Sample records for mini ball grid

  1. Lateral forces exerted through ball or bar attachments in relation to the inclination of mini-implant underneath overdentures: in vitro study.

    PubMed

    Takagaki, Kyozo; Gonda, Tomoya; Maeda, Yoshinobu

    2015-09-01

    Lateral force to mini-implants should be avoided because mini-implants are weak mechanically because of its small diameter. Overdentures retained by mini-implants are usually formed using ball attachments. However, bar attachments can offer the advantage of splinting the mini-implants. This study examined the effect of attachments in withstanding these lateral forces in tilted mini-implants of overdentures. Strain gauges were attached to the mini-implants (2.5 × 18 mm) embedded in an acrylic resin block. Two mini-implants were inserted vertically (Control) or with one mini-implant inclined at 10° or 20° (10-inclined and 20-inclined, respectively). The female portions of the attachments were secured to the denture base. A prefabricated ball attachment and CAD/CAM-fabricated bar attachment were compared. A vertical load of 49 N was applied to the occlusal surface at a distance 10 mm away from the center of two mini-implants. The lateral force borne by the mini-implants was measured via the attached strain gauge. Mann-Whitney U-test and an analysis of Bonferroni correction were used to compare differences between the two attachments and among the three models (P < 0.05). The lateral force exerted to the inclined mini-implant was significantly greater than that borne by a vertical mini-implant for both attachment types. The lateral force on the 20° inclined mini-implants with bar attachments was smaller than that on mini-implants with ball attachments. Inclined mini-implants are subjected to greater stresses than vertical ones, and a bar attachment can reduce the lateral forces borne by the mini-implant when one mini-implant inclined at 20°. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. NREL: International Activities - Country Programs

    Science.gov Websites

    for use of mini-grid quality assurance and design standards and advising on mini-grid business models communities of practice and technical collaboration across countries on mini-grid development, modeling and interconnection standards and procedures, and with strengthening mini-grids and energy access programs. NREL is

  3. NREL Partnership Develops Off-Grid Energy Access through Quality Assurance

    Science.gov Websites

    Framework for Mini-Grids | Integrated Energy Solutions | NREL Partnership Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL Partnership Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL has teamed with the Global Lighting

  4. Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harper, Meg

    This review provides an overview of strategies and currently available technologies used for demandside management (DSM) on mini-grids throughout the world. For the purposes of this review, mini-grids are defined as village-scale electricity distribution systems powered by small local generation sources and not connected to a main grid.1 Mini-grids range in size from less than 1 kW to several hundred kW of installed generation capacity and may utilize different generation technologies, such as micro-hydro, biomass gasification, solar, wind, diesel generators, or a hybrid combination of any of these. This review will primarily refer to AC mini-grids, though much of themore » discussion could apply to DC grids as well. Many mini-grids include energy storage, though some rely solely on real-time generation.« less

  5. Partners | Integrated Energy Solutions | NREL

    Science.gov Websites

    Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL has teamed with the Africa to develop a Quality Assurance Framework for isolated mini-grids. NREL Enhances Energy Resiliency Partnership Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL has teamed

  6. Quality Assurance Framework for Mini-Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esterly, Sean; Baring-Gould, Ian; Booth, Samuel

    To address the root challenges of providing quality power to remote consumers through financially viable mini-grids, the Global Lighting and Energy Access Partnership (Global LEAP) initiative of the Clean Energy Ministerial and the U.S. Department of Energy teamed with the National Renewable Energy Laboratory (NREL) and Power Africa to develop a Quality Assurance Framework (QAF) for isolated mini-grids. The framework addresses both alternating current (AC) and direct current (DC) mini-grids, and is applicable to renewable, fossil-fuel, and hybrid systems.

  7. Sean Esterly | NREL

    Science.gov Websites

    , micro and mini-grid policies and regulations, and international clean energy policy analysis. He has technologies, such as micro- and mini-grids. Strategic energy planning, focusing on both renewable and energy Considerations and Good Practices, NREL Technical Report (2015) Quality Assurance Framework for Mini-Grids, NREL

  8. Ceramic ball grid array package stress analysis

    NASA Astrophysics Data System (ADS)

    Badri, S. H. B. S.; Aziz, M. H. A.; Ong, N. R.; Sauli, Z.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    The ball grid array (BGA), a form of chip scale package (CSP), was developed as one of the most advanced surface mount devices, which may be assembled by an ordinary surface ball bumps are used instead of plated nickel and gold (Ni/Au) bumps. Assembly and reliability of the BGA's printed circuit board (PCB), which is soldered by conventional surface mount technology is considered in this study. The Ceramic Ball Grid Array (CBGA) is a rectangular ceramic package or square-shaped that will use the solder ball for external electrical connections instead of leads or wire for connections. The solder balls will be arranged in an array or grid at the bottom of the ceramic package body. In this study, ANSYS software is used to investigate the stress on the package for 2 balls and 4 balls of the CBGA package with the various force range of 1-3 Newton applied to the top of the die, top of the substrate and side of the substrate. The highest maximum stress was analyzed and the maximum equivalent stress was observed on the solder ball and the die. From the simulation result, the CBGA package with less solder balls experience higher stress compared to the package with many solder balls. Therefore, less number of solder ball on the CBGA package results higher stress and critically affect the reliability of the solder balls itself, substrate and die which can lead to the solder crack and also die crack.

  9. Quality Assurance Framework for Mini-Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baring-Gould, Ian; Burman, Kari; Singh, Mohit

    Providing clean and affordable energy services to the more than 1 billion people globally who lack access to electricity is a critical driver for poverty reduction, economic development, improved health, and social outcomes. More than 84% of populations without electricity are located in rural areas where traditional grid extension may not be cost-effective; therefore, distributed energy solutions such as mini-grids are critical. To address some of the root challenges of providing safe, quality, and financially viable mini-grid power systems to remote customers, the U.S. Department of Energy (DOE) teamed with the National Renewable Energy Laboratory (NREL) to develop a Qualitymore » Assurance Framework (QAF) for isolated mini-grids. The QAF for mini-grids aims to address some root challenges of providing safe, quality, and affordable power to remote customers via financially viable mini-grids through two key components: (1) Levels of service: Defines a standard set of tiers of end-user service and links them to technical parameters of power quality, power availability, and power reliability. These levels of service span the entire energy ladder, from basic energy service to high-quality, high-reliability, and high-availability service (often considered 'grid parity'); (2) Accountability and performance reporting framework: Provides a clear process of validating power delivery by providing trusted information to customers, funders, and/or regulators. The performance reporting protocol can also serve as a robust monitoring and evaluation tool for mini-grid operators and funding organizations. The QAF will provide a flexible alternative to rigid top-down standards for mini-grids in energy access contexts, outlining tiers of end-user service and linking them to relevant technical parameters. In addition, data generated through implementation of the QAF will provide the foundation for comparisons across projects, assessment of impacts, and greater confidence that will drive investment and scale-up in this sector. The QAF implementation process also defines a set of implementation guidelines that help the deployment of mini-grids on a regional or national scale, helping to insure successful rapid deployment of these relatively new remote energy options. Note that the QAF is technology agnostic, addressing both alternating current (AC) and direct current (DC) mini-grids, and is also applicable to renewable, fossil-fuel, and hybrid systems.« less

  10. A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greacen, Chris; Engel, Richard; Quetchenbach, Thomas

    A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW is intended to help meet the widespread need for guidance, standards, and procedures for interconnecting mini-grids with the central electric grid as rural electrification advances in developing countries, bringing these once separate power systems together. The guidebook aims to help owners and operators of renewable energy mini-grids understand the technical options available, safety and reliability issues, and engineering and administrative costs of different choices for grid interconnection. The guidebook is intentionally brief but includes a number of appendices that point the reader to additionalmore » resources for indepth information. Not included in the scope of the guidebook are policy concerns about “who pays for what,” how tariffs should be set, or other financial issues that are also paramount when “the little grid connects to the big grid.”« less

  11. Silicon ball grid array chip carrier

    DOEpatents

    Palmer, David W.; Gassman, Richard A.; Chu, Dahwey

    2000-01-01

    A ball-grid-array integrated circuit (IC) chip carrier formed from a silicon substrate is disclosed. The silicon ball-grid-array chip carrier is of particular use with ICs having peripheral bond pads which can be reconfigured to a ball-grid-array. The use of a semiconductor substrate such as silicon for forming the ball-grid-array chip carrier allows the chip carrier to be fabricated on an IC process line with, at least in part, standard IC processes. Additionally, the silicon chip carrier can include components such as transistors, resistors, capacitors, inductors and sensors to form a "smart" chip carrier which can provide added functionality and testability to one or more ICs mounted on the chip carrier. Types of functionality that can be provided on the "smart" chip carrier include boundary-scan cells, built-in test structures, signal conditioning circuitry, power conditioning circuitry, and a reconfiguration capability. The "smart" chip carrier can also be used to form specialized or application-specific ICs (ASICs) from conventional ICs. Types of sensors that can be included on the silicon ball-grid-array chip carrier include temperature sensors, pressure sensors, stress sensors, inertia or acceleration sensors, and/or chemical sensors. These sensors can be fabricated by IC processes and can include microelectromechanical (MEM) devices.

  12. Method and apparatus for jetting, manufacturing and attaching uniform solder balls

    DOEpatents

    Yost, F.G.; Frear, D.R.; Schmale, D.T.

    1999-01-05

    An apparatus and process are disclosed for jetting molten solder in the form of balls directly onto all the metallized interconnects lands for a ball grid array package in one step with no solder paste required. Molten solder is jetted out of a grid of holes using a piston attached to a piezoelectric crystal. When voltage is applied to the crystal it expands forcing the piston to extrude a desired volume of solder through holes in the aperture plate. When the voltage is decreased the piston reverses motion creating an instability in the molten solder at the aperture plate surface and thereby forming spherical solder balls that fall onto a metallized substrate. The molten solder balls land on the substrate and form a metallurgical bond with the metallized lands. The size of the solder balls is determined by a combination of the size of the holes in the aperture plate, the duration of the piston pulse, and the displacement of the piston. The layout of the balls is dictated by the location of the hooks in the grid. Changes in ball size and layout can be easily accomplished by changing the grid plate. This invention also allows simple preparation of uniform balls for subsequent supply to BGA users. 7 figs.

  13. Method and apparatus for jetting, manufacturing and attaching uniform solder balls

    DOEpatents

    Yost, Frederick G.; Frear, Darrel R.; Schmale, David T.

    1999-01-01

    An apparatus and process for jetting molten solder in the form of balls directly onto all the metallized interconnects lands for a ball grid array package in one step with no solder paste required. Molten solder is jetted out of a grid of holes using a piston attached to a piezoelectric crystal. When voltage is applied to the crystal it expands forcing the piston to extrude a desired volume of solder through holes in the aperture plate. When the voltage is decreased the piston reverses motion creating an instability in the molten solder at the aperture plate surface and thereby forming spherical solder balls that fall onto a metallized substrate. The molten solder balls land on the substrate and form a metallurgical bond with the metallized lands. The size of the solder balls is determined by a combination of the size of the holes in the aperture plate, the duration of the piston pulse, and the displacement of the piston. The layout of the balls is dictated by the location of the hooks in the grid. Changes in ball size and layout can be easily accomplished by changing the grid plate. This invention also allows simple preparation of uniform balls for subsequent supply to BGA users.

  14. NREL: International Activities - Energy Access

    Science.gov Websites

    experience with off-grid solutions to support mini and microgrid projects, policies, and programs that are prohibitively expensive. Investment interest in mini and microgrids for energy access has been growing among Quality Assurance Framework (QAF) for mini-grids was developed to address the root challenges to providing

  15. Immediate loading of mandibular overdentures supported by one-piece, direct metal laser sintering mini-implants: a short-term prospective clinical study.

    PubMed

    Mangano, Francesco G; Caprioglio, Alberto; Levrini, Luca; Farronato, Davide; Zecca, Piero A; Mangano, Carlo

    2015-02-01

    Only a few studies have dealt with immediately loaded, unsplinted mini-implants supporting ball attachment-retained mandibular overdentures (ODs). The aim of this study is to evaluate treatment outcomes of ball attachment-retained mandibular ODs supported by one-piece, unsplinted, immediately loaded, direct metal laser sintering (DMLS) mini-implants. Over a 4-year period (2009 to 2012), all patients referred to the Dental Clinic, University of Varese, and to a private practice for treatment with mandibular ODs were considered for inclusion in this study. Each patient received three or four DMLS mini-implants. Immediately after implant placement, a mandibular OD was connected to the implants. At each annual follow-up session, clinical and radiographic parameters were assessed, including the following outcome measures: 1) implant failures; 2) peri-implant marginal bone loss; and 3) complications. Statistical analysis was conducted using a life-table analysis. A total of 231 one-piece DMLS mini-implants were inserted in 62 patients. After 4 years of loading, six implants failed, giving an overall cumulative survival rate of 96.9%. The mean distance between the implant shoulder and the first visible bone-to-implant contact was 0.38 ± 0.25 and 0.62 ± 0.20 mm at the 1- and 4-year follow-up examinations, respectively. An incidence of 6.0% of biologic complications was reported; prosthetic complications were more frequent (12.9%). Within the limits of this study, it can be concluded that the immediate loading of one-piece, unsplinted, DMLS titanium mini-implants by means of ball attachment-supported mandibular ODs is a successful treatment procedure. Long-term follow-up studies are needed to confirm these results.

  16. Comparative Clinical Study of Conventional Dental Implants and Mini Dental Implants for Mandibular Overdentures: A Randomized Clinical Trial.

    PubMed

    Aunmeungtong, Weerapan; Kumchai, Thongnard; Strietzel, Frank P; Reichart, Peter A; Khongkhunthian, Pathawee

    2017-04-01

    Dental implant-retained overdentures have been chosen as the treatment of choice for complete mandibular removable dentures. Dental implants, such as mini dental implants, and components for retaining overdentures, are commercially available. However, comparative clinical studies comparing mini dental implants and conventional dental implants using different attachment for implant-retained overdentures have not been well documented. To compare the clinical outcomes of using two mini dental implants with Equator ® attachments, four mini dental implants with Equator attachments, or two conventional dental implants with ball attachments, by means of a randomized clinical trial. Sixty patients received implant-retained mandibular overdentures in the interforaminal region. The patients were divided into three groups. In Groups 1 and 2, two and four mini dental implants, respectively, were placed and immediately loaded by overdentures, using Equator ® attachments. In Group 3, conventional implants were placed. After osseointegration, the implants were loaded by overdentures, using ball attachments. The study distribution was randomized and double-blinded. Outcome measures included changes in radiological peri-implant bone level from surgery to 12 months postinsertion, prosthodontic complications and patient satisfaction. The cumulative survival rate in the three clinical groups after one year was 100%. There was no significant difference (p < 0.05) in clinical results regarding the number (two or four) of mini dental implants with Equator attachments. However, there was a significant difference in marginal bone loss and patient satisfaction between those receiving mini dental implants with Equator attachments and conventional dental implants with ball attachments. The marginal bone resorption in Group 3 was significantly higher than in Groups 1 and 2 (p < 0.05); there were no significant differences between Groups 1 and 2. There was no significant difference in patient satisfaction between Groups 1 and 2 but it was significantly higher than that in Group3 (p < 0.05). Two and four mini dental implants can be immediately used successfully for retaining lower complete dentures, as shown after a 1-year follow up. © 2016 Wiley Periodicals, Inc.

  17. Resilient Energy Systems | Integrated Energy Solutions | NREL

    Science.gov Websites

    of microgrids Business model and valuation analysis for resilience Photovoltaic plus storage analysis Framework for Mini-Grids NREL has teamed with the Global Lighting and Energy Access Partnership and the U.S mini-grids. NREL Enhances Energy Resiliency at Marine Corps Air Station Miramar NREL has partnered with

  18. Quality Assurance Framework Implementation Guide for Isolated Community Power Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esterly, Sean R.; Baring-Gould, Edward I.; Burman, Kari A.

    This implementation guide is a companion document to the 'Quality Assurance Framework for Mini-Grids' technical report. This document is intended to be used by one of the many stakeholder groups that take part in the implementation of isolated power systems. Although the QAF could be applied to a single system, it was designed primarily to be used within the context of a larger national or regional rural electrification program in which many individual systems are being installed. This guide includes a detailed overview of the Quality Assurance Framework and provides guidance focused on the implementation of the Framework from themore » perspective of the different stakeholders that are commonly involved in expanding energy development within specific communities or regions. For the successful long-term implementation of a specific rural electrification program using mini-grid systems, six key stakeholders have been identified that are typically engaged, each with a different set of priorities 1. Regulatory agency 2. Governmental ministry 3. System developers 4. Mini-utility 5. Investors 6. Customers/consumers. This document is broken into two distinct sections. The first focuses on the administrative processes in the development and operation of community-based mini-grid programs, while the second focuses on the process around the installation of the mini-grid project itself.« less

  19. Tracking of Ball and Players in Beach Volleyball Videos

    PubMed Central

    Gomez, Gabriel; Herrera López, Patricia; Link, Daniel; Eskofier, Bjoern

    2014-01-01

    This paper presents methods for the determination of players' positions and contact time points by tracking the players and the ball in beach volleyball videos. Two player tracking methods are compared, a classical particle filter and a rigid grid integral histogram tracker. Due to mutual occlusion of the players and the camera perspective, results are best for the front players, with 74,6% and 82,6% of correctly tracked frames for the particle method and the integral histogram method, respectively. Results suggest an improved robustness against player confusion between different particle sets when tracking with a rigid grid approach. Faster processing and less player confusions make this method superior to the classical particle filter. Two different ball tracking methods are used that detect ball candidates from movement difference images using a background subtraction algorithm. Ball trajectories are estimated and interpolated from parabolic flight equations. The tracking accuracy of the ball is 54,2% for the trajectory growth method and 42,1% for the Hough line detection method. Tracking results of over 90% from the literature could not be confirmed. Ball contact frames were estimated from parabolic trajectory intersection, resulting in 48,9% of correctly estimated ball contact points. PMID:25426936

  20. Dimpled ball grid array process development for space flight applications

    NASA Technical Reports Server (NTRS)

    Barr, S. L.; Mehta, A.

    2000-01-01

    A 472 dimpled ball grid array (D-BGA) package has not been used in past space flight environments, therefore it was necessary to develop a process that would yield robust and reliable solder joints. The process developing assembly, inspection and rework techniques, were verified by conducting environmental tests. Since the 472 D-BGA packages passed the above environmental tests within the specifications, the process was successfully developed for space flight electronics.

  1. Alternative Penetrometers to Measure the Near Surface Strength of Soft Seafloor Soils

    DTIC Science & Technology

    2011-09-30

    penetrometer (CPT), standard ball penetrometer (BPT), mini-ball penetrometer (mBPT) and a shear vane ( VST ). The CPT and BPT measure electronically a...The VST records the undrained shear strength of the soil at discreet depths. In addition, Shelby tube samples were collected for triaxial and...benchmark strengths from the VST and triaxial/simple shear tests. Thus far, the VST strengths have compared favorably with the results. Results from the

  2. Visualization of Underfill Flow in Ball Grid Array (BGA) using Particle Image Velocimetry (PIV)

    NASA Astrophysics Data System (ADS)

    Ng, Fei Chong; Abas, Aizat; Abustan, Ismail; Remy Rozainy, Z. Mohd; Abdullah, MZ; Jamaludin, Ali b.; Kon, Sharon Melissa

    2018-05-01

    This paper presents the experimental methodology using particle image velocimetry (PIV) to study the underfill process of ball grid array (BGA) chip package. PIV is a non-intrusive approach to visualize the flow behavior of underfill across the solder ball array. The BGA model of three different configurations – perimeter, middle empty and full array – were studied in current research. Through PIV experimental works, the underfill velocity distribution and vector fields for each BGA models were successfully obtained. It is found that perimeter has the shortest filling time resulting to a higher underfill velocity. Therefore, it is concluded that the flow behavior of underfill in BGA can be justified thoroughly with the aid of PIV.

  3. Sectional mandibular complete denture for a total maxillectomy patient with trismus: a clinical report.

    PubMed

    Celakil, Tamer; Demir, Azize; Keskin, Haluk

    2017-01-01

    This report presents the case of a 60-year-old male patient with trismus induced by radiotherapy and fabrication of a sectional mandibular complete denture to allow the insertion of the denture into the mouth. A mandibular sectional denture was designed in two pieces with a locking mechanism by using mini anchor and ball abutment housing with cap. Patients who have undergone maxillectomy often have constricted mouth openings, as a result of surgical intervention and radiotherapy, and complain of an inability to insert or remove dentures. A new approach is vital for sectional dentures because existing sectional denture fabrication techniques cannot meet the ongoing needs of trismus patients. The mini anchor system with ball abutment housing has better mechanical retention in acrylic resin and can provide favorable stabilization during masticatory function; thus, additional framework is not required for assisting in stabilization and retention.

  4. F.S.V.B. Volleyball

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2006-06-07

    22me assemblée des délégués de la Fédération Suisse de Volley Ball (F.S.V.B.), en présence entre autres de Claude Delay, représentant de la société fédérale de gymnastique et Hans Gauer, représentant de l'association suisse de gymnastique féminine. Annonce d'une démonstration d'un mini match de volley ball à Meyrin dans l'après-midi.

  5. Fracture Behaviors of Sn-Cu Intermetallic Compound Layer in Ball Grid Array Induced by Thermal Shock

    NASA Astrophysics Data System (ADS)

    Shen, Jun; Zhai, Dajun; Cao, Zhongming; Zhao, Mali; Pu, Yayun

    2014-02-01

    In this work, thermal shock reliability testing and finite-element analysis (FEA) of solder joints between ball grid array components and printed circuit boards with Cu pads were used to investigate the failure mechanism of solder interconnections. The morphologies, composition, and thickness of Sn-Cu intermetallic compounds (IMC) at the interface of Sn-3.0Ag-0.5Cu lead-free solder alloy and Cu substrates were investigated by scanning electron microscopy and transmission electron microscopy. Based on the experimental observations and FEA results, it can be recognized that the origin and propagation of cracks are caused primarily by the difference between the coefficient of thermal expansion of different parts of the packaged products, the growth behaviors and roughness of the IMC layer, and the grain size of the solder balls.

  6. Atmospheric tar balls from biomass burning in Mexico

    NASA Astrophysics Data System (ADS)

    Adachi, K.; Buseck, P. R.

    2009-12-01

    Tar balls are spherical, organic aerosol particles that result from biofuel or biomass burning. They absorb sunlight and cause warming of the atmosphere. Although distinctive when viewed with a transmission electron microscope (TEM) because of their spherical shape, much remains to be determined about details of their compositions, occurrences, and generation. Here we aim to characterize the occurrences of tar balls using individual-particle analyses with a TEM and to study their formation in young biomass-burning smoke. The samples were collected using the U.S. Forest Service Twin Otter aircraft during the MILAGRO (Megacity Initiative: Local and Global Research Observations) campaign conducted in March 2006. We analyzed 84 TEM grid samples from ~30 biomass-burning events near Mexico City and over Yucatan. Sixty samples were from young smoke (less than an hour old), and others were from haze that mainly occurred from biomass burning. Tar balls have neither an evident nucleus nor are they normally attached to other particles. They are almost perfectly spherical on TEM grids, indicating that they were solid when collected. It appears as if tar balls consist of lower volatility organic matter than many other organic aerosol particles. On average, 9% by number of biomass-burning aerosol particles were tar balls in samples collected between a few minutes to an hour after emission. On the other hand, samples collected within a few minutes after emission included few or no tar balls. The occurrences and abundances of atmospheric tar balls are important when evaluating the effects of smoke on local and regional climate.

  7. Taguchi Experimental Design for Cleaning PWAs with Ball Grid Arrays

    NASA Technical Reports Server (NTRS)

    Bonner, J. K.; Mehta, A.; Walton, S.

    1997-01-01

    Ball grid arrays (BGAs), and other area array packages, are becoming more prominent as a way to increase component pin count while avoiding the manufacturing difficulties inherent in processing quad flat packs (QFPs)...Cleaning printed wiring assemblies (PWAs) with BGA components mounted on the surface is problematic...Currently, a low flash point semi-aqueous material, in conjunction with a batch cleaning unit, is being used to clean PWAs. The approach taken at JPL was to investigate the use of (1) semi-aqueous materials having a high flash point and (2) aqueous cleaning involving a saponifier.

  8. F.S.V.B. Volleyball

    ScienceCinema

    None

    2017-12-09

    22me assemblée des délégués de la Fédération Suisse de Volley Ball (F.S.V.B.), en présence entre autres de Claude Delay, représentant de la société fédérale de gymnastique et Hans Gauer, représentant de l'association suisse de gymnastique féminine. Annonce d'une démonstration d'un mini match de volley ball à Meyrin dans l'après-midi.

  9. Biomechanical behavior of 2-implant-and single-implant-retained mandibular overdentures with conventional or mini implants.

    PubMed

    Pisani, Marina Xavier; Presotto, Anna Gabriella Camacho; Mesquita, Marcelo Ferraz; Barão, Valentim Adelino Ricardo; Kemmoku, Daniel Takanori; Del Bel Cury, Altair Antoninha

    2018-04-24

    The use of single or mini dental implants to retain mandibular overdentures is still questionable. The purpose of this finite element analysis (FEA) study was to investigate the biomechanical behavior of 2- and single-implant-retained mandibular overdentures with conventional or mini implants. Four 3-dimensional (3D) finite element models were constructed with the following designs of mandibular overdentures: 2 (group 2-C) and single (group 1-C) conventional external hexagon implants with ball or O-ring attachment and 2 (group 2-M) and single (group 1-M) 1-piece mini implants. A 150-N axial load was applied bilaterally and simultaneously on the first molar. Overdenture displacement, von Mises equivalent stress (implants and/or prosthetic components), and maximum principal stresses (peri-implant bone) were recorded numerically and then color-coded and compared among the groups. The overdenture displacement (in mm) was higher for the 1-M (0.16) and 2-M (0.17) groups when compared with 1-C (0.09) and 2-C (0.08). Irrespective of the type of implant, the single-implant groups presented higher values of stress (in MPa) on the implants than did the 2-implant groups (1-C=52.53; 1-M=2.95; 2-C=34.66; 2-M=2.37), ball attachment (1-C=201.33; 2-C=159.06), housing or O-ring (1-C=125.01; 1-M=1.96; 2-C=88.84; 2-M=1.27), and peri-implant cortical bone (1-C=19.37; 1-M=1.47; 2-C=15.70; 2-M=1.06). The mini implant overdentures presented lower stress values on the implants, housing or O-ring, and peri-implant bone than did the conventional implant overdentures, regardless of the number of implants. The 2-implant-retained overdentures exhibited lower stresses than the single- implant-retained overdentures, irrespective of the type of implant. The mini implants demonstrated higher overdenture displacement and lower stresses than did conventional implant overdentures for single- and 2-implant-retained overdentures. Copyright © 2018 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  10. Solvent-free MALDI-MS for the analysis of a membrane protein via the mini ball mill approach: case study of bacteriorhodopsin.

    PubMed

    Trimpin, Sarah; Deinzer, Max L

    2007-01-01

    A mini ball mill (MBM) solvent-free matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) method allows for the analysis of bacteriorhodopsin (BR), an integral membrane protein that previously presented special analytical problems. For well-defined signals in the molecular ion region of the analytes, a desalting procedure of the MBM sample directly on the MALDI target plate was used to reduce adduction by sodium and other cations that are normally attendant with hydrophobic peptides and proteins as a result of the sample preparation procedure. Mass analysis of the intact hydrophobic protein and the few hydrophobic and hydrophilic tryptic peptides available in the digest is demonstrated with this robust new approach. MS and MS/MS spectra of BR tryptic peptides and intact protein were generally superior to the traditional solvent-based method using the desalted "dry" MALDI preparation procedure. The solvent-free method expands the range of peptides that can be effectively analyzed by MALDI-MS to those that are hydrophobic and solubility-limited.

  11. SMOOTHING THE PEAKS: GRIDSHARE SMART GRID TECHNOLOGY TO REDUCE BROWNOUTS ON MICRO-HYDROELECTRIC MINI-GRIDS IN BHUTAN

    EPA Science Inventory

    Village scale micro-hydroelectric systems in countries like Bhutan, Thailand, Peru, Laos and China provide renewable electricity to thousands of self-reliant communities in remote locations. While promising, many of these systems are plagued by a common problem: brownouts occu...

  12. Impact of Isothermal Aging on Long-Term Reliability of Fine-Pitch Ball Grid Array Packages with Sn-Ag-Cu Solder Interconnects: Surface Finish Effects

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Kyu; Ma, Hongtao; Liu, Kuo-Chuan; Xue, Jie

    2010-12-01

    The interaction between isothermal aging and the long-term reliability of fine-pitch ball grid array (BGA) packages with Sn-3.0Ag-0.5Cu (wt.%) solder ball interconnects was investigated. In this study, 0.4-mm fine-pitch packages with 300- μm-diameter Sn-Ag-Cu solder balls were used. Two different package substrate surface finishes were selected to compare their effects on the final solder composition, especially the effect of Ni, during thermal cycling. To study the impact on thermal performance and long-term reliability, samples were isothermally aged and thermally cycled from 0°C to 100°C with 10 min dwell time. Based on Weibull plots for each aging condition, package lifetime was reduced by approximately 44% by aging at 150°C. Aging at 100°C showed a smaller impact but similar trend. The microstructure evolution was observed during thermal aging and thermal cycling with different phase microstructure transformations between electrolytic Ni/Au and organic solderability preservative (OSP) surface finishes, focusing on the microstructure evolution near the package-side interface. Different mechanisms after aging at various conditions were observed, and their impacts on the fatigue lifetime of solder joints are discussed.

  13. Gravitating Q-balls in the Affleck-Dine mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamaki, Takashi; Sakai, Nobuyuki; Department of Education, Yamagata University, Yamagata 990-8560

    2011-04-15

    We investigate how gravity affects ''Q-balls'' with the Affleck-Dine potential V{sub AD}({phi}):=(m{sup 2}/2){phi}{sup 2} [1+Kln(({phi}/M)){sup 2}]. Contrary to the flat case, in which equilibrium solutions exist only if K<0, we find three types of gravitating solutions as follows. In the case that K<0, ordinary Q-ball solutions exist; there is an upper bound of the charge due to gravity. In the case that K=0, equilibrium solutions called (mini-)boson stars appear due to gravity; there is an upper bound of the charge, too. In the case that K>0, equilibrium solutions appear, too. In this case, these solutions are not asymptotically flat butmore » surrounded by Q-matter. These solutions might be important in considering a dark matter scenario in the Affleck-Dine mechanism.« less

  14. A Comparative Study of Inspection Techniques for Array Packages

    NASA Technical Reports Server (NTRS)

    Mohammed, Jelila; Green, Christopher

    2008-01-01

    This viewgraph presentation reviews the inspection techniques for Column Grid Array (CGA) packages. The CGA is a method of chip scale packaging using high temperature solder columns to attach part to board. It is becoming more popular over other techniques (i.e. quad flat pack (QFP) or ball grid array (BGA)). However there are environmental stresses and workmanship challenges that require good inspection techniques for these packages.

  15. Accelerated Thermal Cycling and Failure Mechanisms

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    1999-01-01

    This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies.

  16. Research on Ultrasonic Flaw Detection of Steel Weld in Spatial Grid Structure

    NASA Astrophysics Data System (ADS)

    Du, Tao; Sun, Jiandong; Fu, Shengguang; Zhang, Changquan; Gao, Qing

    2017-06-01

    The welding quality of spatial grid member is an important link in quality control of steel structure. The paper analyzed the reasons that the welding seam of small-bore pipe with thin wall grid structure is difficult to be detected by ultrasonic wave from the theoretical and practical aspects. A series of feasible detection methods was also proposed by improving probe and operation approaches in this paper, and the detection methods were verified by project cases. Over the years, the spatial grid structure is widely used the engineering by virtue of its several outstanding characteristics such as reasonable structure type, standard member, excellent space integrity and quick installation. The wide application of spatial grid structure brings higher requirements on nondestructive test of grid structure. The implementation of new Code for Construction Quality Acceptance of Steel Structure Work GB50205-2001 strengthens the site inspection of steel structure, especially the site inspection of ultrasonic flaw detection in steel weld. The detection for spatial grid member structured by small-bore and thin-walled pipes is difficult due to the irregular influence of sound pressure in near-field region of sound field, sound beam diffusion generated by small bore pipe and reduction of sensitivity. Therefore, it is quite significant to select correct detecting conditions. The spatial grid structure of welding ball and bolt ball is statically determinate structure with high-order axial force which is connected by member bars and joints. It is welded by shrouding or conehead of member bars and of member bar and bolt-node sphere. It is obvious that to ensure the quality of these welding positions is critical to the quality of overall grid structure. However, the complexity of weld structure and limitation of ultrasonic detection method cause many difficulties in detection. No satisfactory results will be obtained by the conventional detection technology, so some special approaches must be used.

  17. Anticipatory effects of intonation: Eye movements during instructed visual search

    PubMed Central

    Ito, Kiwako; Speer, Shari R

    2007-01-01

    Three eye-tracking experiments investigated the role of pitch accents during online discourse comprehension. Participants faced a grid with ornaments, and followed pre-recorded instructions such as “Next, hang the blue ball” to decorate holiday trees. Experiment 1 demonstrated a processing advantage for felicitous as compared to infelicitous uses of L+H* on the adjective noun pair (e.g. blue ball followed by GREEN ball vs. green BALL). Experiment 2 confirmed that L+H* on a contrastive adjective led to ‘anticipatory’ fixations, and demonstrated a “garden path” effect for infelicitous L+H* in sequences with no discourse contrast (e.g. blue angel followed by GREEN ball resulted in erroneous fixations to the cell of angels). Experiment 3 examined listeners’ sensitivity to coherence between pitch accents assigned to discourse markers such as ‘And then,’ and those assigned to the target object noun phrase. PMID:19190719

  18. 3D Printing of Ball Grid Arrays

    NASA Astrophysics Data System (ADS)

    Sinha, Shayandev; Hines, Daniel; Dasgupta, Abhijit; Das, Siddhartha

    Ball grid arrays (BGA) are interconnects between an integrated circuit (IC) and a printed circuit board (PCB), that are used for surface mounting electronic components. Typically, lead free alloys are used to make solder balls which, after a reflow process, establish a mechanical and electrical connection between the IC and the PCB. High temperature processing is required for most of these alloys leading to thermal shock causing damage to ICs. For producing flexible circuits on a polymer substrate, there is a requirement for low temperature processing capabilities (around 150 C) and for reducing strain from mechanical stresses. Additive manufacturing techniques can provide an alternative methodology for fabricating BGAs as a direct replacement for standard solder bumped BGAs. We have developed aerosol jet (AJ) printing methods to fabricate a polymer bumped BGA. As a demonstration of the process developed, a daisy chain test chip was polymer bumped using an AJ printed ultra violet (UV) curable polymer ink that was then coated with an AJ printed silver nanoparticle laden ink as a conducting layer printed over the polymer bump. The structure for the balls were achieved by printing the polymer ink using a specific toolpath coupled with in-situ UV curing of the polymer which provided good control over the shape, resulting in well-formed spherical bumps on the order of 200 um wide by 200 um tall for this initial demonstration. A detailed discussion of the AJ printing method and results from accelerated life-time testing will be presented

  19. Evaluation of Stress Distribution of Mini Dental Implant-Supported Overdentures in Complete Cleft Palate Models: A Three-Dimensional Finite Element Analysis Study.

    PubMed

    Soğancı, Gökçe; Yazıcıoğlu, Hüseyin

    2016-01-01

    Mini dental implants could be an alternative treatment method for prosthetic treatment of edentulous cleft palate. The aim of this study was to analyze stress distribution around the cortical bone and different plans using a varied number of mini dental implants in edentulous unilateral complete cleft palates. Three edentulous maxillary models were modified to create unilateral complete cleft palates. Mini dental implants (2.4 × 15 mm) were located as two mini implants at the premolar region, four mini implants at the premolar and molar region, and six mini implants at the first premolar, second premolar, and first molar regions in the models, respectively. Mucosa, o-ring/ball attachments, and overdentures were simulated. Vertical and horizontal loads of 100 N were applied on both the right and left molar teeth of the overdenture for each model. Maximum and minimum principal stress values and the distribution at cortical bone around the implants and cleft palates were evaluated by finite element analysis. Stress values under vertical loads were lower than values under horizontal loadings for all models. Stress values were found to be lower in the first model than in the second and third models. The highest stress values were found around implants in the second model. The unilateral feature of a complete cleft pattern affected the stress distribution. Stresses occured mostly around implants when the overdenture was supported by six implants; however, the stress distribution around implants was low with two implants because of tissue support.

  20. Observation of rat's colon polyps in real time by mini-endoscopy and raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Andriana, Bibin Bintang; Mahardika, Anggara; Taketani, Akihiro; Sato, Hidetoshi

    2018-02-01

    Colorectal adenoma (CA) is a disease caused by various factors (such as genetic factors or environmental exposures). The appearance of colon polyp (CP) within colorectal might indicate the hint of CA development. Ball-lens hollow fiber Raman probe (BHRP) may has a high capability for detection of CA in living experimental animal and have already tested to rat's CP in this study, which was designed to collaborate between BHRP with mini-endoscopy to observe the biochemical alteration within normal colon tissue and rat's colon polyps in real time. BHRP and mini-endoscopy can distinguish the differences in their finger print spectra and make pictures the control and CP in the real time. At the first step, the real situation of normal colon and Rat's CP were washed by saline and observed with mini-endoscopy. BHRP was introduced to Dextran sodium sulphate (DSS)-induced Rat's CP to detect some of biochemical alteration. The main purpose of this study was to introduce mini-endoscopy to guide the BHRP for diagnosing of CP in real time and to compare it with spectra of normal colon (control group) in living rat. As the result, BHRP can provide the differences in band of control and CP group, which can inform that the biochemical of normal and CP has changed. As a major parameter to distinct normal and CP tissue were phosphatidylinositol, phosphodiester group, lipid, and collagen. Mini endoscopy and BHRP is very sensitive devices for diagnosing of CP in real time.

  1. Graph Partitioning for Parallel Applications in Heterogeneous Grid Environments

    NASA Technical Reports Server (NTRS)

    Bisws, Rupak; Kumar, Shailendra; Das, Sajal K.; Biegel, Bryan (Technical Monitor)

    2002-01-01

    The problem of partitioning irregular graphs and meshes for parallel computations on homogeneous systems has been extensively studied. However, these partitioning schemes fail when the target system architecture exhibits heterogeneity in resource characteristics. With the emergence of technologies such as the Grid, it is imperative to study the partitioning problem taking into consideration the differing capabilities of such distributed heterogeneous systems. In our model, the heterogeneous system consists of processors with varying processing power and an underlying non-uniform communication network. We present in this paper a novel multilevel partitioning scheme for irregular graphs and meshes, that takes into account issues pertinent to Grid computing environments. Our partitioning algorithm, called MiniMax, generates and maps partitions onto a heterogeneous system with the objective of minimizing the maximum execution time of the parallel distributed application. For experimental performance study, we have considered both a realistic mesh problem from NASA as well as synthetic workloads. Simulation results demonstrate that MiniMax generates high quality partitions for various classes of applications targeted for parallel execution in a distributed heterogeneous environment.

  2. Lighting the World: the first application of an open source, spatial electrification tool (OnSSET) on Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Mentis, Dimitrios; Howells, Mark; Rogner, Holger; Korkovelos, Alexandros; Arderne, Christopher; Zepeda, Eduardo; Siyal, Shahid; Taliotis, Costantinos; Bazilian, Morgan; de Roo, Ad; Tanvez, Yann; Oudalov, Alexandre; Scholtz, Ernst

    2017-08-01

    In September 2015, the United Nations General Assembly adopted Agenda 2030, which comprises a set of 17 Sustainable Development Goals (SDGs) defined by 169 targets. ‘Ensuring access to affordable, reliable, sustainable and modern energy for all by 2030’ is the seventh goal (SDG7). While access to energy refers to more than electricity, the latter is the central focus of this work. According to the World Bank’s 2015 Global Tracking Framework, roughly 15% of the world’s population (or 1.1 billion people) lack access to electricity, and many more rely on poor quality electricity services. The majority of those without access (87%) reside in rural areas. This paper presents results of a geographic information systems approach coupled with open access data. We present least-cost electrification strategies on a country-by-country basis for Sub-Saharan Africa. The electrification options include grid extension, mini-grid and stand-alone systems for rural, peri-urban, and urban contexts across the economy. At low levels of electricity demand there is a strong penetration of standalone technologies. However, higher electricity demand levels move the favourable electrification option from stand-alone systems to mini grid and to grid extensions.

  3. Ball-grid array architecture for microfabricated ion traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guise, Nicholas D., E-mail: nicholas.guise@gtri.gatech.edu; Fallek, Spencer D.; Stevens, Kelly E.

    2015-05-07

    State-of-the-art microfabricated ion traps for quantum information research are approaching nearly one hundred control electrodes. We report here on the development and testing of a new architecture for microfabricated ion traps, built around ball-grid array (BGA) connections, that is suitable for increasingly complex trap designs. In the BGA trap, through-substrate vias bring electrical signals from the back side of the trap die to the surface trap structure on the top side. Gold-ball bump bonds connect the back side of the trap die to an interposer for signal routing from the carrier. Trench capacitors fabricated into the trap die replace area-intensivemore » surface or edge capacitors. Wirebonds in the BGA architecture are moved to the interposer. These last two features allow the trap die to be reduced to only the area required to produce trapping fields. The smaller trap dimensions allow tight focusing of an addressing laser beam for fast single-qubit rotations. Performance of the BGA trap as characterized with {sup 40}Ca{sup +} ions is comparable to previous surface-electrode traps in terms of ion heating rate, mode frequency stability, and storage lifetime. We demonstrate two-qubit entanglement operations with {sup 171}Yb{sup +} ions in a second BGA trap.« less

  4. Turbulence decay downstream of an active grid

    NASA Astrophysics Data System (ADS)

    Bewley, Gregory; Bodenschatz, Eberhard

    2015-11-01

    A grid in a wind tunnel stirs up turbulence that has a certain large-scale structure. The moving parts in a so-called ``active grid'' can be programmed to produce different structures. We use a special active grid in which each of 129 paddles on the grid has its own position-controlled servomotor that can move independently of the others. We observe among other things that the anisotropy in the amplitude of the velocity fluctuations and in the correlation lengths can be set and varied with an algorithm that oscillates the paddles in a specified way. The variation in the anisotropies that we observe can be explained by our earlier analysis of anisotropic ``soccer ball'' turbulence (Bewley, Chang and Bodenschatz 2012, Phys. Fluids). We define the influence of this variation in structure on the downstream evolution of the turbulence. with Eberhard Bodenschatz and others.

  5. Injuries in Japanese Mini-Basketball Players During Practices and Games

    PubMed Central

    Kuzuhara, Kenji; Shibata, Masashi; Uchida, Ryo

    2016-01-01

    Context: Mini-basketball is one of the most popular junior sports in Japan. Mini-basketball–related injuries may increase because of early specialization. However, no reports have been published to date concerning basketball injuries in children younger than 12 years of age. Objective: To prospectively study the incidence, sites, types, and mechanisms of injuries in mini-basketball teams. Design: Descriptive epidemiology study. Setting: Mini-basketball teams in Kobe, Japan. Patients or Other Participants: A total of 95 players in 7 community-based mini-basketball club teams (age range, 9 through 12 years). Main Outcome Measure(s): Data on all practice and game injuries for the 2013–2014 season were collected using an injury report form. Injury rates were calculated according to site, type, and mechanism. Results: The overall injury rate was 3.83 per 1000 athlete-hours (AHs). The game injury rate (12.92/1000 AHs) was higher than the practice injury rate (3.13/1000 AHs; P < .05). The most common anatomical areas of injury during games and practices were the head and neck (36.4%, 4.70/1000 AHs) and the upper limbs (47.8%, 1.50/1000 AHs). Sprains (42.9%, n = 39) were the most common type of injuries overall, followed by contusions (29.7%, n = 27). Most game injuries resulted from body contact (45.5%, 5.87/1000 AHs), whereas most practice injuries resulted from other contact (56.5%, 1.77/1000 AHs). Conclusions: Game injury rates were higher than practice injury rates in Japanese mini-basketball players. The high practice injury rate in this study may be due to specific factors related to growth, such as individual differences in height, or to skills, such as inexperience in ball handling. PMID:27922287

  6. Injuries in Japanese Mini-Basketball Players During Practices and Games.

    PubMed

    Kuzuhara, Kenji; Shibata, Masashi; Uchida, Ryo

    2016-12-01

    Mini-basketball is one of the most popular junior sports in Japan. Mini-basketball-related injuries may increase because of early specialization. However, no reports have been published to date concerning basketball injuries in children younger than 12 years of age. To prospectively study the incidence, sites, types, and mechanisms of injuries in mini-basketball teams. Descriptive epidemiology study. Mini-basketball teams in Kobe, Japan. A total of 95 players in 7 community-based mini-basketball club teams (age range, 9 through 12 years). Data on all practice and game injuries for the 2013-2014 season were collected using an injury report form. Injury rates were calculated according to site, type, and mechanism. The overall injury rate was 3.83 per 1000 athlete-hours (AHs). The game injury rate ( 12.92/1000 AHs) was higher than the practice injury rate (3.13/1000 AHs; P < .05). The most common anatomical areas of injury during games and practices were the head and neck (36.4%, 4.70/1000 AHs) and the upper limbs (47.8%, 1.50/1000 AHs). Sprains (42.9%, n = 39) were the most common type of injuries overall, followed by contusions (29.7%, n = 27). Most game injuries resulted from body contact (45.5%, 5.87/1000 AHs), whereas most practice injuries resulted from other contact (56.5%, 1.77/1000 AHs). Game injury rates were higher than practice injury rates in Japanese mini-basketball players. The high practice injury rate in this study may be due to specific factors related to growth, such as individual differences in height, or to skills, such as inexperience in ball handling.

  7. Finite element analysis of different loading conditions for implant-supported overdentures supported by conventional or mini implants.

    PubMed

    Solberg, K; Heinemann, F; Pellikaan, P; Keilig, L; Stark, H; Bourauel, C; Hasan, I

    2017-05-01

    The effect of implants' number on overdenture stability and stress distribution in edentulous mandible, implants and overdenture was numerically investigated for implant-supported overdentures. Three models were constructed. Overdentures were connected to implants by means of ball head abutments and rubber ring. In model 1, the overdenture was retained by two conventional implants; in model 2, by four conventional implants; and in model 3, by five mini implants. The overdenture was subjected to a symmetrical load at an angle of 20 degrees to the overdenture at the canine regions and vertically at the first molars. Four different loading conditions with two total forces (120, 300 N) were considered for the numerical analysis. The overdenture displacement was about 2.2 times higher when five mini implants were used rather than four conventional implants. The lowest stress in bone bed was observed with four conventional implants. Stresses in bone were reduced by 61% in model 2 and by 6% in model 3 in comparison to model 1. The highest stress was observed with five mini implants. Stresses in implants were reduced by 76% in model 2 and 89% increased in model 3 compared to model 1. The highest implant displacement was observed with five mini implants. Implant displacements were reduced by 29% in model 2, and increased by 273% in model 3 compared to model 1. Conventional implants proved better stability for overdenture than mini implants. Regardless the type and number of implants, the stress within the bone and implants are below the critical limits.

  8. [Laterality of upper extremity movements in infancy: observations at 4 and 9 months of age].

    PubMed

    Shiotani, Yuka; Matsuzawa, Shigeyuki; Ikeda, Hiroko; Sawada, Akiko; Okada, Masako; Kutsuki, Aya; Tomiwa, Kiyotaka

    2010-07-01

    This study investigated the process involved in the lateralization of movements during infancy by observing upper extremity movements in a laboratory setting. Reaching for flying rings, balls, mini toy cars, and small round cookies were observed and recorded by videotape at 4 and 9 months of age. The subjects were 202 infants who participated in Japan Children's Study, a cohort study on the development of sociability. Infants reached for objects significantly more frequently at 9 months (98%) than at 4 months (40%) (p<0.001). Though the lateral preference in reaching for balls at 4 months was ambiguous, reaching for toy cars was performed more frequently with the right hand at 9 months (50%) than with the left one (19%) (p<0.01). Lateralization of the upper extremity movements is thought to appear by 9 months.

  9. Linking the open source, spatial electrification tool (ONSSET) and the open source energy modelling system (OSeMOSYS), with a focus on Sub-Saharan Africa

    NASA Astrophysics Data System (ADS)

    Mentis, Dimitrios; Howells, Mark; Rogner, Holger; Korkovelos, Alexandros; Arderne, Christopher; Siyal, Shahid; Zepeda, Eduardo; Taliotis, Constantinos; Bazilian, Morgan; de Roo, Ad; Tanvez, Yann; Oudalov, Alexandre; Scholtz, Ernst

    2017-04-01

    In September 2015, the United Nations General Assembly adopted Agenda 2030, which comprises a set of 17 Sustainable Development Goals (SDGs) defined by 169 targets. "Ensuring access to affordable, reliable, sustainable and modern energy for all by 2030" is the seventh goal (SDG7). While access to energy refers to more than electricity, the latter is the central focus of this work. According to the World Bank's 2015 Global Tracking Framework, roughly 15% of world population (or 1.1 billion people) lack access to electricity, and many more rely on poor quality electricity services. The majority of those without access (87%) reside in rural areas. This paper presents results of a Geographic Information Systems (GIS) approach coupled with open access data and linked to the Electricity Model Base for Africa (TEMBA), a model that represents each continental African country's electricity supply system. We present least-cost electrification strategies on a country-by-country basis for Sub-Saharan Africa. The electrification options include grid extension, mini-grid and stand-alone systems for rural, peri-urban, and urban contexts across the economy. At low levels of electricity demand there is a strong penetration of standalone technologies. However, higher electricity demand levels move the favourable electrification option from stand-alone systems to mini grid and to grid extensions.

  10. Numerical investigation of the effect of sphere dimples on the drag crisis and the Magnus effect

    NASA Astrophysics Data System (ADS)

    Li, Jing; Tsubokura, Makoto; Tsunoda, Masaya

    2015-11-01

    The present study investigates the flow over a golf ball and a smooth sphere around the critical Reynolds numbers under both stationary and self-spinning conditions by conducting Large-eddy simulations (LES) based on high resolution unstructured grids. For the stationary cases, the present calculation results validate the promotion of the drag crisis at a relatively lower Reynolds number due to the golf ball dimples. It also shows that the golf ball dimples have a limited effect on the time-dependent lateral force development in the subcritical regime, whereas the dimples are beneficial in suppressing the lateral force oscillations in the supercritical regimes. With spin parameter Γ = 0.1, the drag coefficients for the spinning smooth sphere increase slightly in all Reynolds number regimes when compared to the stationary cases, whereas for the spinning golf ball, the drag force decreases in the critical regime and increases in the supercritical regime. For both spinning models, the inverse Magnus effect was reproduced in the critical regime, whereas in the supercritical regime the ordinary Magnus force was generated. Relatively weaker lift forces were also observed in the cases of the spinning golf balls when compared to the spinning smooth spheres.

  11. Energy solutions in rural Africa: mapping electrification costs of distributed solar and diesel generation versus grid extension

    NASA Astrophysics Data System (ADS)

    Szabó, S.; Bódis, K.; Huld, T.; Moner-Girona, M.

    2011-07-01

    Three rural electrification options are analysed showing the cost optimal conditions for a sustainable energy development applying renewable energy sources in Africa. A spatial electricity cost model has been designed to point out whether diesel generators, photovoltaic systems or extension of the grid are the least-cost option in off-grid areas. The resulting mapping application offers support to decide in which regions the communities could be electrified either within the grid or in an isolated mini-grid. Donor programs and National Rural Electrification Agencies (or equivalent governmental departments) could use this type of delineation for their program boundaries and then could use the local optimization tools adapted to the prevailing parameters. The views expressed in this paper are those of the authors and do not necessarily represent European Commission and UNEP policy.

  12. Nonsense Geography--Or Is It?

    ERIC Educational Resources Information Center

    Doerr, Arthur H.; Sieve, Kenneth

    1971-01-01

    At all levels of instruction commonplace items such as fruit, gelatin, golf and tennis balls, and sugar cubes can be used to demonstrate geographic concepts such as earth-sun relations, locative grid, structure of the earth, glaciation. Tactile and visual demonstrations in which students participate are more effective than other alternatives. (NH)

  13. Anticipatory Effects of Intonation: Eye Movements during Instructed Visual Search

    ERIC Educational Resources Information Center

    Ito, Kiwako; Speer, Shari R.

    2008-01-01

    Three eye-tracking experiments investigated the role of pitch accents during online discourse comprehension. Participants faced a grid with ornaments, and followed prerecorded instructions such as "Next, hang the blue ball" to decorate holiday trees. Experiment 1 demonstrated a processing advantage for felicitous as compared to infelicitous uses…

  14. Manipulator for rotating and examining small spheres

    DOEpatents

    Weinstein, Berthold W. [Livermore, CA; Willenborg, David L. [Livermore, CA

    1980-02-12

    A manipulator which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern.

  15. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025870 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  16. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025868 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  17. DOD SPHERES-RINGS Test Session

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025915 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  18. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025866 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  19. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025872 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  20. Hopkins with SPHERES RINGS

    NASA Image and Video Library

    2013-11-04

    ISS037-E-025879 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  1. Study of heating capacity of focused IR light soldering systems.

    PubMed

    Anguiano, C; Félix, M; Medel, A; Bravo, M; Salazar, D; Márquez, H

    2013-10-07

    An experimental study about four optical setups used for developing a Focused IR Light Soldering System (FILSS) for Surface Mount Technology (SMT) lead-free electronic devices specifically for Ball Grid Arrays (BGA) is presented. An analysis of irradiance and infrared thermography at BGA surface is presented, as well as heat transfer by radiation and conduction process from the surface of the BGA to the solder balls. The results of this work show that the heating provided by our proposed optical setups, measured at the BGA under soldering process, meets the high temperature and uniform thermal distribution requirements, which are defined by the reflow solder method for SMT devices.

  2. The Melting Characteristics and Interfacial Reactions of Sn-ball/Sn-3.0Ag-0.5Cu-paste/Cu Joints During Reflow Soldering

    NASA Astrophysics Data System (ADS)

    Huang, J. Q.; Zhou, M. B.; Zhang, X. P.

    2017-03-01

    In this work, the melting characteristics and interfacial reactions of Sn-ball/Sn-3.0Ag-0.5Cu-paste/Cu (Sn/SAC305-paste/Cu) structure joints were studied using differential scanning calorimetry, in order to gain a deeper and broader understanding of the interfacial behavior and metallurgical combination among the substrate (under-bump metallization), solder ball and solder paste in a board-level ball grid array (BGA) assembly process, which is often seen as a mixed assembly using solder balls and solder pastes. Results show that at the SAC305 melting temperature of 217°C, neither the SAC305-paste nor the Sn-ball coalesce, while an interfacial reaction occurs between the SAC305-paste and Cu. A slight increase in reflow temperature (from 217°C to 218°C) results in the coalescence of the SAC305-paste with the Sn-ball. The Sn-ball exhibits premelting behavior at reflow temperatures below its melting temperature, and the premelting direction is from the bottom to the top of the Sn-ball. Remarkably, at 227°C, which is nearly 5°C lower than the melting point of pure Sn, the Sn-ball melts completely, resulting from two eutectic reactions, i.e., the reaction between Sn and Cu and that between Sn and Ag. Furthermore, a large amount of bulk Cu6Sn5 phase forms in the solder due to the quick dissolution of Cu substrate when the reflow temperature is increased to 245°C. In addition, the growth of the interfacial Cu6Sn5 layer at the SAC305-paste/Cu interface is controlled mainly by grain boundary diffusion, while the growth of the interfacial Cu3Sn layer is controlled mainly by bulk diffusion.

  3. The Interplay of Surface Mount Solder Joint Quality and Reliability of Low Volume SMAs

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    1997-01-01

    Spacecraft electronics including those used at the Jet Propulsion Laboratory (JPL), demand production of highly reliable assemblies. JPL has recently completed an extensive study, funded by NASA's code Q, of the interplay between manufacturing defects and reliability of ball grid array (BGA) and surface mount electronic components.

  4. Manipulator for rotating and examining small spheres

    DOEpatents

    Weinstein, B.W.; Willenborg, D.L.

    1980-02-12

    A manipulator is disclosed which provides fast, accurate rotational positioning of a small sphere, such as an inertial confinement fusion target, which allows inspecting of the entire surface of the sphere. The sphere is held between two flat, flexible tips which move equal amounts in opposite directions. This provides rolling of the ball about two orthogonal axes without any overall translation. The manipulator may be controlled, for example, by an x- and y-axis driven controlled by a mini-computer which can be programmed to generate any desired scan pattern. 8 figs.

  5. SPHERES-RINGS Time Lapse

    NASA Image and Video Library

    2014-07-10

    ISS040-E-059344 (10 July 2014) --- In the International Space Station’s Kibo laboratory, NASA astronaut Reid Wiseman (left) and European Space Agency astronaut Alexander Gerst, both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  6. SPHERES-RINGS Time Lapse

    NASA Image and Video Library

    2014-07-10

    ISS040-E-059467 (10 July 2014) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Alexander Gerst and NASA astronaut Reid Wiseman (mostly obscured), both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  7. SPHERES-RINGS Time Lapse

    NASA Image and Video Library

    2014-07-10

    ISS040-E-059478 (10 July 2014) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Alexander Gerst (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.

  8. Extreme ball lightning event of August 6, 1868 in County Donegal, Ireland.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VanDevender, J. Pace; McGinley, Niall; van Doorn, Peter

    2008-04-01

    Although laboratory experiments have produced glowing balls of light that fade in <1 s after external power is removed and theories have been proposed to explain low-energy events, energetic ball lightning is not understood. A seminal event that illuminates the fundamental nature of ball lightning is needed to advance our understanding of the phenomenon. We report such a seminal event: the energetic ball lightning event of August 6, 1868, in County Donegal, Ireland, extensively reported to the Royal Society by M. Fitzgerald. It lasted for 20 minutes, left a 6 m square hole and a 100 m long by 1.2more » m deep trench, tore away a 25 m long and 1.5 m deep stream bank that diverted the course of the stream, and terminated by producing a shallow cave in the opposite bank of the stream. We found and characterized the site and show that the geomorphology and carbon dating support the account by M. Fitzgerald. We find that the excavation is not consistent with chemical, nuclear, or electrostatic forces but is consistent with Analysis of the event and the local conditions in 2006 is consistent with magnetic induction at {approx} 1 MHz frequency expelling the moderately conductive, water saturated peat down to the underlying clay/rock layer. The 60-cm diameter--which diminished to 10 cm diameter without reducing the impact of the ball lightning on the environment--and the size of the depressions, the yield strength of the peat, and the lack of any mention of smoke or steam in Fitzgerald's report would be consistent with the core of the ball lightning being a magnetically levitated mini black hole weighing more than 20,000 kg. The results suggest that such energetic ball lightning should be detectable at great distances by its electromagnetic emissions, which might provide a characteristic signature to reveal the source of the energy and the equilibrium configuration of the contained currents. Unexplained intermittent emissions in the MHz range are necessary but not sufficient indicators of such emissions. We report on over fifty 1 to >1000-s bursts of electromagnetic energy between 3 MHz and 350 MHz that were recorded by the FORTE satellite in October of 1997 and that are not consistent with known sources.Ground-based time-resolved observations should help identify the origin of the FORTE emissions and may help find and understand modern energetic ball lightning events to move us beyond glowing balls of light.« less

  9. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    NASA Astrophysics Data System (ADS)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  10. Visual and x-ray inspection characteristics of eutectic and lead free assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    2003-01-01

    For high reliability applications, visual inspection has been the key technique for most conventional electronic package assemblies. Now, the use of x-ray technique has become an additional inspection requirement for quality control and detection of unique defects due to manufacturing of advanced electronic array packages such as ball grid array (BGAs) and chip scale packages (CSPs).

  11. NASA DOD Lead Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2008-01-01

    The primary'technical objective of this project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIPD assembled and reworked with lead-free alloys Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  12. Thermal Cycling Life Prediction of Sn-3.0Ag-0.5Cu Solder Joint Using Type-I Censored Data

    PubMed Central

    Mi, Jinhua; Yang, Yuan-Jian; Huang, Hong-Zhong

    2014-01-01

    Because solder joint interconnections are the weaknesses of microelectronic packaging, their reliability has great influence on the reliability of the entire packaging structure. Based on an accelerated life test the reliability assessment and life prediction of lead-free solder joints using Weibull distribution are investigated. The type-I interval censored lifetime data were collected from a thermal cycling test, which was implemented on microelectronic packaging with lead-free ball grid array (BGA) and fine-pitch ball grid array (FBGA) interconnection structures. The number of cycles to failure of lead-free solder joints is predicted by using a modified Engelmaier fatigue life model and a type-I censored data processing method. Then, the Pan model is employed to calculate the acceleration factor of this test. A comparison of life predictions between the proposed method and the ones calculated directly by Matlab and Minitab is conducted to demonstrate the practicability and effectiveness of the proposed method. At last, failure analysis and microstructure evolution of lead-free solders are carried out to provide useful guidance for the regular maintenance, replacement of substructure, and subsequent processing of electronic products. PMID:25121138

  13. Development of Gravity Acceleration Measurement Using Simple Harmonic Motion Pendulum Method Based on Digital Technology and Photogate Sensor

    NASA Astrophysics Data System (ADS)

    Yulkifli; Afandi, Zurian; Yohandri

    2018-04-01

    Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.

  14. EAGLEView: A surface and grid generation program and its data management

    NASA Technical Reports Server (NTRS)

    Remotigue, M. G.; Hart, E. T.; Stokes, M. L.

    1992-01-01

    An old and proven grid generation code, the EAGLE grid generation package, is given an added dimension of a graphical interface and a real time data base manager. The Numerical Aerodynamic Simulation (NAS) Panel Library is used for the graphical user interface. Through the panels, EAGLEView constructs the EAGLE script command and sends it to EAGLE to be processed. After the object is created, the script is saved in a mini-buffer which can be edited and/or saved and reinterpreted. The graphical objects are set-up in a linked-list and can be selected or queried by pointing and clicking the mouse. The added graphical enhancement to the EAGLE system emphasizes the unique capability to construct field points around complex geometry and visualize the construction every step of the way.

  15. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2009-01-01

    The primary technical objective of this project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with lead-free alloys, (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with mixed (lead/lead-free) alloys.

  16. Push plate, mounting assembly, circuit board, and method of assembling thereof for ball grid array packages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vaughn, Mark R.; Montague, Stephen

    A push plate that includes springs in the form of cantilever flexures and an inspection window is disclosed. The push plate provides a known, uniform, down force and minimal torque to a package to be tested. The cantilevers have a known, calculable down force producing stiffness. The window provides for viewing of the package during testing.

  17. Magnet-Based System for Docking of Miniature Spacecraft

    NASA Technical Reports Server (NTRS)

    Howard, Nathan; Nguyen, Hai D.

    2007-01-01

    A prototype system for docking a miniature spacecraft with a larger spacecraft has been developed by engineers at the Johnson Space Center. Engineers working on Mini AERCam, a free-flying robotic camera, needed to find a way to successfully dock and undock their miniature spacecraft to refuel the propulsion and recharge the batteries. The subsystems developed (see figure) include (1) a docking port, designed for the larger spacecraft, which contains an electromagnet, a ball lock mechanism, and a service probe; and (2) a docking cluster, designed for the smaller spacecraft, which contains either a permanent magnet or an electromagnet. A typical docking operation begins with the docking spacecraft maneuvering into position near the docking port on the parent vehicle. The electromagnet( s) are then turned on, and, if necessary, the docking spacecraft is then maneuvered within the capture envelope of the docking port. The capture envelope for this system is approximated by a 5-in. (12.7-cm) cube centered on the front of the docking-port electromagnet and within an angular misalignment of <30 . Thereafter, the magnetic forces draw the smaller spacecraft toward the larger one and this brings the spacecraft into approximate alignment prior to contact. Mechanical alignment guides provide the final rotational alignment into one of 12 positions. Once the docking vehicle has been captured magnetically in the docking port, the ball-lock mechanism is activated, which locks the two spacecraft together. At this point the electromagnet( s) are turned off, and the service probe extended if recharge and refueling are to be performed. Additionally, during undocking, the polarity of one electromagnet can be reversed to provide a gentle push to separate the two spacecraft. This system is currently being incorporated into the design of Mini AERCam vehicle.

  18. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less

  19. Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors

    DOE PAGES

    Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong; ...

    2016-02-15

    In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less

  20. Scalable Multiplexed Ion Trap Fabrication Using Ball Grid Arrays

    DTIC Science & Technology

    2014-10-31

    mounting micromirrors on the interposer surface to allow for improved ion addressing and distinct Doppler laser cooling and qubit operation zones...Having micromirrors so close to the ion position will allow for tighter beam focusing and individual ion addressing. Other possibilities could include...to build a unit cell that would take advantage of the micromirrors on the chip surface. Currently it only takes into account Doppler cooling and

  1. A Probabilistic Approach to Predict Thermal Fatigue Life for Ball Grid Array Solder Joints

    NASA Astrophysics Data System (ADS)

    Wei, Helin; Wang, Kuisheng

    2011-11-01

    Numerous studies of the reliability of solder joints have been performed. Most life prediction models are limited to a deterministic approach. However, manufacturing induces uncertainty in the geometry parameters of solder joints, and the environmental temperature varies widely due to end-user diversity, creating uncertainties in the reliability of solder joints. In this study, a methodology for accounting for variation in the lifetime prediction for lead-free solder joints of ball grid array packages (PBGA) is demonstrated. The key aspects of the solder joint parameters and the cyclic temperature range related to reliability are involved. Probabilistic solutions of the inelastic strain range and thermal fatigue life based on the Engelmaier model are developed to determine the probability of solder joint failure. The results indicate that the standard deviation increases significantly when more random variations are involved. Using the probabilistic method, the influence of each variable on the thermal fatigue life is quantified. This information can be used to optimize product design and process validation acceptance criteria. The probabilistic approach creates the opportunity to identify the root causes of failed samples from product fatigue tests and field returns. The method can be applied to better understand how variation affects parameters of interest in an electronic package design with area array interconnections.

  2. Final Report for the Advanced Camera for Surveys (ACS) from Ball Aerospace and Technologies Corporation

    NASA Technical Reports Server (NTRS)

    Volmer, Paul; Sullivan, Pam (Technical Monitor)

    2003-01-01

    The Advanced Camera for Surveys ACS was launched aboard the Space Shuttle Columbia just before dawn on March 1, 2002. After successfully docking with the Hubble Space Telescope (HST), several components were replaced. One of the components was the Advanced Camera for Surveys built by Ball Aerospace & Technologies Corp. (BATC) in Boulder, Colorado. Over the life of the HST contract at BATC hundreds of employees had the pleasure of working on the concept, design, fabrication, assembly and test of ACS. Those employees thank NASA - Goddard Space Flight Center and the science team at Johns Hopkins University (JHU) for the opportunity to participate in building a great science instrument for HST. After installation in HST a mini-functional test was performed and later a complete functional test. ACS performed well and has continued performing well since then. One of the greatest rewards for the BATC employees is a satisfied science team. Following is an excerpt from the JHU final report, "The foremost promise of ACS was to increase Hubble's capability for surveys in the near infrared by a factor of 10. That promise was kept. "

  3. SPHERES

    NASA Image and Video Library

    2013-08-27

    ISS036-E-037288 (27 Aug. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Karen Nyberg, Expedition 36 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites with ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS, Nyberg performed a demonstration of how power can be transferred between two satellites without physical contact. Station crews beginning with Expedition 8 have operated these robots to test techniques that could lead to advancements in automated dockings, satellite servicing, spacecraft assembly and emergency repairs.

  4. The Failure Models of Lead Free Sn-3.0Ag-0.5Cu Solder Joint Reliability Under Low-G and High-G Drop Impact

    NASA Astrophysics Data System (ADS)

    Gu, Jian; Lei, YongPing; Lin, Jian; Fu, HanGuang; Wu, Zhongwei

    2017-02-01

    The reliability of Sn-3.0Ag-0.5Cu (SAC 305) solder joint under a broad level of drop impacts was studied. The failure performance of solder joint, failure probability and failure position were analyzed under two shock test conditions, i.e., 1000 g for 1 ms and 300 g for 2 ms. The stress distribution on the solder joint was calculated by ABAQUS. The results revealed that the dominant reason was the tension due to the difference in stiffness between the print circuit board and ball grid array, and the maximum tension of 121.1 MPa and 31.1 MPa, respectively, under both 1000 g or 300 g drop impact, was focused on the corner of the solder joint which was located in the outmost corner of the solder ball row. The failure modes were summarized into the following four modes: initiation and propagation through the (1) intermetallic compound layer, (2) Ni layer, (3) Cu pad, or (4) Sn-matrix. The outmost corner of the solder ball row had a high failure probability under both 1000 g and 300 g drop impact. The number of failures of solder ball under the 300 g drop impact was higher than that under the 1000 g drop impact. The characteristic drop values for failure were 41 and 15,199, respectively, following the statistics.

  5. Centrifugal Modelling of Soil Structures. Part I. Centrifugal Modelling of Slope Failures.

    DTIC Science & Technology

    1979-03-01

    comparing successive photographs in which soil movement was noted by the change in position of the original grid of silvered indicator balls . Inherent in...SECIJ RITY CLASSIFICATION OF THIS PAGE(1Thon Pat& Entered) of uplift forces was also observed. In nineteen coal mine waste embankment dam models...In’nineteen coal mine waste embankment dam models, throughout which the soil particle size distribution was altered for modelling of dif- ferent

  6. SAGES Mini Med School: inspiring high school students through exposure to the field of surgery.

    PubMed

    Rosser, James C; Legare, Timothy B; Jacobs, Charles; Choi, Katherine M; Fleming, Jeffrey P; Nakagiri, Jamie

    2018-04-02

    The SAGES Mini Med School (SMMS) was designed to expose high school students to the field of surgery through mentoring, knowledge transfer, and hands-on experience with simulation. The objective of this paper is to profile the evolutionary development, performance metrics, and satisfaction queries of this innovative effort. Sixty-one high school students, grades 9-12, took part in the (SMMS) program during the 2015 SAGES Annual Congress. The students completed a surgical skills lab session where they attempted tasks associated with the development of open surgical and laparoscopic skills. The lab included a warm-up with the validated Super Monkey Ball video game, Top Gun Pea Drop task, FLS Peg Transfer task, open knot tying station, and open instrument tie station. The following are the results of the surgical skills lab. For the Super Monkey Ball task, 60 students participated with an average score of 73.0 s (SD = 53.9; range 59.1-87.0; median = 74). Sixty students participated in the Surgeons Knot and Pea Drop tasks with average times of 26.6 s (SD = 19.3; range 21.7-31.6; median = 21.0) and 113.8 s (SD = 65.9; range 96.6-131.0; median = 101.0), respectively. Sixty students participated in the Instrument Tie and 56 students participated in the Peg Transfer stations with average times of 51.7 s (SD = 34.5; range 42.8-60.6; median = 39.5) and 173.1 s (SD = 25.0; range 166.4-179.8; median = 180.0), respectively. 51 (83.6%) agreed that the Mini Med School made them more likely to consider a career in medicine. When asked if the program made them more likely to consider a career in surgery 42 (68.8%) agreed. All 61 respondents (100%) said that they would recommend the program to others. The SMMS program showed that the students had an excellent aptitude for the performance of validated surgical subtasks with high satisfaction, and increased consideration of a career in medicine/surgery. Long-term studies are needed to evaluate the impact on workforce recruitment.

  7. Intermetallic Compounds Formed in Sn-20In-2.8Ag Solder BGA Packages with Ag/Cu Pads

    NASA Astrophysics Data System (ADS)

    Jain, C. C.; Wang, S. S.; Huang, K. W.; Chuang, T. H.

    2009-03-01

    The interfacial reactions in a Sn-20In-2.8Ag solder ball grid array (BGA) package with immersion Ag surface finish are investigated. After reflow, the Ag thin film dissolves quickly into the solder matrix, and scallop-shaped intermetallic layers, with compositions of (Cu0.98Ag0.02)6(In0.59Sn0.41)5, appear at the interfaces between Sn-20In-2.8Ag solder ball and Cu pad. No evident growth of the (Cu0.98Ag0.02)6(Sn0.59In0.41)5 intermetallic compounds was observed after prolonged aging at 100 °C. However, the growth accelerated at 150 °C, with more intermetallic scallops floating into the solder matrix. The intermetallic thickness versus the square root of reaction time ( t 1/2) shows a linear relation, indicating that the growth of intermetallic compounds is diffusion-controlled. Ball shear tests show that the strength of Sn-20In-2.8Ag solder joints after reflow is 4.4 N, which increases to 5.18 N and 5.14 N after aging at 100 and 150 °C, respectively.

  8. Simulation of a Lunar Surface Base Power Distribution Network for the Constellation Lunar Surface Systems

    NASA Technical Reports Server (NTRS)

    Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.

    2010-01-01

    The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.

  9. Use of SIG device to accurately place permanent miniature dental implants to retain mandibular overdenture. A case report.

    PubMed

    Sussman, Harold I; Goodridge, Opal F

    2006-01-01

    A case of mini-dental implant insertion for retention of a mandibular overdenture in a hospitalized patient has been documented. The additional use of the SIG (drill guide) directional device in the implant placement protocol gave the practitioner more confidence and resulted in the proper alignment of the three ball-top, one-piece fixtures. The three implants were inserted exactly 1 cm apart and parallel to each other. The distal fixtures were approximately 1 cm away from the mental foramina, thereby eliminating the risk of lip paresthesia. Keeper caps were placed in the denture's intaglio after one month. The keeper caps allowed for proper retention of the overdenture. The caps also enabled the patient to easily insert and withdraw his denture, even though he displayed limited manual dexterity. The tissue response was excellent, and oral hygiene was made easier with adequate spacing of the exposed ball-tops. The overall experience for both the operator and the patient was very positive. General dentists should be able to readily master this technique and add it to their armamentarium for the benefit of all their patients.

  10. Apparatus And Method Of Using Flexible Printed Circuit Board In Optical Transceiver Device

    DOEpatents

    Anderson, Gene R.; Armendariz, Marcelino G.; Bryan, Robert P.; Carson, Richard F.; Duckett, III, Edwin B.; McCormick, Frederick B.; Peterson, David W.; Peterson, Gary D.; Reysen, Bill H.

    2005-03-15

    This invention relates to a flexible printed circuit board that is used in connection with an optical transmitter, receiver or transceiver module. In one embodiment, the flexible printed circuit board has flexible metal layers in between flexible insulating layers, and the circuit board comprises: (1) a main body region orientated in a first direction having at least one electrical or optoelectronic device; (2) a plurality of electrical contact pads integrated into the main body region, where the electrical contact pads function to connect the flexible printed circuit board to an external environment; (3) a buckle region extending from one end of the main body region; and (4) a head region extending from one end of the buckle region, and where the head region is orientated so that it is at an angle relative to the direction of the main body region. The electrical contact pads may be ball grid arrays, solder balls or land-grid arrays, and they function to connect the circuit board to an external environment. A driver or amplifier chip may be adapted to the head region of the flexible printed circuit board. In another embodiment, a heat spreader passes along a surface of the head region of the flexible printed circuit board, and a window is formed in the head region of the flexible printed circuit board. Optoelectronic devices are adapted to the head spreader in such a manner that they are accessible through the window in the flexible printed circuit board.

  11. Ortho-Rectification of Narrow Band Multi-Spectral Imagery Assisted by Dslr RGB Imagery Acquired by a Fixed-Wing Uas

    NASA Astrophysics Data System (ADS)

    Rau, J.-Y.; Jhan, J.-P.; Huang, C.-Y.

    2015-08-01

    Miniature Multiple Camera Array (MiniMCA-12) is a frame-based multilens/multispectral sensor composed of 12 lenses with narrow band filters. Due to its small size and light weight, it is suitable to mount on an Unmanned Aerial System (UAS) for acquiring high spectral, spatial and temporal resolution imagery used in various remote sensing applications. However, due to its wavelength range is only 10 nm that results in low image resolution and signal-to-noise ratio which are not suitable for image matching and digital surface model (DSM) generation. In the meantime, the spectral correlation among all 12 bands of MiniMCA images are low, it is difficult to perform tie-point matching and aerial triangulation at the same time. In this study, we thus propose the use of a DSLR camera to assist automatic aerial triangulation of MiniMCA-12 imagery and to produce higher spatial resolution DSM for MiniMCA12 ortho-image generation. Depending on the maximum payload weight of the used UAS, these two kinds of sensors could be collected at the same time or individually. In this study, we adopt a fixed-wing UAS to carry a Canon EOS 5D Mark2 DSLR camera and a MiniMCA-12 multi-spectral camera. For the purpose to perform automatic aerial triangulation between a DSLR camera and the MiniMCA-12, we choose one master band from MiniMCA-12 whose spectral range has overlap with the DSLR camera. However, all lenses of MiniMCA-12 have different perspective centers and viewing angles, the original 12 channels have significant band misregistration effect. Thus, the first issue encountered is to reduce the band misregistration effect. Due to all 12 MiniMCA lenses being frame-based, their spatial offsets are smaller than 15 cm and all images are almost 98% overlapped, we thus propose a modified projective transformation (MPT) method together with two systematic error correction procedures to register all 12 bands of imagery on the same image space. It means that those 12 bands of images acquired at the same exposure time will have same interior orientation parameters (IOPs) and exterior orientation parameters (EOPs) after band-to-band registration (BBR). Thus, in the aerial triangulation stage, the master band of MiniMCA-12 was treated as a reference channel to link with DSLR RGB images. It means, all reference images from the master band of MiniMCA-12 and all RGB images were triangulated at the same time with same coordinate system of ground control points (GCP). Due to the spatial resolution of RGB images is higher than the MiniMCA-12, the GCP can be marked on the RGB images only even they cannot be recognized on the MiniMCA images. Furthermore, a one meter gridded digital surface model (DSM) is created by the RGB images and applied to the MiniMCA imagery for ortho-rectification. Quantitative error analyses show that the proposed BBR scheme can achieve 0.33 pixels of average misregistration residuals length and the co-registration errors among 12 MiniMCA ortho-images and between MiniMCA and Canon RGB ortho-images are all less than 0.6 pixels. The experimental results demonstrate that the proposed method is robust, reliable and accurate for future remote sensing applications.

  12. PV solar electricity: status and future

    NASA Astrophysics Data System (ADS)

    Hoffmann, Winfried

    2006-04-01

    Within the four main market segments of PV solar electricity there are already three areas competitive today. These are off-grid industrial and rural as well as consumer applications. The overall growth within the past 8 years was almost 40 % p.a. with a "normal" growth of about 18 % p.a. for the first three market segments whereas the grid connected market increased with an astonishing 63 % p.a. The different growth rates catapulted the contribution of grid connected systems in relation to the total market from about one quarter 6 years ago towards more than three quarters today. The reason for this development is basically due to industry-politically induced market support programs in the aforementioned countries. It is quite important to outline under which boundary conditions grid connected systems will be competitive without support programs like the feed in tariff system in Germany, Spain and some more to come in Europe as well as investment subsidies in Japan, US and some other countries. It will be shown that in a more and more liberalized utility market worldwide electricity produced by PV solar electricity systems will be able to compete with their generating cost against peak power prices from utilities. The point of time for this competitiveness is mainly determined by the following facts: 1. Price decrease for PV solar electricity systems leading to an equivalent decrease in the generated cost for PV produced kWh. 2. Development of a truly liberalized electricity market. 3. Degree of irradiation between times of peak power demand and delivery of PV electricity. The first topic is discussed using price experience curves. Some explanations will be given to correlate the qualitative number of 20 % price decrease for doubling cumulative worldwide sales derived from the historic price experience curve with a more quantitative analysis based on our EPIA-Roadmap (productivity increase and ongoing improvements for existing technologies as well as development of new concepts to broaden the product portfolio in coming years). The second topic outlines the most likely development of liberalized electricity markets in various regions worldwide. It will be emphasized that in such markets the future prices for electricity will more and more reflect the different cost for bulk and peak power production. This will not only happen for industrial electricity customers - as already today in many countries - but also for private households. The third topic summarizes the existing data and facts by correlating peak power demand and prices traded in various stock exchange markets with delivered PV kWh. It will be shown that a high degree of correlation is existent. Combining the three topics and postulating reverse net metering the competitiveness of PV solar electricity as described is most likely to occur. The described price decrease of modules will also have a very positive impact on off-grid rural applications, mainly in 3rd world countries. It will be shown that this is strongly advanced due to the development of mini-grids starting from solar home systems - with mini grids looking very similar to on-grid applications in weak grid areas of nowadays electricity network.

  13. A micro-CL system and its applications

    NASA Astrophysics Data System (ADS)

    Wei, Zenghui; Yuan, Lulu; Liu, Baodong; Wei, Cunfeng; Sun, Cuili; Yin, Pengfei; Wei, Long

    2017-11-01

    The computed laminography (CL) method is preferable to computed tomography for the non-destructive testing of plate-like objects. A micro-CL system is developed for three-dimensional imaging of plate-like objects. The details of the micro-CL system are described, including the system architecture, scanning modes, and reconstruction algorithm. The experiment results of plate-like fossils, insulated gate bipolar translator module, ball grid array packaging, and printed circuit board are also presented to demonstrate micro-CL's ability for 3D imaging of flat specimens and universal applicability in various fields.

  14. A micro-CL system and its applications.

    PubMed

    Wei, Zenghui; Yuan, Lulu; Liu, Baodong; Wei, Cunfeng; Sun, Cuili; Yin, Pengfei; Wei, Long

    2017-11-01

    The computed laminography (CL) method is preferable to computed tomography for the non-destructive testing of plate-like objects. A micro-CL system is developed for three-dimensional imaging of plate-like objects. The details of the micro-CL system are described, including the system architecture, scanning modes, and reconstruction algorithm. The experiment results of plate-like fossils, insulated gate bipolar translator module, ball grid array packaging, and printed circuit board are also presented to demonstrate micro-CL's ability for 3D imaging of flat specimens and universal applicability in various fields.

  15. Integrated Electrode Arrays for Neuro-Prosthetic Implants

    NASA Technical Reports Server (NTRS)

    Brandon, Erik; Mojarradi, Mohammede

    2003-01-01

    Arrays of electrodes integrated with chip-scale packages and silicon-based integrated circuits have been proposed for use as medical electronic implants, including neuro-prosthetic devices that might be implanted in brains of patients who suffer from strokes, spinal-cord injuries, or amyotrophic lateral sclerosis. The electrodes of such a device would pick up signals from neurons in the cerebral cortex, and the integrated circuit would perform acquisition and preprocessing of signal data. The output of the integrated circuit could be used to generate, for example, commands for a robotic arm. Electrode arrays capable of acquiring electrical signals from neurons already exist, but heretofore, there has been no convenient means to integrate these arrays with integrated-circuit chips. Such integration is needed in order to eliminate the need for the extensive cabling now used to pass neural signals to data-acquisition and -processing equipment outside the body. The proposed integration would enable progress toward neuro-prostheses that would be less restrictive of patients mobility. An array of electrodes would comprise a set of thin wires of suitable length and composition protruding from and supported by a fine-pitch micro-ball grid array or chip-scale package (see figure). The associated integrated circuit would be mounted on the package face opposite the probe face, using the solder bumps (the balls of the ball grid array) to make the electrical connections between the probes and the input terminals of the integrated circuit. The key innovation is the insertion of probe wires of the appropriate length and material into the solder bumps through a reflow process, thereby fixing the probes in place and electrically connecting them with the integrated circuit. The probes could be tailored to any distribution of lengths and made of any suitable metal that could be drawn into fine wires. Furthermore, the wires could be coated with an insulating layer using anodization or other processes, to achieve the correct electrical impedance. The probe wires and the packaging materials must be biocompatible using such materials as lead-free solders. For protection, the chip and package can be coated with parylene.

  16. A comparative analysis of dynamic grids vs. virtual grids using the A3pviGrid framework.

    PubMed

    Shankaranarayanan, Avinas; Amaldas, Christine

    2010-11-01

    With the proliferation of Quad/Multi-core micro-processors in mainstream platforms such as desktops and workstations; a large number of unused CPU cycles can be utilized for running virtual machines (VMs) as dynamic nodes in distributed environments. Grid services and its service oriented business broker now termed cloud computing could deploy image based virtualization platforms enabling agent based resource management and dynamic fault management. In this paper we present an efficient way of utilizing heterogeneous virtual machines on idle desktops as an environment for consumption of high performance grid services. Spurious and exponential increases in the size of the datasets are constant concerns in medical and pharmaceutical industries due to the constant discovery and publication of large sequence databases. Traditional algorithms are not modeled at handing large data sizes under sudden and dynamic changes in the execution environment as previously discussed. This research was undertaken to compare our previous results with running the same test dataset with that of a virtual Grid platform using virtual machines (Virtualization). The implemented architecture, A3pviGrid utilizes game theoretic optimization and agent based team formation (Coalition) algorithms to improve upon scalability with respect to team formation. Due to the dynamic nature of distributed systems (as discussed in our previous work) all interactions were made local within a team transparently. This paper is a proof of concept of an experimental mini-Grid test-bed compared to running the platform on local virtual machines on a local test cluster. This was done to give every agent its own execution platform enabling anonymity and better control of the dynamic environmental parameters. We also analyze performance and scalability of Blast in a multiple virtual node setup and present our findings. This paper is an extension of our previous research on improving the BLAST application framework using dynamic Grids on virtualization platforms such as the virtual box.

  17. [Gymnastic school sport injuries--aspects of preventive measures].

    PubMed

    Knobloch, K; Jagodzinski, M; Haasper, C; Zeichen, J; Krettek, C

    2006-06-01

    Gymnastic school sport injuries account for a significant morbidity and mortality among children and adolescents. Preventive issues may be derived from a thorough in-depth analysis of the pattern and circumstances of gymnastic injuries. During a school year among 3993 schools in 43 889 classes with 993 056 pupils 2234 school sport injuries have been reported to the Gemeinde Unfall Versicherung (GUV) Niedersachsen, Germany. Gymnastic sport injuries account for 18 % (403 accidents), which is second after ball sports injuries. Regarding the distribution of the gymnastic disciplines, vault was the major discipline with 34 %, followed by floor exercise (21.3 %), mini- and competition trampoline (16.8 %), and parallel bars (8.2 %). The analysis of the type of injury during vault accidents revealed contusion (31 %) as the predominant injury, followed by sprains (15.4 %), and fractures (15.4 %). Floor exercise injuries distributed among distorsions (26.7 %), contusions (18.6 %), muscle tears (14 %). Back injuries especially of the cervical and thoracic spine, accounted for 40 % of all their injuries. Minor head injuries account for 4.7 % of all floor exercise injuries. Mini-trampoline injuries distribute among contusions (30 %), fractures (22.5 %), distorsions (7.5 %). 21.8 % collisions were noted against a box in comparison to 6.8 % in case of the horse. Gymnast injuries account for a significant number of all school sport related injuries. Vault and floor exercise account for the vast majority of all injuries, with alarming high numbers of spine injuries during floor exercise and mini-trampoline. A preservation of a high level of attention during a sport lesson, safety measures including appropriate mats and landing zones are mandatory to reduce injuries. Muscle injuries and ankle sprains can be prevented by a prospective proprioceptive training intervention to be implemented in school sports.

  18. Effect of different types of nanofluids on free convection heat transfer around spherical mini-reactor

    NASA Astrophysics Data System (ADS)

    Jayhooni, S. M. H.; Rahimpour, M. R.

    2013-06-01

    In the present paper, free convection fluid flow and heat transfer of various water based nanofluids has been investigated numerically around a spherical mini-reactor. This numerical simulation is a finite-volume, steady, two dimensions, elliptic and multi-grid solver. The wall of the spherical mini-reactor are maintained at constant temperature TH and the temperature of nanofluid far from it is considered constant (TC). Computational fluid dynamics (CFD) is used for solving the relevant mathematical expressions for free convection heat transfer around it. The numerical simulation and available correlation are valid for based fluid. The effects of pertinent parameters, such as, Rayleigh number, and the volume fraction of the nanoparticles in the fluid flow and heat transfer around the spherical mini-reactor are investigated. This study has been carried out for the pertinent parameters in the following ranges: the Rayleigh number of base fluid is assumed to be less than 109 (Ra < 109). Besides, the percentages of the volumetric fraction of nanoparticle which is used for preparing the nanofluids, are between 0 and 4 (0 ⩽ φ ⩽ 4%). The obtained results show that the average Nusselt number for a range of the solid volume fraction of the nanofluid increases by increasing the Rayleigh number. Finally, the heat transfer has been enhanced not only by increasing the particle volume fraction but also by decreasing the size of particle diameter. Moreover, the Churchill's correlation is approximately appropriate for predicting the free convection heat transfer inside diverse kinds of nanofluids especially for high range of Rayleigh numbers.

  19. A comparative study on the motion of various objects inside an air tunnel

    NASA Astrophysics Data System (ADS)

    Shibani, Wanis Mustafa E.; Zulkafli, Mohd Fadhli; Basunoand, Bambang

    2017-04-01

    This paper presents a comparative study of the movement of various rigid bodies through an air tunnel for both two and three-dimensional flow problems. Three kinds of objects under investigation are in the form of box, ball and wedge shape. The investigation was carried out through the use of a commercial CFD software, named Fluent, in order to determine aerodynamic forces, act on the object as well as to track its movement. Adopted numerical scheme is the time-averaged Navier-Stokes equation with k - ɛ as its turbulence modeling and the scheme was solved using the SIMPLE algorithm. Triangular elements grid was used in 2D case, while tetrahedron elements for 3D case. Grid independence studies were performed for each problem from a coarse to fine grid. The motion of an object is restricted in one direction only and is found by tracking its center of mass at every time step. The result indicates the movement of the object is increasing as the flow moves down stream and the box have the fastest speed compare to the other two shapes for both 2D and 3D cases.

  20. Decentralized energy systems for clean electricity access

    NASA Astrophysics Data System (ADS)

    Alstone, Peter; Gershenson, Dimitry; Kammen, Daniel M.

    2015-04-01

    Innovative approaches are needed to address the needs of the 1.3 billion people lacking electricity, while simultaneously transitioning to a decarbonized energy system. With particular focus on the energy needs of the underserved, we present an analytic and conceptual framework that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. A historical analysis shows that the present day is a unique moment in the history of electrification where decentralized energy networks are rapidly spreading, based on super-efficient end-use appliances and low-cost photovoltaics. We document how this evolution is supported by critical and widely available information technologies, particularly mobile phones and virtual financial services. These disruptive technology systems can rapidly increase access to basic electricity services and directly inform the emerging Sustainable Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, inclusive energy systems.

  1. Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.

    PubMed

    Šálek, Ondřej; Matolín, Milan; Gryc, Lubomír

    2018-02-01

    Localization of size-limited gamma-ray anomalies plays a fundamental role in uranium prospecting and environmental studies. Possibilities of a newly developed mini-airborne gamma-ray spectrometric equipment were tested on a uranium anomaly near the village of Třebsko, Czech Republic. The measurement equipment was based on a scintillation gamma-ray spectrometer specially developed for unmanned aerial vehicles (UAV) mounted on powerful hexacopter. The gamma-ray spectrometer has two 103 cm 3 BGO scintillation detectors of relatively high sensitivity. The tested anomaly, which is 80 m by 40 m in size, was investigated by ground gamma-ray spectrometric measurement in a detail rectangular measurement grid. Average uranium concentration is 25 mg/kg eU attaining 700 mg/kg eU locally. The mini-airborne measurement across the anomaly was carried out on three 100 m long parallel profiles at eight flight altitudes from 5 to 40 m above the ground. The resulting 1 s 1024 channel gamma-ray spectra, recorded in counts per second (cps), were processed to concentration units of K, U and Th, while total count (TC) was reported in cps. Increased gamma ray intensity of the anomaly was indicated by mini-airborne measurement at all profiles and altitudes, including the highest altitude of 40 m, at which the recorded intensity is close to the natural radiation background. The reported instrument is able to record data with comparable quality as standard airborne survey, due to relative sensitive detector, lower flight altitude and relatively low flight speed of 1 m/s. The presented experiment brings new experience with using unmanned semi-autonomous aerial vehicles and the latest mini-airborne radiometric instrument. The experiment has demonstrated the instrument's ability to localize size-limited uranium anomalies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Comparative Reliability Studies and Analysis of Au, Pd-Coated Cu and Pd-Doped Cu Wire in Microelectronics Packaging

    PubMed Central

    Chong Leong, Gan; Uda, Hashim

    2013-01-01

    This paper compares and discusses the wearout reliability and analysis of Gold (Au), Palladium (Pd) coated Cu and Pd-doped Cu wires used in fineline Ball Grid Array (BGA) package. Intermetallic compound (IMC) thickness measurement has been carried out to estimate the coefficient of diffusion (Do) under various aging conditions of different bonding wires. Wire pull and ball bond shear strengths have been analyzed and we found smaller variation in Pd-doped Cu wire compared to Au and Pd-doped Cu wire. Au bonds were identified to have faster IMC formation, compared to slower IMC growth of Cu. The obtained weibull slope, β of three bonding wires are greater than 1.0 and belong to wearout reliability data point. Pd-doped Cu wire exhibits larger time-to-failure and cycles-to-failure in both wearout reliability tests in Highly Accelerated Temperature and Humidity (HAST) and Temperature Cycling (TC) tests. This proves Pd-doped Cu wire has a greater potential and higher reliability margin compared to Au and Pd-coated Cu wires. PMID:24244344

  3. Formation and evolution of Tar Balls from Northwestern US wildfires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sedlacek III, Arthur J.; Buseck, Peter R.; Adachi, Kouji

    Biomass burning is a major source of light-absorbing black and brown carbonaceous particles. Brown carbon is a poorly characterized mixture that includes tar balls (TBs), a type of carbonaceous particle apparently unique to biomass burning. Here we describe the first atmospheric observations of the formation and evolution of TBs from forest fires. Aerosol particles were collected on TEM grids during aircraft transects at various downwind distances from the Colockum Tarp wildland fire. TB mass fractions, derived from TEM and in-situ measurements, increased from < 1 % near the fire to 31–45 % downwind, with little change in TB diameter. Single-scatteringmore » albedo determined from scattering and absorption measurements increased slightly with downwind distance. Similar TEM and SSA results were observed sampling multiple wildfires. Mie calculations are consistent with weak light absorbance by TBs (m = 1.56–0.02i) but not consistent with order-of-magnitude stronger absorption observed in different settings. The field-derived TB mass fractions reported here indicate that this particle type should be accounted for in biomass-burn emission inventories.« less

  4. Formation and evolution of Tar Balls from Northwestern US wildfires

    DOE PAGES

    Sedlacek III, Arthur J.; Buseck, Peter R.; Adachi, Kouji; ...

    2018-01-30

    Biomass burning is a major source of light-absorbing black and brown carbonaceous particles. Brown carbon is a poorly characterized mixture that includes tar balls (TBs), a type of carbonaceous particle apparently unique to biomass burning. Here we describe the first atmospheric observations of the formation and evolution of TBs from forest fires. Aerosol particles were collected on TEM grids during aircraft transects at various downwind distances from the Colockum Tarp wildland fire. TB mass fractions, derived from TEM and in-situ measurements, increased from < 1 % near the fire to 31–45 % downwind, with little change in TB diameter. Single-scatteringmore » albedo determined from scattering and absorption measurements increased slightly with downwind distance. Similar TEM and SSA results were observed sampling multiple wildfires. Mie calculations are consistent with weak light absorbance by TBs (m = 1.56–0.02i) but not consistent with order-of-magnitude stronger absorption observed in different settings. The field-derived TB mass fractions reported here indicate that this particle type should be accounted for in biomass-burn emission inventories.« less

  5. Geometric errors in 3D optical metrology systems

    NASA Astrophysics Data System (ADS)

    Harding, Kevin; Nafis, Chris

    2008-08-01

    The field of 3D optical metrology has seen significant growth in the commercial market in recent years. The methods of using structured light to obtain 3D range data is well documented in the literature, and continues to be an area of development in universities. However, the step between getting 3D data, and getting geometrically correct 3D data that can be used for metrology is not nearly as well developed. Mechanical metrology systems such as CMMs have long established standard means of verifying the geometric accuracies of their systems. Both local and volumentric measurments are characterized on such system using tooling balls, grid plates, and ball bars. This paper will explore the tools needed to characterize and calibrate an optical metrology system, and discuss the nature of the geometric errors often found in such systems, and suggest what may be a viable standard method of doing characterization of 3D optical systems. Finally, we will present a tradeoff analysis of ways to correct geometric errors in an optical systems considering what can be gained by hardware methods versus software corrections.

  6. Thermal Cycle Reliability and Failure Mechanisms of CCGA and PBGA Assemblies with and without Corner Staking

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2008-01-01

    Area array packages (AAPs) with 1.27 mm pitch have been the packages of choice for commercial applications; they are now starting to be implemented for use in military and aerospace applications. Thermal cycling characteristics of plastic ball grid array (PBGA) and chip scale package assemblies, because of their wide usage for commercial applications, have been extensively reported on in literature. Thermal cycling represents the on-off environmental condition for most electronic products and therefore is a key factor that defines reliability.However, very limited data is available for thermal cycling behavior of ceramic packages commonly used for the aerospace applications. For high reliability applications, numerous AAPs are available with an identical design pattern both in ceramic and plastic packages. This paper compares assembly reliability of ceramic and plastic packages with the identical inputs/outputs(I/Os) and pattern. The ceramic package was in the form of ceramic column grid array (CCGA) with 560 I/Os peripheral array with the identical pad design as its plastic counterpart.

  7. Electrification pathways for Kenya-linking spatial electrification analysis and medium to long term energy planning

    NASA Astrophysics Data System (ADS)

    Moksnes, Nandi; Korkovelos, Alexandros; Mentis, Dimitrios; Howells, Mark

    2017-09-01

    In September 2015 UN announced 17 Sustainable Development goals (SDG) from which goal number 7 envisions universal access to modern energy services for all by 2030. In Kenya only about 46% of the population currently has access to electricity. This paper analyses hypothetical scenarios, and selected implications, investigating pathways that would allow the country to reach its electrification targets by 2030. Two modelling tools were used for the purposes of this study, namely OnSSET and OSeMOSYS. The tools were soft-linked in order to capture both the spatial and temporal dynamics of their nature. Two electricity demand scenarios were developed representing low and high end user consumption goals respectively. Indicatively, results show that geothermal, coal, hydro and natural gas would consist the optimal energy mix for the centralized national grid. However, in the case of the low demand scenario a high penetration of stand-alone systems is evident in the country, reaching out to approximately 47% of the electrified population. Increasing end user consumption leads to a shift in the optimal technology mix, with higher penetration of mini-grid technologies and grid extension.

  8. Adaptive and dynamic meshing methods for numerical simulations

    NASA Astrophysics Data System (ADS)

    Acikgoz, Nazmiye

    For the numerical simulation of many problems of engineering interest, it is desirable to have an automated mesh adaption tool capable of producing high quality meshes with an affordably low number of mesh points. This is important especially for problems, which are characterized by anisotropic features of the solution and require mesh clustering in the direction of high gradients. Another significant issue in meshing emerges in the area of unsteady simulations with moving boundaries or interfaces, where the motion of the boundary has to be accommodated by deforming the computational grid. Similarly, there exist problems where current mesh needs to be adapted to get more accurate solutions because either the high gradient regions are initially predicted inaccurately or they change location throughout the simulation. To solve these problems, we propose three novel procedures. For this purpose, in the first part of this work, we present an optimization procedure for three-dimensional anisotropic tetrahedral grids based on metric-driven h-adaptation. The desired anisotropy in the grid is dictated by a metric that defines the size, shape, and orientation of the grid elements throughout the computational domain. Through the use of topological and geometrical operators, the mesh is iteratively adapted until the final mesh minimizes a given objective function. In this work, the objective function measures the distance between the metric of each simplex and a target metric, which can be either user-defined (a-priori) or the result of a-posteriori error analysis. During the adaptation process, one tries to decrease the metric-based objective function until the final mesh is compliant with the target within a given tolerance. However, in regions such as corners and complex face intersections, the compliance condition was found to be very difficult or sometimes impossible to satisfy. In order to address this issue, we propose an optimization process based on an ad-hoc application of the simulated annealing technique, which improves the likelihood of removing poor elements from the grid. Moreover, a local implementation of the simulated annealing is proposed to reduce the computational cost. Many challenging multi-physics and multi-field problems that are unsteady in nature are characterized by moving boundaries and/or interfaces. When the boundary displacements are large, which typically occurs when implicit time marching procedures are used, degenerate elements are easily formed in the grid such that frequent remeshing is required. To deal with this problem, in the second part of this work, we propose a new r-adaptation methodology. The new technique is valid for both simplicial (e.g., triangular, tet) and non-simplicial (e.g., quadrilateral, hex) deforming grids that undergo large imposed displacements at their boundaries. A two- or three-dimensional grid is deformed using a network of linear springs composed of edge springs and a set of virtual springs. The virtual springs are constructed in such a way as to oppose element collapsing. This is accomplished by confining each vertex to its ball through springs that are attached to the vertex and its projection on the ball entities. The resulting linear problem is solved using a preconditioned conjugate gradient method. The new method is compared with the classical spring analogy technique in two- and three-dimensional examples, highlighting the performance improvements achieved by the new method. Meshes are an important part of numerical simulations. Depending on the geometry and flow conditions, the most suitable mesh for each particular problem is different. Meshes are usually generated by either using a suitable software package or solving a PDE. In both cases, engineering intuition plays a significant role in deciding where clusterings should take place. In addition, for unsteady problems, the gradients vary for each time step, which requires frequent remeshing during simulations. Therefore, in order to minimize user intervention and prevent frequent remeshings, we conclude this work by defining a novel mesh adaptation technique that integrates metric based target mesh definitions with the ball-vertex mesh deformation method. In this new approach, the entire mesh is deformed based on either an a-priori or an a-posteriori error estimator. In other words, nodal points are repositioned upon application of a force field in order to comply with the target mesh or to get more accurate solutions. The method has been tested for two-dimensional problems of a-priori metric definitions as well as for oblique shock clusterings.

  9. Biomass Burning Research Using DOE ARM Single-Particle Soot Photometer (SP2) Field Campaign Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onasch, Timothy B; Sedlacek, Arthur J; Lewis, Ernie

    The focus of this laboratory study was to investigate the chemical and optical properties, and the detection efficiencies, of tar balls generated in the laboratory using the same instruments deployed on the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Gulfstream-1 (G-1) aircraft during the 2013 Biomass Burning Observation Project (BBOP) field study, during which tar balls were observed in wildland biomass burning particulate emissions. Key goals of this laboratory study were: (a) measuring the chemical composition of tar balls to provide insights into the atmospheric processes that form (evaporation/oxidation) and modify them in biomass burningmore » plumes, (b) identifying whether tar balls contain refractory black carbon, (c) determining the collection efficiencies of tar balls impacting on the 600oC heated tungsten vaporizer in the Aerodyne Soot Particle Aerosol Mass Spectrometer (SP-AMS) (i.e., given the observed low volatilities, AMS measurements might underestimate organic biomass burning plume loadings), and (d) measuring the wavelength-dependent, mass-specific absorption cross-sections of brown carbon components of tar balls. This project was funded primarily by the DOE Atmospheric System Research (ASR) program, and the ARM Facility made their single-particle soot photometer (SP2) available for September 1-September 31, 2016 in the Aerodyne laboratories. The ARM mentor (Dr. Sedlacek) requested no funds for mentorship or data reduction. All ARM SP2 data collected as part of this project are archived in the ARM Data Archive in accordance with established protocols. The main objectives of the ARM Biomass Burning Observation Period (BBOP, July-October, 2013) field campaign were to (1) assess the impact of wildland fires in the Pacific Northwest on climate, through near-field and regional intensive measurement campaigns, and (2) investigate agricultural burns to determine how those biomass burn plumes differ from those from wildland fires. During BBOP, tar balls, small solid particles of organic substances, were observed downwind from wildland fires (at plume ages of 0-3 hours), but not agricultural burns. Observations of the tar balls on transmission electron microscope (TEM) grids suggest that they formed during atmospheric transport, likely due to the same atmospheric processes that increased the oxidation levels of the organic aerosol. Preliminary analyses suggest that tar balls may account for almost 50% of the total particle number, and 30% of the total organic particle mass, of the aerosol emitted from the burning events. These BBOP observations are described in detail in a manuscript in preparation (Sedlacek et al., 2017). The current laboratory study lasted four weeks and was conducted in the aerosol laboratories located at Aerodyne Research, Inc. in Billerica, Massachusetts. Tar balls were generated from several different biomass fuels, including samples from BBOP-related field sites, following literature procedures (Hoffer, Tóth, Nyirö-Kósa, Pósfai, and Gelencsér, 2016; Tóth, Hoffer, Nyirö-Kósa, Pósfai, and Gelencsér, 2014), and they were characterized using the same equipment used during the 2013 BBOP study, specifically the SP-AMS, SP2 and TEM. This study determined that laboratory-generated tar balls (1) are refractory with respect to TEM analysis in a similar manner to those collected during BBOP from wildland fires, (2) are composed of organic material with some refractory carbon components, (3) can be measured quantitatively by the SP-AMS, strengthening observations during BBOP, (4) absorb visible light, and (4) are dominated by unsaturated hydrocarbons that may be responsible for their light-absorbing properties. The results from this project are already being incorporated into our analysis of the formation processes and emission rates of tar balls as a function of fuel and combustion conditions from wildland fires.« less

  10. Mini-biomass electric generation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliot, G.

    1997-12-01

    Awareness of the living standards achieved by others has resulted in a Russian population which is yearning for a higher standard of living. Such a situation demands access to affordable electricity in remote areas. Remote energy requirements creates the need to transport power or fossil fuels over long distances. Application of local renewable energy resources could eliminate the need for and costs of long distance power supply. Vast forest resources spread over most of Russia make biomass an ideal renewable energy candidate for many off-grid villages. The primary objective for this preliminary evaluation is to examine the economic feasibility ofmore » replacing distillate and gasoline fuels with local waste biomass as the primary fuel for village energy in outlying regions of Russia. Approximately 20 million people live in regions where Russia`s Unified Electric System grid does not penetrate. Most of these people are connected to smaller independent power grids, but approximately 8 million Russians live in off-grid villages and small towns served by stand-alone generation systems using either diesel fuel or gasoline. The off-grid villages depend on expensive distillate fuels and gasoline for combustion in small boilers and engines. These fuels are used for both electricity generation and district heating. Typically, diesel generator systems with a capacity of up to 1 MW serve a collective farm, settlement and their rural enterprises (there are an estimated 10,000 such systems in Russia). Smaller gasoline-fueled generator systems with capacities in the range of 0.5 - 5 kW serve smaller farms or rural enterprises (there are about 60,000 such systems in Russia).« less

  11. Driving rural energy access: a second-life application for electric-vehicle batteries

    NASA Astrophysics Data System (ADS)

    Ambrose, Hanjiro; Gershenson, Dimitry; Gershenson, Alexander; Kammen, Daniel

    2014-09-01

    Building rural energy infrastructure in developing countries remains a significant financial, policy and technological challenge. The growth of the electric vehicle (EV) industry will rapidly expand the resource of partially degraded, ‘retired’, but still usable batteries in 2016 and beyond. These batteries can become the storage hubs for community-scale grids in the developing world. We model the resource and performance potential and the technological and economic aspects of the utilization of retired EV batteries in rural and decentralized mini- and micro-grids. We develop and explore four economic scenarios across three battery chemistries to examine the impacts on transport and recycling logistics. We find that EVs sold through 2020 will produce 120-549 GWh in retired storage potential by 2028. Outlining two use scenarios for decentralized systems, we discuss the possible impacts on global electrification rates. We find that used EV batteries can provide a cost-effective and lower environmental impact alternative to existing lead-acid storage systems in these applications.

  12. Energy access and sustainable development

    NASA Astrophysics Data System (ADS)

    Kammen, Daniel M.; Alstone, Peter; Gershenson, Dimitry

    2015-03-01

    With 1.4 billion people lacking electricity to light their homes and provide other basic services, or to conduct business, and all of humanity (and particularly the poor) are in need of a decarbonized energy system can close the energy access gap and protect the global climate system. With particular focus on addressing the energy needs of the underserved, we present an analytical framework informed by historical trends and contemporary technological, social, and institutional conditions that clarifies the heterogeneous continuum of centralized on-grid electricity, autonomous mini- or community grids, and distributed, individual energy services. We find that the current day is a unique moment of innovation in decentralized energy networks based on super-efficient end-use technology and low-cost photovoltaics, supported by rapidly spreading information technology, particularly mobile phones. Collectively these disruptive technology systems could rapidly increase energy access, contributing to meeting the Millennium Development Goals for quality of life, while simultaneously driving action towards low-carbon, Earth-sustaining, energy systems.

  13. Nine martian years of dust optical depth observations: A reference dataset

    NASA Astrophysics Data System (ADS)

    Montabone, Luca; Forget, Francois; Kleinboehl, Armin; Kass, David; Wilson, R. John; Millour, Ehouarn; Smith, Michael; Lewis, Stephen; Cantor, Bruce; Lemmon, Mark; Wolff, Michael

    2016-07-01

    We present a multi-annual reference dataset of the horizontal distribution of airborne dust from martian year 24 to 32 using observations of the martian atmosphere from April 1999 to June 2015 made by the Thermal Emission Spectrometer (TES) aboard Mars Global Surveyor, the Thermal Emission Imaging System (THEMIS) aboard Mars Odyssey, and the Mars Climate Sounder (MCS) aboard Mars Reconnaissance Orbiter (MRO). Our methodology to build the dataset works by gridding the available retrievals of column dust optical depth (CDOD) from TES and THEMIS nadir observations, as well as the estimates of this quantity from MCS limb observations. The resulting (irregularly) gridded maps (one per sol) were validated with independent observations of CDOD by PanCam cameras and Mini-TES spectrometers aboard the Mars Exploration Rovers "Spirit" and "Opportunity", by the Surface Stereo Imager aboard the Phoenix lander, and by the Compact Reconnaissance Imaging Spectrometer for Mars aboard MRO. Finally, regular maps of CDOD are produced by spatially interpolating the irregularly gridded maps using a kriging method. These latter maps are used as dust scenarios in the Mars Climate Database (MCD) version 5, and are useful in many modelling applications. The two datasets (daily irregularly gridded maps and regularly kriged maps) for the nine available martian years are publicly available as NetCDF files and can be downloaded from the MCD website at the URL: http://www-mars.lmd.jussieu.fr/mars/dust_climatology/index.html

  14. Evaluation of ENEPIG and Immersion Silver Surface Finishes Under Drop Loading

    NASA Astrophysics Data System (ADS)

    Pearl, Adam; Osterman, Michael; Pecht, Michael

    2016-01-01

    The effect of printed circuit board surface finish on the drop loading reliability of ball grid array (BGA) solder interconnects has been examined. The finishes examined include electroless nickel/electroless palladium/immersion gold (ENEPIG) and immersion silver (ImAg). For the ENEPIG finish, the effect of the Pd plating layer thickness was evaluated by testing two different thicknesses: 0.05 μm and 0.15 μm. BGA components were assembled onto the boards using either eutectic Sn-Pb or Sn-3.0Ag-0.5Cu (SAC305) solder. Prior to testing, the assembled boards were aged at 100°C for 24 h or 500 h. The boards were then subjected to multiple 1500-g drop tests. Failure analysis indicated the primary failure site for the BGAs to be the solder balls at the board-side solder interface. Cratering of the board laminate under the solder-attached pads was also observed. In all cases, isothermal aging reduced the number of drops to failure. The components soldered onto the boards with the 0.15- μm-Pd ENEPIG finish with the SAC305 solder had the highest characteristic life, at 234 drops to failure, compared with the other finish-solder combinations.

  15. Universal access to electricity in Burkina Faso: scaling-up renewable energy technologies

    NASA Astrophysics Data System (ADS)

    Moner-Girona, M.; Bódis, K.; Huld, T.; Kougias, I.; Szabó, S.

    2016-08-01

    This paper describes the status quo of the power sector in Burkina Faso, its limitations, and develops a new methodology that through spatial analysis processes with the aim to provide a possible pathway for universal electricity access. Following the SE4All initiative approach, it recommends the more extensive use of distributed renewable energy systems to increase access to electricity on an accelerated timeline. Less than 5% of the rural population in Burkina Faso have currently access to electricity and supply is lacking at many social structures such as schools and hospitals. Energy access achievements in Burkina Faso are still very modest. According to the latest SE4All Global Tracking Framework (2015), the access to electricity annual growth rate in Burkina Faso from 2010 to 2012 is 0%. The rural electrification strategy for Burkina Faso is scattered in several electricity sector development policies: there is a need of defining a concrete action plan. Planning and coordination between grid extension and the off-grid electrification programme is essential to reach a long-term sustainable energy model and prevent high avoidable infrastructure investments. This paper goes into details on the methodology and findings of the developed Geographic Information Systems tool. The aim of the dynamic planning tool is to provide support to the national government and development partners to define an alternative electrification plan. Burkina Faso proves to be paradigm case for the methodology as its national policy for electrification is still dominated by grid extension and the government subsidising fossil fuel electricity production. However, the results of our analysis suggest that the current grid extension is becoming inefficient and unsustainable in order to reach the national energy access targets. The results also suggest that Burkina Faso’s rural electrification strategy should be driven local renewable resources to power distributed mini-grids. We find that this approach would connect more people to power more quickly, and would reduce fossil fuel use that would otherwise be necessary for grid extension options.

  16. Global 3-D FDTD Maxwell's-Equations Modeling of Ionospheric Disturbances Associated with Earthquakes Using an Optimized Geodesic Grid

    NASA Astrophysics Data System (ADS)

    Simpson, J. J.; Taflove, A.

    2005-12-01

    We report a finite-difference time-domain (FDTD) computational solution of Maxwell's equations [1] that models the possibility of detecting and characterizing ionospheric disturbances above seismic regions. Specifically, we study anomalies in Schumann resonance spectra in the extremely low frequency (ELF) range below 30 Hz as observed in Japan caused by a hypothetical cylindrical ionospheric disturbance above Taiwan. We consider excitation of the global Earth-ionosphere waveguide by lightning in three major thunderstorm regions of the world: Southeast Asia, South America (Amazon region), and Africa. Furthermore, we investigate varying geometries and characteristics of the ionospheric disturbance above Taiwan. The FDTD technique used in this study enables a direct, full-vector, three-dimensional (3-D) time-domain Maxwell's equations calculation of round-the-world ELF propagation accounting for arbitrary horizontal as well as vertical geometrical and electrical inhomogeneities and anisotropies of the excitation, ionosphere, lithosphere, and oceans. Our entire-Earth model grids the annular lithosphere-atmosphere volume within 100 km of sea level, and contains over 6,500,000 grid-points (63 km laterally between adjacent grid points, 5 km radial resolution). We use our recently developed spherical geodesic gridding technique having a spatial discretization best described as resembling the surface of a soccer ball [2]. The grid is comprised entirely of hexagonal cells except for a small fixed number of pentagonal cells needed for completion. Grid-cell areas and locations are optimized to yield a smoothly varying area difference between adjacent cells, thereby maximizing numerical convergence. We compare our calculated results with measured data prior to the Chi-Chi earthquake in Taiwan as reported by Hayakawa et. al. [3]. Acknowledgement This work was suggested by Dr. Masashi Hayakawa, University of Electro-Communications, Chofugaoka, Chofu Tokyo. References [1] A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time- Domain Method, 3rd. ed. Norwood, MA: Artech House, 2005. [2] M. Hayakawa, K. Ohta, A. P. Nickolaenko, and Y. Ando, "Anomalous effect in Schumann resonance phenomena observed in Japan, possibly associated with the Chi-Chi earthquake in Taiwan," Ann. Geophysicae, in press. [3] J. J. Simpson and A. Taflove, "3-D FDTD modeling of ULF/ELF propagation within the global Earth-ionosphere cavity using an optimized geodesic grid," Proc. IEEE AP-S International Symposium, Washington, D.C., July 2005.

  17. Comparison of Monte Carlo simulated and measured performance parameters of miniPET scanner

    NASA Astrophysics Data System (ADS)

    Kis, S. A.; Emri, M.; Opposits, G.; Bükki, T.; Valastyán, I.; Hegyesi, Gy.; Imrek, J.; Kalinka, G.; Molnár, J.; Novák, D.; Végh, J.; Kerek, A.; Trón, L.; Balkay, L.

    2007-02-01

    In vivo imaging of small laboratory animals is a valuable tool in the development of new drugs. For this purpose, miniPET, an easy to scale modular small animal PET camera has been developed at our institutes. The system has four modules, which makes it possible to rotate the whole detector system around the axis of the field of view. Data collection and image reconstruction are performed using a data acquisition (DAQ) module with Ethernet communication facility and a computer cluster of commercial PCs. Performance tests were carried out to determine system parameters, such as energy resolution, sensitivity and noise equivalent count rate. A modified GEANT4-based GATE Monte Carlo software package was used to simulate PET data analogous to those of the performance measurements. GATE was run on a Linux cluster of 10 processors (64 bit, Xeon with 3.0 GHz) and controlled by a SUN grid engine. The application of this special computer cluster reduced the time necessary for the simulations by an order of magnitude. The simulated energy spectra, maximum rate of true coincidences and sensitivity of the camera were in good agreement with the measured parameters.

  18. Negative ion beam characterisation in BATMAN by mini-STRIKE: Improved design and new measurements

    NASA Astrophysics Data System (ADS)

    Serianni, G.; Bonomo, F.; Brombin, M.; Cervaro, V.; Chitarin, G.; Cristofaro, S.; Delogu, R.; De Muri, M.; Fasolo, D.; Fonnesu, N.; Franchin, L.; Franzen, P.; Ghiraldelli, R.; Molon, F.; Muraro, A.; Pasqualotto, R.; Ruf, B.; Schiesko, L.; Tollin, M.; Veltri, P.

    2015-04-01

    The ITER project requires additional heating provided by two injectors of neutral beams resulting from the neutralisation of accelerated negative ions. To study and optimise negative ion production, the SPIDER test facility (particle energy 100keV; beam current 50A) is under construction in Padova, with the aim of testing beam characteristics and to verify the source proper operation. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon fibre carbon composite tiles. Some prototype tiles have been employed in 2012 as a small-scale version (mini-STRIKE) of the entire system to investigate the features of the beam from BATMAN at IPP-Garching. As the BATMAN beamlets are superposed at the measurement position, about 1m from the grounded grid, an actively cooled copper mask is located in front of the tiles; holes in the mask create an artificial beamlet structure. Recently the mini-STRIKE has been updated, taking into account the results obtained in the first campaign. In particular the spatial resolution of the system has been improved by increasing the number of the copper mask holes. Moreover a custom measurement system has been realized for the thermocouple signals and employed in BATMAN in view of its use in SPIDER. The present contribution gives a description of the new design of the system as well as of the thermocouple measurements system and its field test. A new series of measurements has been carried out in BATMAN. The BATMAN beam characterisation in different experimental conditions is presented.

  19. Negative ion beam characterisation in BATMAN by mini-STRIKE: Improved design and new measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; Brombin, M.; Cervaro, V.

    The ITER project requires additional heating provided by two injectors of neutral beams resulting from the neutralisation of accelerated negative ions. To study and optimise negative ion production, the SPIDER test facility (particle energy 100keV; beam current 50A) is under construction in Padova, with the aim of testing beam characteristics and to verify the source proper operation. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon fibre carbon composite tiles. Some prototype tiles have been employed in 2012 as a small-scale version (mini-STRIKE) of the entire system to investigate the features ofmore » the beam from BATMAN at IPP-Garching. As the BATMAN beamlets are superposed at the measurement position, about 1m from the grounded grid, an actively cooled copper mask is located in front of the tiles; holes in the mask create an artificial beamlet structure. Recently the mini-STRIKE has been updated, taking into account the results obtained in the first campaign. In particular the spatial resolution of the system has been improved by increasing the number of the copper mask holes. Moreover a custom measurement system has been realized for the thermocouple signals and employed in BATMAN in view of its use in SPIDER. The present contribution gives a description of the new design of the system as well as of the thermocouple measurements system and its field test. A new series of measurements has been carried out in BATMAN. The BATMAN beam characterisation in different experimental conditions is presented.« less

  20. Experimental study of mini SCADA renewable energy management system on microgrid using Raspberry Pi

    NASA Astrophysics Data System (ADS)

    Tridianto, E.; Permatasari, P. D.; Ali, I. R.

    2018-03-01

    Renewable Energy Management System (REMS) is a device that can be able to monitor power through a microgrid. The purpose of this system is to optimize power usage that produced from renewable energy with the result that reduces power demand from the grid. To reach the goal this device manage the load power needs fully supplied by renewable energy when the power produced from renewable energy is higher than load demand, besides power surplus will be stored in battery in this way energy stored in battery can be used when it needed. When the power produced from renewable energy can not satisfy the power demand, power will supply by renewable energy and grid. This device uses power meters for record any power flow through microgrid. In order to manage power flow in microgrid this system use relay module. The user can find out energy consumption (consumed by the load) and production (produced by renewable energy) in a period of time so that the user can switch on the load in right time.

  1. Tar balls are processed, weakly absorbing, primary aerosol particles formed downwind of boreal forest fires

    NASA Astrophysics Data System (ADS)

    Sedlacek, A. J., III; Buseck, P. R.; Adachi, K.; Kleinman, L. I.; Onasch, T. B.; Springston, S. R.

    2017-12-01

    Biomass burning is a major source of light-absorbing black and brown carbonaceous aerosols Brown carbon is a poorly characterized mixture that includes tar balls (TBs), a type of carbonaceous particle unique to biomass burning. Here we describe the first atmospheric observations of the formation and evolution of TBs Aerosol particles were collected on TEM grids during individual aircraft transects at varying downwind distances from the Colockum Tarp wildland fire. The TEM images show primary particles transforming from viscous, impact-deformed particles to spherical TBs. The number fraction of TBs in the wildfire smoke plume increased from less than 5% in samples collected close to the emission source to greater than 40% after 3 hours of aging, with little change in downwind TB diameters. The TB mass fraction increased from 2% near the fire to 23±9% downwind. Single-scatter albedo determined from scattering and absorption measurements increased slightly with downwind distance. Mie calculations show this observation is consistent with weak light absorbance by TBs (m=1.56 - 0.02i) but not consistent with order-of-magnitude stronger absorption observed in different settings. The field-derived TB mass fractions reported here indicate that this particle type should be accounted for in biomass-burn emission inventories.

  2. Recrystallization Behavior in Mixed Solder Joints of BGA Components during Thermal Shock

    NASA Astrophysics Data System (ADS)

    Tan, Shihai; Han, Jing; Guo, Fu

    2018-03-01

    Sn-37Pb and Sn-3.0Ag-0.5Cu solder pastes printed onto a board were attached to ball grid array (BGA) samples using Sn-3.0Ag-0.5Cu solder balls. Before thermal shock, the initial grain orientations on the cross-section were obtained by scanning electron microscopy equipped with an electron backscattered diffraction system. Three mixed solder joints (two from the corner and another from the middle of the BGA component) and three lead-free solder joints (at the same positions) were selected to investigate the recrystallization behavior under thermal shock (TS) cycling conditions. All of the mixed and lead-free solder joints were initially single crystal. The results showed that recrystallization occurred in both the mixed and lead-free solder joints after 200 TS. For the mixed solder joints, more recrystallization was observed and the location of samples had a significant influence on their recrystallization behavior, while location was not as important for the lead-free samples after 200 TS in this study. Both the mixed and lead-free solder joints at the corner of BGA components showed the poorest reliability. According to misorientation distribution maps and subgrain rotation behaviors, the reliability of mixed solder joints was much poorer than that of lead-free solder joints.

  3. Science of Ball Lightning (Fire Ball)

    NASA Astrophysics Data System (ADS)

    Ohtsuki, Yoshi-Hiko

    1989-08-01

    The Table of Contents for the full book PDF is as follows: * Organizing Committee * Preface * Ball Lightning -- The Continuing Challenge * Hungarian Ball Lightning Observations in 1987 * Nature of Ball Lightning in Japan * Phenomenological and Psychological Analysis of 150 Austrian Ball Lightning Reports * Physical Problems and Physical Properties of Ball Lightning * Statistical Analysis of the Ball Lightning Properties * A Fluid-Dynamical Model for Ball Lightning and Bead Lightning * The Lifetime of Hill's Vortex * Electrical and Radiative Properties of Ball Lightning * The Candle Flame as a Model of Ball Lightning * A Model for Ball Lightning * The High-Temperature Physico-Chemical Processes in the Lightning Storm Atmosphere (A Physico-Chemical Model of Ball Lightning) * New Approach to Ball Lightning * A Calculation of Electric Field of Ball Lightning * The Physical Explanation to the UFO over Xinjiang, Northern West China * Electric Reconnection, Critical Ionization Velocity, Ponderomotive Force, and Their Applications to Triggered and Ball Lightning * The PLASMAK™ Configuration and Ball Lightning * Experimental Research on Ball Lightning * Performance of High-Voltage Test Facility Designed for Investigation of Ball Lightning * List of Participants

  4. Ball Screw Actuator Including a Compliant Ball Screw Stop

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)

    2015-01-01

    An actuator includes a ball nut, a ball screw, and a ball screw stop. The ball nut is adapted to receive an input torque and in response rotates and supplies a drive force. The ball screw extends through the ball nut and has a first end and a second end. The ball screw receives the drive force from the ball nut and in response selectively translates between a retract position and a extend position. The ball screw stop is mounted on the ball screw proximate the first end to translate therewith. The ball screw stop engages the ball nut when the ball screw is in the extend position, translates, with compliance, a predetermined distance toward the first end upon engaging the ball nut, and prevents further rotation of the ball screw upon translating the predetermined distance.

  5. Ball Screw Actuator Including a Compliant Ball Screw Stop

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)

    2017-01-01

    An actuator includes a ball nut, a ball screw, and a ball screw stop. The ball nut is adapted to receive an input torque and in response rotates and supplies a drive force. The ball screw extends through the ball nut and has a first end and a second end. The ball screw receives the drive force from the ball nut and in response selectively translates between a retract position and a extend position. The ball screw stop is mounted on the ball screw proximate the first end to translate therewith. The ball screw stop engages the ball nut when the ball screw is in the extend position, translates, with compliance, a predetermined distance toward the first end upon engaging the ball nut, and prevents further rotation of the ball screw upon translating the predetermined distance.

  6. A Model of BGA Thermal Fatigue Life Prediction Considering Load Sequence Effects

    PubMed Central

    Hu, Weiwei; Li, Yaqiu; Sun, Yufeng; Mosleh, Ali

    2016-01-01

    Accurate testing history data is necessary for all fatigue life prediction approaches, but such data is always deficient especially for the microelectronic devices. Additionally, the sequence of the individual load cycle plays an important role in physical fatigue damage. However, most of the existing models based on the linear damage accumulation rule ignore the sequence effects. This paper proposes a thermal fatigue life prediction model for ball grid array (BGA) packages to take into consideration the load sequence effects. For the purpose of improving the availability and accessibility of testing data, a new failure criterion is discussed and verified by simulation and experimentation. The consequences for the fatigue underlying sequence load conditions are shown. PMID:28773980

  7. Nutritional status and cognitive function in community-living rural Bangladeshi older adults: data from the poverty and health in ageing project.

    PubMed

    Ferdous, Tamanna; Cederholm, Tommy; Kabir, Zarina Nahar; Hamadani, Jena Derakhshani; Wahlin, Ake

    2010-05-01

    To investigate the association between nutritional status and general and specific (fluid and crystallized) cognitive functioning in a group of older people living in a rural area in Bangladesh. Cross-sectional study. Matlab, Bangladesh. Four hundred fifty-seven randomly selected persons aged 60 and older (mean age 69.5 +/- 6.8), 55% female. Nutritional status was evaluated using a modified form of the Mini Nutritional Assessment (MNA). General cognitive function was assessed using the Bangla Adaptation of the Mini-Mental State Examination, and a word synonym test was used to test semantic memory function (a crystallized ability). To assess cognitive processing speed (a fluid ability), "cross balls" and "complete boxes" tests (scores/time unit) were used. Clinical diagnoses were registered. Structured questionnaires were used to assess demographic and socioeconomic status of the participants. Twenty-six percent of the participants were undernourished, and 62% were at risk of malnutrition according to the MNA. The MNA scores were significantly lower in women than in men (P=.01). Women performed worse than men in all three cognitive tasks (P<.001). Poorer cognitive performance was independently associated with older age, female sex, illiteracy, visual impairment, severity of disease, and depressive symptoms. There were significant associations between better nutritional status and better cognitive performance tests of general ability and processing speed, whereas semantic memory appeared to be less affected. The association between nutritional status and cognitive function involves general and specific cognitive abilities, with fluid ability seeming to be affected but crystalized functions being relatively spared.

  8. Ball Screw Actuator Including a Stop with an Integral Guide

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Perek, John (Inventor); Geck, Kellan (Inventor)

    2015-01-01

    An actuator includes a housing assembly, a ball nut, a ball screw, and a ball screw stop. The ball nut is rotationally mounted in the housing assembly, is adapted to receive an input torque, and is configured, upon receipt thereof, to rotate and supply a drive force. The ball screw is mounted within the housing assembly and extends through the ball nut. The ball screw has a first end and a second end, and is coupled to receive the drive force from the ball nut. The ball screw is configured, upon receipt of the drive force, to selectively translate between a stow position and a deploy position. The ball screw stop is mounted on the ball screw to translate therewith and is configured to at selectively engage the housing assembly while the ball screw is translating, and engage the ball nut when the ball screw is in the deploy position.

  9. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guan, Xuefei; Zhou, S. Kevin; Rasselkorde, El Mahjoub

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location.more » The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.« less

  10. Processing ultrasonic inspection data from multiple scan patterns for turbine rotor weld build-up evaluations

    NASA Astrophysics Data System (ADS)

    Guan, Xuefei; Rasselkorde, El Mahjoub; Abbasi, Waheed; Zhou, S. Kevin

    2015-03-01

    The study presents a data processing methodology for weld build-up using multiple scan patterns. To achieve an overall high probability of detection for flaws with different orientations, an inspection procedure with three different scan patterns is proposed. The three scan patterns are radial-tangential longitude wave pattern, axial-radial longitude wave pattern, and tangential shear wave pattern. Scientific fusion of the inspection data is implemented using volume reconstruction techniques. The idea is to perform spatial domain forward data mapping for all sampling points. A conservative scheme is employed to handle the case that multiple sampling points are mapped to one grid location. The scheme assigns the maximum value for the grid location to retain the largest equivalent reflector size for the location. The methodology is demonstrated and validated using a realistic ring of weld build-up. Tungsten balls and bars are embedded to the weld build-up during manufacturing process to represent natural flaws. Flat bottomed holes and side drilled holes are installed as artificial flaws. Automatic flaw identification and extraction are demonstrated. Results indicate the inspection procedure with multiple scan patterns can identify all the artificial and natural flaws.

  11. 55 'Mini Sim' - innovative bite sized simulation teaching in a busy children's emergency department.

    PubMed

    Sunley, Rachel; Moloney, Karen; Parker, Jessica; Arrowsmith, Christopher; Brown, Kirsty; Wilson, Alex

    2017-12-01

    : Emergency Medicine requires a highly skilled workforce who are passionate about delivering excellent patient care. Shift patterns linked with the ever increasing numbers of patients who attend Emergency Departments puts strain on educating the workforce and fostering team togetherness.Our objective in devising and instigating the 'Mini Sim' programme was to embed regular in-situ simulation training to enhance the learning of all staff within our Emergency Department team, building a highly trained workforce to deliver excellent care within the remit of our busy department. The whole team is involved including junior nurses, senior nurses and all tiers of junior doctors including foundation, general practice and senior ED trainees (including Grid).'Mini Sim' takes place on a weekly basis, every Tuesday morning from 0930-1000. This timing is to ensure maximum participation from all staff. The setup is a fifteen minute simulation (one nurse, one junior doctor, one senior doctor) followed by fifteen minutes of debrief. The format includes an assessment of the participants confidence prior to 'Mini Sim' in the subject being practiced. This is rated on a numerical scale from 1 (being not confident at all) to 5 (being completely confident). The topics chosen are based on feedback from trainees and nurses on clinical skills they feel under confident in, (e.g., pelvic binder application, rapid sequence induction, sickle cell crisis), clinical incidents which have occurred around the Trust (e.g., seizures and access to benzodiazepines), National Patient Safety Alerts (e.g., phenytoin toxicity), protocols (e.g., abducted child, rapid tranquilisation for the acutely disturbed adolescent) , governance issues (e.g., blocked tracheostomy, resuscitation room rebuild) and competencies linked to RCEM objectives. The 'Mini Sim' then takes place in situ within the ED resus, ED main department or our short stay observation ward which is under the auspices of the Children's Emergency Department using real equipment and drugs. After the simulation a debrief is held and any additional teaching is carried out to embed learning. Each medical participant is then offered the opportunity to complete a work place based assessment on the 'Mini Sim' for their e-portfolio.emermed;34/12/A899-a/F1F1F1Figure 1Evaluation of impact of 'mini sim'The work flow of the department has been unaffected and we have received excellent written feedback from participants about the educational quality of the programme which has also shown improvements in staff confidence in dealing with a variety of emergency situations. We would suggest this model could be used in other departments for similar gain.emermed;34/12/A899-a/F2F2F2Figure 2. © 2017, Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Measurements of drag and lift on smooth balls in flight

    NASA Astrophysics Data System (ADS)

    Cross, Rod; Lindsey, Crawford

    2017-07-01

    Measurements are presented on the drag and lift coefficients for three relatively smooth balls launched in air and tracked with two cameras separated horizontally by 6.4 m. The ball spin was varied in order to investigate whether the Magnus force would increase or decrease when the ball spin was increased. For one ball, the Magnus force increased. For another ball, the Magnus force decreased almost to zero after reaching a maximum. For the third ball, the Magnus force was negative at low ball spins and positive at high ball spins. For one of the balls, the ball spin increased with time as it travelled through the air.

  13. High-resolution field shaping utilizing a masked multileaf collimator.

    PubMed

    Williams, P C; Cooper, P

    2000-08-01

    Multileaf collimators (MLCs) have become an important tool in the modern radiotherapy department. However, the current limit of resolution (1 cm at isocentre) can be too coarse for acceptable shielding of all fields. A number of mini- and micro-MLCs have been developed, with thinner leaves to achieve approved resolution. Currently however, such devices are limited to modest field sizes and stereotactic applications. This paper proposes a new method of high-resolution beam collimation by use of a tertiary grid collimator situated below the conventional MLC. The width of each slit in the grid is a submultiple of the MLC width. A composite shaped field is thus built up from a series of subfields, with the main MLC defining the length of each strip within each subfield. Presented here are initial findings using a prototype device. The beam uniformity achievable with such a device was examined by measuring transmission profiles through the grid using a diode. Profiles thus measured were then copied and superposed to generate composite beams, from which the uniformity achievable could be assessed. With the average dose across the profile normalized to 100%, hot spots up to 5.0% and troughs of 3% were identified for a composite beam of 2 x 5.0 mm grids, as measured at Dmax for a 6 MV beam. For a beam composed from 4 x 2.5 mm grids, the maximum across the profile was 3.0% above the average, and the minimum 2.5% below. Actual composite profiles were also formed using the integrating properties of film, with the subfield indexing performed using an engineering positioning stage. The beam uniformity for these fields compared well with that achieved in theory using the diode measurements. Finally sine wave patterns were generated to demonstrate the potential improvements in field shaping and conformity using this device as opposed to the conventional MLC alone. The scalloping effect on the field edge commonly seen on MLC fields was appreciably reduced by use of 2 x 5.0 mm grids, and still further by the use of 4 x 2.5 mm grids, as would be expected. This was also achieved with a small or negligible broadening of the beam penumbra as measured at Dmax.

  14. Challenges and Opportunities in Modeling of the Global Atmosphere

    NASA Astrophysics Data System (ADS)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko

    2016-04-01

    Modeling paradigms on global scales may need to be reconsidered in order to better utilize the power of massively parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. Note that the described scenario strongly favors horizontally local discretizations. This is relatively easy to achieve in regional models. However, the spherical geometry complicates the problem. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of a reasonable size. However, the polar filtering requires transpositions involving extra communications as well as more computations. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for application of spectral representation. With some variations, such techniques are currently dominating in global models. Unfortunately, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with polar filtering is a step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances, such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids, were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting") with significant amplitudes can develop. Due to their large scales, that are comparable to the scales of the dominant Rossby waves, such fictitious solutions are hard to identify and remove. Another new challenge on the global scale is that the limit of validity of the hydrostatic approximation is rapidly being approached. Relaxing the hydrostatic approximation requieres careful reformulation of the model dynamics and more computations and communications. The unified Non-hydrostatic Multi-scale Model (NMMB) will be briefly discussed as an example. The non-hydrostatic dynamics were designed in such a way as to avoid over-specification. The global version is run on the latitude-longitude grid, and the polar filter selectively slows down the waves that would otherwise be unstable without modifying their amplitudes. The model has been successfully tested on various scales. The skill of the medium range forecasts produced by the NMMB is comparable to that of other major medium range models, and its computational efficiency on parallel computers is good.

  15. Chip Scale Package Integrity Assessment by Isothermal Aging

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    1998-01-01

    Many aspects of chip scale package (CSP) technology, with focus on assembly reliability characteristics, are being investigated by the JPL-led consortia. Three types of test vehicles were considered for evaluation and currently two configurations have been built to optimize attachment processes. These test vehicles use numerous package types. To understand potential failure mechanisms of the packages, particularly solder ball attachment, the grid CSPs were subjected to environmental exposure. Package I/Os ranged from 40 to nearly 300. This paper presents both as assembled, up to 1, 000 hours of isothermal aging shear test results and photo micrographs, and tensile test results before and after 1,500 cycles in the range of -30/100 C for CSPs. Results will be compared to BGAs with the same the same isothermal aging environmental exposures.

  16. Village power options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lilienthal, P.

    1997-12-01

    This paper describes three different computer codes which have been written to model village power applications. The reasons which have driven the development of these codes include: the existance of limited field data; diverse applications can be modeled; models allow cost and performance comparisons; simulations generate insights into cost structures. The models which are discussed are: Hybrid2, a public code which provides detailed engineering simulations to analyze the performance of a particular configuration; HOMER - the hybrid optimization model for electric renewables - which provides economic screening for sensitivity analyses; and VIPOR the village power model - which is amore » network optimization model for comparing mini-grids to individual systems. Examples of the output of these codes are presented for specific applications.« less

  17. Effect of soccer shoe upper on ball behaviour in curve kicks

    PubMed Central

    Ishii, Hideyuki; Sakurai, Yoshihisa; Maruyama, Takeo

    2014-01-01

    New soccer shoes have been developed by considering various concepts related to kicking, such as curving a soccer ball. However, the effects of shoes on ball behaviour remain unclear. In this study, by using a finite element simulation, we investigated the factors that affect ball behaviour immediately after impact in a curve kick. Five experienced male university soccer players performed one curve kick. We developed a finite element model of the foot and ball and evaluated the validity of the model by comparing the finite element results for the ball behaviour immediately after impact with the experimental results. The launch angle, ball velocity, and ball rotation in the finite element analysis were all in general agreement with the experimental results. Using the validated finite element model, we simulated the ball behaviour. The simulation results indicated that the larger the foot velocity immediately before impact, the larger the ball velocity and ball rotation. Furthermore, the Young's modulus of the shoe upper and the coefficient of friction between the shoe upper and the ball had little effect on the launch angle, ball velocity, and ball rotation. The results of this study suggest that the shoe upper does not significantly influence ball behaviour. PMID:25266788

  18. Novel mathematical model to estimate ball impact force in soccer.

    PubMed

    Iga, Takahito; Nunome, Hiroyuki; Sano, Shinya; Sato, Nahoko; Ikegami, Yasuo

    2017-11-22

    To assess ball impact force during soccer kicking is important to quantify from both performance and chronic injury prevention perspectives. We aimed to verify the appropriateness of previous models used to estimate ball impact force and to propose an improved model to better capture the time history of ball impact force. A soccer ball was fired directly onto a force platform (10 kHz) at five realistic kicking ball velocities and ball behaviour was captured by a high-speed camera (5,000 Hz). The time history of ball impact force was estimated using three existing models and two new models. A new mathematical model that took into account a rapid change in ball surface area and heterogeneous ball deformation showed a distinctive advantage to estimate the peak forces and its occurrence times and to reproduce time history of ball impact forces more precisely, thereby reinforcing the possible mechanics of 'footballer's ankle'. Ball impact time was also systematically shortened when ball velocity increases in contrast to practical understanding for producing faster ball velocity, however, the aspect of ball contact time must be considered carefully from practical point of view.

  19. Effect of soccer shoe upper on ball behaviour in curve kicks

    NASA Astrophysics Data System (ADS)

    Ishii, Hideyuki; Sakurai, Yoshihisa; Maruyama, Takeo

    2014-08-01

    New soccer shoes have been developed by considering various concepts related to kicking, such as curving a soccer ball. However, the effects of shoes on ball behaviour remain unclear. In this study, by using a finite element simulation, we investigated the factors that affect ball behaviour immediately after impact in a curve kick. Five experienced male university soccer players performed one curve kick. We developed a finite element model of the foot and ball and evaluated the validity of the model by comparing the finite element results for the ball behaviour immediately after impact with the experimental results. The launch angle, ball velocity, and ball rotation in the finite element analysis were all in general agreement with the experimental results. Using the validated finite element model, we simulated the ball behaviour. The simulation results indicated that the larger the foot velocity immediately before impact, the larger the ball velocity and ball rotation. Furthermore, the Young's modulus of the shoe upper and the coefficient of friction between the shoe upper and the ball had little effect on the launch angle, ball velocity, and ball rotation. The results of this study suggest that the shoe upper does not significantly influence ball behaviour.

  20. 75 FR 34688 - Ball Bearings and Parts Thereof from France: Final Results of Changed-Circumstances Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-18

    ...: antifriction balls, ball bearings with integral shafts, ball bearings (including radial ball bearings) and... thereof (inner race, outer race, cage, rollers, balls, seals, shields, etc.) outlined above with certain...

  1. 78 FR 29702 - Ball Bearings and Parts Thereof From Germany: Final Results of Antidumping Duty Administrative...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-21

    ... balls, ball bearings with integral shafts, ball bearings (including radial ball bearings) and parts... all the subject bearings and parts thereof (inner race, outer race, cage, rollers, balls, seals...

  2. Dual load path ball screw with rod end swivel

    NASA Technical Reports Server (NTRS)

    Wngett, Paul (Inventor)

    2002-01-01

    A dual drive ball has a ball screw shaft coupled at one end to a gear train and coupled at the other end to a ball screw nut. The ball screw shaft and ball screw nut are connected through complementary helical grooves filled with ball bearing balls. The outer surface of the ball screw nut is plined and can be driven by a second gear train. An output tube is coupled at one end to the ball screw nut and at its opposite end has a connector portion with a groove on its inner surface. A rod end has a coupling member for coupling to a surface to be actuated and a shaft portion with a groobe on its outer surface. This shaft portion is received with in the outputtube portion and the corresponding grooves are coupled through the use of a plurality of ball bearing balls.

  3. Ball Machine Usage in Tennis: Movement Initiation and Swing Timing While Returning Balls from a Ball Machine and from a Real Server

    PubMed Central

    Carboch, Jan; Süss, Vladimir; Kocib, Tomas

    2014-01-01

    Practicing with the use of a ball machine could handicap a player compared to playing against an actual opponent. Recent studies have shown some differences in swing timing and movement coordination, when a player faces a ball projection machine as opposed to a human opponent. We focused on the time of movement initiation and on stroke timing during returning tennis serves (simulated by a ball machine or by a real server). Receivers’ movements were measured on a tennis court. In spite of using a serving ball speed from 90 kph to 135 kph, results showed significant differences in movement initiation and backswing duration between serves received from a ball machine and serves received from a real server. Players had shorter movement initiation when they faced a ball machine. Backswing duration was longer for the group using a ball machine. That demonstrates different movement timing of tennis returns when players face a ball machine. Use of ball machines in tennis practice should be limited as it may disrupt stroke timing. Key points Players have shorter initial move time when they are facing the ball machine. Using the ball machine results in different swing timing and movement coordination. The use of the ball machine should be limited. PMID:24790483

  4. Ball machine usage in tennis: movement initiation and swing timing while returning balls from a ball machine and from a real server.

    PubMed

    Carboch, Jan; Süss, Vladimir; Kocib, Tomas

    2014-05-01

    Practicing with the use of a ball machine could handicap a player compared to playing against an actual opponent. Recent studies have shown some differences in swing timing and movement coordination, when a player faces a ball projection machine as opposed to a human opponent. We focused on the time of movement initiation and on stroke timing during returning tennis serves (simulated by a ball machine or by a real server). Receivers' movements were measured on a tennis court. In spite of using a serving ball speed from 90 kph to 135 kph, results showed significant differences in movement initiation and backswing duration between serves received from a ball machine and serves received from a real server. Players had shorter movement initiation when they faced a ball machine. Backswing duration was longer for the group using a ball machine. That demonstrates different movement timing of tennis returns when players face a ball machine. Use of ball machines in tennis practice should be limited as it may disrupt stroke timing. Key pointsPlayers have shorter initial move time when they are facing the ball machine.Using the ball machine results in different swing timing and movement coordination.The use of the ball machine should be limited.

  5. Bending stresses in spherically hollow ball bearing and fatigue experiments

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Coe, H. H.; Parker, R. J.

    1975-01-01

    Spherically hollow balls of 21.7, 50.0, and 56.5 percent mass reduction were operated in ball bearings and in a five-ball fatigue tester with differing outcomes. Available theoretical and experimental treatments of stresses in spherically hollow balls are reviewed and compared. Bending stresses are estimated for these spherically hollow balls to better understand the differences in ball bearing and fatigue test experience.

  6. Bending stresses in spherically hollow ball bearing and fatigue experiments

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.; Coe, H. H.; Parker, R. J.

    1975-01-01

    Spherically hollow balls of 21.7, 50.0 and 56.5 per cent mass reduction have been operated in ball bearings and in a 5-ball fatigue tester with differing outcomes. Available theoretical and experimental treatments of stresses in spherically hollow balls are reviewed and compared. Bending stresses are estimated for these spherically hollow balls to better understand the differences in ball bearing and fatigue test experience.

  7. A formula for comparison of selected sport ball compressibility.

    PubMed Central

    Dowell, L J; Krebs, G

    1991-01-01

    The purpose of this study was to develop a formula to determine and compare the compressibility of selected sport balls. Six balls (basketball, volleyball, soccer ball, baseball, handball, golf ball) were dropped ten times from each of four different heights onto a smooth solid surface overlaid with a white sheet of typing paper, overlaid with a sheet of carbon paper. The diameter of the area of contact of each ball imprinted onto the typing paper was measured in millimetres with calipers. From the data, the distance (d) that each ball compressed for each velocity (v) was calculated. It was found that a linear relationship existed between velocity at impact and the distance for each ball studied. The compressibility coefficient (c) for each ball was calculated and a formula was developed to determine the distance each ball would compress at a given velocity. When velocity is measured in metres per second and the distance a ball compresses is measured in millimetres, the formula to determine d for selected balls, in order of compressibility is: basketball d = 3.07v, volleyball d = 2.90v, soccer ball d = 2.80v, baseball d = 0.77v, handball d = 0.53v, and golf ball d = 0.17v. PMID:1913029

  8. A Force-Velocity Relationship and Coordination Patterns in Overarm Throwing

    PubMed Central

    van den Tillaar, Roland; Ettema, Gertjan

    2004-01-01

    A force-velocity relationship in overarm throwing was determined using ball weights varying from 0.2 to 0.8 kg. Seven experienced handball players were filmed at 240 frames per second. Velocity of joints of the upper extremity and ball together with the force on the ball were derived from the data. A statistically significant negative relationship between force and maximal ball velocity, as well as between ball weight and maximal ball velocity was observed. Also, with increase of ball weight the total throwing movement time increased. No significant change in relative timing of the different joints was demonstrated, suggesting that the subjects did not change their “global ”coordination pattern (kinematics) within the tested range of ball weights. A simple model revealed that 67% of ball velocity at ball release was explained by the summation of effects from the velocity of elbow extension and internal rotation of the shoulder. With regard to the upper extremity the internal rotation of the shoulder and elbow extension are two important contributors to the total ball velocity at release. Key Points An inverse relationship between load and velocity and a linear force-velocity exists in overarm throwing with ball weights varying from 0.2 to 0.8 kg. Qualitatively, no changes in coordination pattern (relative timing) occur with increasing ball weight within the tested range of ball weights. The absolute throwing movement time increased with ball weight. Quantitatively, with regard to the upper extremity, the internal rotation of the shoulder and elbow extension are two important contributors to the total ball velocity at release. PMID:24624005

  9. Experimental evaluation of 150-millimeter bore ball bearing to 3 million DN using either solid or drilled balls

    NASA Technical Reports Server (NTRS)

    Scibbe, H. W.; Munson, H. E.

    1973-01-01

    Seven 150-mm bore ball bearings were run under 8900 Newton (2000 lb) thrust load at speeds from 6670 to 20,000 rpm (1 to 3 million DN). Four of the bearings had conventional solid balls and three bearing had drilled (cylindrically hollow) balls with 50 percent mass reduction. The bearings were under-race cooled and slot-lubricated with Type 2 ester oil at flow rates from 4.35 to 5.80 liters per minute (1.15 to 1.57 gal min). Friction torque and temperatures were measured on all bearings. No significant difference in torque was noted, between the solid and drilled ball bearings. One bearing of each type was rerun at 17,800 Newtons (4000 lb) thrust load. The solid ball bearings performed satisfactorily at 3 million DN. However, at about 2 million DN the drilled ball bearing experienced a broken ball and cracks appeared in two other balls as the result of flexure fatigue. Metallurgical examination of the cracked balls indicated a brittle structure in the bore of the drilled balls.

  10. Flight trajectory of a rotating golf ball with grooves

    NASA Astrophysics Data System (ADS)

    Baek, Moonheum; Kim, Jooha; Choi, Haecheon

    2014-11-01

    Dimples are known to reduce drag on a sphere by the amount of 50% as compared to a smooth surface. Despite the advantage of reducing drag, dimples deteriorate the putting accuracy owing to their sharp edges. To minimize this putting error but maintain the same flight distance, we have devised a grooved golf ball (called G ball hereafter) for several years. In this study, we modify the shape and pattern of grooves, and investigate the flow characteristics of the G ball by performing wind-tunnel experiments at the Reynolds numbers of 0 . 5 ×105 - 2 . 5 ×105 and the spin ratios (ratio of surface velocity to the free-stream velocity) of 0 - 0.6 that include the real golf-ball velocity and rotational speed. We measure the drag and lift forces on the rotating G ball and compare them with those of a smooth ball and two well-known dimpled balls. The lift-to-drag ratio of the G ball is much higher than that of a smooth ball and is in between those of the two dimpled balls. The trajectories of flying golf balls are computed. The flight distance of G ball is almost the same as that of one dimpled ball but slightly shorter than that of the other dimpled ball. The fluid-dynamic aspects of these differences will be discussed at the talk. Supported by 2011-0028032, 2014M3C1B1033980.

  11. Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Eom, JiYong; Kim, DongYung; Kwon, HyukSang

    The effects of ball-milling on Li insertion into multi-walled carbon nanotubes (MWNTs) are presented. The MWNTs are synthesized on supported catalysts by thermal chemical vapour deposition, purified, and mechanically ball-milled by the high energy ball-milling. The purified MWNTs and the ball-milled MWNTs were electrochemically inserted with Li. Structural and chemical modifications in the ball-milled MWNTs change the insertion-extraction properties of Li ions into/from the ball-milled MWNTs. The reversible capacity (C rev) increases with increasing ball-milling time, namely, from 351 mAh g -1 (Li 0.9C 6) for the purified MWNTs to 641 mAh g -1 (Li 1.7C 6) for the ball-milled MWNTs. The undesirable irreversible capacity (C irr) decreases continuously with increase in the ball-milling time, namely, from 1012 mAh g -1 (Li 2.7C 6) for the purified MWNTs to 518 mAh g -1 (Li 1.4C 6) for the ball-milled MWNTs. The decrease in C irr of the ball-milled samples results in an increase in the coulombic efficiency from 25% for the purified samples to 50% for the ball-milled samples. In addition, the ball-milled samples maintain a more stable capacity than the purified samples during charge-discharge cycling.

  12. 76 FR 10335 - Ball Bearings and Parts Thereof From Germany: Initiation of Antidumping Duty Changed...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... classified under the following categories: Antifriction balls, ball bearings with integral shafts, ball..., outer race, cage, rollers, balls, seals, shields, etc.) outlined above with certain limitations. With...

  13. Finite element analysis of the axial stiffness of a ball screw

    NASA Astrophysics Data System (ADS)

    Zhou, L.-X.; Li, P.-Y.

    2018-06-01

    The ball screw was developed for high speed and high precision operation; therefore, increasingly greater demands have been placed on the stiffness of the ball screw. Firstly, ANSYS software was used to compare the axial stiffness of a single-nut and single-arc ball screw and a single-nut and double-arc ball screw when the spiral angle is not considered. On this basis, the model of a single-nut ball screw was established taking into consideration the spiral lead angle, and then the variations in displacement and stiffness when the ball screw pair was subjected to an axial force were determined. The axial contact stiffness of the double-nut ball screw pair, subject to a pre-tightening force, was analyzed, according to the above-mentioned steps. The simulation results demonstrated that under the same working conditions, the stiffness of the double-arc ball screw was larger by between 5∼100 N/um than that of the single-arc ball screw. The spiral lead angle increased the axial stiffness of the ball screw pair, and the axial stiffness of the double-nut ball screw pair subject to a pre-tightening force was larger by between 790∼1360 N/um than that of the axial stiffness of the single-nut ball screw pair.

  14. Comparison of experimental and predicted performance of 150-millimeter-bore solid and drilled ball bearings to 3 million DN

    NASA Technical Reports Server (NTRS)

    Scibbe, H. W.; Munson, H. E.

    1974-01-01

    Seven 150-millimeter-bore ball bearings were run under 8900-newton (2000-lbf) thrust load at speeds from 6670 to 20,000 rpm (1 million to 3 million DN). Four of the bearings had conventional solid balls, and three bearings had drilled (cylindrically hollow) balls with 50-percent mass reduction. The bearings were under-race cooled and slot lubricated with a type 2 ester oil at flow rates from 4.35 x 0.001 to 5.94 x 0.001 cubic meter/min (1.15 to 1.57 gal/min). Friction torque and temperature were measured on all bearings. While there was considerable spread in the temperature data, the drilled ball bearings tended to run slightly cooler than the solid ball bearings at higher speeds. No significant difference in torque was noted, however, between the solid and drilled ball bearings. One bearing of each type was rerun at 17,800-newton (4000-lbf) thrust load. The solid ball bearings performed satisfactorily at 3 million DN. However, at about 2 million DN the drilled ball bearing experienced a broken ball, and cracks appeared in other balls as a result of flexure fatigue. Metallurgical examination of the cracked balls indicated a brittle structure in the bore of the drilled balls.

  15. 78 FR 76104 - Ball Bearings and Parts Thereof From Japan and the United Kingdom: Notice of Reinstatement of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-16

    ... following categories: Antifriction balls, ball bearings with integral shafts, ball bearings (including..., rollers, balls, seals, shields, etc.) outlined above with certain limitations. With regard to finished...

  16. [Interventional radiology for bone metastases].

    PubMed

    Iannessi, Antoine; Garnon, Julien; Cormier, Évelyne; Clarencon, Frédéric; Chiras, Jacques

    2013-11-01

    The management of bone metastases requires a multidisciplinary staff to include systemic and local treatments like radiotherapy, surgery or interventional radiology (IR). Patients are often fragile. Imaging allows safe guidance to create "mini-invasive" procedures under adequate anesthesia. Patients' selection is important. If the goal is pain relief, cementoplasty provides a very effective bone consolidation and pain control. Simple and low-risk, vertebroplasty is the technique of choice in case of lytic bone metastases with spinal fracture risk or after failure of analgesic radiotherapy. If the medical project is curative, the tumor ablation procedures are realised through thermic or embolic techniques. After 60°C, the heat induces a coagulative necrose. Under -20°C, the cold leads to destroy the tissues. The major advantage of the cryotherapy is the predictibility of the ablation zone due to the well-visualized ice ball on perprocedural images. This technique is much more adapted to spare the nervous structures closed to the metastasis. The development of these new techniques of IR will treat bone metastases earlier, sometimes asymptomatic and thus improves the quality of life in patients with bone metastases.

  17. Enhancing the Bounce of a Ball

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2010-10-01

    In sports such as baseball, softball, golf, and tennis, a common objective is to hit the ball as fast or as far as possible. Another common objective is to hit the ball so that it spins as fast as possible, since the trajectory of the ball through the air is strongly affected by ball spin. In an attempt to enhance both the coefficient of restitution (COR) and the spin of a golf ball, I conducted several experiments to see what would happen when a 45-g, 42.8-mm diameter golf ball bounced on: (a) a 58-mm diameter, 103-g Super Ball®; (b) an 8-mm thick, 56-mm diameter circular disk of Super Ball material cut from a large Super Ball and glued to a 3.4-kg lead brick; and (c) a 3-mm thick sheet of rubber glued to a 3.4-kg lead brick. (See Fig. 1.)

  18. The effects of additives to SnAgCu alloys on microstructure and drop impact reliability of solder joints

    NASA Astrophysics Data System (ADS)

    Liu, Weiping; Lee, Ning-Cheng

    2007-07-01

    The impact reliability of solder joints in electronic packages is critical to the lifetime of electronic products, especially those portable devices using area array packages such as ball-grid array (BGA) and chip-scale packages (CSP). Currently, SnAgCu (SAC) solders are most widely used for lead-free applications. However, BGA and CSP solder joints using SAC alloys are fragile and prone to premature interfacial failure, especially under shock loading. To further enhance impact reliability, a family of SAC alloys doped with a small amount of additives such as Mn, Ce, Ti, Bi, and Y was developed. The effects of doping elements on drop test performance, creep resistance, and microstructure of the solder joints were investigated, and the solder joints made with the modified alloys exhibited significantly higher impact reliability.

  19. Sonic beam model of Newton’s cradle

    NASA Astrophysics Data System (ADS)

    Menger, Fredric M.; Rizvi, Syed A. A.

    2016-07-01

    The motions of Newton’s cradle, consisting of several steel balls hanging side-by-side, have been analysed in terms of a sound pulse that travels via points of contact among the balls. This presupposes a focused energy beam. When the pulse reaches the fifth and final ball, the energy disperses and dislocates the ball with a trajectory equivalent to that of the first ball after it was released. The pulse passes unchanged through the internal balls without, therefore, causing movement of these balls. Lack of movement can be affirmed by immobilising one or more of the balls, thereby disproving both the gap and vibrating lattice models. This also contrasts with previous mechanisms that postulate complete energy dispersal within a ball prior to transferring the energy to another ball. Inserting an inelastic barrier between the second and third balls disrupts the pulse such that it spreads out to reach regions that are not in contact with another ball. As a result, the normally stationary third ball is forced into a forward motion, thereby pushing the fourth and fifth ball with it as a single unit. The model is valuable in explaining a fact that has puzzled physicists for generations: why is only one motional mode observed among a multitude of motions that maintain a constant momentum and kinetic energy as required by the laws of physics? The answer lies in the fact that all motions, except the one that is actually observed, require a rebound in one or more of the balls. Since the energy beam formed upon impact is unidirectional, reverse motions are not accommodated.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Jinhua; Pan, Baofei; Duan, Wentao

    In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a mini-malistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this moleculemore » as a catholyte material and operated stably for 100 charge/discharge cycles. Furthermore, the observed stability trends are rationalized by mechanistic considerations of the reaction pathways.« less

  1. Individual ball possession in soccer

    PubMed Central

    Hoernig, Martin

    2017-01-01

    This paper describes models for detecting individual and team ball possession in soccer based on position data. The types of ball possession are classified as Individual Ball Possession (IBC), Individual Ball Action (IBA), Individual Ball Control (IBC), Team Ball Possession (TBP), Team Ball Control (TBC) und Team Playmaking (TPM) according to different starting points and endpoints and the type of ball control involved. The machine learning approach used is able to determine how long the ball spends in the sphere of influence of a player based on the distance between the players and the ball together with their direction of motion, speed and the acceleration of the ball. The degree of ball control exhibited during this phase is classified based on the spatio-temporal configuration of the player controlling the ball, the ball itself and opposing players using a Bayesian network. The evaluation and application of this approach uses data from 60 matches in the German Bundesliga season of 2013/14, including 69,667 IBA intervals. The identification rate was F = .88 for IBA and F = .83 for IBP, and the classification rate for IBC was κ = .67. Match analysis showed the following mean values per match: TBP 56:04 ± 5:12 min, TPM 50:01 ± 7:05 min and TBC 17:49 ± 8:13 min. There were 836 ± 424 IBC intervals per match and their number was significantly reduced by -5.1% from the 1st to 2nd half. The analysis of ball possession at the player level indicates shortest accumulated IBC times for the central forwards (0:49 ± 0:43 min) and the longest for goalkeepers (1:38 ± 0:58 min), central defenders (1:38 ± 1:09 min) and central midfielders (1:27 ± 1:08 min). The results could improve performance analysis in soccer, help to detect match events automatically, and allow discernment of higher value tactical structures, which is based on individual ball possession. PMID:28692649

  2. Automatic ball bar for a coordinate measuring machine

    DOEpatents

    Jostlein, H.

    1997-07-15

    An automatic ball bar for a coordinate measuring machine determines the accuracy of a coordinate measuring machine having at least one servo drive. The apparatus comprises a first and second gauge ball connected by a telescoping rigid member. The rigid member includes a switch such that inward radial movement of the second gauge ball relative to the first gauge ball causes activation of the switch. The first gauge ball is secured in a first magnetic socket assembly in order to maintain the first gauge ball at a fixed location with respect to the coordinate measuring machine. A second magnetic socket assembly secures the second gauge ball to the arm or probe holder of the coordinate measuring machine. The second gauge ball is then directed by the coordinate measuring machine to move radially inward from a point just beyond the length of the ball bar until the switch is activated. Upon switch activation, the position of the coordinate measuring machine is determined and compared to known ball bar length such that the accuracy of the coordinate measuring machine can be determined. 5 figs.

  3. Automatic ball bar for a coordinate measuring machine

    DOEpatents

    Jostlein, Hans

    1997-01-01

    An automatic ball bar for a coordinate measuring machine determines the accuracy of a coordinate measuring machine having at least one servo drive. The apparatus comprises a first and second gauge ball connected by a telescoping rigid member. The rigid member includes a switch such that inward radial movement of the second gauge ball relative to the first gauge ball causes activation of the switch. The first gauge ball is secured in a first magnetic socket assembly in order to maintain the first gauge ball at a fixed location with respect to the coordinate measuring machine. A second magnetic socket assembly secures the second gauge ball to the arm or probe holder of the coordinate measuring machine. The second gauge ball is then directed by the coordinate measuring machine to move radially inward from a point just beyond the length of the ball bar until the switch is activated. Upon switch activation, the position of the coordinate measuring machine is determined and compared to known ball bar length such that the accuracy of the coordinate measuring machine can be determined.

  4. Fluid Mechanics of Cricket and Tennis Balls

    NASA Astrophysics Data System (ADS)

    Mehta, Rabindra D.

    2009-11-01

    Aerodynamics plays a prominent role in defining the flight of a ball that is struck or thrown through the air in almost all ball sports. The main interest is in the fact that the ball can often deviate from its initial straight path, resulting in a curved, or sometimes an unpredictable, flight path. It is particularly fascinating that that not all the parameters that affect the flight of a ball are always under human influence. Lateral deflection in flight, commonly known as swing, swerve or curve, is well recognized in cricket and tennis. In tennis, the lateral deflection is produced by spinning the ball about an axis perpendicular to the line of flight, which gives rise to what is commonly known as the Magnus effect. It is now well recognized that the aerodynamics of sports balls are strongly dependent on the detailed development and behavior of the boundary layer on the ball's surface. A side force, which makes a ball curve through the air, can also be generated in the absence of the Magnus effect. In one of the cricket deliveries, the ball is released with the seam angled, which trips the laminar boundary layer into a turbulent state on that side. The turbulent boundary layer separates relatively late compared to the laminar layer on the other side, thereby creating a pressure difference and hence side force. The fluid mechanics of a cricket ball become very interesting at the higher Reynolds numbers and this will be discussed in detail. Of all the round sports balls, a tennis ball has the highest drag coefficient. This will be explained in terms of the contribution of the ``fuzz" drag and how that changes with Reynolds number and ball surface wear. It is particularly fascinating that, purely through historical accidents, small disturbances on the ball surface, such as the stitching on cricket balls and the felt cover on tennis balls are all about the right size to affect boundary layer transition and development in the Reynolds numbers of interest. The fluid mechanics of cricket and tennis balls will be discussed in detail with the help of latest test data, analyses and video clips.

  5. Ball valve extractor

    DOEpatents

    Herndon, Charles; Brown, Roger A.

    2002-01-01

    An apparatus and process for removing a ball valve is provided. The ball valve removal tool provides a handle sliding along the length of a shaft. One end of the shaft is secured within an interior cavity of a ball valve while the opposite end of the shaft defines a stop member. By providing a manual sliding force to the handle, the handle impacts the stop member and transmits the force to the ball valve. The direction of the force is along the shaft of the removal tool and disengages the ball valve from the ball valve housing.

  6. Effect of Practicing Soccer Juggling With Different Sized Balls Upon Performance, Retention, and Transfer to Ball Reception.

    PubMed

    Raastad, Olav; Aune, Tore Kristian; van den Tillaar, Roland

    2016-10-01

    The aim of this study was to investigate if making the skill acquisition phase more difficult or easier would enhance performance in soccer juggling, and if this practice has a positive intertask transfer effect to ball reception performance. Twenty-two adolescent soccer players were tested in juggling a soccer ball and in the control of an approaching ball at a pre, post and retention test. The participants were randomly divided in a small ball size and bigger ball size training group that both trained four times per week for 6 weeks. At the post and retention test both groups enhanced performance in soccer juggling test with no difference between groups and no increase in ball reception performance at these tests. It was concluded that about intra task transfer and retention of soccer juggling skills, it does not matter if you increase (small balls) or decrease the difficulty (larger balls) when using the same amount of practice time within the skill acquisition phase in soccer juggling. In addition that for ball juggling and ball reception (inter task) these two tasks differ too much in afferent information and movement characteristics that no positive transfer between these two skills no positive intertask transfer can be expected.

  7. Subgrain Rotation Behavior in Sn3.0Ag0.5Cu-Sn37Pb Solder Joints During Thermal Shock

    NASA Astrophysics Data System (ADS)

    Han, Jing; Tan, Shihai; Guo, Fu

    2018-01-01

    Ball grid array (BGA) samples were soldered on a printed circuit board with Sn37Pb solder paste to investigate the recrystallization induced by subgrain rotation during thermal shock. The composition of the solder balls was Sn3.0Ag0.5Cu-Sn37Pb, which comprised mixed solder joints. The BGA component was cross-sectioned before thermal shock. The microstructure and grain orientations were obtained by a scanning electron microscope equipped with an electron back-scattered diffraction system. Two mixed solder joints at corners of the BGA component were selected as the subjects. The results showed that recrystallization occurred at the corner of the solder joints after 200 thermal shock cycles. The recrystallized subgrains had various new grain orientations. The newly generated grain orientations were closely related to the initial grain orientations, which indicated that different subgrain rotation behaviors could occur in one mixed solder joint with the same initial grain orientation. When the misorientation angles were very small, the rotation axes were about Sn [100], [010] and [001], as shown by analyzing the misorientation angles and subgrain rotation axes, while the subgrain rotation behavior with large misorientation angles in the solder joints was much more complicated. As Pb was contained in the solder joints and the stress was concentrated on the corner of the mixed solder joints, concaves and cracks were formed. When the adjacent recrystallized subgrains were separated, and the process of the continuous recrystallization was limited.

  8. Public evaluation of open space in Illinois: citizen support for natural area acquisition.

    PubMed

    Backlund, Erik A; Stewart, William P; McDonald, Cary; Miller, Craig

    2004-11-01

    Numerous studies have indicated a broad-based support for open space preservation and protection. Research also has characterized the public values and rationale that underlie the widespread support for open space. In recognition of the widespread public support for open space, various levels of government have implemented programs to provide public access to open space. There are many different types of open space, ranging from golf courses, ball parks, wildlife areas, and prairies, to name a few. This paper addresses questions related to the types of open space that should be prioritized by planners and natural resource managers. The results of this study are based on a stratified random sample of 5000 households in Illinois that were sent a questionnaire related to their support for various types of open space. Through a comparatively simple action grid analysis, the open space types that should be prioritized for public access include forest areas, stream corridors, wildlife habitat, and lakes/ponds. These were the open space types rated of the highest importance, yet were also the open space types rated the lowest in respondent satisfaction. This kind of analysis does not require the technical expertise of other options for land-use prioritizations (e.g., conjoint analysis, contingent valuation), yet provides important policy directives for planners. Although open space funds often allow for purchase of developed sites such as golf courses, ball parks, and community parks, this study indicates that undeveloped (or nature-based) open space lands are most needed in Illinois.

  9. Effect of ball geometry on endurance limit in bending of drilled balls

    NASA Technical Reports Server (NTRS)

    Munson, H. E.

    1975-01-01

    Four designs of drilled (cylindrically hollow) balls were tested for resistance to bending fatigue. Bending fatigue has been demonstrated to be a limiting factor in previous evaluations of the drilled ball concept. A web reinforced drilled ball was most successful in resisting bending fatigue. Another design of through drilled design, involving a heavier wall than the standard reference ball, also showed significant improvement in resistance to bending fatigue.

  10. A kicking simulator to investigate the foot-ball interaction during a rugby place kick.

    PubMed

    Minnaar, Nick; van den Heever, Dawie J

    2015-01-01

    Foot-ball interaction is an important aspect in rugby place kicking but has received very little attention in literature. This preliminary study presents an adjustable mechanical kicking simulator used to investigate different foot positions and orientations during the foot-ball interaction on resultant ball motion. It was found that changes in foot position and orientation during ball contact can have a large influence on ball motion. It is believed that with further research an optimal place-kicking technique can be found to maximize energy transfer to the ball while still maintaining accuracy.

  11. Ceramic Rail-Race Ball Bearings

    NASA Technical Reports Server (NTRS)

    Balzer, Mark A.; Mungas, Greg S.; Peters, Gregory H.

    2010-01-01

    Non-lubricated ball bearings featuring rail races have been proposed for use in mechanisms that are required to function in the presence of mineral dust particles in very low-pressure, dry environments with extended life. Like a conventional ball bearing, the proposed bearing would include an inner and an outer ring separated by balls in rolling contact with the races. However, unlike a conventional ball bearing, the balls would not roll in semi-circular or gothic arch race grooves in the rings: instead, the races would be shaped to form two or more rails (see figure). During operation, the motion of the balls would push dust particles into the spaces between the rails where the particles could not generate rolling resistance for the balls

  12. Effect of panel shape of soccer ball on its flight characteristics

    PubMed Central

    Hong, Sungchan; Asai, Takeshi

    2014-01-01

    Soccer balls are typically constructed from 32 pentagonal and hexagonal panels. Recently, however, newer balls named Cafusa, Teamgeist 2, and Jabulani were respectively produced from 32, 14, and 8 panels with shapes and designs dramatically different from those of conventional balls. The newest type of ball, named Brazuca, was produced from six panels and will be used in the 2014 FIFA World Cup in Brazil. There have, however, been few studies on the aerodynamic properties of balls constructed from different numbers and shapes of panels. Hence, we used wind tunnel tests and a kick-robot to examine the relationship between the panel shape and orientation of modern soccer balls and their aerodynamic and flight characteristics. We observed a correlation between the wind tunnel test results and the actual ball trajectories, and also clarified how the panel characteristics affected the flight of the ball, which enabled prediction of the trajectory. PMID:24875291

  13. Performance of 75-millimeter-bore bearings using electron-beam-welded hollow balls with a diameter ratio of 1.26

    NASA Technical Reports Server (NTRS)

    Coe, H. H.; Parker, R. J.; Scibbe, H. W.

    1975-01-01

    An experimental investigation was performed to determine the rolling element fatigue life of electron beam-welded hollow balls with a diameter ratio (o.d./i.d.) of 1.26 and to determine the operating characteristics of bearings using these hollow balls. Similar bearings with solid balls were also tested and the data compared. The bearings were operated at shaft speeds up to 28,000 rpm with a thrust load of 2200 N (500 lb). Ball failures during the bearing tests were due to flexure fatigue. The solid and hollow ball bearings tested showed little difference in outer race temperatures and indicated the same bearing torque. The 17.5-mm (0.6875-in.) diameter balls were also tested in the five-ball fatigue tester and showed no significant difference in life when compared with the life of a solid ball.

  14. Effect of panel shape of soccer ball on its flight characteristics

    NASA Astrophysics Data System (ADS)

    Hong, Sungchan; Asai, Takeshi

    2014-05-01

    Soccer balls are typically constructed from 32 pentagonal and hexagonal panels. Recently, however, newer balls named Cafusa, Teamgeist 2, and Jabulani were respectively produced from 32, 14, and 8 panels with shapes and designs dramatically different from those of conventional balls. The newest type of ball, named Brazuca, was produced from six panels and will be used in the 2014 FIFA World Cup in Brazil. There have, however, been few studies on the aerodynamic properties of balls constructed from different numbers and shapes of panels. Hence, we used wind tunnel tests and a kick-robot to examine the relationship between the panel shape and orientation of modern soccer balls and their aerodynamic and flight characteristics. We observed a correlation between the wind tunnel test results and the actual ball trajectories, and also clarified how the panel characteristics affected the flight of the ball, which enabled prediction of the trajectory.

  15. Visualization of air flow around soccer ball using a particle image velocimetry

    PubMed Central

    Hong, Sungchan; Asai, Takeshi; Seo, Kazuya

    2015-01-01

    A traditional soccer ball is constructed using 32 pentagonal and hexagonal panels. In recent years, however, the likes of the Teamgeist and Jabulani balls, constructed from 14 and 8 panels, respectively, have entered the field, marking a significant departure from conventionality in terms of shape and design. Moreover, the recently introduced Brazuca ball features a new 6-panel design and has already been adopted by many soccer leagues. However, the shapes of the constituent panels of these balls differ substantially from those of conventional balls. Therefore, this study set out to investigate the flight and aerodynamic characteristics of different orientations of the soccer ball, which is constructed from panels of different shapes. A wind tunnel test showed substantial differences in the aerodynamic forces acting on the ball, depending on its orientation. Substantial differences were also observed in the aerodynamic forces acting on the ball in different directions, corresponding to its orientation and rotation. Moreover, two-dimensional particle image velocimetry (2D-PIV) measurements showed that the boundary separation varies depending on the orientation of the ball. Based on these results, we can conclude that the shape of the panels of a soccer ball substantially affects its flight trajectory. PMID:26446616

  16. Visualization of air flow around soccer ball using a particle image velocimetry

    NASA Astrophysics Data System (ADS)

    Hong, Sungchan; Asai, Takeshi; Seo, Kazuya

    2015-10-01

    A traditional soccer ball is constructed using 32 pentagonal and hexagonal panels. In recent years, however, the likes of the Teamgeist and Jabulani balls, constructed from 14 and 8 panels, respectively, have entered the field, marking a significant departure from conventionality in terms of shape and design. Moreover, the recently introduced Brazuca ball features a new 6-panel design and has already been adopted by many soccer leagues. However, the shapes of the constituent panels of these balls differ substantially from those of conventional balls. Therefore, this study set out to investigate the flight and aerodynamic characteristics of different orientations of the soccer ball, which is constructed from panels of different shapes. A wind tunnel test showed substantial differences in the aerodynamic forces acting on the ball, depending on its orientation. Substantial differences were also observed in the aerodynamic forces acting on the ball in different directions, corresponding to its orientation and rotation. Moreover, two-dimensional particle image velocimetry (2D-PIV) measurements showed that the boundary separation varies depending on the orientation of the ball. Based on these results, we can conclude that the shape of the panels of a soccer ball substantially affects its flight trajectory.

  17. Reexamination of Ball-Race Conformity Effects on Ball Bearing Life

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; Poplawski, Joseph V.; Root, Lawrence E.

    2007-01-01

    The analysis in this report considers the life of the ball set as well as the respective lives of the races to reassess the effect of ball-race conformity on ball bearing life. The related changes in ball bearing life are incorporated in life factors that can be used to modify the bearing predicted life using the Lundberg-Palmgren equations and the ANSI/ABMA and ISO Standards. Two simple algebraic relationships were established to calculate life factors LF(sub c) to determine the effect of inner- and outer-race conformity combinations on bearing L(sub 10) life for deepgroove and angular-contact ball bearings, respectively. Depending on the bearing type and series as well as conformity combinations, the calculated life for deep-groove ball bearings can be over 40 percent less than that calculated by the Lundberg-Palmgren equations. For angular-contact ball bearings, the life can vary between +16 and -39 percent from that calculated by the Lundberg-Palmgren equations. Comparing the two ball bearing types, the life factors LF(sub c) for the deep-groove bearings can be as much as 40 percent lower than that for angular-contact ball bearings.

  18. Challenges in Modeling of the Global Atmosphere

    NASA Astrophysics Data System (ADS)

    Janjic, Zavisa; Djurdjevic, Vladimir; Vasic, Ratko; Black, Tom

    2015-04-01

    The massively parallel computer architectures require that some widely adopted modeling paradigms be reconsidered in order to utilize more productively the power of parallel processing. For high computational efficiency with distributed memory, each core should work on a small subdomain of the full integration domain, and exchange only few rows of halo data with the neighbouring cores. However, the described scenario implies that the discretization used in the model is horizontally local. The spherical geometry further complicates the problem. Various grid topologies will be discussed and examples will be shown. The latitude-longitude grid with local in space and explicit in time differencing has been an early choice and remained in use ever since. The problem with this method is that the grid size in the longitudinal direction tends to zero as the poles are approached. So, in addition to having unnecessarily high resolution near the poles, polar filtering has to be applied in order to use a time step of decent size. However, the polar filtering requires transpositions involving extra communications. The spectral transform method and the semi-implicit semi-Lagrangian schemes opened the way for a wide application of the spectral representation. With some variations, these techniques are used in most major centers. However, the horizontal non-locality is inherent to the spectral representation and implicit time differencing, which inhibits scaling on a large number of cores. In this respect the lat-lon grid with a fast Fourier transform represents a significant step in the right direction, particularly at high resolutions where the Legendre transforms become increasingly expensive. Other grids with reduced variability of grid distances such as various versions of the cubed sphere and the hexagonal/pentagonal ("soccer ball") grids were proposed almost fifty years ago. However, on these grids, large-scale (wavenumber 4 and 5) fictitious solutions ("grid imprinting") with significant amplitudes can develop. Due to their large scales, that are comparable to the scales of the dominant Rossby waves, such fictitious solutions are hard to identify and remove. Another new challenge on the global scale is that the limit of validity of the hydrostatic approximation is rapidly being approached. Having in mind the sensitivity of extended deterministic forecasts to small disturbances, we may need global non-hydrostatic models sooner than we think. The unified Non-hydrostatic Multi-scale Model (NMMB) that is being developed at the National Centers for Environmental Prediction (NCEP) as a part of the new NOAA Environmental Modeling System (NEMS) will be discussed as an example. The non-hydrostatic dynamics were designed in such a way as to avoid over-specification. The global version is run on the latitude-longitude grid, and the polar filter selectively slows down the waves that would otherwise be unstable. The model formulation has been successfully tested on various scales. A global forecasting system based on the NMMB has been run in order to test and tune the model. The skill of the medium range forecasts produced by the NMMB is comparable to that of other major medium range models. The computational efficiency of the global NMMB on parallel computers is good.

  19. Reliability of CGA/LGA/HDI Package Board/Assembly (Final Report)

    NASA Technical Reports Server (NTRS)

    Ghaffaroam. Reza

    2014-01-01

    Package manufacturers are now offering commercial-off-the-shelf column grid array (COTS CGA) packaging technologies in high-reliability versions. Understanding the process and quality assurance (QA) indicators for reliability are important for low-risk insertion of these advanced electronics packages. The previous reports, released in January of 2012 and January of 2013, presented package test data, assembly information, and reliability evaluation by thermal cycling for CGA packages with 1752, 1517, 1509, and 1272 inputs/outputs (I/Os) and 1-mm pitch. It presented the thermal cycling (-55C either 100C or 125C) test results for up to 200 cycles. This report presents up to 500 thermal cycles with quality assurance and failure analysis evaluation represented by optical photomicrographs, 2D real time X-ray images, dye-and-pry photomicrographs, and optical/scanning electron Microscopy (SEM) cross-sectional images. The report also presents assembly challenge using reflowing by either vapor phase or rework station of CGA and land grid array (LGA) versions of three high I/O packages both ceramic and plastic configuration. A new test vehicle was designed having high density interconnect (HDI) printed circuit board (PCB) with microvia-in-pad to accommodate both LGA packages as well as a large number of fine pitch ball grid arrays (BGAs). The LGAs either were assembled onto HDI PCB as an LGA or were solder paste print and reflow first to form solder dome on pads before assembly. Both plastic BGAs with 1156 I/O and ceramic LGAs were assembled. It also presented the X-ray inspection results as well as failures due to 200 thermal cycles. Lessons learned on assembly of ceramic LGAs are also presented.

  20. A general theory for ball lightning structure and light output

    NASA Astrophysics Data System (ADS)

    Morrow, R.

    2018-03-01

    A general theory for free-floating ball lightning is presented which unifies the phantom plasma ball theory involving the production of very little light, with theories for ball lightning involving light output produced by burning particles from the soil. The mechanism for the formation of plasma balls is shown to be quite general, producing very similar plasma balls independent of initial ion densities over four orders of magnitude. All that is required is an excess of positive ions in the initial ball of ions. The central plasma density after 1 s is shown to be the reciprocal of the ion neutralization coefficient for all cases, both analytically and computationally. Further, the plasma region has zero electric field in all cases. Surrounding the plasma ball is a sphere of positive ions moving away from the centre via their own space-charge field; this space-charge field, which is the same in all cases near the plasma ball, drives negative ions and negative particles towards the plasma centre. The connection with burning particle theories is the proposition that the burning particles are highly-charged which is very likely after a lightning strike. Burning negatively charged particles would be driven into the plasma ball region and trapped while any positively charged particles would be driven away. The plasma ball structure is shown to last more than 10 s and the ‘burnout time’ for a typical coal particle (as an example) has been measured at 5-10 s this is comparable with the lifetimes observed for ball lightning. The light output from a few hundred particles is estimated to be ~1 W, a typical output for ball lightning. Finally, suggestions are made for the generation of ball lightning in the laboratory.

  1. The Head Tracks and Gaze Predicts: How the World’s Best Batters Hit a Ball

    PubMed Central

    Mann, David L.; Spratford, Wayne; Abernethy, Bruce

    2013-01-01

    Hitters in fast ball-sports do not align their gaze with the ball throughout ball-flight; rather, they use predictive eye movement strategies that contribute towards their level of interceptive skill. Existing studies claim that (i) baseball and cricket batters cannot track the ball because it moves too quickly to be tracked by the eyes, and that consequently (ii) batters do not – and possibly cannot – watch the ball at the moment they hit it. However, to date no studies have examined the gaze of truly elite batters. We examined the eye and head movements of two of the world’s best cricket batters and found both claims do not apply to these batters. Remarkably, the batters coupled the rotation of their head to the movement of the ball, ensuring the ball remained in a consistent direction relative to their head. To this end, the ball could be followed if the batters simply moved their head and kept their eyes still. Instead of doing so, we show the elite batters used distinctive eye movement strategies, usually relying on two predictive saccades to anticipate (i) the location of ball-bounce, and (ii) the location of bat-ball contact, ensuring they could direct their gaze towards the ball as they hit it. These specific head and eye movement strategies play important functional roles in contributing towards interceptive expertise. PMID:23516460

  2. Inserts Automatically Lubricate Ball Bearings

    NASA Technical Reports Server (NTRS)

    Hager, J. A.

    1983-01-01

    Inserts on ball-separator ring of ball bearings provide continuous film of lubricant on ball surfaces. Inserts are machined or molded. Small inserts in ball pockets provide steady supply of lubricant. Technique is utilized on equipment for which maintenance is often poor and lubrication interval is uncertain, such as household appliances, automobiles, and marine engines.

  3. Optical and Acoustic Sensor-Based 3D Ball Motion Estimation for Ball Sport Simulators †.

    PubMed

    Seo, Sang-Woo; Kim, Myunggyu; Kim, Yejin

    2018-04-25

    Estimation of the motion of ball-shaped objects is essential for the operation of ball sport simulators. In this paper, we propose an estimation system for 3D ball motion, including speed and angle of projection, by using acoustic vector and infrared (IR) scanning sensors. Our system is comprised of three steps to estimate a ball motion: sound-based ball firing detection, sound source localization, and IR scanning for motion analysis. First, an impulsive sound classification based on the mel-frequency cepstrum and feed-forward neural network is introduced to detect the ball launch sound. An impulsive sound source localization using a 2D microelectromechanical system (MEMS) microphones and delay-and-sum beamforming is presented to estimate the firing position. The time and position of a ball in 3D space is determined from a high-speed infrared scanning method. Our experimental results demonstrate that the estimation of ball motion based on sound allows a wider activity area than similar camera-based methods. Thus, it can be practically applied to various simulations in sports such as soccer and baseball.

  4. On-ground calibration of AGILE-GRID with a photon beam: results and lessons for the future

    NASA Astrophysics Data System (ADS)

    Cattaneo, P. W.; Rappoldi, A.

    2013-06-01

    On the AGILE satellite, there is the Gamma Ray Imaging Detector (GRID) consisting of a Silicon Tracker (ST), a Cesium Iodide Mini-Calorimeter and an Anti-Coincidence system of plastic scintillator bars. The ST needs a calibration with a γ-ray beam to validate the simulation used to calculate the detector response versus the energy and the direction of the γ rays. A tagged γ-ray beam line was designed at the Beam Test Facility of the Laboratori Nazionali of Frascati, generated by an electron beam through bremsstrahlung in a position-sensitive target. The γ-ray energy is deduced by the difference with the post-bremsstrahlung electron energy [P. W. Cattaneo, et al., Characterization of a tagged γ-ray beam line at the daΦne beam test facility, Nucl. Instr. and Meth. A 674 (2012) 55-66; P. W. Cattaneo, et al., First results about on-ground calibration of the silicon tracker for the agile satellite, Nucl. Instr. and Meth. A 630(1) (2011) 251-257.]. The electron energy is measured by a spectrometer consisting of a dipole magnet and an array of position sensitive silicon strip detectors, the Photon Tagging System (PTS). In this paper the setup and the calibration of AGILE performed in 2005 are described.

  5. Design and validation of the Grip-ball for measurement of hand grip strength.

    PubMed

    Jaber, Rana; Hewson, David J; Duchêne, Jacques

    2012-11-01

    The Grip-ball is a new dynamometer used to evaluate grip strength, as well as for use in home-based rehabilitation of the hand and forearm. The Grip-ball consists of pressure and temperature sensors and an electronic wireless communication system contained in an airtight ball. That can be inflated to different pressures. The device has advantages over standard dynamometers in that it looks like a simple ball, and can wirelessly communicate via Bluetooth to any compatible receiver, thus have potential to be used for clinical assessment and rehabilitation in a remote setting. The reliability and reproducibility of the device were assessed for the pressure sensor itself, as well as the relationship between the force applied and the pressure measured by the Grip-ball. The initial validation was performed using the pressure sensor without the ball in order to confirm the accuracy of the sensor used. A second validation study was conducted using the Grip-ball rather than just its sensor to examine the relationship between the pressure measured inside the ball and force applied. The results showed that there is a very good correlation (r=0.997, p<0.05) between the pressure measured by the Grip-ball sensor and that measured by a Vigorimeter, thus confirming the reliability of the sensor used in the Grip-ball. A quadratic regression equation was calculated in order to predict the force applied based on the pressure measured inside the ball, and the initial pressure to which the ball was inflated (R(2)=0.97, standard error 10.9N). Such a finding compares favourably with the variability inherent in Jamar recordings, thus indicating that the Grip-ball could be used to assess grip force. An industrial version of the Grip-ball, which is currently under development, will be able to be used for the entire range of grip force in the population. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  6. Effects of turbulence on the drag force on a golf ball

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2016-09-01

    Measurements are presented of the drag force on a golf ball dropped vertically into a tank of water. As observed previously in air, the drag coefficient drops sharply when the flow becomes turbulent. The experiment would be suitable for undergraduate students since it can be undertaken at low ball speeds and since the effects of turbulence are easily observed on video film. A modified golf ball was used to show how a ball with a smooth and a rough side, such as a cricket ball, is subject to a side force when the ball surface itself is asymmetrical in the transverse direction.

  7. Evaluation of drilled-ball bearings at DN values to three million. 1: Variable oil flow tests

    NASA Technical Reports Server (NTRS)

    Holmes, P. W.

    1932-01-01

    Two 125-mm-bore solid ball bearings and two similar drilled ball bearings were operated at speeds up to 24,000 rpm (3.0 million DN) with a 13,000 newton (3000 lb) thrust load. The oil flow rate was varied from 0.045 to 0.121 kilograms per second (6 to 16 lb/min). The solid ball bearings operated satisfactorily over the entire range of conditions. The drilled ball bearing experienced cage rub with marginal lubrication at 0.045 kilograms per second (6 lb/min). The drilled ball bearing generally ran cooler than the solid ball bearings.

  8. Rolling-element fatigue life of AMS 5900 balls

    NASA Technical Reports Server (NTRS)

    Parker, R. J.

    1983-01-01

    The rolling-element fatigue life of AMS 5900 12.7-mm (1/2-in.) dia was determined in five-ball fatigue testers. The 10% life with the warm headed AMS 5900 balls was equivalent to that of AMS 5749 and over eight times that of AISI M-50. The AMS balls fabricated by cold heading had small surface cracks which initiated fatigue spalls where these cracks were crossed by running tracks. The cold-headed AMS 5900 balls had a 10% fatigue life an order of magnitude less than that of the warm headed balls even when failures on the cold headed balls at visible surface cracks were omitted.

  9. Accuracy and Reliability of a New Tennis Ball Machine

    PubMed Central

    Brechbuhl, Cyril; Millet, Grégoire; Schmitt, Laurent

    2016-01-01

    The aim was to evaluate the reliability of a newly-developed ball machine named 'Hightof', on the field and to assess its accuracy. The experiment was conducted in the collaboration of the 'Hawk-Eye' technology. The accuracy and reliability of this ball machine were assessed during an incremental test, with 1 min of exercise and 30 sec of recovery, where the frequency of the balls increased from 10 to 30 balls·min-1. The initial frequency was 10 and increased by 2 until 22, then by 1 until 30 balls·min-1. The reference points for the impact were 8.39m from the net and 2.70m from lateral line for the right side and 2.83m for the left side. The precision of the machine was similar on the right and left sides (0.63 ± 0.39 vs 0.63 ± 0.34 m). The distances to the reference point were 0.52 ± 0.42, 0.26 ± 0.19, 0.52 ± 0.37, 0.28 ± 0.19 m for the Y-right, X-right, Y-left and X-left impacts. The precision was constant and did not increase with the intensity. (e.g ball frequency). The ball velocity was 86.3 ± 1.5 and 86.5 ± 1.3 km·h-1 for the right and the left side, respectively. The coefficient of variation for the velocity ranged between 1 and 2% in all stages (ball velocity ranging from 10 to 30 balls·min-1). Conclusion: both the accuracy and the reliability of this new ball machine appear satisfying enough for field testing and training. Key points The reliability and accuracy of a new ball machine named 'Hightof' were assessed. The impact point was reproducible and similar on the right and left sides (±0.63 m). The precision was constant and did not increase with the intensity (e.g ball frequency). The coefficient of variation of the ball velocity ranged between 1 and 2% in all stages (ball velocity ranging from 10 to 30 balls·min-1). PMID:27274663

  10. Accuracy and Reliability of a New Tennis Ball Machine.

    PubMed

    Brechbuhl, Cyril; Millet, Grégoire; Schmitt, Laurent

    2016-06-01

    The aim was to evaluate the reliability of a newly-developed ball machine named 'Hightof', on the field and to assess its accuracy. The experiment was conducted in the collaboration of the 'Hawk-Eye' technology. The accuracy and reliability of this ball machine were assessed during an incremental test, with 1 min of exercise and 30 sec of recovery, where the frequency of the balls increased from 10 to 30 balls·min(-1). The initial frequency was 10 and increased by 2 until 22, then by 1 until 30 balls·min(-1). The reference points for the impact were 8.39m from the net and 2.70m from lateral line for the right side and 2.83m for the left side. The precision of the machine was similar on the right and left sides (0.63 ± 0.39 vs 0.63 ± 0.34 m). The distances to the reference point were 0.52 ± 0.42, 0.26 ± 0.19, 0.52 ± 0.37, 0.28 ± 0.19 m for the Y-right, X-right, Y-left and X-left impacts. The precision was constant and did not increase with the intensity. (e.g ball frequency). The ball velocity was 86.3 ± 1.5 and 86.5 ± 1.3 km·h(-1) for the right and the left side, respectively. The coefficient of variation for the velocity ranged between 1 and 2% in all stages (ball velocity ranging from 10 to 30 balls·min(-1)). both the accuracy and the reliability of this new ball machine appear satisfying enough for field testing and training. Key pointsThe reliability and accuracy of a new ball machine named 'Hightof' were assessed.The impact point was reproducible and similar on the right and left sides (±0.63 m).The precision was constant and did not increase with the intensity (e.g ball frequency).The coefficient of variation of the ball velocity ranged between 1 and 2% in all stages (ball velocity ranging from 10 to 30 balls·min(-1)).

  11. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2001-01-01

    Part of the 2000 annual review of the industrial minerals sector. A general overview of the ball clay industry is provided. In 2000, sales of ball clay reached record levels, with sanitary ware and tile applications accounting for the largest sales. Ball clay production, consumption, prices, foreign trade, and industry news are summarized. The outlook for the ball clay industry is also outlined.

  12. A Comparative Study of Two Types of Ball-on-Ball Collision

    ERIC Educational Resources Information Center

    White, Colin

    2017-01-01

    This paper describes three methods of measuring the coefficient of restitution (CoR) for two different types of ball-on-ball collision. The first collision type (for which two different CoR measurement procedures are described) is a static, hanging steel ball forming part of a Newton's cradle arrangement, which is then hit by its adjacent…

  13. Ban Deodorant Ball Mortar.

    ERIC Educational Resources Information Center

    Carpenter, D. Rae, Jr.; And Others

    1988-01-01

    Discusses a demonstration of vertical collision of two balls. Shows the theoretical height ratio using mathematical expression and diagrams. Compares it with researchers' experimental results. Expands the two-ball collision to multi-ball system. (YP)

  14. Spheres settling in an Oldroyd-B fluid

    NASA Astrophysics Data System (ADS)

    Pan, Tsorng-Whay; Glowinski, Roland

    2017-11-01

    In this talk we present a numerical study of the dynamics of balls settling in a vertical channel with a square cross-section filled with an Oldroyd-B fluid. For the case of two balls, two typical kinds of particle dynamics are obtained: (i) periodic interaction between two balls and (ii) the formation of a vertical chain of two balls. For the periodic interaction of two balls occurred at lower values of the elasticity number, two balls draft, kiss and break away periodically and the chain is not formed due to not strong enough elastic force. For slightly higher values of the elasticity number, two balls draft, kiss and break away a couple times first and then form a chain. Such chain finally becomes a vertical one after the oscillation damps out. For higher values of the elasticity number, two balls draft, kiss and form a vertical chain right away. The formation of three ball chain can be obtained at higher values of the elasticity number. This work was supported by NSF (Grant DMS-1418308).

  15. How Cristiano Ronaldo performs his knuckleball?

    NASA Astrophysics Data System (ADS)

    Cohen, Caroline; Darbois Texier, Baptiste; Quere, David; Clanet, Christophe

    2012-11-01

    A soccer ball kicked at very low spin can exhibit a zigzag trajectory. Along its straight path, the ball deviates laterally from about 0.2 m, that is to say one ball diameter. One zig zag happens as the ball travelled about 15 m. As the deviation direction seems unpredictable, this effect is highly annoying for goalkeepers. That why Cristiano Ronaldo and many soccer players are looking for this phenomenon. Those trajectories called knuckleballs are also observed on volleyball and baseball. We study experimentally indoor knuckleballs for different balls varying from soccer balls to smooth spheres. We show that knuckle effect doesn't derive from ball deformations at foot impact or ball seams. Actually, aerodynamic lift forces on a smooth sphere are fluctuating and are responsible for knuckleballs. From this study, we deduce side force intensity exerted on smooth spheres and sport balls for typical game Reynolds number (Re ~104 -106). Finally we discuss required conditions to observe a knuckleball on the sport field.

  16. Analysis of Black Bearing Balls from a Space Shuttle Body Flap Actuator

    NASA Technical Reports Server (NTRS)

    Sovinski, Marjorie F.; Street, Kenneth W.

    2005-01-01

    A significantly deteriorated ball bearing mechanism from a body flap actuator on Space Shuttle OV-103 was disassembled and the balls submitted for analysis in conjunction with Return to Flight activities. The OV-103 balls, referred to as the "black balls", were subjected to X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) and Raman micro spectroscopy, surface profilometry, and optical and electron microscopy. The spectroscopic results in combination with microscopy analysis allowed a determination of the lubricant degradation pathway. The chemical attack mechanism does not adequately explain the unique visual appearance of the black balls. Numerous efforts have unsuccessfully focused on duplication of the phenomena causing this unique surface structure and appearance of the black balls. Further detail will be presented supporting these conclusions along with plausible explanations of the unique black appearance to the balls.

  17. Ball mounting fixture for a roundness gage

    DOEpatents

    Gauler, Allen L.; Pasieka, Donald F.

    1983-01-01

    A ball mounting fixture for a roundness gage is disclosed. The fixture includes a pair of chuck assemblies oriented substantially transversely with respect to one another and mounted on a common base. Each chuck assembly preferably includes a rotary stage and a wobble plate affixed thereto. A ball chuck affixed to each wobble plate is operable to selectively support a ball to be measured for roundness, with the wobble plate permitting the ball chuck to be tilted to center the ball on the axis of rotation of the rotary stage. In a preferred embodiment, each chuck assembly includes a vacuum chuck operable to selectively support the ball to be measured for roundness. The mounting fixture enables a series of roundness measurements to be taken with a conventional rotating gagehead roundness instrument, which measurements can be utilized to determine the sphericity of the ball.

  18. Measuring the rebound resilience of a bouncing ball

    NASA Astrophysics Data System (ADS)

    Wadhwa, Ajay

    2012-09-01

    Some balls which are made of high-quality rubber (an elastomeric) material, such as tennis or squash balls, could be used for the determination of an important property of such materials called resilience. Since a bouncing ball involves a single impact we call this property 'rebound resilience' and express it as the ratio of the rebound height to the initial drop height of the ball. We determine the rebound resilience for three different types of ball by calculating the coefficient of restitution of the ball-surface combination from the experimentally measurable physical quantities, such as initial drop height and time interval between successive bounces. Using these we also determine the contact time of balls with the surface of impact. For measurements we have used audio, motion and surface-temperature sensors that were interfaced through a USB port with a computer.

  19. Influence of mass and volume of ruminal contents on voluntary intake and digesta passage of a forage diet in steers.

    PubMed

    Schettini, M A; Prigge, E C; Nestor, E L

    1999-07-01

    To assess the influence of volume and mass of ruminal contents on voluntary intake and related variables, five ruminally cannulated steers (550 kg) were fed a low-quality forage diet (43.1% ADF, 8.1% CP) in a 5 x 5 Latin square experiment. Mass and volume of ruminal contents were altered by adding varying numbers and weights of filled tennis balls (6.7-cm diameter) to the rumen immediately before the initiation of each experimental period. Treatments consisted of 0 balls (control), 50 balls with a 1.1 specific gravity (SG), 100 balls with a 1.1 SG, 50 balls with a 1.3 SG, and 100 balls with a SG of 1.3. The total volume of balls was 7.25 and 14.5 L for 50 and 100 balls, respectively. The total weight of balls was 8.5 and 17 kg for 50 and 100 balls with a 1.1 SG and 10.75 and 21.5 kg for 50 and 100 balls with a 1.3 SG, respectively. Daily DMI was 8.3, 7.3, 7.0, 6.5, and 6.0 kg for control; 50, 1.1 SG; 50, 1.3 SG; 100, 1.1 SG; and 100, 1.3 SG, respectively. Addition of balls to the rumen reduced (P < .01) DMI. Increasing the number (P < .01) and SG (P <. 01) of the balls decreased DMI further. However, digestibilities of DM, NDF, ADF, and CP were not influenced by treatment. Increasing the number of balls in the rumen increased (P < .05) rate of passage of digesta from the rumen, but increasing SG of the balls did not alter rate of passage. There was a treatment x hour interaction (P < .05) in the proportion of ruminal digesta with a functional specific gravity (FSG) less than 1.1, which decreased with time after feeding for the control but increased with time after feeding for other treatments. Ruminal passage rate of inert particles added in the rumen of different SG (1.1 and 1.3) and length (1 and 3 mm) decreased (P < .05) as SG of the balls increased. Mean fecal particle size was greater for those treatments with the heavier balls. Both the number and SG of balls (P < .10) influenced total VFA, and total concentrations were greater for the control and for the 1.1 SG than for the 1.3 SG treatments.

  20. Biomechanical Analysis of Weighted-Ball Exercises for Baseball Pitchers.

    PubMed

    Fleisig, Glenn S; Diffendaffer, Alek Z; Aune, Kyle T; Ivey, Brett; Laughlin, Walter A

    Weighted-ball throwing programs are commonly used in training baseball pitchers to increase ball velocity. The purpose of this study was to compare kinematics and kinetics among weighted-ball exercises with values from standard pitching (ie, pitching standard 5-oz baseballs from a mound). Ball and arm velocities would be greater with lighter balls and joint kinetics would be greater with heavier balls. Controlled laboratory study. Twenty-five high school and collegiate baseball pitchers experienced with weighted-ball throwing were tested with an automated motion capture system. Each participant performed 3 trials of 10 different exercises: pitching 4-, 5-, 6-, and 7-oz baseballs from a mound; flat-ground crow hop throws with 4-, 5-, 6-, and 7-oz baseballs; and flat-ground hold exercises with 14- and 32-oz balls. Twenty-six biomechanical parameters were computed for each trial. Data among the 10 exercises were compared with repeated measures analysis of variance and post hoc paired t tests against the standard pitching data. Ball velocity increased as ball mass decreased. There were no differences in arm and trunk velocities between throwing a standard baseball and an underweight baseball (4 oz), while arm and trunk velocities steadily decreased as ball weight increased from 5 to 32 oz. Compared with values pitching from a mound, velocities of the pelvis, shoulder, and ball were increased for flat-ground throws. In general, as ball mass increased arm torques and forces decreased; the exception was elbow flexion torque, which was significantly greater for the flat-ground holds. There were significant differences in body positions when pitching on the mound, flat-ground throws, and holds. While ball velocity was greatest throwing underweight baseballs, results from the study did not support the rest of the hypothesis. Kinematics and kinetics were similar between underweight and standard baseballs, while overweight balls correlated with decreased arm forces, torques, and velocities. Increased ball velocity and joint velocities were produced with crow hop throws, likely because of running forward while throwing. As pitching slightly underweight and overweight baseballs produces variations in kinematics without increased arm kinetics, these exercises seem reasonable for training pitchers. As flat-ground throwing produces increased shoulder internal rotation velocity and elbow varus torque, these exercises may be beneficial but may also be stressful and risky. Flat-ground holds with heavy balls should not be viewed as enhancing pitching biomechanics, but rather as hybrid exercises between throwing and resistance training.

  1. Accelerated Thermal Cycling and Failure Mechanisms for BGA and CSP Assemblies

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2000-01-01

    This paper reviews the accelerated thermal cycling test methods that are currently used by industry to characterize the interconnect reliability of commercial-off-the-shelf (COTS) ball grid array (BGA) and chip scale package (CSP) assemblies. Acceleration induced failure mechanisms varied from conventional surface mount (SM) failures for CSPs. Examples of unrealistic life projections for other CSPs are also presented. The cumulative cycles to failure for ceramic BGA assemblies performed under different conditions, including plots of their two Weibull parameters, are presented. The results are for cycles in the range of -30 C to 100 C, -55 C to 100 C, and -55 C to 125 C. Failure mechanisms as well as cycles to failure for thermal shock and thermal cycling conditions in the range of -55 C to 125 C were compared. Projection to other temperature cycling ranges using a modified Coffin-Manson relationship is also presented.

  2. Modeling the Rate-Dependent Durability of Reduced-Ag SAC Interconnects for Area Array Packages Under Torsion Loads

    NASA Astrophysics Data System (ADS)

    Srinivas, Vikram; Menon, Sandeep; Osterman, Michael; Pecht, Michael G.

    2013-08-01

    Solder durability models frequently focus on the applied strain range; however, the rate of applied loading, or strain rate, is also important. In this study, an approach to incorporate strain rate dependency into durability estimation for solder interconnects is examined. Failure data were collected for SAC105 solder ball grid arrays assembled with SAC305 solder that were subjected to displacement-controlled torsion loads. Strain-rate-dependent (Johnson-Cook model) and strain-rate-independent elastic-plastic properties were used to model the solders in finite-element simulation. Test data were then used to extract damage model constants for the reduced-Ag SAC solder. A generalized Coffin-Manson damage model was used to estimate the durability. The mechanical fatigue durability curve for reduced-silver SAC solder was generated and compared with durability curves for SAC305 and Sn-Pb from the literature.

  3. IOTA: the array controller for a gigapixel OTCCD camera for Pan-STARRS

    NASA Astrophysics Data System (ADS)

    Onaka, Peter; Tonry, John; Luppino, Gerard; Lockhart, Charles; Lee, Aaron; Ching, Gregory; Isani, Sidik; Uyeshiro, Robin

    2004-09-01

    The PanSTARRS project has undertaken an ambitious effort to develop a completely new array controller architecture that is fundamentally driven by the large 1gigapixel, low noise, high speed OTCCD mosaic requirements as well as the size, power and weight restrictions of the PanSTARRS telescope. The result is a very small form factor next generation controller scalar building block with 1 Gigabit Ethernet interfaces that will be assembled into a system that will readout 512 outputs at ~1 Megapixel sample rates on each output. The paper will also discuss critical technology and fabrication techniques such as greater than 1MHz analog to digital converters (ADCs), multiple fast sampling and digital calculation of multiple correlated samples (DMCS), ball grid array (BGA) packaged circuits, LINUX running on embedded field programmable gate arrays (FPGAs) with hard core microprocessors for the prototype currently being developed.

  4. NASA-DoD Lead-Free Electronics Project

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt

    2009-01-01

    In response to concerns about risks from lead-free induced faults to high reliability products, NASA has initiated a multi-year project to provide manufacturers and users with data to clarify the risks of lead-free materials in their products. The project will also be of interest to component manufacturers supplying to high reliability markets. The project was launched in November 2006. The primary technical objective of the project is to undertake comprehensive testing to generate information on failure modes/criteria to better understand the reliability of: (1) Packages (e.g., Thin Small Outline Package [TSOP], Ball Grid Array [BGA], Plastic Dual In-line Package [PDIP]) assembled and reworked with solder interconnects consisting of lead-free alloys (2) Packages (e.g., TSOP, BGA, PDIP) assembled and reworked with solder interconnects consisting of mixed alloys, lead component finish/lead-free solder and lead-free component finish/SnPb solder

  5. How Magnus Bends the Flying Ball--Experimenting and Modeling

    ERIC Educational Resources Information Center

    Timková, V.; Ješková, Z.

    2017-01-01

    Students are well aware of the effect of the deflection of sports balls when they have been given a spin. A volleyball, tennis, or table tennis ball served with topspin results in an additional downward force that makes the ball difficult to catch and return. In soccer, the effect of sidespin causes the ball to curve unexpectedly sideways,…

  6. Enhancing the Bounce of a Ball

    ERIC Educational Resources Information Center

    Cross, Rod

    2010-01-01

    In sports such as baseball, softball, golf, and tennis, a common objective is to hit the ball as fast or as far as possible. Another common objective is to hit the ball so that it spins as fast as possible, since the trajectory of the ball through the air is strongly affected by ball spin. In an attempt to enhance both the coefficient of…

  7. Determination of Contact Time of Rubber Balls Using a Digital Oscilloscope

    ERIC Educational Resources Information Center

    Wadhwa, Ajay

    2010-01-01

    We present a new method for determining the contact time of a rubber ball with the rebounding surface by using a sound-detecting electronic circuit and a digital storage oscilloscope. The rubber ball (a tennis ball or squash ball) is dropped from a known height onto a rigid surface and its contact time on first bounce is determined on the…

  8. Propagation of self-localized Q -ball solitons in the 3He universe

    NASA Astrophysics Data System (ADS)

    Autti, S.; Heikkinen, P. J.; Volovik, G. E.; Zavjalov, V. V.; Eltsov, V. B.

    2018-01-01

    In relativistic quantum field theories, compact objects of interacting bosons can become stable owing to conservation of an additive quantum number Q . Discovering such Q balls propagating in the universe would confirm supersymmetric extensions of the standard model and may shed light on the mysteries of dark matter, but no unambiguous experimental evidence exists. We have created long-lived Q -ball solitons in superfluid 3He, where the role of the Q ball is played by a Bose-Einstein condensate of magnon quasiparticles. The principal qualitative attribute of a Q ball is observed experimentally: its propagation in space together with the self-created potential trap. Additionally, we show that this system allows for a quantitatively accurate representation of the Q -ball Hamiltonian. Our Q ball belongs to the class of the Friedberg-Lee-Sirlin Q balls with an additional neutral field ζ , which is provided by the orbital part of the Nambu-Goldstone mode. Multiple Q balls can be created in the experiment, and we have observed collisions between them. This set of features makes the magnon condensates in superfluid 3He a versatile platform for studies of Q -ball dynamics and interactions in three spatial dimensions.

  9. Geochemistry of autochthonous and hypautochthonous siderite-dolomite coal-balls (Foord Seam, Bolsovian, Upper Carboniferous), Nova Scotia, Canada

    USGS Publications Warehouse

    Zodrow, E.L.; Lyons, P.C.; Millay, M.A.

    1996-01-01

    The 11-13 m thick Foord Seam in the fault-bounded Stellarton Basin, Nova Scotia, is the thickest seam from the Euramerican floral province known to contain coal-balls. In addition to the first discovery of autochthonous coal-balls in the Foord Seam, Nova Scotia, its shale parting also contains hypautochthonous coal-balls with histologically preserved plant structures. The coal-ball discovery helps fill a stratigraphic gap in coal-ball occurrences in the upper Carboniferous (Bolsovian) of Euramerica. The autochthonous and hypautochthonous coal-balls have a similar mineralogical composition and are composed of siderite (81-100%), dolomite-ankerite (0-19%), minor quartz and illite, and trace amounts of 'calcite'. Similar is also their permineralizing mineralogy, which consists of dolomite-ankerite and siderite. Their low pyrite content and carbonate mineralogy, and nonmarine origin, differentiates the Foord Seam coal-balls from other Euramerican coal-ball occurrences. A preliminary geochemical model, which is based on oxygen and carbon isotopic data, indicates that siderite in both the autochthonous and hypautochthonous coal-balls is of very early diagenetic (nonmarine) origin from 13C-enriched bicarbonate derived from bacterial methanogenesis of organic matter.

  10. A Highly Miniaturized, Wireless Inertial Measurement Unit for Characterizing the Dynamics of Pitched Baseballs and Softballs

    PubMed Central

    McGinnis, Ryan S.; Perkins, Noel C.

    2012-01-01

    Baseball and softball pitch types are distinguished by the path and speed of the ball which, in turn, are determined by the angular velocity of the ball and the velocity of the ball center at the instant of release from the pitcher's hand. While radar guns and video-based motion capture (mocap) resolve ball speed, they provide little information about how the angular velocity of the ball and the velocity of the ball center develop and change during the throwing motion. Moreover, mocap requires measurements in a controlled lab environment and by a skilled technician. This study addresses these shortcomings by introducing a highly miniaturized, wireless inertial measurement unit (IMU) that is embedded in both baseballs and softballs. The resulting “ball-embedded” sensor resolves ball dynamics right on the field of play. Experimental results from ten pitches, five thrown by one softball pitcher and five by one baseball pitcher, demonstrate that this sensor technology can deduce the magnitude and direction of the ball's velocity at release to within 4.6% of measurements made using standard mocap. Moreover, the IMU directly measures the angular velocity of the ball, which further enables the analysis of different pitch types.

  11. Study of the dynamic properties and effects of temperature using a spring model for the bouncing ball

    NASA Astrophysics Data System (ADS)

    Wadhwa, Ajay

    2013-05-01

    We studied the motion of a bouncing ball by representing it through an equivalent mass-spring system executing damped harmonic oscillations. We represented the elasticity of the system through the spring constant ‘k’ and the viscous damping effect, causing loss of energy, through damping constant ‘c’. By including these two factors we formed a differential equation for the equivalent mass-spring system of the bouncing ball. This equation was then solved to study the elastic and dynamic properties of its motion by expressing them in terms of experimentally measurable physical quantities such as contact time, coefficient of restitution, etc. We used our analysis for different types of ball material: rubber (lawn-tennis ball, super ball, soccer ball and squash ball) and plastic (table-tennis ball) at room temperature. Since the effect of temperature on the bounce of a squash ball is significant, we studied the temperature dependence of its elastic properties. The experiments were performed using audio and surface-temperature sensors interfaced with a computer through a USB port. The work presented here is suitable for undergraduate laboratories. It particularly emphasizes the use of computer interfacing for conducting conventional physics experiments.

  12. Telescoping magnetic ball bar test gage

    DOEpatents

    Bryan, J.B.

    1982-03-15

    A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengagable servo drives which cannot be clutched out. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine.

  13. The effect of load uncertainty on anticipatory muscle activity in catching.

    PubMed

    Eckerle, Jason J; Berg, William P; Ward, Rose Marie

    2012-08-01

    To investigate how the CNS copes with load uncertainty in catching, anticipatory postural adjustments (APAs) in one-handed catching of balls of known and unknown weights were compared. Twenty-nine (n = 29) men (mean age = 21.1 years) participated, all of whom had engaged in a sport activity requiring hand-eye coordination. Participants' muscle activity in the biceps brachii, triceps brachii, wrist flexor group, and bilateral erector spinae at L4-5 was recorded using electromyography (EMG) while they caught visually identical balls of four different weights (0.5, 1.33, 2.17, and 3.0 kg). EMG integrals were computed for the 1 s prior to ball drop (pre-drop period), and the interval between ball drop and catch (drop period). Uncertainty about ball weight had no effect on APA activity during the pre-drop period. During the drop period, however, load uncertainty did influence APA activity in the biceps brachii, triceps brachii, and the wrist flexor muscles (i.e., the effect of ball weight on APA magnitude depended on the presence or absence of load knowledge). In the known ball weight condition, participants exhibit greater APA magnitude with increases in ball weight. In contrast, under the unknown ball weight condition, APA magnitude was relatively consistent across ball weights and at a level similar to the APA magnitude for an intermediate weight (i.e., the second heaviest ball of four) in the known weight condition. In catching balls of unknown weights, the CNS appears to scale APA magnitude to afford the greatest chance of catching the ball, regardless of the weight.

  14. Solar-Diesel Hybrid Power System Optimization and Experimental Validation

    NASA Astrophysics Data System (ADS)

    Jacobus, Headley Stewart

    As of 2008 1.46 billion people, or 22 percent of the World's population, were without electricity. Many of these people live in remote areas where decentralized generation is the only method of electrification. Most mini-grids are powered by diesel generators, but new hybrid power systems are becoming a reliable method to incorporate renewable energy while also reducing total system cost. This thesis quantifies the measurable Operational Costs for an experimental hybrid power system in Sierra Leone. Two software programs, Hybrid2 and HOMER, are used during the system design and subsequent analysis. Experimental data from the installed system is used to validate the two programs and to quantify the savings created by each component within the hybrid system. This thesis bridges the gap between design optimization studies that frequently lack subsequent validation and experimental hybrid system performance studies.

  15. Aerodynamics in the classroom and at the ball park

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2012-04-01

    Experiments suitable for classroom projects or demonstrations are described concerning the aerodynamics of polystyrene balls. A light ball with sufficient backspin can curve vertically upward through the air, defying gravity and providing a dramatic visual demonstration of the Magnus effect. A ball projected with backspin can also curve downward with a vertical acceleration greater than that due to gravity if the Magnus force is negative. These effects were investigated by filming the flight of balls projected in an approximately horizontal direction so that the lift and drag forces could be easily measured. The balls were also fitted with artificial raised seams and projected with backspin toward a vertical target in order to measure the sideways deflection over a known horizontal distance. It was found that (a) a ball with a seam on one side can deflect either left or right depending on its launch speed and (b) a ball with a baseball seam can also deflect sideways even when there is no sideways component of the drag or lift forces acting on the ball. Depending on the orientations of the seam and the spin axis, a sideways force on a baseball can arise either if there is rough patch on one side of the ball or if there is a smooth patch. A scuff ball with a rough patch on one side is illegal in baseball. The effect of a smooth patch is a surprising new observation.

  16. How does gravity save or kill Q-balls?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamaki, Takashi; Sakai, Nobuyuki; Department of Education, Yamagata University, Yamagata 990-8560

    2011-02-15

    We explore stability of gravitating Q-balls with potential V{sub 4}({phi})=(m{sup 2}/2){phi}{sup 2}-{lambda}{phi}{sup 4}+({phi}{sup 6}/M{sup 2}) via catastrophe theory, as an extension of our previous work on Q-balls with potential V{sub 3}({phi})=(m{sup 2}/2){phi}{sup 2}-{mu}{phi}{sup 3}+{lambda}{phi}{sup 4}. In flat spacetime Q-balls with V{sub 4} in the thick-wall limit are unstable and there is a minimum charge Q{sub min}, where Q-balls with Q

  17. The strange flight behaviour of slowly spinning soccer balls

    NASA Astrophysics Data System (ADS)

    Mizota, Taketo; Kurogi, Kouhei; Ohya, Yuji; Okajima, Atsushi; Naruo, Takeshi; Kawamura, Yoshiyuki

    2013-05-01

    The strange three-dimensional flight behaviour of slowly spinning soccer balls is one of the most interesting and unknown phenomenon associated with the trajectories of sports balls. Many spectators have experienced numerous exciting and emotional instances while observing the curious flight behaviour of these balls. We examine the aerodynamic mechanisms of erratic ball behaviours through real flight observations, unsteady force measurements and flow pattern visualisations. The strange behaviour is elucidated by the relationship between the unsteady forces on the ball and the wake flow. The irregular changes in position for twin longitudinal vortices have already been discovered in the supercritical Reynolds number region of a sphere with a smooth surface. This finding is applicable to the strange behaviour of the flight of soccer balls with this supercritical flow. The players, spectators, and television viewers will gain greater insight into the effects of soccer ball flights.

  18. Ball mounting fixture for a roundness gage

    DOEpatents

    Gauler, A.L.; Pasieka, D.F.

    1983-11-15

    A ball mounting fixture for a roundness gage is disclosed. The fixture includes a pair of chuck assemblies oriented substantially transversely with respect to one another and mounted on a common base. Each chuck assembly preferably includes a rotary stage and a wobble plate affixed thereto. A ball chuck affixed to each wobble plate is operable to selectively support a ball to be measured for roundness, with the wobble plate permitting the ball chuck to be tilted to center the ball on the axis of rotation of the rotary stage. In a preferred embodiment, each chuck assembly includes a vacuum chuck operable to selectively support the ball to be measured for roundness. The mounting fixture enables a series of roundness measurements to be taken with a conventional rotating gagehead roundness instrument, which measurements can be utilized to determine the sphericity of the ball. 6 figs.

  19. Examining action effects in the execution of a skilled soccer kick by using erroneous feedback.

    PubMed

    Ford, Paul; Hodges, Nicola J; Williams, A Mark

    2007-11-01

    The authors examined the role of action effects (i.e., ball trajectory) during the performance of a soccer kick. Participants were 20 expert players who kicked a ball over a height barrier toward a ground-level target. The authors occluded participants' vision of the ball trajectory after foot-to-ball contact. Participants in a 1st group received erroneous feedback from a video that showed a ball-trajectory apex approximately 75 cm lower than that of their actual kick, although the ball's landing position was unaltered. Participants in a 2nd group received correct video feedback of both the ball trajectory and the landing position. The erroneous-feedback group showed a significant bias toward higher ball trajectories than did the correct-feedback group. The authors conclude that performers at high levels of skill use the visual consequences of the action to plan and execute an action.

  20. Carbon nanotube balls and their application in supercapacitors.

    PubMed

    Kang, Da-Young; Moon, Jun Hyuk

    2014-01-08

    We have provided a design of the macroscopic morphology of carbon nanotubes (CNTs) using emulsion droplet confinement. The evaporation of CNT-dispersed aqueous emulsion droplets in oil produces spherical CNT assemblies, i.e., CNT balls. In this emulsion-assisted method, compact packing of CNT was obtained by the presence of capillary pressure during droplet evaporation. The size of the CNT balls could be controlled by changing the concentration of the CNT dispersion solution; typically, CNT balls with an average size in the range of 8-12 μm were obtained with a Brunauer-Emmett-Teller (BET) specific area of 200 m(2)/g. Heat treatment of the CNT balls, which was required to remove residual solvent, and cement CNTs was followed, and their effect has been characterized; the heat treatment at high temperature desorbed surface oxygenated groups of CNTs and created defective carbon structures, but did not change pore structure. The dispersion of CNT balls was applied to form CNT ball-assembled film for a supercapacitor electrode. The specific capacitance of 80 F/g was obtained at 500 °C heat treatment, but the CNT balls prepared at a higher temperature actually decreased the capacitance, because of the removal of surface oxygenated groups, thereby decreasing the pseudo-capacitance. The capacitive properties of CNT ball-assembled electrodes were compared to CNT films; the CNT ball electrodes showed 40% higher specific electrochemical capacitance and higher rate performance, which is attributed to the compact packing of CNTs in the CNT ball and the hierarchical porous structures in the ball assemblies.

  1. A Handheld Open-Field Infant Keratometer (An American Ophthalmological Society Thesis)

    PubMed Central

    Miller, Joseph M.

    2010-01-01

    Purpose: To design and evaluate a new infant keratometer that incorporates an unobstructed view of the infant with both eyes (open-field design). Methods: The design of the open-field infant keratometer is presented, and details of its construction are given. The design incorporates a single-ring keratoscope for measurement of corneal astigmatism over a 4-mm region of the cornea and includes a rectangular grid target concentric within the ring to allow for the study of higher-order aberrations of the eye. In order to calibrate the lens and imaging system, a novel telecentric test object was constructed and used. The system was bench calibrated against steel ball bearings of known dimensions and evaluated for accuracy while being used in handheld mode in a group of 16 adult cooperative subjects. It was then evaluated for testability in a group of 10 infants and toddlers. Results: Results indicate that while the device achieved the goal of creating an open-field instrument containing a single-ring keratoscope with a concentric grid array for the study of higher-order aberrations, additional work is required to establish better control of the vertex distance. Conclusion: The handheld open-field infant keratometer demonstrates testability suitable for the study of infant corneal astigmatism. Use of collimated light sources in future iterations of the design must be incorporated in order to achieve the accuracy required for clinical investigation. PMID:21212850

  2. A handheld open-field infant keratometer (an american ophthalmological society thesis).

    PubMed

    Miller, Joseph M

    2010-12-01

    To design and evaluate a new infant keratometer that incorporates an unobstructed view of the infant with both eyes (open-field design). The design of the open-field infant keratometer is presented, and details of its construction are given. The design incorporates a single-ring keratoscope for measurement of corneal astigmatism over a 4-mm region of the cornea and includes a rectangular grid target concentric within the ring to allow for the study of higher-order aberrations of the eye. In order to calibrate the lens and imaging system, a novel telecentric test object was constructed and used. The system was bench calibrated against steel ball bearings of known dimensions and evaluated for accuracy while being used in handheld mode in a group of 16 adult cooperative subjects. It was then evaluated for testability in a group of 10 infants and toddlers. Results indicate that while the device achieved the goal of creating an open-field instrument containing a single-ring keratoscope with a concentric grid array for the study of higher-order aberrations, additional work is required to establish better control of the vertex distance. The handheld open-field infant keratometer demonstrates testability suitable for the study of infant corneal astigmatism. Use of collimated light sources in future iterations of the design must be incorporated in order to achieve the accuracy required for clinical investigation.

  3. Unified picture of Q-balls and boson stars via catastrophe theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tamaki, Takashi; Sakai, Nobuyuki; Department of Education, Yamagata University, Yamagata 990-8560

    2010-06-15

    We make an analysis of Q-balls and boson stars using catastrophe theory, as an extension of the previous work on Q-balls in flat spacetime. We adopt the potential V{sub 3}({phi})=(m{sup 2}/2){phi}{sup 2}-{mu}{phi}{sup 3}+{lambda}{phi}{sup 4} for Q-balls and that with {mu}=0 for boson stars. For solutions with |g{sup rr}-1|{approx}1 at its peak, stability of Q-balls has been lost regardless of the potential parameters. As a result, phase relations, such as a Q-ball charge versus a total Hamiltonian energy, approach those of boson stars, which gives us a unified picture of Q-balls and boson stars.

  4. Ball feeder for replenishing evaporator feed

    DOEpatents

    Felde, David K.; McKoon, Robert H.

    1993-01-01

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  5. Ball feeder for replenishing evaporator feed

    DOEpatents

    Felde, D.K.; McKoon, R.H.

    1993-03-23

    Vapor source material such as uranium, which is to be dropped into a melt in an evaporator, is made into many balls of identical diameters and placed inside a container. An elongated sloping pipe is connected to the container and leads to the evaporator such that these balls can travel sequentially therealong by gravity. A metering valve in this pipe for passing these balls one at a time is opened in response to a signal when it is ascertained by a detector that there is a ball ready to be passed. A gate in the pipe near the evaporator momentarily stops the motion of the traveling ball and is then opened to allow the ball drop into the melt at a reduced speed.

  6. 76 FR 57019 - Ball Bearings and Parts Thereof From France, Germany and Italy: Final Results of Sunset Reviews...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-15

    ... with integral shafts, ball bearings (including radial ball bearings) and parts thereof, and housed or... thereof (inner race, outer race, cage, rollers, balls, seals, shields, etc.) outlined above with certain...

  7. Two degree of freedom camera mount

    NASA Technical Reports Server (NTRS)

    Ambrose, Robert O. (Inventor)

    2003-01-01

    A two degree of freedom camera mount. The camera mount includes a socket, a ball, a first linkage and a second linkage. The socket includes an interior surface and an opening. The ball is positioned within an interior of the socket. The ball includes a coupling point for rotating the ball relative to the socket and an aperture for mounting a camera. The first and second linkages are rotatably connected to the socket and slidably connected to the coupling point of the ball. Rotation of the linkages with respect to the socket causes the ball to rotate with respect to the socket.

  8. Influence of the cage on friction torque in low loaded thrust ball bearing operating in dry conditions

    NASA Astrophysics Data System (ADS)

    Olaru, D.; Balan, M. R.; Tufescu, A.

    2016-08-01

    The authors investigated analytically and experimentally the friction torque in a modified thrust ball bearing operating at very low axial load in dry conditions by using only three balls and a cage. The experiments were conducted by using spin-down methodology. The results evidenced the influence of the sliding friction between the cage and the balls on the total friction torque. It was concluded that at very low loads the friction between cage and balls in a thrust ball bearing has an important contribution on total friction torque.

  9. Thermal Stability of Gun Propellants from Munition Articles That Returned from Cambodia.

    DTIC Science & Technology

    1998-02-01

    0482 0661 0312 0472 EMZ 79- 11 MEN 80-8 DAG 86-2 MEN 88-57 DAG 89- 11 DAG 90-3 IMI91-4 7% 9 % 12% 15% 17% 18% 16% CTG.50 inch Ball LKD...5. Peltierelement, 6. diffe- rentiemeetpunt, 7. aluminium binnenblok, 8. referentievat, 9 . isolatie, 10. verwarmingsman- tel, 11 . isolatie, 12...W/TR CTG 7,62 mm NATO Ball CTG.50 inch Med RNG Ball LKD, W/TR CTG 7,62 mm NATO Ball CTG 9 mm NATO Ball CTG 7,62 mm NATO Ball CTG 7,62 mm NATO

  10. The relationships between impact location and post-impact ball speed, bat torsion, and ball direction in cricket batting.

    PubMed

    Peploe, C; McErlain-Naylor, S A; Harland, A R; King, M A

    2018-06-01

    Three-dimensional kinematic data of bat and ball were recorded for 239 individual shots performed by twenty batsmen ranging from club to international standard. The impact location of the ball on the bat face was determined and assessed against the resultant instantaneous post-impact ball speed and measures of post-impact bat torsion and ball direction. Significant negative linear relationships were found between post-impact ball speed and the absolute distance of impact from the midline medio-laterally and sweetspot longitudinally. Significant cubic relationships were found between the distance of impact from the midline of the bat medio-laterally and both a measure of bat torsion and the post-impact ball direction. A "sweet region" on the bat face was identified whereby impacts within 2 cm of the sweetspot in the medio-lateral direction, and 4.5 cm in the longitudinal direction, caused reductions in ball speed of less than 6% from the optimal value, and deviations in ball direction of less than 10° from the intended target. This study provides a greater understanding of the margin for error afforded to batsmen, allowing researchers to assess shot success in more detail, and highlights the importance of players generating consistently central impact locations when hitting for optimal performance.

  11. CFD Analysis of Swing of Cricket Ball and Trajectory Prediction

    NASA Astrophysics Data System (ADS)

    G, Jithin; Tom, Josin; Ruishikesh, Kamat; Jose, Jyothish; Kumar, Sanjay

    2013-11-01

    This work aims to understand the aerodynamics associated with the flight and swing of a cricket ball and predict its flight trajectory over the course of the game: at start (smooth ball) and as the game progresses (rough ball). Asymmetric airflow over the ball due to seam orientation and surface roughness can cause flight deviation (swing). The values of Drag, Lift and Side forces which are crucial for determining the trajectory of the ball were found with the help of FLUENT using the standard K- ɛ model. Analysis was done to study how the ball velocity, spin imparted to be ball and the tilt of the seam affects the movement of the ball through air. The governing force balance equations in 3 dimensions in combination a MATLAB code which used Heun's method was used for obtaining the trajectory of the ball. The conditions for the conventional swing and reverse swing to occur were deduced from the analysis and found to be in alignment with the real life situation. Critical seam angle for maximum swing and transition speed for normal to reverse swing were found out. The obtained trajectories were compared to real life hawk eye trajectories for validation. The analysis results were in good agreement with the real life situation.

  12. Telescoping magnetic ball bar test gage

    DOEpatents

    Bryan, J.B.

    1984-03-13

    A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengageable servo drives which cannot be clutched out is disclosed. Two gage balls are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit and a rigid member. One gage ball is secured by a magnetic socket knuckle assembly which fixes its center with respect to the machine being tested. The other gage ball is secured by another magnetic socket knuckle assembly which is engaged or held by the machine in such manner that the center of that ball is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball. As the moving ball executes its trajectory, changes in the radial distance between the centers of the two balls caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly actuated by the parallel reed flexure unit. Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball locations, thereby determining the accuracy of the machine. 3 figs.

  13. Evaporation-induced self-assembly of quantum dots-based concentric rings on polymer-based nanocomposite films.

    PubMed

    Zhang, Shaofu; Luan, Weiling; Zhong, Qixin; Yin, Shaofeng; Yang, Fuqian

    2016-10-12

    The "ball-on-film" template is used to construct concentric rings on the surface of PMMA-QDs (polymethyl methacrylate - quantum dots) nanocomposite films via the evaporation of pure chloroform droplets, which are confined by a steel ball. The concentric rings consist of QDs, as revealed by the fluorescence images of the concentric rings. The photoluminescence intensity of the concentric rings increases with the increase of the distance to the ball center, suggesting that the amount of QDs accumulated around the contact line at individual stick state increases with the increase of the distance to the ball center. Both the wavelength and cross-sectional area (width) of the concentric rings increase approximately linearly with increasing distance to the ball center, independent of the ball size, the film thickness and the QDs concentration. For the PMMA-QDs nanocomposite films prepared from the same QDs concentration in chloroform, the thicker the PMMA-QDs nanocomposite film, the larger the wavelength for the same distance to the ball center. The effect of confinement of two steel balls on the surface patterns over the PMMA-QDs nanocomposite films is studied via a template of "two spheres on film". Symmetric surface patterns are formed. There exist two types of featureless zone between the two balls, depending on the distance between the two balls: one is the inner featureless zone and the other is the outer featureless zone. The size of both featureless zones increases with the increase of the ball distance.

  14. Detonator-activated ball shutter

    DOEpatents

    McWilliams, Roy A.; von Holle, William G.

    1983-01-01

    A detonator-activated ball shutter for closing an aperture in about 300.mu. seconds. The ball shutter containing an aperture through which light, etc., passes, is closed by firing a detonator which propels a projectile for rotating the ball shutter, thereby blocking passage through the aperture.

  15. Playing Ball in a Space Station

    ERIC Educational Resources Information Center

    Simoson, Andrew J.

    2006-01-01

    How does artificial gravity affect the path of a thrown ball? This paper contrasts ball trajectories on the Little Prince's asteroid planet B-612 and Arthur C. Clarke's rotating-drum spacecraft of 2001, and demonstrates curve balls with multiple loops in the latter environment.

  16. Micro structrual characterization and analysis of ball milled silicon carbide

    NASA Astrophysics Data System (ADS)

    Madhusudan, B. M.; Raju, H. P.; Ghanaraja., S.

    2018-04-01

    Mechanical alloying has been one of the prominent methods of powder synthesis technique in solid state involving cyclic deformation, cold welding and fracturing of powder particles. Powder particles in this method are subjected to greater mechanical deformation due to the impact of ball-powder-ball and ball-powder-container collisions that occurs during mechanical alloying. Strain hardening and fracture of particles decreases the size of the particles and creates new surfaces. The objective of this Present work is to use ball milling of SiC powder for different duration of 5, 10, 15 and 20 hours by High energy planetary ball milling machine and to evaluate the effect of ball milling on SiC powder. Micro structural Studies using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and EDAX has been investigated.

  17. Assessment of head injury of children due to golf ball impact.

    PubMed

    Lee, Heow Pueh; Wang, Fang

    2010-10-01

    Head trauma injury due to impact by a flying golf ball is one of the most severe possible injury accidents on the golf course. Numerical simulations based on the finite element method are presented to investigate head injury in children due to impact by a flying golf ball. The stress and energy flow patterns in a head model during the golf ball impact are computed for various combinations of striking speed, falling angle of the golf ball before impact, and impact location. It is found that a child is more prone to head injury due to golf ball impact on the frontal and side/temporal areas. The simulated results are found to conform to the clinical reports on children's head injuries from flying golf balls.

  18. Preparation of Si nano-crystals with controlled oxidation state from SiO disproportionated by ZrO2 ball-milling

    NASA Astrophysics Data System (ADS)

    Okamoto, Yuji; Harada, Yoshitomo; Ohta, Narumi; Takada, Kazunori; Sumiya, Masatomo

    2016-09-01

    We demonstrate that a SiO disproportionation reaction can be achieved simply by high energy mechanochemical milling. The planetary ball-milling of ZrO2 for a few minutes generated Si nano-crystals. Milling conditions including rotation speed, ball number, milling time, and type of ball material were able to control the oxidation states of Si. The ball-milled SiO powder was tested as an anode of a lithium battery. ZrO2 contamination from the vial and balls was eliminated by dipping the ball-milled SiO powder in (NH4)HSO4 molten salt and heating for 5 min. The disproportionated SiO powder showed characteristics comparable to those of a powder prepared by a conventional heating process taking several hours.

  19. Application of coordinate transform on ball plate calibration

    NASA Astrophysics Data System (ADS)

    Wei, Hengzheng; Wang, Weinong; Ren, Guoying; Pei, Limei

    2015-02-01

    For the ball plate calibration method with coordinate measurement machine (CMM) equipped with laser interferometer, it is essential to adjust the ball plate parallel to the direction of laser beam. It is very time-consuming. To solve this problem, a method based on coordinate transformation between machine system and object system is presented. With the fixed points' coordinates of the ball plate measured in the object system and machine system, the transformation matrix between the coordinate systems is calculated. The laser interferometer measurement data error due to the placement of ball plate can be corrected with this transformation matrix. Experimental results indicate that this method is consistent with the handy adjustment method. It avoids the complexity of ball plate adjustment. It also can be applied to the ball beam calibration.

  20. Heading in football. Part 3: Effect of ball properties on head response

    PubMed Central

    Shewchenko, N; Withnall, C; Keown, M; Gittens, R; Dvorak, J

    2005-01-01

    Objectives: Head impacts from footballs are an essential part of the game but have been implicated in mild and acute neuropsychological impairment. Ball characteristics have been noted in literature to affect the impact response of the head; however, the biomechanics are not well understood. The present study determined whether ball mass, pressure, and construction characteristics help reduce head and neck can impact response. Methods: Head responses under ball impact (6–7 m/s) were measured with a biofidelic numerical human model and controlled human subject trials (n = 3). Three ball masses and four ball pressures were investigated for frontal heading. Further, the effect of ball construction in wet/dry conditions was studied with the numerical model. The dynamic ball characteristics were determined experimentally. Head linear and angular accelerations were measured and compared with injury assessment functions comprising peak values and head impact power. Neck responses were assessed with the numerical model. Results: Ball mass reductions up to 35% resulted in decreased head responses up to 23–35% for the numerical and subject trials. Similar decreases in neck axial and shear responses were observed. Ball pressure reductions of 50% resulted in head and neck response reductions up to 10–31% for the subject trials and numerical model. Head response reductions up to 15% were observed between different ball constructions. The wet condition generally resulted in greater head and neck responses of up to 20%. Conclusion: Ball mass, pressure, and construction can reduce the impact severity to the head and neck. It is foreseeable that the benefits can be extended to players of all ages and skill levels. PMID:16046354

  1. An investigation of the generation and properties of laboratory-produced ball lightning

    NASA Astrophysics Data System (ADS)

    Oreshko, A. G.

    2015-06-01

    The experiments revealed that ball lightning is a self-confining quasi-neutral in a whole plasma system that rotates around its axis. Ball lightning has a structure of a spherical electric domain, consisting of a kernel with excess negative charge and an external spherical layer with excess positive charge. The excess of charges of one sort and the lack of charges of the other sort in the kernel or in the external spherical layer significantly reduces the possibility of electron capture by means of an electric field, created by the nearest ions and leads to a drastic slowdown of recombination process. Direct proof has been obtained that inside of ball lightning - in an external spherical layer that rotates around the axis - there is a circular current of sub-relativistic particles. This current creates and maintains its own poloidal magnetic field of ball lightning, i.e. it carries out the function of magnetic dynamo. The kernel of ball lightning is situated in a region with minimum values of induction of the magnetic field. The inequality of positive and negative charges in elements of ball lightning also significantly reduces losses of the charged plasma on bremsstrahlung. Ball lightning generation occurs in a plasmic vortex. The ball lightning energy in the region of its generation significantly differs from the ball lightning energy, which is drifting in space. The axial component of kinetic energy of particles slightly exceeds 100 keV and the rotational component of the ions energy is a bit greater than 1 MeV. Ball lightning is `embedded' in atmosphere autonomous accelerator of charged particles of a cyclotron type due to self-generation of strong crossed electric and magnetic fields. A discussion of the conditions of stability and long-term existence of ball lightning is given.

  2. Optimal area of lateral mass mini-screws implanted in plated cervical laminoplasty: a radiography anatomy study.

    PubMed

    Chen, Hua; Li, Huibo; Deng, Yuxiao; Rong, Xin; Gong, Quan; Li, Tao; Song, Yueming; Liu, Hao

    2017-04-01

    Lateral mass mini-screws used in plated cervical laminoplasty might penetrate into facet joints. The objective is to observe this complication incidence and to identify the optimal areas for 5- and 7-mm-long mini-screws to implant on lateral mass. 47 patients who underwent plated cervical laminoplasty were included. The optimal area for mini-screws implanting was set according to pre-operative 3D CT reconstruction data. Then, each posterior-lateral mass surface was divided into three regions: 7-mm region, 5-mm region, and dangerous area. The mini-screw implanted region was recorded. Post-operative CT images were used to identify whether the mini-screws penetrated into facet joints. 235 mini-plates and 470 lateral mass mini-screws were used in the study. 117 (24.9%) mini-screws penetrated 88 (37.4%) facet joints. The 5-mm-long mini-screw optimal area occupied the upper 72, 65, 65, 64, and 65 % area of the posterior-lateral mass surface for C3-7, while the 7-mm-long mini-screw optimal area encompassed the upper 54, 39, 40, 33, and 32 %. Only 7-mm-long mini-screws were used to fix the plate to the lateral mass. 4 of 240 mini-screws in 7-mm region, 67 of the 179 mini-screws in 5-mm region, and 46 of the 51 mini-screws in dangerous region penetrated into the facet joint. The differences in the rate of facet joint penetration related to region were statistically significant (P < 0.001). The facet joint destruction by mini-screws was not a rare complication in plated cervical laminoplasty. The optimal areas we proposed may help guide the mini-screw implantation positions.

  3. 2012 Problem 15: Frustrating Golf Ball

    NASA Astrophysics Data System (ADS)

    Huang, Shan; Zhu, Zheyuan; Gao, Wenli; Wang, Sihui

    2015-10-01

    This paper studies the condition for a golf ball to escape from a hole. The two determining factors are the ball's initial velocity v0 and its deviation from the center of the hole d. There is a critical escaping velocity vc for every deviation d. The ball's motion is analyzed by calculating the change of velocity whenever the ball collides with the hole. The critical conditions predicted by our theory are verified through experiment.

  4. Device Rotates Bearing Balls For Inspection

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1988-01-01

    Entire surface of ball inspected automatically and quickly. Device holds and rotates bearing ball for inspection by optical or mechanical surface-quality probe, eddy-current probe for detection of surface or subsurface defects, or circumference-measuring tool. Ensures entire surface of ball moves past inspection head quickly. New device saves time and increases reliability of inspections of spherical surfaces. Simple to operate and provides quick and easy access for loading and unloading of balls during inspection.

  5. Experimental evaluation of stresses in spherically hollow balls

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.

    1974-01-01

    An analysis was undertaken to evaluate stresses within spherically hollow ball bearings proportioned for 40, 50, and 60% mass reductions. Strain gage rosettes were used to determine principal strains and stresses in the steel ball models statically loaded in various orientations. Dimensionless results are reported for the balls under flate plate contact loads. Similitude considerations permit these results to be applied to calculate stresses in hollow ball bearings proportioned to these mass reductions.

  6. Detonator-activated ball shutter

    DOEpatents

    McWilliams, R.A.; Holle, W.G. von.

    1983-08-16

    A detonator-activated ball shutter for closing an aperture in about 300[mu] seconds. The ball shutter containing an aperture through which light, etc., passes, is closed by firing a detonator which propels a projectile for rotating the ball shutter, thereby blocking passage through the aperture. 3 figs.

  7. Flare angles measured with ball gage

    NASA Technical Reports Server (NTRS)

    Cleghorn, D.; Wall, W. A.

    1968-01-01

    Precision tungsten carbide balls measure the internal angle of flared joints. Measurements from small and large balls in the flare throat to an external reference point are made. The difference in distances and diameters determine the average slope of the flare between the points of ball contact.

  8. Fatigue life of high-speed ball bearings with silicon nitride balls

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1974-01-01

    Hot-pressed silicon nitride was evaluated as a rolling-element bearing material. The five-ball fatigue tester was used to test 12.7-mm- diameter silicon nitride balls at maximum Hertz stresses ranging from 4.27 x 10 to the 9th power n/sq m to 6.21 x 10 to the 9th power n/sq m at a race temperature of 328K. The fatigue life of NC-132 hot-pressed silicon nitride was found to be equal to typical bearing steels and much greater than other ceramic or cermet materials at the same stress levels. A digital computer program was used to predict the fatigue life of 120-mm- bore angular-contact ball bearings containing either steel or silicon nitride balls. The analysis indicates that there is no improvement in the lives of bearings of the same geometry operating at DN values from 2 to 4 million where silicon nitride balls are used in place of steel balls.

  9. Evaluation and Description of Friction between an Electro-Deposited Coating and a Ceramic Ball under Fretting Condition

    PubMed Central

    Kim, Kyungmok

    2015-01-01

    This article describes fretting behavior of zirconia and silicon nitride balls on an electro-deposited coating. Fretting tests are performed using a ball-on-flat configuration. The evolution of the kinetic friction coefficient is determined, along with slip ratio. Experimental results show that the steady-state friction coefficient between ceramic balls (Si3N4 and ZrO2) and an electro-deposited coating is about 0.06, lower than the value between AISI 52100 ball and the coating. After a steady-state sliding, the transition of the friction coefficient is varied with a ball. The friction coefficient for ZrO2 balls became a critical value after higher fretting cycles than those for Si3N4 and AISI 52100 balls. In addition, it is identified that two parameters can describe the transition of the friction coefficient. Finally, the evolution of the friction coefficient is expressed as an exponential or a power-law form. PMID:28793471

  10. The effects of ball size distribution on attritor efficiency

    NASA Astrophysics Data System (ADS)

    Cook, T. M.; Courtney, T. H.

    1995-09-01

    A study was undertaken to determine how media dynamics are altered when differently sized grinding balls are used in an attritor. Cinematographic techniques identify the extent of segregation/mixing of the differently sized balls within the attritor as a function of impeller rotational velocity and small ball number fraction. This permits determination of rotational velocities needed to most efficiently use the tactic of milling with differently sized media. Cinematographic observations show that the close-packed media array, assumed when balls of the same size are used for milling, is disrupted when differently sized balls are used. Monitoring powder particle numbers as a function of milling time for the situations when the same and differently sized balls are used can be used to assess relative milling efficiencies. Results indicate powder deformation, fracture, and welding are enhanced through employment of differently sized balls. This conclusion is reinforced by observations of microstructural characteristics of powder processed with the different type of media.

  11. Ball Lightning in Zero Gravity in the Laboratory

    NASA Astrophysics Data System (ADS)

    Alexeff, Igor; Parameswaran, Sriram; Grace, Michael

    2004-11-01

    We have created balls of orange plasma in atmospheric - pressure air that survive for over 1/2 second without power input. The technique used was to create a pulsed horizontal electric arc in a zero - gravity environment using 6 neon - sign transformers in parallel, each producing 16,000 V at 60 mA. The zero - gravity environment reduces heat losses by reducing thermal convection, creating a larger ball. Previous work (1) suggests that the ball lifetime scales as the square of the ball radius. The balls were photographed after power turnoff with a high - speed 16 mm movie camera. Movies of the balls being formed and decaying will be shown. We suggest that there are several other forms of ball lightning (2). 1.Igor Alexeff et. al. International Conference On Plasma Science, Jeju, Korea, June 2-5, 2003, Conference Record, p 254. 2. Igor Alexeff and Mark Rader, IEEE Transactions on Plasma Science, Vol. 20, No. 6, Dec. 1992, pp.669-671. Igor Alexeff and Mark Rader, Fusion Technology, Vol. 27, May 1995, p. 271.

  12. "We're just targeted as the flock that has HIV": health care experiences of members of the house/ball culture.

    PubMed

    Rowan, Diana; DeSousa, Maysa; Randall, Ethan Makai; White, Chelsea; Holley, Lamont

    2014-01-01

    The house/ball community is an understudied sub-group of young Black men who have sex with men and transgender persons in urban centers of the United States who affiliate in social structures called houses and gather at elaborate dance and performance events called balls. In Charlotte, North Carolina, 12 house/ball members were interviewed about their experiences with health care providers and their assessment of any barriers to care due to their affiliation with the rather clandestine house/ball sub-culture. Additionally, HIV-specific health care providers were interviewed, to assess their knowledge of the sub-culture. House/ball members reported both positive and negative perceptions of treatment by their health care providers with respect to their house/ball involvement. Some reported feeling stigmatized, especially around HIV status. Results showed that increased knowledge about the house/ball community could improve practitioners' cultural competence, thereby reducing stigma-related barriers to care.

  13. People bouncing on trampolines: dramatic energy transfer, a table-top demonstration, complex dynamics and a zero sum game.

    PubMed

    Srinivasan, Manoj; Wang, Yang; Sheets, Alison

    2013-01-01

    Jumping on trampolines is a popular backyard recreation. In some trampoline games (e.g., "seat drop war"), when two people land on the trampoline with only a small time-lag, one person bounces much higher than the other, as if energy has been transferred from one to the other. First, we illustrate this energy-transfer in a table-top demonstration, consisting of two balls dropped onto a mini-trampoline, landing almost simultaneously, sometimes resulting in one ball bouncing much higher than the other. Next, using a simple mathematical model of two masses bouncing passively on a massless trampoline with no dissipation, we show that with specific landing conditions, it is possible to transfer all the kinetic energy of one mass to the other through the trampoline - in a single bounce. For human-like parameters, starting with equal energy, the energy transfer is maximal when one person lands approximately when the other is at the bottom of her bounce. The energy transfer persists even for very stiff surfaces. The energy-conservative mathematical model exhibits complex non-periodic long-term motions. To complement this passive bouncing model, we also performed a game-theoretic analysis, appropriate when both players are acting strategically to steal the other player's energy. We consider a zero-sum game in which each player's goal is to gain the other player's kinetic energy during a single bounce, by extending her leg during flight. For high initial energy and a symmetric situation, the best strategy for both subjects (minimax strategy and Nash equilibrium) is to use the shortest available leg length and not extend their legs. On the other hand, an asymmetry in initial heights allows the player with more energy to gain even more energy in the next bounce. Thus synchronous bouncing unstable is unstable both for passive bouncing and when leg lengths are controlled as in game-theoretic equilibria.

  14. People Bouncing on Trampolines: Dramatic Energy Transfer, a Table-Top Demonstration, Complex Dynamics and a Zero Sum Game

    PubMed Central

    Srinivasan, Manoj; Wang, Yang; Sheets, Alison

    2013-01-01

    Jumping on trampolines is a popular backyard recreation. In some trampoline games (e.g., “seat drop war”), when two people land on the trampoline with only a small time-lag, one person bounces much higher than the other, as if energy has been transferred from one to the other. First, we illustrate this energy-transfer in a table-top demonstration, consisting of two balls dropped onto a mini-trampoline, landing almost simultaneously, sometimes resulting in one ball bouncing much higher than the other. Next, using a simple mathematical model of two masses bouncing passively on a massless trampoline with no dissipation, we show that with specific landing conditions, it is possible to transfer all the kinetic energy of one mass to the other through the trampoline – in a single bounce. For human-like parameters, starting with equal energy, the energy transfer is maximal when one person lands approximately when the other is at the bottom of her bounce. The energy transfer persists even for very stiff surfaces. The energy-conservative mathematical model exhibits complex non-periodic long-term motions. To complement this passive bouncing model, we also performed a game-theoretic analysis, appropriate when both players are acting strategically to steal the other player's energy. We consider a zero-sum game in which each player's goal is to gain the other player's kinetic energy during a single bounce, by extending her leg during flight. For high initial energy and a symmetric situation, the best strategy for both subjects (minimax strategy and Nash equilibrium) is to use the shortest available leg length and not extend their legs. On the other hand, an asymmetry in initial heights allows the player with more energy to gain even more energy in the next bounce. Thus synchronous bouncing unstable is unstable both for passive bouncing and when leg lengths are controlled as in game-theoretic equilibria. PMID:24236029

  15. Cerebellar subjects show impaired adaptation of anticipatory EMG during catching.

    PubMed

    Lang, C E; Bastian, A J

    1999-11-01

    We evaluated the role of the cerebellum in adapting anticipatory muscle activity during a multijointed catching task. Individuals with and without cerebellar damage caught a series of balls of different weights dropped from above. In Experiment 1 (light-heavy-light), each subject was required to catch light balls (baseline phase), heavy balls (adaptation phase), and then light balls again (postadaptation phase). Subjects were not told when the balls would be switched, and they were required to keep their hand within a vertical spatial "window" during the catch. During the series of trials, we measured three-dimensional (3-D) position and electromyogram (EMG) from the catching arm. We modeled the adaptation process using an exponential decay function; this model allowed us to dissociate adaptation from performance variability. Results from the position data show that cerebellar subjects did not adapt or adapted very slowly to the changed ball weight when compared with the control subjects. The cerebellar group required an average of 30.9 +/- 8.7 trials (mean +/- SE) to progress approximately two-thirds of the way through the adaptation compared with 1.7 +/- 0.2 trials for the control group. Only control subjects showed a negative aftereffect indicating storage of the adaptation. No difference in performance variability existed between the two groups. EMG data show that control subjects increased their anticipatory muscle activity in the flexor muscles of the arm to control the momentum of the ball at impact. Cerebellar subjects were unable to differentially increase the anticipatory muscle activity across three joints to perform the task successfully. In Experiment 2 (heavy-light-heavy), we tested to see whether the rate of adaptation changed when adapting to a light ball versus a heavy ball. Subjects caught the heavy balls (baseline phase), the light balls (adaptation phase), and then heavy balls again (postadaptation phase). Comparison of rates of adaptation between Experiment 1 and Experiment 2 showed that the rate of adaptation was unchanged whether adapting to a light ball or a heavy ball. Given these findings, we conclude that the cerebellum is important in generating the appropriate anticipatory muscle activity across multiple muscles and modifying it in response to changing demands though trial-and-error practice.

  16. HALT to qualify electronic packages: a proof of concept

    NASA Astrophysics Data System (ADS)

    Ramesham, Rajeshuni

    2014-03-01

    A proof of concept of the Highly Accelerated Life Testing (HALT) technique was explored to assess and optimize electronic packaging designs for long duration deep space missions in a wide temperature range (-150°C to +125°C). HALT is a custom hybrid package suite of testing techniques using environments such as extreme temperatures and dynamic shock step processing from 0g up to 50g of acceleration. HALT testing used in this study implemented repetitive shock on the test vehicle components at various temperatures to precipitate workmanship and/or manufacturing defects to show the weak links of the designs. The purpose is to reduce the product development cycle time for improvements to the packaging design qualification. A test article was built using advanced electronic package designs and surface mount technology processes, which are considered useful for a variety of JPL and NASA projects, i.e. (surface mount packages such as ball grid arrays (BGA), plastic ball grid arrays (PBGA), very thin chip array ball grid array (CVBGA), quad flat-pack (QFP), micro-lead-frame (MLF) packages, several passive components, etc.). These packages were daisy-chained and independently monitored during the HALT test. The HALT technique was then implemented to predict reliability and assess survivability of these advanced packaging techniques for long duration deep space missions in much shorter test durations. Test articles were built using advanced electronic package designs that are considered useful in various NASA projects. All the advanced electronic packages were daisychained independently to monitor the continuity of the individual electronic packages. Continuity of the daisy chain packages was monitored during the HALT testing using a data logging system. We were able to test the boards up to 40g to 50g shock levels at temperatures ranging from +125°C to -150°C. The HALT system can deliver 50g shock levels at room temperature. Several tests were performed by subjecting the test boards to various g levels ranging from 5g to 50g, test durations of 10 minutes to 60 minutes, hot temperatures of up to +125°C and cold temperatures down to -150°C. During the HALT test, electrical continuity measurements of the PBGA package showed an open-circuit, whereas the BGA, MLF, and QFPs showed signs of small variations of electrical continuity measurements. The electrical continuity anomaly of the PBGA occurred in the test board within 12 hours of commencing the accelerated test. Similar test boards were assembled, thermal cycled independently from -150°C to +125°C and monitored for electrical continuity through each package design. The PBGA package on the test board showed an anomalous electrical continuity behavior after 959 thermal cycles. Each thermal cycle took around 2.33 hours, so that a total test time to failure of the PBGA was 2,237 hours (or ~3.1 months) due to thermal cycling alone. The accelerated technique (thermal cycling + shock) required only 12 hours to cause a failure in the PBGA electronic package. Compared to the thermal cycle only test, this was an acceleration of ~186 times (more than 2 orders of magnitude). This acceleration process can save significant time and resources for predicting the life of a package component in a given environment, assuming the failure mechanisms are similar in both the tests. Further studies are in progress to make systematic evaluations of the HALT technique on various other advanced electronic packaging components on the test board. With this information one will be able to estimate the number of mission thermal cycles to failure with a much shorter test program. Further studies are in progress to make systematic study of various components, constant temperature range for both the tests. Therefore, one can estimate the number of hours to fail in a given thermal and shock levels for a given test board physical properties.

  17. Apparatus and method for inspecting a bearing ball

    NASA Technical Reports Server (NTRS)

    Bankston, B. F. (Inventor)

    1985-01-01

    A method and apparatus for inspecting the surface of a ball bearing is disclosed which includes a base having a high friction non-abrasive base scanning surface. A holding device includes a cone-shaped cup recess in which a ball element is received. Air is introduced through a passage to relieve friction between the wall of the recess and the ball element and facilitate rolling of the ball over the high friction base surface. The holding device is moved over the base scanning surface in a predetermined pattern such that the entire surface of the ball element is inspected byan eddy current probe which detects any surface defects.

  18. Analysis on Sealing Reliability of Bolted Joint Ball Head Component of Satellite Propulsion System

    NASA Astrophysics Data System (ADS)

    Guo, Tao; Fan, Yougao; Gao, Feng; Gu, Shixin; Wang, Wei

    2018-01-01

    Propulsion system is one of the important subsystems of satellite, and its performance directly affects the service life, attitude control and reliability of the satellite. The Paper analyzes the sealing principle of bolted joint ball head component of satellite propulsion system and discuss from the compatibility of hydrazine anhydrous and bolted joint ball head component, influence of ground environment on the sealing performance of bolted joint ball heads, and material failure caused by environment, showing that the sealing reliability of bolted joint ball head component is good and the influence of above three aspects on sealing of bolted joint ball head component can be ignored.

  19. Process engineering with planetary ball mills.

    PubMed

    Burmeister, Christine Friederike; Kwade, Arno

    2013-09-21

    Planetary ball mills are well known and used for particle size reduction on laboratory and pilot scales for decades while during the last few years the application of planetary ball mills has extended to mechanochemical approaches. Processes inside planetary ball mills are complex and strongly depend on the processed material and synthesis and, thus, the optimum milling conditions have to be assessed for each individual system. The present review focuses on the insight into several parameters like properties of grinding balls, the filling ratio or revolution speed. It gives examples of the aspects of grinding and illustrates some general guidelines to follow for modelling processes in planetary ball mills in terms of refinement, synthesis' yield and contamination from wear. The amount of energy transferred from the milling tools to the powder is significant and hardly measurable for processes in planetary ball mills. Thus numerical simulations based on a discrete-element-method are used to describe the energy transfer to give an adequate description of the process by correlation with experiments. The simulations illustrate the effect of the geometry of planetary ball mills on the energy entry. In addition the imaging of motion patterns inside a planetary ball mill from simulations and video recordings is shown.

  20. Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection.

    PubMed

    Zhang, Huayu; Zhong, Mingming; Xie, Fengqin; Cao, Maoyong

    2017-12-05

    Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball's outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified.

  1. Determination of the boundary conditions of the grinding load in ball mills

    NASA Astrophysics Data System (ADS)

    Sharapov, Rashid R.

    2018-02-01

    The prospects of application in ball mills for grinding cement clinker with inclined partitions are shown. It is noted that ball mills with inclined partitions are more effective. An algorithm is proposed for calculating the power consumed by a ball mill with inclined inter-chamber partitions in which an axial movement of the ball load takes place. The boundary conditions in which the ball load is located are determined. The equations of bounding the grinding load are determined. The behavior of a grinding load is considered in view of the characteristic cross sections. The coordinates of the centers of gravity of the grinding load with a definite step and the shape of the cross sections are determined. It is theoretically shown that grinding load in some parts of the ball mill not only consumes, but also helps to rotate the ball mill. Methods for calculating complex analytical expressions for determining the coordinates of the centers of gravity of the grinding load under the conditions of its longitudinal motion have developed. The carried out researches allow to approach from the general positions to research of behavior of a grinding load in the ball mills equipped with various in-mill devices.

  2. The principal time balls of New Zealand

    NASA Astrophysics Data System (ADS)

    Kinns, Roger

    2017-04-01

    Accurate time signals in New Zealand were important for navigation in the Pacific. Time balls at Wellington and Lyttelton were noted in the 1880 Admiralty list of time signals, with later addition of Otago. The time ball service at Wellington started in March 1864 using the first official observatory in New Zealand, but there was no Wellington time ball service during a long period of waterfront redevelopment during the 1880s. The time ball service restarted in November 1888 at a different harbour location. The original mechanical apparatus was used with a new ball, but the system was destroyed by fire in March 1909 and was never replaced. Instead, a time light service was inaugurated in 1912. The service at Lyttelton, near Christchurch, began in December 1876 after construction of the signal station there. It used telegraph signals from Wellington to regulate the time ball. By the end of 1909, it was the only official time ball in New Zealand, providing a service that lasted until 1934. The Lyttelton time ball tower was an iconic landmark in New Zealand that had been carefully restored. Tragically, the tower collapsed in the 2011 earthquakes and aftershocks that devastated Christchurch. A daily time ball service at Port Chalmers, near Dunedin, started in June 1867, initially using local observatory facilities. The service appears to have been discontinued in October 1877, but was re-established in April 1882 as a weekly service, with control by telegraph from Wellington. The service had been withdrawn altogether by the end of 1909. Auckland never established a reliable time ball service, despite provision of a weekly service for mariners by a public-spirited citizen between August 1864 and June 1866. A time ball was finally installed on the Harbour Board building in 1901, but the signal was unreliable and it ceased in 1902. Complaints from ships' masters led to various proposals to re-establish a service. These concluded with erection of a time ball on the new Ferry Building in 1912. The service was finally announced in April 1915, but it was again unreliable and the time ball had been replaced by time lights before the end of that year. The provision of time balls at Wellington, Lyttelton, Port Chalmers and Auckland is described in this paper with particular reference to newspaper announcements.

  3. Real-time detecting and tracking ball with OpenCV and Kinect

    NASA Astrophysics Data System (ADS)

    Osiecki, Tomasz; Jankowski, Stanislaw

    2016-09-01

    This paper presents a way to detect and track ball with using the OpenCV and Kinect. Object and people recognition, tracking are more and more popular topics nowadays. Described solution makes it possible to detect ball based on the range, which is set by the user and capture information about ball position in three dimensions. It can be store in the computer and use for example to display trajectory of the ball.

  4. Telescoping magnetic ball bar test gage

    DOEpatents

    Bryan, James B.

    1984-01-01

    A telescoping magnetic ball bar test gage for determining the accuracy of machine tools, including robots, and those measuring machines having non-disengageable servo drives which cannot be clutched out. Two gage balls (10, 12) are held and separated from one another by a telescoping fixture which allows them relative radial motional freedom but not relative lateral motional freedom. The telescoping fixture comprises a parallel reed flexure unit (14) and a rigid member (16, 18, 20, 22, 24). One gage ball (10) is secured by a magnetic socket knuckle assembly (34) which fixes its center with respect to the machine being tested. The other gage ball (12) is secured by another magnetic socket knuckle assembly (38) which is engaged or held by the machine in such manner that the center of that ball (12) is directed to execute a prescribed trajectory, all points of which are equidistant from the center of the fixed gage ball (10). As the moving ball (12) executes its trajectory, changes in the radial distance between the centers of the two balls (10, 12) caused by inaccuracies in the machine are determined or measured by a linear variable differential transformer (LVDT) assembly (50, 52, 54, 56, 58, 60) actuated by the parallel reed flexure unit (14). Measurements can be quickly and easily taken for multiple trajectories about several different fixed ball (10) locations, thereby determining the accuracy of the machine.

  5. Promoting ball skills in preschool-age girls.

    PubMed

    Veldman, Sanne L C; Palmer, Kara K; Okely, Anthony D; Robinson, Leah E

    2017-01-01

    Evidence supports that girls are less proficient than boys at performing ball skills. This study examined the immediate and long-term effects of a ball skill intervention on preschool-age girls' ball skill performance. Randomized controlled trial. Girls (M age =47.24±7.38 months) were randomly assigned to a high autonomy, mastery-based 9-week motor skill intervention (the Children's Health Activity Motor Program; CHAMP, 540min; n=38) or a control group (free-play; n=16). Ball skill proficiency was assessed at pretest, posttest, and retention test (after 9 weeks) using the object control subscale of the Test of Gross Motor Development - 2nd Edition. Treatment efficacy was examined using linear mixed models. Two models were fit: one for short-term changes (pretest to posttest) and one for long-term changes (pretest to retention). Linear mixed models revealed a significantly time*treatment interaction for both models. Post hoc analysis confirmed that girls in CHAMP experienced significant gains in ball skills from pretest to posttest (p<.001) and pretest to retention (p<.001). Moreover, girls in CHAMP were no different from the control group at pretest (p>.05) but had significantly higher ball skills scores at both posttest (p<.001) and retention (p<.001). This study demonstrates the positive effects of a ball skill intervention (i.e., CHAMP) on improving girls' ball skills both short- and long-term. Findings suggest that early childhood interventions that focus on the development of ball skills in young girls might be an avenue to improve girls' ball skill performance. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Neural Extrapolation of Motion for a Ball Rolling Down an Inclined Plane

    PubMed Central

    La Scaleia, Barbara; Lacquaniti, Francesco; Zago, Myrka

    2014-01-01

    It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion. PMID:24940874

  7. Neural extrapolation of motion for a ball rolling down an inclined plane.

    PubMed

    La Scaleia, Barbara; Lacquaniti, Francesco; Zago, Myrka

    2014-01-01

    It is known that humans tend to misjudge the kinematics of a target rolling down an inclined plane. Because visuomotor responses are often more accurate and less prone to perceptual illusions than cognitive judgments, we asked the question of how rolling motion is extrapolated for manual interception or drawing tasks. In three experiments a ball rolled down an incline with kinematics that differed as a function of the starting position (4 different positions) and slope (30°, 45° or 60°). In Experiment 1, participants had to punch the ball as it fell off the incline. In Experiment 2, the ball rolled down the incline but was stopped at the end; participants were asked to imagine that the ball kept moving and to punch it. In Experiment 3, the ball rolled down the incline and was stopped at the end; participants were asked to draw with the hand in air the trajectory that would be described by the ball if it kept moving. We found that performance was most accurate when motion of the ball was visible until interception and haptic feedback of hand-ball contact was available (Experiment 1). However, even when participants punched an imaginary moving ball (Experiment 2) or drew in air the imaginary trajectory (Experiment 3), they were able to extrapolate to some extent global aspects of the target motion, including its path, speed and arrival time. We argue that the path and kinematics of a ball rolling down an incline can be extrapolated surprisingly well by the brain using both visual information and internal models of target motion.

  8. Percutaneous Renal Cryoablation: Short-Axis Ice-Ball Margin as a Predictor of Outcome.

    PubMed

    Ge, Benjamin H; Guzzo, Thomas J; Nadolski, Gregory J; Soulen, Michael C; Clark, Timothy W I; Malkowicz, Stanley B; Wein, Alan J; Hunt, Stephen J; Stavropoulos, S William

    2016-03-01

    To determine if CT characteristics of intraprocedural ice balls correlate with outcomes after cryoablation. A retrospective review was performed on 63 consecutive patients treated with renal cryoablation. Preprocedural and intraprocedural images were used to identify the size and location of renal tumors and ice balls as well as the tumor coverage and ice-ball margins. Review of follow-up imaging (1 mo and then 3-6-mo intervals) distinguished successful ablations from cases of residual tumor. Patients who underwent successful ablation (n = 50; 79%) had a mean tumor diameter of 2.5 cm (range, 0.9-4.3 cm) and mean ice-ball margin of 0.4 cm (range, 0.2-1.2 cm). Patients with residual tumor (n = 13; 21%) had a mean tumor diameter of 3.8 cm (range, 1.8-4.5 cm) and mean ice-ball margin of -0.4 cm (range, -0.9 to 0.4 cm). Residual and undertreated tumors were larger and had smaller ice-ball margins than successfully treated tumors (P < .01). Ice-ball diameters were significantly smaller after image reformatting (P < .01). Ice-ball margins of 0.15 cm had 90% sensitivity, 92% specificity, and 98% positive predictive value for successful ablation. Success was independent of tumor location or number of cryoprobes. Ice-ball margin and real-time intraprocedural reformatting could be helpful in predicting renal cryoablation outcomes. Although a 0.5-cm margin is preferred, a well-centered ice ball with a short-axis margin greater than 0.15 cm strongly correlated with successful ablation. Copyright © 2016 SIR. Published by Elsevier Inc. All rights reserved.

  9. Motion analysis of throwing Boccia balls in children with cerebral palsy.

    PubMed

    Huang, Po-Chang; Pan, Po-Jung; Ou, Yu-Chih; Yu, Yi-Chen; Tsai, Yung-Shen

    2014-02-01

    Boccia is a sport suitable for children with cerebral palsy (CP). Throwing Boccia balls requires upper extremity and torso coordination. This study investigated the differences between children with CP and normally developed children regarding throwing patterns of Boccia balls. Thirteen children with bilateral spastic CP and 20 normally developed children participated in this study. The tests in this study were a pediatric reach test and throwing of Boccia balls. A 3D electromagnetic motion tracking system and a force plate were synchronized to record and analyze biomechanical parameters of throwing Boccia balls. The results of the pediatric reach test for participants with CP were significantly worse than those for normally developed participants. The 2 groups of participants did not significantly differ regarding the distance between a thrown Boccia ball and a target ball (jack). Participants with CP demonstrated significantly longer movement duration, smaller amplitude of elbow movement, greater amplitudes of shoulder abduction and flexion, slower maximal velocity of torso flexion and the linear velocity of moving the wrist joint forward, faster maximal velocity of head flexion, and smaller sway ratio compared with normally developed participants when throwing Boccia balls. Participants with CP seemed to mainly use head and shoulder movements to bring the Boccia balls forward with limited torso movement. Normally developed participants brought the Boccia ball forward with faster torso and greater elbow movement while stabilizing head and shoulder movements. Nevertheless, participants with CP did not demonstrate significantly worse performance in the throwing accuracy of Boccia balls. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Ball clay

    USGS Publications Warehouse

    Virta, Robert L.

    2010-01-01

    The article reports on the global market performance of ball clay in 2009 and presents an outlook for its 2010 performance. Several companies mined ball call in the country including Old Hickey Clay Co., Kentucky-Tennessee Clay Co., and H.C. Spinks Clay Co. Information on the decline in ball clay imports and exports is also presented.

  11. Fizz-Ball Fizzics

    ERIC Educational Resources Information Center

    Moinester, Murray; Gerland, Lars; Liger-Belair, Gerard; Ocherashvili, Aharon

    2012-01-01

    We describe the fluid dynamics principles governing the up-down oscillatory cycling of a bubble-covered, low-density, low-mass ball of material (referred to henceforth as a "fizz-ball") immersed inside a glass of bubbling (super-saturated) carbonated liquid. The bubbles serve to desaturate the liquid of excess CO[subscript 2]. The fizz-ball acts…

  12. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2000-01-01

    Part of the 1999 Industrial Minerals Review. The state of the ball clay industry in 1999 is presented. Record highs in the sales and use of ball clay were attained in 1999 due to the continued strength of the U.S. economy. U.S. production was estimated at 1.25 million st for the year, with more than half of that amount mined in Tennessee. Details of the consumption, price, imports, and exports of ball clay in 1999 and the outlook for ball clay over the next few years are provided.

  13. Mini-Laparoscopy: Instruments and Economics.

    PubMed

    Shadduck, Phillip P; Paquentin, Eduardo Moreno; Carvalho, Gustavo L; Redan, Jay A

    2015-11-01

    Mini-laparoscopy (Mini) was pioneered more than 20 years ago, initially with instruments borrowed from other specialties and subsequently with tools designed specifically for Mini. Early adoption of Mini was inhibited though by the limitations of these first-generation instruments, especially functionality and durability. Newer generation Mini instruments have recently become available with improved effector tips, a choice of shaft diameters and lengths, better shaft insulation and electrosurgery capability, improved shaft strength and rotation, more ergonomic handles, low-friction trocar options, and improved instrument durability. Improvements are also occurring in imaging and advanced energy for Mini. The current status of mini-laparoscopy instruments and economics are presented.

  14. Size doesn't really matter: ambiguity aversion in Ellsberg urns with few balls.

    PubMed

    Pulford, Briony D; Colman, Andrew M

    2008-01-01

    When attempting to draw a ball of a specified color either from an urn containing 50 red balls and 50 black balls or from an urn containing an unknown ratio of 100 red and black balls, a majority of decision makers prefer the known-risk urn, and this ambiguity aversion effect violates expected utility theory. In an experimental investigation of the effect of urn size on ambiguity aversion, 149 participants showed similar levels of aversion when choosing from urns containing 2, 10, or 100 balls. The occurrence of a substantial and significant ambiguity aversion effect even in the smallest urn suggests that influential theoretical interpretations of ambiguity aversion may need to be reconsidered.

  15. Ball Screw Actuator Including an Axial Soft Stop

    NASA Technical Reports Server (NTRS)

    Forrest, Steven Talbert (Inventor); Woessner, George (Inventor); Abel, Steve (Inventor); Wingett, Paul T. (Inventor); Hanlon, Casey (Inventor)

    2016-01-01

    An actuator includes an actuator housing, a ball screw, and an axial soft stop assembly. The ball screw extends through the actuator housing and has a first end and a second end. The ball screw is coupled to receive a drive force and is configured, upon receipt of the drive force, to selectively move in a retract direction and an extend direction. The axial soft stop assembly is disposed within the actuator housing. The axial soft stop assembly is configured to be selectively engaged by the ball screw and, upon being engaged thereby, to translate, with compliance, a predetermined distance in the extend direction, and to prevent further movement of the ball screw upon translating the predetermined distance.

  16. Behavior of hollow balls containing granules bouncing repeatedly off the ground

    NASA Astrophysics Data System (ADS)

    Hu, Min; Mu, Qing-song; Luo, Ning; Li, Gang; Peng, Ning-bo

    2013-07-01

    An experimental study of the behavior of hollow balls filled with some granules (mung beans or millets) bouncing repeatedly off a static flat horizontal surface is presented. We observed that the bounce number of the ball is limited and decreases regularly with an increasing number of granules. Moreover, for two balls containing a different kind of granules, their bounce numbers are basically equal when the two balls have the same mass of granules. While there is no clear relationship between the first rebound height of one ball and the number of granules, there appears an exponential decay of the second rebound height with an increase of the granule number. Furthermore, a two-dimensional numerical model has been created to find out the law of the ball's rebound height and the dissipation law of the granule nested system. A generalized prediction equation to reasonably explain the law of the bounce number has also been proposed.

  17. PDC bit hydraulics design, profile are key to reducing balling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, P.R.; Azar, J.J.

    1996-12-09

    Polycrystalline diamond compact (PDC) bits with a parabolic profile and bladed hydraulic design have a lesser tendency to ball during drilling of reactive shales. PDC bits with ribbed or open-face hydraulic designs and those with flat or rounded profiles tended to ball more often in the bit balling experiments conducted. Experimental work also indicates that PDC hydraulic design seems to have a greater influence on bit balling tendency compared to bit profile design. There are five main factors that affect bit balling: formation type, drilling fluid, drilling hydraulics, bit design, and confining pressures. An equation for specific energy showed thatmore » it could be used to describe the efficiency of the drilling process by examining the amount of energy spent in drilling a unit volume of rock. This concept of specific energy has been used herein to correlate with the parameter Rd, a parameter to quantify the degree of balling.« less

  18. Mucormycosis (Mucor fungus ball) of the maxillary sinus.

    PubMed

    Cho, Hang Sun; Yang, Hoon Shik; Kim, Kyung Soo

    2014-01-01

    A fungus ball is an extramucosal fungal proliferation that completely fills one or more paranasal sinuses and usually occurs as a unilateral infection. It is mainly caused by Aspergillus spp in an immunocompetent host, but some cases of paranasal fungal balls reportedly have been caused by Mucor spp. A Mucor fungus ball is usually found in the maxillary sinus and/or the sphenoid sinus and may be black in color. Patients with mucormycosis, or a Mucor fungal ball infection, usually present with facial pain or headache. On computed tomography, there are no pathognomonic findings that are conclusive for a diagnosis of mucormycosis. In this article we report a case of mucormycosis in a 56-year-old woman and provide a comprehensive review of the literature on the "Mucor fungus ball." To the best of our knowledge, 5 case reports (8 patients) have been published in which the fungus ball was thought to be caused by Mucor spp.

  19. Conversion of baryonic fermions into squarks in neutron stars from supersymmetric dark matter Q-balls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoemaker, Ian M.

    2009-08-01

    The gauge-mediated model of supersymmetry breaking implies that stable nontopological solitons, Q-balls, could form in the early Universe and comprise the dark matter. It is shown that the inclusion of the effects from gravity-mediation set an upper limit on the size of Q-balls. When in a dense baryonic environment Q-balls grow until reaching this limiting size at which point they fragment into two equal-sized Q-balls. This Q-splitting process will rapidly destroy a neutron star that absorbs even one Q-ball. The new limits on Q-ball dark matter require an ultralight gravitino m{sub 3/2} < or approx. keV, naturally avoiding the gravitinomore » overclosure problem, and providing the minimal supersymmetric standard model with a dark matter candidate where gravitino dark matter is not viable.« less

  20. Effect of Hoop Stress on Ball Bearing Life Prediction

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.; August, Richard; Coe, Harold H.

    1995-01-01

    A finite-element analysis (FEA) of a generic, dimensionally normalized inner race of an angular-contact ball bearing was performed under varying conditions of speed and the press (or interference) fit of the inner-race bore on a journal. The FEA results at the ball-race contact were used to derive an equation from which was obtained the radius of an equivalent cylindrical bearing race with the same or similar hoop stress. The radius of the equivalent cylinder was used to obtain a generalized closed-form approximation of the hoop stresses at the ball-inner-race contact in an angular-contact ball bearing. A life analysis was performed on both a 45- and a 120-mm-bore, angular-contact ball bearing. The predicted lives with and without hoop stress were compared with experimental endurance results obtained at 12000 and 25000 rpm with the 120-mm-bore ball bearing. A life factor equation based on hoop stress is presented.

  1. Ball-morph: definition, implementation, and comparative evaluation.

    PubMed

    Whited, Brian; Rossignac, Jaroslaw Jarek

    2011-06-01

    We define b-compatibility for planar curves and propose three ball morphing techniques between pairs of b-compatible curves. Ball-morphs use the automatic ball-map correspondence, proposed by Chazal et al., from which we derive different vertex trajectories (linear, circular, and parabolic). All three morphs are symmetric, meeting both curves with the same angle, which is a right angle for the circular and parabolic. We provide simple constructions for these ball-morphs and compare them to each other and other simple morphs (linear-interpolation, closest-projection, curvature-interpolation, Laplace-blending, and heat-propagation) using six cost measures (travel-distance, distortion, stretch, local acceleration, average squared mean curvature, and maximum squared mean curvature). The results depend heavily on the input curves. Nevertheless, we found that the linear ball-morph has consistently the shortest travel-distance and the circular ball-morph has the least amount of distortion.

  2. Stemless ball valve

    NASA Technical Reports Server (NTRS)

    Burgess, Kevin (Inventor); Yakos, David (Inventor); Walthall, Bryan (Inventor)

    2012-01-01

    A stemless ball valve comprising: a right flange; left flange; ball with an axis pin and two travel pins; ball seal on either side of the ball; guide sleeve with inner walls comprising two channels; cartridge guide holder; inner magnetic cartridge; and outer magnetic cartridge. The ball is situated inside of the guide sleeve, and a travel pin is located in each of the two channels. The guide sleeve is situated inside of the cartridge guide holder, which is located adjacent to and outside of the inner magnetic cartridge and secured to the inner magnetic cartridge such that when the inner magnetic cartridge rotates, the cartridge guide holder also rotates. The cartridge guide holder is secured to the guide sleeve such that when the cartridge guide holder rotates, the travel pins move within the channels in the inner walls of the guide sleeve, thereby causing the ball to rotate.

  3. Naive Beliefs in Baseball: Systematic Distortion in Perceived Time of Apex for Fly Balls

    ERIC Educational Resources Information Center

    Shaffer, Dennis M.; McBeath, Michael K.

    2005-01-01

    When fielders catch fly balls they use geometric properties to optically maintain control over the ball. The strategy provides ongoing guidance without indicating precise positional information concerning where the ball is located in space. Here, the authors show that observers have striking misconceptions about what the motion of projectiles…

  4. Having a Ball with Fitness Balls

    ERIC Educational Resources Information Center

    McNulty, Betty

    2011-01-01

    Fitness programs can be greatly enhanced with the addition of fitness balls. They are a fun, challenging, economical, and safe way to incorporate a cardiovascular, strength, and stretching program for all fitness levels in a physical education setting. The use of these balls has become more popular during the last decade, and their benefits and…

  5. Eddy-Current Inspection of Ball Bearings

    NASA Technical Reports Server (NTRS)

    Bankston, B.

    1985-01-01

    Custom eddy-current probe locates surface anomalies. Low friction air cushion within cone allows ball to roll easily. Eddy current probe reliably detects surface and near-surface cracks, voids, and material anomalies in bearing balls or other spherical objects. Defects in ball surface detected by probe displayed on CRT and recorded on strip-chart recorder.

  6. An examination of slo-pitch pitching trajectories.

    PubMed

    Wu, Tom; Gervais, Pierre

    2008-01-01

    Many slo-pitch coaches and players believe that generating spin on a ball can affect its trajectory. The influence of air resistance on a ball that is thrown at a moderate speed and spin is unclear. The aim of this study was to examine the influence of spin on the ball's trajectory in slo-pitch pitching using both experimental results and ball flight simulations. Fourteen pitchers participated in the study, each of whom threw five backspin and topspin pitches each. Data were collected using standard three-dimensional videography. The horizontal velocity, vertical velocity, angular velocity, release height, and horizontal displacement of the backspin pitches were significantly higher than those of the topspin pitches. The ball flight simulations were developed to examine the influence of the ball spin, and it was concluded that the spin of the ball had a significant effect on the ball's vertical and horizontal displacements. Furthermore, our results suggest that a backspin pitch that reaches the maximum height allowable and lands in the front edge of the strike zone has the steepest slope. The present results add to our understanding of projectile motion and aerodynamics.

  7. Cricket Ball Aerodynamics: Myth Versus Science

    NASA Technical Reports Server (NTRS)

    Mehta, Rabindra D.; Koga, Demmis J. (Technical Monitor)

    2000-01-01

    Aerodynamics plays a prominent role in the flight of a cricket ball released by a bowler. The main interest is in the fact that the ball can follow a curved flight path that is not always under the control of the bowler. ne basic aerodynamic principles responsible for the nonlinear flight or "swing" of a cricket ball were identified several years ago and many papers have been published on the subject. In the last 20 years or so, several experimental investigations have been conducted on cricket ball swing, which revealed the amount of attainable swing, and the parameters that affect it. A general overview of these findings is presented with emphasis on the concept of late swing and the effects of meteorological conditions on swing. In addition, the relatively new concept of "reverse" swing, how it can be achieved in practice and the role in it of ball "tampering", are discussed in detail. A discussion of the "white" cricket ball used in last year's World Cup, which supposedly possesses different swing properties compared to a conventional red ball, is also presented.

  8. The Development of using the digital projection method to measure the contact angle of ball screw

    NASA Astrophysics Data System (ADS)

    Chen, Chun-Jen; Jywe, Wenyuh; Liu, Yu-Chun; Jwo, Hsin-Hong

    The ball screw frequently used to drive or translate the parts on the precision machine, such as machine tool and motorized stage. Therefore they were most frequently used on the precision machine, semiconductor equipment, medical instrument and aero industry. The main parts of ball screw are screw, ball and nut. The contact angle between the screw, ball and nut will affect the performance (include loading and noise) and lifecycle of a ball screw. If the actual contact angle and the designed contact angle are not the same, the friction between the ball, screw and nut will increase and it will result in the thermal increase and lifecycle decrease. This paper combines the traditional profile projector and commercial digital camera to build an imaging based and noncontact measurements system. It can implement the contact angle measurement quickly and accurately. Three different pitch angles of ball screws were completed tests in this paper. The angle resolution of this measurement system is about 0.001 degree and its accuracy is about 0.05 degree.

  9. The lightest organic radical cation for charge storage in redox flow batteries

    DOE PAGES

    Huang, Jinhua; Pan, Baofei; Duan, Wentao; ...

    2016-08-25

    In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a mini-malistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this moleculemore » as a catholyte material and operated stably for 100 charge/discharge cycles. Furthermore, the observed stability trends are rationalized by mechanistic considerations of the reaction pathways.« less

  10. How Magnus Bends the Flying Ball - Experimenting and Modeling

    NASA Astrophysics Data System (ADS)

    Timková, V.; Ješková, Z.

    2017-02-01

    Students are well aware of the effect of the deflection of sports balls when they have been given a spin. A volleyball, tennis, or table tennis ball served with topspin results in an additional downward force that makes the ball difficult to catch and return. In soccer, the effect of sidespin causes the ball to curve unexpectedly sideways, resulting in a so-called banana kick that can confuse the goalkeeper. These surprising effects attract students' attention such that the motion of sports balls can be used to capture the interest of students towards the physics behind it. However, to study and analyze the motion of a real ball kicked in a playfield is not an easy task. Instead of the large-scale full-size sports ball motion, there can be designed and studied simpler experiments that can be carried out in the classroom. Moreover, digital technologies that are available at schools enable students to collect data from the experiment easily in a reasonable time. The mathematical model based on the analysis of forces acting on the ball flying in the air can be used to simulate the motion in order to understand the basic physical principles of the motion so that the best correspondence may be found.

  11. Ball flight kinematics, release variability and in-season performance in elite baseball pitching.

    PubMed

    Whiteside, D; McGinnis, R S; Deneweth, J M; Zernicke, R F; Goulet, G C

    2016-03-01

    The purpose of this study was to quantify ball flight kinematics (ball speed, spin rate, spin axis orientation, seam orientation) and release location variability in the four most common pitch types in baseball and relate them to in-season pitching performance. Nine NCAA Division I pitchers threw four pitching variations (fastball, changeup, curveball, and slider) while a radar gun measured ball speed and a 600-Hz video camera recorded the ball trajectory. Marks on the ball were digitized to measure ball flight kinematics and release location. Ball speed was highest in the fastball, though spin rate was similar in the fastball and breaking pitches. Two distinct spin axis orientations were noted: one characterizing the fastball and changeup, and another, the curveball and slider. The horizontal release location was significantly more variable than the vertical release location. In-season pitching success was not correlated to any of the measured variables. These findings are instructive for inferring appropriate hand mechanics and spin types in each of the four pitches. Coaches should also be aware that ball flight kinematics might not directly relate to pitching success at the collegiate level. Therefore, talent identification and pitching evaluations should encompass other (e.g., cognitive, psychological, and physiological) factors. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Randomized Controlled Trial of Use of the Peanut Ball During Labor.

    PubMed

    Roth, Cheryl; Dent, Sarah A; Parfitt, Sheryl E; Hering, Sandra L; Bay, R Curtis

    2016-01-01

    The purpose of this study was to evaluate the efficacy of peanut ball use on duration of first stage labor and pushing time in women who were scheduled for elective induction of labor at ≥39 weeks gestation and planning an epidural. In this randomized controlled trial, women having labor induction and planning a labor epidural were assigned (1:1) to one of two groups: one group used a peanut ball and one group did not. Outcome variables were time spent in first stage labor and time spent pushing. Factors included group assignment (peanut ball, no peanut ball), parity (primiparous, multiparous), and race. Age and maximum oxytocin dose served as covariates. Among women having elective induction with epidural analgesia, use of a peanut ball reduced first stage labor duration for primiparous patients significantly more than multiparous patients, p = 0.018. There was no significant difference in the reduction of length of first stage labor for multiparous women, p = 0.057 with use of the peanut ball. Peanut ball use did not alter length of pushing time for either group, p > 0.05. Use of peanut balls may reduce total labor time to a greater degree in primiparous patients than multiparous patients having elective induction at ≥39 weeks with epidural analgesia.

  13. Training Level Does Not Affect Auditory Perception of The Magnitude of Ball Spin in Table Tennis.

    PubMed

    Santos, Daniel P R; Barbosa, Roberto N; Vieira, Luiz H P; Santiago, Paulo R P; Zagatto, Alessandro M; Gomes, Matheus M

    2017-01-01

    Identifying the trajectory and spin of the ball with speed and accuracy is critical for good performance in table tennis. The aim of this study was to analyze the ability of table tennis players presenting different levels of training/experience to identify the magnitude of the ball spin from the sound produced when the racket hit the ball. Four types of "forehand" contact sounds were collected in the laboratory, defined as: Fast Spin (spinning ball forward at 140 r/s); Medium Spin (105 r/s); Slow Spin (84 r/s); and Flat Hit (less than 60 r/s). Thirty-four table tennis players of both sexes (24 men and 10 women) aged 18-40 years listened to the sounds and tried to identify the magnitude of the ball spin. The results revealed that in 50.9% of the cases the table tennis players were able to identify the ball spin and the observed number of correct answers (10.2) was significantly higher (χ 2 = 270.4, p <0.05) than the number of correct answers that could occur by chance. On the other hand, the results did not show any relationship between the level of training/experience and auditory perception of the ball spin. This indicates that auditory information contributes to identification of the magnitude of the ball spin, however, it also reveals that, in table tennis, the level of training does not interfere with the auditory perception of the ball spin.

  14. Anticipating the effects of gravity when intercepting moving objects: differentiating up and down based on nonvisual cues.

    PubMed

    Senot, Patrice; Zago, Myrka; Lacquaniti, Francesco; McIntyre, Joseph

    2005-12-01

    Intercepting an object requires a precise estimate of its time of arrival at the interception point (time to contact or "TTC"). It has been proposed that knowledge about gravitational acceleration can be combined with first-order, visual-field information to provide a better estimate of TTC when catching falling objects. In this experiment, we investigated the relative role of visual and nonvisual information on motor-response timing in an interceptive task. Subjects were immersed in a stereoscopic virtual environment and asked to intercept with a virtual racket a ball falling from above or rising from below. The ball moved with different initial velocities and could accelerate, decelerate, or move at a constant speed. Depending on the direction of motion, the acceleration or deceleration of the ball could therefore be congruent or not with the acceleration that would be expected due to the force of gravity acting on the ball. Although the best success rate was observed for balls moving at a constant velocity, we systematically found a cross-effect of ball direction and acceleration on success rate and response timing. Racket motion was triggered on average 25 ms earlier when the ball fell from above than when it rose from below, whatever the ball's true acceleration. As visual-flow information was the same in both cases, this shift indicates an influence of the ball's direction relative to gravity on response timing, consistent with the anticipation of the effects of gravity on the flight of the ball.

  15. Dynamics of a homogeneous ball on a horizontal plane with sliding, spinning, and rolling friction taken into account

    NASA Astrophysics Data System (ADS)

    Ishkhanyan, M. V.; Karapetyan, A. V.

    2010-04-01

    We analyze the dynamics of a homogeneous ball on a horizontal plane with friction of all kinds, namely, sliding, spinning, and rolling friction, taken into account. The qualitative-analytic study of the ball dynamics is supplemented with numerical experiments. The problem on the motion of a homogeneous ball on a horizontal plane with friction was apparently first studied in 1758 by I. Euler (Leonard Euler's son) with sliding friction taken into account in the framework of the Coulomb model. I. Euler showed that the ball sliding ceases in finite time, after which the ball uniformly rolls along a fixed straight line and uniformly spins about the vertical. This result has long become classical and is described in many textbooks on theoretical mechanics. In 1998, V. F. Zhuravlev considered the problem of motion of a homogeneous ball on a horizontal plane with sliding and spinning friction taken into account in the framework of the Contensou-Zhuravlev model [1, 2] and showed that the ball sliding and spinning cease simultaneously, after which the ball uniformly rolls along a fixed straight line. The Contensou-Zhuravlev theory was further developed in [3-7]. In the present paper, we consider themotion of a homogeneous ball on a horizontal plane with friction of all kinds taken into account in the framework of the model proposed in [8]. We show that, in one and the same time, both the sliding velocity and the angular velocity of the ball become zero. Our studies are based on the results obtained in [2], the properties of the friction model proposed in [8], and the method for qualitative analysis of dynamics of dissipative systems [9, 10]. The qualitative-analytic study is supplemented with numerical experiments.

  16. A Pilot Study of Horizontal Head and Eye Rotations in Baseball Batting.

    PubMed

    Fogt, Nick; Persson, Tyler W

    2017-08-01

    The purpose of the study was to measure and compare horizontal head and eye tracking movements as baseball batters "took" pitches and swung at baseball pitches. Two former college baseball players were tested in two conditions. A pitching machine was used to project tennis balls toward the subjects. In the first condition, subjects acted as if they were taking (i.e., not swinging) the pitches. In the second condition, subjects attempted to bat the pitched balls. Head movements were measured with an inertial sensor; eye movements were measured with a video eye tracker. For each condition, the relationship between the horizontal head and eye rotations was similar for the two subjects, as were the overall head-, eye-, and gaze-tracking strategies. In the "take" condition, head movements in the direction of the ball were larger than eye movements for much of the pitch trajectory. Large eye movements occurred only late in the pitch trajectory. Gaze was directed near the ball until approximately 150 milliseconds before the ball arrived at the batter, at which time gaze was directed ahead of the ball to a location near that occupied when the ball crosses the plate. In the "swing" condition, head movements in the direction of the ball were larger than eye movements throughout the pitch trajectory. Gaze was directed near the ball until approximately 50 to 60 milliseconds prior to pitch arrival at the batter. Horizontal head rotations were larger than horizontal eye rotations in both the "take" and "swing" conditions. Gaze was directed ahead of the ball late in the pitch trajectory in the "take" condition, whereas gaze was directed near the ball throughout much of the pitch trajectory in the "swing" condition.

  17. Identification of sources of tar balls deposited along the Southwest Caspian Coast, Iran using fingerprinting techniques.

    PubMed

    Shirneshan, Golshan; Bakhtiari, Alireza Riyahi; Memariani, Mahmoud

    2016-10-15

    In 2012, a significant number of tar balls occurred along the Southwest coasts of the Caspian Sea (Iran). Several oil fields of Turkmenistan, Azerbaijan and Iran might be sources of oil spills and lead to the formation of these tar balls. For source identification, 6 tar ball samples were collected from the Southwest beaches of the Caspian Sea and subjected to fingerprint analysis based on the distribution of the source-specific biomarkers of pentacyclic tri-terpanes and steranes. Comparing the diagenic ratios revealed that the tar balls were chemically similar and originated from the same source. Results of double ratio plots (e.g., C29/C30 versus ∑C31-C35/C30 and C28 αββ/(C27 αββ+C29 αββ) versus C29 αββ/(C27 αββ+C28 αββ)) in the tar balls and oils from Iran, Turkmenistan and Azerbaijan indicated that the tar balls might be the result of spills from Turkmenistan oil. Moreover, principle component analysis (PCA) using biomarker ratios on the tar balls and 20 crude oil samples from different wells of Azerbaijan, Iran and Turkmenistan oils showed that the tar balls collected at the Southwest beaches are highly similar to the Turkmenistan oil but one of the Azerbaijan oils (from Bahar field oils) was found to be also slightly close to the tar balls. The weathering characterizations based on the presence of UCM (unresolved complex mixture) and low/high molecular weight ratios (L/H) of alkanes and PAHs indicated the tar ball samples have been significantly influenced by natural weathering processes such as evaporation, photo-degradation and biodegradation. This is the first study of its kind in Iran to use fingerprinting for source identification of tar balls. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Seong-Su, E-mail: seong-su-han@uiowa.edu; Han, Sangwoo; Kamberos, Natalie L.

    Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL onmore » the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.« less

  19. Great (Flame) Balls of Fire! Structure of Flame Balls at Low Lewis-number-2 (SOFBALL-2)

    NASA Technical Reports Server (NTRS)

    Ronney, Paul; Weiland, Karen J.; Over, Ann (Technical Monitor)

    2002-01-01

    Everyone knows that an automobile engine wastes fuel and energy when it runs with a fuel-rich mixture. 'Lean' burning, mixing in more air and less fuel, is better for the environment. But lean mixtures also lead to engine misfiring and rough operation. No one knows the ultimate limits for lean operation, for 'weak' combustion that is friendly to the environment while still moving us around. This is where the accidental verification of a decades-old prediction may have strong implications for designing and running low-emissions engines in the 21st century. In 1944, Soviet physicist Yakov Zeldovich predicted that stationary, spherical flames are possible under limited conditions in lean fuel-air mixtures. Dr. Paul Ronney of the University of Southern California accidentally discovered such 'flame balls' in experiments with lean hydrogen-air mixtures in 1984 during drop-tower experiments that provided just 2.2 seconds of near weightlessness. Experiments aboard NASA's low-g aircraft confirmed the results, but a thorough investigation was hampered by the aircraft's bumpy ride. And stable flame balls can only exist in microgravity. The potential for investigating combustion at the limits of flammability, and the implications for spacecraft fire safety, led to the Structure of Flame Balls at Low Lewis-number (SOFBALL) experiment flown twice aboard the Space Shuttle on the Microgravity Sciences Laboratory-1 (MSL-1) in 1997. Success there led to the planned reflight on STS-107. Flame balls are the weakest fires yet produced in space or on Earth. Typically each flame ball produced only 1 watt of thermal power. By comparison, a birthday candle produces 50 watts. The Lewis-number measures the rate of diffusion of fuel into the flame ball relative to the rate of diffusion of heat away from the flame ball. Lewis-number mixtures conduct heat poorly. Hydrogen and methane are the only fuels that provide low enough Lewis-numbers to produce stable flame balls, and even then only for very weak, barely flammable mixtures. Nevertheless, under these conditions flame balls give scientists the opportunity to test models in one of the simplest combustion experiments possible. SOFBALL-2 science objectives include: Improving our understanding of the flame ball phenomenon; Determining the conditions under which flame balls exist; Testing predictions of flame ball lifetimes; Acquiring more precise data for critical model comparison.

  20. Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants.

    PubMed

    Serra, Glaucio; Morais, Liliane; Elias, Carlos Nelson; Semenova, Irina P; Valiev, Ruslan; Salimgareeva, Gulnaz; Pithon, Matheus; Lacerda, Rogério

    2013-10-01

    Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4V alloy as the material base for mini-implants. Copyright © 2013 Elsevier B.V. All rights reserved.

  1. Early diagenetic high-magnesium calcite and dolomite indicate that coal balls formed in marine or brackish water: Stratigraphic and paleoclimatic implications

    NASA Astrophysics Data System (ADS)

    Raymond, Anne

    2016-04-01

    Coal balls are carbonate and pyrite permineralizations of peat that contain three-dimensional plant fossils preserved at the cellular level. Coal balls, which occur in Pennsylvanian and earliest Permian equatorial coals, provide a detailed record of terrestrial ecology and tropical climate during the Late Paleozoic Ice Age; yet their depositional environment remains controversial. The exquisite preservation of some coal-ball fossils, e.g. pollen with pollen tubes and leaves with mesophyll, indicates rapid formation. The presence of abundant, cement-filled, void spaces within and between the plant debris in most coal balls indicates that they formed in uncompacted peat, near the surface of the mire. Botanical, taphonomic and isotopic evidence point to a freshwater origin for coal balls. The nearest living relatives of coal ball plants (modern lycopsids, sphenopsids, marratialean ferns and conifers) grow in fresh water. Coal-ball peat contains a high percentage of aerial debris, similar to modern freshwater peat. The stable oxygen isotopes of coal-ball carbonate (δ18O = 16 to 3 per mil) suggest a freshwater origin. However, the widespread occurrence of marine invertebrates and early diagenetic framboidal pyrite in coal balls suggests that many formed in close proximity to marine water. Indeed, carbonate petrology points to a marine or brackish water origin for the first-formed carbonate cements in coal balls. Petrographic and geochemical (microprobe) analysis of coal-ball carbonates in Pennsylvanian coals from the midcontinent of North America (Western Interior Basin, West Pangaea) and the Ruhr and Donets Basins (East Pangaea) indicate that the first formed carbonate is either radaxial, nonstochiometric dolomite or high magnesium calcite (9 - 17 mol % MgCO3, indicating precipitation in marine or brackish water. Although both primary dolomite and high magnesium calcite can form in lacustrine settings, the lakes in which these minerals form occur in carbonate terranes and experience significant evaporation. Paleotropical coals with coal balls are under- and overlain by siliciclastic sediments, and, if fresh, would have required ever-wet climatic conditions for peat to accumulate. Pervasive freshwater diagenesis, with low magnesium calcite enveloping individual grains of high-magnesium calcite, results in most coal-ball carbonates having a freshwater or mixed isotopic signature. In some coal balls, cell walls in the root cortex (a soft tissue) separate carbonate of differing magnesium content, resulting in cells filled with low-magnesium (freshwater) calcite adjacent to cells filled with high-magnesium (marine) calcite, suggesting that these cements formed in recently dead or dying roots. The juxtaposition of high-magnesium (marine) calcite and low-magnesium (freshwater) calcite in coal balls suggests that they formed at the marine/freshwater interface in mires that contained salt-tolerant plants. This model of coal-ball formation suggests that coals bearing coal balls accumulated early in marine transgression as glaciers melted and sea level rose. In modern coastal mires, tidal incursion of salt water can maintain high freshwater tables, enabling domed freshwater peat to form in climates that normally would be too dry for tropical freshwater peat accumulation. Peat accumulation in these mires may be due to marine transgression rather than the ever-wet paleoclimates.

  2. Fullerene-like MoSe2 nanoparticles-embedded CNT balls with excellent structural stability for highly reversible sodium-ion storage

    NASA Astrophysics Data System (ADS)

    Choi, Seung Ho; Kang, Yun Chan

    2016-02-01

    Three-dimensional (3D) porous-structured carbon nanotube (CNT) balls embedded with fullerene-like MoSe2 nanocrystals were successfully prepared by the spray pyrolysis process and subsequent selenization process. The MoO2-CNT composite balls prepared by spray pyrolysis transformed into the fullerene-like MoSe2/CNT (F-MoSe2/CNT) composite balls by the selenization process. The F-MoSe2/CNT composite balls exhibited superior sodium-ion storage properties to bare MoSe2 and MoSe2/CNT with a filled structure (N-MoSe2/CNT), both of which were prepared as comparison samples. The 250th discharge capacities of bare MoSe2, N-MoSe2/CNT composite balls, and F-MoSe2/CNT composite balls were 144, 200, and 296 mA h g-1, respectively, at a high current density of 1.0 A g-1, and their capacity retentions measured from the second cycle were 37%, 66%, and 83%, respectively. The 10th discharge capacities of the F-MoSe2/CNT composite balls were 382, 346, 310, 280, and 255 mA h g-1 at current densities of 0.2, 0.5, 1.5, 3.0, and 5.0 A g-1, respectively. The synergetic effect of the fullerene-like MoSe2 nanocrystals with ultrafine sizes and the CNT balls with a tangled and 3D porous structure and high electrical conductivity resulted in excellent sodium-ion storage properties of the F-MoSe2/CNT composite balls.Three-dimensional (3D) porous-structured carbon nanotube (CNT) balls embedded with fullerene-like MoSe2 nanocrystals were successfully prepared by the spray pyrolysis process and subsequent selenization process. The MoO2-CNT composite balls prepared by spray pyrolysis transformed into the fullerene-like MoSe2/CNT (F-MoSe2/CNT) composite balls by the selenization process. The F-MoSe2/CNT composite balls exhibited superior sodium-ion storage properties to bare MoSe2 and MoSe2/CNT with a filled structure (N-MoSe2/CNT), both of which were prepared as comparison samples. The 250th discharge capacities of bare MoSe2, N-MoSe2/CNT composite balls, and F-MoSe2/CNT composite balls were 144, 200, and 296 mA h g-1, respectively, at a high current density of 1.0 A g-1, and their capacity retentions measured from the second cycle were 37%, 66%, and 83%, respectively. The 10th discharge capacities of the F-MoSe2/CNT composite balls were 382, 346, 310, 280, and 255 mA h g-1 at current densities of 0.2, 0.5, 1.5, 3.0, and 5.0 A g-1, respectively. The synergetic effect of the fullerene-like MoSe2 nanocrystals with ultrafine sizes and the CNT balls with a tangled and 3D porous structure and high electrical conductivity resulted in excellent sodium-ion storage properties of the F-MoSe2/CNT composite balls. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07733h

  3. Passing and Catching in Rugby.

    ERIC Educational Resources Information Center

    Namudu, Mike M.

    This booklet contains the fundamentals for rugby at the primary school level. It deals primarily with passing and catching the ball. It contains instructions on (1) holding the ball for passing, (2) passing the ball to the left--standing, (3) passing the ball to the left--running, (4) making a switch pass, (5) the scrum half's normal pass, (6) the…

  4. Validity and Reliability of a Medicine Ball Explosive Power Test.

    ERIC Educational Resources Information Center

    Stockbrugger, Barry A.; Haennel, Robert G.

    2001-01-01

    Evaluated the validity and reliability of a medicine ball throw test to evaluate explosive power. Data on competitive sand volleyball players who performed a medicine ball throw and a standard countermovement jump indicated that the medicine ball throw test was a valid and reliable way to assess explosive power for an analogous total-body movement…

  5. 7 CFR 810.2205 - Special grades and special grade requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... gram portion more than two green garlic bulblets or an equivalent quantity of dry or partly dry...-gram portion, smut balls, portions of smut balls, or spores of smut in excess of a quantity equal to 5.... Wheat that contains, in a 250 gram portion, smut balls, portions of smut balls, or spores of smut in...

  6. 7 CFR 810.2205 - Special grades and special grade requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... gram portion more than two green garlic bulblets or an equivalent quantity of dry or partly dry...-gram portion, smut balls, portions of smut balls, or spores of smut in excess of a quantity equal to 5.... Wheat that contains, in a 250 gram portion, smut balls, portions of smut balls, or spores of smut in...

  7. 7 CFR 810.2205 - Special grades and special grade requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... gram portion more than two green garlic bulblets or an equivalent quantity of dry or partly dry...-gram portion, smut balls, portions of smut balls, or spores of smut in excess of a quantity equal to 5.... Wheat that contains, in a 250 gram portion, smut balls, portions of smut balls, or spores of smut in...

  8. Ball to separator contact forces in angular contact ball bearings under thrust and radial loads

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.

    1977-01-01

    Experimental data is reported on ball to cage contact forces in a 110 mm bore ball bearing operating at speeds to 12000 rpm under radial and thrust loads. Information is also reported on cage to inner race land contact force, cage to inner race land clearance, and cage to shaft speed ratios.

  9. Measuring the Rebound Resilience of a Bouncing Ball

    ERIC Educational Resources Information Center

    Wadhwa, Ajay

    2012-01-01

    Some balls which are made of high-quality rubber (an elastomeric) material, such as tennis or squash balls, could be used for the determination of an important property of such materials called resilience. Since a bouncing ball involves a single impact we call this property "rebound resilience" and express it as the ratio of the rebound height to…

  10. Magnetically Operated Holding Plate And Ball-Lock Pin

    NASA Technical Reports Server (NTRS)

    Monford, Leo G., Jr.

    1992-01-01

    Magnetically operated holding plate and ball-locking-pin mechanism part of object attached to, or detached from second object. Mechanism includes tubular housing inserted in hole in second object. Plunger moves inside tube forcing balls to protrude from sides. Balls prevent tube from sliding out of second object. Simpler, less expensive than motorized latches; suitable for robotics applications.

  11. 77 FR 53844 - Ball Bearings and Parts Thereof From France and Italy: Rescission of Antidumping Duty...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-04

    ... DEPARTMENT OF COMMERCE International Trade Administration [A-475-801, A-427-801] Ball Bearings and... antidumping duty orders on ball bearings and parts thereof from France and Italy. The period of review is May... the antidumping duty orders on ball bearings and parts thereof from France and Italy in accordance...

  12. Sonic Beam Model of Newton's Cradle

    ERIC Educational Resources Information Center

    Menger, Fredric M.; Rizvi, Syed A. A.

    2016-01-01

    The motions of Newton's cradle, consisting of several steel balls hanging side-by-side, have been analysed in terms of a sound pulse that travels via points of contact among the balls. This presupposes a focused energy beam. When the pulse reaches the fifth and final ball, the energy disperses and dislocates the ball with a trajectory equivalent…

  13. Golf Aerodynamics

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A former Martin Marietta Manned Space Systems engineer, Robert T. Thurman went from analyzing airloads on the Space Shuttle External Tank to analyzing airloads on golf balls for Wilson Sporting Goods Company. Using his NASA know-how, Thurman designed the Ultra 500 golf ball, which has three different-sized dimples in 60 triangular faces (instead of the usual 20) formed by a series of intersecting "parting" lines. This balances the asymmetry caused by the molding line in all golf balls. According to Wilson, the ball sustains initial velocity longer and produces the most stable ball flight for "unmatched" accuracy and distance.

  14. NASA Lewis and Ohio Company Hit Hole in One

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ben Hogan Company's Golf Ball Division, which is based in Elyria, Ohio, had developed concepts and prototypes for new golf balls but was unable to determine exact performance characteristics. Specifically, the company's R&D department wanted to measure the spin rates of experimental golf balls. After the Golf Ball Division requested assistance, researchers and technicians from the NASA Lewis Research Center went to Elyria and conducted several days worth of tests. Ben Hogan is using the test results to improve the spin characteristics of a new ball it plans to introduce to the market.

  15. Ball motion and sliding friction in an arched outer-race ball bearing

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1974-01-01

    The motion of the ball and sliding friction in an arched outer-race ball bearing under thrust load is analyzed. Fatigue life evaluations were made. The analysis is applied to a 150-millimeter-bore ball bearing. The results indicated that for high-speed light-load applications the arched bearing has significant improvement in fatigue life over that of a conventional bearing. An arching of 0.254 mm (0.01 in.) was found to be optimal. Also, for an arched bearing a considerable amount of spinning occurs at the outer-race contacts.

  16. Ball Bearing Mechanics

    NASA Technical Reports Server (NTRS)

    Hamrock, Bernard J.; Dowson, Duncan

    1981-01-01

    Load-deflection relationships for different types of elliptical contacts such as those found in a ball bearing are developed. Simplified expressions that allow quick calculations of deformation to be made simply from a knowledge of the applied load, the material properties, and the geometry of the contacting elements are presented. Ball bearings subjected to radial, thrust and combined ball loads are analyzed. A design criterion for fatigue life of ball bearings is developed. The section of a satisfactory lubricant, as well as describing systems that provide a constant flow of lubricant to the contact, is considered.

  17. An early record of ball lightning: Oliva (Spain), 1619

    NASA Astrophysics Data System (ADS)

    Domínguez-Castro, Fernando

    2018-05-01

    In a primary documentary source we found an early record of ball lightning (BL), which was observed in the monastery of Pi (Oliva, southeastern Spain) on 18 October 1619. The ball lightning was observed by at least three people and was described as a rolling burning vessel and a ball of fire. The ball lightning appeared following a lightning flash, showed a mainly horizontal motion, crossed a wall, smudged an image of the Lady of Rebollet (then known as Lady of Pi) and burnt her ruff, and overturned a cross.

  18. Spherical bearing. [to reduce vibration effects

    NASA Technical Reports Server (NTRS)

    Myers, W. N.; Hein, L. A. (Inventor)

    1978-01-01

    A spherical bearing including an inner ball with an opening for receiving a shaft and a spherical outer surface is described. Features of the bearing include: (1) a circular outer race including a plurality of circumferentially spaced sections extending around the inner ball for snugly receiving the inner ball; and (2) a groove extending circumferentially around the race producing a thin wall portion which permits the opposed side portions to flex relative to the ball for maximizing the physical contact between the inner surface of the race and the spherical outer surface of the ball.

  19. Two Balls' Collision of Mass Ratio 3:1

    NASA Astrophysics Data System (ADS)

    Ogawara, Yasuo; Hull, Michael M.

    2018-04-01

    Students will sometimes ask why momentum and kinetic energy concepts are both necessary. When physics teachers demonstrate situations that require both an understanding of kinetic energy and momentum, a favorite is Newton's cradle, or a comparable demonstration of two balls of equal mass hitting each other. However, in addition to the case of two balls of equal mass, if a ball hits another ball of three times the mass with equal speed, the results are also interesting, and, like the equal-mass demonstration, both kinetic energy and momentum are critical for understanding the motion.

  20. Simulation for grinding balls production using sand mold-gravity casting

    NASA Astrophysics Data System (ADS)

    Nurjaman, F.; Shofi, A.; Herlina, U.; Prilitasari, N. M.; Triapriani, Y.

    2018-01-01

    In this present work, the grinding balls from high chromium white cast iron (ASTM A-532) were produced by using sand mold-gravity casting. The simulation casting process was conducted before making these grinding balls by using SOLIDCast™ version 8.2.0. The gating system design and the pouring temperature of hot metal were investigated clearly to obtain grinding balls with no-defect. The sound casting of grinding balls was resulted by using the proper gating system with the addition of vent air on the top of each grinding ball’s mold. The dimension of vent air was reduced by the increasing of pouring temperature, thus it resulted on the increasing of the yield production of grinding balls.

  1. Friction torque in thrust ball bearings grease lubricated

    NASA Astrophysics Data System (ADS)

    Ianuş, G.; Dumitraşcu, A. C.; Cârlescu, V.; Olaru, D. N.

    2016-08-01

    The authors investigated experimentally and theoretically the friction torque in a modified thrust ball bearing having only 3 balls operating at low axial load and lubricated with NGLI-00 and NGLI-2 greases. The experiments were made by using spin-down methodology and the results were compared with the theoretical values based on Biboulet&Houpert's rolling friction equations. Also, the results were compared with the theoretical values obtained with SKF friction model adapted for 3 balls. A very good correlation between experiments and Biboulet_&_Houpert's predicted results was obtained for the two greases. Also was observed that the theoretical values for the friction torque calculated with SKF model adapted for a thrust ball bearing having only 3 balls are smaller that the experimental values.

  2. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2013-01-01

    Four companies — H.C. Spinks Clay Co., Inc., Imerys, Old Hickory Clay Co. and Unimin Corp. — mined ball clay in five U.S. states in 2012. Production, on the basis of preliminary data, was 900 kt (992,000 st), with an estimated value of $42.3 million. This was a slight increase in tonnage from 886 kt (977,000 st), with a value of $40.9 million in 2011. Tennessee was the leading ball clay producing state, with 63 percent of domestic production, followed by Texas, Mississippi, Kentucky and Indiana. Reported ball clay production from Indiana probably was fire clay rather than ball clay. About 69 percent of total ball clay production was airfloat, 20 percent was crude and 11 percent was water-slurried.

  3. miniTri Mantevo miniapp v. 1.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, Johathan; Stark, Dylan; Wolf, Michael

    2016-02-02

    miniTri is a miniapplication developed as part of the Mantevo project. Given a graph, miniTri enumerates all triangles in this graph and computes a metric for each triangle based on the triangle edge and vertex degree. The output of miniTri is a summary of this metric. miniTri mimics the computational requirements of an important set of data science applications. Several approaches to this problem are included in the miniTri software.

  4. Gaze Behavior in One-Handed Catching and Its Relation with Interceptive Performance: What the Eyes Can't Tell

    PubMed Central

    Cesqui, Benedetta; Mezzetti, Maura; Lacquaniti, Francesco; d'Avella, Andrea

    2015-01-01

    In ball sports, it is usually acknowledged that expert athletes track the ball more accurately than novices. However, there is also evidence that keeping the eyes on the ball is not always necessary for interception. Here we aimed at gaining new insights on the extent to which ocular pursuit performance is related to catching performance. To this end, we analyzed eye and head movements of nine subjects catching a ball projected by an actuated launching apparatus. Four different ball flight durations and two different ball arrival heights were tested and the quality of ocular pursuit was characterized by means of several timing and accuracy parameters. Catching performance differed across subjects and depended on ball flight characteristics. All subjects showed a similar sequence of eye movement events and a similar modulation of the timing of these events in relation to the characteristics of the ball trajectory. On a trial-by-trial basis there was a significant relationship only between pursuit duration and catching performance, confirming that keeping the eyes on the ball longer increases catching success probability. Ocular pursuit parameters values and their dependence on flight conditions as well as the eye and head contributions to gaze shift differed across subjects. However, the observed average individual ocular behavior and the eye-head coordination patterns were not directly related to the individual catching performance. These results suggest that several oculomotor strategies may be used to gather information on ball motion, and that factors unrelated to eye movements may underlie the observed differences in interceptive performance. PMID:25793989

  5. Spiral Orbit Tribometer

    NASA Technical Reports Server (NTRS)

    Pepper, Stephen V.; Jones, William R., Jr.; Kingsbury, Edward; Jansen, Mark J.

    2007-01-01

    The spiral orbit tribometer (SOT) bridges the gap between full-scale life testing and typically unrealistic accelerated life testing of ball-bearing lubricants in conjunction with bearing ball and race materials. The SOT operates under realistic conditions and quickly produces results, thereby providing information that can guide the selection of lubricant, ball, and race materials early in a design process. The SOT is based upon a simplified, retainerless thrust bearing comprising one ball between flat races (see figure). The SOT measures lubricant consumption and degradation rates and friction coefficients in boundary lubricated rolling and pivoting contacts. The ball is pressed between the lower and upper races with a controlled force and the lower plate is rotated. The combination of load and rotation causes the ball to move in a nearly circular orbit that is, more precisely, an opening spiral. The spiral s pitch is directly related to the friction coefficient. At the end of the orbit, the ball contacts the guide plate, restoring the orbit to its original radius. The orbit is repeatable throughout the entire test. A force transducer, mounted in-line with the guide plate, measures the force between the ball and the guide plate, which directly relates to the friction coefficient. The SOT, shown in the figure, can operate in under ultra-high vacuum (10(exp -9) Torr) or in a variety of gases at atmospheric pressure. The load force can be adjusted between 45 and 450 N. By varying the load force and ball diameter, mean Hertzian stresses between 0.5 and 5.0 GPa can be obtained. The ball s orbital speed range is between 1 and 100 rpm.

  6. Fullerene-like MoSe2 nanoparticles-embedded CNT balls with excellent structural stability for highly reversible sodium-ion storage.

    PubMed

    Choi, Seung Ho; Kang, Yun Chan

    2016-02-21

    Three-dimensional (3D) porous-structured carbon nanotube (CNT) balls embedded with fullerene-like MoSe2 nanocrystals were successfully prepared by the spray pyrolysis process and subsequent selenization process. The MoO2-CNT composite balls prepared by spray pyrolysis transformed into the fullerene-like MoSe2/CNT (F-MoSe2/CNT) composite balls by the selenization process. The F-MoSe2/CNT composite balls exhibited superior sodium-ion storage properties to bare MoSe2 and MoSe2/CNT with a filled structure (N-MoSe2/CNT), both of which were prepared as comparison samples. The 250(th) discharge capacities of bare MoSe2, N-MoSe2/CNT composite balls, and F-MoSe2/CNT composite balls were 144, 200, and 296 mA h g(-1), respectively, at a high current density of 1.0 A g(-1), and their capacity retentions measured from the second cycle were 37%, 66%, and 83%, respectively. The 10(th) discharge capacities of the F-MoSe2/CNT composite balls were 382, 346, 310, 280, and 255 mA h g(-1) at current densities of 0.2, 0.5, 1.5, 3.0, and 5.0 A g(-1), respectively. The synergetic effect of the fullerene-like MoSe2 nanocrystals with ultrafine sizes and the CNT balls with a tangled and 3D porous structure and high electrical conductivity resulted in excellent sodium-ion storage properties of the F-MoSe2/CNT composite balls.

  7. Space Shuttle Orbital Maneuvering Subsystem (OMS) Engine Propellant Leakage Ball-Valve Shaft Seals

    NASA Technical Reports Server (NTRS)

    Lueders, Kathy; Buntain, Nick; Fries, Joseph (Technical Monitor)

    1999-01-01

    Evidence of propellant leakage across ball-valve shaft seals has been noted during the disassembly of five flight engines and one test engine at the NASA Lyndon B. Johnson Space Center, White Sands Test Facility. Based on data collected during the disassembly of these five engines, the consequences of propellant leakage across the ball-valve shaft seals can be divided into four primary areas of concern: Damage to the ball-valve pinion shafts, damage to sleeved bearings inside the ball-valve and actuator assemblies, degradation of the synthetic rubber o-rings used in the actuator assemblies, and corrosion and degradation to the interior of the actuator assemblies. The exact time at which leakage across the ball-valve shaft seals occurs has not been determined, however, the leakage most likely occurs during engine firings when, depending on the specification used, ball-valve cavity pressures range as high as 453 to 550 psia. This potential pressure range for the ball-valve cavities greatly exceeds the acceptance leakage test pressure of 332 psia. Since redesign and replacement of the ball-valve shaft seals is unlikely, the near term solution to prevent damage that occurs from shaft-seal leakage is to implement a routine overhaul and maintenance program for engines in the fleet. Recommended repair, verification, and possible preventative maintenance measures are discussed in the paper.

  8. Relation Between Iliopsoas Cross-sectional Area and Kicked Ball Speed in Soccer Players.

    PubMed

    Wakahara, Taku; Chiba, Manabu

    2018-05-14

    This study aimed to investigate the relationship between the maximal anatomical cross-sectional area (ACSA) of the iliopsoas muscle and ball speed in side-foot and instep kicks. The ACSA of the psoas major and iliacus was measured in 29 male collegiate soccer players by using magnetic resonance imaging. They performed maximal side-foot and instep kicks to a stationary ball. The kicked ball speed was measured with a high-speed camera. Ball speed in the side-foot and instep kicks was significantly correlated with body height (side-foot kick: r=0.650, P<0.001; instep kick: r=0.583, P<0.001). After adjustment for body height, the maximal ACSA of the psoas major was significantly correlated with ball speed in the side-foot kick (r=0.441, P=0.017), but not in the instep kick. The maximal ACSA of the iliacus was not correlated with ball speed in side-foot or instep kicks, even after adjustment for body height. Our results suggest that: 1) body height is a significant determinant of the ball speed in side-foot and instep kicks, and 2) for a given body height, the maximal ACSA of the dominant psoas major is a factor that affects the ball speed in side-foot kick. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Visual Illusions and the Control of Ball Placement in Goal-Directed Hitting

    ERIC Educational Resources Information Center

    Caljouw, Simone R.; Van der Kamp, John; Savelsbergh, Geert J. P.

    2010-01-01

    When hitting, kicking, or throwing balls at targets, online control in the target area is impossible. We assumed this lack of late corrections in the target area would induce an effect of a single-winged Muller-Lyer illusion on ball placement. After extensive practice in hitting balls to different landing locations, participants (N = 9) had to hit…

  10. Ball to separator contact forces in angular contact ball bearings under thrust and radial loads

    NASA Technical Reports Server (NTRS)

    Nypan, L. J.

    1978-01-01

    Experimental data are reported on ball to cage contact forces in a 110 mm bore ball bearing operating at speeds to 12,000 rpm under radial and thrust loads. Information is also reported on cage to inner race land contact force, cage to inner race land clearance, and cage to shaft speed ratios.

  11. 27 CFR 31.83 - Ball park, race track, etc.; sales throughout the premises.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2012-04-01 2012-04-01 false Ball park, race track, etc... to Registration Sales in Two Or More Areas on the Same Premises § 31.83 Ball park, race track, etc.; sales throughout the premises. The proprietor of a ball park, race track, stadium, pavilion, or other...

  12. 27 CFR 31.83 - Ball park, race track, etc.; sales throughout the premises.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2013-04-01 2013-04-01 false Ball park, race track, etc... to Registration Sales in Two Or More Areas on the Same Premises § 31.83 Ball park, race track, etc.; sales throughout the premises. The proprietor of a ball park, race track, stadium, pavilion, or other...

  13. 27 CFR 31.83 - Ball park, race track, etc.; sales throughout the premises.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Ball park, race track, etc... to Registration Sales in Two Or More Areas on the Same Premises § 31.83 Ball park, race track, etc.; sales throughout the premises. The proprietor of a ball park, race track, stadium, pavilion, or other...

  14. 27 CFR 31.83 - Ball park, race track, etc.; sales throughout the premises.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2011-04-01 2011-04-01 false Ball park, race track, etc... to Registration Sales in Two Or More Areas on the Same Premises § 31.83 Ball park, race track, etc.; sales throughout the premises. The proprietor of a ball park, race track, stadium, pavilion, or other...

  15. 27 CFR 31.83 - Ball park, race track, etc.; sales throughout the premises.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2014-04-01 2014-04-01 false Ball park, race track, etc... to Registration Sales in Two Or More Areas on the Same Premises § 31.83 Ball park, race track, etc.; sales throughout the premises. The proprietor of a ball park, race track, stadium, pavilion, or other...

  16. Ball clay

    USGS Publications Warehouse

    Virta, R.L.

    2011-01-01

    The article discusses the latest developments in the global ball clay mining industry, particularly in the U.S., as of June 2011. It cites several firms that are involved in ball clay mining in the U.S., including HC Spins Clay Co. Inc., the Imerys Group and Old Hickory Clay Co. Among the products made from ball clay are ceramic tiles, sanitaryware, as well as fillers, extenders and binders.

  17. Processing of high-precision ceramic balls with a spiral V-groove plate

    NASA Astrophysics Data System (ADS)

    Feng, Ming; Wu, Yongbo; Yuan, Julong; Ping, Zhao

    2017-03-01

    As the demand for high-performance bearings gradually increases, ceramic balls with excellent properties, such as high accuracy, high reliability, and high chemical durability used, are extensively used for highperformance bearings. In this study, a spiral V-groove plate method is employed in processing high-precision ceramic balls. After the kinematic analysis of the ball-spin angle and enveloped lapping trajectories, an experimental rig is constructed and experiments are conducted to confirm the feasibility of this method. Kinematic analysis results indicate that the method not only allows for the control of the ball-spin angle but also uniformly distributes the enveloped lapping trajectories over the entire ball surface. Experimental results demonstrate that the novel spiral Vgroove plate method performs better than the conventional concentric V-groove plate method in terms of roundness, surface roughness, diameter difference, and diameter decrease rate. Ceramic balls with a G3-level accuracy are achieved, and their typical roundness, minimum surface roughness, and diameter difference are 0.05, 0.0045, and 0.105 μm, respectively. These findings confirm that the proposed method can be applied to high-accuracy and high-consistency ceramic ball processing.

  18. Decay rates of Gaussian-type I-balls and Bose-enhancement effects in 3+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Masahiro; Yamada, Masaki; ICRR, University of Tokyo, Kashiwa, 277-8582

    2014-02-03

    I-balls/oscillons are long-lived spatially localized lumps of a scalar field which may be formed after inflation. In the scalar field theory with monomial potential nearly and shallower than quadratic, which is motivated by chaotic inflationary models and supersymmetric theories, the scalar field configuration of I-balls is approximately Gaussian. If the I-ball interacts with another scalar field, the I-ball eventually decays into radiation. Recently, it was pointed out that the decay rate of I-balls increases exponentially by the effects of Bose enhancement under some conditions and a non-perturbative method to compute the exponential growth rate has been derived. In this paper,more » we apply the method to the Gaussian-type I-ball in 3+1 dimensions assuming spherical symmetry, and calculate the partial decay rates into partial waves, labelled by the angular momentum of daughter particles. We reveal the conditions that the I-ball decays exponentially, which are found to depend on the mass and angular momentum of daughter particles and also be affected by the quantum uncertainty in the momentum of daughter particles.« less

  19. Decay rates of Gaussian-type I-balls and Bose-enhancement effects in 3+1 dimensions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawasaki, Masahiro; Yamada, Masaki, E-mail: kawasaki@icrr.u-tokyo.ac.jp, E-mail: yamadam@icrr.u-tokyo.ac.jp

    2014-02-01

    I-balls/oscillons are long-lived spatially localized lumps of a scalar field which may be formed after inflation. In the scalar field theory with monomial potential nearly and shallower than quadratic, which is motivated by chaotic inflationary models and supersymmetric theories, the scalar field configuration of I-balls is approximately Gaussian. If the I-ball interacts with another scalar field, the I-ball eventually decays into radiation. Recently, it was pointed out that the decay rate of I-balls increases exponentially by the effects of Bose enhancement under some conditions and a non-perturbative method to compute the exponential growth rate has been derived. In this paper,more » we apply the method to the Gaussian-type I-ball in 3+1 dimensions assuming spherical symmetry, and calculate the partial decay rates into partial waves, labelled by the angular momentum of daughter particles. We reveal the conditions that the I-ball decays exponentially, which are found to depend on the mass and angular momentum of daughter particles and also be affected by the quantum uncertainty in the momentum of daughter particles.« less

  20. A controlled study on batted ball speed and available pitcher reaction time in slowpitch softball

    PubMed Central

    McDowell, M; Ciocco, M

    2005-01-01

    Objectives: To investigate safety risks in slowpitch softball by conducting laboratory and experimental studies on the performance of high tech softball bats with polyurethane softballs. To compare the results with the recommended safety standards. Methods: ASTM standard compression testing of seven softball models was conducted. Using these seven softball models, bat/ball impact testing was performed using seven adult male softball players and six high tech softball bat models to determine mean batted ball speeds. Over 500 bat/ball impact measurements were recorded and analysed. Available pitcher reaction time was calculated from the mean batted ball speed measurements. Results: According to the United States Specialty Sports Association and the Amateur Softball Association, the maximum initial batted ball speed should be 137.2 km/h, which corresponds to a minimum pitcher reaction time of 0.420 second. These experiments produced mean batted ball speeds of 134.0–159.7 km/h, which correspond to available pitcher reaction times of 0.409–0.361 second. Conclusion: The use of high tech softball bats with polyurethane softballs can result in batted ball speeds that exceed the recommended safety limits, which correspond to decreased available pitcher reaction times. PMID:15793092

  1. Determining whether a ball will land behind or in front of you: not just a combination of expansion and angular velocity.

    PubMed

    Brouwer, Anne-Marie; López-Moliner, Joan; Brenner, Eli; Smeets, Jeroen B J

    2006-02-01

    We propose and evaluate a source of information that ball catchers may use to determine whether a ball will land behind or in front of them. It combines estimates for the ball's horizontal and vertical speed. These estimates are based, respectively, on the rate of angular expansion and vertical velocity. Our variable could account for ball catchers' data of Oudejans et al. [The effects of baseball experience on movement initiation in catching fly balls. Journal of Sports Sciences, 15, 587-595], but those data could also be explained by the use of angular expansion alone. We therefore conducted additional experiments in which we asked subjects where simulated balls would land under conditions in which both angular expansion and vertical velocity must be combined for obtaining a correct response. Subjects made systematic errors. We found evidence for the use of angular velocity but hardly any indication for the use of angular expansion. Thus, if catchers use a strategy that involves combining vertical and horizontal estimates of the ball's speed, they do not obtain their estimates of the horizontal component from the rate of expansion alone.

  2. Temperature actuated shutdown assembly for a nuclear reactor

    DOEpatents

    Sowa, Edmund S.

    1976-01-01

    Three identical bimetallic disks, each shaped as a spherical cap with its convex side composed of a layer of metal such as molybdenum and its concave side composed of a metal of a relatively higher coefficient of thermal expansion such as stainless steel, are retained within flanges attached to three sides of an inner hexagonal tube containing a neutron absorber to be inserted into a nuclear reactor core. Each disk holds a metal ball against its normally convex side so that the ball projects partially through a hole in the tube located concentrically with the center of each disk; at a predetermined temperature an imbalance of thermally induced stresses in at least one of the disks will cause its convex side to become concave and its concave side to become convex, thus pulling the ball from the hole in which it is located. The absorber has a conical bottom supported by the three balls and is small enough in relation to the internal dimensions of the tube to allow it to slip toward the removed ball or balls, thus clearing the unremoved balls or ball so that it will fall into the reactor core.

  3. Characterization of a new B-ALL cell line with constitutional defect of the Notch signaling pathway

    PubMed Central

    Kamga, Paul Takam; Dal Collo, Giada; Bassi, Giulio; Midolo, Martina; Delledonne, Massimo; Chilosi, Marco; Bonifacio, Massimiliano; Krampera, Mauro

    2018-01-01

    Notch signaling contribution to B-cell acute lymphoblastic leukemia (B-ALL) development is still under investigation. The serendipitous onset of B-ALL in a patient affected by the germinal Notch mutation-dependent Alagille syndrome allowed us to establish a B-ALL cell line (VR-ALL) bearing a genetic loss of function in components of Notch signaling. VR-ALL is a common-type B-ALL cell line, grows in conventional culture medium supplemented with 10% serum, and gives rise, once injected into immunodeficient NOG mice, to a mouse xenograft model of B-ALL. Exome sequencing revealed deleterious mutations in some components of Notch signaling, including Jagged1, Notch1, and Notch2. In addition, VR-ALL is sensitive both in vitro and in vivo to γ-secretase inhibitors (GSIs) as well as conventional anti-leukemic drugs. For all these reasons, VR-ALL may help to gain more insights into the role of Notch signaling in B-ALL. PMID:29719609

  4. Experimental Study of Load Carrying Capacity of Point Contacts at Zero Entrainment Velocity

    NASA Technical Reports Server (NTRS)

    Shogin, B. A.; Jones, W. R., Jr.; Kingsbury, E. P.; Jansen, M. J.; Prahl, J. M.

    1998-01-01

    A capacitance technique was used to monitor the film thickness separating two steel balls while subjecting the ball-ball contact to highly stressed, zero entrainment velocity conditions. Tests were performed in a nitrogen atmosphere and utilized 52100 steel balls and a polyalphaolefin lubricant. Capacitance to film thickness accuracy was verified under pure rolling conditions using established EHL theory. Zero entrainment velocity tests were performed at sliding speeds from 6.0 to 10.0 m/s and for sustained amounts of time to 28.8 min. The protective lubricant film separating the specimens at zero entrainment velocity had a film thickness between 0.10 to 0.14 microns (4 to 6 micro in.), which corresponded to a k value of 4. The formation of an immobile surface film formed by lubricant entrapment is discussed as an explanation of the load carrying capacity at zero entrainment velocity conditions, relevant to the ball-ball contacts occurring in retainerless ball bearings.

  5. Effect of ball-milling to the surface morphology of CaCO3

    NASA Astrophysics Data System (ADS)

    Sulimai, N. H.; Rani, Rozina Abdul; Khusaimi, Z.; Abdullah, S.; Salifairus, M. J.; Alrokayan, Salman; Khan, Haseeb; Rusop, M.

    2018-05-01

    Calcium Carbonate can be synthesized in many approaches. This work studied on the physical changes to Calcium Carbonate (CaCO3) by ball-milling activity in different parameters; number of ball; collision duration; revolution per minute (RPM). Zirconia balls were used in the work because it has the best durability to withstand ball-milling conditions set. Industrial grade CaCO3 particles that were run in aforementioned parameters were characterized by Field Emission Scanning Electron Microscope (FE-SEM) to study the physical changes on the size and surface of the CaCO3. They were also characterized with Fourier Transform Infra-red Spectroscopy (FTIR) were fingerprint of CaCO3 regions were identified and any changes in the band position and intensity were discussed. Number of Zirconia balls and collision duration is directly proportional to the absorbance intensity whereas it is inversely proportional for the rpm. The best number of parameters producing the highest Absorbance is 100 Zirconia balls in duration of 1 hour and 100rpm.

  6. Fluorine lubricated bearing technology

    NASA Technical Reports Server (NTRS)

    Mallaire, F. R.

    1973-01-01

    An experimental program was conducted to evaluate and select materials for ball bearings intended for use in liquid fluorine and/or FLOX. The ability of three different ball-separator materials, each containing nickel, to form and transfer a nickel fluoride film to provide effective lubrication at the required areas of a ball bearing operating in liquid fluorine was evaluated. In addition, solid lubrication of a ball bearing operating in liquid fluorine by either a fused fluoride coating applied to all surfaces of the ball separator or by a fluoride impregnation of porous sintered material ball separators was evaluated. Less bearing wear occurred when tests were conducted in the less reactive FLOX. Bearings fabricated from any of the materials tested would have relatively short wear lives and would require frequent replacement in a reusable engine.

  7. Lunar crane hook

    NASA Technical Reports Server (NTRS)

    Cash, John Wilson, III; Cone, Alan E.; Garolera, Frank J.; German, David; Lindabury, David Peter; Luckado, Marshall Cleveland; Murphey, Craig; Rowell, John Bryan; Wilkinson, Brad

    1988-01-01

    The base and ball hook system is an attachment that is designed to be used on the lunar surface as an improved alternative to the common crane hook and eye system. The design proposed uses an omni-directional ball hook and base to overcome the design problems associated with a conventional crane hook. The base and ball hook is not sensitive to cable twist which would render a robotic lunar crane useless since there is little atmospheric resistance to dampen the motion of an oscillating member. The symmetric characteristics of the ball hook and base eliminates manual placement of the ball hook into the base; commonly associated with the typical hook and eye stem. The major advantage of the base and ball hook system is it's ease of couple and uncouple modes that are advantages during unmanned robotic lunar missions.

  8. Fabrication of nanoscale Ga balls via a Coulomb explosion of microscale silica-covered Ga balls by TEM electron-beam irradiation

    PubMed Central

    Chen, Ying; Huang, Yanli; Liu, Nishuang; Su, Jun; Li, Luying; Gao, Yihua

    2015-01-01

    Nanoscale Ga particles down to 5 nm were fabricated by an explosion via an in situ electron-beam irradiation on microscale silica-covered Ga balls in a transmission electron microscope. The explosion is confirmed to be a Coulomb explosion because it occurs on the surface rather than in the whole body of the insulating silica-covered Ga micro–balls, and on the pure Ga nano-balls on the edge of carbon film. The ejected particles in the explosion increase their sizes with increasing irradiation time until the stop of the explosion, but decrease their sizes with increasing distance from the original ball. The Coulomb explosion suggests a novel method to fabricate nanoscale metal particles with low melting point. PMID:26100238

  9. Internal Structure of Mini-CEX Scores for Internal Medicine Residents: Factor Analysis and Generalizability

    ERIC Educational Resources Information Center

    Cook, David A.; Beckman, Thomas J.; Mandrekar, Jayawant N.; Pankratz, V. Shane

    2010-01-01

    The mini-CEX is widely used to rate directly observed resident-patient encounters. Although several studies have explored the reliability of mini-CEX scores, the dimensionality of mini-CEX scores is incompletely understood. Objective: Explore the dimensionality of mini-CEX scores through factor analysis and generalizability analysis. Design:…

  10. Evaluation of drilled-ball bearings at DN values to three million. 2: Experimental skid study and endurance tests

    NASA Technical Reports Server (NTRS)

    Holmes, P. W.

    1972-01-01

    Both drilled-and solid-ball 120-mm-bore bearings were tested at speeds up to 24,000 rpm to determine skid characteristics. The thrust loads were varied from 5000 lb down to 370 lb. No gross skidding occurred, and the behavior of the two bearing types was generally similar; however, two drilled-ball bearing failures occurred during the skid tests. In the endurance tests, 25 cycles of start, run (for one hour), and stop were completed before a drilled-ball bearing failed. In all three cases, the ball had failed in flexure fatigue.

  11. Ball motion and sliding friction in an arched outer race ball bearing

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1973-01-01

    The motion of the ball and sliding friction in an arched outer race ball bearing under thrust loads is determined. Fatigue life evaluations were made. The analysis is applied to a 150 millimeter bore ball bearing. The results indicated that for high speed-light load applications the arched bearing has significant improvement in fatigue life over that of a conventional bearing. An arching of 0.254 mm (0.01 in.) was found to be an optimal. For an arched bearing it was also found that a considerable amount of spinning occurs at the outer race contacts.

  12. DEVICE FOR CONVEYING AND ROTATING OBJECTS

    DOEpatents

    Frantz, C.E.; Roslund, J.

    1958-01-21

    A device is described for conveying cylindrical material with a combined rotary and axial motion. The material rides on a series of balls which are retained in a guide plate and rotated by bearing against a rotating drum. The drum has a series of conical sections or grooves cut in its outer surface on which the balls ride. The grooves and balls match in such a way that all the balls are caused to rotate about an axis at an angle to the drum axis. This skewed rotation of the ball imparts a longitudinal as well as a rotary motion to the cylinders being conveyed.

  13. Quartz ball valve

    NASA Technical Reports Server (NTRS)

    Goetz, C.; Ingle, W. M. (Inventor)

    1980-01-01

    A ball valve particularly suited for use in the handling of highly corrosive fluids is described. It is characterized by a valve housing formed of communicating segments of quartz tubing, a pair of communicating sockets disposed in coaxial alignment with selected segments of tubing for establishing a pair of inlet ports communicating with a common outlet port, a ball formed of quartz material supported for displacement between the sockets and configured to be received alternately thereby, and a valve actuator including a rod attached to the ball for selectively displacing the ball relative to each of the sockets for controlling fluid flow through the inlet ports.

  14. Ball motion and sliding friction in an arched outer race ball bearing

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.

    1974-01-01

    The motion of the ball and sliding friction in an arched outer-race ball bearing under thrust load is determined. Fatigue life evaluations were made. The analysis is applied to a 150 millimeter bore ball bearing. The results indicated that for high speed-light load applications the arched bearing has significant improvement in fatigue life over that of a conventional bearing. An arching of 0.254 mm (0.01 in.) was found to be an optimal. For an arched bearing it was also found that a considerable amount of spinning occurs at the outer race contacts.

  15. A Mini-review on the Effect of Mini-implants on Contemporary Orthodontic Science

    PubMed Central

    Nosouhian, Saeid; Rismanchian, Mansour; Sabzian, Roya; Shadmehr, Elham; Badrian, Hamid; Davoudi, Amin

    2015-01-01

    The purpose of this literature review was to screen the valuable published articles regarding to the impacts of mini-implants on orthodontic science, briefly. The searching category was performed on the Pubmed using MeSH words such as “dental (mini) implants, orthodontic anchorage procedures, and orthodontic appliances.” After preliminary sketch, they were grouped as follow: Those evaluating (a) common appliances for providing orthodontic anchorage, (b) biomechanical details of mini-implants and their insertion, (c) clinical application of mini-implants for orthognathic treatments, (d) limitations and possible complications. In conclusion, mini-implant evolved the orthodontic treatment plans and compromised the required orthognathic surgery. Malocclusion treatment and pure orthodontic or orthopedic movements in the three-dimensions have become recently possible by using mini-implant to provide skeletal anchorage. PMID:26225113

  16. Detecting Wear In Ball Bearings During Operation

    NASA Technical Reports Server (NTRS)

    Hine, Michael J.

    1988-01-01

    Strain-gauge signals at harmonics of ball-bearing-cage frequencies signify wear. Brief report describes experiments in continuing effort to interpret vibrations of machinery in terms of wear in ball bearing.

  17. Neutrinos from the terrestrial passage of supersymmetric dark-matter Q-balls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kusenko, Alexander; Institute for the Physics and Mathematics of the Universe, University of Tokyo, Kashiwa, Chiba 277-8568; Shoemaker, Ian M.

    2009-07-15

    Supersymmetry implies that stable nontopological solitons, Q-balls, could form in the early universe and could make up all or part of dark matter. We show that the relic Q-balls passing through Earth can produce a detectable neutrino flux. The peculiar zenith angle dependence and a small annual modulation of this flux can be used as signatures of dark-matter Q-balls.

  18. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Acting NASA Deputy Administrator Lesa Roe, second from left, and acting NASA Administrator Robert Lightfoot, second from left, are seen with Mike Gazarik, vice president of Engineering at Ball Aerospace, left and Shawn Conley, test operations manager at Ball Aerospace, left, in front of the large semi-anechoic chamber, Thursday, April 6, 2017 during a visit to Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  19. Physics in a Glitter Ball

    ERIC Educational Resources Information Center

    Trikosko, Walter

    2011-01-01

    Maui Toys' Water Bouncer (Fig. 1) is a water-filled ball containing glitter. Buy one and put it on your desk and students can't keep their hands off of it. Pitch the ball in the air giving it a quick spin. When you catch it you will see a sparkling vortex. Twist the ball around different ways and the angular momentum of the fluid keeps the axis of…

  20. Rolling Motion of a Ball Spinning about a Near-Vertical Axis

    ERIC Educational Resources Information Center

    Cross, Rod

    2012-01-01

    A ball that is projected forward without spin on a horizontal surface will slide for a short distance before it starts rolling. Sliding friction acts to decrease the translation speed v and it acts to increase the rotation speed [omega]. When v = R[omega], where R is the ball radius, the ball will start rolling and the friction force drops almost…

  1. Momentum and Kinetic Energy Before the Tackle in Rugby Union

    PubMed Central

    Hendricks, Sharief; Karpul, David; Lambert, Mike

    2014-01-01

    Understanding the physical demands of a tackle in match situations is important for safe and effective training, developing equipment and research. Physical components such as momentum and kinetic energy, and it relationship to tackle outcome is not known. The aim of this study was to compare momenta between ball-carrier and tackler, level of play (elite, university and junior) and position (forwards vs. backs), and describe the relationship between ball-carrier and tackler mass, velocity and momentum and the tackle outcome. Also, report on the ball-carrier and tackler kinetic energy before contact and the estimated magnitude of impact (energy distributed between ball-carrier and tackler upon contact). Velocity over 0.5 seconds before contact was determined using a 2-dimensional scaled version of the field generated from a computer alogorithm. Body masses of players were obtained from their player profiles. Momentum and kinetic energy were subsequently calculated for 60 tackle events. Ball-carriers were heavier than the tacklers (ball-carrier 100 ± 14 kg vs. tackler 93 ± 11 kg, d = 0.52, p = 0.0041, n = 60). Ball-carriers as forwards had a significantly higher momentum than backs (forwards 563 ± 226 Kg.m.s-1 n = 31 vs. backs 438 ± 135 Kg.m.s-1, d = 0.63, p = 0.0012, n = 29). Tacklers dominated 57% of tackles and ball-carriers dominated 43% of tackles. Despite the ball-carrier having a mass advantage before contact more frequently than the tackler, momentum advantage and tackle dominance between the ball-carrier and tackler was proportionally similar. These findings may reflect a characteristic of the modern game of rugby where efficiently heavier players (particularly forwards) are tactically predetermined to carry the ball in contact. Key Points First study to quantify momentum, kinetic energy, and magnitude of impact in rugby tackles across different levels in matches without a device attached to a player. Physical components alone, of either ball-carrier or tackler, are not good predictors of tackle dominance. The range of magnitudes of impact of injury free tackles observed in this study provides evidence for the physical tolerance of players during the tackle. PMID:25177182

  2. Momentum and kinetic energy before the tackle in rugby union.

    PubMed

    Hendricks, Sharief; Karpul, David; Lambert, Mike

    2014-09-01

    Understanding the physical demands of a tackle in match situations is important for safe and effective training, developing equipment and research. Physical components such as momentum and kinetic energy, and it relationship to tackle outcome is not known. The aim of this study was to compare momenta between ball-carrier and tackler, level of play (elite, university and junior) and position (forwards vs. backs), and describe the relationship between ball-carrier and tackler mass, velocity and momentum and the tackle outcome. Also, report on the ball-carrier and tackler kinetic energy before contact and the estimated magnitude of impact (energy distributed between ball-carrier and tackler upon contact). Velocity over 0.5 seconds before contact was determined using a 2-dimensional scaled version of the field generated from a computer alogorithm. Body masses of players were obtained from their player profiles. Momentum and kinetic energy were subsequently calculated for 60 tackle events. Ball-carriers were heavier than the tacklers (ball-carrier 100 ± 14 kg vs. tackler 93 ± 11 kg, d = 0.52, p = 0.0041, n = 60). Ball-carriers as forwards had a significantly higher momentum than backs (forwards 563 ± 226 Kg(.)m(.)s(-1) n = 31 vs. backs 438 ± 135 Kg(.)m(.)s(-1), d = 0.63, p = 0.0012, n = 29). Tacklers dominated 57% of tackles and ball-carriers dominated 43% of tackles. Despite the ball-carrier having a mass advantage before contact more frequently than the tackler, momentum advantage and tackle dominance between the ball-carrier and tackler was proportionally similar. These findings may reflect a characteristic of the modern game of rugby where efficiently heavier players (particularly forwards) are tactically predetermined to carry the ball in contact. Key PointsFirst study to quantify momentum, kinetic energy, and magnitude of impact in rugby tackles across different levels in matches without a device attached to a player.Physical components alone, of either ball-carrier or tackler, are not good predictors of tackle dominance.The range of magnitudes of impact of injury free tackles observed in this study provides evidence for the physical tolerance of players during the tackle.

  3. Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger

    NASA Astrophysics Data System (ADS)

    Bowen, Dennis B.; Mewes, Vassilios; Campanelli, Manuela; Noble, Scott C.; Krolik, Julian H.; Zilhão, Miguel

    2018-01-01

    We present the first magnetohydrodynamic simulation in which a circumbinary disk around a relativistic binary black hole feeds mass to individual accretion disks (“mini-disks”) around each black hole. Mass flow through the accretion streams linking the circumbinary disk to the mini-disks is modulated quasi-periodically by the streams’ interaction with a nonlinear m = 1 density feature, or “lump,” at the inner edge of the circumbinary disk: the stream supplying each mini-disk comes into phase with the lump at a frequency 0.74 times the binary orbital frequency. Because the binary is relativistic, the tidal truncation radii of the mini-disks are not much larger than their innermost stable circular orbits; consequently, the mini-disks’ inflow times are shorter than the conventional estimate and are comparable to the stream modulation period. As a result, the mini-disks are always in inflow disequilibrium, with their masses and spiral density wave structures responding to the stream’s quasi-periodic modulation. The fluctuations in each mini-disk’s mass are so large that as much as 75% of the total mini-disk mass can be contained within a single mini-disk. Such quasi-periodic modulation of the mini-disk structure may introduce distinctive time-dependent features in the binary’s electromagnetic emission.

  4. Coalification of organic matter in coal balls of the Pennsylvanian (upper Carboniferous) of the Illinois Basin, United States

    USGS Publications Warehouse

    Lyons, P.C.; Thompson, C.L.; Hatcher, P.G.; Brown, F.W.; Millay, M.A.; Szeverenyi, N.; Maciel, G.E.

    1984-01-01

    An evaluation was made of the degree of coalification of two coal balls from the Illinois Basin of the Pennsylvanian (upper Carboniferous) of the United States. Previous interpretations are mainly misleading and contradictory, primarily because of the assumption that the brown color and exceptional cellular and subcellular preservation typical of American coal balls imply chemical preservation of cellulose and lignin, the primary components of peat. Xylem tissue from a medullosan seed fern contained in a coal ball and the coal attached to the coal ball from the Calhoun coal bed, Mattoon Formation, Illinois, was analyzed by elemental, petrographic, and nuclear magnetic resonance (NMR) techniques to determine the degree of coalification. The NMR and elemental data indicate the lack of cellulose and lignin and a probable rank of high-volatile C bituminous coal. These data corroborate data for a coal ball from the Herrin (No. 6) coal bed (Carbondale Formation, Middle Pennsylvanian) and support our hypothesis that the organic matter in coal balls of the Pennsylvanian strata of the United States is coalified to about the same degree as the surrounding coal. Data presented show a range of lower reflectances for xylem tissue and vitrinite in the analyzed coal balls compared with vitrinite in the attached coal. The data reported indicate that physical preservation of organic matter in coal balls does not imply chemical preservation. Also our study supports the hypothesis that compactional (static load) pressure is not a prerequisite for coalification up to a rank of high-volatile C bituminous coal. A whole-rock analysis of the Calhoun coal ball indicates a similarity to other carbonate coal balls from the United States. It consists primarily of calcium carbonate and 1-2% organic matter; silica and alumina together make up less than 0.5%, indicating the lack of minerals such as quartz and clays. ?? 1984.

  5. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Acting NASA Deputy Administrator Lesa Roe, right, speaks with Rob Strain, president of Ball Aerospace, Thursday, April 6, 2017 during a visit to Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  6. Water Bouncing Balls: how material stiffness affects water entry

    NASA Astrophysics Data System (ADS)

    Truscott, Tadd

    2014-03-01

    It is well known that one can skip a stone across the water surface, but less well known that a ball can also be skipped on water. Even though 17th century ship gunners were aware that cannonballs could be skipped on the water surface, they did not know that using elastic spheres rather than rigid ones could greatly improve skipping performance (yet would have made for more peaceful volleys). The water bouncing ball (Waboba®) is an elastic ball used in a game of aquatic keep away in which players pass the ball by skipping it along the water surface. The ball skips easily along the surface creating a sense that breaking the world record for number of skips could easily be achieved (51 rock skips Russell Byers 2007). We investigate the physics of skipping elastic balls to elucidate the mechanisms by which they bounce off of the water. High-speed video reveals that, upon impact with the water, the balls create a cavity and deform significantly due to the extreme elasticity; the flattened spheres resemble skipping stones. With an increased wetted surface area, a large hydrodynamic lift force is generated causing the ball to launch back into the air. Unlike stone skipping, the elasticity of the ball plays an important roll in determining the success of the skip. Through experimentation, we demonstrate that the deformation timescale during impact must be longer than the collision time in order to achieve a successful skip. Further, several material deformation modes can be excited upon free surface impact. The effect of impact velocity and angle on the two governing timescales and material wave modes are also experimentally investigated. Scaling for the deformation and collision times are derived and used to establish criteria for skipping in terms of relevant physical parameters.

  7. The Relationship Between the Push Off Ground Reaction Force and Ball Speed in High School Baseball Pitchers.

    PubMed

    Oyama, Sakiko; Myers, Joseph B

    2018-05-01

    Oyama, S and Myers, JB. The relationship between the push off ground reaction force and ball speed in high school baseball pitchers. J Strength Cond Res 32(5): 1324-1328, 2018-Baseball pitching is a sequential movement that requires transfer of momentum from the lower extremity to the throwing arm. Therefore, the ground reaction force (GRF) during push off is suggested to play a role in production of ball speed. The purpose of this study was to investigate the correlation between GRF characteristics during push off and ball speed in high school baseball pitchers. A total of 52 pitchers performed fast pitches from an indoor pitching mound. A force plate embedded in an indoor mound was used to capture the push off GRF. The GRF characteristics (peak anterior, vertical, and resultant forces, vertical and resultant forces at the time of peak anterior GRF, and impulse produced by the anterior GRF) from the 3 fastest strike pitches from each pitcher were used for analyses. Spearman's rank correlation coefficients were used to describe the relationships between ball speed and the GRF characteristics. Ball speed was only weakly correlated with peak resultant force (ρ = 0.32, p = 0.02) and vertical (ρ = 0.45, p < 0.001) and resultant (ρ = 0.42, p = 0.002) forces at the time of peak anterior force. The ball speed was not correlated with other variables. The correlation between ball speed and push off force in high school pitchers was weak, especially when compared with what was reported for adult pitchers in other studies. Unlike for adult pitchers, higher push off force is only weakly correlated with ball velocity in high school pitchers, which suggests that training to better use body momentum may help high school pitchers improve ball speed.

  8. Undercooling Behavior and Intermetallic Compound Coalescence in Microscale Sn-3.0Ag-0.5Cu Solder Balls and Sn-3.0Ag-0.5Cu/Cu Joints

    NASA Astrophysics Data System (ADS)

    Zhou, M. B.; Ma, X.; Zhang, X. P.

    2012-11-01

    The microstructure of microscale solder interconnects and soldering defects have long been known to have a significant influence on the reliability of electronic packaging, and both are directly related to the solidification behavior of the undercooled solder. In this study, the undercooling behavior and solidification microstructural evolution of Sn-3.0Ag-0.5Cu solder balls with different diameters (0.76 mm, 0.50 mm, and 0.30 mm) and the joints formed by soldering these balls on Cu open pads of two diameters (0.48 mm and 0.32 mm) on a printed circuit board (PCB) substrate were characterized by differential scanning calorimetry (DSC) incorporated into the reflow process. Results show that the decrease in diameter of the solder balls leads to an obvious increase in the undercooling of the balls, while the undercooling of the solder joints shows a dependence on both the diameter of the solder balls and the diameter ratio of solder ball to Cu pad (i.e., D s/ D p), and the diameter of the solder balls has a stronger influence on the undercooling of the joints than the dimension of the Cu pad. Coarse primary intermetallic compound (IMC) solidification phases were formed in the smaller solder balls and joints. The bulk Ag3Sn IMC is the primary solidification phase in the as-reflowed solder balls. Due to the interfacial reaction and dissolution of Cu atoms into the solder matrix, the primary Ag3Sn phase can be suppressed and the bulk Cu6Sn5 IMC is the only primary solidification phase in the as-reflowed solder joints.

  9. Superficial venous incompetence: low-cost outpatient minisurgery, sclerotherapy and combined procedure as a management plan. Costs and efficacy. A 20-year, follow-up registry.

    PubMed

    Belcaro, Gianni; Dugall, Mark; Corsi, Marcello; Agus, Giovanni B; Ippolito, Edmondo

    2016-08-01

    This registry study evaluated low-cost outpatient surgery (mini-S) for venous insufficiency as an alternative to stripping. This 20-year follow-up is focused on the recurrence of varices and on the long-term efficacy of the mini-S (group 1) in comparison with controls (2, stripping), sclerotherapy (3) or a combination of mini-S+sclerotherapy (4). Costs were compared. At 20-years of follow-up, considering recurrence/development of new varicose veins, 24.05% of the limbs treated with mini-S developed new varices in comparison with 64.4% in group 2, 24.1% in group 3 and 15.4% in group 4 (P<0.05). New surgical procedures were needed in 18.9% of mini-S patients vs. 58.5% in group 2, 21.9% in group 3 and 19.7% in group 4 (P<0.05 between group 2 and the other groups). Sclerotherapy (in the years following the initial treatment) was used in 37.9% of mini-S patients in comparison with 67.7% of subjects in group 2 patients, 33.1% in group 3 and 22.8% in group 4 (P<0.05 between outpatient treatment and group 2). The superficial venous system was incompetent in 21% of mini-S patients in comparison with 38.8% in group 2 (P<0.05), 20.7% in group 3 and 17.9% of group 4. At 20 years edema was present in 10.5% of limbs in group 2 in comparison with a <3% (range 2.2-2.1%) in the other groups. Edema was more significant after stripping. Ambulatory venous pressure measurements in subgroups was lower in groups 1, 3 and 4 with a lower refilling time (P<0.05). The cost of in-hospital, daily surgical treatments were €1978 (covered by the heathcare provider). The cost of mini-S was on average €488 per limb (covered by patients). Outpatients procedures, in particular the mini-S management plan, were cheaper than stripping and more effective at 20-years follow-up. They could be a model for emerging contries with restricted budgets for vein surgery. Also being cheaper more people may have benefits from treatment when/where hospital procedures are not covered by an healthcare provider.

  10. The Goldenrod Ball Gall

    ERIC Educational Resources Information Center

    Fischer, Richard B.

    1974-01-01

    The paper presents a generalized life history of the goldenrod ball gall, a ball-shaped swelling found almost exclusively on the Canada goldenrod, Solidago canadensis, and caused by a peacock fly know as Eurosta soldiaginis. (KM)

  11. Development of a table tennis robot for ball interception using visual feedback

    NASA Astrophysics Data System (ADS)

    Parnichkun, Manukid; Thalagoda, Janitha A.

    2016-07-01

    This paper presents a concept of intercepting a moving table tennis ball using a robot. The robot has four degrees of freedom(DOF) which are simplified in such a way that The system is able to perform the task within the bounded limit. It employs computer vision to localize the ball. For ball identification, Colour Based Threshold Segmentation(CBTS) and Background Subtraction(BS) methodologies are used. Coordinate Transformation(CT) is employed to transform the data, which is taken based on camera coordinate frame to the general coordinate frame. The sensory system consisted of two HD Web Cameras. The computation time of image processing from web cameras is long .it is not possible to intercept table tennis ball using only image processing. Therefore the projectile motion model is employed to predict the final destination of the ball.

  12. A Steel Ball Surface Quality Inspection Method Based on a Circumferential Eddy Current Array Sensor.

    PubMed

    Zhang, Huayu; Xie, Fengqin; Cao, Maoyong; Zhong, Mingming

    2017-07-01

    To efficiently inspect surface defects on steel ball bearings, a new method based on a circumferential eddy current array (CECA) sensor was proposed here. The best probe configuration, in terms of the coil quality factor (Q-factor), magnetic field intensity, and induced eddy current density on the surface of a sample steel ball, was determined using 3-, 4-, 5-, and 6-coil probes, for analysis and comparison. The optimal lift-off from the measured steel ball, the number of probe coils, and the frequency of excitation current suitable for steel ball inspection were obtained. Using the resulting CECA sensor to inspect 46,126 steel balls showed a miss rate of ~0.02%. The sensor was inspected for surface defects as small as 0.05 mm in width and 0.1 mm in depth.

  13. Thulium fiber laser lithotripsy using small spherical distal fiber tips

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-02-01

    This study tests a 100-μm-core fiber with 300-μm-diameter ball tip during Thulium fiber laser (TFL) lithotripsy. The TFL was operated at 1908 nm wavelength with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times measured, and ablation rates calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to observe ball tip degradation and determine number of procedures completed before need to replace fiber. Saline irrigation rates and ureteroscope deflection were measured with and without TFL fiber present. There was no statistical difference (P > 0.05) between stone ablation rates for single-use ball tip fiber (1.3 +/- 0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3 +/- 0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3 +/- 0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged > 4 stone procedures before decline in stone ablation rates due to mechanical damage at front surface of ball tip. The small fiber diameter did not impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and the ureter without risk of scope damage or tissue perforation, and without compromising stone ablation efficiency during TFL ablation of kidney stones.

  14. The importance and development of ball control and (self-reported) self-regulatory skills in basketball players for different positions.

    PubMed

    Te Wierike, Sanne Cornelia Maria; Huijgen, Barbara Catharina Helena; Jonker, Laura; Elferink-Gemser, Marije Titia; Visscher, Chris

    2018-03-01

    This study first investigated the importance of ball control and (self-reported) self-regulatory skills in achieving the elite level in basketball. The second aim was to gain insight into the development of, and association between ball control and (self-reported) self-regulatory skills that contribute to achieving the elite level, with taking into account positional differences. Talented male players (N = 73; age 16.56 ± 1.96) completed the STARtest to measure ball control and a questionnaire to measure (self-reported) self-regulation from 2008-2012. Results showed that (self-reported) reflective skills were most important to achieve the elite level (OR = 11.76; P < 0.05). There was no significant improvement in (self-reported) reflection over time for guards, forwards, and centers. Improvement in ball control was evident for guards (r = -0.65; P < 0.05). Furthermore, guards and forwards had better ball control compared to centers (P < 0.01). For those two positions, negative correlations were found between (self-reported) reflection and ball control, i.e., higher reflection was related to better ball control (guards r = -0.19; forwards r = -0.18) in contrast to centers (r = 0.34). It is concluded that (self-reported) reflective skills are important to achieve the elite level, while ball control seems especially important for guards.

  15. Failure rates of mini-implants placed in the infrazygomatic region.

    PubMed

    Uribe, Flavio; Mehr, Rana; Mathur, Ajay; Janakiraman, Nandakumar; Allareddy, Veerasathpurush

    2015-01-01

    The purpose of this pilot study was to evaluate the failure rates of mini-implants placed in the infrazygomatic region and to evaluate factors that affect their stability. A retrospective cohort study of 30 consecutive patients (55 mini-implants) who had infrazygomatic mini-implants at a University Clinic were evaluated for failure rates. Patient, mini-implant, orthodontic, surgical, and mini-implant maintenance factors were evaluated by univariate logistic regression models for association to failure rates. A 21.8 % failure rate of mini-implants placed in the infazygomatic region was observed. None of the predictor variables were significantly associated with higher or lower odds for failed implants. Failure rates for infrazygomatic mini-implants were slightly higher than those reported in other maxilla-mandibular osseous locations. No predictor variables were found to be associated to the failure rates.

  16. Comparison of success rates of orthodontic mini-screws by the insertion method.

    PubMed

    Kim, Jung Suk; Choi, Seong Hwan; Cha, Sang Kwon; Kim, Jang Han; Lee, Hwa Jin; Yeom, Sang Seon; Hwang, Chung Ju

    2012-10-01

    The aim of this study was to compare the success rates of the manual and motor-driven mini-screw insertion methods according to age, gender, length of mini-screws, and insertion sites. We retrospectively reviewed 429 orthodontic mini-screw placements in 286 patients (102 in men and 327 in women) between 2005 and 2010 at private practice. Age, gender, mini-screw length, and insertion site were cross-tabulated against the insertion methods. The Cochran-Mantel-Haenszel test was performed to compare the success rates of the 2 insertion methods. The motor-driven method was used for 228 mini-screws and the manual method for the remaining 201 mini-screws. The success rates were similar in both men and women irrespective of the insertion method used. With respect to mini-screw length, no difference in success rates was found between motor and hand drivers for the 6-mm-long mini-screws (68.1% and 69.5% with the engine driver and hand driver, respectively). However, the 8-mm-long mini-screws exhibited significantly higher success rates (90.4%, p < 0.01) than did the 6-mm-long mini-screws when placed with the engine driver. The overall success rate was also significantly higher in the maxilla (p < 0.05) when the engine driver was used. Success rates were similar among all age groups regardless of the insertion method used. Taken together, the motor-driven insertion method can be helpful to get a higher success rate of orthodontic mini-screw placement.

  17. Ground states of baryoleptonic Q-balls in supersymmetric models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shoemaker, Ian M.; Kusenko, Alexander

    2008-10-01

    In supersymmetric generalizations of the standard model, all stable Q-balls are associated with some flat directions. We show that, if the flat direction has both the baryon number and the lepton number, the scalar field inside the Q-ball can deviate slightly from the flat direction in the ground state. We identify the true ground states of such nontopological solitons, including the electrically neutral and electrically charged Q-balls.

  18. Polyurethane retainers for ball bearings

    NASA Technical Reports Server (NTRS)

    Christy, R. I.

    1973-01-01

    Evaluation of a new ball bearing retainer material is reported. A special composite polyurethane foam ball retainer has been developed that has virtually zero wear, is chemically inert to hydrocarbon lubricants, and stores up to 60 times as much lubricant per unit volume as the most commonly used retainer material, cotton phenolic. This new retainer concept shows promise of years of ball bearing operation without reoiling, based on life testing in high vacuum.

  19. Keep your eyes on the ball: smooth pursuit eye movements enhance prediction of visual motion.

    PubMed

    Spering, Miriam; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R

    2011-04-01

    Success of motor behavior often depends on the ability to predict the path of moving objects. Here we asked whether tracking a visual object with smooth pursuit eye movements helps to predict its motion direction. We developed a paradigm, "eye soccer," in which observers had to either track or fixate a visual target (ball) and judge whether it would have hit or missed a stationary vertical line segment (goal). Ball and goal were presented briefly for 100-500 ms and disappeared from the screen together before the perceptual judgment was prompted. In pursuit conditions, the ball moved towards the goal; in fixation conditions, the goal moved towards the stationary ball, resulting in similar retinal stimulation during pursuit and fixation. We also tested the condition in which the goal was fixated and the ball moved. Motion direction prediction was significantly better in pursuit than in fixation trials, regardless of whether ball or goal served as fixation target. In both fixation and pursuit trials, prediction performance was better when eye movements were accurate. Performance also increased with shorter ball-goal distance and longer presentation duration. A longer trajectory did not affect performance. During pursuit, an efference copy signal might provide additional motion information, leading to the advantage in motion prediction.

  20. Novel concept of recycling sludge and dust to BOF converter through dispersed in-situ phase induced by composite ball explosive reaction

    NASA Astrophysics Data System (ADS)

    Tang, Fu-ping; Yu, Shu-juan; Fei, Peng; Hou, Hou-yu; Qian, Feng; Wang, Xiao-feng

    2017-08-01

    Recycling of iron and steelmaking dusts is a key issue in environmental protection efforts and to ensure efficient utilization. In this investigation, we developed a novel recovery process that uses a dispersed in-situ phase induced by an explosive reaction of composite balls of iron and steelmaking dusts. We designed and prepared composite balls for this function using a laboratory model batch-type balling disc (at 12 r/min) and optimized the feeding modes in 180-t and 260-t basic oxygen furnace (BOF) converters. The results indicate that feeding composite balls into BOF converters is an effective novel technology for recovering iron and steelmaking dusts. The period after hot metal charging and prior to the oxygen-blowing process is the most reasonable time to feed composite balls. Composite ball treatment is not appropriate for steel production with sulfur requirements lower than 80 ppm. The maximum composite ball feeding amount is 40 kg/t and the iron yield rate is better than 95%. Compared with the conventional recycling process of sludge and dust, this novel technology is more convenient and efficient, saving up to 309 RMB per ton of steel. Further investigation of this novel recycling technology is merited.

  1. A comparison of static near stereo acuity in youth baseball/softball players and non-ball players.

    PubMed

    Boden, Lauren M; Rosengren, Kenneth J; Martin, Daniel F; Boden, Scott D

    2009-03-01

    Although many aspects of vision have been investigated in professional baseball players, few studies have been performed in developing athletes. The issue of whether youth baseball players have superior stereopsis to nonplayers has not been addressed specifically. The purpose of this study was to determine if youth baseball/softball players have better stereo acuity than non-ball players. Informed consent was obtained from 51 baseball/softball players and 52 non-ball players (ages 10 to 18 years). Subjects completed a questionnaire, and their static near stereo acuity was measured using the Randot Stereotest (Stereo Optical Company, Chicago, Illinois). Stereo acuity was measured as the seconds of arc between the last pair of images correctly distinguished by the subject. The mean stereo acuity score was 25.5 +/- 1.7 seconds of arc in the baseball/softball players and 56.2 +/- 8.4 seconds of arc in the non-ball players. This difference was statistically significant (P < 0.00001). In addition, a perfect stereo acuity score of 20 seconds of arc was seen in 61% of the ball players and only 23% of the non-ball players (P = 0.0001). Youth baseball/softball players had significantly better static stereo acuity than non-ball players, comparable to professional ball players.

  2. Application of a Saddle-Type Eddy Current Sensor in Steel Ball Surface-Defect Inspection

    PubMed Central

    Zhong, Mingming; Xie, Fengqin; Cao, Maoyong

    2017-01-01

    Steel ball surface-defect inspection was performed by using a new saddle-type eddy current sensor (SECS), which included a saddle coil and a signal conditioning circuit. The saddle coil was directly wound on the steel ball’s outer bracket in a semi-circumferential direction. Driven by a friction wheel, the test steel ball rotated in a one-dimensional direction, such that the steel ball surface was fully scanned by the SECS. There were two purposes for using the SECS in the steel ball inspection system: one was to reduce the complexity of the unfolding wheel of the surface deployment mechanism, and the other was to reduce the difficulty of sensor processing and installation. Experiments were carried out on bearing steel balls in diameter of 8 mm with three types of representative and typical defects by using the SECS, and the results showed that the inspection system can detect surface defects as small as 0.05 mm in width and 0.1 mm in depth with high-repetition detection accuracy, and the detection efficiency of 5 pcs/s, which meet the requirement for inspecting ISO grade 10 bearing steel balls. The feasibility of detecting steel ball surface defects by SECS was verified. PMID:29206154

  3. Does performance level affect initial ball flight kinematics in finger and wrist-spin cricket bowlers?

    PubMed

    Spratford, Wayne; Whiteside, David; Elliott, Bruce; Portus, Marc; Brown, Nicholas; Alderson, Jacqueline

    2018-03-01

    Spin bowling plays a fundamental role within the game of cricket yet little is known about the initial ball kinematics in elite and pathway spin bowlers or their relationship to performance. Therefore, the purpose of this study was to record three-dimensional ball kinematics in a large and truly high level cohort of elite and pathway finger-spin (FS) and wrist-spin (WS) bowlers, identifying potential performance measures that can be subsequently used in future research. A 22-camera Vicon motion analysis system captured retro-reflective markers placed on the seam (static) and ball (dynamic) to quantify ball kinematics in 36 FS (12 elite and 24 pathway) and 20 WS (eight elite and 12 pathway) bowlers. Results indicated that FS bowlers delivered the ball with an increased axis of rotation elevation, while wrist-spin bowlers placed greater amounts of revolutions on the ball. It also highlighted that ball release (BR) velocity, revolutions and velocity/revolution index scores for both groups and seam stability for FS bowlers, and seam azimuth angle and spin axis elevation angle for WS bowlers, were discriminators of playing level. As such these variables could be used as indicators of performance (i.e. performance measures) in future research.

  4. Infrared emission spectrophotometric study of the changes produced by TiN coating of metal surfaces in an operating EHD contact

    NASA Technical Reports Server (NTRS)

    Keller, L. E.; Lauer, J. L.; Jones, W. R., Jr.

    1982-01-01

    Infrared emission spectra and related measurements were obtained from an operating ball/plate EHD sliding contact under a variety of operating conditions. In order to be able to compare the effect of the ball surface, some of the steel balls were coated with a thin layer of titanium nitride (TiN) by vapor deposition. Polyphenyl ether (5P4E) was used as the lubricant and 1 percent of 1,1,2-trichloroethane TCE) as an additive with a high affinity for steel but a low affinity for TiN. TiN is chemically inert, but its thermal conductivity is lower than that of steel. Therefore, the overall temperatures with TiN-coated balls were higher. Nevertheless, no scuffng was observed with the coated balls under conditions giving rise to scuffing with the uncoated balls. Tractions were lower with the TiN-coated balls and with the steel balls when TCE was added to the 5P4E. These findings were found to be inversely related to the degree of polarization of the spectral emission bands. The intensity and the dichroism of these bands were related to shear rates and inlet conditions of the EHD contact.

  5. Production of extended release mini-tablets using directly compressible grades of HPMC.

    PubMed

    Mohamed, Faiezah A A; Roberts, Matthew; Seton, Linda; Ford, James L; Levina, Marina; Rajabi-Siahboomi, Ali R

    2013-11-01

    Hypromellose (HPMC) has been previously used to control drug release from mini-tablets. However, owing to poor flow, production of mini-tablets containing high HPMC levels is challenging. Directly compressible (DC) HPMC grades have been developed by Dow Chemical Company. To compare the properties of HPMC DC (METHOCEL™ K4M and K100M) with regular (REG) HPMC grades. Particle size distribution and flowability of HPMC REG and DC were evaluated. 3 mm mini-tablets, containing hydrocortisone or theophylline as model drugs and 40% w/w HPMC DC or REG were produced. Mini-tablets containing HPMC DC grades were manufactured using a rotary press simulator at forces between 2-4 kN and speeds of 5, 10, 15 or 20 rpm. Mini-tablets containing HPMC REG were produced manually. The improved flowability of HPMC DC grades, which have a narrower particle size distribution and larger particle sizes, meant that simulated large scale production of mini-tablets with good weight uniformity (CV 1.79-4.65%) was feasible. It was not possible to automatically manufacture mini-tablets containing HPMC REG due to the poor flowability of the formulations. Drug release from mini-tablets comprising HPMC DC and REG were comparable. Mini-tablets containing HPMC DC illustrated a higher tensile strength compared to mini-tablets made with HPMC REG. Mini-tablets produced with HPMC DC at different compression speeds had similar drug release profiles. Production of extended release mini-tablets was successfully achieved when HPMC DC was used. Drug release rate was not influenced by the different HPMC DC grades (K4M or K100M) or production speed.

  6. Contrasting influences of Drosophila white/mini-white on ethanol sensitivity in two different behavioral assays

    PubMed Central

    Chan, Robin F.; Lewellyn, Lara; DeLoyht, Jacqueline M.; Sennett, Kristyn; Coffman, Scarlett; Hewitt, Matthew; Bettinger, Jill C.; Warrick, John M.; Grotewiel, Mike

    2014-01-01

    Background The fruit fly Drosophila melanogaster has been used extensively to investigate genetic mechanisms of ethanol-related behaviors. Many past studies in flies, including studies from our laboratory, have manipulated gene expression using transposons carrying the genetic-phenotypic marker mini-white, a derivative of the endogenous gene white. Whether the mini-white transgenic marker or the endogenous white gene influence behavioral responses to acute ethanol exposure in flies has not been systematically investigated. Methods We manipulated mini-white and white expression via (i) transposons marked with mini-white, (ii) RNAi against mini-white and white and (iii) a null allele of white. We assessed ethanol sensitivity and tolerance using a previously described eRING assay (based on climbing in the presence of ethanol) and an assay based on ethanol-induced sedation. Results In eRING assays, ethanol-induced impairment of climbing correlated inversely with expression of the mini-white marker from a series of transposon insertions. Additionally, flies harboring a null allele of white or flies with RNAi-mediated knockdown of mini-white were significantly more sensitive to ethanol in eRING assays than controls expressing endogenous white or the mini-white marker. In contrast, ethanol sensitivity and rapid tolerance measured in the ethanol sedation assay were not affected by decreased expression of mini-white or endogenous white in flies. Conclusions Ethanol sensitivity measured in the eRING assay is noticeably influenced by white and mini-white, making eRING problematic for studies on ethanol-related behavior in Drosophila using transgenes marked with mini-white. In contrast, the ethanol sedation assay described here is a suitable behavioral paradigm for studies on ethanol sedation and rapid tolerance in Drosophila including those that use widely available transgenes marked with mini-white. PMID:24890118

  7. Replacing a failed mini-implant with a miniplate to prevent interruption during orthodontic treatment.

    PubMed

    Lee, Jin-Hwa; Choo, Hyeran; Kim, Seong-Hun; Chung, Kyu-Rhim; Giannuzzi, Lucille A; Ngan, Peter

    2011-06-01

    When mini-implants fail during orthodontic treatment, there is a need to have a backup plan to either replace the failed implant in the adjacent interradicular area or wait for the bone to heal before replacing the mini-implant. We propose a novel way to overcome this problem by replacement with a miniplate so as not to interrupt treatment or prolong treatment time. The indications, advantages, efficacy, and procedures for switching from a mini-implant to a miniplate are discussed. Two patients who required replacement of failed mini-implants are presented. In the first patient, because of the proximity of the buccal vestibule to the mini-implant, it was decided to replace the failed mini-implant by an I-shaped C-tube miniplate. In the second patient, radiolucencies were found around the failed mini-implants, making the adjacent alveolar bone unavailable for immediate placement of another mini-implant. In addition, the maxillary sinus pneumatization was expanded deeply into the interradicular spaces; this further mandated an alternative placement site. One failed mini-implant was examined under a scanning electron microscope for bone attachment. Treatment was completed in both patients after replacement with miniplates without interrupting the treatment mechanics or prolonging the treatments. Examination under the scanning electron microscope showed partial bone growth into the coating pores and titanium substrate interface even after thorough cleaning and sterilization. Replacement with a miniplate is a viable solution for failed mini-implants during orthodontic treatment. The results from microscopic evaluation of the failed mini-implant suggest that stringent guidelines are needed for recycling used mini-implants. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  8. Projectile motion in real-life situation: Kinematics of basketball shooting

    NASA Astrophysics Data System (ADS)

    Changjan, A.; Mueanploy, W.

    2015-06-01

    Basketball shooting is a basic practice for players. The path of the ball from the players to the hoop is projectile motion. For undergraduate introductory physics courses student must be taught about projectile motion. Basketball shooting can be used as a case study for learning projectile motion from real-life situation. In this research, we discuss the relationship between optimal angle, minimum initial velocity and the height of the ball before the player shoots the ball for basketball shooting problem analytically. We found that the value of optimal angle and minimum initial velocity decreases with increasing the height of the ball before the player shoots the ball.

  9. PEPC LRU: Ball Support Assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alger, T

    1999-05-14

    The PEPC LRU upper ball support assembly consists of a ball and a pneumatic air cylinder/conical seat latching mechanism to be attached to the optics support frame,and a ball attached to the PEPC LRU. Both components are designed to allow manual positioning in three axes. Upon insertion of the PEPC LRU into the structure, the upper pneumatic cylinder is actuated to latch the two assemblies together through the conical seat device to grab the lower ball to support the LRU weight. To be conservative, the design load for the assembly is 1500 pounds (the prototype PEPC LRU weight was measuredmore » to be near 1380 pounds).« less

  10. Preliminary metallographic studies of ball fatigue under rolling-contact conditions

    NASA Technical Reports Server (NTRS)

    Bear, H Robert; Butler, Robert H

    1957-01-01

    The metallurgical results produced on balls tested in the rolling-contact fatigue spin rig were studied by metallographic examination. Origin and progression of fatigue failures were observed. These evaluations were made on SAE 52100 and AISI M-1 balls fatigue tested at room temperature (80 F) and 200 to 250 F. Most failures originated subsurface in shear; inclusions, structure changes, and directionalism adversely affected ball fatigue life. Structures in the maximum-shear-stress region of the balls of both materials were stable at room temperature and unstable at 200 to 250 F. Failures were of the same type as those found in full-scale bearings.

  11. Double pendulum model for a tennis stroke including a collision process

    NASA Astrophysics Data System (ADS)

    Youn, Sun-Hyun

    2015-10-01

    By means of adding a collision process between the ball and racket in the double pendulum model, we analyzed the tennis stroke. The ball and the racket system may be accelerated during the collision time; thus, the speed of the rebound ball does not simply depend on the angular velocity of the racket. A higher angular velocity sometimes gives a lower rebound ball speed. We numerically showed that the proper time-lagged racket rotation increased the speed of the rebound ball by 20%. We also showed that the elbow should move in the proper direction in order to add the angular velocity of the racket.

  12. Technical Note: Robust measurement of the slice-sensitivity profile in breast tomosynthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maki, Aili K., E-mail: aili.maki@sri.utoronto.ca

    2016-08-15

    Purpose: The purpose of this work is to improve the repeatability of the measurement of the slice-sensitivity profile (SSP) in reconstructed breast tomosynthesis volumes. Methods: A grid of aluminum ball-bearings (BBs) within a PMMA phantom was imaged on breast tomosynthesis systems from three different manufacturers. The full-width half-maximum (FWHM) values were measured for the SSPs of the BBs in the reconstructed volumes. The effect of transforming the volumes from a Cartesian coordinate system (CCS) to a cone-beam coordinate system (CBCS) on the variability in the FWHM values was assessed. Results: Transforming the volumes from a CCS to a CBCS beforemore » measuring the SSPs reduced the coefficient of variation (COV) in the measurements of FWHM in repeated measurements by 56% and reduced the dependence of the FWHM values on the location of the BBs within the reconstructed volume by 76%. Conclusions: Measuring the SSP in the volumes in a CBCS improves the robustness of the measurement.« less

  13. Mechanism of Void Prediction in Flip Chip Packages with Molded Underfill

    NASA Astrophysics Data System (ADS)

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-08-01

    Voids have always been present using the molded underfill (MUF) package process, which is a problem that needs further investigation. In this study, the process was studied using the Moldex3D numerical analysis software. The effects of gas (air vent effect) on the overall melt front were also considered. In this isothermal process containing two fluids, the gas and melt colloid interact in the mold cavity. Simulation enabled an appropriate understanding of the actual situation to be gained, and, through analysis, the void region and exact location of voids were predicted. First, the global flow end area was observed to predict the void movement trend, and then the local flow ends were observed to predict the location and size of voids. In the MUF 518 case study, simulations predicted the void region as well as the location and size of the voids. The void phenomenon in a flip chip ball grid array underfill is discussed as part of the study.

  14. VMM - An ASIC for Micropattern Detectors

    NASA Astrophysics Data System (ADS)

    Iakovidis, George

    2018-02-01

    The VMM is a custom Application Specific Integrated Circuit (ASIC) that can be used in a variety of charge interpolating tracking detectors. It is designed to be used with the resistive strip micromegas and sTGC detectors in the New Small Wheel upgrade of the ATLAS Muon spectrometer. The ASIC is designed at Brookhaven National Laboratory and fabricated in the 130 nm Global Foundries 8RF-DM process. It is packaged in a Ball Grid Array with outline dimensions of 21×21 mm2. It integrates 64 channels, each providing charge amplification, discrimination, neighbour logic, amplitude and timing measurements, analog-to-digital conversions, and either direct output for trigger or multiplexed readout. The front-end amplifier can operate with a wide range of input capacitances, has adjustable polarity, gain and peaking time. The VMM1 and VMM2 are the first two versions of the VMM ASIC family fabricated in 2012 and 2014 respectively. The design, tests and qualification of the VMM1, VMM2 and roadmap to VMM3 are described.

  15. Pink Cricket Balls Through Rose-Tinted Glasses: Enhancing Interceptive Timing

    PubMed Central

    Adie, Joshua M.

    2017-01-01

    Cricket is a popular but potentially dangerous sport. It is played with a hard ball that can travel at great speeds. Serious injuries, including fatalities, have occurred when balls have struck participants. The game is traditionally played during daylight with a dark red ball, but recent games have been played during the day and at night using a ‘pink’ ball. We have reported data that seemed to justify concerns raised regarding the visibility of these new pink balls, as they were revealed to have a very low luminance contrast against pertinent backgrounds during twilight. Here, we report on the findings of a psychophysical experiment, wherein we mimicked twilight lighting conditions in an interceptive timing experiment using a pink moving disc as an analogue for pink cricket balls. We show that interceptive timing performance is diminished in conditions that mimic twilight. More importantly, we show that wearing glasses with a rose-tinted filter can alleviate this adverse impact by enhancing the luminance contrast of the pink ‘ball’ relative to pertinent backgrounds. PMID:29225767

  16. Development of solid-lubricated ball-screws for use in space

    NASA Technical Reports Server (NTRS)

    Chiba, Masatoshi; Gyougi, Toru; Nishimura, Makoto; Seki, Katsumi

    1991-01-01

    Ball-screws lubricated by solid lubricant films containing molybdenum disulphide are developed. The ball-screws (shaft diameter: phi 25 mm, length: 667 mm) were operated under a load of 40 to 120 N at a speed of 1.5 to 200 rpm at 10(exp -5) Pa. First, ball-screws made of stainless steel SUS 440C were studied using test equipment originally designed for this study. To reduce weight, the next step taken was to develop a ball-screw made of 6Al-4V-titanium. Long wear-life of more than 1 x 10(exp 7) revolutions was achieved with solid lubricated ball-screws made of SUS 440C and 6Al-4V-titanium in a hard vacuum. According to the surface profile of the shaft measured after 1 x 10(exp 7) revolutions, more solid lubricant remained on the surface of 6Al-4V-titanium than that of stainless steel. Auger and EPMA analysis confirmed lubrication was maintained by solid lubricant on nuts and screws after the lubricant films on the balls were worn off.

  17. Three-dimensional kinematic correlates of ball velocity during maximal instep soccer kicking in males.

    PubMed

    Sinclair, Jonathan; Fewtrell, David; Taylor, Paul John; Bottoms, Lindsay; Atkins, Stephen; Hobbs, Sarah Jane

    2014-01-01

    Achieving a high ball velocity is important during soccer shooting, as it gives the goalkeeper less time to react, thus improving a player's chance of scoring. This study aimed to identify important technical aspects of kicking linked to the generation of ball velocity using regression analyses. Maximal instep kicks were obtained from 22 academy-level soccer players using a 10-camera motion capture system sampling at 500 Hz. Three-dimensional kinematics of the lower extremity segments were obtained. Regression analysis was used to identify the kinematic parameters associated with the development of ball velocity. A single biomechanical parameter; knee extension velocity of the kicking limb at ball contact Adjusted R(2) = 0.39, p ≤ 0.01 was obtained as a significant predictor of ball-velocity. This study suggests that sagittal plane knee extension velocity is the strongest contributor to ball velocity and potentially overall kicking performance. It is conceivable therefore that players may benefit from exposure to coaching and strength techniques geared towards the improvement of knee extension angular velocity as highlighted in this study.

  18. Professional tennis players' serve: correlation between segmental angular momentums and ball velocity.

    PubMed

    Martin, Caroline; Kulpa, Richard; Delamarche, Paul; Bideau, Benoit

    2013-03-01

    The purpose of the study was to identify the relationships between segmental angular momentum and ball velocity between the following events: ball toss, maximal elbow flexion (MEF), racket lowest point (RLP), maximal shoulder external rotation (MER), and ball impact (BI). Ten tennis players performed serves recorded with a real-time motion capture. Mean angular momentums of the trunk, upper arm, forearm, and the hand-racket were calculated. The anteroposterior axis angular momentum of the trunk was significantly related with ball velocity during the MEF-RLP, RLP-MER, and MER-BI phases. The strongest relationships between the transverse-axis angular momentums and ball velocity followed a proximal-to-distal timing sequence that allows the transfer of angular momentum from the trunk (MEF-RLP and RLP-MER phases) to the upper arm (RLP-MER phase), forearm (RLP-MER and MER-BI phases), and the hand-racket (MER-BI phase). Since sequence is crucial for ball velocity, players should increase angular momentums of the trunk during MEF-MER, upper arm during RLP-MER, forearm during RLP-BI, and the hand-racket during MER-BI.

  19. Atmospheric Tar Balls: Particles from Biomass and Biofuel Burning

    NASA Technical Reports Server (NTRS)

    Posfai, Mihaly; Gelencser, Andras; Simonics, Renata; Arato, Krisztina; Li, Jia; Hobbs, Peter V.; Buseck, Peter R.

    2004-01-01

    Tar balls are amorphous, carbonaceous spherules that occur in the tropospheric aerosol as a result of biomass and biofuel burning. They form a distinct group of particles with diameters typically between 30 and 500 nm and readily identifiable with electron microscopy. Their lack of a turbostratic microstructure distinguishes them from soot, and their morphology and composition (approximately 90 mol% carbon) renders them distinct from other carbonaceous particles. Tar balls are particularly abundant in slightly aged (minutes to hours old) biomass smoke, indicating that they likely form by gas-to-particle conversion within smoke plumes. The material of tar balls is initially hygroscopic; however, the particles become largely insoluble as a result of free radical polymerization of their organic molecules. Consequently, tar balls are primarily externally mixed with other particle types, and they do not appreciably increase in size during aging. When tar balls coagulate with water-bearing particles, their material may partly dissolve and no longer be recognizable as distinct particles. Tar balls may contain organic compounds that absorb sunlight. They are an important, previously unrecognized type of carbonaceous (organic) atmospheric particle.

  20. Alignment positioning mechanism

    NASA Technical Reports Server (NTRS)

    Fantasia, Peter M. (Inventor)

    1991-01-01

    An alignment positioning mechanism for correcting and compensating for misalignment of structures to be coupled is disclosed. The mechanism comprises a power screw with a base portion and a threaded shank portion. A mounting fixture is provided for rigidly coupling said base portion to the mounting interface of a supporting structure with the axis of the screw perpendicular thereto. A traveling ball nut threaded on the power screw is formed with an external annular arcuate surface configured in the form of a spherical segment and enclosed by a ball nut housing with a conforming arcuate surface for permitting gimballed motion thereon. The ball nut housing is provided with a mounting surface which is positionable in cooperable engagement with the mounting interface of a primary structure to be coupled to the supporting structure. Cooperative means are provided on the ball nut and ball nut housing, respectively, for positioning the ball nut and ball nut housing in relative gimballed position within a predetermined range of relative angular relationship whereby severe structural stresses due to unequal loadings and undesirable bending moments on the mechanism are avoided.

  1. A cross-sectional study on schistosomiasis and soil-transmitted helminths in Mbita district, western Kenya using different copromicroscopic techniques.

    PubMed

    Ng'etich, Annette I; Rawago, Fredrick O; Jura, Walter G Z O; Mwinzi, Pauline N; Won, Kimberly Y; Odiere, Maurice R

    2016-02-16

    Identification of populations to be targeted for individual treatment and broad-spectrum therapy in schistosomiasis-endemic areas, assessment of therapy efficacy, morbidity, and evaluation of control strategies need to be based on reliable diagnostic tools. Kato-Katz is routinely used and remains the standard diagnostic technique for schistosomiasis, despite its many challenges. This study was conducted in Nyamanga village, Mbita, western Kenya, and evaluated the diagnostic performance of Kato-Katz, Mini-Parasep and modified Mini-FLOTAC techniques in detection of Schistosoma mansoni and soil-transmitted helminths (Ascaris lumbricoides, Trichuris trichiura and hookworm) ova. Stool samples from 132 individuals were screened for eggs of S. mansoni by the 3 techniques. Mini-Parasep faecal parasite concentrator (Apacor Ltd, England), a single-use diagnostic device with a built-in filter for faecal concentration of helminth eggs by sedimentation was employed on stool samples fixed in 10% formalin. A modified Mini-FLOTAC (University of Naples, Italy) was based on floatation of helminths eggs with two different solutions (FS2 and FS7) using a closed system (Fill-FLOTAC) with 5% formalin. Kato-Katz was performed following WHO recommendation. Prevalence of S. mansoni and STH, sensitivity and degree of agreement among the 3 techniques were determined. Prevalence of S. mansoni was 47.0%, 34.1% and 20.5% by Mini-Parasep, Kato-Katz and modified Mini-FLOTAC FS7 techniques, respectively. Prevalence of any STH infection was 6.1%, 3.0%, 6.1% and 6.8% by Mini-Parasep, Kato-Katz, modified Mini-FLOTAC FS2 and modified Mini-FLOTAC FS7 techniques, respectively. Considering the pooled results of the three methods (Mini-Parasep, Kato-Katz and modified Mini-FLOTAC FS7) as diagnostic 'gold' standard, the sensitivity of Mini-Parasep, Kato-Katz and modified Mini-FLOTAC FS7 for S. mansoni was 77.5%, 56.1%, and 33.8%, respectively. Mini-Parasep and modified Mini-FLOTAC FS7 techniques had moderate (κ = 0.46) and fairly good (κ = 0.25) agreements with Kato-Katz for S. mansoni, respectively. Mini-Parasep detected a higher proportion of light intensity S. mansoni infections compared to Kato-Katz, which detected high proportions of heavy infections. Mini-Parasep detected a similar mean number of S. mansoni eggs per gram (EPG) of stool compared to the standard Kato-Katz (62.9 vs 97.3; t (131) = -0.49, P = 0.6265) and significantly higher EPG compared to the modified Mini-FLOTAC FS7 (62.9 vs 34.6; t (131) = 5.39, P < 0.0001). The high sensitivity of Mini-Parasep suggests its promising potential as an alternative tool in enhancing diagnosis and in monitoring schistosomiasis transmission and determining endpoint of intervention programs, especially in low endemicity areas. Mini-Parasep is also easy to operate, safe and also permits work with fresh stool.

  2. Contrasting influences of Drosophila white/mini-white on ethanol sensitivity in two different behavioral assays.

    PubMed

    Chan, Robin F; Lewellyn, Lara; DeLoyht, Jacqueline M; Sennett, Kristyn; Coffman, Scarlett; Hewitt, Matthew; Bettinger, Jill C; Warrick, John M; Grotewiel, Mike

    2014-06-01

    The fruit fly Drosophila melanogaster has been used extensively to investigate genetic mechanisms of ethanol (EtOH)-related behaviors. Many past studies in flies, including studies from our laboratory, have manipulated gene expression using transposons carrying the genetic-phenotypic marker mini-white(mini-w), a derivative of the endogenous gene white(w). Whether the mini-w transgenic marker or the endogenous w gene influences behavioral responses to acute EtOH exposure in flies has not been systematically investigated. We manipulated mini-w and w expression via (i) transposons marked with mini-w, (ii) RNAi against mini-w and w, and (iii) a null allele of w. We assessed EtOH sensitivity and tolerance using a previously described eRING assay (based on climbing in the presence of EtOH) and an assay based on EtOH-induced sedation. In eRING assays, EtOH-induced impairment of climbing correlated inversely with expression of the mini-w marker from a series of transposon insertions. Additionally, flies harboring a null allele of w or flies with RNAi-mediated knockdown of mini-w were significantly more sensitive to EtOH in eRING assays than controls expressing endogenous w or the mini-w marker. In contrast, EtOH sensitivity and rapid tolerance measured in the EtOH sedation assay were not affected by decreased expression of mini-w or endogenous w in flies. EtOH sensitivity measured in the eRING assay is noticeably influenced by w and mini-w, making eRING problematic for studies on EtOH-related behavior in Drosophila using transgenes marked with mini-w. In contrast, the EtOH sensitivity assay described here is a suitable behavioral paradigm for studies on EtOH sensitivity and rapid tolerance in Drosophila including those that use widely available transgenes marked with mini-w. Copyright © 2014 by the Research Society on Alcoholism.

  3. Equilibrium Partitioning Sediment Guidelines (ESGs) for the ...

    EPA Pesticide Factsheets

    ... PLC = partial life-cycle ... 5 ii mini iiiiiiiii iiiiiii mi 1 1 iii mini ii i B : - Benthic vs WQC i— w ~_ ~ _ o° _ -0 ° - - - ii mini iiiiiiiii iiiiiii iiiiiiiii mini ii 0.1 ... PhD thesis. ...

  4. Classification of event location using matched filters via on-floor accelerometers

    NASA Astrophysics Data System (ADS)

    Woolard, Americo G.; Malladi, V. V. N. Sriram; Alajlouni, Sa'ed; Tarazaga, Pablo A.

    2017-04-01

    Recent years have shown prolific advancements in smart infrastructures, allowing buildings of the modern world to interact with their occupants. One of the sought-after attributes of smart buildings is the ability to provide unobtrusive, indoor localization of occupants. The ability to locate occupants indoors can provide a broad range of benefits in areas such as security, emergency response, and resource management. Recent research has shown promising results in occupant building localization, although there is still significant room for improvement. This study presents a passive, small-scale localization system using accelerometers placed around the edges of a small area in an active building environment. The area is discretized into a grid of small squares, and vibration measurements are processed using a pattern matching approach that estimates the location of the source. Vibration measurements are produced with ball-drops, hammer-strikes, and footsteps as the sources of the floor excitation. The developed approach uses matched filters based on a reference data set, and the location is classified using a nearest-neighbor search. This approach detects the appropriate location of impact-like sources i.e. the ball-drops and hammer-strikes with a 100% accuracy. However, this accuracy reduces to 56% for footsteps, with the average localization results being within 0.6 m (α = 0.05) from the true source location. While requiring a reference data set can make this method difficult to implement on a large scale, it may be used to provide accurate localization abilities in areas where training data is readily obtainable. This exploratory work seeks to examine the feasibility of the matched filter and nearest neighbor search approach for footstep and event localization in a small, instrumented area within a multi-story building.

  5. Time Dependence of Aerosol Light Scattering Downwind of Forest Fires

    NASA Astrophysics Data System (ADS)

    Kleinman, L. I.; Sedlacek, A. J., III; Wang, J.; Lewis, E. R.; Springston, S. R.; Chand, D.; Shilling, J.; Arnott, W. P.; Freedman, A.; Onasch, T. B.; Fortner, E.; Zhang, Q.; Yokelson, R. J.; Adachi, K.; Buseck, P. R.

    2017-12-01

    In the first phase of BBOP (Biomass Burn Observation Project), a Department of Energy (DOE) sponsored study, wildland fires in the Pacific Northwest were sampled from the G-1 aircraft via sequences of transects that encountered emission whose age (time since emission) ranged from approximately 15 minutes to four hours. Comparisons between transects allowed us to determine the near-field time evolution of trace gases, aerosol particles, and optical properties. The fractional increase in aerosol concentration with plume age was typically less than a third of the fractional increase in light scattering. In some fires the increase in light scattering exceeded a factor of two. Two possible causes for the discrepancy between scattering and aerosol mass are i) the downwind formation of refractory tar balls that are not detected by the AMS and therefore contribute to scattering but not to aerosol mass and ii) changes to the aerosol size distribution. Both possibilities are considered. Our information on tar balls comes from an analysis of TEM grids. A direct determination of size changes is complicated by extremely high aerosol number concentrations that caused coincidence problems for the PCASP and UHSAS probes. We instead construct a set of plausible log normal size distributions and for each member of the set do Mie calculations to determine mass scattering efficiency (MSE), angstrom exponents, and backscatter ratios. Best fit size distributions are selected by comparison with observed data derived from multi-wavelength scattering measurements, an extrapolated FIMS size distribution, and mass measurements from an SP-AMS. MSE at 550 nm varies from a typical near source value of 2-3 to about 4 in aged air.

  6. Electromigration effect on intermetallic growth and Young's modulus in SAC solder joint

    NASA Astrophysics Data System (ADS)

    Xu, Luhua; Pang, John H. L.; Ren, Fei; Tu, K. N.

    2006-12-01

    Solid-state intermetallic compound (IMC) growth behavior plays and important role in solder joint reliability of electronic packaging assemblies. The directional impact of electromigration (EM) on the growth of interfacial IMCs in Ni/SAC/Ni, Cu/SAC/Ni single BGA ball solder joint, and fine pitch ball-grid-array (FPBGA) at the anode and cathode sides is reported in this study. When the solder joint was subjected to a current density of 5,000 A/cm2 at 125°C or 150°C, IMC layer growth on the anode interface was faster than that on the cathode interface, and both were faster than isothermal aging due to the Joule heating effect. The EM affects the IMC growth rate, as well as the composition and mechanical properties. The Young’s modulus and hardness were measured by the nanoindentation continuous stiffness measurement (CSM) from planar IMC surfaces after EM exposure. Different values were observed at the anode and cathode. The energy-dispersive x-ray (EDX) line scan analysis was conducted at the interface from the cathode to anode to study the presence of species; Ni was found in the anode IMC at SAC/Cu in the Ni/SAC/Cu joint, but not detected when the current was reverse. Electron-probe microanalysis (EPMA) measurement on the Ni/SAC/Ni specimen also confirmed the polarized Ni and Cu distributions in cathode and anode IMCs, which were (Ni0.57Cu0.43)3Sn4 and (Cu0.73Ni0.27)6Sn5, respectively. Thus, the Young’s moduli of the IMC are 141 and 175 GPa, respectively.

  7. The similarities between the hallucinations associated with the partial epileptic seizures of the occipital lobe and ball lightning observations

    NASA Astrophysics Data System (ADS)

    Cooray, G. K.; Cooray, V.

    2007-12-01

    Ball Lightning was seen and described since antiquity and recorded in many places. Ball lightning is usually observed during thunderstorms but large number of ball lightning observations is also reported during fine weather without any connection to thunderstorms or lightning. However, so far no one has managed to generate them in the laboratory. It is photographed very rarely and in many cases the authenticity of them is questionable. It is possible that many different phenomena are grouped together and categorized simply as ball lightning. Indeed, the visual hallucinations associated with simple partial epileptic seizures, during which the patient remains conscious, may also be categorized by a patient unaware of his or her condition as ball lightning observation. Such visual hallucinations may occur as a result of an epileptic seizure in the occipital, temporo-occipital or temporal lobes of the cerebrum [1,2,3]. In some cases the hallucination is perceived as a coloured ball moving horizontally from the periphery to the centre of the vision. The ball may appear to be rotating or spinning. The colour of the ball can be red, yellow, blue or green. Sometimes, the ball may appear to have a solid structure surrounded by a thin glow or in other cases the ball appears to generate spark like phenomena. When the ball is moving towards the centre of the vision it may increase its intensity and when it reaches the centre it can 'explode' illuminating the whole field of vision. During the hallucinations the vision is obscured only in the area occupied by the apparent object. The hallucinations may last for 5 to 30 seconds and rarely up to a minute. Occipital seizures may spread into other regions of the brain giving auditory, olfactory and sensory sensations. These sensations could be buzzing sounds, the smell of burning rubber, pain with thermal perception especially in the arms and the face, and numbness and tingling sensation. In some cases a person may experience only one seizure during lifetime and may not be aware of the reason for the experience. Being of good health otherwise, the person may categorize the experience as a ball lightning encounter. If, as described above, the seizure spread into other regions of the brain the resulting experience may appear as electrical effects (the smell, heat sensation, tingling feeling etc.) of ball lightning. Epileptic seizures are a common and important medical problem, with about one in eleven persons experiencing at least one seizure at some point. Thus some of the ball lightning encounters presented in the literature could very well be associated with the experiences of persons who had an epileptic seizure with visual hallucinations. [1] Blom, S. et al., Epilepsy, Neurology, Edited by S-M Aquilonius and J. Fagius, Liber, 2000. [2] Panayiotopoulos, C. P., J. Neorl. Neurosurg. Psychiatry, 66, 536-540, 1999. [3] Bien et al, Brain,123, 244-253, 2000.

  8. Critical Structural and Functional Roles for the N-Terminal Insertion Sequence in Surfactant Protein B Analogs

    PubMed Central

    Walther, Frans J.; Waring, Alan J.; Hernandez-Juviel, Jose M.; Gordon, Larry M.; Wang, Zhengdong; Jung, Chun-Ling; Ruchala, Piotr; Clark, Andrew P.; Smith, Wesley M.; Sharma, Shantanu; Notter, Robert H.

    2010-01-01

    Background Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., ∼residues 8–25 and 63–78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1–7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity. Methodology/Results FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary α-helix and secondary β-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a “saposin-like” fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B. Conclusion Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B. PMID:20084172

  9. 16 CFR 1117.4 - Time for filing a report.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REPORTING OF CHOKING INCIDENTS INVOLVING MARBLES, SMALL BALLS, LATEX BALLOONS AND OTHER SMALL PARTS § 1117.4... marble, small ball, or latex balloon or on a marble, small ball, latex balloon, or other small part...

  10. Air-Bearing-Piston Suspension System

    NASA Technical Reports Server (NTRS)

    Mullen, Donald; Bishop, Stephen J.

    1992-01-01

    Suspension system based on air-bearing piston holds up steel ball against gravitation while allowing ball to translate vertically and rotate freely. System designed to simulate effect of microgravity on ball. Applicable to suppression of vibrations and delicate machining processes.

  11. A real-time surface inspection system for precision steel balls based on machine vision

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Ji; Tsai, Jhy-Cherng; Hsu, Ya-Chen

    2016-07-01

    Precision steel balls are one of the most fundament components for motion and power transmission parts and they are widely used in industrial machinery and the automotive industry. As precision balls are crucial for the quality of these products, there is an urgent need to develop a fast and robust system for inspecting defects of precision steel balls. In this paper, a real-time system for inspecting surface defects of precision steel balls is developed based on machine vision. The developed system integrates a dual-lighting system, an unfolding mechanism and inspection algorithms for real-time signal processing and defect detection. The developed system is tested under feeding speeds of 4 pcs s-1 with a detection rate of 99.94% and an error rate of 0.10%. The minimum detectable surface flaw area is 0.01 mm2, which meets the requirement for inspecting ISO grade 100 precision steel balls.

  12. Ball bearing heat analysis program (BABHAP)

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Ball Bearing Heat Analysis Program (BABHAP) is an attempt to assemble a series of equations, some of which are non-linear algebraic systems, in a logical order, which when solved, provide a complex analysis of load distribution among the balls, ball velocities, heat generation resulting from friction, applied load, and ball spinning, minimum lubricant film thickness, and many additional characteristics of ball bearing systems. Although initial design requirements for BABHAP were dictated by the core limitations of the PDP 11/45 computer, (approximately 8K of real words with limited number of instructions) the program dimensions can easily be expanded for large core computers such as the UNIVAC 1108. The PDP version of BABHAP is also operational on the UNIVAC system with the exception that the PDP uses 029 punch and the UNIVAC uses 026. A conversion program was written to allow transfer between machines.

  13. Stemless ball valve

    NASA Technical Reports Server (NTRS)

    Burgess, Kevin (Inventor); Yakos, David (Inventor); Walthall, Bryan (Inventor)

    2011-01-01

    A stemless ball valve comprising two flanges and a ball with a channel, two axis pins and two travel pins. One end of each axis and travel pin is fixedly attached to the ball, and the other end of each axis pin is lodged into a notch in the first or second flange such that the axis pin is allowed to rotate in the notch. The guide sleeve comprises two channels, and one end of each travel pin is situated within one of the two channels in the guide sleeve. An outer magnetic cartridge causes the inner magnetic cartridge and guide sleeve to rotate, and when the guide sleeve rotates, the travel pins move up and down within the channels in the guide sleeve. The movement of the travel pins within the channels in the guide sleeve causes the ball to rotate, thereby opening and closing the ball valve.

  14. Psychometric properties of a sign language version of the Mini International Neuropsychiatric Interview (MINI).

    PubMed

    Øhre, Beate; Saltnes, Hege; von Tetzchner, Stephen; Falkum, Erik

    2014-05-22

    There is a need for psychiatric assessment instruments that enable reliable diagnoses in persons with hearing loss who have sign language as their primary language. The objective of this study was to assess the validity of the Norwegian Sign Language (NSL) version of the Mini International Neuropsychiatric Interview (MINI). The MINI was translated into NSL. Forty-one signing patients consecutively referred to two specialised psychiatric units were assessed with a diagnostic interview by clinical experts and with the MINI. Inter-rater reliability was assessed with Cohen's kappa and "observed agreement". There was 65% agreement between MINI diagnoses and clinical expert diagnoses. Kappa values indicated fair to moderate agreement, and observed agreement was above 76% for all diagnoses. The MINI diagnosed more co-morbid conditions than did the clinical expert interview (mean diagnoses: 1.9 versus 1.2). Kappa values indicated moderate to substantial agreement, and "observed agreement" was above 88%. The NSL version performs similarly to other MINI versions and demonstrates adequate reliability and validity as a diagnostic instrument for assessing mental disorders in persons who have sign language as their primary and preferred language.

  15. Development of a Searchable Database of Cryoablation Simulations for Use in Treatment Planning.

    PubMed

    Boas, F Edward; Srimathveeravalli, Govindarajan; Durack, Jeremy C; Kaye, Elena A; Erinjeri, Joseph P; Ziv, Etay; Maybody, Majid; Yarmohammadi, Hooman; Solomon, Stephen B

    2017-05-01

    To create and validate a planning tool for multiple-probe cryoablation, using simulations of ice ball size and shape for various ablation probe configurations, ablation times, and types of tissue ablated. Ice ball size and shape was simulated using the Pennes bioheat equation. Five thousand six hundred and seventy different cryoablation procedures were simulated, using 1-6 cryoablation probes and 1-2 cm spacing between probes. The resulting ice ball was measured along three perpendicular axes and recorded in a database. Simulated ice ball sizes were compared to gel experiments (26 measurements) and clinical cryoablation cases (42 measurements). The clinical cryoablation measurements were obtained from a HIPAA-compliant retrospective review of kidney and liver cryoablation procedures between January 2015 and February 2016. Finally, we created a web-based cryoablation planning tool, which uses the cryoablation simulation database to look up the probe spacing and ablation time that produces the desired ice ball shape and dimensions. Average absolute error between the simulated and experimentally measured ice balls was 1 mm in gel experiments and 4 mm in clinical cryoablation cases. The simulations accurately predicted the degree of synergy in multiple-probe ablations. The cryoablation simulation database covers a wide range of ice ball sizes and shapes up to 9.8 cm. Cryoablation simulations accurately predict the ice ball size in multiple-probe ablations. The cryoablation database can be used to plan ablation procedures: given the desired ice ball size and shape, it will find the number and type of probes, probe configuration and spacing, and ablation time required.

  16. Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis.

    PubMed

    Lin, Zengxiang; Huang, He; Zhang, Hongman; Zhang, Lin; Yan, Lishi; Chen, Jingwen

    2010-11-01

    Ethanol can be produced from lignocellulosic biomass with the usage of ball milling pretreatment followed by enzymatic hydrolysis and fermentation. The sugar yields from lignocellulosic feed stocks are critical parameters for ethanol production process. The research results from this paper indicated that the yields of glucose and xylose were improved by adding any of the following dilute chemical reagents: H(2)SO(4), HCl, HNO(3), CH(3)COOH, HCOOH, H(3)PO(4), and NaOH, KOH, Ca(OH)(2), NH(3)·H(2)O in the ball milling pretreatment of corn stover. The optimal enzymatic hydrolysis efficiencies were obtained under the conditions of ball milling in the alkali medium that was due to delignification. The data also demonstrated that ball milling pretreatment was a robust process. From the microscope image of ball milling-pretreated corn stover, it could be observed that the particle size of material was decreased and the fiber structure was more loosely organized. Meanwhile, the results indicate that the treatment effect of wet milling is better than that of dry milling. The optimum parameters for the milling process were ball speed of 350 r/min, solid/liquid ratio of 1:10, raw material particle size with 0.5 mm, and number of balls of 20 (steel ball, Φ = 10 mm), grinding for 30 min. In comparison with water milling process, alkaline milling treatment could increase the enzymatic hydrolysis efficiency of corn stover by 110%; and through the digestion process with the combination of xylanase and cellulase mixture, the hydrolysis efficiency could increase by 160%.

  17. Effects of BOSU ball(s) during sit-ups with body weight and added resistance on core muscle activation.

    PubMed

    Saeterbakken, Atle H; Andersen, Vidar; Jansson, June; Kvellestad, Ann C; Fimland, Marius S

    2014-12-01

    The objective of this study was to assess the electromyographic activity of the rectus abdominis (upper and lower part) and external oblique during sit-ups performed on BOSU ball(s). Twenty-four men participated in a familiarization session, and in the next session, they performed the experimental tests in randomized order. The sit-ups were performed with 10 repetitions with body weight and with 10 repetition maximum (10RM) using elastic bands as external resistance under 4 different conditions: (a) on a stable surface, (b) with the BOSU ball under their feet (dome side down, lower-body instability), (c) BOSU ball under the low back (dome side up, upper-body instability), and (d) with BOSU balls under both feet and the low back (dual instability). The feet were not attached to the surface. We observed that with body weight, external oblique activation was decreased by upper-body instability and dual instability by 22-24% (p = 0.002-0.006), whereas the rectus abdominis was not affected by the surface. Using 10RM loads, the upper and lower rectus abdominis activities were increased by upper body and dual instability by 21-24% compared with that for a stable surface (P ≤ 0.001-0.036). Further, lower-body instability did not affect muscle activities significantly with either load for any condition. Hence, BOSU balls under the low back can increase and decrease abdominal muscle activation depending on the load, whereas placing a BOSU ball under the feet with the dome side down had little impact.

  18. The Effects of Scaling Tennis Equipment on the Forehand Groundstroke Performance of Children

    PubMed Central

    Larson, Emma J.; Guggenheimer, Joshua D.

    2013-01-01

    The modifications that have taken place within youth sports have made games, such as basketball, soccer, or tennis, easier for children to play. The purpose of this study was to determine the effects low compression (LC) tennis balls and scaled tennis courts had on the forehand groundstroke performance of children. The forehand groundstroke performances of eight subjects’ (8.10 ± 0.74 yrs) using LC tennis balls were measured on a scaled tennis court and standard compression balls (SC) on a standard court. Forehand groundstroke performance was assessed by the ForeGround test which measures Velocity Precision Success Index (VPS) and Velocity Precision Index (VP). Participants attempted three different forehand rally patterns on two successive days, using LC balls on the 18.3m court one day and SC balls on the 23.8m court the other. When using LC balls, participants’ recorded higher overall VPS performance scores (p < 0.001) for each non-error stroke as well as higher VP scores (p = 0.01). The results of this study confirmed that the use of modified balls and modified court size may increase the control, velocity and overall success rate of the tennis forehand groundstroke of children. Key Points This study observed the effects of modified tennis balls and court had on the forehand groundstroke performance in children. Modified ball compression and modified court size can increase control, velocity and overall success of tennis performance. Children will have more success learning the game of tennis using modified equipment than using standard equipment. PMID:24149812

  19. Ball Collision Experiments

    ERIC Educational Resources Information Center

    Cross, R.

    2015-01-01

    Experiments are described on collisions between two billiard balls and between a bat and a ball. The experiments are designed to extend a student's understanding of collision events and could be used either as a classroom demonstration or for a student project.

  20. Simulation and Analysis of One-time Forming Process of Automobile Steering Ball Head

    NASA Astrophysics Data System (ADS)

    Shi, Peicheng; Zhang, Xujun; Xu, Zengwei; Zhang, Rongyun

    2018-03-01

    Aiming at the problems such as large machining allowance, low production efficiency and material waste during die forging of ball pin, the cold extrusion process of ball head was studied and the analog simulation of the forming process was carried out by using the finite element analysis software DEFORM-3D. Through the analysis of the equivalent stress strain, velocity vector field and load-displacement curve, the flow regularity of the metal during the cold extrusion process of ball pin was clarified, and possible defects during the molding were predicted. The results showed that this process could solve the forming problem of ball pin and provide theoretical basis for actual production of enterprises.

  1. Electromechanically Actuated Valve for Controlling Flow Rate

    NASA Technical Reports Server (NTRS)

    Patterson, Paul

    2007-01-01

    A proposed valve for controlling the rate of flow of a fluid would include an electric-motor-driven ball-screw mechanism for adjusting the seating element of the valve to any position between fully closed and fully open. The motor would be of a type that can be electronically controlled to rotate to a specified angular position and to rotate at a specified rate, and the ball screw would enable accurate linear positioning of the seating element as a function of angular position of the motor. Hence, the proposed valve would enable fine electronic control of the rate of flow and the rate of change of flow. The uniqueness of this valve lies in a high degree of integration of the actuation mechanism with the flow-control components into a single, relatively compact unit. A notable feature of this integration is that in addition to being a major part of the actuation mechanism, the ball screw would also be a flow-control component: the ball screw would be hollow so as to contain part of the main flow passage, and one end of the ball screw would be the main seating valve element. The relationships among the components of the valve are best understood by reference to the figure, which presents meridional cross sections of the valve in the fully closed and fully open positions. The motor would be supported by a bracket bolted to the valve body. By means of gears or pulleys and a timing belt, motor drive would be transmitted to a sleeve that would rotate on bearings in the valve body. A ball nut inside the sleeve would be made to rotate with the sleeve by use of a key. The ball screw would pass through and engage the ball nut. A key would prevent rotation of the ball screw in the valve body while allowing the ball screw to translate axially when driven by the ball nut. The outer surface of the ball screw would be threaded only in a mid-length region: the end regions of the outer surface of the ball screw would be polished so that they could act as dynamic sealing surfaces. The inlet end (the right end as depicted in the figure) of the ball screw would be the main seating valve element: in the fully closed position, it would be pressed against the valve seat, as depicted in the upper part of the figure. A retainer would hold the valve seat in an inlet fitting. In addition, the retainer would be contoured to obtain a specified flow rate as a function of axial position of the ball screw. In the fully closed position, little force would be needed to press the ball screw against the seat because the push bore area upon which the upstream pressure would act would be small. The motor would position and hold the ball screw against the seat, providing the force necessary for sealing. To open the valve to a particular position, the motor would be commanded to rotate to a particular angular position (equivalently, a particular number of revolutions) at a particular rate of rotation within its torque limitations. Once the valve was open, fluid would flow through the inlet fitting and the chamber in the inlet housing, past the seat and its retainer, along the hollow core of the ball screw, and through the outlet housing and outlet fitting. The net force generated from fluid pressure in the open position would be small because the pressure exposed to the push bore areas at the inlet and outlet are nearly equal and the forces generated would be in opposing directions.

  2. Further reply to remarks of R Cross on ‘A comparative study of two types of ball-on-ball collision’

    NASA Astrophysics Data System (ADS)

    White, Colin

    2018-03-01

    In this letter, I show how a perceived approximation error in my first letter, White (2017 Phys. Ed. 53 016502) concerning my explanation of the dynamic motion of two interacting Newtons Cradle balls, proves to me insignificant. Although these second and third order errors described are shown to be minimal, they do raise the opportunity to discuss the precise and more intricate ball interactions in finer detail.

  3. DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, AND ORE BIN CHUTE, LOOKING EAST NORTHEAST. CRUSHED ORE FROM THE SECONDARY ORE BIN WAS INTRODUCED INTO THE FEED TROUGH VIA A CHUTE. AS THE BALL MILL TURNED, THE ROUND SCOOP ALSO TURNED IN THE TROUGH TO CHANNEL ORE INTO THE BALL MILL. SEE CA-292-14 FOR IDENTICAL B&W NEGATIVE. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  4. DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL VIEW OF BALL MILL FEED SYSTEM, MOUTH OF CLASSIFIER, AND ORE BIN CHUTE, LOOKING EAST NORTHEAST. CRUSHED ORE FROM THE SECONDARY ORE BIN WAS INTRODUCED INTO THE FEED TROUGH VIA A CHUTE. AS THE BALL MILL TURNED, THE ROUND SCOOP ALSO TURNED IN THE TROUGH TO CHANNEL ORE INTO THE BALL MILL. SEE CA-292-20 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Gold Hill Mill, Warm Spring Canyon Road, Death Valley Junction, Inyo County, CA

  5. Newton’s cradle in billiards and croquet

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2016-11-01

    When an object collides head-on and in line with two balls in contact, the outcome is not generally easy to predict. We consider three simple examples. One is Newton’s cradle with only three balls. Another is a billiard cue colliding with the two balls. The third is a croquet shot where a mallet collides with the two balls. The outcome in each case is different since it depends on the mass of the colliding object.

  6. Effect of PDC bit design and confining pressure on bit-balling tendencies while drilling shale using water base mud

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hariharan, P.R.; Azar, J.J.

    1996-09-01

    A good majority of all oilwell drilling occurs in shale and other clay-bearing rocks. In the light of relatively fewer studies conducted, the problem of bit-balling in PDC bits while drilling shale has been addressed with the primary intention of attempting to quantify the degree of balling, as well as to investigate the influence of bit design and confining pressures. A series of full-scale laboratory drilling tests under simulated down hole conditions were conducted utilizing seven different PDC bits in Catoosa shale. Test results have indicated that the non-dimensional parameter R{sub d} [(bit torque).(weight-on-bit)/(bit diameter)] is a good indicator ofmore » the degree of bit-balling and that it correlated well with Specific-Energy. Furthermore, test results have shown bit-profile and bit-hydraulic design to be key parameters of bit design that dictate the tendency of balling in shales under a given set of operating conditions. A bladed bit was noticed to ball less compared to a ribbed or open-faced bit. Likewise, related to bit profile, test results have indicated that the parabolic profile has a lesser tendency to ball compared to round and flat profiles. The tendency of PDC bits to ball was noticed to increase with increasing confining pressures for the set of drilling conditions used.« less

  7. Effects of pharmacological and genetic disruption of CXCR4 chemokine receptor function in B-cell acute lymphoblastic leukaemia.

    PubMed

    Randhawa, Shubhchintan; Cho, Byung S; Ghosh, Dipanjan; Sivina, Mariela; Koehrer, Stefan; Müschen, Markus; Peled, Amnon; Davis, Richard E; Konopleva, Marina; Burger, Jan A

    2016-08-01

    B cell acute lymphoblastic leukaemia (B-ALL) cells express high levels of CXCR4 chemokine receptors for homing and retention within the marrow microenvironment. Bone marrow stromal cells (BMSC) secrete CXCL12, the ligand for CXCR4, and protect B-ALL cells from cytotoxic drugs. Therefore, the therapeutic use of CXCR4 antagonists has been proposed to disrupt cross talk between B-ALL cells and the protective stroma. Because CXCR4 antagonists can have activating agonistic function, we compared the genetic and pharmacological deletion of CXCR4 in B-ALL cells, using CRISPR-Cas9 gene editing and CXCR4 antagonists that are in clinical use (plerixafor, BKT140). Both genetic and pharmacological CXCR4 inhibition significantly reduced B-ALL cell migration to CXCL12 gradients and beneath BMSC, and restored drug sensitivity to dexamethasone, vincristine and cyclophosphamide. NOD/SCID/IL-2rγnull mice injected with CXCR4 gene-deleted B-ALL cells had significant delay in disease progression and superior survival when compared to control mice injected with CXCR4 wild-type B-ALL cells. These findings indicate that anti-leukaemia activity of CXCR4 antagonists is primarily due to CXCR4 inhibition, rather than agonistic activity, and corroborate that CXCR4 is an important target to overcome stroma-mediated drug resistance in B-ALL. © 2016 John Wiley & Sons Ltd.

  8. Defined, serum/feeder-free conditions for expansion and drug screening of primary B-acute lymphoblastic leukemia.

    PubMed

    Jiang, Zhiwu; Wu, Di; Ye, Wei; Weng, Jianyu; Lai, Peilong; Shi, Pengcheng; Guo, Xutao; Huang, Guohua; Deng, Qiuhua; Tang, Yanlai; Zhao, Hongyu; Cui, Shuzhong; Lin, Simiao; Wang, Suna; Li, Baiheng; Wu, Qiting; Li, Yangqiu; Liu, Pentao; Pei, Duanqing; Du, Xin; Yao, Yao; Li, Peng

    2017-12-05

    Functional screening for compounds represents a major hurdle in the development of rational therapeutics for B-acute lymphoblastic leukemia (B-ALL). In addition, using cell lines as valid models for evaluating responses to novel drug therapies raises serious concerns, as cell lines are prone to genotypic/phenotypic drift and loss of heterogeneity in vitro . Here, we reported that OP9 cells, not OP9-derived adipocytes (OP9TA), support the growth of primary B-ALL cells in vitro . To identify the factors from OP9 cells that support the growth of primary B-ALL cells, we performed RNA-Seq to analyze the gene expression profiles of OP9 and OP9TA cells. We thus developed a defined, serum/feeder-free condition (FI76V) that can support the expansion of a range of clinically distinct primary B-ALL cells that still maintain their leukemia-initiating ability. We demonstrated the suitability of high-throughput drug screening based on our B-ALL cultured conditions. Upon screening 378 kinase inhibitors, we identified a cluster of 17 kinase inhibitors that can efficiently kill B-ALL cells in vitro . Importantly, we demonstrated the synergistic cytotoxicity of dinaciclib/BTG226 to B-ALL cells. Taken together, we developed a defined condition for the ex vivo expansion of primary B-ALL cells that is suitable for high-throughput screening of novel compounds.

  9. Increasing passive energy expenditure during clerical work.

    PubMed

    Beers, Erik A; Roemmich, James N; Epstein, Leonard H; Horvath, Peter J

    2008-06-01

    Sitting on a therapy ball or standing may be a passive means of increasing energy expenditure throughout the workday. The purpose of this study was to determine the energy expenditure and liking of performing clerical work in various postures. Subjects included 24 men and women employed in sedentary clerical occupations. Energy expenditure was measured while word processing in three standardized postures; sitting in an office chair, sitting on a therapy ball, and standing. Adults ranked their comfort, fatigue, and liking of each posture and were asked to perform their choice of 20 min of additional clerical work in one of the postures. Energy expenditure was 4.1 kcal/h greater (p or= 0.48). Subjects also liked sitting on a therapy ball as much as sitting in an office chair and liked sitting on a therapy ball more than standing (p

  10. A novel AFM-based 5-axis nanoscale machine tool for fabrication of nanostructures on a micro ball

    NASA Astrophysics Data System (ADS)

    Geng, Yanquan; Wang, Yuzhang; Yan, Yongda; Zhao, Xuesen

    2017-11-01

    This paper presents a novel atomic force microscopy (AFM)-based 5-axis nanoscale machine tool developed to fabricate nanostructures on different annuli of the micro ball. Different nanostructures can be obtained by combining the scratching trajectory of the AFM tip with the movement of the high precision air-bearing spindle. The center of the micro ball is aligned to be coincided with the gyration center of the high precision to guarantee the machining process during the rotating of the air-bearing spindle. Processing on different annuli of the micro ball is achieved by controlling the distance between the center of the micro ball and the rotation center of the AFM head. Nanostructures including square cavities, circular cavities, triangular cavities, and an annular nanochannel are machined successfully on the three different circumferences of a micro ball with a diameter of 1500 μm. Moreover, the influences of the error motions of the high precision air-bearing spindle and the eccentric between the micro ball and the gyration center of the high precision air-bearing spindle on the processing position error on the micro ball are also investigated. This proposed machining method has the potential to prepare the inertial confinement fusion target with the expected dimension defects, which would advance the application of the AFM tip-based nanomachining approach.

  11. Effect of Ball Mill Treatment on the Physicochemical Properties and Digestibility of Protein Extracts Generated from Scallops (Chlamys farreri)

    PubMed Central

    Wu, Di; Wu, Chao; Chen, Hui; Wang, Zhenyu; Yu, Cuiping; Du, Ming

    2018-01-01

    The effects of ball mill treatment (0, 2, 4, 6, 8, and 10 min) on the physicochemical and digestible properties of scallops (Chlamys farreri) protein (CFP) were investigated. The CFP particle size decreased with increasing ball-milling time. The content of free sulfhydryl (SH) of CFP increased from 13.08 ± 0.25 μmol/g protein to 18.85 ± 0.24 μmol/g protein when the ball-milling time increased from 0 min to 10 min. A sharp increase of the surface hydrophobicity index (H0) from 48.53 ± 0.27 to 239.59 ± 0.37 was found when the ball-milling time increased from 0 min to 4 min. Furthermore, the foaming capacity increased from 46.08 ± 6.12% to 65.11 ± 1.05% with increasing ball-milling time from 0 min to 6 min, after which it reached a plateau. SDS-PAGE results showed that ball mill treatment did not change the primary structure of CFP. Digestible properties of BMCFP simulated gastrointestinal digestion as a function of ball mill treatment were analyzed by Tricine-SDS-PAGE and nitrogen recovery index. After 60 min of simulated human gastro digestion, nitrogen recovery index of CFP had a significant rise from 42.01 ± 0.31% to 58.78 ± 3.37% as the ball-milling time increased from 0 min to 6 min. Peptides from hydrolysates of Chlamys farreri protein (CFP) were identified by ultraperformance liquidchromatographysystem coupled to a Synapt Mass Quadrupole Time-of-Flight Mass Spectrometer (UPLC-Q-TOF-MS). After 2 h and 4 h of simulated human duodenal digestion, the number of peptides with 7–10 amino acids length increased apparently with the ball-milling time increased. This study presents an approach to investigating the effect of the ball-milling process on the physicochemical and digestible properties of CFP, which may provide valuable information on the application of CFP as an ingredient in food products. PMID:29425186

  12. Miniature ball-tip optical fibers for use in thulium fiber laser ablation of kidney stones

    NASA Astrophysics Data System (ADS)

    Wilson, Christopher R.; Hardy, Luke A.; Kennedy, Joshua D.; Irby, Pierce B.; Fried, Nathaniel M.

    2016-01-01

    Optical fibers, consisting of 240-μm-core trunk fibers with rounded, 450-μm-diameter ball tips, are currently used during Holmium:YAG laser lithotripsy to reduce mechanical damage to the inner lining of the ureteroscope working channel during fiber insertion and prolong ureteroscope lifetime. Similarly, this study tests a smaller, 100-μm-core fiber with 300-μm-diameter ball tip during thulium fiber laser (TFL) lithotripsy. TFL was operated at a wavelength of 1908 nm, with 35-mJ pulse energy, 500-μs pulse duration, and 300-Hz pulse rate. Calcium oxalate/phosphate stone samples were weighed, laser procedure times were measured, and ablation rates were calculated for ball tip fibers, with comparison to bare tip fibers. Photographs of ball tips were taken before and after each procedure to track ball tip degradation and determine number of procedures completed before need for replacement. A high speed camera also recorded the cavitation bubble dynamics during TFL lithotripsy. Additionally, saline irrigation rates and ureteroscope deflection were measured with and without the presence of TFL fiber. There was no statistical difference (P>0.05) between stone ablation rates for single-use ball tip fiber (1.3±0.4 mg/s) (n=10), multiple-use ball tip fiber (1.3±0.5 mg/s) (n=44), and conventional single-use bare tip fibers (1.3±0.2 mg/s) (n=10). Ball tip durability varied widely, but fibers averaged greater than four stone procedures before failure, defined by rapid decline in stone ablation rates. Mechanical damage at the front surface of the ball tip was the limiting factor in fiber lifetime. The small fiber diameter did not significantly impact ureteroscope deflection or saline flow rates. The miniature ball tip fiber may provide a cost-effective design for safe fiber insertion through the ureteroscope working channel and into the ureter without risk of instrument damage or tissue perforation, and without compromising stone ablation efficiency during TFL lithotripsy.

  13. Kinetic study of ferronickel slag grinding at variation of ball filling and ratio of feed to grinding balls

    NASA Astrophysics Data System (ADS)

    Sanwani, Edy; Ikhwanto, Muhammad

    2017-01-01

    The objective of this paper is to investigate the effect of ball filling and ratio of feed to grinding balls on the kinetic of grinding of ferronickel slag in a laboratory scale ball mill. The experiments were started by crushing the ferronickel slag samples using a roll crusher to produce -3 mesh (-6.7 mm) product. This product, after sampling and sample dividing processes, was then used as feed for grinding process. The grinding was performed with variations of ball filling and ratio of feed to grinding balls for 150 minutes. At every certain time interval, particle size analysis was carried out on the grinding product. The results of the experiments were also used to develop linear regression model of the effect of grinding variables on the P80 of the product. Based on this study, it was shown that P80 values of the grinding products declined sharply until 70 minutes of grinding time due to the dominant mechanism of impact breakage and then decreased slowly after 70 minutes until 150 minutes of grinding time due to dominant mechanism of attrition breakage. Kinetics study of the grinding process on variations of grinding ball filling showed that the optimum rate of formation of fine particles for 20%, 30%, 40% and 50% mill volume was achieved at a particle size of 400 µm in which the best initial rate of formation occurred at 50% volume of mill. At the variations of ratio of feed to grinding balls it was shown that the optimum rate of grinding for the ratio of 1:10, 1: 8 and 1: 6 was achieved at a particle size of 400 µm and for the ratio of 1: 4 was at 841 µm in which the best initial rate of formation occurred at a 1:10 ratio. In this study, it was also produced two regression models that can predict the P80 value of the grinding product as a function of the variables of grinding time, ball filling and the ratio of the feed to grinding balls.

  14. Reasons for mini-implants failure: choosing installation site should be valued!

    PubMed Central

    Consolaro, Alberto; Romano, Fábio Lourenço

    2014-01-01

    Mini-implant loss is often associated with physical and mechanical aspects that result from choosing an inappropriate placement site. It is worth highlighting that: a) Interdental alveolar bone crests are flexible and deformable. For this reason, they may not offer the ideal absolute anchorage. The more cervical the structures, the more delicate they are, thus offering less physical support for mini-implant placement; b) Alveolar bone crests of triangular shape are more deformable, whereas those of rectangular shape are more flexible; c) The bases of the alveolar processes of the maxilla and the mandible are not flexible, for this reason, they are more likely to receive mini-implants; d) The more cervical a mini-implant is placed, the higher the risk of loss; the more apical a mini-implant is placed, the better its prognosis will be; e) 3D evaluations play a major role in planning the use of mini-implants. Based on the aforementioned considerations, the hypotheses about mini-implant loss are as follows: 1) Deflection of maxillary and mandibular alveolar processes when mini-implants are more cervically placed; 2) Mini-implants placed too near the periodontal ligament, with normal intra-alveolar tooth movement; 3) Low bone density, low thickness and low alveolar bone volume; 4) Low alveolar cortical bone thickness; 5) Excessive pressure inducing trabecular bone microfracture; 6) Sites of higher anatomical weakness in the mandible and the maxilla; 7) Thicker gingival tissue not considered when choosing the mini-implant. PMID:24945511

  15. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Acting NASA Administrator Robert Lightfoot, left, views a clean room with Tim Schoenweis, senior project engineer for the Ozone Mapping Profiler Suite (OMPS) at Ball Aerospace, right, Thursday, April 6, 2017 at Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  16. Acting Administrator Lightfoot Visits Ball Aerospace

    NASA Image and Video Library

    2017-04-06

    Acting NASA Deputy Administrator Lesa Roe, center, views a clean room with Tim Schoenweis, senior project engineer for the Ozone Mapping Profiler Suite (OMPS) at Ball Aerospace, left, Thursday, April 6, 2017 at Ball Aerospace in Boulder, Colo. Photo Credit: (NASA/Joel Kowsky)

  17. Corrosion-Resistant Ball Bearings

    NASA Technical Reports Server (NTRS)

    Zdankiewicz, E. M.; Linaburg, E. L.; Lytle, L. J.

    1990-01-01

    Self-lubricating bearing system withstands highly corrosive environment of wastewater-recycling unit. New bearings contain cobalt-based-alloy balls and races, graphite/polyimide polymer ball cages, and single integral polytetrafluoroethylene seals on wet sides. Materials and design prevent corrosion by acids and provide lubrication.

  18. Noninvasive medical management of fungus ball uropathy in a premature infant.

    PubMed

    Alkalay, A L; Srugo, I; Blifeld, C; Komaiko, M S; Pomerance, J J

    1991-09-01

    Unilateral renal obstruction secondary to fungus balls is described in a premature infant. Noninvasive medical management, which included amphotericin B and 5-flucytosine therapy and forced diuresis, resulted in disappearance of fungus balls and resolution of the obstruction.

  19. Revisiting the stability of mini-implants used for orthodontic anchorage.

    PubMed

    Yao, Chung-Chen Jane; Chang, Hao-Hueng; Chang, Jenny Zwei-Chieng; Lai, Hsiang-Hua; Lu, Shao-Chun; Chen, Yi-Jane

    2015-11-01

    The aim of this study is to comprehensively analyze the potential factors affecting the failure rates of three types of mini-implants used for orthodontic anchorage. Data were collected on 727 mini-implants (miniplates, predrilled titanium miniscrews, and self-drilling stainless steel miniscrews) in 220 patients. The factors related to mini-implant failure were investigated using a Chi-square test for univariate analysis and a generalized estimating equation model for multivariate analysis. The failure rate for miniplates was significantly lower than for miniscrews. All types of mini-implants, especially the self-drilling stainless steel miniscrews, showed decreased stability if the previous implantation had failed. The stability of predrilled titanium miniscrews and self-drilling stainless steel miniscrews were comparable at the first implantation. However, the failure rate of stainless steel miniscrews increased at the second implantation. The univariate analysis showed that the following variables had a significant influence on the failure rates of mini-implants: age of patient, type of mini-implant, site of implantation, and characteristics of the soft tissue around the mini-implants. The generalized estimating equation analysis revealed that mini-implants with miniscrews used in patients younger than 35 years, subjected to orthodontic loading after 30 days and implanted on the alveolar bone ridge, have a significantly higher risk of failure. This study revealed that once the dental surgeon becomes familiar with the procedure, the stability of orthodontic mini-implants depends on the type of mini-implant, age of the patient, implantation site, and the healing time of the mini-implant. Miniplates are a more feasible anchorage system when miniscrews fail repeatedly. Copyright © 2014. Published by Elsevier B.V.

  20. Fatigue failure kinetics and structural changes in lead-free interconnects due to mechanical and thermal cycling

    NASA Astrophysics Data System (ADS)

    Fiedler, Brent Alan

    Environmental and human health concerns drove European parliament to mandate the Reduction of Hazardous Substances (RoHS) for electronics. This was enacted in July 2006 and has practically eliminated lead in solder interconnects. There is concern in the electronics packaging community because modern lead-free solder is rich in tin. Presently, near-eutectic tin-silver-copper solders are favored by industry. These solders are stiffer than the lead-tin near-eutectic alloys, have a higher melting temperature, fewer slip systems, and form intermetallic compounds (IMC) with Cu, Ni and Ag, each of which tend to have a negative effect on lifetime. In order to design more reliable interconnects, the experimental observation of cracking mechanisms is necessary for the correct application of existing theories. The goal of this research is to observe the failure modes resulting from mode II strain and to determine the damage mechanisms which describe fatigue failures in 95.5 Sn- 4.0 Ag - 0.5 Cu wt% (SAC405) lead-free solder interconnects. In this work the initiation sites and crack paths were characterized for SAC405 ball-grid array (BGA) interconnects with electroless-nickel immersion-gold (ENIG) pad-finish. The interconnects were arranged in a perimeter array and tested in fully assembled packages. Evaluation methods included monotonic and displacement controlled mechanical shear fatigue tests, and temperature cycling. The specimens were characterized using metallogaphy, including optical and electron microscopy as well as energy dispersive spectroscopy (EDS) and precise real-time electrical resistance structural health monitoring (SHM). In mechanical shear fatigue tests, strain was applied by the substrates, simulating dissimilar coefficients of thermal expansion (CTE) between the board and chip-carrier. This type of strain caused cracks to initiate in the soft Sn-rich solder and grow near the interface between the solder and intermetallic compounds (IMC). The growth near the interface was found to be caused by dislocation pile-ups at the IMC when the plastic zone ahead of the crack tip reached this interface. In temperature cycling testing, strains arose within the interconnect due to CTE mismatch between the solder and IMC. The substrates had matched CTE for all specimens in this research. Because of this, all the temperature cycling cracks were observed at interfaces, generally between the solder and IMC. Additionally, real-time electrical resistance may be a useful non-destructive evaluation (NDE) tool for the empirical observation of fatigue cracking in ball-grid arrays (BGA) during both mechanical and temperature cycling tests.

  1. Passive Capture Joint with Three Degrees of Freedom

    NASA Technical Reports Server (NTRS)

    Cloyd, Richard A. (Inventor); Weddendorf, Bruce (Inventor)

    2001-01-01

    A passive capture joint with three degrees of freedom is presented wherein two structural elements are joined together solely by moving the two elements into position, and which when joined together have rotation in all three axes. The inventive apparatus is comprised of two halves: (1) a joint ball mounted on a stem as in a common trailer hitch, and; (2) a socket. The socket consists of a base having an exterior wall and forming an interior chamber, the chamber having a top end and a bottom end, and an interior wall. The chamber is open at the top end, and forms a spherical cup at the bottom end. The socket base's interior chamber is sized to accept the joint ball. The base also forms at least one bore at an acute angle away from the interior chamber's open end. The bores have a first opening in the interior wall of the chamber, and a second opening in the exterior wall of the base. Retaining balls sized to fit within the bores, but to only partially pass through the first opening, are moveably housed within the bores. The retaining balls are moveably held in the first opening by a compression spring housed in the bore. As the joint ball is inserted in the chamber it forces the retaining balls back into the bore until the equator of the joint ball passes. Because the bore is at an acute angle to the chamber the joint ball cannot exit the chamber without the joint being unlocked. The joint is unlocked by rotating a locking ring which encircles the base and covers the second opening. The locking ring has a radial slot for each retaining ball, disposed angularly from the base, and sized to allow passage of the retaining ball in the radial direction when the locking ring is rotated to align the radial slot with the second opening.

  2. Contribution of Visual Information about Ball Trajectory to Baseball Hitting Accuracy

    PubMed Central

    Higuchi, Takatoshi; Nagami, Tomoyuki; Nakata, Hiroki; Watanabe, Masakazu; Isaka, Tadao; Kanosue, Kazuyuki

    2016-01-01

    The contribution of visual information about a pitched ball to the accuracy of baseball-bat contact may vary depending on the part of trajectory seen. The purpose of the present study was to examine the relationship between hitting accuracy and the segment of the trajectory of the flying ball that can be seen by the batter. Ten college baseball field players participated in the study. The systematic error and standardized variability of ball-bat contact on the bat coordinate system and pitcher-to-catcher direction when hitting a ball launched from a pitching machine were measured with or without visual occlusion and analyzed using analysis of variance. The visual occlusion timing included occlusion from 150 milliseconds (ms) after the ball release (R+150), occlusion from 150 ms before the expected arrival of the launched ball at the home plate (A-150), and a condition with no occlusion (NO). Twelve trials in each condition were performed using two ball speeds (31.9 m·s-1 and 40.3 m·s-1). Visual occlusion did not affect the mean location of ball-bat contact in the bat’s long axis, short axis, and pitcher-to-catcher directions. Although the magnitude of standardized variability was significantly smaller in the bat’s short axis direction than in the bat’s long axis and pitcher-to-catcher directions (p < 0.001), additional visible time from the R+150 condition to the A-150 and NO conditions resulted in a further decrease in standardized variability only in the bat’s short axis direction (p < 0.05). The results suggested that there is directional specificity in the magnitude of standardized variability with different visible time. The present study also confirmed the limitation to visual information is the later part of the ball trajectory for improving hitting accuracy, which is likely due to visuo-motor delay. PMID:26848742

  3. The Effect of Temporal Perception on Weight Perception

    PubMed Central

    Kambara, Hiroyuki; Shin, Duk; Kawase, Toshihiro; Yoshimura, Natsue; Akahane, Katsuhito; Sato, Makoto; Koike, Yasuharu

    2013-01-01

    A successful catch of a falling ball requires an accurate estimation of the timing for when the ball hits the hand. In a previous experiment in which participants performed ball-catching task in virtual reality environment, we accidentally found that the weight of a falling ball was perceived differently when the timing of ball load force to the hand was shifted from the timing expected from visual information. Although it is well known that spatial information of an object, such as size, can easily deceive our perception of its heaviness, the relationship between temporal information and perceived heaviness is still not clear. In this study, we investigated the effect of temporal factors on weight perception. We conducted ball-catching experiments in a virtual environment where the timing of load force exertion was shifted away from the visual contact timing (i.e., time when the ball hit the hand in the display). We found that the ball was perceived heavier when force was applied earlier than visual contact and lighter when force was applied after visual contact. We also conducted additional experiments in which participants were conditioned to one of two constant time offsets prior to testing weight perception. After performing ball-catching trials with 60 ms advanced or delayed load force exertion, participants’ subjective judgment on the simultaneity of visual contact and force exertion changed, reflecting a shift in perception of time offset. In addition, timing of catching motion initiation relative to visual contact changed, reflecting a shift in estimation of force timing. We also found that participants began to perceive the ball as lighter after conditioning to 60 ms advanced offset and heavier after the 60 ms delayed offset. These results suggest that perceived heaviness depends not on the actual time offset between force exertion and visual contact but on the subjectively perceived time offset between them and/or estimation error in force timing. PMID:23450805

  4. Scale-up of organic reactions in ball mills: process intensification with regard to energy efficiency and economy of scale.

    PubMed

    Stolle, Achim; Schmidt, Robert; Jacob, Katharina

    2014-01-01

    The scale-up of the Knoevenagel-condensation between vanillin and barbituric acid carried out in planetary ball mills is investigated from an engineering perspective. Generally, the reaction proceeded in the solid state without intermediate melting and afforded selectively only one product. The reaction has been used as a model to analyze the influence and relationship of different parameters related to operation in planetary ball mills. From the viewpoint of technological parameters the milling ball diameter, dMB, the filling degree with respect to the milling balls' packing, ΦMB,packing, and the filling degree of the substrates with respect to the void volume of the milling balls' packing, ΦGS, have been investigated at different reaction scales. It was found that milling balls with small dMB lead to higher yields within shorter reaction time, treaction, or lower rotation frequency, rpm. Thus, the lower limit is set considering the technology which is available for the separation of the milling balls from the product after the reaction. Regarding ΦMB,packing, results indicate that the optimal value is roughly 50% of the total milling beakers' volume, VB,total, independent of the reaction scale or reaction conditions. Thus, 30% of VB,total are taken by the milling balls. Increase of the initial batch sizes changes ΦGS significantly. However, within the investigated parameter range no negative influence on the yield was observed. Up to 50% of VB,total can be taken over by the substrates in addition to 30% for the total milling ball volume. Scale-up factors of 15 and 11 were realized considering the amount of substrates and the reactor volume, respectively. Beside technological parameters, variables which influence the process itself, treaction and rpm, were investigated also. Variation of those allowed to fine-tune the reaction conditions in order to maximize the yield and minimize the energy intensity.

  5. Polycyclic aromatic hydrocarbon (PAHs) and hopanes in stranded tar-balls on the coasts of Peninsular Malaysia: applications of biomarkers for identifying sources of oil pollution.

    PubMed

    Zakaria, M P; Okuda, T; Takada, H

    2001-12-01

    Malaysian coasts are subjected to various threats of petroleum pollution including routine and accidental oil spill from tankers, spillage of crude oils from inland and off-shore oil fields, and run-off from land-based human activities. Due to its strategic location, the Straits of Malacca serves as a major shipping lane. This paper expands the utility of biomarker compounds, hopanes, in identifying the source of tar-balls stranded on Malaysian coasts. 20 tar-ball samples collected from the east and west coast were analyzed for hopanes and polycyclic aromatic hydrocarbons (PAHs). Four of the 13 tar-ball samples collected from the west coast of Peninsular Malaysia were identified as the Middle East crude oil (MECO) based on their biomarker signatures, suggesting tanker-derived sources significantly contributing the petroleum pollution in the Straits of Malacca. The tar-balls found on the east coast seem to originate from the offshore oil platforms in the South China Sea. The presence of South East Asian crude oil (SEACO) tar-balls on the west coast carry several plausible explanations. Some of the tar-balls could have been transported via sea currents from the east coast. The tankers carrying SEACO to other countries could have accidentally spilt the oil as well. Furthermore, discharge of tank washings and ballast water from the tankers were suggested based on the abundance in higher molecular weight n-alkanes and the absence of unresolved complex mixture (UCM) in the tar-ball samples. The other possibilities are that the tar-balls may have been originated from the Sumatran oil fields and spillage of domestic oil from oil refineries in Port Dickson and Malacca. The results of PAHs analysis suggest that all the tar-ball samples have undergone various extent of weathering through evaporation, dissolution and photooxidation.

  6. Contribution of Visual Information about Ball Trajectory to Baseball Hitting Accuracy.

    PubMed

    Higuchi, Takatoshi; Nagami, Tomoyuki; Nakata, Hiroki; Watanabe, Masakazu; Isaka, Tadao; Kanosue, Kazuyuki

    2016-01-01

    The contribution of visual information about a pitched ball to the accuracy of baseball-bat contact may vary depending on the part of trajectory seen. The purpose of the present study was to examine the relationship between hitting accuracy and the segment of the trajectory of the flying ball that can be seen by the batter. Ten college baseball field players participated in the study. The systematic error and standardized variability of ball-bat contact on the bat coordinate system and pitcher-to-catcher direction when hitting a ball launched from a pitching machine were measured with or without visual occlusion and analyzed using analysis of variance. The visual occlusion timing included occlusion from 150 milliseconds (ms) after the ball release (R+150), occlusion from 150 ms before the expected arrival of the launched ball at the home plate (A-150), and a condition with no occlusion (NO). Twelve trials in each condition were performed using two ball speeds (31.9 m·s-1 and 40.3 m·s-1). Visual occlusion did not affect the mean location of ball-bat contact in the bat's long axis, short axis, and pitcher-to-catcher directions. Although the magnitude of standardized variability was significantly smaller in the bat's short axis direction than in the bat's long axis and pitcher-to-catcher directions (p < 0.001), additional visible time from the R+150 condition to the A-150 and NO conditions resulted in a further decrease in standardized variability only in the bat's short axis direction (p < 0.05). The results suggested that there is directional specificity in the magnitude of standardized variability with different visible time. The present study also confirmed the limitation to visual information is the later part of the ball trajectory for improving hitting accuracy, which is likely due to visuo-motor delay.

  7. Characterization of alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) in tar-balls collected from the East Coast of Peninsular Malaysia.

    PubMed

    Chandru, Kuhan; Zakaria, Mohamad Pauzi; Anita, Sofia; Shahbazi, Azadeh; Sakari, Mahyar; Bahry, Pourya Shahpoury; Mohamed, Che Abd Rahim

    2008-05-01

    The East Coast of Peninsular Malaysia faces the South China Sea and is vulnerable to oil pollution because of intense petroleum production activities in the area. The South China Sea is also a favored route for supertankers carrying crude oil to the Far East. Consequently, oil spills can occur, causing pollution and contamination in the surrounding areas. Residual oil spills stranded on coastal beaches usually end up as tar-balls. Elucidating the sources of tar-balls using a molecular marker approach is essential in assessing environmental impacts and perhaps settling legal liabilities for affected parties. This study utilizes a multimodal molecular marker approach through the use of diagnostic ratios of alkanes, hopanes, and polycyclic aromatic hydrocarbons (PAHs) to determine the source, distribution and weathering of tar-balls. Hopane ratios (e.g., C29/C30, and summation C31-C35/C30 ratios) were used to identify the sources of tar-balls. The weathering effects were distinguished by using alkanes, namely the unresolved complex mixture (UCM) and low molecular weight/high molecular weight (L/H) ratios. Similarly, PAHs were also used for the determination of weathering processes undergone by the tar-balls. This multimodal molecular marker gave a very strong indication of the sources of tar-balls in this study. For example, 16 out of 17 samples originated from South East Asian Crude Oil (SEACO) with one sample from Merang, Terengganu originating from North Sea Oil (Troll). The TRME-2 sample may have come from a supertanker's ballast water discharge. The second possibility is that the tar-ball may have been transported via oceanographic currents. All 'weathered' sample characterizations were based on the presence of UCM and other ratios. The multimodal molecular marker approach applied in this study has enabled us to partially understand the transport behavior of tar-balls in the marine environment and has revealed insights into the weathering process of tar-balls.

  8. Heated-Pressure-Ball Monopropellant Rocket Engine

    NASA Technical Reports Server (NTRS)

    Greene, William D.

    2005-01-01

    A recent technology disclosure presents a concept for a monopropellant thermal spacecraft thruster that would feature both the simplicity of a typical prior pressure-fed propellant supply system and the smaller mass and relative compactness of a typical prior pump-fed system. The source of heat for this thruster would likely be a nuclear- fission reactor. The propellant would be a cryogenic fluid (a liquefied low-molecular-weight gas) stored in a tank at a low pressure. The propellant would flow from the tank, through a feedline, into three thick-walled spherical tanks, denoted pressure balls, that would be thermally connected to the reactor. Valves upstream and downstream of the pressure balls would be operated in a three-phase cycle in which propellant would flow into one pressure ball while the fluid underwent pressurization through heating in another ball and pressurized propellant was discharged from the remaining ball into the reactor. After flowing through the reactor, wherein it would be further heated, the propellant would be discharged through an exhaust nozzle to generate thrust. A fraction of the pressurized gas from the pressure balls would be diverted to maintain the desired pressure in the tank.

  9. Antennal pointing at a looming object in the cricket Acheta domesticus.

    PubMed

    Yamawaki, Yoshifumi; Ishibashi, Wakako

    2014-01-01

    Antennal pointing responses to approaching objects were observed in the house cricket Acheta domesticus. In response to a ball approaching from the lateral side, crickets oriented the antenna ipsilateral to the ball towards it. In response to a ball approaching from the front, crickets oriented both antennae forward. Response rates of antennal pointing were higher when the ball was approaching from the front than from behind. The antennal angle ipsilateral to the approaching ball was positively correlated with approaching angle of the ball. Obstructing the cricket's sight decreased the response rate of antennal pointing, suggesting that this response was elicited mainly by visual stimuli. Although the response rates of antennal pointing decreased when the object ceased its approach at a great distance from the cricket, antennal pointing appeared to be resistant to habituation and was not substantially affected by the velocity, size and trajectory of an approaching ball. When presented with computer-generated visual stimuli, crickets frequently showed the antennal pointing response to a darkening stimulus as well as looming and linearly-expanding stimuli. Drifting gratings rarely elicited the antennal pointing. These results suggest that luminance change is sufficient to elicit antennal pointing. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Magnetically driven, acoustically tracked, translating-ball rheometer for small, opaque samples

    NASA Astrophysics Data System (ADS)

    Tran-Son-Tay, R.; Beaty, B. B.; Acker, D. N.; Hochmuth, R. M.

    1988-08-01

    A new rheometer has been designed to measure the rheological properties at low Reynolds number of microliter quantities of opaque suspensions. The rheometer uses a falling-ball technique to measure steady-state viscosity and a vertically oscillating, magnetically driven ball for viscoelastic measurements. The motion of the ball is tracked by ultrasound echo location, in which sound waves are transmitted and received by an ultrasound transducer mounted at the base of the tube. Concentrated suspensions of red blood cells are used as opaque test samples. The results obtained are in good agreement with those reported in the literature. The data confirm the fact that a concentrated suspension of red blood cells behaves as a shear thinning material and that the energy stored by the suspension during an oscillatory cycle increases with frequency. Testing of the rheometer is also made by using a Newtonian silicone oil. Viscosity measurements obtained with both the falling- and oscillating-ball methods are consistent and are within 2% of the value of 47.3±0.5 cP given by the Cannon-Fenske viscometer. However, it is found that the oscillating-ball technique gives the largest standard deviation, 6%, as opposed to 2% for the falling-ball technique.

  11. Experimental Investigation of Friction and Wear Behavior of 304L Stainless Steel Sliding Against Different Counterface in Dry Contact

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Olofinjana, Bolutife; Ajayi, Oyelayo O.; Lorenzo-Martin, Cinta

    In this study, friction and wear behavior of 304L stainless steel sliding against different ball counterface under dry contact was investigated. Tests were conducted using a ball-on-flat contact configuration in reciprocating sliding with 440C stainless steel, Al alloy (2017) and bronze ball counterfaces under different loads. Detailed surface analysis was also done using 3-D profilometry technique and optical microscopy in order to determine wear mechanism and dimension. All the pairs exhibited initial rapid increase in coefficient of friction after which a variety of friction behavior, depending on the ball counterface, was observed. The flat and the ball counterface in 304Lmore » stainless steel-440C stainless steel pair showed wear that was proportional to applied load. In both 304L stainless steel-Al alloy (2017) and 304L stainless steel-bronze pairs, ball samples showed severe wear that was proportional to the applied load while material transfer from the different balls occurred in the flat. The study concluded that friction and wear were not material properties but a kind of responses that characterize a pair of surfaces in contact undergoing relative motion.« less

  12. Determination of trace elements and their concentrations in clay balls: problem of geophagia practice in Ghana.

    PubMed

    Arhin, Emmanuel; Zango, Musah S

    2017-02-01

    Ten samples of 100 g weight were subsampled from 1400 g of the clay balls from which the contained trace element levels were determined by X-ray fluorescence technique. The results of trace elements in the clay balls were calibrated using certified reference materials "MAJMON" and "BH-1." The results showed elevated concentrations but with different concentration levels in the regions, particularly with arsenic, chromium, cobalt, Cs, Zr and La. These trace elements contained in the clay balls are known to be hazardous to human health. Thence the relatively high concentrations of these listed trace elements in clay balls in the three regions, namely Ashanti, Upper East and Volta, which are widely sold in markets in Ghana, could present negative health impact on consumers if consumed at 70 g per day or more and on regular basis. On the basis of these, the study concludes an investigation to establish breakeven range for trace element concentrations in the clay balls as it has been able to demonstrate the uneven and elevated values in them. The standardized safe ranges of trace elements will make the practice safer for the people that ingest clay balls in Ghana.

  13. Aerodynamics of sports balls

    NASA Astrophysics Data System (ADS)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  14. Aerodynamics of sports balls

    NASA Technical Reports Server (NTRS)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  15. Concentrations of polychlorinated dibenzo-p-dioxins in processed ball clay from the United States.

    PubMed

    Ferrario, Joseph; Byrne, Christian; Schaum, John

    2007-04-01

    Processed ball clays commonly used by the ceramic art industry in the United States were collected from retail suppliers and analyzed for the presence and concentration of the 2,3,7,8-Cl substituted polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDDs/PCDFs). The average PCDD toxic equivalent (TEQ) concentrations of these processed ball clays was approximately 800 pg/g (TEQ-WHO) with characteristic congener profiles and isomer distributions similar to patterns of previously analyzed raw and processed ball clays. The PCDF concentrations were below the average limit of detection (LOD) of 0.5 pg/g. Correlation analyses reveal no significant relationship between total organic carbon (TOC) and either individual, homologues, and total tetra-through octa-chlorinated PCDD congeners, or TEQ concentrations of the processed ball clays. The results are consistent with earlier studies on levels of PCDDs in ball clays. Data from earlier studies indicated that dioxins may be released to the environment during the processing of raw clay or the firing process used in commercial ceramic facilities. The presence of dioxin in the clays also raises concerns about potential occupational exposure for individuals involved in the mining/processing of ball clay, ceramics manufacturing and ceramic artwork.

  16. Trunk muscle activity during bridging exercises on and off a Swissball

    PubMed Central

    Lehman, Gregory J; Hoda, Wajid; Oliver, Steven

    2005-01-01

    Background A Swiss ball is often incorporated into trunk strengthening programs for injury rehabilitation and performance conditioning. It is often assumed that the use of a Swiss ball increases trunk muscle activity. The aim of this study was to determine whether the addition of a Swiss ball to trunk bridging exercises influences trunk muscle activity. Methods Surface electrodes recorded the myoelectric activity of trunk muscles during bridging exercises. Bridging exercises were performed on the floor as well as on a labile surface (Swiss ball). Results and Discussion During the prone bridge the addition of an exercise ball resulted in increased myoelectric activity in the rectus abdominis and external oblique. The internal oblique and erector spinae were not influenced. The addition of a swiss ball during supine bridging did not influence trunk muscle activity for any muscles studied. Conclusion The addition of a Swiss ball is capable of influencing trunk muscle activity in the rectus abdominis and external oblique musculature during prone bridge exercises. Modifying common bridging exercises can influence the amount of trunk muscle activity, suggesting that exercise routines can be designed to maximize or minimize trunk muscle exertion depending on the needs of the exercise population. PMID:16053529

  17. Infrared emission spectrophotometric study of the changes produced by TiN coating of metal surfaces in an operating EHD contact

    NASA Technical Reports Server (NTRS)

    Keller, L. E.; Lauer, J. L.; Jones, W. R., Jr.

    1982-01-01

    Infrared emission spectra and related measurements were obtained from an operating ball/plate elastohydrodynamic (EHD) sliding contact under a variety of operating conditions. In order to be able to compare the effect of the ball surface, some of the balls were coated with a thin layer of titanium nitride (TiN) by vapor deposition. Polyphenyl ether (5P4E) was used as lubricant and 1 percent of 1,1,2-trichloroethane (TCE) as a surface-probing additive. TiN is chemically inert and its thermal conductivity is lower than that of steel. Therefore, the overall temperatures with TiN coated balls were higher. Nevertheless, no scuffing was observed with the coated balls under conditions giving rise to scuffing with the uncoated balls. Tractions were lower with the TiN coated balls and always when TCE was added to the 5P4E. These findings were found to be inversely related to the degree of polarization of the spectral emission bands. The intensity and the dichrosim of these bands were related to shear rates and inlet conditions of the EHD contact.

  18. Kinematics of the field hockey penalty corner push-in.

    PubMed

    Kerr, Rebecca; Ness, Kevin

    2006-01-01

    The aims of the study were to determine those variables that significantly affect push-in execution and thereby formulate coaching recommendations specific to the push-in. Two 50 Hz video cameras recorded transverse and longitudinal views of push-in trials performed by eight experienced and nine inexperienced male push-in performers. Video footage was digitized for data analysis of ball speed, stance width, drag distance, drag time, drag speed, centre of massy displacement and segment and stick displacements and velocities. Experienced push-in performers demonstrated a significantly greater (p < 0.05) stance width, a significantly greater distance between the ball and the front foot at the start of the push-in and a significantly faster ball speed than inexperienced performers. In addition, the experienced performers showed a significant positive correlation between ball speed and playing experience and tended to adopt a combination of simultaneous and sequential segment rotation to achieve accuracy and fast ball speed. The study yielded the following coaching recommendations for enhanced push-in performance: maximize drag distance by maximizing front foot-ball distance at the start of the push-in; use a combination of simultaneous and sequential segment rotations to optimise both accuracy and ball speed and maximize drag speed.

  19. Psychometric Properties of the Mini-Social Phobia Inventory

    PubMed Central

    Seeley-Wait, Elizabeth; Rapee, Ronald M.

    2009-01-01

    Objective: Although a potentially useful measure, to date, there has been only one published test of the psychometric properties of the Mini-Social Phobia Inventory (Mini-SPIN). Therefore, the psychometric properties of the Mini-SPIN, a brief 3-item screen for social anxiety disorder, were examined. Method: Participants were 186 patients diagnosed with social anxiety disorder (DSM-IV criteria) attending a specialized anxiety disorders clinic for treatment, and 56 nonclinical participants were recruited to serve as comparisons. Participants were diagnosed using the Anxiety Disorders Interview Schedule for DSM-IV, and they also completed the Mini-SPIN, the Social Interaction Anxiety Scale (SIAS), and the Social Phobia Scale (SPS). Construct validity for the Mini-SPIN was assessed by its correlations with the SIAS and the SPS. Reliability, internal consistency, discriminant validity, and sensitivity to change were also examined, and receiver operating characteristic curve analysis was conducted to determine guidelines regarding cutoff scores for the Mini-SPIN. The study was conducted between April 1999 and December 2001. Results: Supporting findings from a previous study, strong support was found for the Mini-SPIN's ability to discriminate individuals with social anxiety disorder from those without the disorder. Receiver operating characteristic analysis revealed that using a cutoff score of 6 or greater (P < .001), the Mini-SPIN demonstrates excellent sensitivity, specificity, and positive and negative predictive values. Conclusions: Findings suggest that the Mini-SPIN is a reliable and valid instrument for screening social anxiety disorder in adults. Importantly, the use of the Mini-SPIN in primary care may be one way to address the underrecognition of social anxiety disorder in such settings. Due to the ease and brevity of the measure, it also shows potential for use in epidemiology. Given that this study has revealed the ability of the Mini-SPIN to reflect treatment change, the Mini-SPIN may also be considered for use in treatment outcome studies that specifically require minimal assessment. PMID:19956461

  20. αA-Crystallin–Derived Mini-Chaperone Modulates Stability and Function of Cataract Causing αAG98R-Crystallin

    PubMed Central

    Raju, Murugesan; Santhoshkumar, Puttur; Sharma, K. Krishna

    2012-01-01

    Background A substitution mutation in human αA-crystallin (αAG98R) is associated with autosomal dominant cataract. The recombinant mutant αAG98R protein exhibits altered structure, substrate-dependent chaperone activity, impaired oligomer stability and aggregation on prolonged incubation at 37°C. Our previous studies have shown that αA-crystallin–derived mini-chaperone (DFVIFLDVKHFSPEDLTVK) functions like a molecular chaperone by suppressing the aggregation of denaturing proteins. The present study was undertaken to determine the effect of αA-crystallin–derived mini-chaperone on the stability and chaperone activity of αAG98R-crystallin. Methodology/Principal Findings Recombinant αAG98R was incubated in presence and absence of mini-chaperone and analyzed by chromatographic and spectrometric methods. Transmission electron microscope was used to examine the effect of mini-chaperone on the aggregation propensity of mutant protein. Mini-chaperone containing photoactive benzoylphenylalanine was used to confirm the interaction of mini-chaperone with αAG98R. The rescuing of chaperone activity in mutantα-crystallin (αAG98R) by mini-chaperone was confirmed by chaperone assays. We found that the addition of the mini-chaperone during incubation of αAG98R protected the mutant crystallin from forming larger aggregates that precipitate with time. The mini-chaperone-stabilized αAG98R displayed chaperone activity comparable to that of wild-type αA-crystallin. The complexes formed between mini-αA–αAG98R complex and ADH were more stable than the complexes formed between αAG98R and ADH. Western-blotting and mass spectrometry confirmed the binding of mini-chaperone to mutant crystallin. Conclusion/Significance These results demonstrate that mini-chaperone stabilizes the mutant αA-crystallin and modulates the chaperone activity of αAG98R. These findings aid in our understanding of how to design peptide chaperones that can be used to stabilize mutant αA-crystallins and preserve the chaperone function. PMID:22970163

  1. Evaluation of fracture torque resistance of orthodontic mini-implants.

    PubMed

    Dalla Rosa, Fernando; Burmann, Paola Fp; Ruschel, Henrique C; Vargas, Ivana A; Kramer, Paulo F

    2016-12-01

    This study sought to assess the fracture torque resistance of mini-implants used for orthodontic anchorage. Five commercially available brands of mini-implants were used (SIN®, CONEXÃO®, NEODENT®, MORELLI®, andFORESTADENT®). Ten mini-implants of each diameter of each brand were tested, for a total 100 specimens. The mini-implants were subject to a static torsion test as described in ASTMstandard F543. Analysis of variance (ANOVA) with the Tukey multiple comparisons procedure was used to assess results. Overall, mean fracture strength ranged from 15.7 to 70.4 N·cm. Mini-implants with larger diameter exhibited higher peak torque values at fracture and higher yield strength, regardless of brand. In addition, significant differences across brands were observed when implants were stratified by diameter. In conclusion, larger mini-implant diameter is associated with increased fracture torque resistance. Additional information on peak torque values at fracture of different commercial brands of mini-implants may increase the success rate of this orthodontic anchorage modality. Sociedad Argentina de Investigación Odontológica.

  2. Semantic Interoperability for Computational Mineralogy: Experiences of the eMinerals Consortium

    NASA Astrophysics Data System (ADS)

    Walker, A. M.; White, T. O.; Dove, M. T.; Bruin, R. P.; Couch, P. A.; Tyer, R. P.

    2006-12-01

    The use of atomic scale computer simulation of minerals to obtain information for geophysics and environmental science has grown enormously over the past couple of decades. It is now routine to probe mineral behavior in the Earth's deep interior and in the surface environment by borrowing methods and simulation codes from computational chemistry and physics. It is becoming increasingly important to use methods embodied in more than one of these codes to solve any single scientific problem. However, scientific codes are rarely designed for easy interoperability and data exchange; data formats are often code-specific, poorly documented and fragile, liable to frequent change between software versions, and even compiler versions. This means that the scientist's simple desire to use the methodological approaches offered by multiple codes is frustrated, and even the sharing of data between collaborators becomes fraught with difficulties. The eMinerals consortium was formed in the early stages of the UK eScience program with the aim of developing the tools needed to apply atomic scale simulation to environmental problems in a grid-enabled world, and to harness the computational power offered by grid technologies to address some outstanding mineralogical problems. One example of the kind of problem we can tackle is the origin of the compressibility anomaly in silica glass. By passing data directly between simulation and analysis tools we were able to probe this effect in more detail than has previously been possible and have shown how the anomaly is related to the details of the amorphous structure. In order to approach this kind of problem we have constructed a mini-grid, a small scale and extensible combined compute- and data-grid that allows the execution of many calculations in parallel, and the transparent storage of semantically-rich marked-up result data. Importantly, we automatically capture multiple kinds of metadata and key results from each calculation. We believe that the lessons learned and tools developed will be useful in many areas of science beyond the computational mineralogy. Key tools that will be described include: a pure Fortran XML library (FoX) that presents XPath, SAX and DOM interfaces as well as permitting the easy production of valid XML from legacy Fortran programs; a job submission framework that automatically schedules calculations to remote grid resources, handles data staging and metadata capture; and a tool (AgentX) that map concepts from an ontology onto locations in documents of various formats that we use to enable data exchange.

  3. Lighting up the World The first global application of the open source, spatial electrification toolkit (ONSSET)

    NASA Astrophysics Data System (ADS)

    Mentis, Dimitrios; Howells, Mark; Rogner, Holger; Korkovelos, Alexandros; Siyal, Shahid; Broad, Oliver; Zepeda, Eduardo; Bazilian, Morgan

    2016-04-01

    In September 2015, the international community has adopted a new set of targets, following and expanding on the millennium development goals (MDGs), the Sustainable Development Goals (SDGs). Ensuring access to affordable, reliable, sustainable and modern energy for all is one of the 17 set goals that each country should work towards realizing. According to the latest Global Tracking Framework, 15% of the global population live without access to electricity. The majority of those (87%) reside in rural areas. Countries can reach universal access through various electrification options, depending on different levels of energy intensity and local characteristics of the studied areas, such as renewable resources availability, spatially differentiated costs of diesel-fuelled electricity generation, distance from power network and major cities, population density and others, data which are usually inadequate in national databases. This general paucity of reliable energy-related information in developing countries calls for the utilization of geospatial data. This paper presents a Geographic Information Systems (GIS) based electrification analysis for all countries that have not yet reached full access to electricity (Sub-Saharan Africa, Developing Asia, Latin America and Middle East). The cost optimal mix of electrification options ranges from grid extensions to mini-grid and stand-alone applications and is identified for all relevant countries. It is illustrated how this mix is influenced by scrolling through various electrification levels and different oil prices. Such an analysis helps direct donors and investors and inform multinational actions with regards to investments related to energy access.

  4. Downward finger displacement distinguishes Parkinson disease dementia from Alzheimer disease.

    PubMed

    Lieberman, Abraham; Deep, Aman; Shi, Jiong; Dhall, Rohit; Shafer, Saulena; Moguel-Cobos, Guillermo; Dhillon, Ravneet; Frames, Christopher W; McCauley, Margaret

    2018-02-01

    Purpose/Aim of the study: To study finger displacement in patients with Parkinson disease dementia (PDD) and in patients with Alzheimer disease (AD). We examined 56 patients with PDD and 35 with AD. Patients were examined during their regular outpatient clinic visit. Finger displacement was measured by observers not actively involved in the study using a creative grid ruler for all PDD and AD patients. Finger displacement was examined by asking patients to point their index fingers toward the grid ruler with the nails facing upward. Patients were asked to maintain the pointing position for 15 s. After 15 s, patients were asked to close their eyes for another 15 s while maintaining the same position. A positive result was downward index finger displacement of ≥5 cm within the 15-second time window with eyes closed. Of the 56 PDD patients, 53 had bilateral finger displacement of >5 cm. In comparison, of the 35 AD patients, only 1 patient had minimal displacement. Results of the non-invasive finger displacement test may provide insight, on an outpatient basis, of the integrity of subcortical-cortical circuits. Downward finger displacement, especially bilateral downward displacement, may signal the extensive disruption of subcortical-cortical circuits that occurs in PDD patients. AChE: acetylcholinesterase; AD: Alzheimer disease; DLB: dementia with Lewy bodies; ET: essential tremor; MDS-UPDRS: Movement Disorder Society-sponsored Unified Parkinson's Disease Rating Scale; MMSE: Mini-Mental State Examination; PD: Parkinson disease; PDD: Parkinson disease dementia.

  5. Gap junctions are selectively associated with interlocking ball-and-sockets but not protrusions in the lens.

    PubMed

    Biswas, Sondip K; Lee, Jai Eun; Brako, Lawrence; Jiang, Jean X; Lo, Woo-Kuen

    2010-11-09

    Ball-and-sockets and protrusions are specialized interlocking membrane domains between lens fibers of all species studied. Ball-and-sockets and protrusions are similar in their shape, size, and surface morphology, and are traditionally believed to play a key role in maintaining fiber-to-fiber stability. Here, we evaluate the hypothesis that ball-and-sockets and protrusions possess important structural and functional differences during fiber cell differentiation and maturation. Intact lenses of leghorn chickens (E7 days to P62 weeks old) and rhesus monkeys (1.5-20 years old) were studied with SEM, freeze-fracture TEM, freeze-fracture immunogold labeling (FRIL), and filipin cytochemistry for membrane cholesterol detection. SEM showed that ball-and-sockets were distributed along the long and short sides of hexagonal fiber cells, whereas protrusions were located along the cell corners, from superficial to deep cortical regions in both chicken and monkey lenses. Importantly, by freeze-fracture TEM, we discovered the selective association of gap junctions with all ball-and-sockets examined, but not with protrusions, in both species. In the embryonic chicken lens (E18), the abundant distribution of ball-and-socket gap junctions was regularly found in an approximate zone extending at least 300 μm deep from the equatorial surface of the superficial cortical fibers. Many ball-and-socket gap junctions often protruded deeply into neighboring cells. However, in the mature fibers of monkey lenses, several ball-and-sockets exhibited only partial occupancy of gap junctions with disorganized connexons, possibly due to degradation of gap junctions during fiber maturation and aging. FRIL analysis confirmed that both connexin46 (Cx46) and connexin50 (Cx50) antibodies specifically labeled ball-and-socket gap junctions, but not protrusions. Furthermore, filipin cytochemistry revealed that the ball-and-socket gap junctions contained different amounts of cholesterol (i.e., cholesterol-rich versus cholesterol-free) as seen with the filipin-cholesterol-complexes (FCC) in different cortical regions during maturation. In contrast, the protrusions contained consistently high cholesterol amounts (i.e., 402 FCCs/μm2 membrane) which were approximately two times greater than that of the cholesterol-rich gap junctions (i.e., 188 FCCs/μm2 membrane) found in ball-and-sockets. Gap junctions are regularly associated with all ball-and-sockets examined in metabolically active young cortical fibers, but not with protrusions, in both chicken and monkey lenses. Since these unique gap junctions often protrude deeply into neighboring cells to increase membrane surface areas, they may significantly facilitate cell-to-cell communication between young cortical fiber cells. In particular, the large number of ball-and-socket gap junctions found near the equatorial region may effectively facilitate the flow of outward current toward the equatorial surface for internal circulation of ions in the lens. In contrast, a consistent distribution of high concentrations of cholesterol in protrusions would make the protrusion membrane less deformable and would be more suitable for maintaining fiber-to-fiber stability during visual accommodation. Thus, the ball-and-sockets and protrusions are two structurally and functionally distinct membrane domains in the lens.

  6. Gap junctions are selectively associated with interlocking ball-and-sockets but not protrusions in the lens

    PubMed Central

    Biswas, Sondip K.; Lee, Jai Eun; Brako, Lawrence; Jiang, Jean X.

    2010-01-01

    Purpose Ball-and-sockets and protrusions are specialized interlocking membrane domains between lens fibers of all species studied. Ball-and-sockets and protrusions are similar in their shape, size, and surface morphology, and are traditionally believed to play a key role in maintaining fiber-to-fiber stability. Here, we evaluate the hypothesis that ball-and-sockets and protrusions possess important structural and functional differences during fiber cell differentiation and maturation. Methods Intact lenses of leghorn chickens (E7 days to P62 weeks old) and rhesus monkeys (1.5–20 years old) were studied with SEM, freeze-fracture TEM, freeze-fracture immunogold labeling (FRIL), and filipin cytochemistry for membrane cholesterol detection. Results SEM showed that ball-and-sockets were distributed along the long and short sides of hexagonal fiber cells, whereas protrusions were located along the cell corners, from superficial to deep cortical regions in both chicken and monkey lenses. Importantly, by freeze-fracture TEM, we discovered the selective association of gap junctions with all ball-and-sockets examined, but not with protrusions, in both species. In the embryonic chicken lens (E18), the abundant distribution of ball-and-socket gap junctions was regularly found in an approximate zone extending at least 300 μm deep from the equatorial surface of the superficial cortical fibers. Many ball-and-socket gap junctions often protruded deeply into neighboring cells. However, in the mature fibers of monkey lenses, several ball-and-sockets exhibited only partial occupancy of gap junctions with disorganized connexons, possibly due to degradation of gap junctions during fiber maturation and aging. FRIL analysis confirmed that both connexin46 (Cx46) and connexin50 (Cx50) antibodies specifically labeled ball-and-socket gap junctions, but not protrusions. Furthermore, filipin cytochemistry revealed that the ball-and-socket gap junctions contained different amounts of cholesterol (i.e., cholesterol-rich versus cholesterol-free) as seen with the filipin-cholesterol-complexes (FCC) in different cortical regions during maturation. In contrast, the protrusions contained consistently high cholesterol amounts (i.e., 402 FCCs/μm2 membrane) which were approximately two times greater than that of the cholesterol-rich gap junctions (i.e., 188 FCCs/μm2 membrane) found in ball-and-sockets. Conclusions Gap junctions are regularly associated with all ball-and-sockets examined in metabolically active young cortical fibers, but not with protrusions, in both chicken and monkey lenses. Since these unique gap junctions often protrude deeply into neighboring cells to increase membrane surface areas, they may significantly facilitate cell-to-cell communication between young cortical fiber cells. In particular, the large number of ball-and-socket gap junctions found near the equatorial region may effectively facilitate the flow of outward current toward the equatorial surface for internal circulation of ions in the lens. In contrast, a consistent distribution of high concentrations of cholesterol in protrusions would make the protrusion membrane less deformable and would be more suitable for maintaining fiber-to-fiber stability during visual accommodation. Thus, the ball-and-sockets and protrusions are two structurally and functionally distinct membrane domains in the lens. PMID:21139982

  7. Reliability and validity of the Mini International Neuropsychiatric Interview for Children and Adolescents (MINI-KID).

    PubMed

    Sheehan, David V; Sheehan, Kathy H; Shytle, R Douglas; Janavs, Juris; Bannon, Yvonne; Rogers, Jamison E; Milo, Karen M; Stock, Saundra L; Wilkinson, Berney

    2010-03-01

    To investigate the concurrent validity and reliability of the Mini International Neuropsychiatric Interview for Children and Adolescents (MINI-KID), a short structured diagnostic interview for DSM-IV and ICD-10 psychiatric disorders in children and adolescents. Participants were 226 children and adolescents (190 outpatients and 36 controls) aged 6 to 17 years. To assess the concurrent validity of the MINI-KID, participants were administered the MINI-KID and the Schedule for Affective Disorders and Schizophrenia for School Aged Children-Present and Lifetime Version (K-SADS-PL) by blinded interviewers in a counterbalanced order on the same day. Participants also completed a self-rated measure of disability. In addition, interrater (n = 57) and test-retest (n = 83) reliability data (retest interval, 1-5 days) were collected, and agreement between the parent version of the MINI-KID and the standard MINI-KID (n = 140) was assessed. Data were collected between March 2004 and January 2008. Substantial to excellent MINI-KID to K-SADS-PL concordance was found for syndromal diagnoses of any mood disorder, any anxiety disorder, any substance use disorder, any ADHD or behavioral disorder, and any eating disorder (area under curve [AUC] = 0.81-0.96, kappa = 0.56-0.87). Results were more variable for psychotic disorder (AUC = 0.94, kappa = 0.41). Sensitivity was substantial (0.61-1.00) for 15/20 individual DSM-IV disorders. Specificity was excellent (0.81-1.00) for 18 disorders and substantial (> 0.73) for the remaining 2. The MINI-KID identified a median of 3 disorders per subject compared to 2 on the K-SADS-PL and took two-thirds less time to administer (34 vs 103 minutes). Interrater and test-retest kappas were substantial to almost perfect (0.64-1.00) for all individual MINI-KID disorders except dysthymia. Concordance of the parent version (MINI-KID-P) with the standard MINI-KID was good. The MINI-KID generates reliable and valid psychiatric diagnoses for children and adolescents and does so in a third of the time as the K-SADS-PL. (c) 2010 Physicians Postgraduate Press, Inc.

  8. Use of mini-refuges by female northern pintails wintering in southwestern Louisiana

    USGS Publications Warehouse

    Cox, Robert R.; Afton, Alan D.

    1998-01-01

    The Gulf Coast Joint Venture of the North American Waterfowl Management Plan began contracting private agricultural lands (hereafter mini-refuges) in 1988 to expand existing sanctuaries for northern pintails (Anas acuta) in southwestern Louisiana. Previous research suggested that mini-refuges may prove more attractive to pintails than permanent, open-water pools (pools) on refuges because mini-refuges provide sanctuary and food during the day, whereas pools generally provide only sanctuary (Rave and Cordes 1993). We used radiotelemetry to compare diel use of mini-refuges and pools (Lacassine Pool and Amoco Pool) by female pintails in southwestern Louisiana during winters of 1991-1992 and 1992-1993. We examined variation in use of these areas in relation to female age (immature or adult), time period (prehunting season, first hunting season, time between split hunting seasons, second hunting season, and posthunting season), and winter (1991-1992 and 1992-1993). Diurnal use of min-refuges and pools differed among time periods, but differences were not consistent between winters. Mini-refuges accounted for <2% of diurnal use by pintails in 7 of 10 time-period and winter comparisons. Diurnal use of mini-refuges was lower than that of Lacassine Pool in 8 of 10 time-period and winter comparisons. Diurnal use of mini-refuges was lower than tha of Amoco pool during first hunting season in 1992-1993, but use of these areas did not differ within other time periods and winters. Nocturnal use of mini-refuges and pools did not differ in relation to female age, time period, winter, or individual bird. Nocturnal use of mini-refuges did not differ from that of Lacassine Pool. In contrast to predictions and findings by Rave and Cordes (1993), we found that: (1) female pintails did not use mini-refuges more than pools, and (2) female pintails used mini-refuges at night. We believe that use of mini-refuges by pintails could be increased if mini-refuges were (1) located in areas of traditionally high pintail use, (2) increased in size, (3) flooded immediately prior to hunting season, and (4) cleared of dense vegetation by rolling, disking, or burning.

  9. Modelling the Projectile Motion of a Cricket Ball.

    ERIC Educational Resources Information Center

    Coutis, Peter

    1998-01-01

    Presents the equations of motion governing the trajectory of a cricket ball subject to a linear drag force. Uses a perturbation expansion technique to solve the resulting trajectory equation for the range of a cricket ball struck into the outfield. (Author/ASK)

  10. Forces Acting on a Ball in an Air Jet

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Zendri, G.; Oss, S.

    2011-01-01

    The forces acting on a ball in an air jet have been measured using simple equipment. Such measurements allow quite a precise, non-ambiguous description and understanding of the physical mechanism which explains the famous levitating ball experiment. (Contains 7 figures.)

  11. The dynamics of hurricane balls

    NASA Astrophysics Data System (ADS)

    Andersen, W. L.; Werner, Steven

    2015-09-01

    We examine the theory of the hurricane balls toy. This toy consists of two steel balls, welded together that are sent spinning on a horizontal surface somewhat like a top. Unlike a top, at high frequency the symmetry axis approaches a limiting inclination that is not perpendicular to the surface. We calculate (and experimentally verify) the limiting inclinations for three toy geometries. We find that at high frequencies, hurricane balls provide an easily realized and testable example of the Poinsot theory of freely rotating symmetrical bodies.

  12. Axino dark matter and baryon number asymmetry production by the Q-ball decay in gauge mediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasuya, Shinta; Kawakami, Etsuko; Kawasaki, Masahiro, E-mail: kasuya@kanagawa-u.ac.jp, E-mail: kwkm@icrr.u-tokyo.ac.jp, E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2016-03-01

    We investigate the Q-ball decay into the axino dark matter in the gauge-mediated supersymmetry breaking. In our scenario, the Q ball decays mainly into nucleons and partially into axinos to account respectively for the baryon asymmetry and the dark matter of the universe. The Q ball decays well before the big bang nucleosynthesis so that it is not affected by the decay. We show the region of the parameters which realizes this scenario.

  13. Shock-Absorbent Ball-Screw Mechanism

    NASA Technical Reports Server (NTRS)

    Hirr, Otto A., Jr.; Meneely, R. W.

    1986-01-01

    Actuator containing two ball screws in series employs Belleville springs to reduce impact loads, thereby increasing life expectancy. New application of springs increases reliability of equipment in which ball screws commonly used. Set of three springs within lower screw of ball-screw mechanism absorbs impacts that result when parts reach their upper and lower limits of movement. Mechanism designed with Belleville springs as shock-absorbing elements because springs have good energy-to-volume ratio and easily stacked to attain any stiffness and travel.

  14. Visual Technology Research Simulator (VTRS) Human Performance Research: Phase III.

    DTIC Science & Technology

    1981-11-01

    you will intercept the glideslope and a centered meatball at approximately 4500 feet from the ramp. When the meatball approaches centerball you are to...this system with two horizontal bars (to represent the datum bars) and a moving dot (referred to as the ball or the meatball ). The system is...At two balls low the meatball starts to flash. Plus or minus two balls is the maximum effective range of the system. The ball will be lost off the top

  15. Flow structure of knuckling effect in footballs

    NASA Astrophysics Data System (ADS)

    Asai, Takeshi; Kamemoto, Kyoji

    2011-07-01

    The flight trajectory of a non-spinning or slow-spinning soccer ball might fluctuate in unpredictable ways, as for example, in the many free kicks of C. Ronaldo. Such anomalous horizontal shaking or rapid falling is termed the ‘knuckling effect’. However, the aerodynamic properties and boundary-layer dynamics affecting a ball during the knuckling effect are not well understood. In this study, we analyse the characteristics of the vortex structure of a soccer ball subject to the knuckling effect (knuckleball), using high-speed video images and smoke-generating agents. Two high-speed video cameras were set at one side and in front of the ball trajectory between the ball position and the goal; further, photographs were taken at 1000 fps and a resolution of 1024×512 pixels. Although in a previous study (Taneda, 1978), shedding of horseshoe vortices was observed for smooth spheres in the Reynolds number (Re) range of 3.8×105

  16. Characteristics of capacitance-micro-displacement for model of complex interior surface of the 3D Taiji ball and its applications

    NASA Astrophysics Data System (ADS)

    Zhu, Ruo-Gu; Jiang, Kun; Qing, Zhao-Bo; Liu, Yue-Hui; Yan, Jun

    2006-11-01

    Taiji image originated from ancient China. It is not only the Taoism emblem but also the ancient graphic presentation sign to everything origin. It either has a too far-reaching impact on traditional culture of China, or is influencing the development of current natural science. On the basis of analyzing the classical philosophic theory of two-dimensional (2-D) Taiji image, we developed it into the model of complex interior surface-three-dimensional (3-D) Taiji ball, and explored its possible applications. Combining modern mathematics and physics knowledge, we have studied on the physical meaning of 3-D Taiji ball, thus the plane change of original Taiji image is developed into space change which is more close to the real world. The change layers are obvious increased notably, and the amount of information included in this model increases correspondingly. We also realized a special paper 3-D Taiji ball whose surface is coved with metal foil by means of laser manufacture. A new experiment set-up for measuring micro displace has been designed and constituted thus the relation between capacitance and micro displacement for the 3-D Taiji ball has performed. Experimental and theoretical analyses are also finished. This models of 3-D Taiji ball for physical characteristics are the first time set up. Experimental data and fitting curves between capacitance and micro displacement for the special paper Taiji ball coved with metal foil are suggested. It is shown that the special Taiji ball has less leakage capacitance or more strengthen electric field than an ordinary half ball capacitance. Finally their potential applied values are explored.

  17. Using a Force Plate to Correct Student Misconceptions

    NASA Astrophysics Data System (ADS)

    Wyrembeck, Edward P.

    2005-09-01

    Each year during the unit on collisions I ask my physics students this conceptual question: If you want to close a door but you have too much inertia at the moment to get up and do it yourself, should you throw a ball that rebounds well, like a basketball, or a ball that rebounds poorly, like a ball of modeling dough, at the door? I also impose the condition that the two balls must have the same momenta when they strike the door. I give my students some time to discuss the problem in small groups and then make a prediction. I find that most students predict incorrectly that the dough ball will be more effective at closing the door because it is solid throughout and denser than the hollow, air-filled basketball. The students do not focus on the better-rebounding basketball and the greater change in velocity that it experiences than the modeling dough ball when they strike a solid object like a door. To correct this misconception I use a Vernier2 force plate to measure the impulse of a size 3 basketball and a ball of modeling dough of equal mass (0.3213 ± 0.0002 kg) dropped from the same height of 0.200 ± 0.002 m, to ensure equal velocities, onto the force plate. While I realize that a collision between a ball and a force plate is not exactly the same as a collision between a ball and a door, a more complex system, I believe it offers some very useful insights into the problem. I also include in this paper an extension on validating the impulse-momentum theorem.

  18. Development of a Searchable Database of Cryoablation Simulations for Use in Treatment Planning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boas, F. Edward, E-mail: boasf@mskcc.org; Srimathveeravalli, Govindarajan, E-mail: srimaths@mskcc.org; Durack, Jeremy C., E-mail: durackj@mskcc.org

    PurposeTo create and validate a planning tool for multiple-probe cryoablation, using simulations of ice ball size and shape for various ablation probe configurations, ablation times, and types of tissue ablated.Materials and MethodsIce ball size and shape was simulated using the Pennes bioheat equation. Five thousand six hundred and seventy different cryoablation procedures were simulated, using 1–6 cryoablation probes and 1–2 cm spacing between probes. The resulting ice ball was measured along three perpendicular axes and recorded in a database. Simulated ice ball sizes were compared to gel experiments (26 measurements) and clinical cryoablation cases (42 measurements). The clinical cryoablation measurements weremore » obtained from a HIPAA-compliant retrospective review of kidney and liver cryoablation procedures between January 2015 and February 2016. Finally, we created a web-based cryoablation planning tool, which uses the cryoablation simulation database to look up the probe spacing and ablation time that produces the desired ice ball shape and dimensions.ResultsAverage absolute error between the simulated and experimentally measured ice balls was 1 mm in gel experiments and 4 mm in clinical cryoablation cases. The simulations accurately predicted the degree of synergy in multiple-probe ablations. The cryoablation simulation database covers a wide range of ice ball sizes and shapes up to 9.8 cm.ConclusionCryoablation simulations accurately predict the ice ball size in multiple-probe ablations. The cryoablation database can be used to plan ablation procedures: given the desired ice ball size and shape, it will find the number and type of probes, probe configuration and spacing, and ablation time required.« less

  19. Mini-Rocket User Guide

    DTIC Science & Technology

    2007-08-01

    26 8. ISTC Simulation Comparisons...Comparison c. Ground Range Comparison Figure 8. ISTC Simulation Comparisons Mini-Rocket User Guide REAL-WORLD COMPARISON 30 In particular, note...even though Mini-Rocket does not directly model the missile rigid body dynamics. The ISTC subsequently used Mini-Rocket as a driver to stimulate other

  20. An overview of Ball Aerospace cryogen storage and delivery systems

    NASA Astrophysics Data System (ADS)

    Marquardt, J.; Keller, J.; Mills, G.; Schmidt, J.

    2015-12-01

    Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described.

  1. Effect of Synthesis Procedure on Thermoelectric Property of SiGe Alloy

    NASA Astrophysics Data System (ADS)

    Li, Jing; Han, Jun; Jiang, Tao; Luo, Lili; Xiang, Yongchun

    2018-05-01

    SiGe thermoelectric material has been synthesized by ball milling combined with hot pressing (HP) or spark plasma sintering (SPS). Effects of ball milling time, powder to ball weight ratio and sintering method on microstructure and thermoelectric properties of SiGe are studied. The results show that longer ball milling time leads to decreased density and worse electrical properties. In the sintering process, SPS results in much larger density and better electrical properties than HP. The Si0.795Ge0.2B0.005 sample prepared by 2 h ball milling combined with SPS obtains a maximum power factor of 3.0 mW m-1 K-2 at 860 K and ZT of 0.95 at 1000 K.

  2. The physics of juggling a spinning ping-pong ball

    NASA Astrophysics Data System (ADS)

    Widenhorn, Ralf

    2016-12-01

    Juggling a spinning ball with a ping-pong paddle represents a challenge both in terms of hand-eye coordination and physics concepts. Here, we analyze the ping-pong ball's motion, and explore how the correct paddle angle relates to the ball's spin and speed, as it moves vertically up and down. For students, this requires engaging with concepts like momentum, angular momentum, free-body diagrams, and friction. The activities described in this article include high-speed video motion tracking of the ping-pong ball and the investigation of the frictional characteristics of the paddle. They can be done in a physics lab or at home, requiring only inexpensive or commonly used equipment, and can be undertaken by high school or college students.

  3. Alternative seating for young children with Autism Spectrum Disorder: effects on classroom behavior.

    PubMed

    Schilling, Denise Lynn; Schwartz, Ilene S

    2004-08-01

    A single subject, withdrawal design was used to investigate the effects of therapy balls as seating on engagement and in-seat behavior of young children with Autism Spectrum Disorder (ASD). In addition, social validity was assessed to evaluate teachers' opinions regarding the intervention. During baseline and withdrawal (A phases) participants used their typical classroom seating device (chair, bench or carpet square). During the intervention (B phases) participants sat on therapy balls. Results indicated substantial improvements in engagement and in-seat behavior when participants were seated on therapy balls. Social validity findings indicated that the teachers' preferred the therapy balls. This study suggests therapy balls as classroom seating may facilitate engagement and in-seat behavior and create opportunities to provide effective instruction.

  4. Evaluation of mini-implant sites in the posterior maxilla using traditional radiographs and cone-beam computed tomography

    PubMed Central

    Abbassy, Mona A.; Sabban, Hanady M.; Hassan, Ali H.; Zawawi, Khalid H.

    2015-01-01

    Objectives: To evaluate the accuracy of using routine 2-dimensional (2D) radiographs (panoramic and periapical) when evaluating the position of orthodontic temporary anchorage devices (mini-implants) in the maxilla, and to compare the results to 3-dimensional cone-beam computed tomography (CBCT). Methods: This cross-sectional study was conducted at King Abdulaziz University, Faculty of Dentistry, Jeddah, Kingdom of Saudi Arabia from February 2014 to January 2015. Panoramic and periapical radiographs were used to examine the position of mini-implants in relation to the adjacent roots. Rating of mini-implants position was performed by 82 dentists from different specialties, using 2 D images according to the following criteria: 1) away from the root; 2) mini-implant tip appears touching the lamina dura; and 3) mini-implant overlays the lamina dura. The results were compared with CBCT findings. Results: There was no difference between dentists from different specialties when rating the position of the mini-implants (Cronbach’s alpha=0.956). The accuracy of the periapical images was 45.1%, while the panoramic images 33.6%. However, both panoramic and periapical radiographs were significantly inaccurate when assessing the mini-implant position when compared with the CBCT findings (p=0.0001). Conclusion: Three-dimensional CBCT technology allows better visualization of mini-implant placement. The use of CBCT when assessing the position of mini-implants is recommended. PMID:26593168

  5. Borner Ball Neutron Detector

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The Bonner Ball Neutron Detector measures neutron radiation. Neutrons are uncharged atomic particles that have the ability to penetrate living tissues, harming human beings in space. The Bonner Ball Neutron Detector is one of three radiation experiments during Expedition Two. The others are the Phantom Torso and Dosimetric Mapping.

  6. A DNA mini-barcode for land plants.

    PubMed

    Little, Damon P

    2014-05-01

    Small portions of the barcode region - mini-barcodes - may be used in place of full-length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini-barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini-barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30,472)]. PCR amplification for all mini-barcodes, as estimated by validated electronic simulation, was successful for 90.2-99.8% of species. Overall Sanger sequence quality for mini-barcodes was very low - the best mini-barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini-barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini-barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini-barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini-barcode D (F52/R193). © 2013 John Wiley & Sons Ltd.

  7. The use of cochlear's SCAN and wireless microphones to improve speech understanding in noise with the Nucleus6® CP900 processor.

    PubMed

    De Ceulaer, Geert; Pascoal, David; Vanpoucke, Filiep; Govaerts, Paul J

    2017-11-01

    The newest Nucleus CI processor, the CP900, has two new options to improve speech-in-noise perception: (1) use of an adaptive directional microphone (SCAN mode) and (2) wireless connection to MiniMic1 and MiniMic2 wireless remote microphones. An analysis was made of the absolute and relative benefits of these technologies in a real-world mimicking test situation. Speech perception was tested using an adaptive speech-in-noise test (sentences-in-babble noise). In session A, SRTs were measured in three conditions: (1) Clinical Map, (2) SCAN and (3) MiniMic1. Each was assessed for three distances between speakers and CI recipient: 1 m, 2 m and 3 m. In session B, the benefit of the use of MiniMic2 was compared to benefit of MiniMic1 at 3 m. A group of 13 adult CP900 recipients participated. SCAN and MiniMic1 improved performance compared to the standard microphone with a median improvement in SRT of 2.7-3.9 dB for SCAN at 1 m and 3 m, respectively, and 4.7-10.9 dB for the MiniMic1. MiniMic1 improvements were significant. MiniMic2 showed an improvement in SRT of 22.2 dB compared to 10.0 dB for MiniMic1 (3 m). Digital wireless transmission systems (i.e. MiniMic) offer a statistically and clinically significant improvement in speech perception in challenging, realistic listening conditions.

  8. The downregulation of miR-3173 in B-cell acute lymphoblastic leukaemia promotes cell invasion via PTK2.

    PubMed

    Tian, Lijun; Cao, Junhua; Ji, Qiang; Zhang, Chuanling; Qian, Tong; Song, Xianchuan; Huang, Baoshan; Tian, Xinyi

    2017-12-16

    MicroRNAs are important regulators of the pathogenesis of B-cell acute lymphoblastic leukaemia (B-ALL). In this study, we identified miR-3173 and its predicted target gene PTK2 were correspondingly differentially expressed in B-ALL patients. In B-ALL cell lines, CCK-8 proliferation assay revealed that miR-3173 could inhibit the cell proliferation. Moreover, transwell assay revealed that miR-3173 could also inhibit cell migration and invasion in B-ALL cell lines. Luciferase assays revealed that miR-3173 directly bound to the 3'untranslated region of PTK2, and western blotting showed that miR-3173 suppressed the expression of PTK2 at the protein level. Generally, this study indicates that miR-3173 negatively regulates PTK2 and inhibits proliferation and invasion of B-ALL cell lines. Thus, miR-3173 may represent a potential therapeutic molecule for B-ALL intervention. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Self locking coupling mechanism for engaging and moving a load

    DOEpatents

    Wood, R.L.; Casamajor, A.B.; Parsons, R.E.

    1980-09-12

    A coupling mechanism for engaging and lifting a load has a housing with a guide passage for receiving a knob which is secured to the load through a neck of smaller diameter. A hollow ball in the housing has an opening which receives the knob and the ball is then turned to displace the opening from the housing passage and to cause the neck to enter a slot in the ball thereby securing the load to the coupling mechanism as elements of the housing block travel of the neck back into the opening when the ball is turned to the load holding orientation. As engagement of the load and locking of the coupling mechanism are accomplished simultaneously by the same ball motion, operation is simplified and reliability is greatly increased. The ball is preferably turned by a motor through worm gearing and the coupling mechanism may be controlled from a remote location. Among other uses, the coupling mechanism is adaptable to the handling of spent nuclear reactor fuel elements.

  10. Long-Term Effects on Graphene Supercapacitors of Using a Zirconia Bowl and Zirconia Balls for Ball-Mill mixing of Active Materials

    NASA Astrophysics Data System (ADS)

    Song, Dae-Hoon; Kim, Jin-Young; Kahng, Yung Ho; Cho, Hoonsung; Kim, Eung-Sam

    2018-04-01

    Improving the energy storage performance of supercapacitor electrodes based on reduced graphene oxide (RGO) is one of the main subjects in this research field. However, when a zirconia bowl and zirconia balls were used for ball-mill mixing of the active materials for RGO supercapacitors, the energy storage performance deteriorated over time. Our study revealed that the source of the problem was the inclusion of zirconia bits from abrasion of the bowl and the balls during the ballmill mixing, which increased during a period of 1 year. We probed two solutions to this problem: 1) hydrofluoric (HF) acid treatment of the RGO supercapacitors and 2) use of a tempered steel bowl and tempered steel balls for the mixing. For both cases, the energy storage performance was restored to near the initial level, showing a specific capacitance ( C sp ) of 200 F/g. Our results should lead to progress in research on RGO supercapacitors.

  11. Reusable, tamper-indicating seal

    DOEpatents

    Ryan, Michael J.

    1978-01-01

    A reusable, tamper-indicating seal comprises a drum confined within a fixed body and rotatable in one direction therewithin, the top of the drum constituting a tray carrying a large number of small balls of several different colors. The fixed body contains parallel holes for looping a seal wire therethrough. The base of the drums carries cams adapted to coact with cam followers to lock the wire within the seal at one angular position of the drum. A channel in the fixed body -- visible from outside the seal -- adjacent the tray constitutes a segregated location for a small plurality of the colored balls. A spring in the tray forces colored balls into the segregated location at one angular position of the drum, further rotation securing the balls in position and the wires in the seal. A wedge-shaped plough removes the balls from the segregated location, at a different angular position of the drum, the wire being unlocked at the same position. A new pattern of colored balls will appear in the segregated location when the seal is relocked.

  12. Respiratory disease in ball pythons (Python regius) experimentally infected with ball python nidovirus.

    PubMed

    Hoon-Hanks, Laura L; Layton, Marylee L; Ossiboff, Robert J; Parker, John S L; Dubovi, Edward J; Stenglein, Mark D

    2018-04-01

    Circumstantial evidence has linked a new group of nidoviruses with respiratory disease in pythons, lizards, and cattle. We conducted experimental infections in ball pythons (Python regius) to test the hypothesis that ball python nidovirus (BPNV) infection results in respiratory disease. Three ball pythons were inoculated orally and intratracheally with cell culture isolated BPNV and two were sham inoculated. Antemortem choanal, oroesophageal, and cloacal swabs and postmortem tissues of infected snakes were positive for viral RNA, protein, and infectious virus by qRT-PCR, immunohistochemistry, western blot and virus isolation. Clinical signs included oral mucosal reddening, abundant mucus secretions, open-mouthed breathing, and anorexia. Histologic lesions included chronic-active mucinous rhinitis, stomatitis, tracheitis, esophagitis and proliferative interstitial pneumonia. Control snakes remained negative and free of clinical signs throughout the experiment. Our findings establish a causal relationship between nidovirus infection and respiratory disease in ball pythons and shed light on disease progression and transmission. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Learning to juggle: on the assembly of functional subsystems into a task-specific dynamical organization.

    PubMed

    Huys, R; Daffertshofer, A; Beek, P J

    2003-04-01

    We examined the development of task-specific couplings among functional subsystems (i.e., ball circulation, respiration, and body sway) when learning to juggle a three-ball cascade, with a focus on learning-induced changes in the coupling between ball movements and respiration and the coupling between ball movements and body sway. Six novices practiced to juggle three balls in cascade fashion for one hour per day for twenty days. On specific days (7 in total), ball movements, center-of-pressure (CoP) trajectories and respiration traces were measured simultaneously. Discrete, time-continuous and spectral analyses revealed that the spatio-temporal variability of the juggling patterns decreased with practice and that the degree to which the task constraints were satisfied increased gradually. No conclusive evidence was found for ball movement-respiration coupling. In contrast, clear-cut evidence was found for the presence of 1:3 and 2:3 frequency locking between the vertical component of the ball trajectories and both the anterior-posterior and the medio-lateral components of the CoP. Incidence and expression of these mode locks varied across individuals and altered in the course of learning. Gradual changes in locking strength, appearances and disappearances of mode locks, as well as abrupt transitions between coupled states were observed. These results indicate that dissimilar learning dynamics may arise in the functional embedding of subsystems into a task-specific organization and that motor equivalence is an inherent property of such emerging task-specific organizations.

  14. A study on the noise characteristics of polymer ball bearings under various lubrication conditions

    NASA Astrophysics Data System (ADS)

    Dinç, S. K.; Temiz, V.; Kamburoǧlu, E.

    2013-12-01

    Polymer bearings are generally praised by the manufacturers for running silently. However such statements never go beyond qualitative assumptions. Therefore, studying polymer ball bearing noise would have been meaningful solely on the perspective of silent running machinery. On the other hand, the service life of a polymer ball bearing is unpredictable and there's no preventive maintenance practice that provides data regarding the condition of a polymer ball bearing. In this study, we assume that an investigation of their noise characteristics could also reveal clues concerning their performances. The main objective of this study is to determine the noise characteristics of polymer ball bearings lubricated with different lubricant greases of varying viscosity grades through experimental means. Sound pressure level measurements of SKF brand polymer bearings with polypropylene rings, polypropylene cage and glass balls were made with a 1/2 inch microphone in 1/3-octave bands, at frequencies up to 12.5 kHz, under various radial loads and rotational speeds. The bearings were mounted on a shaft driven by an AC motor with stepless speed control, adjustable between 0 - 1400 rpm. The ball bearings were running inside an acoustic chamber designed for the insulation of environmental noise and the noise of the motor at target frequencies. The resulting sound pressure level spectra were evaluated and the effects of the lubrication conditions on the noise of the ball bearing and possible diagnostic insight that could be gained through studying bearing noise characteristics were discussed.

  15. Some Mathematics and Physics of Ball Games.

    ERIC Educational Resources Information Center

    Hughes, D. E.

    1985-01-01

    Gives examples on the applications of arithmetic, geometry, and some calculus, vector algebra, and mechanics to ball games. Suggestions for further interesting investigations are provided together with references to other articles and books on applications of mathematics and physics to ball games and sports in general. (JN)

  16. Reading Mini-Lessons: An Instructional Practice for Meaning Centered Reading Programs.

    ERIC Educational Resources Information Center

    Barrentine, Shelby; And Others

    1995-01-01

    Mini-lessons (brief, informative explanations that demonstrate what readers do) are a key instructional practice in meaning centered reading programs. The content of the mini-lessons is determined by the needs of learners. In procedural mini-lessons, teachers explain the steps for successfully completing a task or performing a reading-related…

  17. The Net Physiological Cost of Dribbling a Soccer Ball.

    ERIC Educational Resources Information Center

    Reilly, Thomas; Ball, David

    1984-01-01

    To establish the net energy cost of dribbling a soccer ball, eight males ran on a treadmill while dribbling a ball against a rebound box. Oxygen uptake, perceived exertion, and blood lactate levels were measured and compared with results from subjects running without dribbling. Results are discussed. (Author/DF)

  18. Acquiring Visual Classifiers from Human Imagination

    DTIC Science & Technology

    2014-01-01

    the most popular sport in India is cricket , which is played with a red ball, and popular sports in the United States are American football and...that people from different countries have inside their head. Indians seem to imagine a red ball, which is the standard color for a cricket ball and

  19. Nuclear Storage Overpack Door Actuator and Alignment Apparatus

    DOEpatents

    Andreyko, Gregory M.

    2005-05-11

    The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.

  20. Nuclear storage overpack door actuator and alignment apparatus

    DOEpatents

    Andreyko, Gregory M.

    2005-05-10

    The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.

Top