap water (TW), bottled natural water (bNW), bottled mineralized water (bMW), or bottled purified water (bPW) for three generations. The maximum deflection, elastic deflection, and ultimate strain of the femoral diaphysis in the bNW, bMW, and bPW groups and the fracture strain in the bNW and bMW groups were significantly decreased. The tibiae calcium levels in both the bNW and bPW groups were significantly lower than that in the TW group. The tibiae and teeth magnesium levels in both the bNW and bPW groups were significantly lower than those in the TW group. The collagen turnover markers PICP (in both bNW and bPW groups) were significantly lower than that in the TW group. In all three low mineral water groups, the 1,25-dihydroxy-vitamin D levels were significantly lower than those in the TW group. Long-term drinking of low mineral water may disturb bone metabolism and biochemical properties and therefore weaken biomechanical bone properties in females. Drinking tap water, which contains adequate minerals, was found to be better for bone health. To our knowledge, this is the first report on drinking bottled low mineral water and female bone quality on three generation model.

  11. Response of anaerobic carbon cycling to water table manipulation in an Alaskan rich fen

    Treesearch

    E.S. Kane; M.R. Chivers; M.S. Turetsky; C.C. Treat; D.G. Petersen; M. Waldrop; J.W. Harden; A.D. McGuire

    2013-01-01

    To test the effects of altered hydrology on organic soil decomposition, we investigated CO2 and CH4 production potential of rich-fen peat (mean surface pH = 6.3) collected from a field water table manipulation experiment including control, raised and lowered water table treatments. Mean anaerobic CO2...

  12. Mineralization of biogenic materials in the water masses of the South Atlantic Ocean. II: Stoichiometric ratios and mineralization rates

    NASA Astrophysics Data System (ADS)

    Álvarez-Salgado, X. A.; Álvarez, M.; Brea, S.; Mèmery, L.; Messias, M. J.

    2014-04-01

    The variability of nitrate (N), phosphate (P), silicate (Si) and Apparent Oxygen Utilization (AOU) due to water mass mixing was objectively separated from the variability due to mineralization of biogenic materials in the western and eastern South Atlantic Ocean on basis of the constrained Optimum MultiParameter (OMP) analysis implemented in the companion manuscript. Using a consensus linear regression model, AOU/N/P/Si mineralization ratios and the corresponding oxygen utilisation rates (OURs) were obtained for the realm of each water mass defined after the OMP analysis. Combining these results with a stoichiometric model, the organic carbon to nitrogen (C/N) ratios and the biochemical composition (carbohydrates + lipids, proteins and phosphorus compounds) of the mineralized material, were derived. The vertical variability of the AOU/N, AOU/P and AOU/C mineralization ratios pointed to a significant fractionation during the mineralization of sinking organic matter. This fractionation was confirmed by preferential consumption of organic phosphorous compounds and proteins in shallower levels, which produced an increase of the C/N ratio of the mineralised materials of 0.5 ± 0.2 mol C mol N-1 every 1000 dbar. OURs in the twilight zone decreased quadratically with the C/N molar ratio of the mineralised material and exponentially with pressure (p, in 103 dbar) according to the following regression equation: Ln (OUR) = 6.2(±1.2) - 2.0(±0.7) * Ln (C/N) - 0.6(±0.2) * p (r2 = 0.87, p < 0.006, n = 8). This variability in the rates and stoichiometric ratios of the biogenic material mineralization compromises our capacity to predict the ocean biogeochemistry response to global change, including the CO2 uptake and storage and the corresponding feedback mechanisms.

  13. No evidence of complementary water use along a plant species richness gradient in temperate experimental grasslands.

    PubMed

    Bachmann, Dörte; Gockele, Annette; Ravenek, Janneke M; Roscher, Christiane; Strecker, Tanja; Weigelt, Alexandra; Buchmann, Nina

    2015-01-01

    Niche complementarity in resource use has been proposed as a key mechanism to explain the positive effects of increasing plant species richness on ecosystem processes, in particular on primary productivity. Since hardly any information is available for niche complementarity in water use, we tested the effects of plant diversity on spatial and temporal complementarity in water uptake in experimental grasslands by using stable water isotopes. We hypothesized that water uptake from deeper soil depths increases in more diverse compared to low diverse plant species mixtures. We labeled soil water in 8 cm (with 18O) and 28 cm depth (with ²H) three times during the 2011 growing season in 40 temperate grassland communities of varying species richness (2, 4, 8 and 16 species) and functional group number and composition (legumes, grasses, tall herbs, small herbs). Stable isotope analyses of xylem and soil water allowed identifying the preferential depth of water uptake. Higher enrichment in 18O of xylem water than in ²H suggested that the main water uptake was in the upper soil layer. Furthermore, our results revealed no differences in root water uptake among communities with different species richness, different number of functional groups or with time. Thus, our results do not support the hypothesis of increased complementarity in water use in more diverse than in less diverse communities of temperate grassland species.

  14. No Evidence of Complementary Water Use along a Plant Species Richness Gradient in Temperate Experimental Grasslands

    PubMed Central

    Bachmann, Dörte; Gockele, Annette; Ravenek, Janneke M.; Roscher, Christiane; Strecker, Tanja; Weigelt, Alexandra; Buchmann, Nina

    2015-01-01

    Niche complementarity in resource use has been proposed as a key mechanism to explain the positive effects of increasing plant species richness on ecosystem processes, in particular on primary productivity. Since hardly any information is available for niche complementarity in water use, we tested the effects of plant diversity on spatial and temporal complementarity in water uptake in experimental grasslands by using stable water isotopes. We hypothesized that water uptake from deeper soil depths increases in more diverse compared to low diverse plant species mixtures. We labeled soil water in 8 cm (with 18O) and 28 cm depth (with ²H) three times during the 2011 growing season in 40 temperate grassland communities of varying species richness (2, 4, 8 and 16 species) and functional group number and composition (legumes, grasses, tall herbs, small herbs). Stable isotope analyses of xylem and soil water allowed identifying the preferential depth of water uptake. Higher enrichment in 18O of xylem water than in ²H suggested that the main water uptake was in the upper soil layer. Furthermore, our results revealed no differences in root water uptake among communities with different species richness, different number of functional groups or with time. Thus, our results do not support the hypothesis of increased complementarity in water use in more diverse than in less diverse communities of temperate grassland species. PMID:25587998

  15. Water in Nominally Anhydrous Deep Crustal Minerals: Facilitators of Deformation and Partial Melting

    NASA Astrophysics Data System (ADS)

    Seaman, S. J.; Williams, M. L.; Koteas, G. C.

    2010-12-01

    Igneous rocks of the lowest crust are commonly dominated by anhydrous minerals such as plagioclase feldspar, alkali feldspar, and quartz. Hydrous minerals such as muscovite, biotite, and hornblende can facilitate melting through dehydration melting reactions. Eutectic melting is aided by the relatively high ambient temperature of the lowermost crust and by the tendency of partial melts of mantle rocks to heat the lower crust both as a result of underplating and by intrusion into the lower crust. Free water is the most typical flux for lowering the eutectic temperature of the crystalline rocks of the lowermost crust, and subduction is the most commonly cited mechanism for delivering water to this setting. However, water in nominally anhydrous minerals such as quartz and feldspar is an additional flux for partial melting of granitoid source rocks. Water occurs both in structural sites in the host minerals and in fluid inclusions. Although water occurs in low concentrations (300-5000 ppm is typical), the abundance of these minerals in granitoids makes the effect of the water significant in terms of slightly lowering the solidus and initiating partial melting. 500 ppm water in minerals that make up large volumes of crustal rocks (alkali feldspar, plagioclase feldspar, quartz) would lower the dry solidus of granite by 24oC at 1 GPa and, because of the small bulk distribution coefficient likely for water in these minerals, would produce a near-solidus melt with XH20 = 0.248, corresponding to 8.3 weight percent water in the partial melt. Water that is trapped in a single phase is not an effective flux. It is likely that deformation of lower crustal minerals by dislocation creep mobilizes water from mineral interiors and transporting it to sites of cotectic or eutectic mineral assemblages. Water in mineral structures is likely to weaken nominally anhydrous minerals, making them susceptible to deformation by dislocation creep. The positive feedback between structural

  16. Arsenic-rich acid mine water with extreme arsenic concentration: mineralogy, geochemistry, microbiology, and environmental implications.

    PubMed

    Majzlan, Juraj; Plášil, Jakub; Škoda, Radek; Gescher, Johannes; Kögler, Felix; Rusznyak, Anna; Küsel, Kirsten; Neu, Thomas R; Mangold, Stefan; Rothe, Jörg

    2014-12-02

    Extremely arsenic-rich acid mine waters have developed by weathering of native arsenic in a sulfide-poor environment on the 10th level of the Svornost mine in Jáchymov (Czech Republic). Arsenic rapidly oxidizes to arsenolite (As2O3), and there are droplets of liquid on the arsenolite crust with high As concentration (80,000-130,000 mg·L(-1)), pH close to 0, and density of 1.65 g·cm(-1). According to the X-ray absorption spectroscopy on the frozen droplets, most of the arsenic is As(III) and iron is fully oxidized to Fe(III). The EXAFS spectra on the As K edge can be interpreted in terms of arsenic polymerization in the aqueous solution. The secondary mineral that precipitates in the droplets is kaatialaite [Fe(3+)(H2AsO4)3·5H2O]. Other unusual minerals associated with the arsenic lens are běhounekite [U(4+)(SO4)2·4H2O], štěpite [U(4+)(AsO3OH)2·4H2O], vysokýite [U(4+)[AsO2(OH)2]4·4H2O], and an unnamed phase (H3O)(+)2(UO2)2(AsO4)2·nH2O. The extremely low cell densities and low microbial biomass have led to insufficient amounts of DNA for downstream polymerase chain reaction amplification and clone library construction. We were able to isolate microorganisms on oligotrophic media with pH ∼ 1.5 supplemented with up to 30 mM As(III). These microorganisms were adapted to highly oligotrophic conditions which disabled long-term culturing under laboratory conditions. The extreme conditions make this environment unfavorable for intensive microbial colonization, but our first results show that certain microorganisms can adapt even to these harsh conditions.

  17. Hydrogenous mineral neoformations in Tomsk water intake facility from underground sources

    NASA Astrophysics Data System (ADS)

    Dutova, E.; Vologdina, I.; Pokrovsky, D.; Nalivaiko, N.; Kuzevanov, K.; Pokrovsky, V.

    2016-03-01

    The article considers study outcomes of hydrogenous mineral neoformations precipitated on deferrization filters of Tomsk water intake facility from underground sources. Compositionally, these precipitations are colloform and polymineral including ferrous, carbonate and aluminosilicate mineral phases. Ferrous phase predominates and embraces ferric hydroxides (ferrihydrate, goethite, hematite and lepidocrocite) and ferrous hydrophosphates (vivianite, strengite, strunzite and rockbridgeit). Carbonate and aluminosilicate minerals are calcite and kaolinite-group, respectively.

  18. Mineral concentrations in diets, water, and milk and their value in estimating on-farm excretion of manure minerals in lactating dairy cows.

    PubMed

    Castillo, A R; St-Pierre, N R; Silva del Rio, N; Weiss, W P

    2013-05-01

    Thirty-nine commercial dairies in Merced County, California were enrolled in the present study to (1) compare lactating cow mineral intakes (via drinking water and total mixed ration) to the National Research Council (NRC) requirements, (2) evaluate the association between dietary concentrations of minerals with and without drinking water and adjusted for mineral concentrations in milk, and (3) compare 4 different methods to estimate excretion of minerals using either assays or estimations of milk mineral outputs and total daily mineral intake per cow with or without minerals coming from drinking water. Dairies were selected to represent a range of herd milk yields and a range of water mineral contents. Samples of total mixed ration, drinking water, and bulk tank milk were taken on 2 different days, 3 to 7d apart in each farm. Across-farm medians and percentile distributions were used to analyze results. The herd median milk yield interquartile ranged (10th to 90th percentile) from less than 25 to more than 39 kg/d and the concentration of total solids in water interquartile ranged from less than 200 to more than 1,490 mg/L. Including drinking water minerals in the diets increased dietary concentrations by <4% for all minerals except for Na and Cl, which increased by 9.3 and 6.5%, respectively. Concentrations of P and K in milk were essentially the same as the NRC value to estimate lactation requirements. However, NRC milk values of Ca, Cl, and Zn were 10 to 20% greater than dairy farm values; and Na, Cu, Fe, and Mn were no less than 36% below NRC values. Estimated excretion of minerals via manure varied substantially across farms. Farms in the 10th percentile did have 2 to 3 times less estimated mineral excretions than those in the 90th percentile (depending on the mineral). Although including water minerals increased excretion of most minerals, the actual median effect of Ca, Mg, S, Cu, Fe, and Mn was less than 5%, and about 8% for Na and Cl. Replacing assayed

  19. Behavior of enteroaggregative Escherichia coli in bottled spring and mineral water.

    PubMed

    Vasudevan, Pradeep; Annamalai, Thirunavukkarasu; Sartori, Luigi; Hoagland, Thomas; Venkitanarayanan, Kumar

    2003-03-01

    The ability of enteroaggregative Escherichia coli (EAEC) to survive in bottled mineral and spring water at common storage temperatures was investigated. Filtered mineral and spring waters were inoculated with EAEC (ca. 10(4) CFU/ml) and stored at 4, 10, and 23 degrees C. Water samples were analyzed every 3 days for viable EAEC by plating on tryptic soy agar plates over 60 days of storage. EAEC survived for the duration of the study in both mineral and spring waters. EAEC survival levels were significantly higher (P < 0.01) at 23 and 10 degrees C than at 4 degrees C. Furthermore, EAEC survival levels were significantly higher (P < 0.01) in mineral water than in spring water at 4 and 10 degrees C. The results of this study indicate that EAEC can survive in bottled mineral and spring waters for long periods of storage at 4, 10, and 23 degrees C. The ability of EAEC to survive in bottled water indicates that the source water for bottling industries must be kept free of contamination. Furthermore, the refrigeration of bottled water is recommended to minimize the growth of EAEC in water.

  20. Major and trace element composition of copiapite-group minerals and coexisting water from the Richmond mine, Iron Mountain, California

    USGS Publications Warehouse

    Jamieson, H.E.; Robinson, C.; Alpers, C.N.; McCleskey, R.B.; Nordstrom, D.K.; Peterson, Ronald C.

    2005-01-01

    Copiapite-group minerals of the general formula AR4 (SO4)6(OH)2??nH2O, where A is predominantly Mg, Fe2+, or 0.67Al3+, R is predominantly Fe3+, and n is typically 20, are among several secondary hydrous Fe sulfates occurring in the inactive mine workings of the massive sulfide deposit at Iron Mountain, CA, a USEPA Superfund site that produces extremely acidic drainage. Samples of copiapite-group minerals, some with coexisting water, were collected from the Richmond mine. Approximately 200 mL of brownish pore water with a pH of -0.9 were extracted through centrifugation from a 10-L sample of moist copiapite-group minerals taken from pyritic muck piles. The pore water is extremely rich in ferric iron (Fe3+=149 g L-1, FeT=162 g L-1 and has a density of 1.52 g mL-1. The composition of the pore water is interpreted in the context of published phase relations in the Fe2O3- SO3-H2O system and previous work on the chemistry of extremely acid mine waters and associated minerals in the Richmond mine. Two distinct members of the copiapite mineral group were identified in the samples with coexisting water: (1) abundant magnesiocopiapite consisting of platy crystals 10 to 50 ??m and (2) minor aluminocopiapite present as smaller platy crystals that form spheroidal aggregates. The average composition (n=5) of the magnesiocopiapite is (Mg0.90Fe0.172+ Zn0.02Cu0.01)???1.10(Fe3.833+Al0.09)???3.92(SO4) 6.00(OH)1.96??20H2O. Bulk compositions determined by digestion and wet-chemical analysis are consistent with the microanalytical results. These results suggest that magnesiocopiapite is the least soluble member of the copiapite group under the prevailing conditions. Micro-PIXE analysis indicates that the copiapite-group minerals in this sample sequester Zn (average 1420 ppm), with lesser amounts of Cu (average 270 ppm) and As (average 64 ppm). ?? 2004 Elsevier B.V. All rights reserved.

  1. Cavitation pitting and erosion of Al 6061-T6 in mineral oil and water

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1983-01-01

    The authors are currently carrying out a study of the cavitation erosion of different bearing metals and alloys in mineral oils were studied. The variations of weight loss, the pit diameter and depth due to cavitation erosion on Al 6061-T6 in mineral oil and water are presented.

  2. Training of panellists for the sensory control of bottled natural mineral water in connection with water chemical properties.

    PubMed

    Rey-Salgueiro, Ledicia; Gosálbez-García, Aitana; Pérez-Lamela, Concepción; Simal-Gándara, Jesús; Falqué-López, Elena

    2013-11-01

    As bottled mineral water market is increasing in the world (especially in emergent and developed countries), the development of a simple protocol to train a panel to evaluate sensory properties would be a useful tool for natural drinking water industry. A sensory protocol was developed to evaluate bottled natural mineral water (17 still and 10 carbonated trademarks). The tasting questionnaire included 13 attributes for still water plus overall impression and they were sorted by: colour hues, transparency and brightness, odour/aroma and taste/flavour/texture and 2 more for carbonated waters (bubbles and effervescence). The training lasted two months with, at least, 10 sessions, was adequate to evaluate bottled natural mineral water. To confirm the efficiency of the sensory training procedure two sensory groups formed the whole panel. One trained panel (6 persons) and one professional panel (6 sommeliers) and both participated simultaneously in the water tasting evaluation of 3 sample lots. Similar average scores obtained from trained and professional judges, with the same water trademarks, confirmed the usefulness of the training protocol. The differences obtained for trained panel in the first lot confirm the necessity to train always before a sensory procedure. A sensory water wheel is proposed to guide the training in bottled mineral water used for drinking, in connection with their chemical mineral content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Adsorption of Dextrin at Mineral/Water Interface

    PubMed

    Raju; Holmgren; Forsling

    1997-09-15

    The adsorption mechanism of dextrin on aqueous minerals such as fluorite, apatite, galena, magnetite, gamma-alumina, and graphite was studied by adsorption experiments, zeta potential measurements, and FT-IR studies. Depending on the nature of the mineral surface, dextrin was found to interact in three different ways viz. by chemisorption, physisorption, or hydrophobic-hydrophobic interaction. The adsorption density of dextrin was found to be pH dependent. Maximum adsorption of dextrin was obtained around the pH at which the mineral surface is highly hydroxylated. The mechanism of dextrin interaction with the surface metal hydroxy sites, ( identical withMeOH), was found to proceed via chemical complexation. A linear relationship was observed between the adsorption density of dextrin and the pH of maximum surface hydroxylation. Zeta potential measurements have indicated the possibility of dextrin adsorption by electrostatic interaction under the conditions where mineral surface and dextrin are oppositely charged. Furthermore dextrin was found to adsorb on hydrophobic minerals such as graphite by hydrophobic-hydrophobic interaction. However, the magnitude of adsorption by electrostatic and hydrophobic interaction was found to be very marginal compared to that of chemical complexation. Copyright 1997 Academic Press. Copyright 1997Academic Press

  4. Water-rich basalts at mid-ocean-ridge cold spots.

    PubMed

    Ligi, Marco; Bonatti, Enrico; Cipriani, Anna; Ottolini, Luisa

    2005-03-03

    Although water is only present in trace amounts in the suboceanic upper mantle, it is thought to play a significant role in affecting mantle viscosity, melting and the generation of crust at mid-ocean ridges. The concentration of water in oceanic basalts has been observed to stay below 0.2 wt%, except for water-rich basalts sampled near hotspots and generated by 'wet' mantle plumes. Here, however, we report unusually high water content in basaltic glasses from a cold region of the mid-ocean-ridge system in the equatorial Atlantic Ocean. These basalts are sodium-rich, having been generated by low degrees of melting of the mantle, and contain unusually high ratios of light versus heavy rare-earth elements, implying the presence of garnet in the melting region. We infer that water-rich basalts from such regions of thermal minima derive from low degrees of 'wet' melting greater than 60 km deep in the mantle, with minor dilution by melts produced by shallower 'dry' melting--a view supported by numerical modelling. We therefore conclude that oceanic basalts are water-rich not only near hotspots, but also at 'cold spots'.

  5. [Development of salt concentrates for mineralization of recycled water aboard the space station].

    PubMed

    Skliar, E F; Amiragov, M S; Bobe, L S; Gavrilov, L I; Kurochkin, M G; Solntseva, D P; Krasnov, M S; Skuratov, V M

    2006-01-01

    Recycled water can be brought up to the potable grade by adding minimal quantities of three soluble concentrates with the maximal content of inorganic salts. The authors present results of 3-year storage of potable water mineralized with makeup concentrates and analysis of potable water prepared with the use of the salt concentrates stored over this period of time. A water mineralization unit has been designed based on the principle of cyclic duty to produce physiologically healthy potable water with a preset salt content.

  6. [Fundamental study on effect of high-mineral drinking water for osteogenesis in calciprivia ovariectomized rats].

    PubMed

    Ogata, Fumihiko; Nagai, Noriaki; Ito, Yoshimasa; Kawasaki, Naohito

    2014-01-01

    Since osteoporosis is a major public health problem in Japan, it is important to clarify the effect of high-mineral drinking water consumption on osteogenesis. Therefore, in this study, we investigated the relationship between high-mineral drinking water consumption and osteogenesis in ovariectomized rats that received a low-calcium diet and purified water (PW group) or a low-calcium diet and high-mineral drinking water (CR group). High-mineral drinking water affected the rats' body weight. After 3 months, the bone density of the CR group was higher than that of the PW group (p<0.05). Furthermore, the CR group showed a decrease in the amount of calcium in the bones after 3 months. These results suggest that high-mineral drinking water contributes to the maintenance of bone density and not to the amount of calcium in bone. On the other hand, serum alkaline phosphatase levels in the PW group at 3 months were higher than those in the CR group, which indicates that the blood concentration of calcium in the CR group was maintained. Moreover, the amount of magnesium in the bones and the blood concentration of magnesium in the CR group after 3 months were higher than the corresponding values in the PW group. These results suggest that consumption of high-mineral drinking water could be beneficial for osteogenesis (i.e., for maintaining bone quantity).

  7. Anomalies in mineralization of low concentrations of organic compounds in lake water and sewage.

    PubMed Central

    Hoover, D G; Borgonovi, G E; Jones, S H; Alexander, M

    1986-01-01

    The rates of mineralization of nitrilotriacetic acid (NTA), 2,4-dichlorophenoxyacetic acid (2,4-D), p-nitrophenol, aniline, and isopropyl N-phenylcarbamate (IPC) at one or more concentrations ranging from 100 pg/ml to 1.0 microgram/ml were proportional to chemical concentrations in samples of three lakes. The rates at 100 pg of NTA, 2,4-D, p-nitrophenol, and aniline per ml in samples of one or more lakes were less than predicted, assuming the rates were linearly related to the concentration. Neither NTA nor 2,4-dichlorophenol at 2.0 ng/ml was mineralized in some lake waters, but higher levels of the two chemicals were converted to CO2 in samples of the same waters. In samples from two lakes, little or no mineralization of IPC or 2,4-D occurred at 1.0 microgram/ml, but 10 ng/ml or lower levels of the herbicides were mineralized. The mineralization in sewage of 1.0 microgram of NTA per ml was biphasic; about 20% of the substrate was mineralized in 20 h, and mineralization was only reinitiated after a period of 130 h. The biphasic transformation was not a result of the accumulation of organic products, and it was still evident if protozoan activity was inhibited. NTA also underwent a biphasic mineralization in lake waters, and the biphasic pattern was not altered by additions of growth factors and inorganic nutrients. From 40 to 60% of the carbon of aniline added to lake water at levels of 100 pg/ml to 1.0 microgram/ml was mineralized, but more than 90% of the carbon of NTA, 2,4-D, or p-nitrophenol added to lake water at 10 ng/ml or 1.0 microgram/ml was mineralized.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:3954341

  8. Harnessing Water and Resources from Clay Minerals on Mars and Planetary Bodies

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.

    2017-02-01

    Clay minerals provide a source of water, metals, and cations that can be harvested to provide resources for human exploration on Mars, asteroids, etc. Planning how to access these resources from clays could be a vital component of human exploration.

  9. Real-time QEXAFS spectroscopy measures rapid precipitate formation at the mineral-water interface.

    PubMed

    Siebecker, Matthew; Li, Wei; Khalid, Syed; Sparks, Donald

    2014-09-19

    Reactions at the mineral-water interface are central to numerous geochemical processes and have consequences at local, regional and global scales. They are also important in materials science research. Kinetics greatly influences mineral-water interface reactions; however, there are few kinetic data in real-time and at the molecular scale. Here we report real-time data illustrating the rapid formation of nickel aluminium-layered double hydroxide precipitates at the mineral-water interface in a flow environment in as little as 31-40 min. Layered double hydroxides have a variety of applications in environmental remediation and materials science. The real-time data shown here enhance our fundamental understanding of the kinetics of mineral-water interface processes, such as adsorption, dissolution and precipitation, by illustrating their rapid and simultaneous occurrence in a dynamic environment. Both precipitation and adsorption can occur on the same rapid timescale.

  10. Cavitation pitting and erosion of aluminum 6061-T6 in mineral oil water

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1983-01-01

    Cavitation erosion studies of aluminum 6061-T6 in mineral oil and in ordinary tap water are presented. The maximum erosion rate (MDPR, or mean depth of penetration rate) in mineral oil was about four times that in water. The MDPR in mineral oil decreased continuously with time, but the MDPR in water remained approximately constant. The cavitation pits in mineral oil were of smaller diameter and depth than the pits in water. Treating the pits as spherical segments, we computed the radius r of the sphere. The logarithm of h/a, where h is the pit depth and 2a is the top width of the pit, was linear when plotted against the logarithm of 2r/h - 1.

  11. Mineral resource of the month: Vermiculite

    USGS Publications Warehouse

    Tanner, Arnold O.

    2014-01-01

    Vermiculite comprises a group of hydrated, laminar magnesium-aluminum-iron silicate minerals resembling mica. They are secondary minerals, typically altered biotite, iron-rich phlogopite or other micas or clay-like minerals that are themselves sometimes alteration products of amphibole, chlorite, olivine and pyroxene. Vermiculite deposits are associated with volcanic ultramafic rocks rich in magnesium silicate minerals, and flakes of the mineral range in color from black to shades of brown and yellow. The crystal structure of vermiculite contains water molecules, a property that is critical to its processing for common uses.

  12. Hydrogeochemical characterization of thermal and mineral waters of Muǧla (SW Turkey)

    NASA Astrophysics Data System (ADS)

    Avşar, Özgür; Kurtuluş, Bedri; Kaçaro&gcaron, Fikret; lu; Kuşcu, Gonca; Gürsu, Semih

    2013-04-01

    The aim of this study is preparation of the inventory of thermal and mineral waters of Muǧla province. For that purpose, fifty three samples were collected from a total of nineteen sites with the purpose of characterizing the chemical and physical properties of Muǧla thermal and mineral waters. Of these, nine of them are geothermal (well head temperature>20 °C), and ten are mineral water sites. The geothermal waters are generally located near the sea coast, while mineral waters are generally located inland. Geothermal waters are generally Na-Cl type which is an indication of sea water mixing. Mineral waters are generally Ca-HCO3 type. NO3 concentrations are generally less than 10 ppm and boron concentrations have a maximum value of 6 ppm. According to the stable isotope results, the origin of the sampled waters in Muǧla province is meteoric. Reservoir temperatures of geothermal fields are estimated between 30 and 130 °C by geothermometry calculations.

  13. Mineral paragenesis in the talc-water experimental hydrothermal system.

    USGS Publications Warehouse

    Whitney, G.; Eberl, D.D.

    1982-01-01

    The talc-like gel was treated between 300o and 550oC at 1 kbar for 7, 30, 50, 120 and 200 days. The trends suggest that stevensite and/or corrensite are the stable minerals at <450oC. At 500o- 550oC, talc is stable.-K.A.R.

  14. [Fluoride content of bottled natural mineral waters in Spain and prevention of dental caries].

    PubMed

    Maraver, Francisco; Vitoria, Isidro; Almerich-Silla, José Manuel; Armijo, Francisco

    2015-01-01

    The aim of the study was to determine the concentration of fluoride in natural mineral waters marketed in Spain in order to prevent tooth decay without the risk of causing dental fluorosis Descriptive and cross-sectional study during 2012. Natural mineral waters marketed in Spain. Three bottles with different bottling dates of 109 natural mineral waters (97 Spanish and 12 imported brands). Determination of fluoride by ion chromatography Median fluoride concentrations of the natural mineral waters bottled in Spain was 0.22 (range 0.00-4.16; interquartile range:0.37). Most samples (61 brands, 62%) contained less than 0.3mg/L. There are 19 Spanish brands with more than 0.6 mg/L. The median level in imported brands was 0.35 (range 0.10-1.21; interquartile range: 0.23). Only 28 of the 109 brands examined (25.6%) specified the fluoride content on the label. Good correlation was observed between the concentrations indicated and those determined. Fluoride concentrations in natural mineral waters showed high variation. Given the growing consumption of natural mineral waters in Spain, this type of information is important to make proper use of fluoride in the primary prevention of dental caries. Copyright © 2014 Elsevier España, S.L.U. All rights reserved.

  15. Energy, water and large-scale patterns of reptile and amphibian species richness in Europe

    NASA Astrophysics Data System (ADS)

    Rodríguez, Miguel Á.; Belmontes, Juan Alfonso; Hawkins, Bradford A.

    2005-07-01

    We used regression analyses to examine the relationships between reptile and amphibian species richness in Europe and 11 environmental variables related to five hypotheses for geographical patterns of species richness: (1) productivity; (2) ambient energy; (3) water-energy balance, (4) habitat heterogeneity; and (5) climatic variability. For reptiles, annual potential evapotranspiration (PET), a measure of the amount of atmospheric energy, explained 71% of the variance, with variability in log elevation explaining an additional 6%. For amphibians, annual actual evapotranspiration (AET), a measure of the joint availability of energy and water in the environment, and the global vegetation index, an estimate of plant biomass generated through satellite remote sensing, both described similar proportions of the variance (61% and 60%, respectively) and had partially independent effects on richness as indicated by multiple regression. The two-factor environmental models successfully removed most of the statistically detectable spatial autocorrelation in the richness data of both groups. Our results are consistent with reptile and amphibian environmental requirements, where the former depend strongly on solar energy and the latter require both warmth and moisture for reproduction. We conclude that ambient energy explains the reptile richness pattern, whereas for amphibians a combination of water-energy balance and productivity best explain the pattern.

  16. [Impact of the mineral composition of drinking water on children's health].

    PubMed

    Rylova, N V

    2009-01-01

    The purpose of this investigation was to evaluate the effect of highly mineralized drinking water on children's health. To reveal a relationship of children's health to the chemical composition of portable water, two Kazan districts differing in the conditions of water supply and the mineral composition of the water were selected. A total of 833 schoolchildren aged 7-9 years underwent a questionnaire survey and their objective status was examined. Special methods were used to determine the urinary content of trace elements, such as copper, zinc, cadmium, and gross elements, such as calcium and magnesium, by performing atomic absorption spectrophotometry on an AAS-SA 10 MP apparatus.

  17. Microbiological quality of carbonated and non-carbonated mineral water stored at different temperatures.

    PubMed

    Korzeniewska, Ewa; Filipkowska, Zofia; Domeradzka, Sylwia; Włodkowski, Kamil

    2005-01-01

    The microbiological quality of five brands of carbonated and non-carbonated mineral water sold in Poland was studied. The study was carried out on the survival of heterotrophic bacteria at 22 and 37 degrees C (pour plate technique) in the samples of mineral waters stored at 4 and 22 degrees C. The one hundred ten bottles (twenty two bottles of each of the five brands) of carbonated and uncarbonated mineral waters with different levels of dissolved solids and organic content were chosen to microorganisms study. Ten bottles of mineral water were studied initially. Fifty bottles were stored at 4 degrees C, the other fifty were kept at 22 degrees C. The haemolysing bacteria in 1 cm3; E. coli, P. aeruginosa and A. hydrophila in 250 cm3 of mineral water were unidentifiable. Total viable count of heterotrophic bacteria at 22 and 37 degrees C in 1 cm3 of mineral water was the highest respectively for brand T and for brands T and M; the lowest for brand Z. Initially, approximately 29% of 110 water samples (respectively 4% of carbonated and 55% of uncarbonated) had bacterial counts greater than Ministry of Health's standards, notwithstanding the number of water samples which doesn't perform requirements grew up to 47% (respectively 36% of carbonated and 58% of uncarbonated) when the time of TVC 37 and 22 degrees C incubation was elongated from 1 and 3 days to 3 and 14 days respectively. The temperature of storage was inessential for the numbers of studied microorganisms. The most important factors were the brand, time of storage and the carbonating or non-carbonating of water. The highest numbers of the bacteria analysed were detected in non-carbonating water, irrespective of the water brand and temperature of storage.

  18. OT1_dneufeld_2: The puzzle of water vapour in carbon-rich stars

    NASA Astrophysics Data System (ADS)

    Neufeld, D.

    2010-07-01

    Using the HIFI instrument, we will address the puzzling - but widespread - appearance of water vapour in carbon-rich stars. Following up on detections of water in ALL SIX carbon-rich AGB stars observed to date in a pilot study performed in the HIFISTARS Key Program, we will target additional water transitions in four stars already observed or expected to show the most luminous water emissions. The target stars are CIT6, IRAC 15194-5155, V Cygni, and S Cep, and the additional transitions are the 4(22)-3(31) and 3(12) - 2(21) transitions at 916 GHz and 1153 GHz. Combined with spectra already obtained for the low-lying water transitions, and interpreted in the context of water excitation models, the proposed observations will place strong constraints upon the location of the emitting water. We will therefore be able to distinguish between various hypotheses that have been proposed for the origin of the observed water: the vaporization of orbiting comets or dwarf planets; catalytic formation on dust grains; or chemical processes initiated by the photodissociation of CO. In addition, we will carry out deep integrations to observe the lowest 1(11) - 0(00) transition of para-water at 1113 GHz in two carbon-rich AGB stars: IRAS+40540 and V Hya; here, ortho-water has been securely detected but existing observations of the 1113 GHz para-water line yield weak detections that lack the signal-to-noise ratio needed to constrain the ortho-to-para ratio.

  19. Authigenic Mineralization of Silicates at the Organic-water Interface

    NASA Astrophysics Data System (ADS)

    McEvoy, B.; Wallace, A. F.

    2015-12-01

    It is relatively common for some fraction of organic material to be preserved in the sedimentary rock record as disseminated molecular fragments. The survival of wholly coherent tissues from primarily soft-bodied organisms is far more unusual. However, the literature is now well- populated with spectacular examples of soft-tissue preservation ranging from a 2,600 year old human brain to the tissues of the Ediacaran biota that have survived ~600 million years. Some of the most exceptional examples of soft tissue preservation are from the Proterozoic-Cambrian transition, however, nearly all modes of fossil preservation during this time are debated. Clay mineral templates have been implicated as playing a role in several types of soft tissue preservation, including Burgess Shale and Beecher's Trilobite-type preservation, and more recently, Bitter Springs-type silicification. Yet, there is still much debate over whether these clay mineral coatings form during early stage burial and diagenesis, or later stage metamorphism. This research addresses this question by using in situ fluid cell Atomic Force Microscopy (AFM) to investigate the nucleation and growth of silicate minerals on model biological surfaces. Herein we present preliminary results on the deposition of hydrous magnesium silicates on self-assembled monolayers (-OH, -COOH, -CH3, and -H2PO3 terminated surfaces) at ambient conditions.

  20. Mineral-water reactions in metamorphism and volcanism

    USGS Publications Warehouse

    Barnes, I.

    1985-01-01

    Low-temperature (120??C and less) metamorphism of graywacke, granite and andesite yields zeolites and precursor gels by reaction with fresh water but low-greenschist facies by reaction with salt (sea)water. ?? 1985.

  1. Geochemistry and origins of mineralized waters in the Floridan aquifer system, northeastern Florida

    USGS Publications Warehouse

    Phelps, G.G.

    2001-01-01

    Increases in chloride concentration have been observed in water from numerous wells tapping the Floridan aquifer system in northeastern Florida. Although most increases have been in the eastern part of Duval County, Florida, no spatial pattern in elevated chloride concentrations is discernible. Possible sources of the mineralized water include modern seawater intrusion; unflushed Miocene-to-Pleistocene-age seawater or connate water in aquifer sediments; or mineralized water from deeper zones of the aquifer system or from formations beneath the Floridan aquifer system. The purpose of this study was to document the chemical and isotopic characteristics of water samples from various aquifer zones, and from geochemical and hydrogeologic data, to infer the source of the increased mineralization. Water samples were collected from 53 wells in northeastern Florida during 1997-1999. Wells tapped various zones of the aquifer including: the Fernandina permeable zone (FPZ), the upper zone of the Lower Floridan aquifer (UZLF), the Upper Floridan aquifer (UFA), and both the UFA and the UZLF. Water samples were analyzed for major ions and trace constituents and for isotopes of carbon, oxygen, hydrogen, sulfur, strontium, chlorine, and boron. Samples of rock from the aquifer were analyzed for isotopes of oxygen, carbon, and strontium. In general, water from various aquifer zones cannot be differentiated based on chemistry, except for water from FPZ wells. Major-ion concentrations vary as much within the upper zone of the Lower Floridan aquifer and the Upper Floridan aquifer as between these two zones. Simple models of mixing between fresh ground water and either modern seawater or water from the FPZ as a mineralized end member show that many water samples from the UZLF aquifer and the UFA are enriched in bicarbonate, calcium, magnesium, sulfate, fluoride, and silica and are depleted in sodium and potassium (as compared to concentrations predicted by simple mixing). Chemical mass

  2. Water geochemistry of the Lucero Uplift, New Mexico: geothermal investigation of low-temperature mineralized fluids

    SciTech Connect

    Goff, F.; McCormick, T.; Gardner, J.N.; Trujillo, P.E.; Counce, D.; Vidale, R.; Charles, R.

    1983-04-01

    A detailed geochemical investigation of 27 waters of the Lucero uplift, central New Mexico, was performed to determine if the fluids originate from a high-temperature geothermal system along the Rio Grande rift. Two types of mineralized water issue from the Lucero region: a relatively saline (high-Cl, high-SO/sub 4/) type and a relatively dilute (low-Cl, high-SO/sub 4/) type. Emergence temperatures of both types range from 12 to 26/sup 0/C. Chemical data and thermodynamic and geothermometer calculations all indicate that both water types are in equilibrium with carbonate and evaporite minerals found in local Colorado Plateau rocks at surface temperatures or slightly higher. Stable isotope data do not indicate high-temperature rock-water interaction. Although evidence is seen for mixing between mineralized waters and dilute surface waters, no evidence for mixing of a deep hot fluid and surface waters is seen. Dilute mineral waters, which issue from a large area of Chinle Formation on the west side of the Lucero uplift, may be useful for low-temperature geothermal applications with appropriate design of equipment. Saline mineral waters, which leak from a zone of faulted and folded rocks along the Comanche fault zone, do not appear to have much, if any, geothermal potential due to their low-temperature, restricted distribution, and high concentration of dissolved solids. No evidence that saline mineral waters are associated with Quaternary faults of the Rio Grande rift or Quaternary basaltic volcanism within the immediate area is seen.

  3. Concentrations of selected trace elements in mineral and spring bottled waters on the Serbian market.

    PubMed

    Ristić, M; Popović, I; Pocajt, V; Antanasijević, D; Perić-Grujić, A

    2011-01-01

    Eight selected trace elements, which are generally included in regulations, were analyzed in 23 types of bottled waters. Ten mineral and seven spring bottled waters were from the Serbian market and six mineral bottled waters were obtained in different EU countries. For the purpose of comparison, selected tap waters were also analyzed. Inductively coupled plasma mass spectrometry (ICP-MS) was used for the analysis of trace elements (arsenic, cadmium, copper, manganese, nickel, lead and antimony). Results were compared with the Serbian regulations for bottled water, EU regulations and guideline values set by the World Health Organization for drinking water. With few exceptions, the trace element levels of most bottled waters were below the guideline values. However, a higher content of antimony was observed in waters from polyethylene terephthalate (PET) containers, indicating a potential leaching of this element from the plastic packaging.

  4. Geochemistry of recent aragonite-rich sediments in Mediterranean karstic marine lakes: Trace elements as pollution and palaeoredox proxies and indicators of authigenic mineral formation.

    PubMed

    Sondi, Ivan; Mikac, Nevenka; Vdović, Neda; Ivanić, Maja; Furdek, Martina; Škapin, Srečo D

    2017-02-01

    This study investigates the geochemical characteristics of recent shallow-water aragonite-rich sediments from the karstic marine lakes located in the pristine environment on the island of Mljet (Adriatic Sea). Different trace elements were used as authigenic mineral formation, palaeoredox and pollution indicators. The distribution and the historical record of trace elements deposition mostly depended on the sedimentological processes associated with the formation of aragonite, early diagenetic processes governed by the prevailing physico-chemical conditions and on the recent anthropogenic activity. This study demonstrated that Sr could be used as a proxy indicating authigenic formation of aragonite in a marine carbonate sedimentological environment. Distribution of the redox sensitive elements Mo, Tl, U and Cd was used to identify changes in redox conditions in the investigated lake system and to determine the geochemical cycle of these elements through environmental changes over the last 100 years. The significant enrichment of these elements and the presence of early formed nanostructured authigenic framboidal pyrite in laminated deeper parts of sediment in Malo Jezero, indicate sporadic events of oxygen-depleted euxinic conditions in the recent past. Concentrations of trace elements were in the range characteristic for non-contaminated marine carbonates. However, the increase in the concentrations of Zn, Cu, Pb, Sn, Bi in the upper-most sediment strata of Veliko Jezero indicates a low level of trace element pollution, resulting from anthropogenic inputs over the last 40 years. The presence of butyltin compounds (BuTs) in the surface sediment of Veliko Jezero additionally indicates the anthropogenic influence in the recent past.

  5. [Effects of mineral water TIB-2 on metabolic processes in urolithiasis patients].

    PubMed

    Dzeranov, N K; Beshliev, D A; Golovanov, S A; Kon'kova, T A

    2000-01-01

    Natural low-mineralized hydrocarbonate-calcium-magnesium mineral water (total mineralization 2 g/l) in bottles has been examined for therapeutic effects on metabolism in urolithiasis patients. The complex of biochemical blood and urine indices indicative of the renal function and concentration of lithogenic components was studied in 52 patients (age 23-68 years, 23 males and 29 females). Ten of them had nephrostoma. All the patients have undergone extracorporeal lithotripsy or other operations for renal or ureteric calculi. In nephrostoma patients urine samples were obtained both from nephrostoma and urinary bladder. The tests were made before the treatment and on the treatment day 3-5 and 10-12. TIB-2 mineral water was taken 3 times a day in a dose 200 ml 30-45 minutes before meal. The data were statistically processed. From the data obtained it was concluded that mineral water TIB-2 normalizes azotemia and clearance of endogenic creatinine, plasma values of calcium and uric acid, enhances urinary elimination of uric acid and calcium oxalate microcrystals that is TIB-2 improves metabolism of lithogenic substances and ions. Indications to drinking mineral water TIB-2 for urological patients are formulated.

  6. A nearly water-saturated mantle transition zone inferred from mineral viscosity

    PubMed Central

    Fei, Hongzhan; Yamazaki, Daisuke; Sakurai, Moe; Miyajima, Nobuyoshi; Ohfuji, Hiroaki; Katsura, Tomoo; Yamamoto, Takafumi

    2017-01-01

    An open question for solid-earth scientists is the amount of water in Earth’s interior. The uppermost mantle and lower mantle contain little water because their dominant minerals, olivine and bridgmanite, have limited water storage capacity. In contrast, the mantle transition zone (MTZ) at a depth of 410 to 660 km is considered to be a potential water reservoir because its dominant minerals, wadsleyite and ringwoodite, can contain large amounts of water [up to 3 weight % (wt %)]. However, the actual amount of water in the MTZ is unknown. Given that water incorporated into mantle minerals can lower their viscosity, we evaluate the water content of the MTZ by measuring dislocation mobility, a property that is inversely proportional to viscosity, as a function of temperature and water content in ringwoodite and bridgmanite. We find that dislocation mobility in bridgmanite is faster by two orders of magnitude than in anhydrous ringwoodite but 1.5 orders of magnitude slower than in water-saturated ringwoodite. To fit the observed mantle viscosity profiles, ringwoodite in the MTZ should contain 1 to 2 wt % water. The MTZ should thus be nearly water-saturated globally. PMID:28630912

  7. Sustainable urban water systems in rich and poor cities--steps towards a new approach.

    PubMed

    Newman, P

    2001-01-01

    The 'big pipes in, big pipes out' approach to urban water management was developed in the 19th century for a particular linear urban form. Large, sprawling car-dependent cities are pushing this approach to new limits in rich cities and it has never worked in poor cities. An alternative which uses new small-scale technology and is more community-based, is suggested for both rich and poor countries. The Sydney Olympics and a demonstration project in Java show that the approach can work.

  8. [Studies on the bottles of mineral water and the foreign plastic like substances].

    PubMed

    Kawamura, Y; Sugita, T; Watanabe, Y; Takano, T; Itakura, T; Ikegawa, T; Yamada, T

    1997-01-01

    The containers of mineral water and the foreign plastic substances which were found in the mineral water were investigated. Most of plastic bottles were made of polyethylene terephthalate (PET) and the caps were made of polypropylene (PP), polyethylene (PE) or aluminum. PE liners were attached to some caps. Most of the foreign plastic substances were PET while others were PE, PP, Teflon and rubber. Some bottles had a scratch on the top inside. The origin of most PET fragments was presumed to be scraped off the bottles by the lowering of the injection nozzle during the water filling process. The sources of the other substances were also determined.

  9. Mineral content of sorghum genotypes and the influence of water stress.

    PubMed

    Paiva, Caroline Liboreiro; Queiroz, Valéria Aparecida Vieira; Simeone, Maria Lúcia Ferreira; Schaffert, Robert Eugene; de Oliveira, Antônio Carlos; da Silva, Camila Santana

    2017-01-01

    Sorghum is a source of several minerals whose content may vary depending on the genotype and the production environment. The objective of this study was to screen sorghum genotypes for mineral content and to investigate the effect of water stress on it. A large variability was observed in the mineral content of 100 sorghum genotypes grown in environments without (WoWS) and with water stress (WthWS). The water stress decreased Mn, P, Mg and S contents in 100, 96, 93 and 56% of genotypes, respectively. The genotypes and other factors seemed to have more impact than water stress on K, Ca, Cu, Fe and Zn levels. In 100 sorghum genotypes, 2 were classified as excellent sources of Fe and 25 of Zn, in both environments. The best two genotypes to Fe content were SC21 and SC655 and to Zn were SC320 and SHAN-QUI-RED which showed great potential for use in biofortification.

  10. The ubiquitous presence of silica-rich glass inclusions in mafic minerals: Examples from Earth, Mars, Moon and the aubrite parent body

    NASA Astrophysics Data System (ADS)

    Varela, M. E.; Kurat, G.; Clocchiatti, R.; Schiano, P.

    1998-09-01

    Highly silicic glass inclusions are commonly present in mafic minerals of xenolithic terrestrial upper mantle rocks (Schiano and Clocchiatti, 1994). They are believed to be the products of volatile-rich silicic melts for which several sources have been proposed (Francis, 1976 ; Frey and Green, 1974 ; Schiano et al., 1995) but their origin(s) and, consequently, that of the glasses, remains unknown. However, in situ formation by very low degree partial melting seems to be possible as has been shown by experiments (e.g., Baker et al., 1995 ; Draper and Green, 1997). Glass inclusions of silicic chemical composition are also present in some mafic minerals of achondritic meteorites (e.g., Fuchs, 1974 ; Okada et al., 1988 ; Johnson et al.,1991 ). The enstatite achondrites (aubrites) Aubres and Norton County, which record early planetesimal and planet formation in the solar nebula, and the olivine achondrite (chassignite) Chassigny, a rock believed to originate from Mars, contain abundant glass inclusions in their main minerals enstatite and olivine, respectively. Glasses of glass-bearing inclusions have a highly silicic and volatile-rich chemical composition similar, but not identical, to that of glass inclusions in terrestrial upper mantle peridotite minerals. Furthermore, glass inclusions in olivines from the Moon (e.g., Roedder and Weiblen, 1977) are also silica- rich. Since different physico-chemical conditions prevails in the source regions of these rocks, the process of melting is, perhaps, not generally applicable for the generation of silica-rich glasses. Alternatively, the glasses could have been formed via precipitation from silicate-loaded fluids (Schneider and Eggler, 1986) or vapors. Another possible mechanism, not previously identified, could be dehydrogenation of nominally non-hydrous mafic minerals by heating or depressurization which should be accompanied by expulsion of excess silica and incompatible elements. This process will mimic low temperature

  11. Natural radioactivity in bottled mineral and thermal spring waters of Turkey.

    PubMed

    Taskin, Halim; Asliyuksek, Hizir; Bozkurt, Ahmet; Kam, Erol

    2013-12-01

    Radiological assessment of bottled mineral waters and thermal spring waters collected from various natural sources in Turkey was carried out using gross alpha and gross beta counting techniques. For 40 samples of bottled mineral water, the mean gross alpha activity concentration was determined to be 164 mBq l(-1) (min.:7 mBq l(-1); max.: 3042 mBq l(-1)), whereas the gross beta activity concentration was found to be 555 mBq l(-1) (min.: 21 mBq l(-1); max.: 4845 mBq l(-1)). For 24 samples of thermal spring water, the mean gross alpha activity concentration was obtained to be 663 mBq l(-1) (min.: 18 mBq l(-1); max.: 3070 mBq l(-1)). The gross beta activity concentration for these samples, on the other hand, was determined to be 3314 mBq l(-1) (min.: 79 mBq l(-1); max.: 17955 mBq l(-1)). These values lead to the average annual effective doses of 313 µSv for mineral waters and 1805 µSv for thermal spa waters, which are found to be higher than those recommended for drinking waters by the World Health Organization. It should be noted, however, that one will get less dose from mineral waters since the daily consumption is much lower than 2 l that these calculations assume.

  12. Water Storage and Related Physical Characteristics of Four Mineral Soils in North Central Minnesota

    Treesearch

    E. S. Verry

    1969-01-01

    Soil water storage in a 7.5 foot profile varied nearly 100 percent (7.9 to 15.5 inches) among four mineral soils ranging from a sand to sandy loam. Bulk density, size fractions, and four water retention values are tabulated for each horizon.

  13. The spectral reflectance of water-mineral mixtures at low temperatures. [observed on natural satellites and other solar system objects

    NASA Technical Reports Server (NTRS)

    Clark, R. N.

    1981-01-01

    Laboratory reflectance spectra in the 0.325-2.5 micron region of bound water, water-mineral mixtures, mineral grains on frost, and frost on minerals are presented. The materials used in this study are montmorillonite, kaolinite, beryl, Mauna Kea red cinder, and black charcoal. It is found that the wavelengths of bound water and bound OH absorptions do not shift appreciably with temperature and can be detected when large amounts of free water ice are present. The decrease in the visible reflectance seen in many planetary reflectance spectra containing strong water ice absorptions can be explained by water-mineral mixtures, mineral grains on frost, or frost on mineral grains. Mineral grains on frost are detectable in very small quantities (fractional areal coverage less than approximately 0.005) depending on the mineral reflectance features, while it takes a thick layer of frost (greater than approximately 1 mm) to mask a mineral below 1.4 microns, again depending on the mineral reflectance. Frost on a very dark surface (albedo about 6%) is easily seen; however, a dark mineral mixed with water could completely mask the water absorptions (shortward of 2.5 microns).

  14. Potential mineralization of four herbicides in a ground water--fed wetland area.

    PubMed

    Larsen, L; Jørgensen, C; Aamand, J

    2001-01-01

    Herbicides may leach from agricultural fields into ground water feeding adjacent wetlands. However, only little is known of the fate of herbicides in wetland areas. The purpose of the study was to examine the potential of a riparian fen to mineralize herbides that could leach from an adjacent catchment area. Slurries were prepared from sediment and ground water collected from different parts of a wetland representing different redox conditions. The slurries were amended with O2, NO3-, SO4(2-), and CO2, or CO2 alone as electron acceptors to simulate the in situ conditions and their ability to mineralize the herbides mecoprop, metsulfuron-methyl, isoproturon and atrazine. In addition, the abundance of bacteria able to utilize O2, NO3-, SO4(2-) + CO2, and CO2 as electron acceptors was investigated along with the O2-reducing and methanogenic potential of the sediment. The recalcitrance to bacterial degradation depended on both the type of herbicide and the redox conditions pertaining. Mecoprop was the most readily degraded herbicide, with 36% of [ring-U-14C]mecoprop being mineralized to 14CO2 under aerobic conditions after 473 d. In comparison, approximately 29% of [phenyl-U-14C]metsulfuron-methyl and 16% of [ring-U-14C]isoproturon mineralized in aerobic slurries during the same period. Surprisingly, 8 to 13% of mecoprop also mineralized under anaerobic conditions. Neither metsulfuron-methyl nor isoproturon were mineralized under anaerobic conditions and atrazine was not mineralized under any of the redox conditions examined. The present study is the first to report mineralization of meco-prop in ground water in a wetland area, and the first to report mineralization of a phenoxyalcanoic acid herbicide under both aerobic and anaerobic conditions.

  15. Fluid-rock interaction controlling clay-mineral crystallization in quartz-rich rocks and its influence on the seismicity of the Carboneras fault area (SE Spain)

    NASA Astrophysics Data System (ADS)

    Jimenez-Espinosa, R.; Abad, I.; Jimenez-Millan, J.; Lorite-Herrera, M.

    2009-04-01

    The Carboneras Fault zone is one of the longest fault in the Betic Cordillera (SE Spain) and it would be a good candidate to generate large magnitude earthquakes (Gracia et al., 2006). Seismicity in the region is characterised by low to moderate magnitude events, although large destructive earthquakes have occurred, which reveals significant earthquake and tsunami hazards (Masana et al., 2004). Due to the internal architecture of the fault zone, shear lenses of post-orogenic sediments of Miocene and Pliocene age including marls and sandstones sequences are juxtaposed to the predominant slaty gouges of the Alpine basement. Microcataclasites and gouges of the quartz-rich post-orogenic sediments are also developed as cm- to m-scale bands, allowing the comparison between the deformed materials and their protoliths. Red, yellow and white sandstones and their respective cataclasites can be identified. This communication is concerned with the clay mineral crystallization events in these materials and its possible influence on the seismicity model of the region. The presence of phyllosilicates in fault zones as either neoformed or inherited clays is commonly related with fluid circulation and a mechanically weak fault behaviour (e.g., Wang, 1984). A critical factor for the understanding of the mechanical role of clays in fault rocks is to determine the timing of formation of mineral assemblages and microstructure of fault rocks and protolith. The effects of post-faulting alteration limit inferences about fault behaviour that can be made from exhumed rocks. The Carboneras fault zone provides good opportunities to study mineral processes enhanced by deformation, given that it is located in a region of arid climate and shows outcroppings of quartzitic rocks included in slaty rocks. Combined XRD, optical microscopy and SEM analyses reveal that deformed quartzitic rocks are enriched in phyllosilicates, increasing especially the amount of chlorite. The samples strongly damaged

  16. Water in the formation of biogenic minerals: peeling away the hydration layers.

    PubMed

    Dorvee, Jason R; Veis, Arthur

    2013-08-01

    Minerals of biogenic origin form and crystallize from aqueous environments at ambient temperatures and pressures. The in vivo environment either intracellular or intercellular, contains many components that modulate both the activity of the ions which associate to form the mineral, as well as the activity and structure of the crowded water. Most of the studies about the mechanism of mineralization, that is, the detailed pathways by which the mineral ions proceed from solution to crystal state, have been carried out in relatively dilute solutions and clean solutions. These studies have considered both thermodynamic and kinetic controls. Most have not considered the water itself. Is the water a passive bystander, or is it intimately a participant in the mineral ion densification reaction? A wide range of experiments show that the mineralization pathways proceed through a series of densification stages with intermediates, such as a "dense liquid" phase and the prenucleation clusters that form within it. This is in contrast to the idea of a single step phase transition, but consistent with the Gibbs concept of discontinuous phase transitions from supersaturated mother liquor to crystal. Further changes in the water structure at every surface and interface during densification guides the free energy trajectory leading to the crystalline state. In vertebrates, mineralization takes place in a hydrated collagen matrix, thus water must be considered as a direct participant. Although different in detail, the crystallization of calcium phosphates, as apatite, and calcium carbonates, as calcite, are mechanistically identical from the viewpoint of water. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Nb-Ta-Ti-W-Sn-oxide minerals as indicators of a peraluminous P- and F-rich granitic system evolution: Podlesí, Czech Republic

    NASA Astrophysics Data System (ADS)

    Breiter, K.; Škoda, R.; Uher, P.

    2007-11-01

    The strongly peraluminous, P- and F-rich granitic system at Podlesí in the Krušné Hory Mountains, Czech Republic, resembles the zonation of rare element pegmatites in its magmatic evolution (biotite → protolithionite → zinnwaldite granites). All granite types contain disseminated Nb-Ta-Ti-W-Sn minerals that crystallized in the following succession: rutile + cassiterite (in biotite granite), rutile + cassiterite → ferrocolumbite (in protolithionite granite) and ferrocolumbite → ixiolite → ferberite (in zinnwaldite granite). Textural features of Nb-Ta-Ti-W minerals indicate a pre-dominantly magmatic origin with only minor post-magmatic replacement phenomena. HFSE remained in the residual melt during the fractionation of the biotite granite. An effective separation of Nb + Ta into the melt and Sn into fluid took place during subsequent fractionation of the protolithionite granite, and the tin-bearing fluid escaped into the exocontact. To the contrast, W contents are similar in both protolithionite and zinnwaldite granites. Although the system was F-rich, only limited Mn-Fe and Ta-Nb fractionation appeared. Enrichment of Mn and Ta was suppressed due to foregoing crystallization of Mn-rich apatite and relatively low Li content, respectively. The content of W in columbite increases during fractionation and enrichment in P and F in the melt. Ixiolite (up to 1 apfu W) instead of columbite crystallized from the most fluxes-enriched portions of the melt (unidirectional solidification textures, late breccia).

  18. Microbiological safety of bottled mineral water in patients susceptible to infections.

    PubMed

    Oie, Shigeharu; Matsuzaka, Yuuki; Kiyonaga, Hiroko; Maeda, Kumiko; Kamiya, Akira

    2008-08-01

    We evaluated the microbiological safety of bottled mineral water products commercially available in Japan. Of 10 bottled mineral water products manufactured in Japan, no bacteria or fungi were detected in 9 (90%), but 1 (10%) contained 1.8x10(3) colony-forming units (cfu)/mL. Of 12 bottled mineral water products manufactured in the EU, 11 (91.7%) contained 23-3.5x10(4) cfu/mL. On the other hand, of 5 bottled mineral water products manufactured in North America, 2 (40%) contained 2.3x10(2)-2.5x10(3) cfu/mL. The detected microorganisms were glucose-nonfermentative Gram-negative bacilli such as Brevundimonas vesicularis, Moraxella spp., and Burkholderia cepacia, but Pseudomonas aeruginosa was not detected in any product. For immunocompromised host patients being managed in ultra-clean rooms, the examined bottled mineral water products manufactured in Japan, except 1, were microbiologically safe.

  19. Adsorption mechanisms of microcystin variant conformations at water-mineral interfaces: A molecular modeling investigation.

    PubMed

    Pochodylo, Amy L; Aoki, Thalia G; Aristilde, Ludmilla

    2016-10-15

    Microcystins (MCs) are potent toxins released during cyanobacterial blooms. Clay minerals are implicated in trapping MCs within soil particles in surface waters and sediments. In the absence of molecular characterization, the relevance of previously proposed adsorption mechanisms is lacking. Towards obtaining this characterization, we conducted Monte Carlo simulations combined with molecular dynamics relaxation of two MC variants, MC-leucine-arginine (MC-LR) and MC-leucine-alanine (MC-LA), adsorbed on hydrated montmorillonite with different electrolytes. The resulting adsorbate structures revealed how MC conformations and aqueous conditions dictate binding interactions at the mineral surface. Electrostatic coupling between the arginine residue and a carboxylate in MC-LR excluded the participation of arginine in mediating adsorption on montmorillonite in a NaCl solution. However, in a CaCl2 solution, the complexation of Ca by two carboxylate moieties in MC-LR changed the MC conformation, which allowed arginine to mediate electrostatic interaction with the mineral. By contrast, due to the lack of arginine in MC-LA, complexation of Ca by only one carboxylate in MC-LA was required to favor Ca-bridging interaction with the mineral. Multiple water-bridged H-bonding interactions were also important in anchoring MCs at the mineral surface. Our modeling results offer molecular insights into the structural and chemical factors that can control the fate of MCs at water-mineral interfaces.

  20. From urban municipalities to polar bioremediation: the characterisation and contribution of biogenic minerals for water treatment.

    PubMed

    Freidman, Benjamin L; Northcott, Kathy A; Thiel, Peta; Gras, Sally L; Snape, Ian; Stevens, Geoff W; Mumford, Kathryn A

    2017-06-01

    Minerals of biological origin have shown significant potential for the separation of contaminants from water worldwide. This study details the contribution of biologically derived minerals to water treatment operations, with a focus on filtration media from urban municipalities and remote cold regions. The results support biofilm-embedded iron and manganese to be the building blocks of biogenic mineral development on activated carbon and nutrient-amended zeolites. The presence of similar iron and manganese oxidising bacterial species across all filter media supports the analogous morphologies of biogenic minerals between sites and suggests that biological water treatment processes may be feasible across a range of climates. This is the first time the stages of biogenic mineral formation have been aligned with comprehensive imaging of the biofilm community and bacterial identification; especially with respect to cold regions. Where biogenic mineral formation occurs on filter media, the potential exists for enhanced adsorption for a range of organic and inorganic contaminants and improved longevity of filter media beyond the adsorption or exchange capacities of the raw material.

  1. Electrically conducting, Ca-rich brines, rather than water, expected in the Martian subsurface

    NASA Astrophysics Data System (ADS)

    Burt, D. M.; Knauth, L. P.

    2003-02-01

    If Mars ever possessed a salty liquid hydrosphere, which later partly evaporated and froze down, then any aqueous fluids left near the surface could have evolved to become dense eutectic brines. Eutectic brines, by definition, are the last to freeze and the first to melt. If CaCl2-rich, such brines can remain liquid until temperatures below 220°K, close to the average surface temperature of Mars. In the Martian subsurface, in intimate contact with the Ca-rich basaltic regolith, NaCl-rich early brines should have reacted to become Ca-rich. Fractional crystallization (freezing) and partial melting would also drive brines toward CaCl2-rich compositions. In other words, eutectic brine compositions could be present in the shallow subsurface of Mars, for the same reasons that eutectic magma compositions are common on Earth. Don Juan Pond, Antarctica, a CaCl2-rich eutectic brine, provides a possible terrestrial analog, particularly because it is fed from a basaltic aquifer. Owing to their relative density and fluid nature, brines in the Martian regolith should eventually become sandwiched between ice above and salts beneath. A thawing ``brine sandwich'' provides one explanation (among many) for the ``young gullies'' recently attributed to seepage of liquid water on Mars. Whether or not brine seepage explains the gullies phenomenon, dense, CaCl2-rich brines are to be expected in the deep subsurface of Mars, although they might be somewhat diluted (temperatures permitting) and of variable salt composition. In any case, they should be good conductors of electricity.

  2. Electrically Conducting, Ca-Rich Brines, Rather Than Water, Expected in the Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Burt, D. M.; Knauth, L. P.

    2003-01-01

    If Mars ever possessed a salty liquid hydrosphere, which later partly evaporated and froze down, then any aqueous fluids left near the surface could have evolved to become dense eutectic brines. Eutectic brines, by definition, are the last to freeze and the first to melt. If CaC12-rich, such brines can remain liquid until temperatures below 220 K, close to the average surface temperature of Mars. In the Martian subsurface, in intimate contact with the Ca-rich basaltic regolith, NaC1-rich early brines should have reacted to become Ca-rich. Fractional crystallization (freezing) and partial melting would also drive brines toward CaC12-rich compositions. In other words, eutectic brine compositions could be present in the shallow subsurface of Mars, for the same reasons that eutectic magma compositions are common on Earth. Don Juan Pond, Antarctica, a CaC12-rich eutectic brine, provides a possible terrestrial analog, particularly because it is fed from a basaltic aquifer. Owing to their relative density and fluid nature, brines in the Martian regolith should eventually become sandwiched between ice above and salts beneath. A thawing brine sandwich provides one explanation (among many) for the young gullies recently attributed to seepage of liquid water on Mars. Whether or not brine seepage explains the gullies phenomenon, dense, CaC12-rich brines are to be expected in the deep subsurface of Mars, although they might be somewhat diluted (temperatures permitting) and of variable salt composition. In any case, they should be good conductors of electricity.

  3. Electrically Conducting, Ca-Rich Brines, Rather Than Water, Expected in the Martian Subsurface

    NASA Technical Reports Server (NTRS)

    Burt, D. M.; Knauth, L. P.

    2003-01-01

    If Mars ever possessed a salty liquid hydrosphere, which later partly evaporated and froze down, then any aqueous fluids left near the surface could have evolved to become dense eutectic brines. Eutectic brines, by definition, are the last to freeze and the first to melt. If CaC12-rich, such brines can remain liquid until temperatures below 220 K, close to the average surface temperature of Mars. In the Martian subsurface, in intimate contact with the Ca-rich basaltic regolith, NaC1-rich early brines should have reacted to become Ca-rich. Fractional crystallization (freezing) and partial melting would also drive brines toward CaC12-rich compositions. In other words, eutectic brine compositions could be present in the shallow subsurface of Mars, for the same reasons that eutectic magma compositions are common on Earth. Don Juan Pond, Antarctica, a CaC12-rich eutectic brine, provides a possible terrestrial analog, particularly because it is fed from a basaltic aquifer. Owing to their relative density and fluid nature, brines in the Martian regolith should eventually become sandwiched between ice above and salts beneath. A thawing brine sandwich provides one explanation (among many) for the young gullies recently attributed to seepage of liquid water on Mars. Whether or not brine seepage explains the gullies phenomenon, dense, CaC12-rich brines are to be expected in the deep subsurface of Mars, although they might be somewhat diluted (temperatures permitting) and of variable salt composition. In any case, they should be good conductors of electricity.

  4. [Effects of water content on redox potential and carbon mineralization of wetland sediments].

    PubMed

    Yang, Gai-ren; Tong, Cheng-li; Xiao, He-ai; Wu, Jin-shui

    2009-08-15

    To better understand the effect of soil water contents on redox potential (Eh), and their impacts on C mineralization in natural wetland, sediment samples from 3 types of wetlands (fen, humus marsh and marshy meadow) in the San-jiang Plate region of North China were incubated (25 degrees C) for 155 d under a range of reducing and oxidizing conditions by controlling water contents (varied from 24% to 232% of water holding capacity) (WHC). CO2-C evolved during incubation was measured at different time intervals. Results showed that Eh of sediments decreased significantly as water content increased from 24% WHC (lighted moisturized) to about 100% WHC, then decreased slightly as water content increased further to a level of submersed (about 2 cm water-depths). The accumulative amount of CO2-C evolved from the sediments indicated that the optimum water contents for mineralization of organic C are 32%, 48% and 76%-100% WHC for sediments of fen, humus marsh, and marshy meadow, respectively. The relationship between mineralization rates and redox potentials (Eh) were well fitted with second order parabola equations (p < 0.05). Mineralization rates and accumulative amount of organic C displayed a positive correlation with Eh up to 300 mV. However, a significant negative correlation was observed when Eh increased above 300 mV. Results demonstrated that low redox potential is the controlling factor of carbon accumulation of wetland in San-jiang Plate region.

  5. Calibration of Mineralization Degree for Dynamic Pure-water Measurement in Horizontal Oil-water Two-phase Flow

    NASA Astrophysics Data System (ADS)

    Kong, Weihang; Li, Lei; Kong, Lingfu; Liu, Xingbin

    2016-08-01

    In order to solve the problem of dynamic pure-water electrical conductivity measurement in the process of calculating water content of oil-water two-phase flow of production profile logging in horizontal wells, a six-group local-conductance probe (SGLCP) is proposed to measure dynamic pure-water electrical conductivity in horizontal oil-water two-phase flow. The structures of conductance sensors which include the SGLCP and ring-shaped conductance probe (RSCP) are analyzed by using the finite-element method (FEM). In the process of simulation, the electric field distribution generated by the SGLCP and RSCP are investigated, and the responses of the measuring electrodes are calculated under the different values of the water resistivity. The static experiments of the SGLCP and RSCP under different mineralization degrees in horizontal oil-water two-phase flow are carried out. Results of simulation and experiments demonstrate a nice linearity between the SGLCP and RSCP under different mineralization degrees. The SGLCP has also a good adaptability to stratified flow, stratified flow with mixing at the interface and dispersion of oil in water and water flow. The validity and feasibility of pure-water electrical conductivity measurement with the designed SGLCP under different mineralization degrees are verified by experimental results.

  6. Therapeutic Effects and Immunomodulation of Suanbo Mineral Water Therapy in a Murine Model of Atopic Dermatitis

    PubMed Central

    Choi, Yoon Jung; Lee, Hye Jin; Lee, Do Hyun; Woo, So Youn; Lee, Kyung Ho; Yun, Seong Taek; Kim, Jong Moon; Kim, Hong Jig

    2013-01-01

    Background Balneotherapy is widely used as an alternative treatment modality for AD. Although the clinical benefit of some mineral waters has been established, their mechanisms of action in alleviating AD are only partly understood. Objective The clinical modification and immunomodulatory or anti-inflammatory effects of mineral water from the Suanbo hot springs on the differentiation and cytokine production of Th1, Th2, and regulatory T cells (Treg) were investigated using spleen, skin tissue, and serum from NC/Nga mice. Methods The therapeutic effects of bathing in mineral water in a Dermatophagoides farinae body extract ointment (Dfb ointment)-induced AD mouse model were assessed by measuring the modified Scoring atopic dermatitis (SCORAD) index scores, transepidermal water loss (TEWL), histological and immunohistochemical changes of the skin lesion, serum levels of interferon (IFN)-γ, interleukin (IL)-4, IL-5 and immunoglobulin E, mRNA expression of IFN-γ, IL-4 and IL-5 of dorsal skin, and helper T cell differentiation in the spleen. Results Bathing in mineral water significantly reduced the modified SCORAD index scores, TEWL, epidermal hyperplasia, and inflammatory cell infiltration. IL-4 production and Th2 cell differentiation showed a decreasing tendency with mineral water bathing, but the Th1 cells did not. On the contrary, differentiation to Treg cells was promoted with mineral water bathing. Conclusion Balneotherapy not only has anti-inflammatory activity, but also shows positive effects on cutaneous barrier homeostasis. These results suggest that the favorable effects of balneotherapy may be mediated by modifying the Th2 response, and possibly in part by inducing Treg cell differentiation. PMID:24371394

  7. Mineral-Coated Polymer Membranes with Superhydrophilicity and Underwater Superoleophobicity for Effective Oil/Water Separation

    PubMed Central

    Chen, Peng-Cheng; Xu, Zhi-Kang

    2013-01-01

    Oil-polluted water is a worldwide problem due to the increasing industrial oily wastewater and the frequent oil spill accidents. Here, we report a novel kind of superhydrophilic hybrid membranes for effective oil/water separation. They were prepared by depositing CaCO3-based mineral coating on PAA-grafted polypropylene microfiltration membranes. The rigid mineral-coating traps abundant water in aqueous environment and forms a robust hydrated layer on the membrane pore surface, thus endowing the membranes with underwater superoleophobicity. Under the drive of either gravity or external pressure, the hybrid membranes separate a range of oil/water mixtures effectively with high water flux (>2000 L m−2 h−1), perfect oil/water separation efficiency (>99%), high oil breakthrough pressure (>140 kPa) and low oil fouling. The oil/water mixtures include not only free mixtures but also oil-in-water emulsions. Therefore, the mineral-coated membrane enables an efficient and energy-saving separation for various oil/water mixtures, showing attractive potential for practical oil/water separation. PMID:24072204

  8. Mineral-coated polymer membranes with superhydrophilicity and underwater superoleophobicity for effective oil/water separation.

    PubMed

    Chen, Peng-Cheng; Xu, Zhi-Kang

    2013-09-27

    Oil-polluted water is a worldwide problem due to the increasing industrial oily wastewater and the frequent oil spill accidents. Here, we report a novel kind of superhydrophilic hybrid membranes for effective oil/water separation. They were prepared by depositing CaCO3-based mineral coating on PAA-grafted polypropylene microfiltration membranes. The rigid mineral-coating traps abundant water in aqueous environment and forms a robust hydrated layer on the membrane pore surface, thus endowing the membranes with underwater superoleophobicity. Under the drive of either gravity or external pressure, the hybrid membranes separate a range of oil/water mixtures effectively with high water flux (>2000 L m(-2) h(-1)), perfect oil/water separation efficiency (>99%), high oil breakthrough pressure (>140 kPa) and low oil fouling. The oil/water mixtures include not only free mixtures but also oil-in-water emulsions. Therefore, the mineral-coated membrane enables an efficient and energy-saving separation for various oil/water mixtures, showing attractive potential for practical oil/water separation.

  9. Cd Mobility in Anoxic Fe-Mineral-Rich Environments - Potential Use of Fe(III)-Reducing Bacteria in Soil Remediation

    NASA Astrophysics Data System (ADS)

    Muehe, E. M.; Adaktylou, I. J.; Obst, M.; Schröder, C.; Behrens, S.; Hitchcock, A. P.; Tylsizczak, T.; Michel, F. M.; Krämer, U.; Kappler, A.

    2014-12-01

    Agricultural soils are increasingly burdened with heavy metals such as Cd from industrial sources and impure fertilizers. Metal contaminants enter the food chain via plant uptake from soil and negatively affect human and environmental health. New remediation approaches are needed to lower soil metal contents. To apply these remediation techniques successfully, it is necessary to understand how soil microbes and minerals interact with toxic metals. Here we show that microbial Fe(III) reduction initially mobilizes Cd before its immobilization under anoxic conditions. To study how microbial Fe(III) reduction influences Cd mobility, we isolated a new Cd-tolerant, Fe(III)-reducing Geobacter sp. from a heavily Cd-contaminated soil. In lab experiments, this Geobacter strain first mobilized Cd from Cd-loaded Fe(III) hydroxides followed by precipitation of Cd-bearing mineral phases. Using Mössbauer spectroscopy and scanning electron microscopy, the original and newly formed Cd-containing Fe(II) and Fe(III) mineral phases, including Cd-Fe-carbonates, Fe-phosphates and Fe-(oxyhydr)oxides, were identified and characterized. Using energy-dispersive X-ray spectroscopy and synchrotron-based scanning transmission X-ray microscopy, Cd was mapped in the Fe(II) mineral aggregates formed during microbial Fe(III) reduction. Microbial Fe(III) reduction mobilizes Cd prior to its precipitation in Cd-bearing mineral phases. The mobilized Cd could be taken up by phytoremediating plants, resulting in a net removal of Cd from contaminated sites. Alternatively, Cd precipitation could reduce Cd bioavailability in the environment, causing less toxic effects to crops and soil microbiota. However, the stability and thus bioavailability of these newly formed Fe-Cd mineral phases needs to be assessed thoroughly. Whether phytoremediation or immobilization of Cd in a mineral with reduced Cd bioavailability are feasible mechanisms to reduce toxic effects of Cd in the environment remains to be

  10. Study of mineral water resources from the Eastern Carpathians using stable isotopes.

    PubMed

    Magdas, Dana A; Cuna, Stela M; Berdea, Petre; Balas, Gabriela; Cuna, Cornel; Dordai, Edina; Falub, Mihaela C

    2009-08-30

    The Eastern Carpathians contain many mineral water springs that feed famous Romanian health resorts such as Borsec, Biborteni and Vatra Dornei. These waters have been used for their different therapeutic effects. In this work, mineral and spring waters from these Romanian regions were investigated by means of chemical and isotopic (deltaD and delta(18)O) analyses in order to understand the recharge mechanisms and also to determine their origins. Most of the investigated springs are of meteoric origin, having the average deuterium content of the local meteoric water. The higher (18)O content with respect to the Meteoric Water Line (MWL) indicated an exchange reaction with crystalline igneous rocks at depth and with other rocks that the water encounters on its journey back to the surface. 2009 John Wiley & Sons, Ltd.

  11. Influence of mineral weathering reactions on the chemical composition of soil water, springs, and ground water, Catoctin Mountains, Maryland

    USGS Publications Warehouse

    Katz, B.G.

    1989-01-01

    During 1983 and 1984, wet precipitation was primarily a solution of dilute sulphuric acid, whereas calcium and bicarbonate were the major ions in springs and ground water in two small watersheds with a deciduous forest cover in central Maryland. Dominant ions in soil water were calcium, magnesium, and sulphate. The relative importance of mineral weathering reactions on the chemical composition of these subsurface waters was compared to the contribution from wet precipitation, biological processes, and road deicing salts. -from Author

  12. One-step apexification in immature tooth using grey mineral trioxide aggregate as an apical barrier and autologus platelet rich fibrin membrane as an internal matrix

    PubMed Central

    Rudagi, Kavitarani B; Rudagi, BM

    2012-01-01

    Immature teeth with necrotic pulp and periapical lesion are difficult to treat via conventional endodontic therapy. Numerous procedures and materials have been utilized to induce root-end barrier formation. Traditionally, calcium hydroxide has been the material of choice for the apexification of immature permanent teeth; however, Mineral Trioxide Aggregate holds significant promise as an alternative to multiple treatments with calcium hydroxide. One of the technical problems associated with the placement of the restorative materials used as artificial barrier is to prevent overfill and underfill. Using a matrix avoids the extrusion of the material into the periodontal tissues. This case report presents the successful healing and apexification with combined use of Mineral Trioxide Aggregate as an apical barrier, and autologus platelet rich fibrin membrane as an internal matrix. PMID:22557824

  13. A Mineral-Rich Red Algae Extract Inhibits Polyp Formation and Inflammation in the Gastrointestinal Tract of Mice on a High-Fat Diet

    PubMed Central

    Aslam, Muhammad Nadeem; Paruchuri, Tejaswi; Bhagavathula, Narasimharao; Varani, James

    2010-01-01

    The purpose of this study was to determine whether a mineral-rich extract derived from the red marine algae, Lithothamnion calcareum (Pallas), could be used as a dietary supplement for chemoprevention against colon polyp formation. Sixty C57bl/6 mice were divided into three groups based on diet. One group received a low-fat, rodent chow diet (AIN76A). The second group received a high-fat “Western style” diet (HFWD). The third group was fed the same HFWD with the mineral-rich extract included as a dietary supplement. Mice were maintained on the respective diets for 15 months. Autopsies were performed at the time of death or at the completion of the study. To summarize, the cumulative mortality rate was higher in mice on the HFWD during the 15 month period (55%) than in mice from the low-fat diet or the extract-supplemented high-fat diet groups (20% and 30%, respectively; p<0.05 with respect to both). Autopsies revealed colon polyps in 20% of the animals on the HFWD and none in animals of the other two groups (p<0.05). In addition to the grossly visible polyps, areas of hyperplasia in the colonic mucosa and inflammatory foci throughout the gastrointestinal tract were observed histologically in animals on the high-fat diet. Both were significantly reduced in animals on the low-fat diet and animals on the extract-supplemented HFWD. These data suggest that the mineral-rich algae extract may provide a novel approach to chemoprevention in the colon. PMID:20150219

  14. A mineral-rich red algae extract inhibits polyp formation and inflammation in the gastrointestinal tract of mice on a high-fat diet.

    PubMed

    Aslam, Muhammad N; Paruchuri, Tejaswi; Bhagavathula, Narasimharao; Varani, James

    2010-03-01

    The purpose of this study was to determine whether a mineral-rich extract derived from the red marine algae Lithothamnion calcareum could be used as a dietary supplement for chemoprevention against colon polyp formation. A total of 60 C57bl/6 mice were divided into 3 groups based on diet. One group received a low-fat, rodent chow diet (AIN76A). The second group received a high-fat "Western-style" diet (HFWD). The third group was fed the same HFWD with the mineral-rich extract included as a dietary supplement. Mice were maintained on the respective diets for 15 months. Autopsies were performed at the time of death or at the completion of the study. To summarize, the cumulative mortality rate was higher in mice on the HFWD during the 15-month period (55%) than in mice from the low-fat diet or the extract-supplemented high-fat diet groups (20% and 30%, respectively; P < .05 with respect to both). Autopsies revealed colon polyps in 20% of the animals on the HFWD and none in animals of the other 2 groups (P < .05). In addition to the grossly visible polyps, areas of hyperplasia in the colonic mucosa and inflammatory foci throughout the gastrointestinal tract were observed histologically in animals on the high-fat diet. Both were significantly reduced in animals on the low-fat diet and animals on the extract-supplemented HFWD.These data suggest that the mineral-rich algae extract may provide a novel approach to chemoprevention in the colon.

  15. Effect of inorganic nutrients on the acclimation period preceding mineralization of organic chemicals in lake water

    SciTech Connect

    Jones, S.H.; Alexander, M.

    1988-12-01

    The addition of phosphate, nitrate, or sulfate (each at 10 mM) decreased the acclimation period for the mineralization of low concentrations of p-nitrophenol (PNP) in lake water. Added phosphate shortened the acclimation period for biodegradation of 2 ng to 2 micrograms of PNP per ml in various lake water samples and of 2,4-dichlorophenoxyacetate at 100 ng/ml. Added P enhanced the rate of growth of PNP-mineralizing microorganisms in waters containing 200 ng or 2 micrograms of PNP per ml. We suggest that the effect of P on the acclimation period results from an increase in the growth rate of the initially small population of microorganisms able to mineralize the synthetic chemicals.

  16. Minerals, phenolic compounds, and antioxidant capacity of citrus peel extract by hot water.

    PubMed

    Xu, G H; Chen, J C; Liu, D H; Zhang, Y H; Jiang, P; Ye, X Q

    2008-01-01

    Some dried citrus peels, more familiar as chenpi in China, have been widely used in traditional Chinese medicines from ancient times. This paper reports the efficiency of infusion cooking on extracting minerals and phenolic compounds (flavanone glycosides [FGs], polymethoxylated flavones [PMFs], and phenolic acids), and also antioxidant activity of hot water extract of citrus peels. Peels of 2 citrus varieties, namely, Satsuma mandarin (C. unshiu Marc.) and Ponkan (C. poonensis Hort. ex Tanaka), which belong to C. reticulata, were selected. As a result, hot water extraction was efficient in extracting phenolic acids and some minerals. As for citrus flavonoids, narirutin, nobiletin, and tangeretin were easier to extract than hesperidin. The result of antioxidant capacity assays indicated that for citrus peels, hot water extract had almost the same capacity as the methanol extract. We suggested that Ponkan was more suitable as the source of chenpi, since its hot water extract had much higher content of phenolic acids, FGs and PMFs, and higher antioxidant capacity than those of Satsuma mandarin. Generally, to raise the extraction temperature or to prolong the time could not yield higher content of phenolic compounds and stronger antioxidant capacity, though the content of minerals increased to some extent. Furthermore, a 2nd-time extraction seemed necessary since considerable minerals and phenolic compounds could be obtained by doing so. Finally, we suggested that 2 times extraction at 100 degrees C for 30 min was proper to extract the minerals and phenolic compounds in chenpi.

  17. Optical Spectroscopy of Radiation Processed Cosmic Ices & PAH-doped Water-rich Ices

    NASA Astrophysics Data System (ADS)

    Gudipati, Murthy S.; Allamandola, Louis J.

    Water-rich, mixed molecular ices and polycyclic aromatic hydrocarbons (PAHs) are common throughout interstellar molecular clouds and the Solar System. Vacuum ultraviolet (VUV) irradiation and particle bombardment of these abiotic ices produces complex organic species, including important biogenic molecules such as amino acids and functionalized PAHs. This ability of such water-rich, oxygen-dominated ices to promote production of complex organic species is important. We will present studies on cosmic ices that include PAH-impurities upon vacuum ultraviolet (VUV) irradiation using electronic spectroscopy. VUV-irradiation of PAH / H2O ices leads to efficient conversion of the neutral PAHs to their cation form (PAH+). Further, these H2O / PAH+ ices are stable at temperatures below 50 K, a temperature domain common throughout interstellar clouds and the Solar System. In view of this, we conclude that charged PAHs and other molecular ions should be common and abundant in many cosmic ices.

  18. Structure, dynamics and stability of water/scCO2/mineral interfaces from ab initio molecular dynamics simulations

    DOE PAGES

    Lee, Mal -Soon; Peter McGrail, B.; Rousseau, Roger; ...

    2015-10-12

    Here, the interface between a solid and a complex multi-component liquid forms a unique reaction environment whose structure and composition can significantly deviate from either bulk or liquid phase and is poorly understood due the innate difficulty to obtain molecular level information. Feldspar minerals, as typified by the Ca-end member Anorthite, serve as prototypical model systems to assess the reactivity and ion mobility at solid/water-bearing supercritical fluid (WBSF) interfaces due to recent X-ray based measurements that provide information on water-film formation, and cation vacancies at these surfaces. Using density functional theory based molecular dynamics, which allows the evaluation of reactivitymore » and condensed phase dynamics on equal footing, we report on the structure and dynamics of water nucleation and surface aggregation, carbonation and Ca mobilization under geologic carbon sequestration scenarios (T = 323 K and P = 90 bar). We find that water has a strong enthalpic preference for aggregation on a Ca-rich, O-terminated anorthite (001) surface, but entropy strongly hinders the film formation at very low water concentrations. Carbonation reactions readily occur at electron-rich terminal Oxygen sites adjacent to cation vacancies, when in contact with supercritical CO2. Cation vacancies of this type can form readily in the presence of a water layer that allows for facile and enthalpicly favorable Ca2+ extraction and solvation. Apart from providing unprecedented molecular level detail of a complex three component (mineral, water and scCO2) system), this work highlights the ability of modern capabilities of AIMD methods to begin to qualitatively and quantitatively address structure and reactivity at solid-liquid interfaces of high chemical complexity. This work was supported by the US Department of Energy, Office of Fossil Energy (M.-S. L., B. P. M. and V.-A. G.) and the Office of Basic Energy Science, Division of Chemical Sciences

  19. Management of pulpal floor perforation and grade II Furcation involvement using mineral trioxide aggregate and platelet rich fibrin: A clinical report.

    PubMed

    Bains, Rhythm; Bains, Vivek K; Loomba, Kapil; Verma, Kavita; Nasir, Afreena

    2012-09-01

    To report the management of an iatrogenic perforation of pulpal floor in the furcation of mandibular first molar, using Mineral Trioxide Aggregate (MTA) and platelet rich fibrin (PRF). Unpredictable endodontic root/pulp chamber floor perforations resulting in unacceptable high rate of clinical failure has now been a lesser threat with the advent of new technologies and biocompatible materials that utilize the applications of basic research along with tissue engineering concept in clinical practice. Present case report illustrates the use of MTA and platelet rich fibrin (PRF) for the repair of the perforation defect and regeneration of the lost periodontium in furcation area. Although, histologic events and reaction of MTA with PRF is not studied so far, however, the autologous and biocompatible nature of the components used for present treatment modalities seems to be beneficial for the long term clinical results obtained in our case.

  20. Management of pulpal floor perforation and grade II Furcation involvement using mineral trioxide aggregate and platelet rich fibrin: A clinical report

    PubMed Central

    Bains, Rhythm; Bains, Vivek K.; Loomba, Kapil; Verma, Kavita; Nasir, Afreena

    2012-01-01

    To report the management of an iatrogenic perforation of pulpal floor in the furcation of mandibular first molar, using Mineral Trioxide Aggregate (MTA) and platelet rich fibrin (PRF). Unpredictable endodontic root/pulp chamber floor perforations resulting in unacceptable high rate of clinical failure has now been a lesser threat with the advent of new technologies and biocompatible materials that utilize the applications of basic research along with tissue engineering concept in clinical practice. Present case report illustrates the use of MTA and platelet rich fibrin (PRF) for the repair of the perforation defect and regeneration of the lost periodontium in furcation area. Although, histologic events and reaction of MTA with PRF is not studied so far, however, the autologous and biocompatible nature of the components used for present treatment modalities seems to be beneficial for the long term clinical results obtained in our case. PMID:23230369

  1. Copper isotope variations of copper-rich minerals in seafloor hydrothermal deposits and igneous rocks, measured by a femtosecond LA-MC-ICP-MS

    NASA Astrophysics Data System (ADS)

    Ikehata, K.; Ishibashi, J.; Suzuki, R.; Hirata, T.

    2013-05-01

    In recent years, the copper isotope systematics has seen an increased interest as a potential tool for understanding copper sources and geochemical processes of copper transport and deposition in ore-forming systems. The copper isotope variations of primary and secondary copper-rich minerals from modern (Mariana Trough) and ancient (Besshi-type and Kuroko-type volcanogenic massive sulfide deposits, Japan) seafloor hydrothermal deposits have been analyzed by a femtosecond-pulsed laser ablation multiple collector inductively coupled plasma mass spectrometry (fs-LA-MC-ICP-MS). The δ65Cu (where δ65Cu = [(65Cu/63Cu)sample/ (65Cu/63Cu)NIST-SRM976-1] × 1000) values of copper-rich sulfide minerals of chimney samples from active seafloor hydrothermal deposits are significantly large (δ65Cu = -0.7 to 4.0‰) compared to those of copper-rich minerals in ancient submarine hydrothermal deposits (δ65Cu = -0.3 to 0.4‰; e.g., Ikehata et al., 2011) and in igneous rocks (δ65Cu = -0.3 to 0.3‰; e.g., Ikehata et al., 2012). These large copper isotopic variations in the chimney samples are most likely explained in terms of a redox-controlled isotope fractionation during hydrothermal reworking of copper sulfides below sea floor or alteration of primary hydrothermal copper sulfides by seawater, involving the preferential incorporation of heavy copper isotopes in secondary Cu(II) solutions. These results also suggest that sub-seafloor recrystallization and metamorphic reequilibration may have reduced the original range of copper isotopes. Secondary malachite (δ65Cu = 2.6 to 3.0‰) and native copper (δ65Cu = 1.4 to 1.7‰) in the Besshi-type deposits have heavier copper isotopic values compared to precursor copper-rich minerals. These variations are mainly due to isotope fractionations during redox reactions (weathering) at low temperatures involving the preferential incorporation of heavy copper isotopes in secondary Cu(II) solutions.

  2. Diversity of the heterotrophic microbial populations for distinguishing natural mineral waters.

    PubMed

    Casanovas-Massana, Arnau; Blanch, Anicet R

    2012-02-01

    In the recent years the consumption of natural mineral waters has risen all over the world, becoming a usual alternative for tap water and other beverages. Natural mineral waters are complex environments containing a high diversity of autochthonous microbiota. The identification and characterization of this indigenous microbiota may help to detect changes occurring in the different steps of the bottling process and take preventive measures before the bottled water arrives to the consumer. The aims of this study were to describe the bacterial heterotrophic populations in natural mineral waters with a cultivation-dependent method and determine whether their autochthonous microbiota were specific enough to be clearly distinguished from that of other natural mineral waters with a phenotypic-based method. For this purpose, water from three independent Spanish springs was sampled in two seasons (winter and summer) and heterotrophic aerobic bacterial strains were isolated at two temperatures (22 ± 2°C and 36 ± 2°C) on R2A agar. Isolates were phenotyped biochemically with Php-48 plates (Bactus AB, Sweden), and the indexes of diversity and similarity between populations were calculated. The 16S rRNA gene of the most representative strains of each biochemical cluster was sequenced for its identification. Finally, a ten-fold cross-validation method was assayed for the identification of the origin of a natural mineral water when phenotyping a set of isolates. High levels of diversity were found at all sites. One of the sources was found to present less diversity due to a confirmed contamination with Pseudomonas aeruginosa. The study of the similarities showed that growing temperatures and seasons caused significant differences in structures and composition at the sources. In addition, several bacterial species were isolated and identified, some of them rarely isolated in natural mineral waters, revealing the complexity and lack of knowledge of these ecosystems

  3. Erosion of aluminum 6061-T6 under cavitation attack in mineral oil and water

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1985-01-01

    Studies of the erosion of aluminum 6061-T6 under cavitation attack in distilled water, ordinary tap water and a viscous mineral oil are presented. The mean depth of penetration for the mineral oil was about 40 percent of that for water at the end of a 40 min test. The mean depth of penetration and its rate did not differ significantly for distilled and tap water. The mean depth of penetration rate for both distilled and tap water increased to a maximum and then decreased with test duration, while that for mineral oil had a maximum during the initial period. The ratio h/2a of the pit depth h to the pit diameter 2a varied from 0.04 to 0.13 in water and from 0.06 to 0.20 in mineral oil. Scanning electron microscopy indicates that the pits are initially formed over the grain boundaries and precipitates while the surface grains are deformed under cavitation attack.

  4. Erosion of aluminum 6061-T6 under cavitation attack in mineral oil and water

    NASA Technical Reports Server (NTRS)

    Rao, B. C. S.; Buckley, D. H.

    1985-01-01

    Studies of the erosion of aluminum 6061-T6 under cavitation attack in distilled water, ordinary tap water and a viscous mineral oil are presented. The mean depth of penetration for the mineral oil was about 40 percent of that for water at the end of a 40 min test. The mean depth of penetration and its rate did not differ significantly for distilled and tap water. The mean depth of penetration rate for both distilled and tap water increased to a maximum and then decreased with test duration, while that for mineral oil had a maximum during the initial period. The ratio h/2a of the pit depth h to the pit diameter 2a varied from 0.04 to 0.13 in water and from 0.06 to 0.20 in mineral oil. Scanning electron microscopy indicates that the pits are initially formed over the grain boundaries and precipitates while the surface grains are deformed under cavitation attack.

  5. Survival of Escherichia coli and Aeromonas hydrophila in non-carbonated mineral water.

    PubMed

    Korzeniewska, Ewa; Filipkowska, Zofia; Zarnoch, Dagny; Tworus, Katarzyna

    2005-01-01

    The study was carried out on the survival of Escherichia coli and Aeromonas hydrophila in samples of mineral waters. Enumeration of the bacteria was performed by spread inoculation of samples (0.1 cm3) over the surface of selected media in Petri plates. Twenty bottles (four bottles of each of the five brands) of non-carbonated mineral waters with different levels of dissolved solids and organic content were chosen to study every strain. Ten bottles were stored at 4 degrees C, the other ten were kept at 22 degrees C. Half of the samples of mineral water was filtered, the remaining water was unfiltered. The resulting growth curves depended on the time of storage. The number of E. coli increased during the first two weeks (except the seventh day) and decreased during the next days. E. coli was detected in 70% of samples of water after 182 days. The number of A. hydrophila decreased during the first three days, increased on the seventh day and decreased during the next days. A. hydrophila was detected in 15% of the samples of water after 182 days. The temperature of storage was inessential for growth. The most important factors were the brand and the filtering or unfiltering of water. The highest numbers of the bacteria analysed were detected in filtered water, irrespective of the water brand and temperature of storage.

  6. Norwalk-like virus sequences in mineral waters: one-year monitoring of three brands.

    PubMed

    Beuret, Christian; Kohler, Dorothe; Baumgartner, Andreas; Lüthi, Thomas M

    2002-04-01

    In a recent study, RNA with nucleotide sequeces specific for "Norwalk-like viruses" (NLV) was detected in 11 different brands of European mineral waters. To clarify this finding, a 1-year monitoring study was conducted. Samples of three European brands of mineral water without gas were monitored weekly by reverse transcriptase PCR using generic and genogroup-specific oligonucleotides. Additional analyses were performed to investigate a possible correlation between NLV sequence contamination and mineral water lot numbers, the long-term stability (persistence) of NLV sequences in mineral water, and the level of contamination. NLV sequences were detected in 53 of 159 samples analyzed (33%) and belonged entirely to genogroup II. Although all NLV strains identified were closely related, three mineral water brand-specific clusters could be identified for both primer systems by sequencing. Analyses of second samples from lots previously shown to be positive for NLV sequences gave corresponding results in 45 of 53 cases (85%) (within a six-pack). NLV persistence was tested by analyzing 10 positive samples after 6 and 12 months of storage in darkness at room temperature. After 6 months, all samples remained positive; after 12 months, 9 of 10 samples were still positive for NLV sequences. No NLV sequences could be detected by analysis of 0.1-liter aliquots of 53 samples shown to be positive by testing of 1-liter volumes. Based on this fact and a test sensitivity of approximately 10 viral units, levels of contamination in positive mineral water samples were estimated to be in the range of 10 to 100 genomic equivalents per liter.

  7. Norwalk-Like Virus Sequences in Mineral Waters: One-Year Monitoring of Three Brands

    PubMed Central

    Beuret, Christian; Kohler, Dorothe; Baumgartner, Andreas; Lüthi, Thomas M.

    2002-01-01

    In a recent study, RNA with nucleotide sequeces specific for “Norwalk-like viruses” (NLV) was detected in 11 different brands of European mineral waters. To clarify this finding, a 1-year monitoring study was conducted. Samples of three European brands of mineral water without gas were monitored weekly by reverse transcriptase PCR using generic and genogroup-specific oligonucleotides. Additional analyses were performed to investigate a possible correlation between NLV sequence contamination and mineral water lot numbers, the long-term stability (persistence) of NLV sequences in mineral water, and the level of contamination. NLV sequences were detected in 53 of 159 samples analyzed (33%) and belonged entirely to genogroup II. Although all NLV strains identified were closely related, three mineral water brand-specific clusters could be identified for both primer systems by sequencing. Analyses of second samples from lots previously shown to be positive for NLV sequences gave corresponding results in 45 of 53 cases (85%) (within a six-pack). NLV persistence was tested by analyzing 10 positive samples after 6 and 12 months of storage in darkness at room temperature. After 6 months, all samples remained positive; after 12 months, 9 of 10 samples were still positive for NLV sequences. No NLV sequences could be detected by analysis of 0.1-liter aliquots of 53 samples shown to be positive by testing of 1-liter volumes. Based on this fact and a test sensitivity of approximately 10 viral units, levels of contamination in positive mineral water samples were estimated to be in the range of 10 to 100 genomic equivalents per liter. PMID:11916714

  8. Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals

    USGS Publications Warehouse

    Moore, Diane E.; Lockner, D.A.

    2004-01-01

    We compare the frictional strengths of 17 sheet structure mineral powders, measured under dry and water-saturated conditions, to identify the factors that cause many of them to be relatively weak. The dry coefficient of friction ?? ranges upward from 0.2 for graphite, leveling off at 0.8 for margarite, clintonite, gibbsite, kaolinite, and lizardite. The values of ?? (dry) correlate directly with calculated (001) interlayer bond strengths of the minerals. This correlation occurs because shear becomes localized along boundary and Riedel shears and the platy minerals in them rotate into alignment with the shear planes. For those gouges with ?? (dry) < 0.8, shear occurs by breaking the interlayer bonds to form new cleavage surfaces. Where ?? (dry) = 0.8, consistent with Byerlee's law, the interlayer bonds are sufficiently strong that other frictional processes dominate. The transition in dry friction mechanisms corresponds to calculated surface energies of 2-3 J/m2. Adding water causes ?? to decrease for every mineral tested except graphite. If the minerals are separated into groups with similar crystal structures, ?? (wet) increases with increasing interlayer bond strength within each group. This relationship also holds for the swelling clay montmorillonite, whose water-saturated strength is consistent with the strengths of nonswelling clays of similar crystal structure. Water in the saturated gouges forms thin, structured films between the plate surfaces. The polar water molecules are bonded to the plate surfaces in proportion to the mineral's surface energy, and ?? (wet) reflects the stresses required to shear through the water films. Copyright 2004 by the American Geophysical Union.

  9. High-calcium mineral water as a calcium supplementing measure for post-thyroidectomy hypocalcemia.

    PubMed

    Coiro, V; Zanardi, G; Saccani Jotti, G; Rubino, P; Manfredi, G; Chiodera, P

    2008-03-01

    The aim of this study was to test the possibility of enhancing blood calcium levels in totally thyroidectomized patients by supplementation with 1 L/d carbonate-bicarbonate-high-calcium mineral water. This study enrolled 95 outpatients, totally thyroidectomized four months earlier, and hence treated with oral calcium and vitamin-D. At recruitment, ionized blood calcium was either below (Group A; N. 55) or above (Group B; N. 40, randomly divided in Group B1 [N. 20] and Group B2 [N.20]) the lower limit of the normal range (1.12 mmol/L). For one month, Group A was treated with 1 L/d high-calcium (483 mg/L) mineral water and continued the usual therapy with Ca and vitamin-D. In contrast, Group B1 and Group B2 substituted their Ca and vitamin-D therapy with 1 L/d high-calcium mineral water (Group B1) or 1 L/d of placebo mineral water (Ca:80 mg/L) (Group B2). After one month, a significant 7.5% increase in blood ionized-calcium levels was observed in Group A, no change in Group B1 and a significant drop below normality in Group B2 (Group B2 vs Group B1, P<0.001). Thereafter, 1 L/d of the high-calcium mineral water, given to Group B2 instead of placebo for an additional month, significantly enhanced ionized-calcium levels above the lower limit of normality (Group B2 vs Group B1, NS). These experiments show that calcium supplementation as 1 L/d of a high-calcium mineral water may efficaciously enhance blood calcium levels in thyroidectomized patients. This complementary treatment might at least in part contribute to the prevention and/or treatment of hypocalcemia and substitute vitamin-D and calcium therapies after thyroidectomy.

  10. Geochemical Composition of Surface Water in the Mineralized Lom Basin, East Cameroon: Natural and Anthropogenic Sources.

    NASA Astrophysics Data System (ADS)

    Mimba, M. E.; Ohba, T.; Nguemhe Fils, S. C.; Wirmvem, M. J.

    2016-12-01

    Thousands of people in East Cameroon depend on surface water for consumption and domestic purposes. The Lom basin, north of the region, is heavily mineralized especially in gold owing to its regional geological setting. Although research has been done regarding the rock type, age, formation history and reconnaissance gold surveys, surface water investigation in the area has received limited attention. Thus, this study appraises the first regional hydrogeochemical program for environmental assessment of the mineralized Lom basin. Fifty-two representative stream water samples were collected under base flow conditions and analysed for major cations (Ca2+, Mg2+, Na+, K+ ), major anions (HCO3-, F-, Cl-, NO2-, NO3-, Br-, PO43-, SO42- ) and stable isotopes (δD and δ18O). Calcium and HCO3- were the dominant ions. The chemical facies were CaHCO3 and NaHCO3 indicating surface water draining igneous/metamorphic rocks in hot and humid equatorial climate, resulting in the discordant dissolution of primary silicate minerals. From the isotopic evaluation, the stream water is of meteoric origin, shows negligible evaporation effect and has a common recharge source. The major ion geochemistry demonstrated the potential to discriminate between natural and anthropogenic origins. Distribution trends of Ca2+, Mg2+, Na+, K+, HCO3- and SO42- showed a correlation with the lithology and the occurrence of sulphide minerals associated with hydrothermal gold mineralization in the area. The distribution patterns of NO3- and Cl- reflect pollution from settlement. Overall, the chemistry of stream water in the Lom basin is mainly controlled by rock weathering compared to anthropogenic influence. Surface water quality is easily influenced by anthropogenic activities, and stream sediment collects effectively trace metals resulting from such activities. Hence, geochemical mapping incorporating stream water and stream sediment is of considerable value in future investigations within the Lom basin.

  11. Interaction between Bisphosphonates and Mineral Water: Study of Oral Risedronate Absorption in Rats.

    PubMed

    Itoh, Akihisa; Akagi, Yuuki; Shimomura, Hitoshi; Aoyama, Takao

    2016-01-01

    Bisphosphonates are antiosteoporotic agents prescribed for patients with osteoporosis. Drug package inserts for bisphosphonate supplements indicate that their bioavailability is reduced by high levels of metal cations (Ca(2+), Mg(2+), etc.). However, standards for these cations in water used for taking risedronate have not been defined. Here, we examined the effect of calcium and magnesium in mineral waters on the bioavailability of the third-generation bisphosphonate, risedronate, following oral administration in rats. As risedronate is unchanged and eliminated renally, risedronate absorption was estimated from the amount excreted in the urine. Risedronate was dissolved in mineral water samples and administered orally at 0.35 mg/kg. Urine samples were collected for 24 h after dosing. Risedronate was extracted from urine using ion-pair solid-phase cartridges and quantified by HPLC with UV detection (262 nm). Cumulative recovery of risedronate was calculated from the amount excreted in the urine. The 24-h recovery of risedronate from evian® (0.32±0.02% [mean±standard deviation (S.D.)], n=4) and Contrex(®) (0.22±0.05%) mineral waters was significantly lower than that from tap water (0.47±0.04%, p<0.01). Absorption of risedronate in calcium chloride and magnesium chloride aqueous solutions of the same hardness (822 mg/L) was 54% (0.27±0.04%) and 12% (0.51±0.08%) lower, respectively, compared with ultrapure water; suggesting that absorption of risedronate declines as the calcium concentration of mineral waters increases. Consumption of mineral waters containing high levels of calcium (80 mg/L or above), such as evian® and Contrex(®), is therefore not recommended when taking risedronate.

  12. [Thiamine metabolism in experimental hepatitis and the intake of Naftusia mineral water].

    PubMed

    Leus, N F

    1986-01-01

    The level and metabolism of vitamin B1 and its coenzymic form were studied in the tissues and subcellular structures of the internal organs of white rats with experimental toxic hepatitis, receiving mineral water naphtusya. It was found that naphtusya given per os stimulated the metabolism of thiamine pyrophosphate (TPP), enhanced its concentration in the hepatic tissue and intestinal mucosa, producing a stabilizing effect on the TPP activity. It is concluded that the mineral water naphtusya can be used for enteral correction of vitamin balance in hepatitis patients.

  13. Several properties offilament fibers made from recycled bottles of mineral water using melt spinning method

    NASA Astrophysics Data System (ADS)

    Muslim, Ikhwanul; Mardiyati; Basuki, Arif

    2016-01-01

    Waste mineral water bottles made of PET called post-consumer POSTC-PET packaging with recycling code no. 1 can be made into another material other than the bottle by using a mechanical recycling process. In this experiment carried waste recycling process bottled mineral water bottles of PET into filament fibres with the aid of a melt spinning. From the resulting experimental filament fibres diameter of 14-15 microns, obtained the draw ratio is 1/46, 573,5 - 699,8 MPa tensile strength, modulus of elasticity of 2,01 - 2,45GPa, moisture regain of 2,84. Keywords. PET; Bottle; Fiber; Melt; Spinning; Drawing.

  14. In vitro inhibition of sperm motility by some local mineral water drinks.

    PubMed

    Oyelola, O O; Ayangade, S O; Amole, F

    1987-10-01

    The effect of eight common local mineral water drinks in Ile-Ife, Nigeria (seven cola and one lemon-based) on sperm motility in vitro was carried out. There was no significant difference in the pH values of all the drinks, the pH ranged between 2.30-2.50. After one minute, Pepsi-Cola had the least inhibitory effect on sperm motility, Bitter-lemon had the strongest effect, while the other brands had varying effects between the two extremes. The percentage motility inhibition by the mineral water drinks is also a function of the initial total sperm count in the semen.

  15. Innovative Approaches to Teaching Packaging Design Using the Example of Mineral Water Supply Chains

    NASA Astrophysics Data System (ADS)

    Lestyánszka Škůrková, Katarína; Bajor, Peter; Trafela, Sabrina

    2013-12-01

    Designing the packaging of a product has many critical factors. In our paper, we present some of them on the example of a simple product: mineral water. In spite of the fact that today not only products, but also supply chains are competing with each other, designers sometimes pay little attention to considering the packaging system not only from the customer and the producer side, but for warehousing and transportation as well. We cover a lot of "what can go wrong" scenarios on the example of mineral water packaging for the purpose of defining the critical points in the supply chain.

  16. Environmental geochemistry of shale-hosted Ag-Pb-Zn massive sulfide deposits in northwest Alaska: Natural background concentrations of metals in water from mineralized areas

    USGS Publications Warehouse

    Kelley, K.D.; Taylor, C.D.

    1997-01-01

    Red Dog, Lik and Drenchwater are shale-hosted stratiform Ag-Pb-Zn massive sulfide deposits in the northwestern Brooks Range. Natural background concentrations of metals in waters from the undisturbed (unmined) Drenchwater prospect and Lik deposit were compared to pre-mining baseline studies conducted at Red Dog. The primary factors affecting water chemistry are the extent of exposure of the deposits, the grade of mineralization, the presence of carbonate reeks in the section, and the proportion of Fe-sulfide in the ore. Surface water samples from the Drenchwater prospect, which has pyrite-dominant mineralization exposed in outcrop, have pH values as low as 2.8 and high dissolved concentrations of metals including as much as 95 mg 1-1 Al, 270 mg 1-1 Fe, 8 ??1-1 Cd, 10 ??1-1 Pb, and 2600 ??1-1 Zn, with As up to 26 ??g1-1. Surface waters from the Red Dog deposit prior to mining were also acidic and metal-rich, however, dissolved metal concentrations in Red Dog waters were many times greater. The higher metal concentrations in Red Dog waters reflect the high Zn grades and the abundant sphalerite, pyrite, and galena that were present in outcrop prior to mining. In contrast, despite significant mineralization at the Lik deposit, carbonate rocks in the section buffer the system, resulting in less acidic, mostly near-neutral pH values with low concentrations of most metals except Zn.

  17. Effects of drain-fill cycling on chlorpyrifos mineralization in wetland sediment-water microcosms.

    PubMed

    Gebremariam, Seyoum Yami; Beutel, Marc W

    2010-03-01

    Constructed treatment wetlands are efficient at retaining a range of pesticides, however the ultimate fate of many of these compound is not well understood. This study evaluated the effect of drain-fill cycling on the mineralization of chlorpyrifos, a commonly used organophosphate insecticide, in wetland sediment-water microcosms. Monitoring of the fate of (14)C ring-labeled chlorpyrifos showed that drain-fill cycling resulted in significantly lower mineralization rates relative to permanently flooded conditions. The reduction in mineralization was linked to enhanced partitioning of the pesticide to the sediment phase, which could potentially inhibit chlorpyrifos hydrolysis and mineralization. Over the nearly two-month experiment, less than 2.5% of the added compound was mineralized. While rates of mineralization in this experiment were higher than those reported for other soils and sediments, their low magnitude underscores how persistent chlorpyrifos and its metabolites are in aquatic environments, and suggests that management strategies and ecological risk assessment should focus more on ultimate mineralization rather than the simple disappearance of the parent compound.

  18. On-line Differential Thermal Isotope Analysis: A New Method for Measuring Oxygen and Hydrogen Isotopes of Hydration Water in Minerals

    NASA Astrophysics Data System (ADS)

    Bauska, T.; Hodell, D. A.; Walters, G.

    2016-12-01

    Oxygen (16O,17O,18O) and hydrogen (H,D) isotopes of hydration water in minerals provide a rich source of information about the conditions under which hydrated minerals form on Earth and other planetary bodies (e.g. Mars). We have developed a new method for measuring different types of bonded water (e.g., molecular, hydroxyl) contained in hydrated minerals by coupling a thermal gravimeter (TG) and a cavity ringdown laser spectrometer (CRDS). The method involves step heating a mineral sample, precisely measuring the weight loss and enthalpy as the sample undergoes dehydration and dehydroxylation, whilst simultaneously determining the oxygen and hydrogen isotopes of the water vapor evolved from the mineral sample by cavity ring-down laser spectroscopy (CRDS). Nitrogen carrier gas is used to transfer the sample from the TG to the CRDS via a heated line and interface box. The interface includes the capability of (i) cryogenic trapping discrete types of water for samples containing small amounts of water; (ii) injecting small quantities of water of known isotopic value for calibration; and (iii) converting volatile organic compounds to nascent amounts of water using a catalyst. The CRDS continually measures water vapor concentration in the optical cavity and hydrogen and oxygen isotope ratios. Isotopic values are calculated by integrating the product of the water amount and its isotopic value for the separated peaks after correcting for background. Precision of the method was estimated by comparing isotope results of total water for gypsum measured by DTIA with our conventional method of extraction and analysis (Gázquez et al., 2015. Rapid Communications in Mass Spectrometry, 29, 1997-2006). Errors for the isotopic values of total hydration water vary between ±0.08 and ±0.34 ‰ for δ18O and between ±0.16 and ±0.86 ‰ for δD. We demonstrate the application of the DTIA method to a variety of hydrous minerals and mineraloids including gypsum, clays, and amorphous

  19. Effect of Water on the Surface Composition of Irradiated Minerals

    NASA Astrophysics Data System (ADS)

    Dukes, C. A.; Baragiola, R. A.

    2010-03-01

    Sections of olivine and augite exposed to 10^17 Ar cm-2 ion irradiation and then rinsed in water or exposed to a humid enviornment show up to 60% depletion of surface cations. This has implications for sample return and curation.

  20. Multimedia level-III partitioning and residence times of xenobiotics in water-rich and water-poor environments

    SciTech Connect

    Breitkopf, C.; Kuehne, R.; Schueuermann, G.

    2000-05-01

    The environmental fate of 10 compounds covering a wide range of intrinsic persistence and volatility is studied with a multimedia level-III fugacity model at two system temperatures (293 and 282 K) using water-rich and water-poor model environments and standard emission scenarios to air and water, respectively. The resultant level-III partitionings depend significantly on the entry mode and on the relative compartment sizes, and the variation with system temperature is more pronounced for polar compounds and when air is the primary discharge compartment. For example, the steady-state portion in soil of airborne phenol varies from 21 to 89%, whereas waterborne phenol resides in water at a rate of 100% in both water-rich and water-poor environments. For some compounds, the residence time (considering both advection and degradation) is substantially affected by intermedia transport processes such as rainfall. With airborne atrazine, the regional residence time is comparable to that of DDT and significantly greater than the ones of hexachlorobenzene, polychlorinated biphenyl 28, and lindane, although the latter have much longer media-specific half-lives and much greater hydrophobicity. The discussion includes detailed analyses of the compound properties and their impact on the level-III environmental fate.

  1. Minerals in drinking water: impacts on taste and importance to consumer health.

    PubMed

    Whelton, A J; Dietrich, A M; Burlingame, G A; Schechs, M; Duncan, S E

    2007-01-01

    More than 100 years of research has focused on removing acute and chronic health threats to produce safe drinking water, but limited research has focused the consequences of removing minerals that affect drinking water taste and health. This paper covers the human sense of taste, typical variations in drinking water taste, comparisons of global taste standards, the role of water chemistry and future research needs for understanding consumer preference. Results of several consumer tap and bottled water acceptability investigations conducted by the authors are presented.

  2. Floating bioplato for purification of waste quarry waters from mineral nitrogen compounds in the Arctic.

    PubMed

    Evdokimova, Galina A; Ivanova, Lyubov A; Mozgova, Natalia P; Myazin, Vladimir A; Fokina, Nadezhda V

    2016-08-23

    A bioplato was organized at Kirovogorskiy pond-settling of OLKON Company (the city of Olenegorsk, in Murmansk region) to reduce the content of nitrogen mineral compounds in water which come into the pond with the quarry waters after blasting operations using nitrogen compounds. The assortment of aboriginal plants was selected, a method of fixing and growing them on the water surface was developed, and observations of their vegetation were carried out. The dynamics of nitrogen compounds was determined in the laboratory and with full-scale tests. The coverage area pond by plants for the effective reduction of mineral nitrogen compounds was calculated. The use of floating bioplato helped to reduce content of ammonium and nitrite to maximum permissible levels or even lower in pond water. Also there was a tendency towards reduction of nitrate concentrations in water. The developmental technology can be used in any climatic zone with a specific assortment of plants-ameliorants.

  3. Mineral Identification as an Indicator of Water and Geochemical History on Mars

    NASA Astrophysics Data System (ADS)

    Bishop, J. L.

    2000-07-01

    Mineral identification on Mars is an essential aspect of basic geological science that will provide information about the climate and geochemical history of the planet and provide clues about the existence and extent of past water bodies or systems on Mars. Remote spectral data from orbiters, landers and rovers are the primary source of information about the surface mineralogy on Mars. Chemical and magnetic data also constrain the types or abundance of minerals present. The most successful mineral identification procedures will include data from a combination of spectral regions, as well as chemical and magnetic data. Other techniques, such as Moessbauer spectroscopy and thermal analysis (DTA, DSC, TGA), have been suggested for in situ measurements on the Martian surface; these analyses in combination with spectral and chemical data would enable even more precise identification of the types or classes of minerals present on Mars.

  4. Unique CO2-saturated mineral waters of the Mukhen deposit (Khabarovsk Krai): Composition and genesis

    NASA Astrophysics Data System (ADS)

    Kharitonova, N. A.; Shvartsev, S. L.; Lepokurova, O. E.; Chelnokov, G. A.

    2017-08-01

    The results of studies of the ion-salt, gas, and isotopic compositions of unique CO2-saturated cold mineral waters from the Mukhen deposit, as well as the results of calculation of equilibrium in the water-rock system, are presented. Taking these data and the geological structure of the territory into account, it was shown that the source of water solutions is atmospheric precipitates and the source of CO2 is buried rocks that undergo metamorphism. The long-term interaction in the water-rock-CO2 system has provided uniquely high salinity to these waters. The scale formation of secondary minerals (clays of different composition and Ca and Mg carbonates) in the system determined HCO3-Na and an atypical isotopic composition of the waters. The concept developed has established that CO2-saturated mineral waters are formed as a result of migration of CO2 from the deeper crustal zones through the zones of tectonic faults and the subsequent chemical interaction with infiltration waters, rather than because of magmatic or volcanic activity.

  5. Silica-rich lavas in the oceanic crust: experimental evidence for fractional crystallization under low water activity

    NASA Astrophysics Data System (ADS)

    Erdmann, Martin; Koepke, Jürgen

    2016-10-01

    We experimentally investigated phase relations and phase compositions as well as the influence of water activity ( aH2O) and redox conditions on the equilibrium crystallization path within an oceanic dacitic potassium-depleted system at shallow pressure (200 MPa). Moreover, we measured the partitioning of trace elements between melt and plagioclase via secondary ion mass spectrometry for a highly evolved experiment (SiO2 = 74.6 wt%). As starting material, we used a dacitic glass dredged at the Pacific-Antarctic Rise. Phase assemblages in natural high-silica systems reported from different locations of fast-spreading oceanic crust could be experimentally reproduced only in a relatively small range of temperature and melt-water content ( T ~950 °C; melt H2O < 1.5 wt%) at redox conditions slightly below the quartz-fayalite-magnetite buffer. The relatively low water content is remarkable, because distinct hydrothermal influence is generally regarded as key for producing silica-rich rocks in an oceanic environment. However, our conclusion is also supported by mineral and melt chemistry of natural evolved rocks; these rocks are only congruent to the composition of those experimental phases that are produced under low aH2O. Low FeO contents under water-saturated conditions and the characteristic enrichment of Al2O3 in high aH2O experiments, in particular, contradict natural observations, while experiments with low aH2O match the natural trend. Moreover, the observation that highly evolved experimental melts remain H2O-poor while they are relatively enriched in chlorine implies a decoupling between these two volatiles during crustal contamination.

  6. Chemical and isotopic composition of water from thermal springs and mineral springs of Washington

    USGS Publications Warehouse

    Mariner, R.H.; Presser, T.S.; Evans, William C.

    1982-01-01

    Water from thermal springs of Washington range in chemical composition from dilute NaHC03, to moderately saline C02-charged NaHC03-Cl waters. St. Martin 's Hot Spring which discharges a slightly saline NaCl water, is the notable exception. Mineral springs generally discharge a moderately saline C02-charged NaHC03-Cl water. The dilute Na-HC03 waters are generally associated with granite. The warm to hot waters charged with C02 issue on or near the large stratovolcanoes and many of the mineral springs also occur near the large volcanoes. The dilute waters have oxygen isotopic compositions which indicate relatively little water-rock exchange. The C02-charged waters are usually more enriched in oxygen-18 due to more extensive water-rock reaction. Carbon-13 in the C02-charged thermal waters is more depleted (-10 to -12 permil) than in the cold C02-charged soda springs (-2 to -8 permil) which are also scattered throughout the Cascades. The hot and cold C02-charged waters are supersaturated with respect to CaC03, but only the hot springs are actively depositing CaC03. Baker, Gamma, Sulphur , and Ohanapecosh seem to be associated with thermal aquifers of more than 100C. (USGS)

  7. Survival of human pathogenic bacteria in different types of natural mineral water.

    PubMed

    Serrano, Concepción; Romero, Margarita; Alou, Luis; Sevillano, David; Corvillo, Iluminada; Armijo, Francisco; Maraver, Francisco

    2012-09-01

    The aim of this study was to determine the survival of human pathogens (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) in five natural mineral waters (NMWs) with different properties and mineralization levels. Five NMWs from four Spanish spas with different dry residue at 110 °C were used: A = 76,935 mg/L; B = 1,827 mg/L; C = 808.4 mg/L; D = 283.8 mg/L; and E = 170.4 mg/L. An initial inoculum of 1 × 10(6) colony forming units (cfu)/mL was used for survival studies. Distilled water, chlorinated tap water and Mueller-Hinton broth were used as controls. Colony counts in all different waters were lower than those achieved with Mueller-Hinton broth over all incubation periods. A direct effect between the bacterial survival and the level of mineralization water was observed. The NMW E with low mineralization level along with the radioactive properties showed the highest antibacterial activity among all NMWs.

  8. Water-soluble organophosphorus reagents for mineralization of heavy metals.

    SciTech Connect

    Nash, K. L.

    1999-02-26

    In this report, we have described the principal stages of a two-step process for the in-situ stabilization of actinide ions in the environment. The combination of cation exchange and mineralization appears likely to provide a long-term solution to environments contaminated with heavy metals. Relying on a naturally occurring sequestering agent has obvious potential advantages from a regulatory standpoint. There are additional aspects of this technology requiring further elucidation, including the demonstration of the effect of these treatment protocols on the geohydrology of soil columns, further examination of the influence of humates and other colloidal species on cation uptake, and microbiological studies of phytate hydrolysis. We have learned during the course of this investigation that phytic acid is potentially available in large quantities. In the US alone, phytic acid is produced at an annual rate of several hundred thousand metric tons as a byproduct of fermentation processes (11). This material presently is not isolated for use. Instead, most of the insoluble phyate (as phytin) is being recycled along with the other solid fermentation residues for animal feed. This material is in fact considered undesirable in animal feed. The details of possible separation processes for phytate from these residues would have to be worked out before this untapped resource would be available for application to heavy metal sequestration. The results described emphasize the behavior of actinide and trivalent lanthanide metal ions, as these species are of primary interest to the Department of Energy for the cleanup of the former nuclear weapons production complex. While the specific demonstration includes this limited selection of metal ions, the technique should be readily applicable to any class of metal ions that form insoluble phosphate compounds under appropriate conditions. Further, though this demonstration has been conducted in the pH 5-8 range, it is conceivable that

  9. Impacts of diffusive transport on carbonate mineral formation from magnesium silicate-CO2-water reactions.

    PubMed

    Giammar, Daniel E; Wang, Fei; Guo, Bin; Surface, J Andrew; Peters, Catherine A; Conradi, Mark S; Hayes, Sophia E

    2014-12-16

    Reactions of CO2 with magnesium silicate minerals to precipitate magnesium carbonates can result in stable carbon sequestration. This process can be employed in ex situ reactors or during geologic carbon sequestration in magnesium-rich formations. The reaction of aqueous CO2 with the magnesium silicate mineral forsterite was studied in systems with transport controlled by diffusion. The approach integrated bench-scale experiments, an in situ spectroscopic technique, and reactive transport modeling. Experiments were performed using a tube packed with forsterite and open at one end to a CO2-rich solution. The location and amounts of carbonate minerals that formed were determined by postexperiment characterization of the solids. Complementing this ex situ characterization, (13)C NMR spectroscopy tracked the inorganic carbon transport and speciation in situ. The data were compared with the output of reactive transport simulations that accounted for diffusive transport processes, aqueous speciation, and the forsterite dissolution rate. All three approaches found that the onset of magnesium carbonate precipitation was spatially localized about 1 cm from the opening of the forsterite bed. Magnesite was the dominant reaction product. Geochemical gradients that developed in the diffusion-limited zones led to locally supersaturated conditions at specific locations even while the volume-averaged properties of the system remained undersaturated.

  10. Mars Gully: No Mineral Trace of Liquid Water

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This image of the Centauri-Hellas Montes region was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 2107 UTC (4:07 p.m. EST) on Jan. 9, 2007, near 38.41 degrees south latitude, 96.81 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across. The region covered is slightly wider than 10 kilometers (6.2 miles) at its narrowest point.

    Narrow gullies found on hills and crater walls in many mid-latitude regions of Mars have been interpreted previously as cut by geologically 'recent' running water, meaning water that flowed on Mars long after impact cratering, tectonic forces, volcanism or other processes created the underlying landforms. Some gullies even eroded into sand dunes, which would date their formation at thousands to millions of years ago, or less. In fact, Mars Orbiter Camera (MOC) images showed two of the gullies have bright deposits near their downslope ends - but those deposits were absent in images taken just a few years earlier. The bright deposits must have formed within the period 1999-2004.

    Has there been running water on Mars so recently? To address that question, CRISM and MRO's other instruments observed the bright gully deposits. CRISM's objective was to determine if the bright deposits contained salts left behind from water evaporating into Mars' thin air. The high-resolution imager's (HiRISE's) objective was to determine if the small-scale morphology was consistent with formation by running water.

    This CRISM image of a bright gully deposit was constructed by showing 2.53, 1.50, and 1.08 micrometer light in the red, green, and blue image planes. CRISM can just resolve the deposits (highlighted by arrows in the inset), which are only a few tens of meters (about 150 feet) across. The spectrum of the deposits barely differs from that of the surrounding material, and is just a little brighter. This difference

  11. Mars Gully: No Mineral Trace of Liquid Water

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This image of the Centauri-Hellas Montes region was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 2107 UTC (4:07 p.m. EST) on Jan. 9, 2007, near 38.41 degrees south latitude, 96.81 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across. The region covered is slightly wider than 10 kilometers (6.2 miles) at its narrowest point.

    Narrow gullies found on hills and crater walls in many mid-latitude regions of Mars have been interpreted previously as cut by geologically 'recent' running water, meaning water that flowed on Mars long after impact cratering, tectonic forces, volcanism or other processes created the underlying landforms. Some gullies even eroded into sand dunes, which would date their formation at thousands to millions of years ago, or less. In fact, Mars Orbiter Camera (MOC) images showed two of the gullies have bright deposits near their downslope ends - but those deposits were absent in images taken just a few years earlier. The bright deposits must have formed within the period 1999-2004.

    Has there been running water on Mars so recently? To address that question, CRISM and MRO's other instruments observed the bright gully deposits. CRISM's objective was to determine if the bright deposits contained salts left behind from water evaporating into Mars' thin air. The high-resolution imager's (HiRISE's) objective was to determine if the small-scale morphology was consistent with formation by running water.

    This CRISM image of a bright gully deposit was constructed by showing 2.53, 1.50, and 1.08 micrometer light in the red, green, and blue image planes. CRISM can just resolve the deposits (highlighted by arrows in the inset), which are only a few tens of meters (about 150 feet) across. The spectrum of the deposits barely differs from that of the surrounding material, and is just a little brighter. This difference

  12. Hydrothermal alteration of a chevkinite-group mineral to a bastnäsite-(Ce)-ilmenite- columbite-(Fe) assemblage: interaction with a F-, CO2-rich fluid

    NASA Astrophysics Data System (ADS)

    Macdonald, Ray; Bagiński, Bogusław; Kartashov, Pavel M.; Zozulya, Dmitry; Dzierżanowski, Piotr; Jokubauskas, Petras

    2015-12-01

    The results are presented of a textural and mineral chemical study of a previously undescribed type of hydrothermal alteration of chevkinite-(Ce) which occurs in a syenitic pegmatite from the Vishnevye Mountains, Urals Region, Russia. The progressive alteration of the chevkinite to a bastnäsite-(Ce)-ilmenite-columbite-(Fe) assemblage through a series of texturally complex intermediate stages is described and electron microprobe analyses are given of all the major phases. Unusual Nb ± Th-rich phases formed late in the alteration sequence provide evidence of local Nb mobility. The main compositional fluxes are traced, especially of the REE, HFSE, Th and U. It appears that almost all elements, with the exception of La, released from the chevkinite-(Ce) were reincorporated into later phases, such that they did not leave the alteration crust in significant amounts. The hydrothermal fluids are inferred to have been F- and CO2-rich, with variable levels of Ca activity, and with fO2 mainly between the nickel-nickel oxide and magnetite-hematite buffers. This occurrence represents a new paragenesis for a columbite-group mineral.

  13. Effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper in synthesized Fe(III) minerals and Fe-rich soils.

    PubMed

    Hu, Chaohua; Zhang, Youchi; Zhang, Lei; Luo, Wensui

    2014-04-01

    The effects of microbial iron reduction and oxidation on the immobilization and mobilization of copper were investigated in a high concentration of sulfate with synthesized Fe(III) minerals and red earth soils rich in amorphous Fe (hydr)oxides. Batch microcosm experiments showed that red earth soil inoculated with subsurface sediments had a faster Fe(III) bioreduction rate than pure amorphous Fe(III) minerals and resulted in quicker immobilization of Cu in the aqueous fraction. Coinciding with the decrease of aqueous Cu, SO4(2-) in the inoculated red earth soil decreased acutely after incubation. The shift in the microbial community composite in the inoculated soil was analyzed through denaturing gradient gel electrophoresis. Results revealed the potential cooperative effect of microbial Fe(III) reduction and sulfate reduction on copper immobilization. After exposure to air for 144 h, more than 50% of the immobilized Cu was remobilized from the anaerobic matrices; aqueous sulfate increased significantly. Sequential extraction analysis demonstrated that the organic matter/sulfide-bound Cu increased by 52% after anaerobic incubation relative to the abiotic treatment but decreased by 32% after oxidation, indicating the generation and oxidation of Cu-sulfide coprecipitates in the inoculated red earth soil. These findings suggest that the immobilization of copper could be enhanced by mediating microbial Fe(III) reduction with sulfate reduction under anaerobic conditions. The findings have an important implication for bioremediation in Cucontaminated and Fe-rich soils, especially in acid-mine-drainage-affected sites.

  14. Extraction of reusable water from a mineral mining process

    SciTech Connect

    Gleim, W.K.

    1982-01-19

    A method for the treatment of an aqueous effluent slime derived from a tar sand extraction process is disclosed. The effluent slime ph is adjusted to an acidic ph and treated with an anionic surface active agent to create flocculation of solid asphaltic material entrained within the slime. A solvent solution comprising chlorinated hydrocarbon and a solvent therefor is added so that upon centrifuging of the treated slime three physical layers of material comprising (1) water; (2) asphaltics in the solvent solution and (3) clay are formed.

  15. [Laboratories "Produits Scientia" and mineral waters from Pougues and Carabana].

    PubMed

    Raynal, Cécile; Lefebvre, Thierry

    2011-10-01

    In the end of XIXth century, the french "Compagnie des eaux minérales de Pougues-les-Eaux" begins to exploit the spanish natural purgativ water of Carabaña. In the same way, Edouard Jéramec, director of the french compagny, decides to associate to his firm the best medicine to fight against rickets and tuberculosis. He joins the new medical theory wich recommends to give more calcium to tubercular patients, called "méthode de recalcification du Dr Ferrier". Then, with the chemist Emile Perraudin, he creates the pharmaceutical laboratory named "Produits Scientia". One of their famous patents medicines will be the "Tricalcine".

  16. Electromembrane recycling of highly mineralized alkaline blowdown water from evaporative water treatment plants at thermal power stations

    NASA Astrophysics Data System (ADS)

    Chichirova, N. D.; Chichirov, A. A.; Lyapin, A. I.; Minibaev, A. I.; Silov, I. Yu.; Tolmachev, L. I.

    2016-12-01

    Thermal power stations (TPS) are the main source of highly mineralized effluents affecting the environment. An analysis of their water systems demonstrates that alkaline effluents prevail at TPSs. Extraction of an alkali from highly mineralized effluents can make the recycling of effluents economically feasible. A method is proposed of electromembrane recycling of liquid alkaline highly mineralized wastes from TPSs. The process includes electromembrane apparatuses of two types, namely, a diffusion dialysis extractor (DDE) intended for extraction of the alkali from a highly mineralized solution having a complex composition and an electrodialysis concentrator for increasing the concentration of the extracted solution to a value suitable for use in water treatment plants at TPSs. For implementation of the first process (i.e. the extraction of alkali from alkaline-salt solution) various membranes from various manufacturers were studied: CM-PAD and AM-PAD (Ralex, Czechia), MK-40, MA-40, MA-41, MA-414, and MB-2 (OOO OKhK "Shchekinoazot", Russia), AR103-QDF and CR61-CMP (Ionies Inc., USA). The experiments demonstrate that the acceptable degree of separation of the alkali and the salt is achieved in a pair of cation-exchange membranes with the efficiency of separation being higher without an electric field. The highest efficiency was attained with Russian-made membranes (MK-40, OOO OKhK "Shchekinoazot"). A full scale experiment on recycling of highly-mineralized blowdown water from the evaporating water treatment system at the Kazan cogeneration power station No. 3 (TETs-3) was performed in a pilot unit consisting of two electromembrane apparatuses made by UAB "Membraninės Technologijos LT". In the experiments every ton of blowdown water yielded 0.1 t of concentrated alkaline solution with an alkali content of up to 4 wt % and 0.9 t of the softened salt solution suitable for the reuse in the TPS cycle. The power rate is 6 kWh / ton of blowdown water.

  17. Cold temperature decreases bacterial species richness in nitrogen-removing bioreactors treating inorganic mine waters.

    PubMed

    Karkman, A; Mattila, K; Tamminen, M; Virta, M

    2011-12-01

    Explosives used in mining, such as ammonium nitrate fuel oil (ANFO), can cause eutrophication of the surrounding environment by leakage of ammonium and nitrate from undetonated material that is not properly treated. Cold temperatures in mines affect nitrogen removal from water when such nutrients are treated with bioreactors in situ. In this study we identified bacteria in the bioreactors and studied the effect of temperature on the bacterial community. The bioreactors consisted of sequential nitrification and denitrification units running at either 5 or 10°C. One nitrification bioreactor running at 5°C was fed with salt spiked water. From the nitrification bioreactors, sequences from both ammonia- and nitrite-oxidizing bacteria were identified, but the species were distinct at different temperatures. The main nitrifiers in the lower temperature were closely related to the genera Nitrosospira and Candidatus Nitrotoga. 16S rRNA gene sequences closely related to halotolerant Nitrosomonas eutropha were found only from the salt spiked nitrification bioreactor. At 10°C the genera Nitrosomonas and Nitrospira were the abundant nitrifiers. The results showed that bacterial species richness estimates were low, <150 operational taxonomic units (OTUs), in all bioreactor clone libraries, when sequences were assigned to operational taxonomic units at an evolutionary distance of 0.03. The only exception was the nitrification bioreactor running at 10°C where species richness was higher, >300 OTUs. Species richness was lower in bioreactors running at 5°C compared to those operating at 10°C.

  18. Sugar and inorganic anions content in mineral and spring water-based beverages.

    PubMed

    Bilek, Maciej; Matłok, Natalia; Kaniuczak, Janina; Gorzelany, Józef

    2014-01-01

    Carbonated and non-carbonated beverages manufactured based on mineral and spring waters have been present at the Polish market shortly, and their production and sales are regularly growing. The products have become commonly known as flavoured waters. The aim of the work was to identify and assess the content of carbohydrates used for sweetening mineral and spring water-based beverages and to estimate a concentration of inorganic anions. The study was undertaken for 15 mineral and spring water-based beverages subject to an analysis contents of fructose, glucose and sucrose with the high-performance liquid chromatography method with ELSD detection) and chlorides, nitrates and sulphates contents using the ion chromatography method. A chromatographic analysis has confirmed the total contents of sugar declared by the manufacturers. The carbohydrates identified included fructose, glucose and sucrose (added sugar). Chlorides and sulphates were found in the content of all the analysed beverages while nitrates were not determined in only one of the 15 examined beverages. Mass consumption of mineral and spring water-based beverages should be considered as an important source of sugar and their excessive consumption may be disadvantageous for human health. A consumer should be informed by a manufacturer about a daily dose of sugar in a portion of a drink in per cents, and the easiest way to do it is to provide GDA marks on the label. Mineral and spring water-based beverages do not pose threats to consumer health in terms of their contents of inorganic ions: chlorides, nitrates and sulphates.

  19. Water in the Earth's Mantle: Mineral-specific IR Absorption Coefficients and Radiative Thermal Conductivities

    NASA Astrophysics Data System (ADS)

    Thomas, S. M.

    2015-12-01

    Minor and trace element chemistry, phase relations, rheology, thermal structure and the role of volatiles and their abundance in the deep Earth mantle are still far from fully explored, but fundamental to understanding the processes involved in Earth formation and evolution. Theory and high pressure experiments imply a significant water storage capacity of nominally anhydrous minerals, such as majoritic garnet, olivine, wadsleyite and ringwoodite, composing the Earth's upper mantle and transition zone to a depth of 660 km. Studying the effect of water incorporation on chemical and physical mineral properties is of importance, because the presence of trace amounts of water, incorporated as OH through charge-coupled chemical substitutions into such nominally anhydrous high-pressure silicates, notably influences phase relations, melting behavior, conductivity, elasticity, viscosity and rheology. Knowledge of absolute water contents in nominally anhydrous minerals is essential for modeling the Earth's interior water cycle. One of the most common and sensitive tools for water quantification is IR spectroscopy for which mineral-specific absorption coefficients are required. Such calibration constants can be derived from hydrogen concentrations determined by independent techniques, such as secondary ion mass spectrometry, Raman spectroscopy or proton-proton(pp)-scattering. Here, analytical advances and mineral-specific IR absorption coefficients for the quantification of H2O in major phases of the Earth's mantle will be discussed. Furthermore, new data from optical absorption measurements in resistively heated diamond-anvil cells at high pressures and temperatures up to 1000 K will be presented. Experiments were performed on synthetic single-crystals of olivine, ringwoodite, majoritic garnet, and Al-bearing phase D with varying iron, aluminum and OH contents to calculate radiative thermal conductivities and study their contribution to heat transfer in the Earth's interior

  20. Helicobacter pylori in bottled mineral water: genotyping and antimicrobial resistance properties.

    PubMed

    Ranjbar, Reza; Khamesipour, Faham; Jonaidi-Jafari, Nematollah; Rahimi, Ebrahim

    2016-03-12

    Up to now, fecal-oral and oral-oral are the most commonly known routes for transmission of H. pylori, therefore, contaminated water can play an important role in transmission of H. pylori to humans. Genotyping using virulence markers of H. pylori is one of the best approaches to study the correlations between H. pylori isolates from different samples. The present research was carried out to study the vacA, cagA, cagE, oipA, iceA and babA2 genotyping and antimicrobial resistance properties of H. pylori isolated from the bottled mineral water samples of Iran. Of 450 samples studied, 8 samples (1.77%) were contaminated with H. pylori. Brand C of bottled mineral water had the highest prevalence of H. pylori (3.63%). The bottled mineral water samples of July month had the highest levels of H. pylori-contamination (50%). H. pylori strains had the highest levels of resistance against metronidazole (62.5%), erythromycin (62.5%), clarithromycin (62.5%), amoxicillin (62.5%) and trimethoprim (62.5%). Totally, 12.5% of strains were resistant to more than 6 antibiotics. VvacAs1a (100%), vacAm1a (87.5%), cagA (62.5%), iceA1 (62.5%), oipA (25%), babA2 (25%) and cagE (37.5%) were the most commonly detected genotypes. M1as1a (62.5%), m1as2 (37.5%), m2s2 (37.5%) and S1a/cagA+/IceA2/oipA-/babA2-/cagE- (50%) were the most commonly detected combined genotypes. Contaminated bottled mineral water maybe the sources of virulent and resistant strains H. pylori. Careful monitoring of bottled mineral water production may reduce the risk of H. pylori transmission into the human population.

  1. Thallium speciation and extractability in a thallium- and arsenic-rich soil developed from mineralized carbonate rock.

    PubMed

    Voegelin, Andreas; Pfenninger, Numa; Petrikis, Julia; Majzlan, Juraj; Plötze, Michael; Senn, Anna-Caterina; Mangold, Stefan; Steininger, Ralph; Göttlicher, Jörg

    2015-05-05

    We investigated the speciation and extractability of Tl in soil developed from mineralized carbonate rock. Total Tl concentrations in topsoil (0-20 cm) of 100-1000 mg/kg are observed in the most affected area, subsoil concentrations of up to 6000 mg/kg Tl in soil horizons containing weathered ore fragments. Using synchrotron-based microfocused X-ray fluorescence spectrometry (μ-XRF) and X-ray absorption spectroscopy (μ-XAS) at the Tl L3-edge, partly Tl(I)-substituted jarosite and avicennite (Tl2O3) were identified as Tl-bearing secondary minerals formed by the weathering of a Tl-As-Fe-sulfide mineralization hosted in the carbonate rock from which the soil developed. Further evidence was found for the sequestration of Tl(III) into Mn-oxides and the uptake of Tl(I) by illite. Quantification of the fractions of Tl(III), Tl(I)-jarosite and Tl(I)-illite in bulk samples based on XAS indicated that Tl(I) uptake by illite was the dominant retention mechanism in topsoil materials. Oxidative Tl(III)uptake into Mn-oxides was less relevant, probably because the Tl loadings of the soil exceeded the capacity of this uptake mechanism. The concentrations of Tl in 10 mM CaCl2-extracts increased with increasing soil Tl contents and decreasing soil pH, but did not exhibit drastic variations as a function of Tl speciation. With respect to Tl in contaminated soils, this study provides first direct spectroscopic evidence for Tl(I) uptake by illite and indicates the need for further studies on the sorption of Tl to clay minerals and Mn-oxides and its impact on Tl solubility in soils.

  2. Water loss from terrestrial planets with CO{sub 2}-rich atmospheres

    SciTech Connect

    Wordsworth, R. D.; Pierrehumbert, R. T.

    2013-12-01

    Water photolysis and hydrogen loss from the upper atmospheres of terrestrial planets is of fundamental importance to climate evolution but remains poorly understood in general. Here we present a range of calculations we performed to study the dependence of water loss rates from terrestrial planets on a range of atmospheric and external parameters. We show that CO{sub 2} can only cause significant water loss by increasing surface temperatures over a narrow range of conditions, with cooling of the middle and upper atmosphere acting as a bottleneck on escape in other circumstances. Around G-stars, efficient loss only occurs on planets with intermediate CO{sub 2} atmospheric partial pressures (0.1-1 bar) that receive a net flux close to the critical runaway greenhouse limit. Because G-star total luminosity increases with time but X-ray and ultraviolet/ultravoilet luminosity decreases, this places strong limits on water loss for planets like Earth. In contrast, for a CO{sub 2}-rich early Venus, diffusion limits on water loss are only important if clouds caused strong cooling, implying that scenarios where the planet never had surface liquid water are indeed plausible. Around M-stars, water loss is primarily a function of orbital distance, with planets that absorb less flux than ∼270 W m{sup –2} (global mean) unlikely to lose more than one Earth ocean of H{sub 2}O over their lifetimes unless they lose all their atmospheric N{sub 2}/CO{sub 2} early on. Because of the variability of H{sub 2}O delivery during accretion, our results suggest that many 'Earth-like' exoplanets in the habitable zone may have ocean-covered surfaces, stable CO{sub 2}/H{sub 2}O-rich atmospheres, and high mean surface temperatures.

  3. Vesiculation processes in a water-rich calc-alkaline obsidian

    NASA Astrophysics Data System (ADS)

    Stevenson, R. J.; Bagdassarov, N. S.; Romano, C.

    1997-02-01

    The effect of temperature and viscosity on the kinetics of bubble growth was measured for a natural water-rich rhyolite melt. The change in volume of a natural crystal-poor calc-alkaline rhyolitic obsidian with an initial water content of ≈ 1.8 wt% H 2O was determined in the temperature interval 520-624°C. Shear viscosity was measured on the natural sample using the micropenetration method in the temperature interval 450-590°C and water contents before and after viscometry were monitored by FTIR. The time-dependence of the volume increase as a result of vesiculation approximates the Avrami equation: ΔV(t) α 1- exp[-( t/τ) n] . At temperatures close to the glass transition temperature (T g), growing bubbles ruptured the surrounding melt. During diffusion of water from the hydrous melt with ≈ 1.8 wt% H 2O into a bubble, the ΔT g of the melt at the bubble wall increases by ≈ 315°C. In addition, the viscosity of the melt at the bubble wall increases by 5-6 orders of magnitude. The increasing elastic component of shear stress on the bubble wall as a result of bubble growth at ˜ T g may exceed the bubble wall yield strength, resulting in cracking. No time lag in the onset of bubble growth occurred for this water-rich rhyolite. In those parts of volcanic edifices where water contents are of several weight percent (e.g., within the upper parts of volcanic conduits), the probability of melt fracturing due to the degassing of water at ˜ T g increases.

  4. Discrimination of fish oil and mineral oil slicks on sea water

    NASA Technical Reports Server (NTRS)

    Mac Dowall, J.

    1969-01-01

    Fish oil and mineral oil slicks on sea water can be discriminated by their different spreading characteristics and by their reflectivities and color variations over a range of wavelengths. Reflectivities of oil and oil films are determined using a duel beam reflectance apparatus.

  5. [Radioprotective effect of drinking sulfate mineral water on spermatogenesis in offspring of irradiated male rats].

    PubMed

    Korolev, Iu N; Geniatulina, M S; Nikulina, L A; Kurilo, L F

    2003-01-01

    Histological and electron-microscopic studies of a radioprotective action of drinking sulphate mineral water (SMW) on spermatogenesis of irradiated male rats' progeny have found that SMW used before radiation (2 Gy) and 10 days after it is able to reduce postradiation sequelae in the progeny (2-5 month and 1.5 year old rats) testes.

  6. Possible antioxidant role of SPA therapy with chlorine-sulphur-bicarbonate mineral water.

    PubMed

    Costantino, M; Giuberti, G; Caraglia, M; Lombardi, A; Misso, G; Abbruzzese, A; Ciani, F; Lampa, E

    2009-02-01

    The aim of our research was to analyze the antioxidant role and efficacy of thermal or salus per aquam (spa) therapy with chlorine-sulphur-bicarbonate mineral water. The study has been performed on 30 rats. The animals were randomized in three groups, each of them composed by ten animals, denominated A, B and C. The A group was the control group and was not subjected to any specific treatment (placebo); the B group has been treated with a standard cycle of hydropinics treatment with mineral water of Therme of Stabia in Castellammare (Naples, Italy) denominated STABIA; the C group was treated with a standard cycle of hydropinic treatment with mineral water of Therme of Stabia in Castellammare (Naples, Italy) denominated SULFUREA. After two weeks of treatment all the rats were sacrificed and blood was collected for the plasmatic determination of reactive oxygen species (ROS). The results demonstrated a significant (P < 0.05) reduction of ROS in B (374 Carr. U. +/-73) and C group (399 carr. U. +/-62) treated with mineral waters if compared with control group (571 + 69 Carr. U.). In conclusion this study suggests a possible antioxidant effect of chlorine-sulphur-bicarbonate spa hydropinic treatment with a consequent suitable intestinal physiology, with reduction of the functional and organic modifications that can lead to pathological disorders of the gastroenteric diseases in whose pathogenesis the oxidative stress can develop an important role.

  7. STIMULATION OF FUNDULUS BY HYDROCHLORIC AND FATTY ACIDS IN FRESH WATER, AND BY FATTY ACIDS, MINERAL ACIDS, AND THE SODIUM SALTS OF MINERAL ACIDS IN SEA WATER

    PubMed Central

    Allison, J. B.; Cole, William H.

    1934-01-01

    1. Fundulus heteroclitus was found to be a reliable experimental animal for studies on chemical stimulation in either fresh or sea water. 2. The response of Fundulus to hydrochloric, acetic, propionic, butyric, valeric, and caproic acids was determined in fresh water, while the same acids plus sulfuric and nitric, as well as the sodium salts of the mineral acids, were tested in sea water. 3. Stimulation of Fundulus by hydrochloric acid in fresh water is correlated with the effective hydrogen ion concentration. Stimulation by the n-aliphatic acids in the same environment is correlated with two factors, the effective hydrogen ion concentration and the potential of the non-polar group in the molecule. However, as the number of CH2 groups increases the stimulating effect increases by smaller and smaller amounts, approaching a maximum value. 4. Stimulation of Fundulus by hydrochloric, sulfuric, and nitric acids in sea water is correlated with the forces of primary valence which in turn are correlated with the change in hydrogen ion concentration of the sea water. The n-aliphatic acids increase in stimulating efficiency in sea water as the length of the carbon chain increases, but a limiting value is not reached as soon as in fresh water. 5. Only a slight difference in stimulation by hydrochloric acid is found in sea water and in fresh water. However, there is a significant difference in stimulation by the fatty acids in fresh and in sea water, which is partly explained by the different buffering capacities of the two media. It is to be noted that in the same environment two different fish, Fundulus and Eupomotis, give different results, while the same fish (Fundulus) in two different environments responds similarly to mineral acids but differently to fatty acids. These results illustrate that stimulation is a function of the interaction between environment and receptors, and that each is important in determining the response. 6. Stimulation by sodium chloride, nitrate

  8. Mineralization of 2,4,6-Trinitrotoleune (TNT) in Coastal Waters and Sediments

    DTIC Science & Technology

    2006-08-21

    water and sediment and an increase in heterotrophic activity by the natural assemblage, which was attributed to TNT additions. Exposure of soil...DAT into the natural microbial assemblage. In general, the bacterial mineralizations rates were similar, or an order of magnitude faster, than those...light and unfiltered water was greater than the sum of the two rates (103 ug L-1 d-1), suggesting either that the prescnce of active phytoplankton

  9. Contamination in mafic mineral-rich calc-alkaline granites: a geochemical and Sr-Nd isotope study of the Neoproterozoic Piedade Granite, SE Brazil.

    PubMed

    Leite, Renato J; Janasi, Valdecir A; Martins, Lucelene

    2006-06-01

    The Piedade Granite (approximately 600 Ma) was emplaced shortly after the main phase of granite magmatism in the Agudos Grandes batholith, Apiaí-Guaxupé Terrane, SE Brazil. Its main units are: mafic mineral-rich porphyritic granites forming the border (peraluminous muscovite-biotite granodiorite-monzogranite MBmg unit) and core (metaluminous titanite-bearing biotite monzogranite BmgT unit) and felsic pink inequigranular granite (Bmg unit) between them. Bmg has high LaN/YbN (up to 100), Th/U (> 10) and low Rb, Nb and Ta, and can be a crustal melt derived from deep-seated sources with residual garnet and biotite. The core BmgT unit derived from oxidized magmas with high Mg# (approximately 45), Ba and Sr, fractionated REE patterns (LaN/YbN = 45), 87Sr/86Sr(t) approximately 0.710, epsilonNd(t) approximately -12 to -14, interpreted as being high-K calc-alkaline magmas contaminated with metasedimentary rocks that had upper-crust signature (high U, Cs, Ta). The mafic-rich peraluminous granites show a more evolved isotope signature (87Sr/86Sr(t) = 0.713-0.714; epsilonNd(t) = -14 to -16), similar to Bmg, and Mg# and incompatible trace-element concentrations intermediate between Bmg and BmgT. A model is presented in whichMBmgis envisaged as the product of contamination between a mafic mineral-rich magma consanguineous with BmgT and pure crustal melts akin to Bmg.

  10. Bottled aqua incognita: microbiota assembly and dissolved organic matter diversity in natural mineral waters.

    PubMed

    Lesaulnier, Celine C; Herbold, Craig W; Pelikan, Claus; Berry, David; Gérard, Cédric; Le Coz, Xavier; Gagnot, Sophie; Niggemann, Jutta; Dittmar, Thorsten; Singer, Gabriel A; Loy, Alexander

    2017-09-22

    Non-carbonated natural mineral waters contain microorganisms that regularly grow after bottling despite low concentrations of dissolved organic matter (DOM). Yet, the compositions of bottled water microbiota and organic substrates that fuel microbial activity, and how both change after bottling, are still largely unknown. We performed a multifaceted analysis of microbiota and DOM diversity in 12 natural mineral waters from six European countries. 16S rRNA gene-based analyses showed that less than 10 species-level operational taxonomic units (OTUs) dominated the bacterial communities in the water phase and associated with the bottle wall after a short phase of post-bottling growth. Members of the betaproteobacterial genera Curvibacter, Aquabacterium, and Polaromonas (Comamonadaceae) grew in most waters and represent ubiquitous, mesophilic, heterotrophic aerobes in bottled waters. Ultrahigh-resolution mass spectrometry of DOM in bottled waters and their corresponding source waters identified thousands of molecular formulae characteristic of mostly refractory, soil-derived DOM. The bottle environment, including source water physicochemistry, selected for growth of a similar low-diversity microbiota across various bottled waters. Relative abundance changes of hundreds of multi-carbon molecules were related to growth of less than ten abundant OTUs. We thus speculate that individual bacteria cope with oligotrophic conditions by simultaneously consuming diverse DOM molecules.

  11. Water safety and inequality in access to drinking-water between rich and poor households.

    PubMed

    Yang, Hong; Bain, Robert; Bartram, Jamie; Gundry, Stephen; Pedley, Steve; Wright, James

    2013-02-05

    While water and sanitation are now recognized as a human right by the United Nations, monitoring inequality in safe water access poses challenges. This study uses survey data to calculate household socio-economic-status (SES) indices in seven countries where national drinking-water quality surveys are available. These are used to assess inequalities in access as indicated by type of improved water source, use of safe water, and a combination of these. In Bangladesh, arsenic exposure through drinking-water is not significantly related to SES (p = 0.06) among households using tubewells, whereas in Peru, chlorine residual in piped systems varies significantly with SES (p < 0.0001). In Ethiopia, Nicaragua, and Nigeria, many poor households access nonpiped improved sources, which may provide unsafe water, resulting in greater inequality of access to "safe" water compared to "improved" water sources. Concentration indices increased from 0.08 to 0.15, 0.10 to 0.14, and 0.24 to 0.26, respectively, in these countries. There was minimal difference in Jordan and Tajikistan. Although the results are likely to be underestimates as they exclude individual-level inequalities, they show that use of a binary "improved"/"unimproved" categorization masks substantial inequalities. Future international monitoring programmes should take account of inequality in access and safety.

  12. Origin of retrograde fluid in ultrahigh-pressure metamorphic rocks: Constraints from mineral hydrogen isotope and water content changes in eclogite gneiss transitions in the Sulu orogen

    NASA Astrophysics Data System (ADS)

    Chen, Ren-Xu; Zheng, Yong-Fei; Gong, Bing; Zhao, Zi-Fu; Gao, Tian-Shan; Chen, Bin; Wu, Yuan-Bao

    2007-05-01

    only garnet and omphacite results in release of a quantitative estimate of 3.07-3.44 kg water that can form 140-156 kg amphibole during exhumation. Therefore, it is concluded that fluid for retrogression of the eclogites away from the eclogite-gneiss boundary was derived from the decompression exsolution of structural hydroxyl and molecular H 2O in nominally anhydrous minerals. For the eclogites adjacent to gneiss, in contrast, the retrograde metamorphism was principally caused by aqueous fluid from the gneiss which is relatively rich in water. Consequently, both the origin and availability of metamorphic fluid during exhumation of deeply subducted continental crust are deciphered by this combined study focusing on the transitions and the retrograde processes between the felsic and mafic UHP rocks.

  13. Climatic and landscape controls on water transit times and silicate mineral weathering in the critical zone

    NASA Astrophysics Data System (ADS)

    Zapata-Rios, Xavier; McIntosh, Jennifer; Rademacher, Laura; Troch, Peter A.; Brooks, Paul D.; Rasmussen, Craig; Chorover, Jon

    2015-08-01

    The critical zone (CZ) can be conceptualized as an open system reactor that is continually transforming energy and water fluxes into an internal structural organization and dissipative products. In this study, we test a controlling factor on water transit times (WTT) and mineral weathering called Effective Energy and Mass Transfer (EEMT). We hypothesize that EEMT, quantified based on local climatic variables, can effectively predict WTT within—and mineral weathering products from—the CZ. This study tests whether EEMT or static landscape characteristics are good predictors of WTT, aqueous phase solutes, and silicate weathering products. Our study site is located around Redondo Peak, a rhyolitic volcanic resurgent dome, in northern New Mexico. At Redondo Peak, springs drain slopes along an energy gradient created by differences in terrain aspect. This investigation uses major solute concentrations, the calculated mineral mass undergoing dissolution, and the age tracer tritium and relates them quantitatively to EEMT and landscape characteristics. We found significant correlations between EEMT, WTT, and mineral weathering products. Significant correlations were observed between dissolved weathering products (Na+ and DIC), 3H concentrations, and maximum EEMT. In contrast, landscape characteristics such as contributing area of spring, slope gradient, elevation, and flow path length were not as effective predictive variables of WTT, solute concentrations, and mineral weathering products. These results highlight the interrelationship between landscape, hydrological, and biogeochemical processes and suggest that basic climatic data embodied in EEMT can be used to scale hydrological and hydrochemical responses in other sites.

  14. Homogenous VUV advanced oxidation process for enhanced degradation and mineralization of antibiotics in contaminated water.

    PubMed

    Pourakbar, Mojtaba; Moussavi, Gholamreza; Shekoohiyan, Sakine

    2016-03-01

    This study was aimed to evaluate the degradation and mineralization of amoxicillin(AMX), using VUV advanced process. The effect of pH, AMX initial concentration, presence of water ingredients, the effect of HRT, and mineralization level by VUV process were taken into consideration. In order to make a direct comparison, the test was also performed by UVC radiation. The results show that the degradation of AMX was following the first-order kinetic. It was found that direct photolysis by UVC was able to degrade 50mg/L of AMX in 50min,while it was 3min for VUV process. It was also found that the removal efficiency by VUV process was directly influenced by pH of the solution, and higher removal rates were achieved at high pH values.The results show that 10mg/L of AMX was completely degraded and mineralized within 50s and 100s, respectively, indicating that the AMX was completely destructed into non-hazardous materials. Operating the photoreactor in contentious-flow mode revealed that 10mg/L AMX was completely degraded and mineralized at HRT values of 120s and 300s. it was concluded that the VUV advanced process was an efficient and viable technique for degradation and mineralization of contaminated water by antibiotics.

  15. Urban net-zero water treatment and mineralization: experiments, modeling and design.

    PubMed

    Englehardt, James D; Wu, Tingting; Tchobanoglous, George

    2013-09-01

    Water and wastewater treatment and conveyance account for approximately 4% of US electric consumption, with 80% used for conveyance. Net zero water (NZW) buildings would alleviate demands for a portion of this energy, for water, and for the treatment of drinking water for pesticides and toxic chemical releases in source water. However, domestic wastewater contains nitrogen loads much greater than urban/suburban ecosystems can typically absorb. The purpose of this work was to identify a first design of a denitrifying urban NZW treatment process, operating at ambient temperature and pressure and circum-neutral pH, and providing mineralization of pharmaceuticals (not easily regulated in terms of environmental half-life), based on laboratory tests and mass balance and kinetic modeling. The proposed treatment process is comprised of membrane bioreactor, iron-mediated aeration (IMA, reported previously), vacuum ultrafiltration, and peroxone advanced oxidation, with minor rainwater make-up and H2O2 disinfection residual. Similar to biological systems, minerals accumulate subject to precipitative removal by IMA, salt-free treatment, and minor dilution. Based on laboratory and modeling results, the system can produce potable water with moderate mineral content from commingled domestic wastewater and 10-20% rainwater make-up, under ambient conditions at individual buildings, while denitrifying and reducing chemical oxygen demand to below detection (<3 mg/L). While economics appear competitive, further development and study of steady-state concentrations and sludge management options are needed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Phase separation predicted to induce water-rich channels in fuel cell membranes

    NASA Astrophysics Data System (ADS)

    Herbst, Daniel; Witten, Thomas; Tsai, Tsung-Han; Coughlin, Bryan; Maes, Ashley; Herring, Andrew

    2015-03-01

    Fuel cells are a promising alternative energy technology that convert chemical fuel directly into electric power. One important fundamental property is exactly how and where water is absorbed in the polyelectrolyte membrane. Previous theoretical studies have used idealized parameters. In this talk, I show how we made a rigorous connection to experiment to make parameter-free predictions of the water-swelling behavior, using self-consistent field theory. The model block co-polymers we studied form alternating hydrophilic/hydrophobic lamellar domains that absorb water in humid air. I will show how simple measurements of the hydrophilic portion in solution lead to predictions of non-uniform water distribution in the membrane, and compare the results to x-ray scattering. The results suggest locally near-uniform water distributions. In special cases, however, each hydrophilic lamella phase-separates, forming an additional water-rich lamella down the center, a beneficial arrangement for ion conductivity. A small amount of water enhances conductivity most when it is partitioned into such channels, improving fuel-cell performance. MURI #W911NF-10-1-0520.

  17. Crystal-structure refinement of zirconium-rich eudialyte and its place among calcium-poor eudialyte-group minerals

    SciTech Connect

    Aksenov, S. M. Rastsvetaeva, R. K.

    2013-09-15

    The repeated refinement of the crystal structure of zirconium-rich eudialyte based on the X-ray diffraction data set collected earlier revealed new structural features. The trigonal unit-cell parameters are a = 14.222(3) A, c = 30.165(5) A, V = 5283.9 A{sup 3}. The refinement resulted in the reduction of the R factor from 0.045 (2347F > 4{sigma}(F)) to 0.035 (3124F > 3{sigma}(F)). It was found that the ordering of Ca and Fe in six-membered rings leads to the lowering of the symmetry to R3. An excess amount of zirconium (more than three atoms per symmetrically independent unit) is located in the M2 microregion in square and five-vertex polyhedral positions. However, this amount is insufficient to be dominant, and the deficiency of zirconium is compensated for by sodium atoms. Based on the new data, zirconium-rich eudialyte can be assigned to the oneillite subtype, being a zirconium-rich and aluminum variety of raslakite.

  18. [Combined effect of musically-modulated electrical current and mineral drinking water from Khadyzhensky spring in experimental atherosclerosis].

    PubMed

    Zubkova, S M; Varakina, N I; Mikhaĭlik, L V; Bobkova, A S; Chabanenko, S S

    2002-01-01

    Male rats with experimental atherosclerosis drank mineral water (Khadyzhensky spring) and were exposed to music-modulated electric current. This combined treatment showed synergism of physical (current) and balneological (mineral water) factors providing lipolytic, antioxidant, stress-limiting and antiinflammatory intravascular effects and recovery of microcirculatory processes.

  19. Investigating water adsorption onto natural mineral dust particles: Linking DRIFTS experiments and BET theory

    NASA Astrophysics Data System (ADS)

    Joshi, Nitesh; Romanias, Manolis N.; Riffault, Veronique; Thevenet, Frederic

    2017-08-01

    The adsorption of water molecules on natural mineral dusts was investigated employing in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS). The natural dust samples originated from North and West Africa, Saudi Arabia and Gobi desert regions. Furthermore, the hygroscopicity of commercially available Arizona Test Dusts (ATDs) and Icelandic volcanic ash were examined. N2 sorption measurements, X-ray fluorescence and diffraction (XRF and XRD), as well as Inductively Coupled Plasma Mass Spectrometry (ICP-MS) analyses were performed to determine the physicochemical properties of the particles. The water adsorption experiments were conducted in an optical cell, at room temperature under the relative humidity (RH) range of 1.9-95%. Results were simulated using a modified three-parameter Brunauer-Emmett-Teller (BET) equation. Water monolayer (ML) was formed in the RH range of 15-25%, while additional water layers were formed at higher RH. Besides, the standard adsorption enthalpies of water onto natural mineral dust samples were determined. A thorough comparison of two commercially available ATD samples indicated that size distribution and/or porosity should play a key role in particle hygroscopicity. Regarding the natural mineral particles, Ca/Si ratios, and to a lesser extent Al/Si, Na/Si, Mg/Si ratios, were found to impact the minimum RH level required for water monolayer formation. These results suggest that the hygroscopic properties of investigated African dusts are quite similar over the whole investigated RH range. Furthermore, one of the major conclusions is that under most atmospheric relative humidity conditions, natural mineral samples are always covered with at least one layer of adsorbed water.

  20. Molecular statics calculations for iron oxide and oxyhydroxide minerals: Toward a flexible model of the reactive mineral-water interface

    NASA Astrophysics Data System (ADS)

    Rustad, James R.; Felmy, Andrew R.; Hay, Benjamin P.

    1996-05-01

    Molecular statics calculations are used to model the major FeOOH polymorphs and hematite. The potentials were taken from a previous investigation of Fe(III) in aqueous solutions which involved the extrapolation of the gas-phase Fe(III)-OH 2 potential energy surface to the solvated hexaaqua complex. Using this model for the solid phases, lattice parameters for goethite, akaganeite, lepidocrocite, and hematite are generally within 4% of experiment. Internal energies (at 0 K) were computed for each structure; lepidocrocite is energetically the most stable polymorph, followed by akaganeite, with goethite being the least stable. While the model exhibits some variances with experiment, it performs remarkably well, despite the challenging constraint of being consistent with a dissociating molecular dynamics model for water in its gas, aqueous, and solid phases. Because of this consistency, the model allows qualitative theoretical treatment of previously unapproachable problems in mineral-water interface geochemistry. We apply the model to identify surface species on the solvated (110) surface of goethite.

  1. Hydrogen-rich water attenuates brain damage and inflammation after traumatic brain injury in rats.

    PubMed

    Tian, Runfa; Hou, Zonggang; Hao, Shuyu; Wu, Weichuan; Mao, Xiang; Tao, Xiaogang; Lu, Te; Liu, Baiyun

    2016-04-15

    Inflammation and oxidative stress are the two major causes of apoptosis after traumatic brain injury (TBI). Most previous studies of the neuroprotective effects of hydrogen-rich water on TBI primarily focused on antioxidant effects. The present study investigated whether hydrogen-rich water (HRW) could attenuate brain damage and inflammation after traumatic brain injury in rats. A TBI model was induced using a controlled cortical impact injury. HRW or distilled water was injected intraperitoneally daily following surgery. We measured survival rate, brain edema, blood-brain barrier (BBB) breakdown and neurological dysfunction in all animals. Changes in inflammatory cytokines, inflammatory cells and Cho/Cr metabolites in brain tissues were also detected. Our results demonstrated that TBI-challenged rats exhibited significant brain injuries that were characterized by decreased survival rate and increased BBB permeability, brain edema, and neurological dysfunction, while HRW treatment ameliorated the consequences of TBI. HRW treatment also decreased the levels of pro-inflammatory cytokines (TNF-α, IL-1β and HMGB1), inflammatory cell number (Iba1) and inflammatory metabolites (Cho) and increased the levels of an anti-inflammatory cytokine (IL-10) in the brain tissues of TBI-challenged rats. In conclusion, HRW could exert a neuroprotective effect against TBI and attenuate inflammation, which suggests HRW as an effective therapeutic strategy for TBI patients.

  2. Optimization of the Liquid Culture Medium Composition to Obtain the Mycelium of Agaricus bisporus Rich in Essential Minerals.

    PubMed

    Krakowska, Agata; Reczyński, Witold; Muszyńska, Bożena

    2016-09-01

    Agaricus bisporus species (J.E. Lange) Imbach one of the most popular Basidiomycota species was chosen for the research because of its dietary and medicinal value. The presented herein studies included determination of essential mineral accumulation level in the mycelium of A. bisporus, cultivated on liquid cultures in the medium supplemented with addition of the chosen metals' salts. Quantitative analyses of Zn, Cu, Mg, and Fe in liquid cultures made it possible to determine the relationship between accumulation of the selected mineral in A. bisporus mycelium and the culture conditions. Monitoring of the liquid cultures and determination of the elements' concentrations in mycelium of A. bisporus were performed using the flame technique of AAS method. Concentration of Zn in the mycelium, maintained in the medium with the addition of its salt, was in a very wide range from 95.9 to 4462.0 mg/g DW. In the analyzed A. bisporus mycelium, cultured in the medium enriched with copper salt, this metal concentration changed from 89.79 to 7491.50 mg/g DW; considering Mg in liquid cultured mycelium (medium with Mg addition), its concentration has changed from 0.32 to 10.55 mg/g DW. The medium enriched with iron salts has led to bioaccumulation of Fe in mycelia of A. bisporus. Determined Fe concentration was in the range from 0.62 to 161.28 mg/g DW. The proposed method of liquid A. bisporus culturing on medium enriched with the selected macro- and microelements in proper concentrations ratio have led to obtaining maximal growth of biomass, characterized by high efficiency of the mineral accumulation. As a result, a dietary component of increased nutritive value was obtained.

  3. Geochemistry of summit fumarole vapors and flanking thermal/mineral waters at Popocatepetl Volcano, Mexico

    SciTech Connect

    Werner, C.; Goff, F.; Janik, C.J.

    1997-06-01

    Popocatepetl Volcano is potentially devastating to populations living in the greater Mexico City area. Systematic monitoring of fumarole gases and flanking thermal/mineral springs began in early 1994 after increased fumarolic and seismic activity were noticed in 1991. These investigations had two major objectives: (1) to determine if changes in magmatic conditions beneath Popocatepetl might be reflected by chemical changes in fumarolic discharges and (2) to determine if thermal/mineral spring waters in the vicinity of Popocatepetl are geochemically related to or influences by the magmatic system. This report summarizes results from these two discrete studies.

  4. Natural mineral bottled waters available on the Polish market as a source of minerals for the consumers. Part 2: The intake of sodium and potassium.

    PubMed

    Gątarska, Anna; Ciborska, Joanna; Tońska, Elżbieta

    Natural mineral waters are purchased and consumed according to consumer preferences and possible recommendations. The choice of appropriate water should take into account not only the general level of mineralization but also the content of individual components, including electrolytes such as sodium and potassium. Sodium is necessary to ensure the proper physiological functions of the body. It is defined as a health risk factor only when its excessive intake occurs. Potassium acts antagonistically towards sodium and calcium ions, contributes to a reduction of the volume of extracellular fluids and at the same time reduces muscle tension and permeability of cell membranes. The demand for sodium and potassium is of particular importance in people expending significant physical effort, where an increased electrolyte supply is recommended. The aim of the study was to estimate the content of sodium and potassium in natural mineral waters available in the Polish market and to evaluate the intake of those components with the commercially available mineral waters by different groups of consumers at the assumed volume of their consumption. The research material consisted of natural mineral waters of forty various brands available on the Polish market. The examined products were either produced in Poland or originated in other European countries. Among the products under examination, about 30% of the waters were imported from Lithuania, Latvia, the Czech Republic, France, Italy and Germany. A sample for analyses consisted of two package units of the examined water from different production lots. Samples for research were collected at random. The study was conducted with the same samples in in which calcium and magnesium content was determined, which was the subject of the first part of the study. The content of sodium and potassium was determined using the emission technique (acetylene-air flame), with the use of atomic absorption spectrometer – ICE 3000 SERIES – THERMO

  5. Species richness and macronutrient content of wawo worms (Polychaeta, Annelida) from Ambonese waters, Maluku, Indonesia.

    PubMed

    Pamungkas, Joko

    2015-01-01

    The aims of this research were to: (1) investigate the species richness of wawo worms, and to (2) analyze macronutrient content of the worms. Wawo worms were sampled using a fishing net on March 18(th)-19(th), 2014, from Ambonese waters, Maluku. As many as 26 wawo species belonging to 5 families were identified. Palola sp. was identified as the most abundant species of wawo, followed by Lysidiceoele, Horst 1905, Eunice spp. and nereidids. Results of the proximate analysis reveal that female epitokes of Palola sp. contain 10.78 % ash, 10.71 % moisture, 11.67 % crude fat, 54.72 % crude protein and 12.12 % carbohydrate.

  6. Vitamin Enhanced Waters and Polyphenol Rich Beverages Analyzed for Antioxidant Capacity and Antioxidants/Calorie

    PubMed Central

    Donnelly, Patrick E.; Churilla, Thomas M.; Coco, Michael G.; Vinson, Joe A.

    2010-01-01

    The purpose of this study was to analyze polyphenol rich beverages (vitamin enhanced waters (VEWs), fruit juices and berry juices) to determine free polyphenol concentrations and free polyphenols per Calorie based on a serving size. The Folin–Ciocalteu reagent was used in a colorimetric assay based on a catechin standard. Fruit and berry juices contained, on average, more than eight-times the concentration of free polyphenols when compared to VEWs. When Calories per serving were taken into consideration, fruit and berry juices contained more than twice the free polyphenols per Calorie. PMID:22254009

  7. [The hepatotropic action of sodium chloride and hydrocarbonate mineral water containing humic acids (an experimental study)].

    PubMed

    Verigo, N S; Ulashchik, V S

    2015-01-01

    The present article summarizes the results of experimental studies on the hepatotropic action of native and modified low-mineralized sodium chloride and bicarbonate waters differing in the content of humic acids. It was found that the most beneficial changes after a course of 21 day therapy with the use of such mineral waters for the treatment of experimental hepatitis were observed after the application of the water with a humic acid content of roughly 20 g/dm3. Such treatment resulted in the significant improvement of the liver antitoxic function, intensification of basal metabolism, reduction of the inflammatory processes, normalization of the hepatic enzyme activity, and stimulation of proteinsynthetic function in parallel with positive dynamics of the morphological and histochemical characteristics of the liver.

  8. Detection of solar wind-produced water in irradiated rims on silicate minerals

    PubMed Central

    Bradley, John P.; Ishii, Hope A.; Gillis-Davis, Jeffrey J.; Ciston, James; Nielsen, Michael H.; Bechtel, Hans A.; Martin, Michael C.

    2014-01-01

    The solar wind (SW), composed of predominantly ∼1-keV H+ ions, produces amorphous rims up to ∼150 nm thick on the surfaces of minerals exposed in space. Silicates with amorphous rims are observed on interplanetary dust particles and on lunar and asteroid soil regolith grains. Implanted H+ may react with oxygen in the minerals to form trace amounts of hydroxyl (−OH) and/or water (H2O). Previous studies have detected hydroxyl in lunar soils, but its chemical state, physical location in the soils, and source(s) are debated. If −OH or H2O is generated in rims on silicate grains, there are important implications for the origins of water in the solar system and other astrophysical environments. By exploiting the high spatial resolution of transmission electron microscopy and valence electron energy-loss spectroscopy, we detect water sealed in vesicles within amorphous rims produced by SW irradiation of silicate mineral grains on the exterior surfaces of interplanetary dust particles. Our findings establish that water is a byproduct of SW space weathering. We conclude, on the basis of the pervasiveness of the SW and silicate materials, that the production of radiolytic SW water on airless bodies is a ubiquitous process throughout the solar system. PMID:24449869

  9. Detection of solar wind-produced water in irradiated rims on silicate minerals.

    PubMed

    Bradley, John P; Ishii, Hope A; Gillis-Davis, Jeffrey J; Ciston, James; Nielsen, Michael H; Bechtel, Hans A; Martin, Michael C

    2014-02-04

    The solar wind (SW), composed of predominantly ∼1-keV H(+) ions, produces amorphous rims up to ∼150 nm thick on the surfaces of minerals exposed in space. Silicates with amorphous rims are observed on interplanetary dust particles and on lunar and asteroid soil regolith grains. Implanted H(+) may react with oxygen in the minerals to form trace amounts of hydroxyl (-OH) and/or water (H2O). Previous studies have detected hydroxyl in lunar soils, but its chemical state, physical location in the soils, and source(s) are debated. If -OH or H2O is generated in rims on silicate grains, there are important implications for the origins of water in the solar system and other astrophysical environments. By exploiting the high spatial resolution of transmission electron microscopy and valence electron energy-loss spectroscopy, we detect water sealed in vesicles within amorphous rims produced by SW irradiation of silicate mineral grains on the exterior surfaces of interplanetary dust particles. Our findings establish that water is a byproduct of SW space weathering. We conclude, on the basis of the pervasiveness of the SW and silicate materials, that the production of radiolytic SW water on airless bodies is a ubiquitous process throughout the solar system.

  10. Bacteriological quality and risk assessment of the imported and domestic bottled mineral water sold in Fiji.

    PubMed

    Zeenat, A; Hatha, A A M; Viola, L; Vipra, K

    2009-12-01

    Considering the popularity of bottled mineral water among indigenous Fijians and tourists alike, a study was carried out to determine the bacteriological quality of different bottled waters. A risk assessment was also carried out. Seventy-five samples of bottled mineral water belonging to three domestic brands and 25 samples of one imported brand were analysed for heterotrophic plate count (HPC) bacteria and faecal coliforms. HPC counts were determined at 22 degrees C and 37 degrees C using R2A medium and a membrane filtration technique was used to determine the faecal coliform (FC) load in 100 ml of water on mFC agar. Between 28 and 68% of the samples of the various domestic brands failed to meet the WHO standard of 100 colony forming units (cfu) per 100 ml at 22 degrees C and 7% of these also tested positive for faecal coliforms. All imported bottled mineral water samples were within WHO standards. A risk assessment of the HPC bacteria was carried out in terms of beta haemolytic activity and antibiotic resistance. More than 50% of the isolates showed beta haemolytic activity and were multi-drug resistant. While the overall quality of the product was generally good, there is a need to enforce stringent quality standards for the domestic bottlers to ensure the safety of consumers.

  11. Water Mites (Acari: Hydrachnida) of Ozark Streams - Abundance, Species Richness, and Potential as Environmental Indicators

    NASA Astrophysics Data System (ADS)

    Radwell, A. J.; Brown, A. V.

    2005-05-01

    Because water mites are tightly linked to other stream metazoans through parasitism and predation, they are potentially effective indicators of environmental quality. Meiofauna (80 μm to 1 mm) were sampled from headwater riffles of 11 Ozark streams to determine relative abundance and densities of major meiofauna taxa. Water mites comprised 15.3% of the organisms collected exceeded only by chironomids (50.2%) and oligochaetes (17.8%), and mean water mite density among the 11 streams was 265 organisms per liter. The two streams that differed the most in environmental quality were sampled using techniques suitable for identification of species. An estimated 32 species from 20 genera and 13 families were found in the least disturbed stream; an estimated 19 species from 13 genera and 8 families were found in the most disturbed stream. This preliminary finding supports the notion that water mite species richness declines in response to environmental disturbance. Many species could only be identified as morphospecies of particular genera, but the ongoing taxonomic revision of Hydrachnida is expected to provide needed information. A collaborative effort between those interested in taxonomy/systematics of water mites and ecologists interested in the significance of water mites in aquatic communities could prove mutually beneficial.

  12. Naturally acidic surface and ground waters draining porphyry-related mineralized areas of the Southern Rocky Mountains, Colorado and New Mexico

    USGS Publications Warehouse

    Verplanck, P.L.; Nordstrom, D.K.; Bove, D.J.; Plumlee, G.S.; Runkel, R.L.

    2009-01-01

    Acidic, metal-rich waters produced by the oxidative weathering and resulting leaching of major and trace elements from pyritic rocks can adversely affect water quality in receiving streams and riparian ecosystems. Five study areas in the southern Rocky Mountains with naturally acidic waters associated with porphyry mineralization were studied to document variations in water chemistry and processes that control the chemical variations. Study areas include the Upper Animas River watershed, East Alpine Gulch, Mount Emmons, and Handcart Gulch in Colorado and the Red River in New Mexico. Although host-rock lithologies in all these areas range from Precambrian gneisses to Cretaceous sedimentary units to Tertiary volcanic complexes, the mineralization is Tertiary in age and associated with intermediate to felsic composition, porphyritic plutons. Pyrite is ubiquitous, ranging from ???1 to >5 vol.%. Springs and headwater streams have pH values as low as 2.6, SO4 up to 3700 mg/L and high dissolved metal concentrations (for example: Fe up to 400 mg/L; Cu up to 3.5 mg/L; and Zn up to 14.4 mg/L). Intensity of hydrothermal alteration and presence of sulfides are the primary controls of water chemistry of these naturally acidic waters. Subbasins underlain by intensely hydrothermally altered lithologies are poorly vegetated and quite susceptible to storm-induced surface runoff. Within the Red River study area, results from a storm runoff study documented downstream changes in river chemistry: pH decreased from 7.80 to 4.83, alkalinity decreased from 49.4 to <1 mg/L, SO4 increased from 162 to 314 mg/L, dissolved Fe increased from to 0.011 to 0.596 mg/L, and dissolved Zn increased from 0.056 to 0.607 mg/L. Compared to mine drainage in the same study areas, the chemistry of naturally acidic waters tends to overlap but not reach the extreme concentrations of metals and acidity as some mine waters. The chemistry of waters draining these mineralized but unmined areas can be used to

  13. Effect of natural pozzolans as mineral admixture on the performance of cemented-paste backfill of sulphide-rich tailings.

    PubMed

    Ercikdi, Bayram; Cihangir, Ferdi; Kesimal, Ayhan; Deveci, Haci; Alp, Ibrahim

    2010-05-01

    This paper presents the effect of the natural pozzolans as mineral additives on the short- and long-term strength and stability performance of cemented paste backfill (CPB) samples. Prior to their use in CPB studies, the natural pozzolans - the volcanic tuffs (Akkus Trass [AT] and Fatsa Trass [FT]) and pumice (KP) - were tested for their pozzolanic characteristics. These tests revealed that the pozzolanic activity of the natural pozzolans is closely inter-related with their content of reactive silica and, accordingly, KP has the highest pozzolanic activity. The addition, or increasing the amount, of natural pozzolans in the binder phase resulted in a slower rate of strength development of CPB samples. The deterioration in stability of CPB samples prepared from Portland cement (PC) alone (i.e. a strength loss of 24.6%) occurred following 56 days. The replacement of PC with FT and AT led to even higher losses in strength. However, the addition of KP (up to 30 wt%) mitigated, to a certain extent, long-term strength and stability problems with the losses in strength of CPB samples consistently lower than 20%. It can be inferred that the performance of the natural pozzolans as a mineral additive in CPB is dependent intimately on their pozzolanic characteristics.

  14. Comparative assessment of genotoxicity of mineral water packed in polyethylene terephthalate (PET) and glass bottles.

    PubMed

    Ceretti, Elisabetta; Zani, Claudia; Zerbini, Ilaria; Guzzella, Licia; Scaglia, Mauro; Berna, Vanda; Donato, Francesco; Monarca, Silvano; Feretti, Donatella

    2010-03-01

    The potential migration of genotoxic compounds into mineral water stored in polyethylene terephthalate (PET) bottles was evaluated by an integrated chemical/biological approach using short-term toxicity/genotoxicity tests and chemical analysis. Six commercial brands of still and carbonated mineral water bottled in PET and in glass were stored at 40 degrees C for 10 days in a stove according to the standard EEC total migration test (82/711/EEC), or at room temperature in the dark. After treatment, the samples were analysed using gas-chromatography/mass spectrometry (GC/MS) to detect volatile and non-volatile compounds, the Microtox test to evaluate potential toxicity of the samples, and three mutagenicity tests -Tradescantia and Allium cepa micronucleus tests and the Comet assay on human leukocytes - to detect their genotoxic activity. GC/MS analysis did not detect phthalates or acetaldehyde in the water samples. The Microtox test found no toxic effects. Mutagenicity tests detected genotoxic properties of some samples in both PET and glass bottles. Statistical analyses showed a positive association between mineral content and mutagenicity (micronuclei in A. cepa and DNA damage in human leukocytes). No clear effect of treatment and PET bottle was found. These results suggest the absence of toxic compounds migrating from PET regardless of time and conditions of storage. In conclusion, bottle material and stove treatment were not associated with the genotoxic properties of the water; the genotoxic effects detected in bottled water may be related to the characteristics of the water (minerals and CO(2) content).

  15. First-principles calculation of H/D isotopic fractionation between hydrous minerals and water

    NASA Astrophysics Data System (ADS)

    Méheut, Merlin; Lazzeri, Michele; Balan, Etienne; Mauri, Francesco

    2010-07-01

    Hydrogen fractionation laws between selected hydrous minerals (brucite, kaolinite, lizardite, and gibbsite) and perfect water gas have been computed from first-principles quantum-mechanical calculations. The β-factor of each phase was calculated using the harmonic phonon dispersion curves obtained within density functional theory. All the fractionation laws show the same shape, with a minimum between 200 °C (brucite) and 500 °C (gibbsite). At low temperatures, the mineral/liquid water fractionation laws have been obtained using the experimental gas/liquid water fractionation laws. The resulting fractionation laws systematically overestimate measurements by 15‰ at low temperatures to 8‰ at ≈400 °C. Based on this general agreement, all calculated laws were empirically corrected with reference to brucite/water data. These considerations suggest that the experimental or natural calibrations by Xu and Zheng (1999) and Horita et al. (2002) (brucite/water), Gilg and Sheppard (1996) (kaolinite/water), Wenner and Taylor (1973) (lizardite/water), and in some extents Vitali et al. (2001) (gibbsite/water) are representative of equilibrium fractionations. Besides, internal isotopic fractionation of hydrogen between inner-surface and inner hydroxyl groups has been computed for kaolinite and lizardite. The obtained fractionation is large, of opposite sign for the two systems (respectively, -23‰ and +63‰ at 25 °C) and is linear in T-2. Internal fractionation of hydrogen in TO phyllosilicates might thus be used in geothermometry.

  16. Co-occurrence of phycocyanin- and phycoerythrin-rich Synechococcus in subtropical estuarine and coastal waters of Hong Kong.

    PubMed

    Liu, Hongbin; Jing, Hongmei; Wong, Thomas H C; Chen, Bingzhang

    2014-02-01

    Phylogenetic diversity of Synechococcus with different pigmentation in subtropical estuarine and coastal waters of Hong Kong was revealed by the phylogeny of cpcBA and cpeBA operons encoding for phycocyanin (PC) and phycoerythrin (PE). Synechococcus containing only PC (PC-rich Synechococcus) dominated at the estuarine station in summer, whereas PE-rich marine Synechococcus containing both PC and PE (PE-rich Synechococcus) dominated in the coastal waters. Our PC sequences are closely related to freshwater strains but differed from Baltic Sea strains, implying that they were from river discharge. Among PE-rich Synechococcus, clones grouping with strains containing only phycoerythrobilin (PEB-only) were abundant in July, while clones grouping with strains possessing a low content of phycourobilin (PUB) in addition to PEB (low PUB/PEB) were more abundant in January at both stations. Clones of high PUB/PEB types were only presented at the coastal station, but were not detected at the estuarine station. The much higher diversity of both PC-rich and PE-rich Synechococcus, as compared with the Baltic Sea, and the occurrence of the high PUB/PEB strains indicate the high dynamic nature of this subtropical estuarine-coastal environment with strong mixing of water masses ranging from Pearl River plume to oceanic South China Sea water. Our results of phylogenetic study agreed well with flow cytometric counts, which revealed the coexistence of PC-rich and PE-rich Synechococcus in the subtropical coastal waters and the dominance of the former type in the estuarine waters during summer high freshwater discharge. These results indicate that picocyanobacteria, particularly PC-rich Synechococcus, which has long been overlooked, are an important part of the primary production, and they could play an important role in the microbial food web in estuarine ecosystems.

  17. Effects of land use on fresh waters: Agriculture, forestry, mineral exploitation, urbanisation

    SciTech Connect

    Solbe, J.F.

    1986-01-01

    This book offers a broad consideration of the effects of land use on fresh waters above and below ground. Experts address a wide range of issues in relation to the four major uses of land. Taken from an international conference held at the University of Stirling in 1985, coverage includes sewerage and waste-water treatment, long-term contamination of aquifers below cities, mineral exploitation, use of water in food production, wood production and more. Remedies and areas requiring further study are outlined.

  18. Clade age and diversification rate variation explain disparity in species richness among water scavenger beetle (Hydrophilidae) lineages.

    PubMed

    Bloom, Devin D; Fikáček, Martin; Short, Andrew E Z

    2014-01-01

    Explaining the disparity of species richness across the tree of life is one of the great challenges in evolutionary biology. Some lineages are exceptionally species rich, while others are relatively species poor. One explanation for heterogeneity among clade richness is that older clades are more species rich because they have had more time to accrue diversity than younger clades. Alternatively, disparity in species richness may be due to among-lineage diversification rate variation. Here we investigate diversification in water scavenger beetles (Hydrophilidae), which vary in species richness among major lineages by as much as 20 fold. Using a time-calibrated phylogeny and comparative methods, we test for a relationship between clade age and species richness and for shifts in diversification rate in hydrophilids. We detected a single diversification rate increase in Megasternini, a relatively young and species rich clade whose diversity might be explained by the stunning diversity of ecological niches occupied by this clade. We find that Amphiopini, an old clade, is significantly more species poor than expected, possibly due to its restricted geographic range. The remaining lineages show a correlation between species richness and clade age, suggesting that both clade age and variation in diversification rates explain the disparity in species richness in hydrophilids. We find little evidence that transitions between aquatic, semiaquatic, and terrestrial habitats are linked to shifts in diversification rates.

  19. Clade Age and Diversification Rate Variation Explain Disparity in Species Richness among Water Scavenger Beetle (Hydrophilidae) Lineages

    PubMed Central

    Bloom, Devin D.; Fikáček, Martin; Short, Andrew E. Z.

    2014-01-01

    Explaining the disparity of species richness across the tree of life is one of the great challenges in evolutionary biology. Some lineages are exceptionally species rich, while others are relatively species poor. One explanation for heterogeneity among clade richness is that older clades are more species rich because they have had more time to accrue diversity than younger clades. Alternatively, disparity in species richness may be due to among-lineage diversification rate variation. Here we investigate diversification in water scavenger beetles (Hydrophilidae), which vary in species richness among major lineages by as much as 20 fold. Using a time-calibrated phylogeny and comparative methods, we test for a relationship between clade age and species richness and for shifts in diversification rate in hydrophilids. We detected a single diversification rate increase in Megasternini, a relatively young and species rich clade whose diversity might be explained by the stunning diversity of ecological niches occupied by this clade. We find that Amphiopini, an old clade, is significantly more species poor than expected, possibly due to its restricted geographic range. The remaining lineages show a correlation between species richness and clade age, suggesting that both clade age and variation in diversification rates explain the disparity in species richness in hydrophilids. We find little evidence that transitions between aquatic, semiaquatic, and terrestrial habitats are linked to shifts in diversification rates. PMID:24887453

  20. Evaporation Pathways and Solubility of Fe-Ca-Mg-Rich Salts in Acid Sulfate Waters. A Model for Martian Ancient Surface Waters

    NASA Astrophysics Data System (ADS)

    Sansano, A.; Sobron, P.; Sanz, J. A.

    2012-03-01

    In this work we have characterized a layered deposit formed from the evaporation of stream water from Rio Tinto, Spain, a relevant Mars analog site. The minerals detected in-situ, confirmed later via high resolution Raman spectroscopy.

  1. Comparative mineralogy in the Solar system: Water-related minerals and habitability

    NASA Astrophysics Data System (ADS)

    Prieto-Ballesteros, O.; Muñoz-Iglesias, V.; Bonales, L. J.

    2012-09-01

    Life, as we know it, needs liquid water because its unique physical chemical properties. The presence of liquid water in a planetary environment anytime during its geological history may be evidenced studying the present mineralogy. While some minerals incorporate water molecules directly in their structure when crystallize from liquid, some anhydrous need the aqueous environment to be formed primarily or by alteration. Salt hydrates (sulfates, chlorides), clathrate hydrates, hydrated silicates (clays, zeolites) and oxides are some examples of these minerals conspicuous for their interest on Astrobiology. Here we support waterrelated minerals as indicators of planetary habitability and revise their occurrence in the solar system. Investigations of terrestrial analogue materials, both in the laboratory and in situ are needed in order to interpret the data from the space missions properly. Phase stability and physical chemical properties data of the minerals are being obtained and used to infer specific characteristics of the past and the present of potential habitable environments. Water-related minerals have been observed at different solar system objects such as: a) meteorites [1] and asteroids [2]. b) the surface of terrestrial planets like Mars [3, 4, 5]. c) some icy satellites [6, 7, 8, 9]. a) The hydrated mineral inventory in meteorites and asteroid helps to both, infer the origin of Earth's water, and decode the water/organic processes interaction occurring during the earliest times in solar system history. b) Main climatic and geological global changes of Mars have been established by some authors [3] from the abundance of some hydrated species as sulfates or clays. Some detected sulfates, like the jarosite has been used even to indicate the extreme acidity of the aqueous environment from where they were precipitated. Studies on terrestrial extreme environments have shown that if hydrothermal samples are present on Mars, like carbonates, they might be useful

  2. Mineral Acquisition from Clay by Budongo Forest Chimpanzees

    PubMed Central

    Reynolds, Vernon; Lloyd, Andrew W.; English, Christopher J.; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms. PMID:26218593

  3. Mineral Acquisition from Clay by Budongo Forest Chimpanzees.

    PubMed

    Reynolds, Vernon; Lloyd, Andrew W; English, Christopher J; Lyons, Peter; Dodd, Howard; Hobaiter, Catherine; Newton-Fisher, Nicholas; Mullins, Caroline; Lamon, Noemie; Schel, Anne Marijke; Fallon, Brittany

    2015-01-01

    Chimpanzees of the Sonso community, Budongo Forest, Uganda were observed eating clay and drinking clay-water from waterholes. We show that clay, clay-rich water, and clay obtained with leaf sponges, provide a range of minerals in different concentrations. The presence of aluminium in the clay consumed indicates that it takes the form of kaolinite. We discuss the contribution of clay geophagy to the mineral intake of the Sonso chimpanzees and show that clay eaten using leaf sponges is particularly rich in minerals. We show that termite mound soil, also regularly consumed, is rich in minerals. We discuss the frequency of clay and termite soil geophagy in the context of the disappearance from Budongo Forest of a formerly rich source of minerals, the decaying pith of Raphia farinifera palms.

  4. The Anoxic Corrosion of Copper in Pure Water and Chloride Rich Brines

    NASA Astrophysics Data System (ADS)

    Ilic, Emilija

    The Nuclear Waste Management Organization (NWMO) is developing an approach for the permanent geological disposal of nuclear waste. The waste will be encased in copper coated used fuel containers (UFCs) and placed in a deep geological repository (DGR). To support the NWMO in their investigations on the long-term corrosion of copper a lab scale simulation of the DGR environment was created. Copper wires were placed in glass electrochemical cells and exposed to one of two environments; pure anoxic water or chloride-rich anoxic brine. The systems were allowed to freely corrode and accumulate hydrogen within their headspaces over extended durations at 30 to 75 °C. The hydrogen was periodically purged and subsequently analyzed using a highly sensitive amperometric sensor; these measurements were utilized to calculate the corresponding copper corrosion rates. Corrosion with hydrogen evolution was demonstrated in both pure water and brines at slow rates below 1 and 10 nm/year, respectively.

  5. Iron and copper isotope fractionation during filtration and ultrafiltration of boreal organic-rich waters

    NASA Astrophysics Data System (ADS)

    Ilina, Svetlana M.; Viers, Jerome; Pokrovsky, Oleg S.; Poitrasson, Franck; Lapitsky, Sergey A.; Alekhin, Yuriy V.

    2010-05-01

    Typical feature of all boreal surface waters is high concentration of dissolved (< 0.22 µm) organic matter (DOM) and iron, notably in the form of Fe(III)-OM complexes. Organic and organo-mineral colloids are the most likely carriers of trace metals such as Cu in rivers of the boreal zone. This work addresses colloidal speciation of Cu and Fe using conventional size separation technique, on-site frontal ultrafiltration. Specifically, we aimed to test the possibility of the presence of different pools of metal having specific isotopic signatures in different colloidal fractions using stable isotope measurements. We have chosen Cu for its high affinity to colloidal DOM and Fe for its tendency to form stable organo-mineral colloids of various size. Samples of natural waters were collected from small rivers, lakes, bogs, groundwater and soil environments in the Northern Karelia (NW Russia) during summer baseflow period. Large volumes (20-40 L) of water were filtered in the field through progressively decreasing pore size filters: 20, 10, 5, 0.8, 0.45, 0.22, 0.1 µm and 100, 10 and 1 kDa (1 kDa ~ 1 nm) using nylon and regenerated cellulose membranes and frontal ultrafiltration (Millipore, Amicon) devises. The homogeneity of the sample was verified by tracing radiogenic Sr isotopes in each fraction. In all filtrates and ultrafiltrates (permeates), and in selected retentates, stable isotopic composition of Cu and Fe was measured using double focusing high resolution MC-ICP MS (Neptune). We observe rather constant Cu isotopic ratio in all filtrate series and a systematic enrichment of heavy isotope of Fe with decreasing poresize. These preliminary results can be explained by strong complexation of Cu with small-size organic ligands of fulvic nature and its partial association with organo-mineral colloids. Both Fe(III) - OM complxeation and Fe(III) oxyhydroxides precipitation can be invoked to explain Fe isotope fractionation. This work allows, for the first, time, multi

  6. Endocrine disruptors in bottled mineral water: total estrogenic burden and migration from plastic bottles.

    PubMed

    Wagner, Martin; Oehlmann, Jörg

    2009-05-01

    Food consumption is an important route of human exposure to endocrine-disrupting chemicals. So far, this has been demonstrated by exposure modeling or analytical identification of single substances in foodstuff (e.g., phthalates) and human body fluids (e.g., urine and blood). Since the research in this field is focused on few chemicals (and thus missing mixture effects), the overall contamination of edibles with xenohormones is largely unknown. The aim of this study was to assess the integrated estrogenic burden of bottled mineral water as model foodstuff and to characterize the potential sources of the estrogenic contamination. In the present study, we analyzed commercially available mineral water in an in vitro system with the human estrogen receptor alpha and detected estrogenic contamination in 60% of all samples with a maximum activity equivalent to 75.2 ng/l of the natural sex hormone 17beta-estradiol. Furthermore, breeding of the molluskan model Potamopyrgus antipodarum in water bottles made of glass and plastic [polyethylene terephthalate (PET)] resulted in an increased reproductive output of snails cultured in PET bottles. This provides first evidence that substances leaching from plastic food packaging materials act as functional estrogens in vivo. Our results demonstrate a widespread contamination of mineral water with xenoestrogens that partly originates from compounds leaching from the plastic packaging material. These substances possess potent estrogenic activity in vivo in a molluskan sentinel. Overall, the results indicate that a broader range of foodstuff may be contaminated with endocrine disruptors when packed in plastics.

  7. The importance of water transit time and mineral dissolution kinetics for the flux of weathering products

    NASA Astrophysics Data System (ADS)

    Erlandsson, Martin; Bishop, Kevin; Köhler, Stephan; Amvrosiadi, Nino

    2016-04-01

    Soil mineral weathering is one of the major sources of base cations (BC), which play a dual role for a forest ecosystem; they function both as plant nutrients, and for buffering against acidification of catchment runoff. On a long-term basis, the soil weathering rates will determine the highest sustainable forest productivity without causing acidification. It is believed that the hydrologic residence time play a key role in determining weathering rates on a landscape scale. In this study, we investigate the significance of the water transit residence time (WTT) distribution for the transport of base cations to catchment runoff. By modelling hillslope flowpaths with different transit times, using the geochemical computing code PHREEQC, we demonstrate how in-stream dynamics as exemplified by elemental ratios can be explained by mineral dissolution kinetics and equilibria. Specifically, we hypothesize that equilibrium of plagioclase regulates the delivery of base cations and silica to catchment runoff. These patters can be seen in field data from 10 years of sampling from a nested-catchment, where the Na+/BC and the Si/BC-ratios vary systematically with WTT on both a temporal and a spatial scale. This behavior has implications for the total transport of products from mineral dissolution to catchment runoff. As the water entering the stream is a mixture of water with different transit times, the composition of stream water will not only be dependent on the average WTT, but also on the shape of the WTT distribution. For the base cations associated with minerals that becomes supersaturated or with precipitating secondary phases within the range of WTT, i.e. Na+ and K+, the tails of "old water" of the WRT-distribution will not contribute to any extra transport of these elements. Finally, we use the derived relationships to estimate the transport of weathering products from a forested hillslope, given the modelled WRT distribution.

  8. Molecular Dynamics Simulation and Analysis of Interfacial Water at Selected Sulfide Mineral Surfaces under Anaerobic Conditions

    SciTech Connect

    Jin, Jiaqi; Miller, Jan D.; Dang, Liem X.

    2014-04-10

    In this paper, we report on a molecular dynamics simulation (MDS) study of the behavior of interfacial water at selected sulfide mineral surfaces under anaerobic conditions. The study revealed the interfacial water structure and wetting characteristics of the pyrite (100) surface, galena (100) surface, chalcopyrite (012) surface, sphalerite (110) surface, and molybdenite surfaces (i.e., the face, armchair-edge, and zigzag-edge surfaces), including simulated contact angles, relative number density profiles, water dipole orientations, hydrogen-bonding, and residence times. For force fields of the metal and sulfur atoms in selected sulfide minerals used in the MDS, we used the universal force field (UFF) and another set of force fields optimized by quantum chemical calculations for interactions with interfacial water molecules at selected sulfide mineral surfaces. Simulation results for the structural and dynamic properties of interfacial water molecules indicate the natural hydrophobic character for the selected sulfide mineral surfaces under anaerobic conditions as well as the relatively weak hydrophobicity for the sphalerite (110) surface and two molybdenite edge surfaces. Part of the financial support for this study was provided by the U.S. Department of Energy (DOE) under Basic Science Grant No. DE-FG-03-93ER14315. The Division of Chemical Sciences, Geosciences, and Biosciences, Office of Basic Energy Sciences (BES), of the DOE, funded work performed by Liem X. Dang. Battelle operates Pacific Northwest National Laboratory for DOE. The calculations were carried out using computer resources provided by BES. The authors are grateful to Professor Tsun-Mei Chang for valuable discussions.

  9. Dissolved gas composition of groundwater in the natural spa complex "Choygan mineral waters" (East Tuva)

    NASA Astrophysics Data System (ADS)

    Kopylova, Y.; Guseva, N.; Shestakova, A.; Khvaschevskaya, A.; Arakchaa, K.

    2014-08-01

    The natural spa complex "Choygan mineral waters", a unique deposit of natural carbon dioxide mineral waters in Siberia, is located in the Eastern Sayan Mountains. There are 33 springs discharge in this area. Spring waters are mainly HCO3-Na-Ca type. TDS varies from 300 mg/L to 2600 mg/L and temperature ranges from 7 °C (in spring 33) to 39 °C (in spring 12), pH varies from 5.9 to 8.3, and the value of the oxidation-reduction potential is from - 170 mV to 236 mV. All studied waters were divided into two groups according to their temperature and geochemical conditions: cold fresh water with oxidizing conditions and warm slightly brackish water with reductive conditions. The gas composition of the studied waters is represented by nitrogen (28-75 vol.%), carbon dioxide (6-65 vol.%), oxygen (7-19 vol.%), radon (4-948 Bq/l). The studied gases differ not only by the content but by the different sources.

  10. Redistribution of soil water by a saprotrophic fungus enhances carbon mineralization.

    PubMed

    Guhr, Alexander; Borken, Werner; Spohn, Marie; Matzner, Egbert

    2015-11-24

    The desiccation of upper soil horizons is a common phenomenon, leading to a decrease in soil microbial activity and mineralization. Recent studies have shown that fungal communities and fungal-based food webs are less sensitive and better adapted to soil desiccation than bacterial-based food webs. One reason for a better fungal adaptation to soil desiccation may be hydraulic redistribution of water by mycelia networks. Here we show that a saprotrophic fungus (Agaricus bisporus) redistributes water from moist (-0.03 MPa) into dry (-9.5 MPa) soil at about 0.3 cm ⋅ min(-1) in single hyphae, resulting in an increase in soil water potential after 72 h. The increase in soil moisture by hydraulic redistribution significantly enhanced carbon mineralization by 2,800% and enzymatic activity by 250-350% in the previously dry soil compartment within 168 h. Our results demonstrate that hydraulic redistribution can partly compensate water deficiency if water is available in other zones of the mycelia network. Hydraulic redistribution is likely one of the mechanisms behind higher drought resistance of soil fungi compared with bacteria. Moreover, hydraulic redistribution by saprotrophic fungi is an underrated pathway of water transport in soils and may lead to a transfer of water to zones of high fungal activity.

  11. [Effects of soil texture and water content on the mineralization of soil organic carbon in paddy soils].

    PubMed

    Sun, Zhong-lin; Wu, Jin-shui; Ge, Ti-da; Tang, Guo-yong; Tong, Cheng-li

    2009-01-01

    To understand how soil texture and water content affect the mineralization of organic C in paddy soil, 3 selected soils (sandy loam, clay loam, and silty clay) were incubated (25 degrees C) with 14 C-labelled rice straw (1.0 g x kg(-1)) at water content varied from 45% to 105% of water holding capacity (WHC). Data indicated that, in the sandy loam and clay loam, the mineralization rate of 14 C-labelled rice straw reached the maximum at 75% WHC, as 53% and 58% of the straw C mineralized in the incubation period of 160 d, whereas in the silty clay, it increased gradually (from 41.8% to 49.0%) as water content increased up to 105% WHC. For all of the three soils, the mineralization rate of soil native organic C reached the maximum at 75% WHC, with 5.8% of the organic C mineralized in the same period for the sandy loam, and 8.0% and 4.8% for the clay loam and silty clay, respectively. As water content increased further, the mineralization rate of native organic C in the three soils significantly declined. The mineralization rate of added rice straw and native organic C in all the three soils, was well fitted with a conic curve. These results suggest that water-logging can decrease the mineralization of organic C in paddy soils.

  12. Mineralization of a Malaysian crude oil by Pseudomonas sp. and Achromabacter sp. isolated from coastal waters

    SciTech Connect

    Ahmad, J.; Ahmad, M.F.

    1995-12-31

    Regarded as being a potentially effective tool to combat oil pollution, bioremediation involves mineralization, i.e., the conversion of complex hydrocarbons into harmless CO{sub 2} and water by action of microorganisms. Therefore, in achieving optimum effectiveness from the application of these products on crude oil in local environments, the capability of the bacteria to mineralize hydrocarbons was evaluated. The microbial laboratory testing of mineralization on local oil degraders involved, first, isolation of bacteria found at a port located on the west coast of Peninsular Malaysia. Subsequently, these bacteria were identified by means of Biomereux`s API 20E and 20 NE systems and later screened by their growth on a Malaysian crude oil. Selected strains of Pseudomonas sp. and Achromabacter sp. were then exposed individually to a similar crude oil in a mineralization unit and monitored for 16 days for release of CO{sub 2}. Pseudomonas paucimobilis was found to produce more CO{sub 2} than Achromobacter sp. When tested under similar conditions, mixed populations of these two taxa produced more CO{sub 2} than that produced by any individual strain. Effective bioremediation of local crude in Malaysian waters can therefore be achieved from biochemically developed Pseudomonas sp. strains.

  13. [Calcium, magnesium, iron and zinc in drinking water and status biomarkers of these minerals among elder people from Warsaw region].

    PubMed

    Madej, Dawid; Kaluza, Joanna; Antonik, Anna; Brzozowska, Anna; Roszkowski, Wojciech

    2011-01-01

    The aim of this study was to estimate the influence of calcium, magnesium, iron and zinc contents in drinking water on chosen parameters of nutritional status of these minerals in 164 elder people, 75-80 age, living in Warsaw region. Blood, hair and saliva were collected to assess the calcium, magnesium, iron and zinc nutritional status, while the samples of drinking water were collected to determine these minerals in water Mineral concentrations in blood, hair saliva and water were assessment using the atomic spectrophotometer absorption method It was showed that contribution of drinking water to calcium, magnesium, iron and zinc intake was: 15%, 4%, 5%, 9%, respectively. The relationship between the contents of these minerals in drinking water and their levels in the blood, hair and saliva had low correlation coefficients. It probably showed that homeostasis was maintained in the human body and other factors such as demographic or lifestyle factors were important.

  14. Water pollution in relation to mineral exploration: a case study from Alayi-Ovim area of southeastern Nigeria.

    PubMed

    Ibe, Kalu K; Akaolisa, Casmir C Zanders

    2012-05-01

    Water samples from rivers, streams, springs, and shallow wells in Alayi-Ovim area of southeast Nigeria have been analyzed for Pb, Ca, Mg, Fe, Mg, PO(4), NO(3), CO(3), SO(4), Cl, and pH. The analyses were carried out using atomic absorption spectrometer and Hach Direct Reading Equipment. Results of the analyses from the area conform to the WHO (1995) standards for drinking water. However, the results show relative enrichment of Ca, pH, Mg, CO(3), and Cl. Low values were obtained for Fe, SO(4), and NO(3). While the Cl and Pb enrichment in the area north of Alayi-Ovim axis is attributed to proximity to the lead-zinc and chloride-rich formations of the Turonian Eze-Aku and the Albian Asu River; the Ca, Mg, SO(4), and CO(3) enrichment in Southern part of Alayi-Ovim is due to the limestone-bearing Late Maastrichtian Nsukka Formation. Furthermore, the very low values of less than 5 ppm for these characters in water in the central region correlate well with the relatively clean Maastrichtian quartz arenite Ajali Sandstone Formation. The Pb-Zn and Cl incursions into the water system from the Older Albian Asu River/Turonian Eze-Aku Formations in the northern part of Alayi-Ovim area and the leaching of Mg, and Ca into the water system in the Maastrichtian limestone area in the south thus constitute geochemical indices for chemical pollution and mineral exploration for brine and dolomitic limestone in the area.

  15. Water Uptake Profile In a Model Ion-Exchange Membrane: Conditions For Water-Rich Channels

    DTIC Science & Technology

    2014-12-01

    chlorinated form at 83.9% functionalization, estimated as ρp = 1.29g/cm3. The dry polymer mass, Mp, becomes a fitting parameter. Assuming ideal mixture, φ (M...humidity measurements especially at high humidity, assumptions made in extracting the swelling width such as ideal mixing, and using the chlorinated and... ethylene -oxide) to the ends of the PVBTMA chains to make the water channel phenomenon more robust. 57 CHAPTER 6 CONCLUSION In this paper, we used

  16. Gla-rich protein is a potential new vitamin K target in cancer: evidences for a direct GRP-mineral interaction.

    PubMed

    Viegas, Carla S B; Herfs, Marjolein; Rafael, Marta S; Enriquez, José L; Teixeira, Alexandra; Luís, Inês M; van 't Hoofd, Cynthia M R; João, Alexandre; Maria, Vera L; Cavaco, Sofia; Ferreira, Ana; Serra, Manuel; Theuwissen, Elke; Vermeer, Cees; Simes, Dina C

    2014-01-01

    Gla-rich protein (GRP) was described in sturgeon as a new vitamin-K-dependent protein (VKDP) with a high density of Gla residues and associated with ectopic calcifications in humans. Although VKDPs function has been related with γ-carboxylation, the Gla status of GRP in humans is still unknown. Here, we investigated the expression of recently identified GRP spliced transcripts, the γ-carboxylation status, and its association with ectopic calcifications, in skin basal cell and breast carcinomas. GRP-F1 was identified as the predominant splice variant expressed in healthy and cancer tissues. Patterns of γ-carboxylated GRP (cGRP)/undercarboxylated GRP (ucGRP) accumulation in healthy and cancer tissues were determined by immunohistochemistry, using newly developed conformation-specific antibodies. Both GRP protein forms were found colocalized in healthy tissues, while ucGRP was the predominant form associated with tumor cells. Both cGRP and ucGRP found at sites of microcalcifications were shown to have in vitro calcium mineral-binding capacity. The decreased levels of cGRP and predominance of ucGRP in tumor cells suggest that GRP may represent a new target for the anticancer potential of vitamin K. Also, the direct interaction of cGRP and ucGRP with BCP crystals provides a possible mechanism explaining GRP association with pathological mineralization.

  17. Gla-Rich Protein Is a Potential New Vitamin K Target in Cancer: Evidences for a Direct GRP-Mineral Interaction

    PubMed Central

    Viegas, Carla S. B.; Herfs, Marjolein; Rafael, Marta S.; Enriquez, José L.; Teixeira, Alexandra; Luís, Inês M.; van ‘t Hoofd, Cynthia M. R.; João, Alexandre; Maria, Vera L.; Cavaco, Sofia; Ferreira, Ana; Serra, Manuel; Theuwissen, Elke; Vermeer, Cees; Simes, Dina C.

    2014-01-01

    Gla-rich protein (GRP) was described in sturgeon as a new vitamin-K-dependent protein (VKDP) with a high density of Gla residues and associated with ectopic calcifications in humans. Although VKDPs function has been related with γ-carboxylation, the Gla status of GRP in humans is still unknown. Here, we investigated the expression of recently identified GRP spliced transcripts, the γ-carboxylation status, and its association with ectopic calcifications, in skin basal cell and breast carcinomas. GRP-F1 was identified as the predominant splice variant expressed in healthy and cancer tissues. Patterns of γ-carboxylated GRP (cGRP)/undercarboxylated GRP (ucGRP) accumulation in healthy and cancer tissues were determined by immunohistochemistry, using newly developed conformation-specific antibodies. Both GRP protein forms were found colocalized in healthy tissues, while ucGRP was the predominant form associated with tumor cells. Both cGRP and ucGRP found at sites of microcalcifications were shown to have in vitro calcium mineral-binding capacity. The decreased levels of cGRP and predominance of ucGRP in tumor cells suggest that GRP may represent a new target for the anticancer potential of vitamin K. Also, the direct interaction of cGRP and ucGRP with BCP crystals provides a possible mechanism explaining GRP association with pathological mineralization. PMID:24949434

  18. Natural radioactivity levels in mineral, therapeutic and spring waters in Tunisia

    NASA Astrophysics Data System (ADS)

    Labidi, S.; Mahjoubi, H.; Essafi, F.; Ben Salah, R.

    2010-12-01

    Radioactivity measurements were carried out in 26 groundwater samples from Tunisia. Activity concentrations of uranium were studied by radiochemical separation procedures followed by alpha spectrometry and that for radium isotopes by gamma-ray spectrometry. The results show that, the concentrations in water samples range from 1.2 to 69 mBq/L.1, 1.3 to 153.4 mBq/L, 2.0 to 1630.0 mBq/L and 2.0 to 1032.0 mBq/L for 238U, 234U, 226Ra and 228Ra, respectively. The U and Ra activity concentrations are low and similar to those published for other regions in the world. The natural radioactivity levels in the investigated samples are generally increased from mineral waters through therapeutic to the spring waters. The results show that a correlation between total dissolved solids (TDS) values and the 226Ra concentrations was found to be high indicating that 266Ra has a high affinity towards the majority of mineral elements dissolved in these waters. High correlation coefficients were also observed between 226Ra content and chloride ions for Cl --Na + water types. This can be explained by the fact that radium forms a complex with chloride and in this form is more soluble. The isotopic ratio of 234U/ 238U and 226Ra/ 234U varies in the range from 0.8 to 2.6 and 0.6 to 360.8, respectively, in all investigated waters, which means that there is no radioactive equilibrium between the two members of the 238U series. The fractionation of isotopes of a given element may occur because of preferential leaching of one, or by the direct action of recoil during radioactive decay. The annual effective doses due to ingestion of the mineral waters have been estimated to be well below the 0.1 mSv/y reference dose level.

  19. Covariation of viral parameters with bacterial assemblage richness and diversity in the water column and sediments

    NASA Astrophysics Data System (ADS)

    Hewson, Ian; Fuhrman, Jed A.

    2007-05-01

    Viruses are hypothesized to maintain diversity in microbial assemblages by regulating the abundance of dominant competitors and thereby allowing less-dominant competitors to persist in assemblages; however, there have been few empirical data sets to support this idea. In this study, we examined the relationship between the ratio of viral abundance to bacterial abundance, viral production, and the relative richness and diversity of bacterial assemblage fingerprints, in samples taken from geographically widespread locations (North Pacific gyre, the Amazon River plume and adjacent North Atlantic gyre, Gulf of Mexico, Southern California Bight and Arafura—Coral Seas) which are oligo- to mesotrophic. Bacterial assemblage richness and diversity as measured by automated rRNA intergenic spacer (ARISA) fingerprinting were significantly and positively correlated with the ratio of virus abundance to bacteria abundance (VBR) and to the rate of virus production only in the oligotrophic North Pacific gyre. ARISA fingerprint richness/diversity were not significantly correlated to viral parameters when assessed across all samples in surface waters, suggesting there is not a singular global quantitative relationship between viral pressure and host diversity within well evolved host/virus systems in different geographic locations in plankton. In sediments off Southern California, viral parameters significantly and negatively correlated with ARISA diversity, suggesting strong viral interactions in this habitat. To examine covariation of viral parameters and the relative abundance and diversity of rarer bacterial taxa (i.e., less-dominant competitor), the richness and diversity of diazotroph communities was measured using terminal restriction fragment length polymorphism (TRFLP) of a portion ( nifH) of the nitrogenase gene. The richness and diversity of diazotrophic communities were significantly and negatively correlated with viral parameters across all locations. Since diazotrophs

  20. Measurement of natural radionuclides in Malaysian bottled mineral water and consequent health risk estimation

    SciTech Connect

    Priharti, W.; Samat, S. B.; Yasir, M. S.

    2015-09-25

    The radionuclides of {sup 226}Ra, {sup 232}Th and {sup 40}K were measured in ten mineral water samples, of which from the radioactivity obtained, the ingestion doses for infants, children and adults were calculated and the cancer risk for the adult was estimated. Results showed that the calculated ingestion doses for the three age categories are much lower than the average worldwide ingestion exposure of 0.29 mSv/y and the estimated cancer risk is much lower than the cancer risk of 8.40 × 10{sup −3} (estimated from the total natural radiation dose of 2.40 mSv/y). The present study concludes that the bottled mineral water produced in Malaysia is safe for daily human consumption.

  1. Measurement of natural radionuclides in Malaysian bottled mineral water and consequent health risk estimation

    NASA Astrophysics Data System (ADS)

    Priharti, W.; Samat, S. B.; Yasir, M. S.

    2015-09-01

    The radionuclides of 226Ra, 232Th and 40K were measured in ten mineral water samples, of which from the radioactivity obtained, the ingestion doses for infants, children and adults were calculated and the cancer risk for the adult was estimated. Results showed that the calculated ingestion doses for the three age categories are much lower than the average worldwide ingestion exposure of 0.29 mSv/y and the estimated cancer risk is much lower than the cancer risk of 8.40 × 10-3 (estimated from the total natural radiation dose of 2.40 mSv/y). The present study concludes that the bottled mineral water produced in Malaysia is safe for daily human consumption.

  2. Heterogeneous Reactions of Limonene on Mineral Dust: Impacts of Adsorbed Water and Nitric Acid.

    PubMed

    Lederer, Madeline R; Staniec, Allison R; Coates Fuentes, Zoe L; Van Ry, Daryl A; Hinrichs, Ryan Z

    2016-12-08

    Biogenic volatile organic compounds (BVOCs), including the monoterpene limonene, are a major source of secondary organic aerosol (SOA). While gas-phase oxidation initiates the dominant pathway for BVOC conversion to SOA, recent studies have demonstrated that biogenic hydrocarbons can also directly react with acidic droplets. To investigate whether mineral dust may facilitate similar reactive uptake of biogenic hydrocarbons, we studied the heterogeneous reaction of limonene with mineral substrates using condensed-phase infrared spectroscopy and identified the formation of irreversibly adsorbed organic products. For kaolinite, Arizona Test Dust, and silica at 30% relative humidity, GC-MS identified limonene-1,2-diol as the dominant product with total organic surface concentrations on the order of (3-5) × 10(18) molecules m(-2). Experiments with (18)O-labeled water support a mechanism initiated by oxidation of limonene by surface redox sites forming limonene oxide followed by water addition to the epoxide to form limonenediol. Limonene uptake on α-alumina, γ-alumina, and montmorillonite formed additional products in high yield, including carveol, carvone, limonene oxide, and α-terpineol. To model tropospheric processing of mineral aerosol, we also exposed each mineral substrate to gaseous nitric acid prior to limonene uptake and identified similar surface adsorbed products that were formed at rates 2 to 5 times faster than without nitrate coatings. The initial rate of reaction was linearly dependent on gaseous limonene concentration between 5 × 10(12) and 5 × 10(14) molecules cm(-3) (0.22-20.5 ppm) consistent with an Eley-Rideal-type mechanism in which gaseous limonene reacts directly with reactive surface sites. Increasing relative humidity decreased the amount of surface adsorbed products indicating competitive adsorption of surface adsorbed water. Using a laminar flow tube reactor we measured the uptake coefficient for limonene on kaolinite at 25% RH to range

  3. Self-propagating high-temperature synthesis of Ce-bearing zirconolite-rich minerals using Ca(NO3)2 as the oxidant

    NASA Astrophysics Data System (ADS)

    Zhang, Kuibao; Wen, Guanjun; Yin, Dan; Zhang, Haibin

    2015-12-01

    Synroc is recognized as the second generation waste form for the immobilization of high-level radioactive waste (HLW). Zirconolite-rich (CaZrTi2O7) Synroc minerals were attempted by self-propagating high-temperature synthesis (SHS) using Fe2O3, CrO3, Ca(NO3)2 as the oxidants and Ti as the reductant. All designed reactions were ignited and sustained using Ca(NO3)2 as the oxidant, and zirconolite-rich ceramic matrices were successfully prepared with pyrochlore (Ca2Ti2O6), perovskite (CaTiO3) and rutile (TiO2) as the minor phases. The sample CN-4, which was designed using Ca(NO3)2 as the oxidant with TiO2/Ti ratio of 7:9, was readily solidified with density of 4.62 g/cm3 and Vickers hardness of 1052 HV. CeO2 was successfully stabilized by the CN-4 sample with resultant phase constituent of 2M-CaZrTi2O7 and CaTiO3.

  4. Determination of dimethyl selenide and dimethyl sulphide compounds causing off-flavours in bottled mineral waters.

    PubMed

    Guadayol, Marta; Cortina, Montserrat; Guadayol, Josep M; Caixach, Josep

    2016-04-01

    Sales of bottled drinking water have shown a large growth during the last two decades due to the general belief that this kind of water is healthier, its flavour is better and its consumption risk is lower than that of tap water. Due to the previous points, consumers are more demanding with bottled mineral water, especially when dealing with its organoleptic properties, like taste and odour. This work studies the compounds that can generate obnoxious smells, and that consumers have described like swampy, rotten eggs, sulphurous, cooked vegetable or cabbage. Closed loop stripping analysis (CLSA) has been used as a pre-concentration method for the analysis of off-flavour compounds in water followed by identification and quantification by means of GC-MS. Several bottled water with the aforementioned smells showed the presence of volatile dimethyl selenides and dimethyl sulphides, whose concentrations ranged, respectively, from 4 to 20 ng/L and from 1 to 63 ng/L. The low odour threshold concentrations (OTCs) of both organic selenide and sulphide derivatives prove that several objectionable odours in bottled waters arise from them. Microbial loads inherent to water sources, along with some critical conditions in water processing, could contribute to the formation of these compounds. There are few studies about volatile organic compounds in bottled drinking water and, at the best of our knowledge, this is the first study reporting the presence of dimethyl selenides and dimethyl sulphides causing odour problems in bottled waters. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Concentration of Ra-226 in Malaysian Drinking and Bottled Mineral Water

    SciTech Connect

    Amin, Y. B. Mohd; Jemangin, M. H.; Mahat, R. H.

    2010-07-07

    The concentration of the radionuclide {sup 226}Ra was determined in the drinking water which was taken from various sources. It was found that the concentration varies from non-detectable (ND) to highest value of 0.30 Bq per liter. The concentration was found to be high in mineral water as compare with surface water such as domestic pipe water. Some of these values have exceeded the EPA (Environmental Protection Agency) of America regulations. The activity concentrations obtained are compared with data from other countries. The estimated annual effective doses from drinking the water are determined. The values obtained range from 0.02 mSv to about 0.06 mSv per year.

  6. Concentration of Ra-226 in Malaysian Drinking and Bottled Mineral Water

    NASA Astrophysics Data System (ADS)

    Amin, Y. B. Mohd; Jemangin, M. H.; Mahat, R. H.

    2010-07-01

    The concentration of the radionuclide 226Ra was determined in the drinking water which was taken from various sources. It was found that the concentration varies from non-detectable (ND) to highest value of 0.30 Bq per liter. The concentration was found to be high in mineral water as compare with surface water such as domestic pipe water. Some of these values have exceeded the EPA (Environmental Protection Agency) of America regulations. The activity concentrations obtained are compared with data from other countries. The estimated annual effective doses from drinking the water are determined. The values obtained range from 0.02 mSv to about 0.06 mSv per year.

  7. (222)Rn, (220)Rn and other dissolved gases in mineral waters of southeast Brazil.

    PubMed

    Bonotto, Daniel Marcos

    2014-06-01

    This paper describes the natural radioactivity due to (222)Rn and (220)Rn in mineral waters occurring at São Paulo and Minas Gerais states, Brazil, that are extensively used for drinking in public places, bottling and bathing purposes, among other. The measurements of these alpha-emitting radionuclides were also accompanied by the monitoring of temperature and some dissolved gases (O2, CO2 and H2S) in 75 water sources located in 14 municipalities of those states. Eight water sources yielded (220)Rn activity concentration values below the detection limit of 4 mBq/L. On other hand, (222)Rn activity concentration values exceeding the WHO guidance level of 100 Bq/L in drinking-water for public water supplies were found in two springs, named Villela and Dona Beja, whose discharge occurs in areas characterized by the presence of enhanced levels of natural radioelements in rocks. The obtained results were compared with the guidelines of the Brazilian Code of Mineral Waters (BCMW) that was established in 1945 and is still in force in the country. The (222)Rn and (220)Rn activity concentration data allowed perform dose radiation calculations based on the potential alpha energy concentration (PAEC), whose implications for health risk have been also considered in this paper. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. [Criteria for the evaluation of hygienic and microbiologic characteristics of mineral waters].

    PubMed

    Leclerc, H

    1976-01-01

    The appraisement of mineral waters microbial quality is closely depending of their definition: waters endowed with therapeutic properties, strongly mineralised waters, etc. In the beginning mineral water is exceptionally infected by dangerous germs tought it contain a regular load of some saprophytic microorganisms. Indeed, exploitation licences are reserved to geologically perfectly protected strata. On the other hand, there are contaminations which are due, most commonly, to the bottling procedures: packings, work-rooms atmospheres, staff, etc. This being so, evaluation tests must be largely extended with regard to those of feed water. We can distinguish between some bound to perfectly known real risks and some referred to more hypothetical and more suggested dangers. The first ones protect from fecal contaminations (Salmonella, coliforms, fecal Streptococci, sulphite-reducing Clostridium, fecal bacteriophages) and from cutaneous and mucous contaminations (pathogenic Staphylococci, Pseudomonas aeruginosa). They must be supervised with the most extreme severity. The second ones are concerned with saprophytic oligotrophic germs. At the present time, their incidence on public health cannot be discussed on serious foundations. It is the same for amoebae's presence which seems frequent in all kinds of waters. These problems must form the subject of thorough researchers.

  9. Influence of minerals on the taste of bottled and tap water: a chemometric approach.

    PubMed

    Platikanov, Stefan; Garcia, Veronica; Fonseca, Ignacio; Rullán, Elena; Devesa, Ricard; Tauler, Roma

    2013-02-01

    Chemometric analysis was performed on two sets of sensory data obtained from two separate studies. Twenty commercially-available bottled mineral water samples (from the first study) and twenty-five drinking tap and bottled water samples (from the second study) were blind tasted by trained panelists. The panelists expressed their overall liking of the water samples by rating from 0 (worst flavor) to 10 (best flavor). The mean overall score was compared to the physicochemical properties of the samples. Thirteen different physicochemical parameters were considered in both studies and, additionally, residual chlorine levels were assessed in the second study. Principal component analysis performed on the physicochemical parameters and the panelists' mean scores generated models that explain most of the total data variance. Moreover, partial least squares regression of the panelists' sensory evaluations of the physicochemical data helped elucidate the main features underlying the panelists' ratings. The preferred bottled and tap water samples were associated with moderate (relatively to the parameters mean values) contents of total dissolved solids and with relatively high concentrations of HCO₃⁻, SO₄²⁻, Ca²⁺ and Mg²⁺ as well as with relatively high pH values. High concentrations of Na⁺, K⁺ and Cl⁻ were scored low by many of the panelists, while residual chlorine did not affect the ratings, but did enable the panel to distinguish between bottled mineral water and tap water samples. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Methyl t-Butyl Ether Mineralization in Surface-Water Sediment Microcosms under Denitrifying Conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2001-01-01

    Mineralization of [U-14C] methyl t-butyl ether (MTBE) to 14CO2 without accumulation of t-butyl alcohol (TBA) was observed in surface-water sediment microcosms under denitrifying conditions. Methanogenic activity and limited transformation of MTBE to TBA were observed in the absence of denitrification. Results indicate that bed sediment microorganisms can effectively degrade MTBE to nontoxic products under denitrifying conditions.

  11. The prediction of borate mineral equilibria in natural waters: Application to Searles Lake, California

    NASA Astrophysics Data System (ADS)

    Felmy, Andrew R.; Weare, John H.

    1986-12-01

    The chemical equilibrium model of HARVIEet al. (1984) has been extended to include borate species. The model is based upon the semi-empirical equations of PITZER (1973) and coworkers and is valid to high ionic strength (≈14 m) and high borate concentration. Excellent agreement with the existing emf, isopiestic and solubility data in the system (Na-K-Ca-Mg-H-Cl-SO4-CO2-B(OH)4-H2O) is obtained. Calculated mineral solubilities are in general within 10% of their experimental values, even at high ionic strengths. The model was applied to the multicomponent, high ionic strength (I ~ 10) and high borate concentration (BT ~ 0.5 m) Searles Lake evaporite deposit. Utilizing the chemical composition of the interstitial brine, the model predicts equilibrium between the brine and only those minerals which are known to be in contact with the brine. These calculations clearly demonstrate the applicability of the model to high ionic strength, high borate concentration natural waters. The model was also utilized to calculate the mineral sequences which should result from evaporation of the major source of water for Searles Lake, the Owens River. The geochemical conditions necessary for the formation of the most recent mud and saline units are examined. The final results indicate that the mineral sequences found in the most recent saline unit in Searles Lake can be produced by evaporation of a water close in composition to present Owens River water, provided primary dolomite formation is delayed and back reaction between the Parting Mud and the Upper Salt is inhibited.

  12. A graphitic edge plane rich meso-porous carbon anode for alkaline water electrolysis.

    PubMed

    Shin, Dongyoon; Choun, Myounghoon; Ham, Hyung Chul; Lee, Jae Kwang; Lee, Jaeyoung

    2017-08-23

    There is growing interest in alkaline water electrolysis as a sustainable approach for producing hydrogen, but developing efficient and inexpensive catalysts for the oxygen evolution reaction, which can limit the operational efficiency of water electrolysis due to its considerable overpotential, is regarded as the most overriding challenge. Therefore, significant progress has been made in developing catalysts with transition metal and carbon materials as alternative catalysts. Here, we prepared cobalt containing carbon nanofibers via a facile route of electrospinning and pyrolysis, and metal leached carbon nanofibers were also prepared by subsequently leaching the metal. Despite metal leaching, the latter ones still show comparable activity and stability with iridium black in alkaline water electrolysis. After detailed physicochemical and electrochemical characterizations, we revealed that graphitic edge plane rich carbon is mainly responsible for the activity of our material rather than embedded metal species. In addition, the metal plays a role in forming the specific carbon structure along with improving graphitization based on the catalytic graphitization. This result indicates the importance of the graphitic edge plane and might be helpful to understand carbon anodes for alkaline water electrolysis.

  13. Evaporative Evolution of Carbonate-Rich Brines from Synthetic Topopah Spring Tuff Pore Water, Yucca Mountain

    SciTech Connect

    Sutton, M; Alai, M; Carroll, S A

    2004-04-14

    The evaporation of a range of synthetic pore water solutions representative of the potential high-level-nuclear-waste repository at Yucca Mountain, NV is being investigated. The motivation of this work is to understand and predict the range of brine compositions that may contact the waste containers from evaporation of pore waters, because these brines could form corrosive thin films on the containers and impact their long-term integrity. A relatively complex synthetic Topopah Spring Tuff pore water was progressively concentrated by evaporation in a closed vessel, heated to 95 C in a series of sequential experiments. Periodic samples of the evaporating solution were taken to determine the evolving water chemistry. According to chemical divide theory at 25 C and 95 C our starting solution should evolve towards a high pH carbonate brine. Results at 95 C show that this solution evolves towards a complex brine that contains about 99 mol% Na{sup +} for the cations, and 71 mol% Cl{sup -}, 18 mol% {Sigma}CO{sub 2}(aq), 9 mol%SO{sub 4}{sup 2-} for the anions. Initial modeling of the evaporating solution indicates precipitation of aragonite, halite, silica, sulfate and fluoride phases. The experiments have been used to benchmark the use of the EQ3/6 geochemical code in predicting the evolution of carbonate-rich brines during evaporation.

  14. Naturally occurring radionuclides in food and drinking water from a thorium-rich area.

    PubMed

    da Costa Lauria, Dejanira; Rochedo, Elaine R R; Godoy, Maria Luisa D P; Santos, Eliane E; Hacon, Sandra S

    2012-11-01

    This paper focuses on a survey of uranium and thorium decay chain radionuclides in food and drinking water from the thorium-rich (monazite-bearing) region of Buena, which is located in the state of Rio de Janeiro, Brazil. The radionuclide concentration values in the food and drinking water from Buena reached values higher than 100-fold the international reference values. The daily intake of radionuclides by the local population is similar to that of another high background radiation area in Brazil, but the intake is higher than that of residents from a normal background radiation area. Approximately 58 % of the food consumed by Buena inhabitants is produced locally. Based on that figure, locally produced food and the dilution of total radionuclides in the diet of residents caused by food importation are both highly relevant to a population's intake of radionuclides. The concentration values for (210)Pb and the radium isotopes in drinking water from Buena are among the highest values to be reported in the literature. (228)Ra is the most important radionuclide ingested with both food and water among the inhabitants of Buena.

  15. [Bacteriological variations in a medio-mineral water bottled in polyethylene terephthalate containers].

    PubMed

    De Fusco, R; Biscardi, D; Mazzacca, F R

    1989-01-01

    Containers made with PET (Polyethylene-terephthalate) are currently more and more employed in packing industry, particularly for the storage of mineral waters. The increasing utilization of such containers is due to the intrinsic properties of this polymer, which was shown particularly suitable for making bottles devoted to the storage of gassed drinks. The resistance of the PET to high pressure, hits by falls and top-to-down loads indeed makes PET bottles unbreakable; their gas-tightness warrants a good gas maintenance during the storage period; the high transparency of the PET allows a good vision of the contents; the light weight of the bottles and the low temperatures required for their production allow a remarkable saving of energy; lastly PET bottles can easily be recycled. Previous microbiological investigations carried out on several mineral waters bottled in glass bottles and non-PET plastic (i.e. PVC) bottles, had shown higher microbial counts in the water samples stored in plastic bottles. In the present work we have studied the growth rates of the bacterial flora in a sample of non gassed medio-mineral water stored in PET bottles, with respect to a control of the same kind of water, stored in glass bottles. Before using, both PET and glass bottles were washed with 5% Desogen, and sterilized by 100 vol. hydrogen peroxide. After the appropriate sterility checks, the bottles were filled directly from the spring with a non gassed medio-mineral water, and then subdivided into four groups, each consisting of the same number of bottles. A the time of bottling, a bacterial count on such water samples at 20 degrees C and 37 degrees C was performed, in order to establish the "zero" value. One of the two groups of PET bottles, and one of the two groups of glass bottles were stored in the darkness, while the other two groups were stored in the light. Afterwards, one bottle from each group was drawn once a week over one year, in order to measure the bacterial

  16. Remediation of nutrient-rich waters using the terrestrial plant, Pandanus amaryllifolius Roxb.

    PubMed

    Han, Ping; Kumar, Prakash; Ong, Bee-Lian

    2014-02-01

    Effective control of eutrophication is generally established through the reduction of nutrient loading into waterways and water bodies. An economically viable and ecologically sustainable approach to nutrient pollution control could involve the integration of retention ponds, wetlands and greenways into water management systems. Plants not only play an invaluable role in the assimilation and removal of nutrients, but they also support fauna richness and can be aesthetically pleasing. Pandanus amaryllifolius, a tropical terrestrial plant, was found to establish well in hydrophytic conditions and was highly effective in remediating high nutrient levels in an aquatic environment showing 100% removal of NO3(-)-N up to 200 mg/L in 14 days. Phosphate uptake by the plant was less efficient with 64% of the PO4(-)-P removed at the maximum concentration of 100 mg/L at the end of 6 weeks. With its high NO3(-)-N and PO4(3-)-P removal efficiency, P. amaryllifolius depleted the nutrient-rich media and markedly contained the natural colonization of algae. The impediment of algal growth led to improvements in the water quality with significant decreases in turbidity, pH and electrical conductivity. In addition, the plants did not show stress symptoms when grown in high nutrient levels as shown by the changes in their biomass, total soluble proteins and chlorophyll accumulation as well as photochemical efficiency. Thus, P. amaryllifolius is a potential candidate for the mitigation of nutrient pollution in phytoremediation systems in the tropics as the plant requires low maintenance, is tolerant to the natural variability of weather conditions and fluctuating hydro-periods, and exhibit good nutrient removal capabilities.

  17. Fission track studies on some minerals and water of the north-east India

    NASA Astrophysics Data System (ADS)

    Singh, Thoudam Nandababu

    The present work is aimed at the geochronological investigations of the minerals of some granitic rocks and estimation of uranium contents in minerals, rocks and water of some parts of the North-East India with the help of fission track (FT) technique. The study includes FT dating of minerals from granites of four different plutons and from pegmatites of two different regions of Meghalaya, annealing studies of the minerals including the correction of the observed mineral ages and calculation of the cooling and uplift rates of the rocks. Precision on the errors of the mineral ages has also been studied in detail in the present work. The experiment was carried out at the Research laboratories of the Physics and the Geology Departments, Gauhati University, Assam, India during 1981-1984. Experimental results show four different age groups of the minerals which would reflect meaningful geological events in the history of these rocks. Sphenes of the Nartiang and Dawki granites record the highest FT ages ~ 1120 m.y. which may be linked with a major plutonic event. Muscovites of the Nartiang and Jowai pegmatites measure ages ~ 690 m.y. which may correspond to the time of emplacements of these pegmatites. Apatites of the Nartiang granites show FT ages ~ 470 m.y. which falls within the period of Indian Ocean cycle event. But, apatites of the Jowai, Pynursla and Dawki granites record the youngest ages ~ 90 m.y. which lies within the period of extrusion of cretaceous lavas (Sylhet traps). Apatite age of the Nartiang granite and muscovite ages of the Nartiang and Jowai pegmatites were corrected to ~ 510 m.y., ~ 743 m.y. and ~ 741 m.y. respectively by applying the plateau method of age correction. However, insignificant corrections were found in the sphene ages of the Nartiang and Dawki granites and apatite ages of the Jowai and Dawki granites. An interesting finding of the present work is the wide discrepancy between the apatite ages ~ 90 m.y. (Cretaceous) of Jowai, Pynursla

  18. Mineralizing urban net-zero water treatment: Phase II field results and design recommendations.

    PubMed

    Gassie, Lucien W; Englehardt, James D; Wang, Jian; Brinkman, Nichole; Garland, Jay; Gardinali, Piero; Guo, Tianjiao

    2016-11-15

    Net-zero water (NZW) systems, or water management systems achieving high recycling rates and low residuals generation so as to avoid water import and export, can also conserve energy used to heat and convey water, while economically restoring local eco-hydrology. However, design and operating experience are extremely limited. The objective of this paper is to present the results of the second phase of operation of an advanced oxidation-based NZW pilot system designed, constructed, and operated for a period of two years, serving an occupied four-person apartment. System water was monitored, either continuously or thrice daily, for routine water quality parameters, minerals, and MicroTox(®) in-vitro toxicity, and intermittently for somatic and male-specific coliphage, adenovirus, Cryptosporidium, Giardia, emerging organic constituents (non-quantitative), and the Florida drinking water standards. All 115 drinking water standards with the exception of bromate were met in this phase. Neither virus nor protozoa were detected in the treated water, with the exception of measurement of adenovirus genome copies attributed to accumulation of inactive genetic material in hydraulic dead zones. Chemical oxygen demand was mineralized to <0.7 mg/L, and all but six of 1006 emerging organic constituents analyzed were either undetected or removed >90% in treatment. Total dissolved solids were maintained at ∼500 mg/L at steady state, partially through aerated aluminum electrocoagulation. Bromate accumulation is projected to be controlled by aluminum electrocoagulation with separate disposal of backwash water. Further development of such systems and their automated/remote process control systems is recommended. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Efficient artificial mineralization route to decontaminate Arsenic(III) polluted water - the Tooeleite Way

    NASA Astrophysics Data System (ADS)

    Malakar, Arindam; Das, Bidisa; Islam, Samirul; Meneghini, Carlo; de Giudici, Giovanni; Merlini, Marco; Kolen'Ko, Yury V.; Iadecola, Antonella; Aquilanti, Giuliana; Acharya, Somobrata; Ray, Sugata

    2016-05-01

    Increasing exposure to arsenic (As) contaminated ground water is a great threat to humanity. Suitable technology for As immobilization and removal from water, especially for As(III) than As(V), is not available yet. However, it is known that As(III) is more toxic than As(V) and most groundwater aquifers, particularly the Gangetic basin in India, is alarmingly contaminated with it. In search of a viable solution here, we took a cue from the natural mineralization of Tooeleite, a mineral containing Fe(III) and As(III)ions, grown under acidic condition, in presence of SO42- ions. Complying to this natural process, we could grow and separate Tooeleite-like templates from Fe(III) and As(III) containing water at overall circumneutral pH and in absence of SO42- ions by using highly polar Zn-only ends of wurtzite ZnS nanorods as insoluble nano-acidic-surfaces. The central idea here is to exploit these insoluble nano-acidic-surfaces (called as INAS in the manuscript) as nucleation centres for Tooeleite growth while keeping the overall pH of the aqueous media neutral. Therefore, we propose a novel method of artificial mineralization of As(III) by mimicking a natural process at nanoscale.

  20. Efficient artificial mineralization route to decontaminate Arsenic(III) polluted water - the Tooeleite Way

    PubMed Central

    Malakar, Arindam; Das, Bidisa; Islam, Samirul; Meneghini, Carlo; De Giudici, Giovanni; Merlini, Marco; Kolen’ko, Yury V.; Iadecola, Antonella; Aquilanti, Giuliana; Acharya, Somobrata; Ray, Sugata

    2016-01-01

    Increasing exposure to arsenic (As) contaminated ground water is a great threat to humanity. Suitable technology for As immobilization and removal from water, especially for As(III) than As(V), is not available yet. However, it is known that As(III) is more toxic than As(V) and most groundwater aquifers, particularly the Gangetic basin in India, is alarmingly contaminated with it. In search of a viable solution here, we took a cue from the natural mineralization of Tooeleite, a mineral containing Fe(III) and As(III)ions, grown under acidic condition, in presence of SO42− ions. Complying to this natural process, we could grow and separate Tooeleite-like templates from Fe(III) and As(III) containing water at overall circumneutral pH and in absence of SO42− ions by using highly polar Zn-only ends of wurtzite ZnS nanorods as insoluble nano-acidic-surfaces. The central idea here is to exploit these insoluble nano-acidic-surfaces (called as INAS in the manuscript) as nucleation centres for Tooeleite growth while keeping the overall pH of the aqueous media neutral. Therefore, we propose a novel method of artificial mineralization of As(III) by mimicking a natural process at nanoscale. PMID:27189251