Design of a nuclear isotope heat source assembly for a spaceborne mini-Brayton power module.
NASA Technical Reports Server (NTRS)
Wein, D.; Gorland, S. H.
1973-01-01
Results of a study to develop a feasible design definition of a heat source assembly (HSA) for use in nominal 500-, 1200-, or 2000-W(e) mini-Brayton spacecraft power systems. The HSA is a modular design which is used either as a single unit to provide thermal energy to the 500-W(e) mini-Brayton power module or in parallel with one or two additional HSAs for the 1200- or 2000-W(e) power module systems. Principal components consist of a multihundred watt RTG isotope heat source, a heat source heat exchanger which transfers the thermal energy from the heat source to the mini-Brayton power conversion system, an auxiliary cooling system which provides requisite cooling during nonoperation of the power conversion module and an emergency cooling system which precludes accidental release of isotope fuel in the event of system failure.
NASA Technical Reports Server (NTRS)
1973-01-01
Conceptual design definitions of a heat source assembly for use in nominal 500 watt electrical (W(e)) 1200 W(e)and 2000 W(e) mini-Brayton isotope power systems are reported. The HSA is an independent package which maintains thermal and nuclear control of an isotope fueled heat source and transfers the thermal energy to a Brayton rotating unit turbine-alternator-compressor power conversion unit.
Mini-Brayton heat source assembly development
NASA Technical Reports Server (NTRS)
Wein, D.; Zimmerman, W. F.
1978-01-01
The work accomplished on the Mini-Brayton Heat Source Assembly program is summarized. Required technologies to design, fabricate and assemble components for a high temperature Heat Source Assembly (HSA) which would generate and transfer the thermal energy for a spaceborne Brayton Isotope Power System (BIPS) were developed.
NASA Astrophysics Data System (ADS)
Piskunov, Maksim V.; Voytkov, Ivan S.; Vysokomornaya, Olga V.; Vysokomorny, Vladimir S.
2015-01-01
The new approach was developed to analyze the failure causes in operation of linear facilities independent power supply sources (mini-CHP-plants) of gas-transmission system in Eastern part of Russia. Triggering conditions of ceiling operation substance temperature at condenser output were determined with mathematical simulation use of unsteady heat and mass transfer processes in condenser of mini-CHP-plants. Under these conditions the failure probability in operation of independent power supply sources is increased. Influence of environmental factors (in particular, ambient temperature) as well as output electric capability values of power plant on mini-CHP-plant operation reliability was analyzed. Values of mean time to failure and power plant failure density during operation in different regions of Eastern Siberia and Far East of Russia were received with use of numerical simulation results of heat and mass transfer processes at operation substance condensation.
Deployable Mini-Payload Missions Enabled by Small Radioisotope Power Systems (RPSs)
NASA Technical Reports Server (NTRS)
Abelson, Robert D.; Satter, Celeste M.
2005-01-01
Deployable mini-payloads are envisioned as small, simple, standalone instruments that could be deployed from a mother vehicle such as a rover or the proposed Jupiter Icy Moons Orbiter to key points of interest within the solar system. Used in conjunction with a small radioisotope power system (RPS), these payloads could potentially be used for long-duration science missions or as positional beacons for rovers or other spacecraft. The RPS power source would be suitable for deployable mini-payload missions that would take place anywhere there is limited, intermittent, or no solar insolation. This paper introduces two such concepts: (1) a seismic monitoring station deployed by a rover or aerobot, and (2) a passive fields and particles station delivered by a mother spacecraft to Jupiter.
Portable thermo-photovoltaic power source
Zuppero, Anthony C.; Krawetz, Barton; Barklund, C. Rodger; Seifert, Gary D.
1997-01-14
A miniature thermo-photovoltaic (TPV) device for generation of electrical power for use in portable electronic devices. A TPV power source is constructed to provide a heat source chemical reactor capable of using various fuels, such as liquid hydrocarbons, including but not limited to propane, LPG, butane, alcohols, oils and diesel fuels to generate a source of photons. A reflector dish guides misdirected photon energy from the photon source toward a photovoltaic array. A thin transparent protector sheet is disposed between the photon source and the array to reflect back thermal energy that cannot be converted to electricity, and protect the array from thermal damage. A microlens disposed between the protector sheet and the array further focuses the tailored band of photon energy from the photon source onto an array of photovoltaic cells, whereby the photon energy is converted to electrical power. A heat recuperator removes thermal energy from reactor chamber exhaust gases, preferably using mini- or micro-bellows to force air and fuel past the exhaust gases, and uses the energy to preheat the fuel and oxidant before it reaches the reactor, increasing system efficiency. Mini- or micro-bellows force ambient air through the system both to supply oxidant and to provide cooling. Finally, an insulator, which is preferably a super insulator, is disposed around the TPV power source to reduce fuel consumption, and to keep the TPV power source cool to the touch so it can be used in hand-held devices.
Review of Strategies and Technologies for Demand-Side Management on Isolated Mini-Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harper, Meg
This review provides an overview of strategies and currently available technologies used for demandside management (DSM) on mini-grids throughout the world. For the purposes of this review, mini-grids are defined as village-scale electricity distribution systems powered by small local generation sources and not connected to a main grid.1 Mini-grids range in size from less than 1 kW to several hundred kW of installed generation capacity and may utilize different generation technologies, such as micro-hydro, biomass gasification, solar, wind, diesel generators, or a hybrid combination of any of these. This review will primarily refer to AC mini-grids, though much of themore » discussion could apply to DC grids as well. Many mini-grids include energy storage, though some rely solely on real-time generation.« less
NASA Astrophysics Data System (ADS)
Giustini, M.
2016-05-01
We present the results of the uniform analysis of 46 XMM-Newton observations of six BAL and seven mini-BAL QSOs belonging to the Palomar-Green Quasar catalogue. Moderate-quality X-ray spectroscopy was performed with the EPIC-pn, and allowed to characterise the general source spectral shape to be complex, significantly deviating from a power law emission. A simple power law analysis in different energy bands strongly suggests absorption to be more significant than reflection in shaping the spectra. If allowing for the absorbing gas to be either partially covering the continuum emission source or to be ionised, large column densities of the order of 1022-1024 cm-2 are inferred. When the statistics was high enough, virtually every source was found to vary in spectral shape on various time scales, from years to hours. All in all these observational results are compatible with radiation driven accretion disk winds shaping the spectra of these intriguing cosmic sources.
Philippines: Small-scale renewable energy update
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1997-12-01
This paper gives an overview of the application of small scale renewable energy sources in the Philippines. Sources looked at include solar, biomass, micro-hydroelectric, mini-hydroelectric, wind, mini-geothermal, and hybrid. A small power utilities group is being spun off the major utility, to provide a structure for developing rural electrification programs. In some instances, private companies have stepped forward, avoiding what is perceived as overwhelming beaurocracy, and installed systems with private financing. The paper provides information on survey work which has been done on resources, and the status of cooperative programs to develop renewable systems in the nation.
Vibration energy harvesting for unmanned aerial vehicles
NASA Astrophysics Data System (ADS)
Anton, Steven R.; Inman, Daniel J.
2008-03-01
Unmanned aerial vehicles (UAVs) are a critical component of many military operations. Over the last few decades, the evolution of UAVs has given rise to increasingly smaller aircraft. Along with the development of smaller UAVs, termed mini UAVs, has come issues involving the endurance of the aircraft. Endurance in mini UAVs is problematic because of the limited size of the fuel systems that can be incorporated into the aircraft. A large portion of the total mass of many electric powered mini UAVs, for example, is the rechargeable battery power source. Energy harvesting is an attractive technology for mini UAVs because it offers the potential to increase their endurance without adding significant mass or the need to increase the size of the fuel system. This paper investigates the possibility of harvesting vibration and solar energy in a mini UAV. Experimentation has been carried out on a remote controlled (RC) glider aircraft with a 1.8 m wing span. This aircraft was chosen to replicate the current electric mini UAVs used by the military today. The RC glider was modified to include two piezoelectric patches placed at the roots of the wings and a cantilevered piezoelectric beam installed in the fuselage to harvest energy from wing vibrations and rigid body motions of the aircraft, as well as two thin film photovoltaic panels attached to the top of the wings to harvest energy from sunlight. Flight testing has been performed and the power output of the piezoelectric and photovoltaic devices has been examined.
NASA Technical Reports Server (NTRS)
Mintz, Toby; Maslowski, Edward A.; Colozza, Anthony; McFarland, Willard; Prokopius, Kevin P.; George, Patrick J.; Hussey, Sam W.
2010-01-01
The Lunar Surface Power Distribution Network Study team worked to define, breadboard, build and test an electrical power distribution system consistent with NASA's goal of providing electrical power to sustain life and power equipment used to explore the lunar surface. A testbed was set up to simulate the connection of different power sources and loads together to form a mini-grid and gain an understanding of how the power systems would interact. Within the power distribution scheme, each power source contributes to the grid in an independent manner without communication among the power sources and without a master-slave scenario. The grid consisted of four separate power sources and the accompanying power conditioning equipment. Overall system design and testing was performed. The tests were performed to observe the output and interaction of the different power sources as some sources are added and others are removed from the grid connection. The loads on the system were also varied from no load to maximum load to observe the power source interactions.
A DISTANT RADIO MINI-HALO IN THE PHOENIX GALAXY CLUSTER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Weeren, R. J.; Andrade-Santos, F.; Forman, W. R.
We report the discovery of extended radio emission in the Phoenix cluster (SPT-CL J2344-4243, z = 0.596) with the Giant Metrewave Radio Telescope (GMRT) at 610 MHz. The diffuse emission extends over a region of at least 400-500 kpc and surrounds the central radio source of the Brightest Cluster Galaxy, but does not appear to be directly associated with it. We classify the diffuse emission as a radio mini-halo, making it the currently most distant mini-halo known. Radio mini-halos have been explained by synchrotron emitting particles re-accelerated via turbulence, possibly induced by gas sloshing generated from a minor merger event. Chandra observationsmore » show a non-concentric X-ray surface brightness distribution, which is consistent with this sloshing interpretation. The mini-halo has a flux density of 17 ± 5 mJy, resulting in a 1.4 GHz radio power of (10.4 ± 3.5) × 10{sup 24} W Hz{sup –1}. The combined cluster emission, which includes the central compact radio source, is also detected in a shallow GMRT 156 MHz observation and together with the 610 MHz data we compute a spectral index of –0.84 ± 0.12 for the overall cluster radio emission. Given that mini-halos typically have steeper radio spectra than cluster radio galaxies, this spectral index should be taken as an upper limit for the mini-halo.« less
Unveiling the X-ray/UV properties of AGN winds using Broad and mini-Broad Absorption Line Quasars
NASA Astrophysics Data System (ADS)
Giustini, M.
2015-07-01
BAL/mini-BALs are observed in the UV spectra of ˜ 20-30% of optically selected AGN as broad absorption troughs blueshifted by several thousands km/s, indicative of powerful nuclear winds. They could be representative of the average AGN if their winds cover only 20-30% of the continuum source, and/or represent an evolutionary state analogous to the high-soft state of BHB, when the jet emission is quenched and strong X-ray absorbing equatorial disk winds are virtually ubiquitous. High-quality, possibly time-resolved X-ray/UV studies are crucial to assess the global amount and 'character' of absorption in BAL/mini-BAL QSOs and to constrain the physical mechanism responsible for the launch and acceleration of their winds, therefore placing them in the broader context of AGN geometry and evolution. I will review here the known X-ray properties of BAL/mini-BAL QSOs, and present new results from a comprehensive X-ray spectral analysis of all the Palomar-Green BAL/mini-BAL QSOs with available XMM-Newton observations, for a total of 51 pointings of 14 different sources. These will include the most recent results from a high-quality simultaneous XMM/HST observational campaign on the mini-BAL QSO PG 1126-041, that unveiled with stunning details the X-ray/UV connection in action in an AGN disk wind through correlated X-ray/UV absorption variability.
SIGAR Quarterly Report to the United States Congress
2016-07-30
electricity from sources such as mini-hydro turbines in streams, solar panels with battery storage, and wind turbines , but these are still a negligible...power, solar PV [photo-voltaic units], and wind turbines , is the most promising option for feasible, sustainable decentralized rural electrification...informed SIGAR that the installation of a third power-generating turbine at Kajaki Dam should be complete in September 2016—security conditions permitting
Hedayati, Zohreh; Shomali, Mehrdad
2016-12-01
Nowadays, mini screws are used in orthodontic tooth movement to obtain maximum or absolute anchorage. They have gained popularity among orthodontists for en masse retraction of anterior teeth after first premolar extraction in maximum anchorage cases. The purpose of this study was to determine the type of anterior tooth movement during the time when force was applied from different mini screw placements to the anterior power arm with various heights. A finite element method was used for modeling maxillary teeth and bone structure. Brackets, wire, and hooks were also designed for modeling. Two appropriate positions for mini screw in the mesial and distal of the second premolar were designed as fixed nodes. Forces were applied from the mini screw to four different levels of anterior hook height: 0, 3, 6, and 9 mm. Initial tooth movement in eight different conditions was analyzed and calculated with ANSYS software. Rotation of anterior dentition was decreased with a longer anterior power arm and the mesial placement of the mini screw. Bodily movements occurred with the 9-mm height of the power arm in both mini screw positions. Intrusion or extrusion of the anterior teeth segment depended on the level of the mini screw and the edge of the power arm on the Z axis. According to the findings of this study, the best control in the sagittal plane during anterior en masse retraction was achieved by mesial placement of the mini screw and the 9-mm height of the anterior power arm. Where control in the vertical plane was concerned, distal placement of the mini screw with the 6-mm power arm height had minimum adverse effect on anterior dentition.
A study on the power generation potential of mini wind turbine in east coast of Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Basrawi, Firdaus; Ismail, Izwan; Ibrahim, Thamir Khalil; Idris, Daing Mohamad Nafiz Daing; Anuar, Shahrani
2017-03-01
A small-scale wind turbine is an attractive renewable energy source, but its economic viability depends on wind speed. The aim of this study is to determine economic viability of small-scale wind turbine in East Coast of Peninsular Malaysia. The potential energy generated has been determined by wind speed data and power curved of. Hourly wind speed data of Kuantan throughout 2015 was collected as the input. Then, a model of wind turbine was developed based on a commercial a 300W mini wind turbine. It was found that power generation is 3 times higher during northeast monsoon season at 15 m elevation. This proved that the northeast monsoon season has higher potential in generating power by wind turbine in East Coast of Peninsular Malaysia. However, only a total of 153.4 kWh/year of power can be generated at this condition. The power generator utilization factor PGUI or capacity ratio was merely 0.06 and it is not technically viable. By increasing the height of wind turbine to 60 m elevation, power generation amount drastically increased to 344 kWh/year, with PGUI of 0.13. This is about two-thirds of PGUI for photovoltaic technology which is 0.21 at this site. If offshore condition was considered, power generation amount further increased to 1,328 kWh/year with PGUI of 0.51. Thus, for a common use of mini wind turbine that is usually installed on-site at low elevation, it has low power generation potential. But, if high elevation as what large wind turbine needed is implemented, it is technically viable option in East Coast of Peninsular Malaysia.
Mini-conference on helicon plasma sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scime, E. E.; Keesee, A. M.; Boswell, R. W.
2008-05-15
The first two sessions of this mini-conference focused attention on two areas of helicon source research: The conditions for optimal helicon source performance and the origins of energetic electrons and ions in helicon source plasmas. The final mini-conference session reviewed novel applications of helicon sources, such as mixed plasma source systems and toroidal helicon sources. The session format was designed to stimulate debate and discussion, with considerable time available for extended discussion.
Are Ducted Mini-Splits Worth It?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Jonathan M; Maguire, Jeffrey B; Metzger, Cheryn E.
Ducted mini-split heat pumps are gaining popularity in some regions of the country due to their energy-efficient specifications and their ability to be hidden from sight. Although product and install costs are typically higher than the ductless mini-split heat pumps, this technology is well worth the premium for some homeowners who do not like to see an indoor unit in their living area. Due to the interest in this technology by local utilities and homeowners, the Bonneville Power Administration (BPA) has funded the Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL) to develop capabilities within themore » Building Energy Optimization (BEopt) tool to model ducted mini-split heat pumps. After the fundamental capabilities were added, energy-use results could be compared to other technologies that were already in BEopt, such as zonal electric resistance heat, central air source heat pumps, and ductless mini-split heat pumps. Each of these technologies was then compared using five prototype configurations in three different BPA heating zones to determine how the ducted mini-split technology would perform under different scenarios. The result of this project was a set of EnergyPlus models representing the various prototype configurations in each climate zone. Overall, the ducted mini-split heat pumps saved about 33-60% compared to zonal electric resistance heat (with window AC systems modeled in the summer). The results also showed that the ducted mini-split systems used about 4% more energy than the ductless mini-split systems, which saved about 37-64% compared to electric zonal heat (depending on the prototype and climate).« less
Integrated arc suppression unit for defect reduction in PVD applications
NASA Astrophysics Data System (ADS)
Li, Jason; Narasimhan, Murali K.; Pavate, Vikram; Loo, David; Rosenblum, Steve; Trubell, Larry; Scholl, Richard; Seamons, Scott; Hagerty, Chris; Ramaswami, Sesh
1997-09-01
Arcing between the target and plasma during PVD deposition causes substantial damage to the target and splats and other contamination on the deposited films. Arc-related damages and defects are frequently encountered in microelectronics manufacturing and contributes largely to reduced wafer yields. Arcing is caused largely by the charge buildup at the contaminated sites on the target surface that contains either nonconducting inclusions or nodules. Arc suppression is a key issue for defect reduction, yield improvement and for reliable high quality metallization. An Integrated Arc Suppression Unit (IASU) has been designed for Endura HP PVDTM sputtering sources. The integrated design reduces cable length from unit to source and reduces electrical energy stored in the cable. Active arc handling mode, proactive arc prevention mode, and passive by-pass arc counting mode are incorporated into the same unit. The active mode is designed to quickly respond to chamber conditions, like a large chamber voltage drop, that signals a arc. The self run mode is designed to proactively prevent arc formation by pulsing and reversing target voltage at 50 kHz. The design of the IASU, also called mini small package arc repression circuit--low energy unit (mini Sparc-le), has been optimized for various DC magnetron sources, plasma stability, chamber impedance, power matching, CE MARK test, and power dissipation. Process characterization with Ti, TiN and Al sputtering indicates that the unit has little adverse impact on film properties. Mini Sparc-le unit has been shown here to significantly reduce splats occurrence in Al sputtering. Marathon test of the unit with Ti/TiN test demonstrated the unit's reliability and its ability to reduce sensitivity of defects to target characteristics.
Quality Assurance Framework for Mini-Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esterly, Sean; Baring-Gould, Ian; Booth, Samuel
To address the root challenges of providing quality power to remote consumers through financially viable mini-grids, the Global Lighting and Energy Access Partnership (Global LEAP) initiative of the Clean Energy Ministerial and the U.S. Department of Energy teamed with the National Renewable Energy Laboratory (NREL) and Power Africa to develop a Quality Assurance Framework (QAF) for isolated mini-grids. The framework addresses both alternating current (AC) and direct current (DC) mini-grids, and is applicable to renewable, fossil-fuel, and hybrid systems.
NASA Astrophysics Data System (ADS)
Decker, J.; Crump, P.; Fricke, J.; Wenzel, H.; Maaβdorf, A.; Erbert, G.; Tränkle, G.
2014-03-01
Laser systems based on spectral beam combining (SBC) of broad-area (BA) diode lasers are promising tools for material processing applications. However, the system brightness is limited by the in-plane beam param- eter product, BPP, of the BA lasers, which operate with a BPP of < 3mm-mrad. The EU project BRIDLE (www.bridle.eu) is developing novel diode laser sources for such systems, and several technological advances are sought. For increased system brightness and optimal ber-coupling the diode lasers should operate with reduced BPP and vertical far eld angle (95% power content), μV 95. The resulting diode lasers are fabricated as mini- bars for reduced assembly costs. Gratings are integrated into the mini-bar, with each laser stripe emitting at a different wavelength. In this way, each emitter can be directed into a single bre via low-cost dielectric filters. Distributed-feedback narrow-stripe broad-area (DFB-NBA) lasers are promising candidates for these SBC sys- tems. We review here the design process and performance achieved, showing that DFB-NBA lasers with stripe width, W = 30 μm, successfully cut of higher-order lateral modes, improving BPP. Uniform, surface-etched, 80th-order Bragg gratings are used, with weak gratings essential for high e ciency. To date, such DFB-NBA sources operate with < 50% effciency at output power, Pout < 6 W, with BPP < 1.8 mm-mrad and offV 95 36 . The emission wavelength is about 970 nm and the spectral width is < 0.7 nm (95% power). The BPP is half that of a DFB-BA lasers with W = 90 um. We conclude with a review of options for further performance improvements.
NASA Astrophysics Data System (ADS)
Berk, Yuri; Karni, Yoram; Klumel, Genady; Openhaim, Yaakov; Cohen, Shalom; Yanson, Dan
2011-03-01
Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scaleable pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.
Quality Assurance Framework for Mini-Grids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baring-Gould, Ian; Burman, Kari; Singh, Mohit
Providing clean and affordable energy services to the more than 1 billion people globally who lack access to electricity is a critical driver for poverty reduction, economic development, improved health, and social outcomes. More than 84% of populations without electricity are located in rural areas where traditional grid extension may not be cost-effective; therefore, distributed energy solutions such as mini-grids are critical. To address some of the root challenges of providing safe, quality, and financially viable mini-grid power systems to remote customers, the U.S. Department of Energy (DOE) teamed with the National Renewable Energy Laboratory (NREL) to develop a Qualitymore » Assurance Framework (QAF) for isolated mini-grids. The QAF for mini-grids aims to address some root challenges of providing safe, quality, and affordable power to remote customers via financially viable mini-grids through two key components: (1) Levels of service: Defines a standard set of tiers of end-user service and links them to technical parameters of power quality, power availability, and power reliability. These levels of service span the entire energy ladder, from basic energy service to high-quality, high-reliability, and high-availability service (often considered 'grid parity'); (2) Accountability and performance reporting framework: Provides a clear process of validating power delivery by providing trusted information to customers, funders, and/or regulators. The performance reporting protocol can also serve as a robust monitoring and evaluation tool for mini-grid operators and funding organizations. The QAF will provide a flexible alternative to rigid top-down standards for mini-grids in energy access contexts, outlining tiers of end-user service and linking them to relevant technical parameters. In addition, data generated through implementation of the QAF will provide the foundation for comparisons across projects, assessment of impacts, and greater confidence that will drive investment and scale-up in this sector. The QAF implementation process also defines a set of implementation guidelines that help the deployment of mini-grids on a regional or national scale, helping to insure successful rapid deployment of these relatively new remote energy options. Note that the QAF is technology agnostic, addressing both alternating current (AC) and direct current (DC) mini-grids, and is also applicable to renewable, fossil-fuel, and hybrid systems.« less
Enabling Low-Power, Multi-Modal Neural Interfaces Through a Common, Low-Bandwidth Feature Space.
Irwin, Zachary T; Thompson, David E; Schroeder, Karen E; Tat, Derek M; Hassani, Ali; Bullard, Autumn J; Woo, Shoshana L; Urbanchek, Melanie G; Sachs, Adam J; Cederna, Paul S; Stacey, William C; Patil, Parag G; Chestek, Cynthia A
2016-05-01
Brain-Machine Interfaces (BMIs) have shown great potential for generating prosthetic control signals. Translating BMIs into the clinic requires fully implantable, wireless systems; however, current solutions have high power requirements which limit their usability. Lowering this power consumption typically limits the system to a single neural modality, or signal type, and thus to a relatively small clinical market. Here, we address both of these issues by investigating the use of signal power in a single narrow frequency band as a decoding feature for extracting information from electrocorticographic (ECoG), electromyographic (EMG), and intracortical neural data. We have designed and tested the Multi-modal Implantable Neural Interface (MINI), a wireless recording system which extracts and transmits signal power in a single, configurable frequency band. In prerecorded datasets, we used the MINI to explore low frequency signal features and any resulting tradeoff between power savings and decoding performance losses. When processing intracortical data, the MINI achieved a power consumption 89.7% less than a more typical system designed to extract action potential waveforms. When processing ECoG and EMG data, the MINI achieved similar power reductions of 62.7% and 78.8%. At the same time, using the single signal feature extracted by the MINI, we were able to decode all three modalities with less than a 9% drop in accuracy relative to using high-bandwidth, modality-specific signal features. We believe this system architecture can be used to produce a viable, cost-effective, clinical BMI.
A control system of a mini survey facility for photometric monitoring
NASA Astrophysics Data System (ADS)
Tsutsui, Hironori; Yanagisawa, Kenshi; Izumiura, Hideyuki; Shimizu, Yasuhiro; Hanaue, Takumi; Ita, Yoshifusa; Ichikawa, Takashi; Komiyama, Takahiro
2016-08-01
We have built a control system for a mini survey facility dedicated to photometric monitoring of nearby bright (K<5) stars in the near-infrared region. The facility comprises a 4-m-diameter rotating dome and a small (30-mm aperture) wide-field (5 × 5 sq. deg. field of view) infrared (1.0-2.5 microns) camera on an equatorial fork mount, as well as power sources and other associated equipment. All the components other than the camera are controlled by microcomputerbased I/O boards that were developed in-house and are in many of the open-use instruments in our observatory. We present the specifications and configuration of the facility hardware, as well as the structure of its control software.
NASA Astrophysics Data System (ADS)
Wolf, Jan-Christoph; Etter, Raphael; Schaer, Martin; Siegenthaler, Peter; Zenobi, Renato
2016-07-01
An active capillary plasma ionization (ACI) source was coupled to a handheld mass spectrometer (Mini 10.5; Aston Labs, West Lafayette, IN, USA) and applied to the direct gas-phase detection and quantification of chemical warfare agent (CWA) related chemicals. Complementing the discontinuous atmospheric pressure interface (DAPI) of the Mini 10.5 mass spectrometer with an additional membrane pump, a quasi-continuous sample introduction through the ACI source was achieved. Nerve agent simulants (three dialkyl alkylphosphonates, a dialkyl phosporamidate, and the pesticide dichlorvos) were detected at low gas-phase concentrations with limits of detection ranging from 1.0 μg/m3 to 6.3 μg/m3. Our results demonstrate a sensitivity enhancement for portable MS-instrumentation by using an ACI source, enabling direct, quantitative measurements of volatile organic compounds. Due to its high sensitivity, selectivity, low power consumption (<80 W) and weight (<13 kg), this instrumentation has the potential for direct on-site CWA detection as required by military or civil protection.
NASA Astrophysics Data System (ADS)
Fullekrug, M.; Liu, Z.; Koh, K.; Mezentsev, A.; Pedeboy, S.; Soula, S.; Sugier, J.; Enno, S. E.; Rycroft, M. J.
2016-12-01
Transient Luminous Events (TLEs) can generate electromagnetic radiation at frequencies 100 kHz (Qin et al., 2012, Fullekrug et al., 2013) and <1 kHz (Pasko et al., GRL, 1998, Cummer et al., GRL, 1998)as a result of the splitting and exponential growth of streamer discharges (Pasko, JGR, 2010, McHarg, JGR, 2010). The electromagnetic radiation results from the coherent superposition of the very weak signalsfrom thousands of small scale streamer discharges at 40 km height for frequencies 100 kHz and at 80 km height for frequencies <1 kHz. It seems therefore plausible that TLEs can also generate electromagnetic waves at intermediate heights, e.g. 60 km with frequencies between 1-100 kHz, e.g., 10 kHz. However, this frequency range is dominated by the powerful electromagnetic radiation from return strokes and it is hence commonly thought that this radiation can not easily be detectedwith single radio receivers. This study proposes to search for electromagnetic radiation from TLEsabove thunderclouds by use of a mini array that has the ability to determine the elevation angle toward the radiation source. Mini arrays with small apertures are used for infrasonic and seismic studies to determine source mechanisms and properties of the medium through which the waves propagate. For the detection of electromagneticradiation, the array processing is adapted for the fast propagationat the speed of light. Here we report for the first time the detection and mapping of distant lightning strokes in the sky with a mini array located near Bath in the UK. The array has a baseline to wavelength ratio 4.2 10^{-2} to record electromagnetic waves from 2-18 kHz. It is found that the mini array detects 69 lightning strokes per second from cloud-to-ground and in-cloud discharges, even though the parent thunderstorms are 900-1,100 km away and a rigorous selection criterion based on the spatial coherency of the electromagnetic source field across the array is used. About 14% of the lightning strokes appear at larger elevation angles in the sky than the remaining 86% of lightning strokes as the result of birefringent subionospheric wave propagation attributed to ordinary and extra-ordinary waves. These results imply that mini arrays can be used to detect electromagnetic radiation from TLEs above thunderclouds in different frequency ranges.
Laser ablation with applied magnetic field for electric propulsion
NASA Astrophysics Data System (ADS)
Batishcheva, Alla; Batishchev, Oleg; Cambier, Jean-Luc
2012-10-01
Using ultrafast lasers with tera-watt-level power allows efficient ablation and ionization of solid-density materials [1], creating dense and hot (˜100eV) plasma. We propose ablating small droplets in the magnetic nozzle configurations similar to mini-helicon plasma source [2]. Such approach may improve the momentum coupling compared to ablation of solid surfaces and facilitate plasma detachment. Results of 2D modeling of solid wire ablation in the applied magnetic field are presented and discussed. [4pt] [1] O. Batishchev et al, Ultrafast Laser Ablation for Space Propulsion, AIAA technical paper 2008-5294, -16p, 44th JPC, Hartford, 2008.[0pt] [2] O. Batishchev and J.L. Cambier, Experimental Study of the Mini-Helicon Thruster, Air Force Research Laboratory Report, AFRL-RZ-ED-TR-2009-0020, 2009.
A SPECTROPOLARIMETRIC TEST OF THE STRUCTURE OF THE INTRINSIC ABSORBERS IN THE QUASAR HS 1603+3820
DOE Office of Scientific and Technical Information (OSTI.GOV)
Misawa, Toru; Kawabata, Koji S.; Eracleous, Michael
We report the results of a spectropolarimetric observation of the C VI 'mini-broad' absorption line (mini-BAL) in the quasar HS 1603+3820 (z {sub em} = 2.542). The observations were carried out with the FOCAS instrument on the Subaru Telescope and yielded an extremely high polarization sensitivity of {delta}p{approx} 0.1%, at a resolving power of R {approx} 1500. HS 1603+3820 has been the target of a high-resolution spectroscopic monitoring campaign for more than four years, aimed at studying its highly variable C VI mini-BAL profile. Using the monitoring observations in an earlier paper, we were able to narrow down the causesmore » of the variability to the following two scenarios: (1) scattering material of variable optical depth redirecting photons around the absorber and (2) a variable, highly ionized screen between the continuum source and the absorber which modulates the UV continuum incident on the absorber. The observations presented here provide a crucial test of the scattering scenario and lead us to disfavor it because (1) the polarization level is very small (p {approx} 0.6%) throughout the spectrum and (2) the polarization level does not increase across the mini-BAL trough. Thus, the variable screen scenario emerges as our favored explanation of the C VI mini-BAL variability. Our conclusion is bolstered by recent X-ray observations of nearby mini-BAL quasars, which show a rapidly variable soft X-ray continuum that appears to be the result of transmission through an ionized absorber of variable ionization parameter and optical depth.« less
Mini-Uav LIDAR for Power Line Inspection
NASA Astrophysics Data System (ADS)
Teng, G. E.; Zhou, M.; Li, C. R.; Wu, H. H.; Li, W.; Meng, F. R.; Zhou, C. C.; Ma, L.
2017-09-01
Light detection and ranging (LIDAR) system based on unmanned aerial vehicles (UAVs) recently are in rapid advancement, meanwhile portable and flexible mini-UAV-borne laser scanners have been a hot research field, especially for the complex terrain survey in the mountains and other areas. This study proposes a power line inspection system solution based on mini-UAV-borne LIDAR system-AOEagle, developed by Academy of Opto-Electronics, Chinese Academy of Sciences, which mounted on a Multi-rotor unmanned aerial vehicle for complex terrain survey according to real test. Furthermore, the point cloud data was explored to validate its applicability for power line inspection, in terms of corridor and line laser point clouds; deformation detection of power towers, etc. The feasibility and advantages of AOEagle have been demonstrated by the promising results based on the real-measured data in the field of power line inspection.
NASA Technical Reports Server (NTRS)
Lin, Michael; Petrick, David; Geist, Alessandro; Flatley, Thomas
2012-01-01
This version of the SpaceCube will be a full-fledged, onboard space processing system capable of 2500+ MIPS, and featuring a number of plug-andplay gigabit and standard interfaces, all in a condensed 3x3x3 form factor [less than 10 watts and less than 3 lb (approximately equal to 1.4 kg)]. The main processing engine is the Xilinx SIRF radiation- hardened-by-design Virtex-5 FX-130T field-programmable gate array (FPGA). Even as the SpaceCube 2.0 version (currently under test) is being targeted as the platform of choice for a number of the upcoming Earth Science Decadal Survey missions, GSFC has been contacted by customers who wish to see a system that incorporates key features of the version 2.0 architecture in an even smaller form factor. In order to fulfill that need, the SpaceCube Mini is being designed, and will be a very compact and low-power system. A similar flight system with this combination of small size, low power, low cost, adaptability, and extremely high processing power does not otherwise exist, and the SpaceCube Mini will be of tremendous benefit to GSFC and its partners. The SpaceCube Mini will utilize space-grade components. The primary processing engine of the Mini is the Xilinx Virtex-5 SIRF FX-130T radiation-hardened-by-design FPGA for critical flight applications in high-radiation environments. The Mini can also be equipped with a commercial Xilinx Virtex-5 FPGA with integrated PowerPCs for a low-cost, high-power computing platform for use in the relatively radiation- benign LEOs (low-Earth orbits). In either case, this version of the Space-Cube will weigh less than 3 pounds (.1.4 kg), conform to the CubeSat form-factor (10x10x10 cm), and will be low power (less than 10 watts for typical applications). The SpaceCube Mini will have a radiation-hardened Aeroflex FPGA for configuring and scrubbing the Xilinx FPGA by utilizing the onboard FLASH memory to store the configuration files. The FLASH memory will also be used for storing algorithm and application code for the PowerPCs and the Xilinx FPGA. In addition, it will feature highspeed DDR SDRAM (double data rate synchronous dynamic random-access memory) to store the instructions and data of active applications. This version will also feature SATA-II and Gigabit Ethernet interfaces. Furthermore, there will also be general-purpose, multi-gigabit interfaces. In addition, the system will have dozens of transceivers that can support LVDS (low-voltage differential signaling), RS-422, or SpaceWire. The SpaceCube Mini includes an I/O card that can be customized to meet the needs of each mission. This version of the SpaceCube will be designed so that multiple Minis can be networked together using SpaceWire, Ethernet, or even a custom protocol. Scalability can be provided by networking multiple SpaceCube Minis together. Rigid-Flex technology is being targeted for the construction of the SpaceCube Mini, which will make the extremely compact and low-weight design feasible. The SpaceCube Mini is designed to fit in the compact CubeSat form factor, thus allowing deployment in a new class of missions that the previous SpaceCube versions were not suited for. At the time of this reporting, engineering units should be available in the summer 2012.
First evidence of diffuse ultra-steep-spectrum radio emission surrounding the cool core of a cluster
NASA Astrophysics Data System (ADS)
Savini, F.; Bonafede, A.; Brüggen, M.; van Weeren, R.; Brunetti, G.; Intema, H.; Botteon, A.; Shimwell, T.; Wilber, A.; Rafferty, D.; Giacintucci, S.; Cassano, R.; Cuciti, V.; de Gasperin, F.; Röttgering, H.; Hoeft, M.; White, G.
2018-05-01
Diffuse synchrotron radio emission from cosmic-ray electrons is observed at the center of a number of galaxy clusters. These sources can be classified either as giant radio halos, which occur in merging clusters, or as mini halos, which are found only in cool-core clusters. In this paper, we present the first discovery of a cool-core cluster with an associated mini halo that also shows ultra-steep-spectrum emission extending well beyond the core that resembles radio halo emission. The large-scale component is discovered thanks to LOFAR observations at 144 MHz. We also analyse GMRT observations at 610 MHz to characterise the spectrum of the radio emission. An X-ray analysis reveals that the cluster is slightly disturbed, and we suggest that the steep-spectrum radio emission outside the core could be produced by a minor merger that powers electron re-acceleration without disrupting the cool core. This discovery suggests that, under particular circumstances, both a mini and giant halo could co-exist in a single cluster, opening new perspectives for particle acceleration mechanisms in galaxy clusters.
NASA Astrophysics Data System (ADS)
Ulrich, Steve; Veilleux, Jean-François; Landry Corbin, François
2009-01-01
The European Student Moon Orbiter (ESMO) spacecraft is a student-built mini satellite being designed for a mission to the Moon. Designing and launching mini satellites are becoming a current trend in the space sector since they provide an economic way to perform innovative scientific experiments and in-flight demonstration of novel space technologies. The generation, storage, control, and distribution of the electrical power in a mini satellite represents unique challenges to the power engineer since the mass and volume restrictions are very stringent. Regardless of these problems, every subsystem and payload equipment must be operated within their specified voltage band whenever they required to be turned on. This paper presents the preliminary design of a lightweight, compact, and reliable power system for ESMO that can generate 720 W. Some of the key components of the EPS include ultra triple-junction (UTJ) GaAs solar cells controlled by maximum power point trackers, and high efficiency Li-ion secondary batteries recharged in parallel.
A DNA mini-barcode for land plants.
Little, Damon P
2014-05-01
Small portions of the barcode region - mini-barcodes - may be used in place of full-length barcodes to overcome DNA degradation for samples with poor DNA preservation. 591,491,286 rbcL mini-barcode primer combinations were electronically evaluated for PCR universality, and two novel highly universal sets of priming sites were identified. Novel and published rbcL mini-barcode primers were evaluated for PCR amplification [determined with a validated electronic simulation (n = 2765) and empirically (n = 188)], Sanger sequence quality [determined empirically (n = 188)], and taxonomic discrimination [determined empirically (n = 30,472)]. PCR amplification for all mini-barcodes, as estimated by validated electronic simulation, was successful for 90.2-99.8% of species. Overall Sanger sequence quality for mini-barcodes was very low - the best mini-barcode tested produced sequences of adequate quality (B20 ≥ 0.5) for 74.5% of samples. The majority of mini-barcodes provide correct identifications of families in excess of 70.1% of the time. Discriminatory power noticeably decreased at lower taxonomic levels. At the species level, the discriminatory power of the best mini-barcode was less than 38.2%. For samples believed to contain DNA from only one species, an investigator should attempt to sequence, in decreasing order of utility and probability of success, mini-barcodes F (rbcL1/rbcLB), D (F52/R193) and K (F517/R604). For samples believed to contain DNA from more than one species, an investigator should amplify and sequence mini-barcode D (F52/R193). © 2013 John Wiley & Sons Ltd.
A Spectropolarimetric Test of the Structure of the Intrinsic Absorbers in the Quasar HS 1603+3820
NASA Astrophysics Data System (ADS)
Misawa, Toru; Kawabata, Koji S.; Eracleous, Michael; Charlton, Jane C.; Kashikawa, Nobunari
2010-08-01
We report the results of a spectropolarimetric observation of the C VI "mini-broad" absorption line (mini-BAL) in the quasar HS 1603+3820 (z em = 2.542). The observations were carried out with the FOCAS instrument on the Subaru Telescope and yielded an extremely high polarization sensitivity of δp~ 0.1%, at a resolving power of R ~ 1500. HS 1603+3820 has been the target of a high-resolution spectroscopic monitoring campaign for more than four years, aimed at studying its highly variable C VI mini-BAL profile. Using the monitoring observations in an earlier paper, we were able to narrow down the causes of the variability to the following two scenarios: (1) scattering material of variable optical depth redirecting photons around the absorber and (2) a variable, highly ionized screen between the continuum source and the absorber which modulates the UV continuum incident on the absorber. The observations presented here provide a crucial test of the scattering scenario and lead us to disfavor it because (1) the polarization level is very small (p ~ 0.6%) throughout the spectrum and (2) the polarization level does not increase across the mini-BAL trough. Thus, the variable screen scenario emerges as our favored explanation of the C VI mini-BAL variability. Our conclusion is bolstered by recent X-ray observations of nearby mini-BAL quasars, which show a rapidly variable soft X-ray continuum that appears to be the result of transmission through an ionized absorber of variable ionization parameter and optical depth. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.
A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greacen, Chris; Engel, Richard; Quetchenbach, Thomas
A Guidebook on Grid Interconnection and Islanded Operation of Mini-Grid Power Systems Up to 200 kW is intended to help meet the widespread need for guidance, standards, and procedures for interconnecting mini-grids with the central electric grid as rural electrification advances in developing countries, bringing these once separate power systems together. The guidebook aims to help owners and operators of renewable energy mini-grids understand the technical options available, safety and reliability issues, and engineering and administrative costs of different choices for grid interconnection. The guidebook is intentionally brief but includes a number of appendices that point the reader to additionalmore » resources for indepth information. Not included in the scope of the guidebook are policy concerns about “who pays for what,” how tariffs should be set, or other financial issues that are also paramount when “the little grid connects to the big grid.”« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... shots; this means that one vessel discharges airguns when the other vessel is recharging. Outside the... and one mini source vessel) would be used during the proposed survey. The sources would be arrays of... [mu]Pa (rms). The mini source vessel would contain one array with eight 40 in\\3\\ airguns for a total...
Microbial fuel cells as pollutant treatment units: Research updates.
Zhang, Quanguo; Hu, Jianjun; Lee, Duu-Jong
2016-10-01
Microbial fuel cells (MFC) are a device that can convert chemical energy in influent substances to electricity via biological pathways. Based on the consent that MFC technology should be applied as a waste/wastewater treatment unit rather than a renewable energy source, this mini-review discussed recent R&D efforts on MFC technologies for pollutant treatments and highlighted the challenges and research and development needs. Owing to the low power density levels achievable by larger-scale MFC, the MFC should be used as a device other than energy source such as being a pollutant treatment unit. Copyright © 2016 Elsevier Ltd. All rights reserved.
Design of mini-multi-gas monitoring system based on IR absorption
NASA Astrophysics Data System (ADS)
Tan, Qiu-lin; Zhang, Wen-dong; Xue, Chen-yang; Xiong, Ji-jun; Ma, You-chun; Wen, Fen
2008-07-01
In this paper, a novel non-dispersive infrared ray (IR) gas detection system is described. Conventional devices typically include several primary components: a broadband source (usually an incandescent filament), a rotating chopper shutter, a narrow-band filter, a sample tube and a detector. But we mainly use the mini-multi-channel detector, electrical modulation means and mini-gas-cell structure. To solve the problems of gas accidents in coal mines, and for family safety that results from using gas, this new IR detection system with integration, miniaturization and non-moving parts has been developed. It is based on the principle that certain gases absorb infrared radiation at specific (and often unique) wavelengths. The infrared detection optics principle used in developing this system is mainly analyzed. The idea of multi-gas detection is introduced and guided through the analysis of the single-gas detection. Through researching the design of cell structure, a cell with integration and miniaturization has been devised. By taking a single-chip microcomputer (SCM) as intelligence handling, the functional block diagram of a gas detection system is designed with the analyzing and devising of its hardware and software system. The way of data transmission on a controller area network (CAN) bus and wireless data transmission mode is explained. This system has reached the technology requirement of lower power consumption, mini-volume, wide measure range, and is able to realize multi-gas detection.
Hidden Item Variance in Multiple Mini-Interview Scores
ERIC Educational Resources Information Center
Zaidi, Nikki L.; Swoboda, Christopher M.; Kelcey, Benjamin M.; Manuel, R. Stephen
2017-01-01
The extant literature has largely ignored a potentially significant source of variance in multiple mini-interview (MMI) scores by "hiding" the variance attributable to the sample of attributes used on an evaluation form. This potential source of hidden variance can be defined as rating items, which typically comprise an MMI evaluation…
Advances in macrocyclic peptide-based antibiotics.
Luther, Anatol; Bisang, Christian; Obrecht, Daniel
2018-06-01
Macrocyclic peptide-based natural products have provided powerful new antibiotic drugs, drug candidates, and scaffolds for medicinal chemists as a source of inspiration to design novel antibiotics. While most of those natural products are active mainly against Gram-positive pathogens, novel macrocyclic peptide-based compounds have recently been described, which exhibit potent and specific activity against some of the most problematic Gram-negative ESKAPE pathogens. This mini-review gives an up-date on recent developments. Copyright © 2017 Elsevier Ltd. All rights reserved.
Simulation of Mini-Magnetospheric Plasma Propulsion (M2P2) Interacting with an External Plasma Wind
NASA Technical Reports Server (NTRS)
Winglee, R. M.; Euripides, P.; Ziemba, T.; Slough, J.; Giersch, L.
2003-01-01
Substantial progress has been made over the last year in the development of the laboratory Mini-Magnetospheric Plasma Propulsion (M2P2) prototype. The laboratory testing has shown that that the plasma can be produced at high neutral gas efficiency, at high temperatures (a few tens of eV) with excellent confinement up to the point where chamber wall interactions dominate the physics. This paper investigates the performance of the prototype as it is opposed by an external plasma acting as a surrogate for the solar wind. The experiments were performed in 5ft diameter by 6ft long vacuum chamber at the University of Washington. The solar wind source comprised of a 33 kWe arc jet attached to a 200 kWe inductively generated plasma source. The dual plasma sources allow the interaction to be studied for different power levels, shot duration and production method. It is shown that plasma from the solar wind source (SWS) is able to penetrate the field of the M2P2 magnetic when no plasma is present. With operation of the M2P2 plasma source at only 1.5 kWe, the penetration of the SWS even at the highest power of operation at 200 kWe is stopped. This deflection is shown to be greatly enhanced over that produced by the magnet alone. In addition it is shown that with the presence of the SWS, M2P2 is able to produce enhanced magnetized plasma production out to at least 10 magnet radii where the field strength is only marginally greater than the terrestrial field. The results are consistent with the initial predictions that kWe M2P2 systems would be able to deflect several hundred kWe plasma winds to produce enhanced propulsion for a spacecraft.
Electron source for a mini ion trap mass spectrometer
Dietrich, Daniel D.; Keville, Robert F.
1995-01-01
An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.
Evidence for the Magnetic Breakout Model in an Equatorial Coronal-Hole Jet
NASA Astrophysics Data System (ADS)
Karpen, Judith T.; Kumar, Pankaj; Antiochos, Spiro K.; Wyper, Peter; DeVore, C. Richard
2017-08-01
We have analyzed an equatorial coronal-hole jet observed by SDO/AIA on 09 January 2014. The source-region magnetic field structure is consistent with the embedded-bipole topology that we identified and modeled previously as a source of coronal jets (Pariat et al. 2009, 2010, 2015, 2016; Karpen et al. 2017; Wyper et al. 2016). Initial brightenings were observed below a small but distinct “mini-filament” about 25 min before jet onset. A bright circular structure, interpreted as magnetic flux rope (MFR), surrounded the mini-filament. The MFR and filament rose together slowly at first, with a speed of ˜15 km s-1. When bright footpoints and loops appeared below, analogous to flare ribbons and arcade, the MFR/mini-filament rose rapidly (˜126 km s-1), and a bright elongated feature interpreted as a current sheet appeared between the MFR and the growing arcade. Multiple plasmoids propagating upward (˜135 km s-1) and downward (˜55 km s-1) were detected in this sheet. The jet was triggered when the rising MFR interacted with the overlying magnetic structure, most likely at a stressed magnetic null distorted into a current sheet. This event thus exhibits clear evidence of “flare” reconnection below the MFR as well as breakout reconnection above it, consistent with the breakout model for a wide range of solar eruptions (Antiochos et al. 1999; Devore & Antiochos 2008; Karpen et al. 2012; Wyper et al. 2017). Breakout reconnection destroyed the MFR and enabled the entrained coronal plasma and mini-filament to escape onto open field lines, producing an untwisting jet. SDO/HMI magnetograms reveal small footpoint motions at the eruption site and its surroundings, but do not show significant flux emergence or cancellation during or 1-2 hours before the eruption. Therefore, the free energy powering this jet most likely originated in magnetic shear concentrated at the polarity inversion line within the embedded bipole - a mini-filament channel - possibly created by helicity condensation (Antiochos 2013; Knizhnik et al. 2015, 2017).This work was supported in part by a grant from the NASA H-SR program and the NASA Postdoctoral Program.
An innovative miniature microbial fuel cell fabricated using photolithography.
Chen, You-Peng; Zhao, Yue; Qiu, Ke-Qiang; Chu, Jian; Lu, Rui; Sun, Min; Liu, Xian-Wei; Sheng, Guo-Ping; Yu, Han-Qing; Chen, Jie; Li, Wen-Jie; Liu, Gang; Tian, Yang-Chao; Xiong, Ying
2011-02-15
Recently microbial fuel cells (MFCs) have attracted increasing interests in both environmental and energy fields. Among the various MFC configurations, miniature microbial fuel cell (mini-MFC) has a great potential for the application in medical, communication and other areas because of its miniature volume and high output power density. In this work, a 25-μL single-chamber mini-MFC was fabricated using the photolithography technique. The plate-shaped gold anodic electrode in the mini-MFC showed a higher electrochemical activity than the stripe-shaped one. A biofilm of Shewanella oneidensis MR-1 was formed on the surface of gold electrode in this micro-liter-scale MFCs. As a result, a maximum power density of 29 mW/m(2) and a maximum current density of 2148 mA/m(2) were achieved by this single-chamber mini-MFC. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Dobler, F. X.
1978-01-01
A 500 to 2100 watt power output Mini-Brayton Rotating Unit (Mini-BRU)was analyzed, designed, fabricated and tested. Performance and test data for the various components is included. Components tested include the 2.12 in. diameter compressor, the 2.86 in. diameter turbine, the Rice alternator and the cantilevered foil-type journal and thrust bearings. Also included are results on the fabrication of a C-103 turbine plenum/nozzle assembly and on offgassing of the organic materials in the alternator stator.
Wagner Mackenzie, Brett; Waite, David W; Taylor, Michael W
2015-01-01
The human gut contains dense and diverse microbial communities which have profound influences on human health. Gaining meaningful insights into these communities requires provision of high quality microbial nucleic acids from human fecal samples, as well as an understanding of the sources of variation and their impacts on the experimental model. We present here a systematic analysis of commonly used microbial DNA extraction methods, and identify significant sources of variation. Five extraction methods (Human Microbiome Project protocol, MoBio PowerSoil DNA Isolation Kit, QIAamp DNA Stool Mini Kit, ZR Fecal DNA MiniPrep, phenol:chloroform-based DNA isolation) were evaluated based on the following criteria: DNA yield, quality and integrity, and microbial community structure based on Illumina amplicon sequencing of the V4 region of bacterial and archaeal 16S rRNA genes. Our results indicate that the largest portion of variation within the model was attributed to differences between subjects (biological variation), with a smaller proportion of variation associated with DNA extraction method (technical variation) and intra-subject variation. A comprehensive understanding of the potential impact of technical variation on the human gut microbiota will help limit preventable bias, enabling more accurate diversity estimates.
Mini Solar and Sea Current Power Generation System
NASA Astrophysics Data System (ADS)
Almenhali, Abdulrahman; Alshamsi, Hatem; Aljunaibi, Yaser; Almussabi, Dheyab; Alshehhi, Ahmed; Hilal, Hassan Bu
2017-07-01
The power demand in United Arab Emirates is increased so that there is a consistent power cut in our region. This is because of high power consumption by factories and also due to less availability of conventional energy resources. Electricity is most needed facility for the human being. All the conventional energy resources are depleting day by day. So we have to shift from conventional to non-conventional energy resources. In this the combination of two energy resources is takes place i.e. wind and solar energy. This process reviles the sustainable energy resources without damaging the nature. We can give uninterrupted power by using hybrid energy system. Basically this system involves the integration of two energy system that will give continuous power. Solar panels are used for converting solar energy and wind turbines are used for converting wind energy into electricity. This electrical power can utilize for various purpose. Generation of electricity will be takes place at affordable cost. This paper deals with the generation of electricity by using two sources combine which leads to generate electricity with affordable cost without damaging the nature balance. The purpose of this project was to design a portable and low cost power system that combines both sea current electric turbine and solar electric technologies. This system will be designed in efforts to develop a power solution for remote locations or use it as another source of green power.
Ultra-Wideband Harmonic Radar for Locating Radio-Frequency Electronics
2015-03-01
13 Fig. A-1 Measured S-parameters for the MiniCircuits SLP ...MiniCircuits SLP -1000+ lowpass filters. The relatively weak signal at f0 is increased by 40 dB by the Amplifier Research AR4W1000 power amplifier. The...Fig. A-1 Measured S-parameters for the MiniCircuits SLP -1000+ lowpass filter pair Fig. A-2 Measured S-parameters for the Amplifier Research
NASA Astrophysics Data System (ADS)
Fujii, M.; Tanabe, S.; Yamada, M.
2014-12-01
Water, food and energy is three sacred treasures that are necessary for human beings. However, recent factors such as population growth and rapid increase in energy consumption have generated conflicting cases between water and energy. For example, there exist conflicts caused by enhanced energy use, such as between hydropower generation and riverine ecosystems and service water, between shale gas and ground water, between geothermal and hot spring water. This study aims to provide quantitative guidelines necessary for capacity building among various stakeholders to minimize water-energy conflicts in enhancing energy use. Among various kinds of renewable energy sources, we target baseload sources, especially focusing on renewable energy of which installation is required socially not only to reduce CO2 and other greenhouse gas emissions but to stimulate local economy. Such renewable energy sources include micro/mini hydropower and geothermal. Three municipalities in Japan, Beppu City, Obama City and Otsuchi Town are selected as primary sites of this study. Based on the calculated potential supply and demand of micro/mini hydropower generation in Beppu City, for example, we estimate the electricity of tens through hundreds of households is covered by installing new micro/mini hydropower generation plants along each river. However, the result is based on the existing infrastructures such as roads and electric lines. This means that more potentials are expected if the local society chooses options that enhance the infrastructures to increase micro/mini hydropower generation plants. In addition, further capacity building in the local society is necessary. In Japan, for example, regulations by the river law and irrigation right restrict new entry by actors to the river. Possible influences to riverine ecosystems in installing new micro/mini hydropower generation plants should also be well taken into account. Deregulation of the existing laws relevant to rivers and further incentives for business owners of micro/mini hydropower generation along with current feed-in tariff are required if our society choose an option to enhance the renewable energy.
Miniature solid-state lasers for pointing, illumination, and warning devices
NASA Astrophysics Data System (ADS)
Brown, D. C.; Singley, J. M.; Yager, E.; Kowalewski, K.; Lotito, B.; Guelzow, J.; Hildreth, J.; Kuper, J. W.
2008-04-01
In this paper we review the current status of and progress towards higher power and more wavelength diverse diode-pumped solid-state miniature lasers. Snake Creek Lasers now offers unprecedented continuous wave (CW) output power from 9.0 mm and 5.6 mm TO type packages, including the smallest green laser in the world, the MicroGreen TM laser, and the highest density green laser in the world, the MiniGreen TM laser. In addition we offer an infrared laser, the MiniIR TM, operating at 1064 nm, and have just introduced a blue Mini laser operating at 473 nm in a 9.0 mm package. Recently we demonstrated over 1 W of output power at 1064 nm from a 12 mm TO type package, and green output power from 300-500 mW from the same 12 mm package. In addition, the company is developing a number of other innovative new miniature CW solid-state lasers operating at 750 nm, 820 nm, 458 nm, and an eye-safe Q-switched laser operating at 1550 nm. We also review recently demonstrated combining volume Bragg grating (VBG) technology has been combined with automatic power control (APC) to produce high power MiniGreen TM lasers whose output is constant to +/- 10 % over a wide temperature range, without the use of a thermoelectric cooler (TEC). This technology is expected to find widespread application in military and commercial applications where wide temperature operation is particularly important. It has immediate applications in laser pointers, illuminators, and laser flashlights, and displays.
Space Derived Health Aids (AID, Heart Monitor)
NASA Technical Reports Server (NTRS)
1981-01-01
CPI's spinoff from miniaturized pace circuitry is the new heart-assist device, the AID implantable automatic pulse generator. AID pulse generator monitors the heart continuously, recognizes onset of fibrillation, then administers a corrective electrical shock. A mini- computer, a power source, and two electrodes which sense heart activity are included in the unit. An associated system was also developed. It includes an external recorder to be worn by AID patients and a physician's console to display the data stored by the recorder. System provides a record of fibrillation occurrences and the ensuing defibrillation.
Lineal energy calibration of mini tissue-equivalent gas-proportional counters (TEPC)
NASA Astrophysics Data System (ADS)
Conte, V.; Moro, D.; Grosswendt, B.; Colautti, P.
2013-07-01
Mini TEPCs are cylindrical gas proportional counters of 1 mm or less of sensitive volume diameter. The lineal energy calibration of these tiny counters can be performed with an external gamma-ray source. However, to do that, first a method to get a simple and precise spectral mark has to be found and then the keV/μm value of this mark. A precise method (less than 1% of uncertainty) to identify this markis described here, and the lineal energy value of this mark has been measured for different simulated site sizes by using a 137Cs gamma source and a cylindrical TEPC equipped with a precision internal 244Cm alpha-particle source, and filled with propane-based tissue-equivalent gas mixture. Mini TEPCs can be calibrated in terms of lineal energy, by exposing them to 137Cesium sources, with an overall uncertainty of about 5%.
NASA Technical Reports Server (NTRS)
Brichenough, A. G.
1975-01-01
The control system consists of the ac-dc conversion, voltage regulation, speed regulation through parasitic load control, and overload control. A no-single-failure configuration was developed to attain the required reliability for a 10-year design life of unattended operation. The design principles, complete schematics, and performance are reported. Testing was performed on an alternator simulator pending construction of the actual Mini-Brayton alternator.
Mini-Sniffer III on Lakebed with Ground Support Crew
NASA Technical Reports Server (NTRS)
1976-01-01
The third version of the Mini-Sniffer remotely-piloted research vehicle on Rogers Dry Lake, adjacent to NASA's Dryden Flight Research Center, Edwards, California. The futuristic-looking ground crew are in white, self-contained suits, because the engine on this third version of the Mini-Sniffer was powered by hydrazine, which is a very hazardous material. The Mini-Sniffer was a remotely controlled, propeller-driven vehicle developed at the NASA Flight Research Center (which became the Dryden Flight Research Center, Edwards, California, in 1976) as a potential platform to sample the upper atmosphere for pollution. The vehicle, flown from 1975 to 1977, was one of the earliest attempts by NASA to develop an aircraft that could sense turbulence and measure natural and human-produced atmospheric pollutants at altitudes above 80,000 feet with a variable-load propeller that was never flight-tested. Three Mini-Sniffer vehicles were built. The number 1 Mini-Sniffer vehicle had swept wings with a span of 18 feet and canards on the nose. It flew 12 flights with the gas-powered engine at low altitudes of around 2,500 feet. The number 1 vehicle was then modified into version number 2 by removing the canards and wing rudders and adding wing tips and tail booms. Twenty flights were made with this version, up to altitudes of 20,000 feet. The number 3 vehicle had a longer fuselage, was lighter in weight, and was powered by the non-air-breathing hydrazine engine designed by NASA's Johnson Space Center in Houston, Texas. This version was designed to fly a 25-pound payload to an altitude of 70,000 feet for one hour or to climb to 90,000 feet and glide back. The number 3 Mini-Sniffer made one flight to 20,000 feet and was not flown again because of a hydrazine leak problem. All three versions used a pusher propeller to free the nose area for an atmospheric-sampling payload. At various times the Mini-Sniffer has been considered for exploration in the carbon dioxide atmosphere of the planet Mars, where the gravity (38 percent of that on Earth) would reduce the horsepower needed for flight.
Locomotor trade-offs in mice selectively bred for high voluntary wheel running.
Dlugosz, Elizabeth M; Chappell, Mark A; McGillivray, David G; Syme, Douglas A; Garland, Theodore
2009-08-01
We investigated sprint performance and running economy of a unique ;mini-muscle' phenotype that evolved in response to selection for high voluntary wheel running in laboratory mice (Mus domesticus). Mice from four replicate selected (S) lines run nearly three times as far per day as four control lines. The mini-muscle phenotype, resulting from an initially rare autosomal recessive allele, has been favoured by the selection protocol, becoming fixed in one of the two S lines in which it occurred. In homozygotes, hindlimb muscle mass is halved, mass-specific muscle oxidative capacity is doubled, and the medial gastrocnemius exhibits about half the mass-specific isotonic power, less than half the mass-specific cyclic work and power, but doubled fatigue resistance. We hypothesized that mini-muscle mice would have a lower whole-animal energy cost of transport (COT), resulting from lower costs of cycling their lighter limbs, and reduced sprint speed, from reduced maximal force production. We measured sprint speed on a racetrack and slopes (incremental COT, or iCOT) and intercepts of the metabolic rate versus speed relationship during voluntary wheel running in 10 mini-muscle and 20 normal S-line females. Mini-muscle mice ran faster and farther on wheels, but for less time per day. Mini-muscle mice had significantly lower sprint speeds, indicating a functional trade-off. However, contrary to predictions, mini-muscle mice had higher COT, mainly because of higher zero-speed intercepts and postural costs (intercept-resting metabolic rate). Thus, mice with altered limb morphology after intense selection for running long distances do not necessarily run more economically.
Power electronic supply system with the wind turbine dedicated for average power receivers
NASA Astrophysics Data System (ADS)
Widerski, Tomasz; Skrzypek, Adam
2018-05-01
This article presents the original project of the AC-DC-AC converter dedicated to low power wind turbines. Such a set can be a good solution for powering isolated objects that do not have access to the power grid, for example isolated houses, mountain lodges or forester's lodges, where they can replace expensive diesel engine generators. An additional source of energy in the form of a mini-wind farm is also a good alternative to yachts, marinas and tent sites, which are characterized by relatively low power consumption. This article presents a designed low power wind converter that is dedicated to these applications. The main design idea of the authors was to create a device that converts the very wide range input voltage directly to a stable 230VAC output voltage without the battery buffer. Authors focused on maximum safety of using and service. The converter contains the thermal protection, short-circuit protection and overvoltage protection. The components have been selected in such a way as to ensure that the device functions as efficiently as possible.
Mini-cavity plasma core reactors for dual-mode space nuclear power/propulsion systems. M.S. Thesis
NASA Technical Reports Server (NTRS)
Chow, S.
1976-01-01
A mini-cavity plasma core reactor is investigated for potential use in a dual-mode space power and propulsion system. In the propulsive mode, hydrogen propellant is injected radially inward through the reactor solid regions and into the cavity. The propellant is heated by both solid driver fuel elements surrounding the cavity and uranium plasma before it is exhausted out the nozzle. The propellant only removes a fraction of the driver power, the remainder is transferred by a coolant fluid to a power conversion system, which incorporates a radiator for heat rejection. Neutronic feasibility of dual mode operation and smaller reactor sizes than those previously investigated are shown to be possible. A heat transfer analysis of one such reactor shows that the dual-mode concept is applicable when power generation mode thermal power levels are within the same order of magnitude as direct thrust mode thermal power levels.
Electron source for a mini ion trap mass spectrometer
Dietrich, D.D.; Keville, R.F.
1995-12-19
An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.
A projective surgical navigation system for cancer resection
NASA Astrophysics Data System (ADS)
Gan, Qi; Shao, Pengfei; Wang, Dong; Ye, Jian; Zhang, Zeshu; Wang, Xinrui; Xu, Ronald
2016-03-01
Near infrared (NIR) fluorescence imaging technique can provide precise and real-time information about tumor location during a cancer resection surgery. However, many intraoperative fluorescence imaging systems are based on wearable devices or stand-alone displays, leading to distraction of the surgeons and suboptimal outcome. To overcome these limitations, we design a projective fluorescence imaging system for surgical navigation. The system consists of a LED excitation light source, a monochromatic CCD camera, a host computer, a mini projector and a CMOS camera. A software program is written by C++ to call OpenCV functions for calibrating and correcting fluorescence images captured by the CCD camera upon excitation illumination of the LED source. The images are projected back to the surgical field by the mini projector. Imaging performance of this projective navigation system is characterized in a tumor simulating phantom. Image-guided surgical resection is demonstrated in an ex-vivo chicken tissue model. In all the experiments, the projected images by the projector match well with the locations of fluorescence emission. Our experimental results indicate that the proposed projective navigation system can be a powerful tool for pre-operative surgical planning, intraoperative surgical guidance, and postoperative assessment of surgical outcome. We have integrated the optoelectronic elements into a compact and miniaturized system in preparation for further clinical validation.
Burguete-Argueta, Nelsi; Martínez De la Cruz, Braulio; Camacho-Mejorado, Rafael; Santana, Carla; Noris, Gino; López-Bayghen, Esther; Arellano-Galindo, José; Majluf-Cruz, Abraham; Antonio Meraz-Ríos, Marco; Gómez, Rocío
2016-11-01
STRs are powerful tools intensively used in forensic and kinship studies. In order to assess the effectiveness of non-CODIS genetic markers in forensic and paternity tests, the genetic composition of six mini short tandem repeats-mini-STRs-(D1S1656, D2S441, D6S1043, D10S1248, D12S391, D22S1045) and the microsatellite SE33 in Mestizo and Amerindian populations from Mexico were studied. Using multiplex polymerase chain reactions and capillary electrophoresis, this study genotyped all loci from 870 chromosomes and evaluated the statistical genetic parameters. All mini-STRs studied were in agreement with HW and linkage equilibrium; however, an important HW departure for SE33 was found in the Mestizo population (p ≤ 0.0001). Regarding paternity and forensic statistical parameters, high values of combined power discrimination and mean power of exclusion were found using these seven markers. The principal co-ordinate analysis based on allele frequencies of three mini-STRs showed the complex genetic architecture of the Mestizo population. The results indicate that this set of loci is suitable to genetically identify individuals in the Mexican population, supporting its effectiveness in human identification casework. In addition, these findings add new statistical values and emphasise the importance of the use of non-CODIS markers in complex populations in order to avoid erroneous assumptions.
Quality Assurance Framework Implementation Guide for Isolated Community Power Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Esterly, Sean R.; Baring-Gould, Edward I.; Burman, Kari A.
This implementation guide is a companion document to the 'Quality Assurance Framework for Mini-Grids' technical report. This document is intended to be used by one of the many stakeholder groups that take part in the implementation of isolated power systems. Although the QAF could be applied to a single system, it was designed primarily to be used within the context of a larger national or regional rural electrification program in which many individual systems are being installed. This guide includes a detailed overview of the Quality Assurance Framework and provides guidance focused on the implementation of the Framework from themore » perspective of the different stakeholders that are commonly involved in expanding energy development within specific communities or regions. For the successful long-term implementation of a specific rural electrification program using mini-grid systems, six key stakeholders have been identified that are typically engaged, each with a different set of priorities 1. Regulatory agency 2. Governmental ministry 3. System developers 4. Mini-utility 5. Investors 6. Customers/consumers. This document is broken into two distinct sections. The first focuses on the administrative processes in the development and operation of community-based mini-grid programs, while the second focuses on the process around the installation of the mini-grid project itself.« less
Teaching the Use of Secondary Data in Undergraduate Marketing Courses: A Unique Approach.
ERIC Educational Resources Information Center
Judd, Vaughan C.
This paper describes two mini-workshops that professors can use with undergraduate marketing students to help students learn how to locate and creatively use readily available secondary data for market research. The first mini-workshop, "Searching for Buying Power Concentration in Industrial/Organizational Markets," uses information from…
Battery-Powered Field Filtration Assembly Using an Inexpensive Mini-Compressor.
ERIC Educational Resources Information Center
Corbett, Robert G.; Quick, Thomas J.
1986-01-01
Suggests how modifications on a mini-compressor can result in a low-cost vacuum filtration system for use with suspended sediments in the field or laboratory. Explains and illustrates the changes needed to make the apparatus efficient and servicable for providing data for mass balance, geochemical exploration, and environmental studies. (ML)
Nanocluster metal films as thermoelectric material for radioisotope mini battery unit
NASA Astrophysics Data System (ADS)
Borisyuk, P. V.; Krasavin, A. V.; Tkalya, E. V.; Lebedinskii, Yu. Yu.; Vasiliev, O. S.; Yakovlev, V. P.; Kozlova, T. I.; Fetisov, V. V.
2016-10-01
The paper is devoted to studying the thermoelectric and structural properties of films based on metal nanoclusters (Au, Pd, Pt). The experimental results of the study of single nanoclusters' tunneling conductance obtained with scanning tunneling spectroscopy are presented. The obtained data allowed us to evaluate the thermoelectric power of thin film consisting of densely packed individual nanoclusters. It is shown that such thin films can operate as highly efficient thermoelectric materials. A scheme of miniature thermoelectric radioisotope power source based on the thorium-228 isotope is proposed. The efficiency of the radioisotope battery using thermoelectric converters based on nanocluster metal films is shown to reach values up to 1.3%. The estimated characteristics of the device are comparable with the parameters of up-to-date radioisotope batteries based on nickel-63.
Low power consumption mini rotary actuator with SMA wires
NASA Astrophysics Data System (ADS)
Manfredi, Luigi; Huan, Yu; Cuschieri, Alfred
2017-11-01
Shape memory alloys (SMAs) are smart materials widely used as actuators for their high power to weight ratio despite their well-known low energy efficiency and limited mechanical bandwidth. For robotic applications, SMAs exhibit limitations due to high power consumption and limited stroke, varying from 4% to 7% of the total length. Hysteresis, during the contraction and extension cycle, requires a complex control algorithm. On the positive side, the small size and low weight are eminently suited for the design of mini actuators for robotic platforms. This paper describes the design and construction of a light weight and low power consuming mini rotary actuator with on-board contact-less position and force sensors. The design is specifically intended to reduce (i) energy consumption, (ii) dimensions of the sensory system, and (iii) provide a simple control without any need for SMA characterisation. The torque produced is controlled by on-board force sensors. Experiments were performed to investigate the energy consumption and performance (step and sinusoidal angle profiles with a frequency varying from 0.5 to 10 Hz and maximal amplitude of {15}\\circ ). We describe a transient capacitor effect related to the SMA wires during the sinusoidal profile when the active SMA wire is powered and the antagonist one switched-off, resulting in a transient current time varying from 300 to 400 ms.
A miniature microbial fuel cell operating with an aerobic anode chamber
NASA Astrophysics Data System (ADS)
Ringeisen, Bradley R.; Ray, Ricky; Little, Brenda
A miniature microbial fuel cell (mini-MFC) is described that utilizes an aerobic culture of Shewanella oneidensis DSP10 as the active electrochemical species in the anode chamber. We find that the maximum aerobic mini-MFC power without the addition of exogenous mediators was 0.40 mW, a 33% decrease when compared with an anaerobic DSP10 culture (0.6 mW) operating in the mini-MFC. This decrease is most likely due to the presence of dissolved oxygen in the anode chamber that scavenges electrons to form water, thereby reducing the number of electrons donated to the anode. Aerobic power and current density at maximum power using the true surface area of the anode (611 cm 2) were calculated to be 6.5 mW m -2 and 13 mA m -2. The power density rises to 2.0 W m -2 and 330 W m -3 when calculated using the cross-sectional area and volume of the device (2 cm 2, 1.2 cm 3). The Coulombic efficiency was also reduced from 11 to 5% when using the aerobic versus anaerobic culture. Similar results were found when the external mediator anthraquinone-2,6-disulfonate (AQDS) was added to the aerobic culture, resulting in a maximum power of 0.54 mW, a 37% drop in power when compared to the anaerobic mediated system.
Quantum vacuum polarization, nanotechnology and a robotic mission to Proxima Centauri
NASA Astrophysics Data System (ADS)
de Morais Mendonca Teles, Antonio
In order to achieve an interstellar flight mission it is necessary powerful propulsion technologies. The space between stars and the time for a flight are highly vast. As an example, the closest star to the Sun is α Cen C (known as Proxima Centauri) distant 4.2 light-years. It is a star with spectral type dM5e (a "reddish dwarf"), which makes part of a quasi-triple gravitational star system -together with α Cen A and α Cen B. Based on theoretical models and observa-tional data on stellar and planetary systems evolution, Proxima Centauri has the possibility of having a non-stellar companion (perhaps a Mars or Moon-sized object) orbiting close to it. So, here in this paper, I propose as a first interstellar flight reconnaissance mission, for testing new technologies and gathering of scientific data, it would be interesting a flyby-and-rendezvous mission to Proxima Centauri. . . Such mission, using nanotechnology and solar energy, could be achieved by one mini-spacecraft (the carrier with the propulsion mini-motors) and three smaller mini-spacecrafts inside -one for a flyby inside the star system, other (lighter) for orbital in-sertion around Proxima Centauri, and the other (attached to the lighter one) for landing on a possible Proxima Centauri's companion, based on observational data from the one in orbit. The reason for the use of nanotechnology is that it provides a large number of equipment inside a spacecraft, uses few energy for the internal processes of the mini-spacecrafts, can repair them-selves (nanotechnology-built materials are also shown as "intelligent" materials), and makes them with small inertial mass -important for relativistic matters. Solar energy is a powerful energy source -there are 3 stars making the α Cen system. Such technologies can obviously be also used to explore the Solar System. A mission to Proxima Centauri with a speed of 0.1 c takes 42 Earth years to arrive there. Knowing that the mini-spacecraft has to decelerate and the inertial mass of the mini-spacecraft has a relativistic increase factor of 0.005, fifty years of mission is a feasible one. A way of achieving this is by using altogether the possible available spacecraft acceleration: gravity assistance, ionic propulsion, and using characteristics of the medium through which any spacecrafts travel by -vacuum. Vacuum has intrinsic quantum properties such as quantum tunneling, latent quantum residual energy, and the quantum vac-uum polarization phenomenon. I also propose the use of such quantum vacuum polarization (QVP) for the propulsion assistance for possible future Solar System and interstellar missions. QVP is a natural phenomenon arisen as a second-order correction for perturbation of quantum vacuum fluctuations, within the quantum field physics arena. It is related experimentally to the Casimir effect (the appearance of a negative potential barrier between very close and par-allel metallic plates in vacuum). Using a laser beam with a minimum of 1.22 MeV energy it is possible to create inside those plates in vacuum 1 real pair of electron-positron (anti-electron), and associated with this there is the creation of 1 virtual pair of electron-positron, through the geometrodynamical arrangement of the quantum vacuum fluctuations states, with a very small interval of time (δt). With much greater energies (GeV, TeV) it is possible to create virtual pairs with much longer δt, with the appearance of a repulsive force between the real and asso-ciated virtual pairs, caused by forced alignment of the spins of the real and virtual pairs. This could be attained by the use of a magnetic field. A powerful laser put in the extremity of the mini-spacecraft (together with the ionic mini-motor) in the middle of Casimir plates, could use that repulsive force to get much more momentum to the mini-spacecraft, for a possible speed in the order of 0.1 c. Telecommunication aspect can be arranged through the use of a tracking and data relay mini-satellites system orbiting the Sun.
Arif, I A; Khan, H A; Al Sadoon, M; Shobrak, M
2011-10-31
In recent years, DNA barcoding has emerged as a powerful tool for species identification. We report an extended validation of a universal DNA mini-barcode for amplification of 130-bp COI segments from 23 specimens collected from a desert environment, including 11 reptiles, five mammals and seven birds. Besides the standard double-annealing protocol, we also tested a more stringent single-annealing protocol. The PCR success rate for the amplification of the mini-barcode region was: mammals (4/5), reptiles (5/11) and birds (4/7). These findings demonstrate the limited utility of universal primers for mini-barcoding, at least for these vertebrate taxa that we collected from the Saudi Arabian desert.
Mini-excimer laser corneal reshaping using a scanning device
NASA Astrophysics Data System (ADS)
Lin, Jui T.
1994-07-01
In this paper we present an update on the Mini-Excimer photorefractive keratectomy (PRK) laser system with an emphasis on the scanning device. We also compare the systems of various manufacturers. This paper also presents PMMA ablation profiles and clinical results from China with over 100 cases of myopic corrections ranging from -2.5 D to -12 D. In contrast to the old technology which uses industrial-type high-power excimer lasers, the advanced Mini-Excimer system uses the most recent technology involving a compact, high repetition-rate excimer laser operated at a much smaller beam spot size of (0.8 - 1.2) mm in a scanning mode which requires a beam energy per pulse of only (0.9 - 1.2) mJ on the corneal surface to achieve the same range of fluence (or energy density) (160 - 200) mJ/cm2 as that of the high-power excimer lasers.
NASA Astrophysics Data System (ADS)
Hongqi, Jing; Li, Zhong; Yuxi, Ni; Junjie, Zhang; Suping, Liu; Xiaoyu, Ma
2015-10-01
A novel high-efficiency cooling mini-channel heat-sink structure has been designed to meet the package technology demands of high power density laser diode array stacks. Thermal and water flowing characteristics have been simulated using the Ansys-Fluent software. Owing to the increased effective cooling area, this mini-channel heat-sink structure has a better cooling effect when compared with the traditional macro-channel heat-sinks. Owing to the lower flow velocity in this novel high efficient cooling structure, the chillers' water-pressure requirement is reduced. Meanwhile, the machining process of this high-efficiency cooling mini-channel heat-sink structure is simple and the cost is relatively low, it also has advantages in terms of high durability and long lifetime. This heat-sink is an ideal choice for the package of high power density laser diode array stacks. Project supported by the Defense Industrial Technology Development Program (No. B1320133033).
Readings and Resources on Autism: Update 2001. ERIC Mini-Bib EB13.
ERIC Educational Resources Information Center
Sorenson, Barbara R., Comp.
This mini-bibliography lists readings and resources relating to children and adolescents with autism. It includes annotated bibliographies for sources that address: (1) social skills training for children and adolescents with autism; (2) Asperger syndrome; (3) Individualized Education Programs for students with autism; (4) teaching strategies for…
Power System Study for Renewable Energy Interconnection in Malaysia
NASA Astrophysics Data System (ADS)
Askar, O. F.; Ramachandaramurthy, V. K.
2013-06-01
The renewable energy (RE) sector has grown exponentially in Malaysia with the introduction of the Feed-In-Tariff (FIT) by the Ministry of Energy, Green Technology and Water. Photovoltaic, biogas, biomass and mini hydro are among the renewable energy sources which offer a lucrative tariff to incite developers in taking the green technology route. In order to receive the FIT, a developer is required by the utility company to perform a power system analysis which will determine the technical feasibility of an RE interconnection to the utility company's existing grid system. There are a number of aspects which the analysis looks at, the most important being the load flow and fault levels in the network after the introduction of an RE source. The analysis is done by modelling the utility company's existing network and simulating the network with the interconnection of an RE source. The results are then compared to the values before an interconnection is made as well as ensuring the voltage rise or the increase in fault levels do not violate any pre-existing regulations set by the utility company. This paper will delve into the mechanics of performing a load flow analysis and examining the results obtained.
Marjanović, Damir; Durmić-Pašić, Adaleta; Kovačević, Lejla; Avdić, Jasna; Džehverović, Mirela; Haverić, Sanin; Ramić, Jasmin; Kalamujić, Belma; Bilela, Lada Lukić; Škaro, Vedrana; Projić, Petar; Bajrović, Kasim; Drobnič, Katja; Davoren, Jon; Primorac, Dragan
2009-01-01
Aim To report on the use of STR, Y-STRs, and miniSTRs typing methods in the identification of victims of revolutionary violence and crimes against humanity committed by the Communist Armed Forces during and after World War II in which bodies were exhumed from mass and individual graves in Slovenia. Methods Bone fragments and teeth were removed from human remains found in several small and closely located hidden mass graves in the Škofja Loka area (Lovrenska Grapa and Žolšče) and 2 individual graves in the Ljubljana area (Podlipoglav), Slovenia. DNA was isolated using the Qiagen DNA extraction procedure optimized for bone and teeth. Some DNA extracts required additional purification, such as N-buthanol treatment. The QuantifilerTM Human DNA Quantification Kit was used for DNA quantification. Initially, PowerPlex 16 kit was used to simultaneously analyze 15 short tandem repeat (STR) loci. The PowerPlex S5 miniSTR kit and AmpFℓSTR® MiniFiler PCR Amplification Kit was used for additional analysis if preliminary analysis yielded weak partial or no profiles at all. In 2 cases, when the PowerPlex 16 profiles indicated possible relatedness of the remains with reference samples, but there were insufficient probabilities to call the match to possible male paternal relatives, we resorted to an additional analysis of Y-STR markers. PowerPlex® Y System was used to simultaneously amplify 12 Y-STR loci. Fragment analysis was performed on an ABI PRISM 310 genetic analyzer. Matching probabilities were estimated using the DNA-View software. Results Following the Y-STR analysis, 1 of the “weak matches” previously obtained based on autosomal loci, was confirmed while the other 1 was not. Combined standard STR and miniSTR approach applied to bone samples from 2 individual graves resulted in positive identifications. Finally, using the same approach on 11 bone samples from hidden mass grave Žološče, we were able to obtain 6 useful DNA profiles. Conclusion The results of this study, in combination with previously obtained results, demonstrate that Y-chromosome testing and miniSTR methodology can contribute to the identification of human remains of victims of revolutionary violence from World War II. PMID:19480024
Practical Sun Power: 5 Projects to Help Free You from Depending on Any Fuel Other Than the Sun.
ERIC Educational Resources Information Center
Rankins, William H., III; Wilson, David A.
This publication describes in detail projects for using solar energy; five major projects and five mini-projects. The major projects are: (1) Parabolic reflectors, both cylindrical and spherical; (2) Solar oven; (3) Hot water heater; (4) House heating; and (5) Conversion to electricity. Mini-projects investigate: (1) Solar computers; (2) Fresnel…
High-flying Mini-Sniffer RPV - Mars bound
NASA Technical Reports Server (NTRS)
Reed, R. D.
1978-01-01
The Mini-Sniffer is a small unmanned survey aircraft developed by NASA to conduct turbulence and atmospheric pollution measurements from ground level to an altitude of 90,000 ft. Carrying a 25-lb air sampling apparatus, the Mini-Sniffer typically cruises for one hour at 70,000 ft before being remotely piloted back to earth. A hydrazine monopropellant engine powers the craft, while a PCM telemetering system and a radar transponder provide control functions. Development of a high-performance low-Reynolds-number airfoil could make the research craft suitable for a low-altitude terrain-following mission on Mars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Agostinetti, P., E-mail: piero.agostinetti@igi.cnr.it; Serianni, G.; Veltri, P.
The Radio Frequency (RF) negative hydrogen ion source prototype has been chosen for the ITER neutral beam injectors due to its optimal performances and easier maintenance demonstrated at Max-Planck-Institut für Plasmaphysik, Garching in hydrogen and deuterium. One of the key information to better understand the operating behavior of the RF ion sources is the extracted negative ion current density distribution. This distribution—influenced by several factors like source geometry, particle drifts inside the source, cesium distribution, and layout of cesium ovens—is not straightforward to be evaluated. The main outcome of the present contribution is the development of a minimization method tomore » estimate the extracted current distribution using the footprint of the beam recorded with mini-STRIKE (Short-Time Retractable Instrumented Kalorimeter). To accomplish this, a series of four computational models have been set up, where the output of a model is the input of the following one. These models compute the optics of the ion beam, evaluate the distribution of the heat deposited on the mini-STRIKE diagnostic calorimeter, and finally give an estimate of the temperature distribution on the back of mini-STRIKE. Several iterations with different extracted current profiles are necessary to give an estimate of the profile most compatible with the experimental data. A first test of the application of the method to the BAvarian Test Machine for Negative ions beam is given.« less
High-brightness diode pump sources for solid-state and fiber laser pumping across 8xx-9xx nm range
NASA Astrophysics Data System (ADS)
Diamant, Ronen; Berk, Yuri; Cohen, Shalom; Klumel, Genady; Levy, Moshe; Openhaim, Yaki; Peleg, Ophir; Yanson, Dan; Karni, Yoram
2011-06-01
Advanced solid state laser architectures place increasingly demanding requirements on high-brightness, low-cost QCW laser diode pump sources, with custom apertures both for side and end rod pumping configurations. To meet this need, a new series of scalable QCW pump sources at 808nm and 940nm was developed. The stacks, available in multiple output formats, allow for custom aperture filling by varying both the length and quantity of stacked laser bars. For these products, we developed next-generation laser bars based on improved epitaxial wafer designs delivering power densities of 20W/mm of emission aperture. With >200W of peak QCW power available from a full-length 1cm bar, we have demonstrated power scaling to over 2kW in 10-bar stacks with 55% wall plug efficiency. We also present the design and performance of several stack configurations using full-length and reduced-length (mini) bars that demonstrate the versatility of both the bar and packaging designs. We illustrate how the ROBUST HEAD packaging technology developed at SCD is capable of accommodating variable bar length, pitch and quantity for custom rod pumping geometries. The excellent all-around performance of the stacks is supported by reliability data in line with the previously reported 20 Gshot space-grade qualification of SCD's stacks.
Preliminary assessment of rover power systems for the Mars Rover Sample Return Mission
NASA Technical Reports Server (NTRS)
Bents, D. J.
1989-01-01
Four isotope power system concepts were presented and compared on a common basis for application to on-board electrical prime power for an autonomous planetary rover vehicle. A representative design point corresponding to the Mars Rover Sample Return (MRSR) preliminary mission requirements (500 W) was selected for comparison purposes. All systems concepts utilize the General Purpose Heat Source (GPHS) isotope heat source developed by DOE. Two of the concepts employ thermoelectric (TE) conversion: one using the GPHS Radioisotope Thermoelectric Generator (RTG) used as a reference case, the other using an advanced RTG with improved thermoelectric materials. The other two concepts employed are dynamic isotope power systems (DIPS): one using a closed Brayton cycle (CBC) turboalternator, and the other using a free piston Stirling cycle engine/linear alternator (FPSE) with integrated heat source/heater head. Near-term technology levels have been assumed for concept characterization using component technology figure-of-merit values taken from the published literature. For example, the CBC characterization draws from the historical test database accumulated from space Brayton cycle subsystems and components from the NASA B engine through the mini-Brayton rotating unit. TE system performance is estimated from Voyager/multihundred Watt (MHW)-RTG flight experience through Mod-RTG performance estimates considering recent advances in TE materials under the DOD/DOE/NASA SP-100 and NASA Committee on Scientific and Technological Information programs. The Stirling DIPS system is characterized from scaled-down Space Power Demonstrator Engine (SPDE) data using the GPHS directly incorporated into the heater head. The characterization/comparison results presented here differ from previous comparison of isotope power (made for LEO applications) because of the elevated background temperature on the Martian surface compared to LEO, and the higher sensitivity of dynamic systems to elevated s
Design and Performance Evaluation of a UWB Communication and Tracking System for Mini-AERCam
NASA Technical Reports Server (NTRS)
Barton, Richard J.
2005-01-01
NASA Johnson Space Center (JSC) is developing a low-volume, low-mass, robotic free-flying camera known as Mini-AERCam (Autonomous Extra-vehicular Robotic Camera) to assist the International Space Station (ISS) operations. Mini-AERCam is designed to provide astronauts and ground control real-time video for camera views of ISS. The system will assist ISS crewmembers and ground personnel to monitor ongoing operations and perform visual inspections of exterior ISS components without requiring extravehicular activity (EAV). Mini-AERCam consists of a great number of subsystems. Many institutions and companies have been involved in the R&D for this project. A Mini-AERCam ground control system has been studied at Texas A&M University [3]. The path planning and control algorithms that direct the motions of Mini-AERCam have been developed through the joint effort of Carnegie Mellon University and the Texas Robotics and Automation Center [5]. NASA JSC has designed a layered control architecture that integrates all functions of Mini-AERCam [8]. The research described in this report is part of a larger effort focused on the communication and tracking subsystem that is designed to perform three major tasks: 1. To transmit commands from ISS to Mini-AERCam for control of robotic camera motions (downlink); 2. To transmit real-time video from Mini-AERCam to ISS for inspections (uplink); 3. To track the position of Mini-AERCam for precise motion control. The ISS propagation environment is unique due to the nature of the ISS structure and multiple RF interference sources [9]. The ISS is composed of various truss segments, solar panels, thermal radiator panels, and modules for laboratories and crew accommodations. A tracking system supplemental to GPS is desirable both to improve accuracy and to eliminate the structural blockage due to the close proximity of the ISS which could at times limit the number of GPS satellites accessible to the Mini-AERCam. Ideally, the tracking system will be a passive component of the communication system which will need to operate in a time-varying multipath environment created as the robot camera moves over the ISS structure. In addition, due to many interference sources located on the ISS, SSO, LEO satellites and ground-based transmitters, selecting a frequency for the ISS and Mini-AERCam link which will coexist with all interferers poses a major design challenge. To meet all of these challenges, ultrawideband (UWB) radio technology is being studied for use in the Mini-AERCam communication and tracking subsystem. The research described in this report is focused on design and evaluation of passive tracking system algorithms based on UWB radio transmissions from mini-AERCam.
Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.
Biffinger, Justin C; Byrd, Jacqueline N; Dudley, Breanna L; Ringeisen, Bradley R
2008-01-18
Miniature microbial fuel cells (mini-MFCs) were used to monitor the current generated by Shewanella oneidensis DSP10 under both anaerobic and aerobic conditions when exposed to glucose as a potential electron donor. In addition to glucose, other carbon fuels including fructose, sucrose, acetate, and ascorbic acid were also tested. When the anolyte containing S. oneidensis was grown in the presence of oxygen, power densities of 270+/-10, 350+/-20, and 120+/-10 W/m(3) were recorded from the mini-MFC for glucose, fructose, and ascorbic acid electron donors, respectively, while sucrose and acetate produced no response. The power produced from glucose decreased considerably (
Preliminary study on weapon grade uranium utilization in molten salt reactor miniFUJI
NASA Astrophysics Data System (ADS)
Aji, Indarta Kuncoro; Waris, A.
2014-09-01
Preliminary study on weapon grade uranium utilization in 25MWth and 50MWth of miniFUJI MSR (molten salt reactor) has been carried out. In this study, a very high enriched uranium that we called weapon grade uranium has been employed in UF4 composition. The 235U enrichment is 90 - 95 %. The results show that the 25MWth miniFUJI MSR can get its criticality condition for 1.56 %, 1.76%, and 1.96% of UF4 with 235U enrichment of at least 93%, 90%, and 90%, respectively. In contrast, the 50 MWth miniFUJI reactor can be critical for 1.96% of UF4 with 235U enrichment of at smallest amount 95%. The neutron spectra are almost similar for each power output.
Materials identification using a small-scale pixellated x-ray diffraction system
NASA Astrophysics Data System (ADS)
O'Flynn, D.; Crews, C.; Drakos, I.; Christodoulou, C.; Wilson, M. D.; Veale, M. C.; Seller, P.; Speller, R. D.
2016-05-01
A transmission x-ray diffraction system has been developed using a pixellated, energy-resolving detector (HEXITEC) and a small-scale, mains operated x-ray source (Amptek Mini-X). HEXITEC enables diffraction to be measured without the requirement of incident spectrum filtration, or collimation of the scatter from the sample, preserving a large proportion of the useful signal compared with other diffraction techniques. Due to this efficiency, sufficient molecular information for material identification can be obtained within 5 s despite the relatively low x-ray source power. Diffraction data are presented from caffeine, hexamine, paracetamol, plastic explosives and narcotics. The capability to determine molecular information from aspirin tablets inside their packaging is demonstrated. Material selectivity and the potential for a sample classification model is shown with principal component analysis, through which each different material can be clearly resolved.
NASA Astrophysics Data System (ADS)
Burtovoi, A.; Zampieri, L.; Giuliani, A.; Bigongiari, C.; Di Pierro, F.; Stamerra, A.
2017-01-01
The development and construction of the Cherenkov Telescope Array (CTA) opens up new opportunities for the study of very high energy (VHE, E > 100 GeV) sources. As a part of CTA, the ASTRI project, led by INAF, has one of the main goals to develop one of the mini-arrays of CTA pre-production telescopes, proposed to be installed at the CTA southern site. Thanks to the innovative dual-mirror optical design of its small-sized telescopes, the ASTRI mini-array will be characterized by a large field of view, an excellent angular resolution and a good sensitivity up to energies of several tens of TeV. Pulsar wind nebulae, along with Supernova Remnants, are among the most abundant sources that will be identified and investigated, with the ultimate goal to move significantly closer to an understanding of the origin of cosmic rays (CR). As part of the ongoing effort to investigate the scientific capabilities for both CTA as a whole and the ASTRI mini-array, we performed simulations of the Vela X region. We simulated its extended VHE γ-ray emission using the results of the detailed H.E.S.S. analysis of this source. We estimated the resolving capabilities of the diffuse emission and the detection significance of the pulsar with both CTA as a whole and the ASTRI mini-array. Moreover with these instruments it will be possible to observe the high-energy end of SNRs spectrum, searching for particles with energies near the cosmic-rays "knee" (E ˜ 1015 eV). We simulated a set of ASTRI mini-array observations for one young and an evolved SNRs in order to test the capabilities of this instrument to discover and study PeVatrons on the Galactic plane.
NASA Technical Reports Server (NTRS)
1976-01-01
The third remotely-piloted Mini-Sniffer research vehicle rests on the lakebed adjacent to the Dryden Flight Research Center, Edwards, California. This view shows the wing shape, hydrazine engine, and the tail booms. The Mini-Sniffer was a remotely controlled, propeller-driven vehicle developed at the NASA Flight Research Center (which became the Dryden Flight Research Center, Edwards, California, in 1976) as a potential platform to sample the upper atmosphere for pollution. The vehicle, flown from 1975 to 1977, was one of the earliest attempts by NASA to develop an aircraft that could sense turbulence and measure natural and human-produced atmospheric pollutants at altitudes above 80,000 feet with a variable-load propeller that was never flight-tested. Three Mini-Sniffer vehicles were built. The number 1 Mini-Sniffer vehicle had swept wings with a span of 18 feet and canards on the nose. It flew 12 flights with the gas-powered engine at low altitudes of around 2,500 feet. The number 1 vehicle was then modified into version number 2 by removing the canards and wing rudders and adding wing tips and tail booms. Twenty flights were made with this version, up to altitudes of 20,000 feet. The number 3 vehicle had a longer fuselage, was lighter in weight, and was powered by the non-air-breathing hydrazine engine designed by NASA's Johnson Space Center in Houston, Texas. This version was designed to fly a 25-pound payload to an altitude of 70,000 feet for one hour or to climb to 90,000 feet and glide back. The number 3 Mini-Sniffer made one flight to 20,000 feet and was not flown again because of a hydrazine leak problem. All three versions used a pusher propeller to free the nose area for an atmospheric-sampling payload. At various times the Mini-Sniffer has been considered for exploration in the carbon dioxide atmosphere of the planet Mars, where the gravity (38 percent of that on Earth) would reduce the horsepower needed for flight.
NASA Technical Reports Server (NTRS)
1976-01-01
This photograph shows the second Mini-Sniffer undergoing flight testing over Rogers Dry Lake in Edwards, California. This version of the Mini-Sniffer lacked the canard of the original version and had wing tips and tail booms added. The Mini-Sniffer was a remotely controlled, propeller-driven vehicle developed at the NASA Flight Research Center (which became the Dryden Flight Research Center, Edwards, California, in 1976) as a potential platform to sample the upper atmosphere for pollution. The vehicle, flown from 1975 to 1977, was one of the earliest attempts by NASA to develop an aircraft that could sense turbulence and measure natural and human-produced atmospheric pollutants at altitudes above 80,000 feet with a variable-load propeller that was never flight-tested. Three Mini-Sniffer vehicles were built. The number 1 Mini-Sniffer vehicle had swept wings with a span of 18 feet and canards on the nose. It flew 12 flights with the gas-powered engine at low altitudes of around 2,500 feet. The number 1 vehicle was then modified into version number 2 by removing the canards and wing rudders and adding wing tips and tail booms. Twenty flights were made with this version, up to altitudes of 20,000 feet. The number 3 vehicle had a longer fuselage, was lighter in weight, and was powered by the non-air-breathing hydrazine engine designed by NASA's Johnson Space Center in Houston, Texas. This version was designed to fly a 25-pound payload to an altitude of 70,000 feet for one hour or to climb to 90,000 feet and glide back. The number 3 Mini-Sniffer made one flight to 20,000 feet and was not flown again because of a hydrazine leak problem. All three versions used a pusher propeller to free the nose area for an atmospheric-sampling payload. At various times the Mini-Sniffer has been considered for exploration in the carbon dioxide atmosphere of the planet Mars, where the gravity (38 percent of that on Earth) would reduce the horsepower needed for flight.
NASA Astrophysics Data System (ADS)
DiGregorio, A.; Wilson, E. L.; Hoffman, C.; Grunberg, C.; Mao, J.; Ramanathan, A. K.
2016-12-01
We present an updated, ruggedized design of NASA Goddard Space Flight Center's Miniaturized Laser Heterodyne Radiometer (mini-LHR), and the results of testing in the Bonanza Creek Research Forest. The mini-LHR is a passive variation of typical heterodyne radiometry instruments, designed to work in tandem with the AERONET sun photometer for collection of column methane (CH4) and carbon dioxide (CO2) in harsh environments. Advancements in the development of the Cube-Sat version of the mini-LHR have allowed a more than 50% reduction in size, weight, and power usage of the mini-LHR. Now small enough to fit in a medium handbag, the mini-LHR can be run off of a small 35 Watt solar panel and backup battery for continuous measurement. Using a touch-screen control interface built off of a Raspberry Pi, the updated mini-LHR is capable of data collection and preliminary data processing, even without internet, cellular, or satellite connectivity. The improvements made to the mini-LHR were tested in a field campaign in May 2016 funded under NASA's IDS program to track CH4 and CO2 emissions above thawing permafrost. In addition to being a comprehensive study of methane release from thawing permafrost, this pilot study tested the ruggedization and functionality of the instrument in three different environments- a black spruce forest, collapsed scar bog, and fen.
NASA Astrophysics Data System (ADS)
Ratnayake, A. S.
2011-12-01
The most of the primary civilizations of the world emerged in or near river valleys or floodplains. The river channels and floodplains are single hydrologic and geomorphic system. The failure to appreciate the integral connection between floodplains and channel underlies many socioeconomic and environmental problems in river management today. However it is a difficult task of collecting reliable field hydrological data. Under such situations either synthetic or statistically generated data were used for hydraulic engineering designing and flood modeling. The fundamentals of precipitation-runoff relationship through synthetic unit hydrograph for Gin River basin were prepared using the method of the Flood Studies Report of the National Environmental Research Council, United Kingdom (1975). The Triangular Irregular Network model was constructed using Geographic Information System (GIS) to determine hazard prone zones. The 1:10,000 and 1:50,000 topography maps and field excursions were also used for initial site selection of mini-hydro power units and determine flooding area. The turbines output power generations were calculated using the parameters of net head and efficiency of turbine. The peak discharge achieves within 4.74 hours from the onset of the rainstorm and 11.95 hours time takes to reach its normal discharge conditions of Gin River basin. Stream frequency of Gin River is 4.56 (Junctions/ km2) while the channel slope is 7.90 (m/km). The regional coefficient on the catchment is 0.00296. Higher stream frequency and gentle channel slope were recognized as the flood triggering factors of Gin River basin and other parameters such as basins catchment area, main stream length, standard average annual rainfall and soil do not show any significant variations with other catchments of Sri Lanka. The flood management process, including control of flood disaster, prepared for a flood, and minimize it impacts are complicated in human population encroached and modified floodplains. Thus modern GIS technology has been productively executed to prepare hazard maps based on the flood modeling and also it would be further utilized for disaster preparedness and mitigation activities. Five suitable hydraulic heads were recognized for mini-hydro power sites and it would be the most economical and applicable flood controlling hydraulic engineering structure considering all morphologic, climatic, environmental and socioeconomic proxies of the study area. Mini-hydro power sites also utilized as clean, eco friendly and reliable energy source (8630.0 kW). Finally Francis Turbine can be employed as the most efficiency turbine for the selected sites bearing in mind of both technical and economical parameters.
Preliminary study on weapon grade uranium utilization in molten salt reactor miniFUJI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aji, Indarta Kuncoro; Waris, A., E-mail: awaris@fi.itb.ac.id
Preliminary study on weapon grade uranium utilization in 25MWth and 50MWth of miniFUJI MSR (molten salt reactor) has been carried out. In this study, a very high enriched uranium that we called weapon grade uranium has been employed in UF{sub 4} composition. The {sup 235}U enrichment is 90 - 95 %. The results show that the 25MWth miniFUJI MSR can get its criticality condition for 1.56 %, 1.76%, and 1.96% of UF{sub 4} with {sup 235}U enrichment of at least 93%, 90%, and 90%, respectively. In contrast, the 50 MWth miniFUJI reactor can be critical for 1.96% of UF{sub 4}more » with {sup 235}U enrichment of at smallest amount 95%. The neutron spectra are almost similar for each power output.« less
Integrating Low-Cost Mems Accelerometer Mini-Arrays (mama) in Earthquake Early Warning Systems
NASA Astrophysics Data System (ADS)
Nof, R. N.; Chung, A. I.; Rademacher, H.; Allen, R. M.
2016-12-01
Current operational Earthquake Early Warning Systems (EEWS) acquire data with networks of single seismic stations, and compute source parameters assuming earthquakes to be point sources. For large events, the point-source assumption leads to an underestimation of magnitude, and the use of single stations leads to large uncertainties in the locations of events outside the network. We propose the use of mini-arrays to improve EEWS. Mini-arrays have the potential to: (a) estimate reliable hypocentral locations by beam forming (FK-analysis) techniques; (b) characterize the rupture dimensions and account for finite-source effects, leading to more reliable estimates for large magnitudes. Previously, the high price of multiple seismometers has made creating arrays cost-prohibitive. However, we propose setting up mini-arrays of a new seismometer based on low-cost (<$150), high-performance MEMS accelerometer around conventional seismic stations. The expected benefits of such an approach include decreasing alert-times, improving real-time shaking predictions and mitigating false alarms. We use low-resolution 14-bit Quake Catcher Network (QCN) data collected during Rapid Aftershock Mobilization Program (RAMP) in Christchurch, NZ following the M7.1 Darfield earthquake in September 2010. As the QCN network was so dense, we were able to use small sub-array of up to ten sensors spread along a maximum area of 1.7x2.2 km2 to demonstrate our approach and to solve for the BAZ of two events (Mw4.7 and Mw5.1) with less than ±10° error. We will also present the new 24-bit device details, benchmarks, and real-time measurements.
Yu, Feiqiao Brian; Blainey, Paul C; Schulz, Frederik; Woyke, Tanja; Horowitz, Mark A; Quake, Stephen R
2017-07-05
Metagenomics and single-cell genomics have enabled genome discovery from unknown branches of life. However, extracting novel genomes from complex mixtures of metagenomic data can still be challenging and represents an ill-posed problem which is generally approached with ad hoc methods. Here we present a microfluidic-based mini-metagenomic method which offers a statistically rigorous approach to extract novel microbial genomes while preserving single-cell resolution. We used this approach to analyze two hot spring samples from Yellowstone National Park and extracted 29 new genomes, including three deeply branching lineages. The single-cell resolution enabled accurate quantification of genome function and abundance, down to 1% in relative abundance. Our analyses of genome level SNP distributions also revealed low to moderate environmental selection. The scale, resolution, and statistical power of microfluidic-based mini-metagenomics make it a powerful tool to dissect the genomic structure of microbial communities while effectively preserving the fundamental unit of biology, the single cell.
Reflection seismic imaging in the volcanic area of the geothermal field Wayang Windu, Indonesia
NASA Astrophysics Data System (ADS)
Polom, Ulrich; Wiyono, Wiyono; Pramono, Bambang; Krawczyk, CharLotte M.
2014-05-01
Reflection seismic exploration in volcanic areas is still a scientific challenge and requires major efforts to develop imaging workflows capable of an economic utilization, e.g., for geothermal exploration. The SESaR (Seismic Exploration and Safety Risk study for decentral geothermal plants in Indonesia) project therefore tackles still not well resolved issues concerning wave propagation or energy absorption in areas covered by pyroclastic sediments using both active P-wave and S-wave seismics. Site-specific exploration procedures were tested in different tectonic and lithological regimes to compare imaging conditions. Based on the results of a small-scale, active seismic pre-site survey in the area of the Wayang Windu geothermal field in November 2012, an additional medium-scale active seismic experiment using P-waves was carried out in August 2013. The latter experiment was designed to investigate local changes of seismic subsurface response, to expand the knowledge about capabilities of the vibroseis method for seismic surveying in regions covered by pyroclastic material, and to achieve higher depth penetration. Thus, for the first time in the Wayang Windu geothermal area, a powerful, hydraulically driven seismic mini-vibrator device of 27 kN peak force (LIAG's mini-vibrator MHV2.7) was used as seismic source instead of the weaker hammer blow applied in former field surveys. Aiming at acquiring parameter test and production data southeast of the Wayang Windu geothermal power plant, a 48-channel GEODE recording instrument of the Badan Geologi was used in a high-resolution configuration, with receiver group intervals of 5 m and source intervals of 10 m. Thereby, the LIAG field crew, Star Energy, GFZ Potsdam, and ITB Bandung acquired a nearly 600 m long profile. In general, we observe the successful applicability of the vibroseis method for such a difficult seismic acquisition environment. Taking into account the local conditions at Wayang Windu, the method is superior to the common seismic explosive source techniques, both with respect to production rate as well as resolution and data quality. Source signal frequencies of 20-80 Hz are most efficient for the attempted depth penetration, even though influenced by the dry subsurface conditions during the experiment. Depth penetration ranges between 0.5-1 km. Based on these new experimental data, processing workflows can be tested the first time for adapted imaging strategies. This will not only allow to focus on larger exploration depths covering the geothermal reservoir at the Wayang Windu power plant site itself, but also opens the possibility to transfer the lessons learned to other sites.
Mini ion trap mass spectrometer
Dietrich, Daniel D.; Keville, Robert F.
1995-01-01
An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.
Mini ion trap mass spectrometer
Dietrich, D.D.; Keville, R.F.
1995-09-19
An ion trap is described which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10{sup 9} and commercial mass spectrometers requiring 10{sup 4} ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products. 10 figs.
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Duderstadt, E. C.; Wein, D.; Titran, R. H.
1978-01-01
A Mini Brayton space power generation system required the development of a Columbium alloy heat exchanger to transfer heat from a radioisotope heat source to a He/Xe working fluid. A light-weight design featured the simultaneous diffusion welding of 148 longitudinal fins in an annular heat exchanger about 9-1/2 in. in diameter, 13-1/2 in. in length and 1/4 in. in radial thickness. To complete the heat exchanger, additional gas ducting elements and attachment supports were added by GTA welding in a vacuum-purged inert atmosphere welding chamber. The development required the modification of an existing large size hot isostatic press to achieve HIP capabilities of 2800 F and 10,000 psi for at least 3 hr. Excellent diffusion welds were achieved in a high-quality component which met all system requirements.
Miniature Robotic Spacecraft for Inspecting Other Spacecraft
NASA Technical Reports Server (NTRS)
Fredrickson, Steven; Abbott, Larry; Duran, Steve; Goode, Robert; Howard, Nathan; Jochim, David; Rickman, Steve; Straube, Tim; Studak, Bill; Wagenknecht, Jennifer;
2004-01-01
A report discusses the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam)-- a compact robotic spacecraft intended to be released from a larger spacecraft for exterior visual inspection of the larger spacecraft. The Mini AERCam is a successor to the AERCam Sprint -- a prior miniature robotic inspection spacecraft that was demonstrated in a space-shuttle flight experiment in 1997. The prototype of the Mini AERCam is a demonstration unit having approximately the form and function of a flight system. The Mini AERCam is approximately spherical with a diameter of about 7.5 in. (.19 cm) and a weight of about 10 lb (.4.5 kg), yet it has significant additional capabilities, relative to the 14-in. (36-cm), 35-lb (16-kg) AERCam Sprint. The Mini AERCam includes miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including two digital video cameras and a high-resolution still camera. The Mini AERCam is designed for either remote piloting or supervised autonomous operations, including station keeping and point-to-point maneuvering. The prototype has been tested on an air-bearing table and in a hardware-in-the-loop orbital simulation of the dynamics of maneuvering in proximity to the International Space Station.
Mini AERCam Inspection Robot for Human Space Missions
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.; Duran, Steve; Mitchell, Jennifer D.
2004-01-01
The Engineering Directorate of NASA Johnson Space Center has developed a nanosatellite-class free-flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam free flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35 pound, 14 inch AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, imaging, power, and propulsion subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations including automatic stationkeeping and point-to-point maneuvering. Mini AERCam is designed to fulfill the unique requirements and constraints associated with using a free flyer to perform external inspections and remote viewing of human spacecraft operations. This paper describes the application of Mini AERCam for stand-alone spacecraft inspection, as well as for roles on teams of humans and robots conducting future space exploration missions.
Sheldon, Kennon M; Sommet, Nicolas; Corcoran, Mike; Elliot, Andrew J
2018-04-01
We created a life-goal assessment drawing from self-determination theory and achievement goal literature, examining its predictive power regarding immoral behavior and subjective well-being. Our source items assessed direction and energization of motivation, via the distinction between intrinsic and extrinsic aims and between intrinsic and extrinsic reasons for acting, respectively. Fused source items assessed four goal complexes representing a combination of direction and energization. Across three studies ( Ns = 109, 121, and 398), the extrinsic aim/extrinsic reason complex was consistently associated with immoral and/or unethical behavior beyond four source and three other goal complex variables. This was consistent with the triangle model of responsibility's claim that immoral behaviors may result when individuals disengage the self from moral prescriptions. The extrinsic/extrinsic complex also predicted lower subjective well-being, albeit less consistently. Our goal complex approach sheds light on how self-determination theory's goal contents and organismic integration mini-theories interact, particularly with respect to unethical behavior.
The Rocks of Gusev Crater as Viewed by Mini-TES
NASA Technical Reports Server (NTRS)
Ruff, S. W.; Christensen, P. R.; Blaney, D. L.
2005-01-01
We are developing the means to separate atmospheric spectral features from rock spectra. Measurements made in the late afternoon when the temperature difference between the rocks and sky is the greatest provide spectra that are least impacted by downwelling radiance. Additionally, the long wavelength range of Mini-TES spectra contain spectral features that are least effected by contributions from the atmosphere due to its relative transparency in this range. Mini-TES spectra have thus been used to reveal the geological diversity in Gusev crater and will continue to be a rich source of mineralogical information as Spirit continues its traverse.
ShellFit: Reconstruction in the MiniCLEAN Detector
NASA Astrophysics Data System (ADS)
Seibert, Stanley
2010-02-01
The MiniCLEAN dark matter experiment is an ultra-low background liquid cryogen detector with a fiducial volume of approximately 150 kg. Dark matter candidate events produce ultraviolet scintillation light in argon at 128 nm and in neon at 80 nm. In order to detect this scintillation light, the target volume is enclosed by acrylic plates forming a spherical shell upon which an organic fluor, tetraphenyl butadiene (TPB), has been applied. TPB absorbs UV light and reemits visible light isotropically which can be detected by photomultiplier tubes. Two significant sources of background events in MiniCLEAN are decays of radon daughters embedded in the acrylic surface and external sources of neutrons, such as the photomultiplier tubes themselves. Both of these backgrounds can be mitigated by reconstructing the origin of the scintillation light and cutting events beyond a particular radius. The scrambling of photon trajectories at the TPB surface makes this task very challenging. The ``ShellFit'' algorithm for reconstructing event position and energy in a detector with a spherical wavelength-shifting shell will be described. The performance of ShellFit will be demonstrated using Monte Carlo simulation of several event types in the MiniCLEAN detector. )
Mini-Sosie high-resolution seismic method aids hazards studies
Stephenson, W.J.; Odum, J.; Shedlock, K.M.; Pratt, T.L.; Williams, R.A.
1992-01-01
The Mini-Sosie high-resolution seismic method has been effective in imaging shallow-structure and stratigraphic features that aid in seismic-hazard and neotectonic studies. The method is not an alternative to Vibroseis acquisition for large-scale studies. However, it has two major advantages over Vibroseis as it is being used by the USGS in its seismic-hazards program. First, the sources are extremely portable and can be used in both rural and urban environments. Second, the shifting-and-summation process during acquisition improves the signal-to-noise ratio and cancels out seismic noise sources such as cars and pedestrians. -from Authors
Characteristics of Mini-Magnetospheres Formed by Paleo-Magnetic Fields of Mars
NASA Technical Reports Server (NTRS)
Ness, N. F.; Krymskii, A. M.; Crider, D. H.; Breus, T. K.; Acuna, M. H.; Hinson, D.; Barashyan, K. K.
2003-01-01
The intensely and non-uniformly magnetized crustal sources generate an effective large-scale magnetic field. In the Southern hemisphere the strongest crustal fields lead to the formation of large-scale mini-magnetospheres. In the Northern hemisphere, the crustal fields are rather weak and there are only isolated mini-magnetospheres. Re-connection with the interplanetary magnetic field (IMF) occurs in many localized regions. This may occur not only in cusp-like structures above nearly vertical field anomalies but also in halos extending several hundreds of kilometers from these sources. Re-connection will permit solar wind (SW) and more energetic particles to precipitate into and heat the neutral atmosphere. Electron density profiles of the ionosphere of Mars derived from radio occultation data obtained by the Radio Science Mars Global Surveyor (MGS) experiment are concentrated in the near polar regions. The effective scale-height of the neutral atmosphere density in the vicinity of the ionization peak has been derived for each of the profiles studied. The effective scale-heights have been compared with the crustal magnetic fields measured by the MGS Magnetometer/Electron Reflectometer (MAG/ER) experiment. A significant difference between the large-scale mini-magnetospheres and regions outside of them has been found. The neutral atmosphere is cooler inside the large-scale mini-magnetospheres. It appears that outside of the cusps the strong crustal magnetic fields prevent additional heating of the neutral atmosphere by direct interaction of the SW. The scale-height of the neutral atmosphere density derived from the experiment with the MGS Accelerometer has been compared with MAG/ER data. The scale-height was found to be usually larger than mean value near the boundaries of potential mini-magnetospheres and around cusps . It may indicate that the paleo-magnetic/IMF field re-connection is characteristic of the mini-magnetospheres at Mars.
Exploration of Ulumbu Geothermal field, Flores-East Nusa Tenggara Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulasdi, D.
1996-12-31
This paper describes the progress made in developing geothermal resources at Ulurnbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E)more » Ulumbu mini geothermal power plant.« less
Exploration of Ulumbu geothermal field, Flores-east nusa tenggara, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sulasdi, Didi
1996-01-26
This paper describes the progress made in developing geothermal resources at Ulumbu Flores, Indonesia for utilization mini geothermal power generation. Two deep exploratory wells drilling drilled by PLN confirmed the existence of the resources. The well measurement carried out during drilling and after completion of the well indicated that the major permeable zone at around 680 m depth and that this zone is a steam cap zone, which is likely to produce high enthalpy steam. The above information indicates that well ULB-01 will produce a mass flow at least 40 tonnes per hour, which will ensure a 3 MW (E)more » Ulumbu mini geothermal power plant.« less
Preliminary design of a mini-Brayton Compressor-Alternator-Turbine (CAT)
NASA Technical Reports Server (NTRS)
1973-01-01
The preliminary design of a mini-Brayton compressor-alternator-turbine system is discussed. The program design goals are listed. The optimum system characteristics over the entire range of power output were determined by performing a wide-range parametric study. The ability to develop the required components to the degree necessary within the limitations of present technology is evaluated. The sensitivity of the system to various individual design parameters was analyzed.
Extended range of the Lockheed Martin Mini cryocooler
NASA Astrophysics Data System (ADS)
Frank, D.; Sanders, L.; Nason, I.; Mistry, V.; Guzinski, M.; Roth, E.; Olson, J. R.
2017-12-01
This paper describes the expanded performance range of the Lockheed Martin Mini cryocooler thermal mechanical unit (TMU). The design is based on the standard unit originally developed for NASA and a higher capacity developed for ESA. These higher capacity Mini units are in a split configuration with the cold head separated from the compressor. The TMU provides cooling over a wide range of temperatures with a weight of 1.9 kg including the 1.4 kg compressor and the 0.45 kg cold head. The unit provides for 3.5 W cooling at 105 K and approximately 7 W cooling at 150 K for 293 K reject temperature with 60 W of input power.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Curry, Matthew L.; Ferreira, Kurt Brian; Pedretti, Kevin Thomas Tauke
2012-03-01
This report documents thirteen of Sandia's contributions to the Computational Systems and Software Environment (CSSE) within the Advanced Simulation and Computing (ASC) program between fiscal years 2009 and 2012. It describes their impact on ASC applications. Most contributions are implemented in lower software levels allowing for application improvement without source code changes. Improvements are identified in such areas as reduced run time, characterizing power usage, and Input/Output (I/O). Other experiments are more forward looking, demonstrating potential bottlenecks using mini-application versions of the legacy codes and simulating their network activity on Exascale-class hardware. The purpose of this report is to provemore » that the team has completed milestone 4467-Demonstration of a Legacy Application's Path to Exascale. Cielo is expected to be the last capability system on which existing ASC codes can run without significant modifications. This assertion will be tested to determine where the breaking point is for an existing highly scalable application. The goal is to stretch the performance boundaries of the application by applying recent CSSE RD in areas such as resilience, power, I/O, visualization services, SMARTMAP, lightweight LWKs, virtualization, simulation, and feedback loops. Dedicated system time reservations and/or CCC allocations will be used to quantify the impact of system-level changes to extend the life and performance of the ASC code base. Finally, a simulation of anticipated exascale-class hardware will be performed using SST to supplement the calculations. Determine where the breaking point is for an existing highly scalable application: Chapter 15 presented the CSSE work that sought to identify the breaking point in two ASC legacy applications-Charon and CTH. Their mini-app versions were also employed to complete the task. There is no single breaking point as more than one issue was found with the two codes. The results were that applications can expect to encounter performance issues related to the computing environment, system software, and algorithms. Careful profiling of runtime performance will be needed to identify the source of an issue, in strong combination with knowledge of system software and application source code.« less
Satisfaction, function and repair integrity after arthroscopic versus mini-open rotator cuff repair.
Barnes, L A Fink; Kim, H M; Caldwell, J-M; Buza, J; Ahmad, C S; Bigliani, L U; Levine, W N
2017-02-01
Advances in arthroscopic techniques for rotator cuff repair have made the mini-open approach less popular. However, the mini-open approach remains an important technique for repair for many surgeons. The aims of this study were to compare the integrity of the repair, the function of the shoulder and satisfaction post-operatively using these two techniques in patients aged > 50 years. We identified 22 patients treated with mini-open and 128 patients treated with arthroscopic rotator cuff repair of July 2007 and June 2011. The mean follow-up was two years (1 to 5). Outcome was assessed using the American Shoulder and Elbow Surgeons (ASES) and Simple Shoulder Test (SST) scores, and satisfaction. The integrity of the repair was assessed using ultrasonography. A power analysis ensured sufficient enrolment. There was no statistically significant difference between the age, function, satisfaction, or pain scores (p > 0.05) of the two groups. The integrity of the repair and the mean SST scores were significantly better in the mini-open group (91% of mini-open repairs were intact versus 60% of arthroscopic repairs, p = 0.023; mean SST score 10.9 (standard deviation (sd) 1.3) in the mini-open group; 8.9 (sd 3.5) in arthroscopic group; p = 0.003). The ASES scores were also higher in the mini-open group (mean ASES score 91.0 (sd 10.5) in mini-open group; mean 82.70 (sd 19.8) in the arthroscopic group; p = 0.048). The integrity of the repair and function of the shoulder were better after a mini-open repair than after arthroscopic repair of a rotator cuff tear in these patients. The functional difference did not translate into a difference in satisfaction. Mini-open rotator cuff repair remains a useful technique despite advances in arthroscopy. Cite this article: Bone Joint J 2017;99-B:245-9. ©2017 The British Editorial Society of Bone & Joint Surgery.
Systemic levels of metallic ions released from orthodontic mini-implants.
de Morais, Liliane Siqueira; Serra, Glaucio Guimarães; Albuquerque Palermo, Elisabete Fernandes; Andrade, Leonardo Rodrigues; Müller, Carlos Alberto; Meyers, Marc André; Elias, Carlos Nelson
2009-04-01
Orthodontic mini-implants are a potential source of metallic ions to the human body because of the corrosion of titanium (Ti) alloy in body fluids. The purpose of this study was to gauge the concentration of Ti, aluminum (Al), and vanadium (V), as a function of time, in the kidneys, livers, and lungs of rabbits that had Ti-6Al-4V alloy orthodontic mini-implants placed in their tibia. Twenty-three New Zealand rabbits were randomly divided into 4 groups: control, 1 week, 4 weeks, and 12 weeks. Four orthodontic mini-implants were placed in the left proximal tibia of 18 rabbits. Five control rabbits had no orthodontic mini-implants. After 1, 4, and 12 weeks, the rabbits were killed, and the selected tissues were extracted and prepared for analysis by graphite furnace atomic absorption spectrophotometry. Low amounts of Ti, Al, and V were detectable in the 1-week, 4-weeks, and 12-weeks groups, confirming that release of these metals from the mini-implants occurs, with diffusion and accumulation in remote organs. Despite the tendency of ion release when using the Ti alloy as orthodontic mini-implants, the amounts of metals detected were significantly below the average intake of these elements through food and drink and did not reach toxic concentrations.
Vibert, P; Edelstein, S M; Castellani, L; Elliott, B W
1993-12-01
Invertebrate mini-titins are members of a class of myosin-binding proteins belonging to the immunoglobulin superfamily that may have structural and/or regulatory properties. We have isolated mini-titins from three molluscan sources: the striated and smooth adductor muscles of the scallop, and the smooth catch muscles of the mussel. Electron microscopy reveals flexible rod-like molecules about 0.2 micron long and 30 A wide with a distinctive polarity. Antibodies to scallop mini-titin label the A-band and especially the A/I junction of scallop striated muscle myofibrils by indirect immunofluorescence and immuno-electron microscopy. This antibody crossreacts with mini-titins in scallop smooth and Mytilus catch muscles, as well as with proteins in striated muscles from Limulus, Lethocerus (asynchronous flight muscle), and crayfish. It labels the A/I junction (I-region in Lethocerus) in these striated muscles as well as in chicken skeletal muscle. Antibodies to the repetitive immunoglobulin-like regions and also to the kinase domain of nematode twitchin crossreact with scallop mini-titin and label the A-band of scallop myofibrils. Electron microscopy of single molecules shows that antibodies to twitchin kinase bind to scallop mini-titin near one end of the molecule, suggesting how the scallop structure might be aligned with the sequence of nematode twitchin.
Fuzzy control based engine sizing optimization for a fuel cell/battery hybrid mini-bus
NASA Astrophysics Data System (ADS)
Kim, Minjin; Sohn, Young-Jun; Lee, Won-Yong; Kim, Chang-Soo
The fuel cell/battery hybrid vehicle has been focused for the alternative engine of the existing internal-combustion engine due to the following advantages of the fuel cell and the battery. Firstly, the fuel cell is highly efficient and eco-friendly. Secondly, the battery has the fast response for the changeable power demand. However, the competitive efficiency of the hybrid fuel cell vehicle is necessary to successfully alternate the conventional vehicles with the fuel cell hybrid vehicle. The most relevant factor which affects the overall efficiency of the hybrid fuel cell vehicle is the relative engine sizing between the fuel cell and the battery. Therefore the design method to optimize the engine sizing of the fuel cell hybrid vehicle has been proposed. The target system is the fuel cell/battery hybrid mini-bus and its power distribution is controlled based on the fuzzy logic. The optimal engine sizes are determined based on the simulator developed in this paper. The simulator includes the several models for the fuel cell, the battery, and the major balance of plants. After the engine sizing, the system efficiency and the stability of the power distribution are verified based on the well-known driving schedule. Consequently, the optimally designed mini-bus shows good performance.
Four-Channel PC/104 MIL-STD-1553 Circuit Board
NASA Technical Reports Server (NTRS)
Cox, Gary L.
2004-01-01
The mini bus interface card (miniBIC) is the first four-channel electronic circuit board that conforms to MIL-STD-1553 and to the electrical-footprint portion of PC/104. [MIL-STD-1553 is a military standard that encompasses a method of communication and electrical- interface requirements for digital electronic subsystems connected to a data bus. PC/104 is an industry standard for compact, stackable modules that are fully compatible (in architecture, hardware, and software) with personal-computer data- and power-bus circuitry.] Prior to the development of the miniBIC, only one- and two-channel PC/104 MIL-STD-1553 boards were available. To obtain four channels, it was necessary to include at least two boards in a PC/104 stack. In comparison with such a two-board stack, the miniBIC takes up less space, consumes less power, and is more reliable. In addition, the miniBIC includes 32 digital input/output channels. The miniBIC (see figure) contains four MIL-STD-1553B hybrid integrated circuits (ICs), four transformers, a field-programmable gate array (FPGA), and an Industry Standard Architecture (ISA) interface. Each hybrid IC includes a MILSTD-1553 dual transceiver, memory-management circuitry, processor interface logic circuitry, and 64Kx16 bits of shared static random access memory. The memory is used to configure message and data blocks. In addition, 23 16-bit registers are available for (1) configuring the hybrid IC for, and starting it in, various modes of operation; (2) reading the status of the functionality of the hybrid IC; and (3) resetting the hybrid IC to a known state. The miniBIC can operate as a remote terminal, bus controller, or bus monitor. The FPGA provides the chip-select and data-strobe signals needed for operation of the hybrid ICs. The FPGA also receives interruption signals and forwards them to the ISA bus. The ISA interface connects the address, data, and control interfaces of the hybrid ICs to the ISA backplane. Each channel is, in effect, a MIL-STD-1553 interface that can operate either independently of the others or else as a redundant version of one of the others. The transformer in each channel provides electrical isolation between the rest of the miniBIC circuitry and the bus to which that channel is connected.
NASA Technical Reports Server (NTRS)
1974-01-01
The original Mini-Sniffer on Rogers Dry Lake, adjacent to NASA's Flight Research Center, Edwards AFB. This version of the remotely-piloted vehicle had swept-back wings, tip rudders, nose canards, and an air breathing engine. The Mini-Sniffer was a remotely controlled, propeller-driven vehicle developed at the NASA Flight Research Center (which became the Dryden Flight Research Center, Edwards, California, in 1976) as a potential platform to sample the upper atmosphere for pollution. The vehicle, flown from 1975 to 1977, was one of the earliest attempts by NASA to develop an aircraft that could sense turbulence and measure natural and human-produced atmospheric pollutants at altitudes above 80,000 feet with a variable-load propeller that was never flight-tested. Three Mini-Sniffer vehicles were built. The number 1 Mini-Sniffer vehicle had swept wings with a span of 18 feet and canards on the nose. It flew 12 flights with the gas-powered engine at low altitudes of around 2,500 feet. The number 1 vehicle was then modified into version number 2 by removing the canards and wing rudders and adding wing tips and tail booms. Twenty flights were made with this version, up to altitudes of 20,000 feet. The number 3 vehicle had a longer fuselage, was lighter in weight, and was powered by the non-air-breathing hydrazine engine designed by NASA's Johnson Space Center in Houston, Texas. This version was designed to fly a 25-pound payload to an altitude of 70,000 feet for one hour or to climb to 90,000 feet and glide back. The number 3 Mini-Sniffer made one flight to 20,000 feet and was not flown again because of a hydrazine leak problem. All three versions used a pusher propeller to free the nose area for an atmospheric-sampling payload. At various times the Mini-Sniffer has been considered for exploration in the carbon dioxide atmosphere of the planet Mars, where the gravity (38 percent of that on Earth) would reduce the horsepower needed for flight.
Comparison of fecal egg counting methods in four livestock species.
Paras, Kelsey L; George, Melissa M; Vidyashankar, Anand N; Kaplan, Ray M
2018-06-15
Gastrointestinal nematode parasites are important pathogens of all domesticated livestock species. Fecal egg counts (FEC) are routinely used for evaluating anthelmintic efficacy and for making targeted anthelmintic treatment decisions. Numerous FEC techniques exist and vary in precision and accuracy. These performance characteristics are especially important when performing fecal egg count reduction tests (FECRT). The objective of this study was to compare the accuracy and precision of three commonly used FEC methods and determine if differences existed among livestock species. In this study, we evaluated the modified-Wisconsin, 3-chamber (high-sensitivity) McMaster, and Mini-FLOTAC methods in cattle, sheep, horses, and llamas in three phases. In the first phase, we performed an egg-spiking study to assess the egg recovery rate and accuracy of the different FEC methods. In the second phase, we examined clinical samples from four different livestock species and completed multiple replicate FEC using each method. In the last phase, we assessed the cheesecloth straining step as a potential source of egg loss. In the egg-spiking study, the Mini-FLOTAC recovered 70.9% of the eggs, which was significantly higher than either the McMaster (P = 0.002) or Wisconsin (P = 0.002). In the clinical samples from ruminants, Mini-FLOTAC consistently yielded the highest EPG, revealing a significantly higher level of egg recovery (P < 0.0001). For horses and llamas, both McMaster and Mini-FLOTAC yielded significantly higher EPG than Wisconsin (P < 0.0001, P < 0.0001, P < 0.001, and P = 0.024). Mini-FLOTAC was the most accurate method and was the most precise test for both species of ruminants. The Wisconsin method was the most precise for horses and McMaster was more precise for llama samples. We compared the Wisconsin and Mini-FLOTAC methods using a modified technique where both methods were performed using either the Mini-FLOTAC sieve or cheesecloth. The differences in the estimated mean EPG on log scale between the Wisconsin and mini-FLOTAC methods when cheesecloth was used (P < 0.0001) and when cheesecloth was excluded (P < 0.0001) were significant, providing strong evidence that the straining step is an important source of error. The high accuracy and precision demonstrated in this study for the Mini-FLOTAC, suggest that this method can be recommended for routine use in all host species. The benefits of Mini-FLOTAC will be especially relevant when high accuracy is important, such as when performing FECRT. Copyright © 2018 Elsevier B.V. All rights reserved.
On the covering fraction variability in an EUV mini-BAL outflow from PG 1206+459
NASA Astrophysics Data System (ADS)
Muzahid, S.; Srianand, R.; Charlton, J.; Eracleous, M.
2016-04-01
We report on the first detection of extreme-ultraviolet (EUV) absorption variability in the Ne VIII λλ770, 780 mini-broad absorption line (mini-BAL) in the spectrum of the quasar (QSO) PG 1206+459. The observed equivalent width (EW) of the Ne VIII doublet shows a ˜4σ variation over a time-scale of 2.8 months in the QSO's rest frame. Both members of the Ne VIII doublet exhibit non-black saturation, indicating partial coverage of the continuum source. An increase in the Ne VIII covering fraction from fc = 0.59 ± 0.05 to 0.72 ± 0.03 is observed over the same period. The Ne VIII profiles are too highly saturated to be susceptible to changes in the ionization state of the absorbing gas. In fact, we do not observe any significant variation in the EW and/or column density after correcting the spectra for partial coverage. We, thus, propose transverse motions of the absorbing gas as the cause of the observed variability. Using a simple model of a transiting cloud we estimate a transverse speed of ˜1800 km s-1. For Keplerian motion, this corresponds to a distance between the absorber and the central engine of ˜1.3 pc, which places the absorber just outside the broad-line region. We further estimate a density of ˜5 × 106 cm-3 and a kinetic luminosity of ˜1043-1044 erg s-1. Such large kinetic powers suggest that outflows detected via EUV lines are potentially major contributors to active galactic nuclei feedback.
Suhoyo, Yoyo; Schönrock-Adema, Johanna; Rahayu, Gandes Retno; Kuks, Jan B M; Cohen-Schotanus, Janke
2014-10-01
Abstract Background: Medical schools all over the world try to adapt their programs to meet international standards. However, local culture might hamper innovation attempts. To describe challenges in implementing the mini-CEX in Indonesia and investigate its effect on students' clinical competence. The study was conducted in the Internal Medicine and Neurology departments of the Universitas Gadjah Mada, Indonesia. Implementing the mini-CEX into the existing curriculum, while taking the Indonesian culture into account, implied a shift from group to individual feedback. We compared students' final clinical competence before (Internal Medicine n = 122, Neurology n = 183) and after (n = 183 and 186, respectively) the implementation of the mini-CEX, using a modified Objective Structured Long Examination Record (OSLER). The Mann-Whitney test was used to analyze the data. We took power distance and individualism into account to facilitate the implementation process. After implementing the mini-CEX, the OSLER results were significant higher in Internal Medicine (p < 0.05). However, no differences were found in Neurology. By managing the innovation process carefully and taking culture and local context into account, the mini-CEX can be implemented without changing the underlying concept. The shift from group to individual feedback seems to have a positive effect on student learning.
Avionics for a Small Robotic Inspection Spacecraft
NASA Technical Reports Server (NTRS)
Abbott, Larry; Shuler, Robert L., Jr.
2005-01-01
A report describes the tentative design of the avionics of the Mini-AERCam -- a proposed 7.5-in. (approximately 19-cm)-diameter spacecraft that would contain three digital video cameras to be used in visual inspection of the exterior of a larger spacecraft (a space shuttle or the International Space Station). The Mini-AERCam would maneuver by use of its own miniature thrusters under radio control by astronauts inside the larger spacecraft. The design of the Mini-AERCam avionics is subject to a number of constraints, most of which can be summarized as severely competing requirements to maximize radiation hardness and maneuvering, image-acquisition, and data-communication capabilities while minimizing cost, size, and power consumption. The report discusses the design constraints, the engineering approach to satisfying the constraints, and the resulting iterations of the design. The report places special emphasis on the design of a flight computer that would (1) acquire position and orientation data from a Global Positioning System receiver and a microelectromechanical gyroscope, respectively; (2) perform all flight-control (including thruster-control) computations in real time; and (3) control video, tracking, power, and illumination systems.
Yu, Feiqiao Brian; Blainey, Paul C; Schulz, Frederik; Woyke, Tanja; Horowitz, Mark A; Quake, Stephen R
2017-01-01
Metagenomics and single-cell genomics have enabled genome discovery from unknown branches of life. However, extracting novel genomes from complex mixtures of metagenomic data can still be challenging and represents an ill-posed problem which is generally approached with ad hoc methods. Here we present a microfluidic-based mini-metagenomic method which offers a statistically rigorous approach to extract novel microbial genomes while preserving single-cell resolution. We used this approach to analyze two hot spring samples from Yellowstone National Park and extracted 29 new genomes, including three deeply branching lineages. The single-cell resolution enabled accurate quantification of genome function and abundance, down to 1% in relative abundance. Our analyses of genome level SNP distributions also revealed low to moderate environmental selection. The scale, resolution, and statistical power of microfluidic-based mini-metagenomics make it a powerful tool to dissect the genomic structure of microbial communities while effectively preserving the fundamental unit of biology, the single cell. DOI: http://dx.doi.org/10.7554/eLife.26580.001 PMID:28678007
Miniature flowing atmospheric-pressure afterglow ion source for facile interfacing of CE with MS.
Jecklin, Matthias C; Schmid, Stefan; Urban, Pawel L; Amantonico, Andrea; Zenobi, Renato
2010-10-01
Here, we present a miniaturized version of the flowing atmospheric-pressure afterglow (miniFAPA) ion source and use it for sheathless coupling of CE with MS. The simple design of the CE-miniFAPA-MS interface makes it easy to separate the electric potentials used for CE and for ionization. A pneumatically assisted nebulization of the CE effluent transfers the analytes from the liquid phase into the gas phase before they are ionized by interacting with reactive species produced by the FAPA. An important advantage of this interface is its high stability during operation: optimization of five different parameters indicated that the interface is not sensitive to minor deviations from the optimum values. Other advantages include ease of construction and maintenance, as well as relatively low cost. Samples with complex matrices, such as yeast extract, soil extract and urine, spiked with the test compounds, were successfully analyzed using the CE-miniFAPA-MS setup.
Mini-beam collimator applications at the Advanced Photon Source
NASA Astrophysics Data System (ADS)
Xu, Shenglan; Keefe, Lisa J.; Mulichak, Anne; Yan, Lifen; Alp, Ercan E.; Zhao, Jiyong; Fischetti, Robert F.
2011-09-01
In 2007, the General Medicine and Cancer Institutes Collaborative Access Team (GM/CA CAT, Sector 23, Advanced Photon Source) began providing mini-beam collimators to its users. These collimators contained individual, 5- or 10-μm pinholes and were rapidly exchangeable, thereby allowing users to tailor the beam size to their experimental needs. The use of these collimators provided a reduction in background noise, and thus improved the signal-to-noise ratio [1,2]. Recent improvements in the collimator design include construction of the device from a monolithic piece of molybdenum with multiple pinholes mounted inside [3]. This allows users to select from various size options from within the beamline control software without the realignment that was previously necessary. In addition, a new, 20-μm pinhole has been added to create a "quad-collimator", resulting in greater flexibility for the users. The mini-beam collimator is now available at multiple crystallographic beamlines and also is a part of the first Mössbauer Microscopic system at sector 3-ID.
Multipurpose insulation system for a radioisotope fueled Mini-Brayton Heat Source Assembly
NASA Technical Reports Server (NTRS)
Aller, P.; Saylor, W.; Schmidt, G.; Wein, D.
1976-01-01
The Mini-Brayton Heat Source Assembly (HSA) consists of a radioisotope fueled heat source, a heat exchanger, a multifoil thermal insulation blanket, and a hermetically sealed housing. The thermal insulation blanket is a multilayer wrap of thin metal foil separated by a sparsely coated oxide. The objectives of the insulation blanket are related to the effective insulation of the HSA during operation, the transfer of the full thermal inventory to the housing when the primary coolant is not flowing, and the transfer of the full thermal inventory to the housing in the event of a flow stoppage of the primary coolant. A description is given of the approaches which have been developed to make it possible for the insulation blanket to meet these requirements.
NASA Astrophysics Data System (ADS)
Baglio, V.; Stassi, A.; Matera, F. V.; Di Blasi, A.; Antonucci, V.; Aricò, A. S.
An investigation of properties and operating parameters of a passive DMFC monopolar mini-stack, such as catalyst loading and methanol concentration, was carried out. From this analysis, it was derived that a proper Pt loading is necessary to achieve the best compromise between electrode thickness and number of catalytic sites for the anode and cathode reactions to occur at suitable rates. Methanol concentrations ranging from 1 M up to 10 M and an air-breathing operation mode were investigated. A maximum power of 225 mW was obtained at ambient conditions for a three-cell stack, with an active single cell area of 4 cm 2, corresponding to a power density of about 20 mW cm -2.
Preliminary assessment of rover power systems for the Mars Rover Sample Return Mission
NASA Technical Reports Server (NTRS)
Bents, David J.
1989-01-01
Four isotope power system concepts were presented and compared on a common basis for application to on-board electrical prime power for an autonomous planetary rover vehicle. A representative design point corresponding to the Mars Rover Sample Return (MRSR) preliminary mission requirements (500 W) was selected for comparison purposes. All systems concepts utilize the General Purpose Heat Source (GPHS) isotope heat source developed by DOE. Two of the concepts employ thermoelectric (TE) conversion: one using the GPHS Radioisotope Thermoelectric Generator (RTG) used as a reference case, the other using an advanced RTG with improved thermoelectric materials. The other two concepts employed are dynamic isotope power systems (DIPS): one using a closed Brayton cycle (CBC) turboalternator, and the other using a free piston Stirling cycle engine/linear alternator (FPSE) with integrated heat source/heater head. Near term technology levels have been assumed for concept characterization using component technology figure-of-merit values taken from the published literature. For example, the CBC characterization draws from the historical test database accumulated from space Brayton cycle subsystems and components from the NASA B engine through the mini-Brayton rotating unit. TE system performance is estimated from Voyager/multihundred Watt (MHW)-RTG flight experience through Mod-RTG performance estimates considering recent advances in TE materials under the DOD/DOE/NASA SP-100 and NASA Committee on Scientific and Technological Information programs. The Stirling DIPS system is characterized from scaled-down Space Power Demonstrator Engine (SPDE) data using the GPHS directly incorporated into the heater head. The characterization/comparison results presented here differ from previous comparison of isotope power (made for Low Earth Orbit (LEO) applications) because of the elevated background temperature on the Martian surface compared to LEO, and the higher sensitivity of dynamic systems to elevated sink temperature. The mass advantage of dynamic systems is significantly reduced for this application due to Mars' elevated background temperature.
Mechanically stable ternary heterogeneous electrodes for energy storage and conversion.
Gao, Libo; Zhang, Hongti; Surjadi, James Utama; Li, Peifeng; Han, Ying; Sun, Dong; Lu, Yang
2018-02-01
Recently, solid asymmetric supercapacitor (ASC) has been deemed as an emerging portable power storage or backup device for harvesting natural resources. Here we rationally engineered a hierarchical, mechanically stable heterostructured FeCo@NiCo layered double hydroxide (LDH) with superior capacitive performance by a simple two-step electrodeposition route for energy storage and conversion. In situ scanning electron microscope (SEM) nanoindentation and electrochemical tests demonstrated the mechanical robustness and good conductivity of FeCo-LDH. This serves as a reliable backbone for supporting the NiCo-LDH nanosheets. When employed as the positive electrode in the solid ASC, the assembly presents high energy density of 36.6 W h kg -1 at a corresponding power density of 783 W kg -1 and durable cycling stability (87.3% after 5000 cycles) as well as robust mechanical stability without obvious capacitance fading when subjected to bending deformation. To demonstrate its promising capability for practical energy storage applications, the ASC has been employed as a portable energy source to power a commercially available digital watch, mini motor car, or household lamp bulb as well as an energy storage reservoir, coupled with a wind energy harvester to power patterned light-emitting diodes (LEDs).
Use of Mini-Grant to Disseminate Evidence-Based Interventions for Cancer Prevention and Control.
Kegler, Michelle C; Carvalho, Michelle L; Ory, Marcia; Kellstedt, Deb; Friedman, Daniela B; McCracken, James Lyndon; Dawson, Glenna; Fernandez, Maria
2015-01-01
Mini-grants are an increasingly common tool for engaging communities in evidence-based interventions for promoting public health. This article describes efforts by 4 Centers for Disease Control and Prevention/National Cancer Institute-funded Cancer Prevention and Control Research Network centers to design and implement mini-grant programs to disseminate evidence-based interventions for cancer prevention and control. This article also describes source of evidence-based interventions, funding levels, selection criteria, time frame, number and size of grants, types of organizations funded, selected accomplishments, training and technical assistance, and evaluation topics/methods. Grant size ranged from $1000 to $10 000 (median = $6250). This mini-grant opportunity was characterized by its emphasis on training and technical assistance for evidence-based programming and dissemination of interventions from National Cancer Institute's Research-Tested Intervention Programs and Centers for Disease Control and Prevention's Guide to Community Preventive Services. All projects had an evaluation component, although they varied in scope. Mini-grant processes described can serve as a model for organizations such as state health departments working to bridge the gap between research and practice.
A Cost Effective System Design Approach for Critical Space Systems
NASA Technical Reports Server (NTRS)
Abbott, Larry Wayne; Cox, Gary; Nguyen, Hai
2000-01-01
NASA-JSC required an avionics platform capable of serving a wide range of applications in a cost-effective manner. In part, making the avionics platform cost effective means adhering to open standards and supporting the integration of COTS products with custom products. Inherently, operation in space requires low power, mass, and volume while retaining high performance, reconfigurability, scalability, and upgradability. The Universal Mini-Controller project is based on a modified PC/104-Plus architecture while maintaining full compatibility with standard COTS PC/104 products. The architecture consists of a library of building block modules, which can be mixed and matched to meet a specific application. A set of NASA developed core building blocks, processor card, analog input/output card, and a Mil-Std-1553 card, have been constructed to meet critical functions and unique interfaces. The design for the processor card is based on the PowerPC architecture. This architecture provides an excellent balance between power consumption and performance, and has an upgrade path to the forthcoming radiation hardened PowerPC processor. The processor card, which makes extensive use of surface mount technology, has a 166 MHz PowerPC 603e processor, 32 Mbytes of error detected and corrected RAM, 8 Mbytes of Flash, and I Mbytes of EPROM, on a single PC/104-Plus card. Similar densities have been achieved with the quad channel Mil-Std-1553 card and the analog input/output cards. The power management built into the processor and its peripheral chip allows the power and performance of the system to be adjusted to meet the requirements of the application, allowing another dimension to the flexibility of the Universal Mini-Controller. Unique mechanical packaging allows the Universal Mini-Controller to accommodate standard COTS and custom oversized PC/104-Plus cards. This mechanical packaging also provides thermal management via conductive cooling of COTS boards, which are typically designed for convection cooling methods.
MiniCOR: A miniature coronagraph for an interplanetary CUBESAT
NASA Astrophysics Data System (ADS)
Vourlidas, A.; Korendyke, C.; Liewer, P. C.; Cutler, J.; Howard, R.; Plunkett, S. P.; Thernisien, A. F.
2015-12-01
Coronagraphs occupy a unique place in Heliophysics, critical to both NAA and NOAA programs. They are the primary means for the study of the extended solar coorna and its short/long term activity. In addition coronagraphs are the only instrument that can image coronal mass ejections (CMEs) leaving the Sun and provide ciritical information for space weather forecasting. We descirbe a low cost miniaturzied CubeSat coronagraph, MiniCOR, designed to operate in deep space which will returndata with higher cadence and sensitivity than that from the SOHO/LASCO coronagraphs. MiniCOR is a six unit (6U) science craft with a tightly integrated, single instrument interplanetary flight system optiized for science. MiniCOR fully exploits recent technology advance in CubeSat technology and active pixel sensors. With a factor of 2.9 improvement in light gathering power over SOHO and quasi-continuous data collection, MiniCOR can observe the slow solar wind, CMEs and shocks with sufficient signal-to-noise ratio (SNR) to open new windows on our understanding of the inner Heliosphere. An operating Minic'OR would prvide coornagraphic observations in support of the upcoming Solar Probe Plus (SPP) and Solar Orbiter (SO) missions.
Zhao, J. Y.; Bi, W.; Sinogeikin, S.; ...
2017-12-13
In order to study the vibrational and thermal dynamic properties of materials using the nuclear resonant inelastic X-ray scattering (NRIXS) and the hyperfine interactions and magnetic properties using the synchrotron Mössbauer spectroscopy (SMS) at simultaneously high pressure (multi-Mbar) and low temperature (T< 10 K), a new miniature panoramic diamond anvil cell (mini-pDAC) as well as a special gas membrane driven mechanism have been developed and implemented at 3ID, Advanced Photon Source. The gas membrane system allows in situ pressure tuning of the mini- pDAC at low temperature. The mini-pDAC fits into a specially designed compact liquid helium flow cryostat systemmore » to achieve low temperature, where liquid helium flows through the holder of the mini-pDAC to cool the sample more efficiently. The sample temperature as low as 9 K has been achieved. Through the membrane, the sample pressure as high as 1.4 Mbar has been generated from this mini-pDAC. The instrument has been routinely used at 3ID for NRIXS and SMS studies. In this paper, technical details of the mini-pDAC, membrane engaging mechanism and the cryostat system are described, and some experimental results are discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J. Y.; Bi, W.; Sinogeikin, S.
In order to study the vibrational and thermal dynamic properties of materials using the nuclear resonant inelastic X-ray scattering (NRIXS) and the hyperfine interactions and magnetic properties using the synchrotron Mössbauer spectroscopy (SMS) at simultaneously high pressure (multi-Mbar) and low temperature (T< 10 K), a new miniature panoramic diamond anvil cell (mini-pDAC) as well as a special gas membrane driven mechanism have been developed and implemented at 3ID, Advanced Photon Source. The gas membrane system allows in situ pressure tuning of the mini- pDAC at low temperature. The mini-pDAC fits into a specially designed compact liquid helium flow cryostat systemmore » to achieve low temperature, where liquid helium flows through the holder of the mini-pDAC to cool the sample more efficiently. The sample temperature as low as 9 K has been achieved. Through the membrane, the sample pressure as high as 1.4 Mbar has been generated from this mini-pDAC. The instrument has been routinely used at 3ID for NRIXS and SMS studies. In this paper, technical details of the mini-pDAC, membrane engaging mechanism and the cryostat system are described, and some experimental results are discussed.« less
Guderley, Helga; Joanisse, Denis R; Mokas, Sophie; Bilodeau, Geneviève M; Garland, Theodore
2008-03-01
Selective breeding of mice for high voluntary wheel running has favoured characteristics that facilitate sustained, aerobically supported activity, including a "mini-muscle" phenotype with markedly reduced hind limb muscle mass, increased mass-specific activities of oxidative enzymes, decreased % myosin heavy chain IIb, and, in the medial gastrocnemius, reduced twitch speed, reduced mass-specific isotonic power, and increased fatigue resistance. To evaluate whether selection has altered fibre type expression in mice with either "mini" or normal muscle phenotypes, we examined fibre types of red and white gastrocnemius. In both the medial and lateral gastrocnemius, the mini-phenotype increased activities of oxidative enzymes and decreased activities of glycolytic enzymes. In red muscle samples, the mini-phenotype markedly changed fibre types, with the % type I and type IIA fibres and the surface area of type IIA fibres increasing; in addition, mice from selected lines in general had an increased % type IIA fibres and larger type I fibres as compared with mice from control lines. White muscle samples from mini-mice showed dramatic structural alterations, with an atypical distribution of extremely small, unidentifiable fibres surrounded by larger, more oxidative fibres than normally present in white muscle. The increased proportion of oxidative fibres and these atypical small fibres together may explain the reduced mass and increased mitochondrial enzyme activities in mini-muscles. These and previous results demonstrate that extension of selective breeding beyond the time when the response of the selected trait (i.e. distance run) has levelled off can still modify the mechanistic underpinnings of this behaviour.
Miniature Heat Transport System for Nanosatellite Technology
NASA Technical Reports Server (NTRS)
Douglas, Donya M,
1999-01-01
The scientific understanding of key physical processes between the Sun and the Earth require simultaneous measurements from many vantage points in space. Nano-satellite technologies will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections. This recent emphasis on the implementation of smaller satellites leads to a requirement for development of smaller subsystems in several areas. Key technologies under development include: advanced miniaturized chemical propulsion; miniaturized sensors; highly integrated, compact electronics; autonomous onboard and ground operations; miniatures low power tracking techniques for orbit determination; onboard RF communications capable of transmitting data to the ground from far distances; lightweight efficient solar array panels; lightweight, high output battery cells; lightweight yet strong composite materials for the nano-spacecraft and deployer-ship structures. These newer smaller systems may have higher power densities and higher thermal transport requirements than seen on previous small satellites. Furthermore, the small satellites may also have a requirement to maintain thermal control through extended earth shadows, possibly up to 8 hours long. Older thermal control technology, such as heaters, thermostats, and heat pipes, may not be sufficient to meet the requirements of these new systems. Conversely, a miniature two-phase heat transport system (Mini-HTS) such as a Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP) is a viable alternative. A Mini-HTS can provide fine temperature control, thermal diode action, and a highly efficient means of heat transfer. The Mini-HTS would have power capabilities in the range of tens of watts or less and provide thermal control over typical spacecraft ranges. The Mini-HTS would allow the internal portion of the spacecraft to be thermally isolated from the external radiator, thus protecting the internal components from extreme cold temperatures during an eclipse. The Mini-HTS would transport the beat from these components to a radiator during their operational modes, and it would be shutdown during non-operational or eclipse modes. Shutdown of the Mini-HTS would be accomplished with small heaters and has been successfully demonstrated on numerous occasions, both in the lab and on flight experiments. Efforts are now underway to miniaturize two-phase heat transport systems for the Nanosatellite project, with potential application to other small satellite programs. 'ne goal of this project is to design, build, and test miniature heat transport systems (MHTS) that would demonstrate the feasibility of a small Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP).
A mini-microscope for in situ monitoring of cells.
Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R; Hamilton, Geraldine A; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E; Khademhosseini, Ali
2012-10-21
A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost.
A mini-microscope for in situ monitoring of cells†‡
Kim, Sang Bok; Koo, Kyo-in; Bae, Hojae; Dokmeci, Mehmet R.; Hamilton, Geraldine A.; Bahinski, Anthony; Kim, Sun Min; Ingber, Donald E.
2013-01-01
A mini-microscope was developed for in situ monitoring of cells by modifying off-the-shelf components of a commercial webcam. The mini-microscope consists of a CMOS imaging module, a small plastic lens and a white LED illumination source. The CMOS imaging module was connected to a laptop computer through a USB port for image acquisition and analysis. Due to its compact size, 8 × 10 × 9 cm, the present microscope is portable and can easily fit inside a conventional incubator, and enables real-time monitoring of cellular behaviour. Moreover, the mini-microscope can be used for imaging cells in conventional cell culture flasks, such as Petri dishes and multi-well plates. To demonstrate the operation of the mini-microscope, we monitored the cellular migration of mouse 3T3 fibroblasts in a scratch assay in medium containing three different concentrations of fetal bovine serum (5, 10, and 20%) and demonstrated differential responses depending on serum levels. In addition, we seeded embryonic stem cells inside poly(ethylene glycol) microwells and monitored the formation of stem cell aggregates in real time using the mini-microscope. Furthermore, we also combined a lab-on-a-chip microfluidic device for microdroplet generation and analysis with the mini-microscope and observed the formation of droplets under different flow conditions. Given its cost effectiveness, robust imaging and portability, the presented platform may be useful for a range of applications for real-time cellular imaging using lab-on-a-chip devices at low cost. PMID:22911426
Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng
2016-03-01
Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking water and groundwater, bottlenecks and potential issues are also discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
2002-01-01
Glenn Research Center sponsored an SBIR contract with ENTECH, in which the company worked to mold its successful terrestrial concentrator technology into applications that would generate solar power for space missions. ENTECH's first application made use of small, dome-shaped Fresnel lenses to direct sunlight onto high- efficiency photovoltaic cells. After some key adjustments, the mini- dome lens array was flown as part of the U.S. Air Force/NASA Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) flight experiment in 1994. Due to their three-dimensional shape, the mini- dome lenses entailed construction by a batch molding process, which is naturally more costly than a continuous process. To overcome this disadvantage and meet the requirement for precise solar pointing in two axes, ENTECH started developing solar concentrator arrays for space using a line-focus lens that can be mass-produced by a continuous process. This new technology, named Solar Concentrator Array with Refractive Linear Element Technology (SCARLET), was created with support from Glenn and the Ballistic Missile Defense Organization, and was used to power the NASA/Jet Propulsion Laboratory Deep Space 1 spacecraft.
NO2 fluxes from Tijuana using a mobile mini-DOAS during Cal-Mex 2010
NASA Astrophysics Data System (ADS)
Rivera, Claudia; Barrera, Hugo; Grutter, Michel; Zavala, Miguel; Galle, Bo; Bei, Naifang; Li, Guohui; Molina, Luisa T.
2013-05-01
NO2 fluxes were measured using a mobile mini-DOAS during Cal-Mex 2010 field study, between May 15 and June 30, 2010, from the urban area of Tijuana, Baja California as well as the Rosarito power plant. The average calculated NO2 fluxes were 328 ± 184 (269 ± 201) g s-1, and 23.4 ± 4.9 (12.9 ± 11.9) g s-1 for Tijuana urban area and Rosarito power plant, respectively, using model based wind fields and onsite measurements (in parenthesis). Wind speed and wind direction data needed to estimate the fluxes were both modeled and obtained from radiosondes launched regularly during the field campaign, whereas the mixing layer height throughout the entire field campaign was measured using a ceilometer. Large variations in the NO2 fluxes from both the Tijuana urban area and Rosarito power plant were observed during Cal-Mex 2010; however, the variability was less when model based wind fields were used. Qualitative comparisons of modeled and measured plumes from the Tijuana urban area and Rosarito power plant showed good agreement.
Compendium of Phase-I Mini-SHINE Experiments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Youker, Amanda J.; Chemerisov, Sergey D.; Tkac, Peter
Argonne National Laboratory is assisting SHINE Medical Technologies in their efforts to develop the technology to become a domestic Mo-99 producer using low-enriched uranium (LEU). Mini-SHINE experiments are being performed with the high-current electron linear accelerator (linac) at Argonne. The target solution is a 90-150 g-U/L LEU uranyl sulfate at pH 1. In Phase 1, the convertor was tantalum with a maximum beam power on the convertor of 10 kW, and the target solution was limited to 5 L. This configuration generated a peak fission power density of 0.05 W/mL. Nine experiments were performed between February and October 2015. Resultsmore » are reported and discussed for each experiment regarding the off-gas analysis system, the sampling and Mo-recovery operation, and the Mo-product concentration and purification system. In Phase 2, the convertor will be depleted uranium; beam power will increase to 20 kW; and the solution volume will be 18 L. This configuration will generate a fission power density of up to 1 W/mL.« less
High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10.
Ringeisen, Bradley R; Henderson, Emily; Wu, Peter K; Pietron, Jeremy; Ray, Ricky; Little, Brenda; Biffinger, Justin C; Jones-Meehan, Joanne M
2006-04-15
A miniature microbial fuel cell (mini-MFC) is described that demonstrates high output power per device cross-section (2.0 cm2) and volume (1.2 cm3). Shewanella oneidensis DSP10 in growth medium with lactate and buffered ferricyanide solutions were used as the anolyte and catholyte, respectively. Maximum power densities of 24 and 10 mW/m2 were measured using the true surface areas of reticulated vitreous carbon (RVC) and graphite felt (GF) electrodes without the addition of exogenous mediators in the anolyte. Current densities at maximum power were measured as 44 and 20 mA/m2 for RVC and GF, while short circuit current densities reached 32 mA/m2 for GF anodes and 100 mA/m2 for RVC. When the power density for GF was calculated using the cross sectional area of the device or the volume of the anode chamber, we found values (3 W/m2, 500 W/m3) similar to the maxima reported in the literature. The addition of electron mediators resulted in current and power increases of 30-100%. These power densities were surprisingly high considering a pure S. oneidensis culture was used. We found that the short diffusion lengths and high surface-area-to-chamber volume ratio utilized in the mini-MFC enhanced power density when compared to output from similar macroscopic MFCs.
A Summary of Closed Brayton Cycle Development Activities at NASA
NASA Technical Reports Server (NTRS)
Mason, Lee S.
2009-01-01
NASA has been involved in the development of Closed Brayton Cycle (CBC) power conversion technology since the 1960's. CBC systems can be coupled to reactor, isotope, or solar heat sources and offer the potential for high efficiency, long life, and scalability to high power. In the 1960's and 1970's, NASA and industry developed the 10 kW Brayton Rotating Unit (BRU) and the 2 kW mini-BRU demonstrating technical feasibility and performance, In the 1980's, a 25 kW CBC Solar Dynamic (SD) power system option was developed for Space Station Freedom and the technology was demonstrated in the 1990's as part of the 2 kW SO Ground Test Demonstration (GTD). Since the early 2000's, NASA has been pursuing CBC technology for space reactor applications. Before it was cancelled, the Jupiter Icy Moons Orbiter (HMO) mission was considering a 100 kWclass CBC system coupled to a gas-cooled fission reactor. Currently, CBC technology is being explored for Fission Surface Power (FSP) systems to provide base power on the moon and Mars. These recent activities have resulted in several CBC-related technology development projects including a 50 kW Alternator Test Unit, a 20 kW Dual Brayton Test Loop, a 2 kW Direct Drive Gas Brayton Test Loop, and a 12 kW FSP Power Conversion Unit design.
Overview on new diode lasers for defense applications
NASA Astrophysics Data System (ADS)
Neukum, Joerg
2012-11-01
Diode lasers have a broad wavelength range, from the visible to beyond 2.2μm. This allows for various applications in the defense sector, ranging from classic pumping of DPSSL in range finders or target designators, up to pumping directed energy weapons in the 50+ kW range. Also direct diode applications for illumination above 1.55μm, or direct IR countermeasures are of interest. Here an overview is given on some new wavelengths and applications which are recently under discussion. In this overview the following aspects are reviewed: • High Power CW pumps at 808 / 880 / 940nm • Pumps for DPAL - Diode Pumped Alkali Lasers • High Power Diode Lasers in the range < 1.0 μm • Scalable Mini-Bar concept for high brightness fiber coupled modules • The Light Weight Fiber Coupled module based on the Mini-Bar concept Overall, High Power Diode Lasers offer many ways to be used in new applications in the defense market.
NASA Astrophysics Data System (ADS)
Shchinnikov, P. A.; Marasanov, N. V.
2017-07-01
The technology of electricity production by a mini-thermal power plant, operating on combined cycles of Otto and Rankine, is considered. The main aspects of the investigation methodology are outlined. It is shown that the design and layout parameters of all the major energy elements of the developed technology allow implementing it in a block and modular version; and the efficiency of electricity supply for the proposed technology will be at least 50 %.
Demonstration of an ethane spectrometer for methane source identification.
Yacovitch, Tara I; Herndon, Scott C; Roscioli, Joseph R; Floerchinger, Cody; McGovern, Ryan M; Agnese, Michael; Pétron, Gabrielle; Kofler, Jonathan; Sweeney, Colm; Karion, Anna; Conley, Stephen A; Kort, Eric A; Nähle, Lars; Fischer, Marc; Hildebrandt, Lars; Koeth, Johannes; McManus, J Barry; Nelson, David D; Zahniser, Mark S; Kolb, Charles E
2014-07-15
Methane is an important greenhouse gas and tropospheric ozone precursor. Simultaneous observation of ethane with methane can help identify specific methane source types. Aerodyne Ethane-Mini spectrometers, employing recently available mid-infrared distributed feedback tunable diode lasers (DFB-TDL), provide 1 s ethane measurements with sub-ppb precision. In this work, an Ethane-Mini spectrometer has been integrated into two mobile sampling platforms, a ground vehicle and a small airplane, and used to measure ethane/methane enhancement ratios downwind of methane sources. Methane emissions with precisely known sources are shown to have ethane/methane enhancement ratios that differ greatly depending on the source type. Large differences between biogenic and thermogenic sources are observed. Variation within thermogenic sources are detected and tabulated. Methane emitters are classified by their expected ethane content. Categories include the following: biogenic (<0.2%), dry gas (1-6%), wet gas (>6%), pipeline grade natural gas (<15%), and processed natural gas liquids (>30%). Regional scale observations in the Dallas/Fort Worth area of Texas show two distinct ethane/methane enhancement ratios bridged by a transitional region. These results demonstrate the usefulness of continuous and fast ethane measurements in experimental studies of methane emissions, particularly in the oil and natural gas sector.
Mini-batch optimized full waveform inversion with geological constrained gradient filtering
NASA Astrophysics Data System (ADS)
Yang, Hui; Jia, Junxiong; Wu, Bangyu; Gao, Jinghuai
2018-05-01
High computation cost and generating solutions without geological sense have hindered the wide application of Full Waveform Inversion (FWI). Source encoding technique is a way to dramatically reduce the cost of FWI but subject to fix-spread acquisition setup requirement and slow convergence for the suppression of cross-talk. Traditionally, gradient regularization or preconditioning is applied to mitigate the ill-posedness. An isotropic smoothing filter applied on gradients generally gives non-geological inversion results, and could also introduce artifacts. In this work, we propose to address both the efficiency and ill-posedness of FWI by a geological constrained mini-batch gradient optimization method. The mini-batch gradient descent optimization is adopted to reduce the computation time by choosing a subset of entire shots for each iteration. By jointly applying the structure-oriented smoothing to the mini-batch gradient, the inversion converges faster and gives results with more geological meaning. Stylized Marmousi model is used to show the performance of the proposed method on realistic synthetic model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Jinhua; Pan, Baofei; Duan, Wentao
In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a mini-malistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this moleculemore » as a catholyte material and operated stably for 100 charge/discharge cycles. Furthermore, the observed stability trends are rationalized by mechanistic considerations of the reaction pathways.« less
Blade number impact on pressure and performance of archimedes screw turbine using CFD
NASA Astrophysics Data System (ADS)
Maulana, Muhammad Ilham; Syuhada, Ahmad; Nawawi, Muhammad
2018-02-01
Many rivers in Indonesia can be used as source of mini/micro hydro power plant using low head turbine. The most suitable type of turbine used in fluid flow with low head is the Archimedes screw turbine. The Archimedes screw hydro turbine is a relative newcomer to the small-scale hydropower that can work efficiently on heads as low as 10 meter. In this study, the performance of Archimedes water turbines that has different blade numbers that are thoroughly evaluated to obtain proper blade configuration. For this purpose, numerical simulations are used to predict the pressure changes that occur along the turbine. The simulation results show that turbines with an amount of two blades have more sloping pressure distribution so that it has better stability.
Calibration of a Three Wavelength Lidar for Size Discriminated Ambient Particulate Measurement
NASA Astrophysics Data System (ADS)
Martin, R. S.; Zavyalov, V.; Bingham, G. E.; Marchant, C.; Herron, J.; Jones, D.; Bowman, J.; Moore, K. D.
2007-12-01
A three wavelength Lidar has been developed at Utah State University's Space Dynamics Laboratory for the measurement of size segregated ambient particulate matter concentrations as part of the AgLite program. The AgLite program, primarily funded by the U.S. Department of Agriculture's Agricultural Research Service, was developed to quantify particulate emissions from diffuse area sources, such as those typically found around confined animal feeding operations (CAFOs) and tillage operations. The Lidar system is capable of scanning horizontally and vertically across a suspected source area and can identify both spatial and temporal concentration fields which, when combined with locally measured wind field data, can be used to derive source emission estimates. The Lidar measures the relative magnitude of optical scattering by the atmosphere, which is a function of aerosol concentration. A Lidar scan around a source area gives a map of relative aerosol concentration. During an operational experiment, a scan is calibrated by point-sensors collocated with one or more points of the Lidar scan. In order to minimize potential systematic errors, a detailed calibration experiment was designed to compare Lidar return signals with Met One Instruments 8-channel Optical Particle Counters (Model 9722) and Airmetrics MiniVol filter-based samplers configured for collection of TSP, PM10, PM2.5, and PM1. The Lidar calibration experiment was performed in July 2007 at a farm owned and operated by Utah State University near Cache Junction, Utah. Multiple datasets were collected during which the Lidar moved between three stares, each a minute in duration, that were collocated with a cluster of MiniVols sampling the four size fractionations and an OPC. Sampler duration was between three and eight hours, depending upon background particulate concentrations. Prior to comparison of these instruments with the Lidar, the MiniVols and OPCs were compared against collocated PM2.5 and PM10 Federal Reference Method (FRM) samplers operated by the State of Utah Division of Air Quality at the designated air quality sampling site in Logan, Utah to ensure the accuracy of the point sensors. Preliminary analysis demonstrates the average concentrations measured by the MiniVols were within eight percent of the concentrations measured by the FRM samplers at ambient levels greater than 10 μg m-3 for PM2.5 and 14 percent for PM10 at 35 μg m-3. The volume-based concentration determined from the OPCs demonstrated a consistent relationship with the MiniVols filter-based mass concentrations across the observed size ranges. Results of the Lidar comparison with the OPCs and MiniVols will also be presented.
Miniaturized Autonomous Extravehicular Robotic Camera (Mini AERCam)
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.
2001-01-01
The NASA Johnson Space Center (JSC) Engineering Directorate is developing the Autonomous Extravehicular Robotic Camera (AERCam), a low-volume, low-mass free-flying camera system . AERCam project team personnel recently initiated development of a miniaturized version of AERCam known as Mini AERCam. The Mini AERCam target design is a spherical "nanosatellite" free-flyer 7.5 inches in diameter and weighing 1 0 pounds. Mini AERCam is building on the success of the AERCam Sprint STS-87 flight experiment by adding new on-board sensing and processing capabilities while simultaneously reducing volume by 80%. Achieving enhanced capability in a smaller package depends on applying miniaturization technology across virtually all subsystems. Technology innovations being incorporated include micro electromechanical system (MEMS) gyros, "camera-on-a-chip" CMOS imagers, rechargeable xenon gas propulsion system , rechargeable lithium ion battery, custom avionics based on the PowerPC 740 microprocessor, GPS relative navigation, digital radio frequency communications and tracking, micropatch antennas, digital instrumentation, and dense mechanical packaging. The Mini AERCam free-flyer will initially be integrated into an approximate flight-like configuration for demonstration on an airbearing table. A pilot-in-the-loop and hardware-in-the-loop simulation to simulate on-orbit navigation and dynamics will complement the airbearing table demonstration. The Mini AERCam lab demonstration is intended to form the basis for future development of an AERCam flight system that provides beneficial on-orbit views unobtainable from fixed cameras, cameras on robotic manipulators, or cameras carried by EVA crewmembers.
Local Thermonuclear Runaways in Dwarf Novae?
NASA Astrophysics Data System (ADS)
Shara, Michael
2012-10-01
We have no hope of understanding the structure and evolution of a class of astrophysical objects if we cannot identify the dominant energy source of those objects.The Disk Instability Model {DIM} postulates that Dwarf Nova {DN} outbursts are powered by runaway accretion from an accretion disk onto a White Dwarf {WD} in a red dwarf-WD mass transferring binary. Ominously, HST observations {e.g. Sion et al. 2001} of WD surface abundances hint at a significant shortcoming of the DIM. The data from the present proposal will be able to unequivocally demonstrate if the observed highly Carbon-depleted and Nitrogen-enhanced abundances on WD surfaces {NOT predicted by DIM} vary with binary orbital phase, or throughout a DN quiescence cycle, or from cycle to cycle. These same data will test if predicted {but never observed} Local Thermonuclear Runaways {"Nuclear-powered mini-novas"} occur on the WDs of DN. Such events could trigger or even power DN, providing the long-sought physical mechanism of DN eruptions that DIM lacks. As a "free" bonus, the same data may also directly detect the diffusion of accreted metals in a WD atmosphere for the first time, or provide significant limits on the diffusion rate.
Alexander, Barbara M; Esswein, Eric J; Gressel, Michael G; Kratzer, Jerry L; Feng, H Amy; Miller, Arthur L; Cauda, Emanuele; Heil, Graeham
2018-01-01
The OSHA final rule on respirable crystalline silica (RCS) will require hydraulic fracturing companies to implement engineering controls to limit workers' exposure to RCS. RCS is generated by pneumatic transfer of quartz-containing sand during hydraulic fracturing operations. Chronic inhalation of RCS can lead to serious disease, including silicosis and lung cancer. NIOSH research identified at least seven sources where RCS aerosols were generated at hydraulic fracturing sites. NIOSH researchers developed an engineering control to address one of the largest sources of RCS aerosol generation, RCS escaping from thief hatches on the top of sand movers. The control, the NIOSH Mini-Baghouse Retrofit Assembly (NMBRA), mounts on the thief hatches. Unlike most commercially available engineering controls, the NMBRA has no moving parts and requires no power source. This article details the results of an evaluation of generation 3 of the NMBRA at a sand mine in Arkansas from May 19-21, 2015. During the evaluation, 168 area air samples were collected at 12 locations on and around a sand mover with and without the NMBRA installed. Analytical results for respirable dust and RCS indicated the use of the NMBRA effectively reduced concentrations of both respirable dust and RCS downwind of the thief hatches. Reductions of airborne respirable dust were estimated at 99+%; reductions in airborne RCS ranged from 98-99%. Analysis of bulk samples of the dust showed the likely presence of freshly fractured quartz, a particularly hazardous form of RCS. Use of an improved filter fabric and a larger area of filter cloth led to substantial improvements in filtration and pressures during these trials, as compared to the generation 2 NMBRA. Planned future design enhancements, including a weather cover, will increase the performance and durability of the NMBRA. Future trials are planned to evaluate the long-term operability of the technology.
Swept Impact Seismic Technique (SIST)
Park, C.B.; Miller, R.D.; Steeples, D.W.; Black, R.A.
1996-01-01
A coded seismic technique is developed that can result in a higher signal-to-noise ratio than a conventional single-pulse method does. The technique is cost-effective and time-efficient and therefore well suited for shallow-reflection surveys where high resolution and cost-effectiveness are critical. A low-power impact source transmits a few to several hundred high-frequency broad-band seismic pulses during several seconds of recording time according to a deterministic coding scheme. The coding scheme consists of a time-encoded impact sequence in which the rate of impact (cycles/s) changes linearly with time providing a broad range of impact rates. Impact times used during the decoding process are recorded on one channel of the seismograph. The coding concept combines the vibroseis swept-frequency and the Mini-Sosie random impact concepts. The swept-frequency concept greatly improves the suppression of correlation noise with much fewer impacts than normally used in the Mini-Sosie technique. The impact concept makes the technique simple and efficient in generating high-resolution seismic data especially in the presence of noise. The transfer function of the impact sequence simulates a low-cut filter with the cutoff frequency the same as the lowest impact rate. This property can be used to attenuate low-frequency ground-roll noise without using an analog low-cut filter or a spatial source (or receiver) array as is necessary with a conventional single-pulse method. Because of the discontinuous coding scheme, the decoding process is accomplished by a "shift-and-stacking" method that is much simpler and quicker than cross-correlation. The simplicity of the coding allows the mechanical design of the source to remain simple. Several different types of mechanical systems could be adapted to generate a linear impact sweep. In addition, the simplicity of the coding also allows the technique to be used with conventional acquisition systems, with only minor modifications.
Evidence for the Magnetic Breakout Model in AN Equatorial Coronal-Hole Jet
NASA Astrophysics Data System (ADS)
Kumar, P.; Karpen, J.; Antiochos, S. K.; Wyper, P. F.; DeVore, C. R.; DeForest, C. E.
2017-12-01
We analyzed an equatorial coronal-hole jet observed by Solar Dynamic Observatory (SDO)/AtmosphericImaging Assembly (AIA). The source-region magnetic field structure is consistent withthe embedded-bipole topology that we identified and modeled previously as a source of coronal jets. Theinitial brightening was observed below a sigmoid structure about 25 min before the onset of an untwisting jet.A circular magnetic flux rope with a mini-filament rose slowly at the speed of ˜15 km/s , then accelerated(˜126 km/s) during the onset of explosive breakout reconnection. Multiple plasmoids, propagating upward(˜135 km/s) and downward (˜55 km/s ), were detected behind the rising flux rope shortly before andduring explosive breakout reconnection. The jet was triggered when the rising flux rope interacted with theoverlying magnetic structures near the outer spine. This event shows a clear evidence of reconnection not onlybelow the flux rope but also a breakout reconnection above the flux rope. During the breakout reconnection,we observed heating of the flux rope, deflection of loops near the spine, and formation of multiple ribbons.The explosive breakout reconnection destroyed the flux rope that produced an untwisting jet with a speed of˜380 km/s . HMI magnetograms reveal the shear motion at theeruption site, but do not show any significant flux emergence or cancellation during or 2 hours before theeruption. Therefore, the free energy powering this jet most likely originated in magnetic shear concentratedat the polarity inversion line within the embedded bipole-a mini-filament channel-possibly created by helicitycondensation. The result of of a statistical study of multiple jets will also be discussed.
Use of Mini-Mag Orion and superconducting coils for near-term interstellar transportation
NASA Astrophysics Data System (ADS)
Lenard, Roger X.; Andrews, Dana G.
2007-06-01
Interstellar transportation to nearby star systems over periods shorter than the human lifetime requires speeds in the range of 0.1-0.15 c and relatively high accelerations. These speeds are not attainable using rockets, even with advanced fusion engines because at these velocities, the energy density of the spacecraft approaches the energy density of the fuel. Anti-matter engines are theoretically possible but current physical limitations would have to be suspended to get the mass densities required. Interstellar ramjets have not proven practicable, so this leaves beamed momentum propulsion or a continuously fueled Mag-Orion system as the remaining candidates. However, deceleration is also a major issue, but part of the Mini-Mag Orion approach assists in solving this problem. This paper reviews the state of the art from a Phases I and II SBIT between Sandia National Laboratories and Andrews Space, applying our results to near-term interstellar travel. A 1000 T crewed spacecraft and propulsion system dry mass at .1c contains ˜9×1021J. The author has generated technology requirements elsewhere for use of fission power reactors and conventional Brayton cycle machinery to propel a spacecraft using electric propulsion. Here we replace the electric power conversion, radiators, power generators and electric thrusters with a Mini-Mag Orion fission-fusion hybrid. Only a small fraction of fission fuel is actually carried with the spacecraft, the remainder of the propellant (macro-particles of fissionable material with a D-T core) is beamed to the spacecraft, and the total beam energy requirement for an interstellar probe mission is roughly 1020J, which would require the complete fissioning of 1000 ton of Uranium assuming 35% power plant efficiency. This is roughly equivalent to a recurring cost per flight of 3.0 billion dollars in reactor grade enriched uranium using today's prices. Therefore, interstellar flight is an expensive proposition, but not unaffordable, if the nonrecurring costs of building the power plant can be minimized.
Artificial evolution of the morphology and kinematics in a flapping-wing mini-UAV.
de Margerie, E; Mouret, J B; Doncieux, S; Meyer, J-A
2007-12-01
Birds demonstrate that flapping-wing flight (FWF) is a versatile flight mode, compatible with hovering, forward flight and gliding to save energy. This extended flight domain would be especially useful on mini-UAVs. However, design is challenging because aerodynamic efficiency is conditioned by complex movements of the wings, and because many interactions exist between morphological (wing area, aspect ratio) and kinematic parameters (flapping frequency, stroke amplitude, wing unfolding). Here we used artificial evolution to optimize these morpho-kinematic features on a simulated 1 kg UAV, equipped with wings articulated at the shoulder and wrist. Flight tests were conducted in a dedicated steady aerodynamics simulator. Parameters generating horizontal flight for minimal mechanical power were retained. Results showed that flight at medium speed (10-12 m s(-1)) can be obtained for reasonable mechanical power (20 W kg(-1)), while flight at higher speed (16-20 m s(-1)) implied increased power (30-50 W kg(-1)). Flight at low speed (6-8 m s(-1)) necessitated unrealistic power levels (70-500 W kg(-1)), probably because our simulator neglected unsteady aerodynamics. The underlying adaptation of morphology and kinematics to varying flight speed were compared to available biological data on the flight of birds.
Alexander, Barbara M.; Esswein, Eric J.; Gressel, Michael G.; Kratzer, Jerry L.; Feng, H. Amy; King, Bradley; Miller, Arthur L.; Cauda, Emanuele
2016-01-01
Inhalation of respirable crystalline silica (RCS) is a significant risk to worker health during well completions operations (which include hydraulic fracturing) at conventional and unconventional oil and gas extraction sites. RCS is generated by pneumatic transfer of quartz-containing sand during hydraulic fracturing operations. National Institute for Occupational Safety and Health (NIOSH) researchers identified concentrations of RCS at hydraulic fracturing sites that exceed 10 times the Occupational Safety and Health Administration (OSHA) Permissible Exposure Limit (PEL) and up to 50 times the NIOSH Recommended Exposure Limit (REL). NIOSH research identified at least seven point sources of dust release at contemporary oil and gas extraction sites where RCS aerosols were generated. NIOSH researchers recommend the use of engineering controls wherever they can be implemented to limit the RCS released. A control developed to address one of the largest sources of RCS aerosol generation is the NIOSH mini-baghouse assembly, mounted on the thief hatches on top of the sand mover. This manuscript details the results of a trial of the NIOSH mini-baghouse at a sand mine in Arkansas, November 18 – 21, 2013. During the trial, area air samples were collected at 12 locations on and around a sand mover with and without the mini-baghouse control installed. Analytical results for respirable dust and RCS indicate the use of the mini-baghouse effectively reduced both respirable dust and RCS downwind of the thief hatches. Reduction of airborne respirable dust ranged from 85% to 98%; reductions in airborne RCS ranged from 79% to 99%. A bulk sample of dust collected by the baghouse assembly showed the likely presence of freshly fractured quartz, a particularly hazardous form of RCS. Planned future design enhancements will increase the performance and durability of the mini-baghouse, including an improved bag clamp mechanism and upgraded filter fabric with a modified air-to-cloth ratio. Future trials are planned to determine additional respirable dust and RCS concentration reductions achieved through these design changes. PMID:27003622
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pushkar, Yulia
The goal of this project was to demonstrate time resolved analysis of the electronic structure dynamic using techniques of miniature X-ray emission spectrometers. The focus was on development of easy/fast to set up, portable, cost efficient, good energy resolution, good sensitivity, dispersive (particularly suitable for time resolved analysis) system. These mile stones were achieved and miniXES spectrometer for the Mn Kβ range was reported. Contrary to pointby- point detection, the miniXES setup allows a complete emission spectrum to be recorded following each laser excitation, Fig. 1. miniXES system compares favorably with other realization of a dispersive XES spectrometer with cylindricallymore » bent analyzers. Setup reported by others has disadvantages of high cost (which limits its re-creation by other researchers) and lower (0.55 eV) energy resolution (at 6490 eV). The energy resolution of our miniXES system is 0.30 eV. Additional advantage of portability allowed us to use miniXES at multiple beamlines at APS (ANL): 20-ID, 14-ID and 7-ID. Moreover, in March 2013 PI transported the Mn Kβ spectrometer (which fits into a small hand luggage bag) to SLS (Switzerland) and set it up there for the TR-XES beamtime. Our spectrometer works with 2D-PSD (Pilatus-100) which is a standard detector available via equipment pool at synchrotron sources.« less
NASA Technical Reports Server (NTRS)
Kojiro, Daniel R.; Holland Paul M.; Stimac, Robert M.; Kaye, William J.; Takeruchi, Noreshige
2004-01-01
The Titan Orbiter Aerorover Mission (TOAM) is a proposed concept for the Solar System Exploration Visions Mission, Titan Explorer, a follow-on to the Cassini-Huygens mission. TOAM would use a Titan polar orbiter and a lighter-than-air aerorover to investigate the surface and atmosphere of Titan. Astrobiology issues will be addressed though TOAM investigations including, for example: Distribution and composition of organics (atmospheric, aerosol, surface); Organic chemical processes, their chemical context and energy sources; and Seasonal variations and interactions of the atmosphere and surface. The TIDE instrument will perform in-situ analyses to obtain comprehensive and sensitive molecular and elemental assays of volatile organics in the atmosphere, oceans and surface. TIDE chemical analyses are conducted by a Gas Chromatograph-Ion Mobility Spectrometer (GC-IMS). This TIDE GC-IMS was a component of the mini-Cometary Ice and Dust Experiment (mini-CIDEX) developed for the chemical analysis of a cometary environment. Both the GC and helium IMS of mini-CIDEX have been further developed to better meet the analytical and operational requirements of the TOAM. application. A Micro-ElectroMechanical System (MEMS) GC and Mini-Cell helium IMS are under development to replace their respective mini-CIDEX components, providing similar or advanced analytical capabilities.
High Efficiency Variable Speed Versatile Power Air Conditioning System for Military Vehicles
2013-08-01
MOBILITY (P&M) MINI-SYMPOSIUM AUGUST 21-22, 2013 - TROY , MICHIGAN High efficiency variable speed versatile power air conditioning system for...power draw was measured using a calibrated Watt meter. The schematic of the setup is shown in Figure 5 and the setup is shown in Figure 6. Figure...Rocky Research environmental chamber. Cooling Capacity was directly measured in Btu/hr or Watts via measuring the Air flow velocity and the air
Macromolecular crystallography beamline X25 at the NSLS
Héroux, Annie; Allaire, Marc; Buono, Richard; Cowan, Matthew L.; Dvorak, Joseph; Flaks, Leon; LaMarra, Steven; Myers, Stuart F.; Orville, Allen M.; Robinson, Howard H.; Roessler, Christian G.; Schneider, Dieter K.; Shea-McCarthy, Grace; Skinner, John M.; Skinner, Michael; Soares, Alexei S.; Sweet, Robert M.; Berman, Lonny E.
2014-01-01
Beamline X25 at the NSLS is one of the five beamlines dedicated to macromolecular crystallography operated by the Brookhaven National Laboratory Macromolecular Crystallography Research Resource group. This mini-gap insertion-device beamline has seen constant upgrades for the last seven years in order to achieve mini-beam capability down to 20 µm × 20 µm. All major components beginning with the radiation source, and continuing along the beamline and its experimental hutch, have changed to produce a state-of-the-art facility for the scientific community. PMID:24763654
Design considerations, architecture, and use of the Mini-Sentinel distributed data system.
Curtis, Lesley H; Weiner, Mark G; Boudreau, Denise M; Cooper, William O; Daniel, Gregory W; Nair, Vinit P; Raebel, Marsha A; Beaulieu, Nicolas U; Rosofsky, Robert; Woodworth, Tiffany S; Brown, Jeffrey S
2012-01-01
We describe the design, implementation, and use of a large, multiorganizational distributed database developed to support the Mini-Sentinel Pilot Program of the US Food and Drug Administration (FDA). As envisioned by the US FDA, this implementation will inform and facilitate the development of an active surveillance system for monitoring the safety of medical products (drugs, biologics, and devices) in the USA. A common data model was designed to address the priorities of the Mini-Sentinel Pilot and to leverage the experience and data of participating organizations and data partners. A review of existing common data models informed the process. Each participating organization designed a process to extract, transform, and load its source data, applying the common data model to create the Mini-Sentinel Distributed Database. Transformed data were characterized and evaluated using a series of programs developed centrally and executed locally by participating organizations. A secure communications portal was designed to facilitate queries of the Mini-Sentinel Distributed Database and transfer of confidential data, analytic tools were developed to facilitate rapid response to common questions, and distributed querying software was implemented to facilitate rapid querying of summary data. As of July 2011, information on 99,260,976 health plan members was included in the Mini-Sentinel Distributed Database. The database includes 316,009,067 person-years of observation time, with members contributing, on average, 27.0 months of observation time. All data partners have successfully executed distributed code and returned findings to the Mini-Sentinel Operations Center. This work demonstrates the feasibility of building a large, multiorganizational distributed data system in which organizations retain possession of their data that are used in an active surveillance system. Copyright © 2012 John Wiley & Sons, Ltd.
Reconstructing Michel Electrons in the MicroBooNE Detector
NASA Astrophysics Data System (ADS)
Caratelli, David
2016-03-01
MicroBooNE is a Liquid Argon Time Projection Chamber (LArTPC) neutrino detector located in the Booster Neutrino Beamline at Fermilab which began collecting neutrino data in October 2015. MicroBooNE aims to explore the low-energy excess in the νe spectrum reported by MiniBooNE as well as perform ν-Ar cross-section measurements. In this talk, we present the current status of reconstructing Michel electrons from cosmic ray muons in the MicroBooNE detector. These Michel electrons are distributed uniformly inside the detector, and serve as a natural and powerful calibration source to study the detector's response for low energy (10s of MeV) interactions as a function of position. We have developed a reconstruction software tool to successfully identify such Michel electrons which could be of benefit to LArTPC experiments generically.
Chapin, Thomas P.; Todd, Andrew S.
2012-01-01
Abandoned hard-rock mines can be a significant source of acid mine drainage (AMD) and toxic metal pollution to watersheds. In Colorado, USA, abandoned mines are often located in remote, high elevation areas that are snowbound for 7–8 months of the year. The difficulty in accessing these remote sites, especially during winter, creates challenging water sampling problems and major hydrologic and toxic metal loading events are often under sampled. Currently available automated water samplers are not well suited for sampling remote snowbound areas so the U.S. Geological Survey (USGS) has developed a new water sampler, the MiniSipper, to provide long-duration, high-resolution water sampling in remote areas. The MiniSipper is a small, portable sampler that uses gas bubbles to separate up to 250 five milliliter acidified samples in a long tubing coil. The MiniSipper operates for over 8 months unattended in water under snow/ice, reduces field work costs, and greatly increases sampling resolution, especially during inaccessible times. MiniSippers were deployed in support of an U.S. Environmental Protection Agency (EPA) project evaluating acid mine drainage inputs from the Pennsylvania Mine to the Snake River watershed in Summit County, CO, USA. MiniSipper metal results agree within 10% of EPA-USGS hand collected grab sample results. Our high-resolution results reveal very strong correlations (R2 > 0.9) between potentially toxic metals (Cd, Cu, and Zn) and specific conductivity at the Pennsylvania Mine site. The large number of samples collected by the MiniSipper over the entire water year provides a detailed look at the effects of major hydrologic events such as snowmelt runoff and rainstorms on metal loading from the Pennsylvania Mine. MiniSipper results will help guide EPA sampling strategy and remediation efforts in the Snake River watershed.
Chapin, Thomas P; Todd, Andrew S
2012-11-15
Abandoned hard-rock mines can be a significant source of acid mine drainage (AMD) and toxic metal pollution to watersheds. In Colorado, USA, abandoned mines are often located in remote, high elevation areas that are snowbound for 7-8 months of the year. The difficulty in accessing these remote sites, especially during winter, creates challenging water sampling problems and major hydrologic and toxic metal loading events are often under sampled. Currently available automated water samplers are not well suited for sampling remote snowbound areas so the U.S. Geological Survey (USGS) has developed a new water sampler, the MiniSipper, to provide long-duration, high-resolution water sampling in remote areas. The MiniSipper is a small, portable sampler that uses gas bubbles to separate up to 250 five milliliter acidified samples in a long tubing coil. The MiniSipper operates for over 8 months unattended in water under snow/ice, reduces field work costs, and greatly increases sampling resolution, especially during inaccessible times. MiniSippers were deployed in support of an U.S. Environmental Protection Agency (EPA) project evaluating acid mine drainage inputs from the Pennsylvania Mine to the Snake River watershed in Summit County, CO, USA. MiniSipper metal results agree within 10% of EPA-USGS hand collected grab sample results. Our high-resolution results reveal very strong correlations (R(2)>0.9) between potentially toxic metals (Cd, Cu, and Zn) and specific conductivity at the Pennsylvania Mine site. The large number of samples collected by the MiniSipper over the entire water year provides a detailed look at the effects of major hydrologic events such as snowmelt runoff and rainstorms on metal loading from the Pennsylvania Mine. MiniSipper results will help guide EPA sampling strategy and remediation efforts in the Snake River watershed. Published by Elsevier B.V.
Integrated nonlinear photonics. Emerging applications and ongoing challenges - A mini review
Hendrickson, Scott M.; Foster, Amy C.; Camacho, Ryan M.; ...
2014-11-26
In this paper, we provide a review of recent progress in integrated nonlinear photonics with a focus on emerging applications in all-optical signal processing, ultra-low-power all-optical switching, and quantum information processing.
Making use of renewable energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, J.C.
1984-01-01
This book describes renewable energy projects proposed for the rural areas of developing countries. Topics considered include biogas generation in Zimbabwe, biogas technology for water pumping in Botswana, soil fertility and energy problems in rural development in the Zaire rain forest, international scientific collaboration on biogas technologies for rural development, alcohol from biomass, an ethanol project in Zimbabwe, biomass alcohol and the fuel-food issue, solar water heating in Zimbabwe, absorbent box solar cookers, solar crop drying in Zimbabwe, the use of passive solar energy in Botswana buildings, the potential of mini hydro systems, woodfuel as a potential renewable energy source,more » small-scale afforestation for domestic needs in the communal lands of Zimbabwe, muscle power, the use of human energy in construction, hand-operated water pumps, animal power for water pumping in Botswana, the production of charcoal in Zambia, improving the efficiency of a traditional charcoal-burning Burmese cooking stove, social impacts, non-engineering constraints affecting energy use in a rural area, women and energy, and non-technical factors influencing the establishment of fuels-from-crops industries in developing countries.« less
Dark Matter Search in a Proton Beam Dump with MiniBooNE
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.; Batell, B.; Brown, B. C.; Carr, R.; Chatterjee, A.; Cooper, R. L.; deNiverville, P.; Dharmapalan, R.; Djurcic, Z.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Grange, J.; Green, J. A.; Huelsnitz, W.; de Icaza Astiz, I. L.; Karagiorgi, G.; Katori, T.; Ketchum, W.; Kobilarcik, T.; Liu, Q.; Louis, W. C.; Marsh, W.; Moore, C. D.; Mills, G. B.; Mirabal, J.; Nienaber, P.; Pavlovic, Z.; Perevalov, D.; Ray, H.; Roe, B. P.; Shaevitz, M. H.; Shahsavarani, S.; Stancu, I.; Tayloe, R.; Taylor, C.; Thornton, R. T.; Van de Water, R.; Wester, W.; White, D. H.; Yu, J.; MiniBooNE-DM Collaboration
2017-06-01
The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 ×1 020 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y =ɛ2αD(mχ/mV)4≲10-8 , for αD=0.5 and for dark matter masses of 0.01
Dark Matter Search in a Proton Beam Dump with MiniBooNE.
Aguilar-Arevalo, A A; Backfish, M; Bashyal, A; Batell, B; Brown, B C; Carr, R; Chatterjee, A; Cooper, R L; deNiverville, P; Dharmapalan, R; Djurcic, Z; Ford, R; Garcia, F G; Garvey, G T; Grange, J; Green, J A; Huelsnitz, W; de Icaza Astiz, I L; Karagiorgi, G; Katori, T; Ketchum, W; Kobilarcik, T; Liu, Q; Louis, W C; Marsh, W; Moore, C D; Mills, G B; Mirabal, J; Nienaber, P; Pavlovic, Z; Perevalov, D; Ray, H; Roe, B P; Shaevitz, M H; Shahsavarani, S; Stancu, I; Tayloe, R; Taylor, C; Thornton, R T; Van de Water, R; Wester, W; White, D H; Yu, J
2017-06-02
The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86×10^{20} protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the dark matter cross section parameter, Y=ε^{2}α_{D}(m_{χ}/m_{V})^{4}≲10^{-8}, for α_{D}=0.5 and for dark matter masses of 0.01
Improving the public health/physician partnership for influenza vaccination.
Russell, Margaret L; Yau, Annie; Baptiste, Beverley; Rowntree, Carol; Robb, Jonathan; Hill, Shirley
2005-01-01
Alberta doctors can request supplies of publicly funded influenza vaccine to administer to patients who meet provincial program criteria. To describe the proportions of Alberta family doctors who vaccinate patients, the sources from which they obtain vaccine and their evaluation of public health influenza vaccination program components. Cross-sectional postal survey, 2003. Doctors were asked to complete a nine-page questionnaire or to answer a one-page "mini-survey". The proportion of physicians who vaccinated patients against influenza was estimated separately for the main questionnaire and the mini-survey. Frequencies and cross-tabulations were used to examine sources of vaccine supply and physician ratings of five aspects of influenza vaccine program services provided by Regional Health Authorities (RHA). The survey response rate was 52.3% (1387/2650); an additional 14% (372) returned a mini-survey. The proportion of respondents who vaccinated one or more patients against influenza in the fall of 2002 was 81.5% for the main questionnaire and 83.1% for the mini-survey. Vaccine was most commonly obtained from the RHA. Three items were rated as poor/fair by more than 10% of respondents: provision of information for distribution to patients (37%), timeliness of vaccine delivery to offices (16%) and vaccine availability over the entire influenza season (18%). Item ratings varied by RHA but provision of information for distribution to patients was consistently a problem. A high priority should be placed on improving resources for doctors to give to patients, timeliness of vaccine deliveries to doctors' offices and vaccine availability over the entire season.
ObsPy: A Python Toolbox for Seismology
NASA Astrophysics Data System (ADS)
Krischer, Lion; Megies, Tobias; Sales de Andrade, Elliott; Barsch, Robert; MacCarthy, Jonathan
2017-04-01
In recent years the Python ecosystem evolved into one of the most powerful and productive scientific environments across disciplines. ObsPy (https://www.obspy.org) is a fully community-driven, open-source project dedicated to providing a bridge for seismology into that ecosystem. It does so by offering Read and write support for essentially every commonly used data format in seismology with a unified interface and automatic format detection. This includes waveform data (MiniSEED, SAC, SEG-Y, Reftek, …) as well as station (SEED, StationXML, …) and event meta information (QuakeML, ZMAP, …). Integrated access to the largest data centers, web services, and real-time data streams (FDSNWS, ArcLink, SeedLink, ...). A powerful signal processing toolbox tuned to the specific needs of seismologists. Utility functionality like travel time calculations with the TauP method, geodetic functions, and data visualizations. ObsPy has been in constant development for more than seven years and is developed and used by scientists around the world with successful applications in all branches of seismology. Additionally it nowadays serves as the foundation for a large number of more specialized packages. This presentation will give a short overview of the capabilities of ObsPy and point out several representative or new use cases. Additionally we will discuss the road ahead as well as the long-term sustainability of open-source scientific software.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sokolov, Mikhail A.
Small specimens are playing the key role in evaluating properties of irradiated materials. The use of small specimens provides several advantages. Typically, only a small volume of material can be irradiated in a reactor at desirable conditions in terms of temperature, neutron flux, and neutron dose. A small volume of irradiated material may also allow for easier handling of specimens. Smaller specimens reduce the amount of radioactive material, minimizing personnel exposures and waste disposal. However, use of small specimens imposes a variety of challenges as well. These challenges are associated with proper accounting for size effects and transferability of smallmore » specimen data to the real structures of interest. Any fracture toughness specimen that can be made out of the broken halves of standard Charpy specimens may have exceptional utility for evaluation of reactor pressure vessels (RPVs) since it would allow one to determine and monitor directly actual fracture toughness instead of requiring indirect predictions using correlations established with impact data. The Charpy V-notch specimen is the most commonly used specimen geometry in surveillance programs. Validation of the mini compact tension specimen (mini-CT) geometry has been performed on previously well characterized Midland beltline Linde 80 (WF-70) weld in the unirradiated condition. It was shown that the fracture toughness transition temperature, To, measured by these Mini-CT specimens is almost the same as To value that was derived from various larger fracture toughness specimens. Moreover, an International collaborative program has been established to extend the assessment and validation efforts to irradiated Linde 80 weld metal. The program is underway and involves the Oak Ridge National Laboratory (ORNL), Central Research Institute for Electrical Power Industry (CRIEPI), and Electric Power Research Institute (EPRI). The irradiated Mini-CT specimens from broken halves of previously tested Charpy specimens of Midland beltline weld have been machined and just arrived to ORNL as part of this international collaboration. The ORNL will initiate tests of the irradiated Linde 80 weld in FY2017 and results of this international program will be reported in FY2018.« less
Locher, Kathrin; Borghardt, Jens M; Frank, Kerstin J; Kloft, Charlotte; Wagner, Karl G
2016-08-01
Biphasic dissolution models are proposed to have good predictive power for the in vivo absorption. The aim of this study was to improve our previously introduced mini-scale dissolution model to mimic in vivo situations more realistically and to increase the robustness of the experimental model. Six dissolved APIs (BCS II) were tested applying the improved mini-scale biphasic dissolution model (miBIdi-pH-II). The influence of experimental model parameters including various excipients, API concentrations, dual paddle and its rotation speed was investigated. The kinetics in the biphasic model was described applying a one- and four-compartment pharmacokinetic (PK) model. The improved biphasic dissolution model was robust related to differing APIs and excipient concentrations. The dual paddle guaranteed homogenous mixing in both phases; the optimal rotation speed was 25 and 75rpm for the aqueous and the octanol phase, respectively. A one-compartment PK model adequately characterised the data of fully dissolved APIs. A four-compartment PK model best quantified dissolution, precipitation, and partitioning also of undissolved amounts due to realistic pH profiles. The improved dissolution model is a powerful tool for investigating the interplay between dissolution, precipitation and partitioning of various poorly soluble APIs (BCS II). In vivo-relevant PK parameters could be estimated applying respective PK models. Copyright © 2016 Elsevier B.V. All rights reserved.
Mini AERCam: A Free-Flying Robot for Space Inspection
NASA Technical Reports Server (NTRS)
Fredrickson, Steven
2001-01-01
The NASA Johnson Space Center Engineering Directorate is developing the Autonomous Extravehicular Robotic Camera (AERCam), a free-flying camera system for remote viewing and inspection of human spacecraft. The AERCam project team is currently developing a miniaturized version of AERCam known as Mini AERCam, a spherical nanosatellite 7.5 inches in diameter. Mini AERCam development builds on the success of AERCam Sprint, a 1997 Space Shuttle flight experiment, by integrating new on-board sensing and processing capabilities while simultaneously reducing volume by 80%. Achieving these productivity-enhancing capabilities in a smaller package depends on aggressive component miniaturization. Technology innovations being incorporated include micro electromechanical system (MEMS) gyros, "camera-on-a-chip" CMOS imagers, rechargeable xenon gas propulsion, rechargeable lithium ion battery, custom avionics based on the PowerPC 740 microprocessor, GPS relative navigation, digital radio frequency communications and tracking, micropatch antennas, digital instrumentation, and dense mechanical packaging. The Mini AERCam free-flyer will initially be integrated into an approximate flight-like configuration for laboratory demonstration on an airbearing table. A pilot-in-the-loop and hardware-in-the-loop simulation to simulate on-orbit navigation and dynamics will complement the airbearing table demonstration. The Mini AERCam lab demonstration is intended to form the basis for future development of an AERCam flight system that provides on-orbit views of the Space Shuttle and International Space Station unobtainable from fixed cameras, cameras on robotic manipulators, or cameras carried by space-walking crewmembers.
Recycling and management of waste lead-acid batteries: A mini-review.
Li, Malan; Liu, Junsheng; Han, Wei
2016-04-01
As a result of the wide application of lead-acid batteries to be the power supplies for vehicles, their demand has rapidly increased owing to their low cost and high availability. Accordingly, the amount of waste lead-acid batteries has increased to new levels; therefore, the pollution caused by the waste lead-acid batteries has also significantly increased. Because lead is toxic to the environment and to humans, recycling and management of waste lead-acid batteries has become a significant challenge and is capturing much public attention. Various innovations have been recently proposed to recycle lead and lead-containing compounds from waste lead-acid batteries. In this mini-review article, different recycling techniques for waste lead-acid batteries are highlighted. The present state of such recycling and its future perspectives are also discussed. We hope that this mini-review can provide useful information on recovery and recycling of lead from waste lead-acid batteries in the field of solid waste treatment. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Zakaria, Irnie Azlin; Mohamed, Wan Ahmad Najmi Wan; Mamat, Aman Mohd Ihsan; Sainan, Khairul Imran; Talib, Siti Fatimah Abu
2015-08-01
Continuous need for an optimum conversion efficiency of a Proton Exchange Membrane Fuel Cell (PEMFC) operation has triggered varieties of advancements namely on the thermal management engineering scope. Nanofluids as an innovative heat transfer fluid solution are expected to be a promising candidate for alternative coolant in mini channel cooling plate of PEMFC. In this work, heat transfer performance of low concentration of 0.1, 0.3 and 0.5 % Al2O3 in water: Ethylene glycol (EG) mixtures of 100:0 and 50:50 nanofluids have been studied and compared against its base fluids at Re number ranging from 10 to 100. A steady, laminar and incompressible flow with constant heat flux is assumed in the channel of 140mm × 200mm. It was found that nanofluids have performed better than the base fluid but the demerit is on the pumping power due to the higher pressure drop across mini channel geometry as expected.
Recent progress on gas sensor based on quantum cascade lasers and hollow fiber waveguides
NASA Astrophysics Data System (ADS)
Liu, Ningwu; Sun, Juan; Deng, Hao; Ding, Junya; Zhang, Lei; Li, Jingsong
2017-02-01
Mid-infrared laser spectroscopy provides an ideal platform for trace gas sensing applications. Despite this potential, early MIR sensing applications were limited due to the size of the involved optical components, e.g. light sources and sample cells. A potential solution to this demand is the integration of hollow fiber waveguide with novelty quantum cascade lasers.Recently QCLs had great improvements in power, efficiency and wavelength range, which made the miniaturized platforms for gas sensing maintaining or even enhancing the achievable sensitivity conceivable. So that the miniaturization of QCLs and HWGs can be evolved into a mini sensor, which may be tailored to a variety of real-time and in situ applications ranging from environmental monitoring to workplace safety surveillance. In this article, we introduce QCLs and HWGs, display the applications of HWG based on QCL gas sensing and discuss future strategies for hollow fiber coupled quantum cascade laser gas sensor technology.
The lightest organic radical cation for charge storage in redox flow batteries
Huang, Jinhua; Pan, Baofei; Duan, Wentao; ...
2016-08-25
In advanced electrical grids of the future, electrochemically rechargeable fluids of high energy density will capture the power generated from intermittent sources like solar and wind. To meet this outstanding technological demand there is a need to understand the fundamental limits and interplay of electrochemical potential, stability, and solubility in low-weight redox-active molecules. By generating a combinatorial set of 1,4-dimethoxybenzene derivatives with different arrangements of substituents, we discovered a mini-malistic structure that combines exceptional long-term stability in its oxidized form and a record-breaking intrinsic capacity of 161 mAh/g. The nonaqueous redox flow battery has been demonstrated that uses this moleculemore » as a catholyte material and operated stably for 100 charge/discharge cycles. Furthermore, the observed stability trends are rationalized by mechanistic considerations of the reaction pathways.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Evans, Thomas; Hamilton, Steven; Slattery, Stuart
Profugus is an open-source mini-application (mini-app) for radiation transport and reactor applications. It contains the fundamental computational kernels used in the Exnihilo code suite from Oak Ridge National Laboratory. However, Exnihilo is production code with a substantial user base. Furthermore, Exnihilo is export controlled. This makes collaboration with computer scientists and computer engineers difficult. Profugus is designed to bridge that gap. By encapsulating the core numerical algorithms in an abbreviated code base that is open-source, computer scientists can analyze the algorithms and easily make code-architectural changes to test performance without compromising the production code values of Exnihilo. Profugus is notmore » meant to be production software with respect to problem analysis. The computational kernels in Profugus are designed to analyze performance, not correctness. Nonetheless, users of Profugus can setup and run problems with enough real-world features to be useful as proof-of-concept for actual production work.« less
Gamma-Ray Burst Prompt Emission Light Curves and Power Density Spectra in the ICMART Model
NASA Astrophysics Data System (ADS)
Zhang, Bo; Zhang, Bing
2014-02-01
In this paper, we simulate the prompt emission light curves of gamma-ray bursts (GRBs) within the framework of the Internal-Collision-induced MAgnetic Reconnection and Turbulence (ICMART) model. This model applies to GRBs with a moderately high magnetization parameter σ in the emission region. We show that this model can produce highly variable light curves with both fast and slow components. The rapid variability is caused by many locally Doppler-boosted mini-emitters due to turbulent magnetic reconnection in a moderately high σ flow. The runaway growth and subsequent depletion of these mini-emitters as a function of time define a broad slow component for each ICMART event. A GRB light curve is usually composed of multiple ICMART events that are fundamentally driven by the erratic GRB central engine activity. Allowing variations of the model parameters, one is able to reproduce a variety of light curves and the power density spectra as observed.
Dark Matter Search in a Proton Beam Dump with MiniBooNE
Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.; ...
2017-05-31
The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 × 10 20 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the darkmore » matter cross section parameter, Y = ε 2α D(m χ/m V) 4≲10 –8, for α D = 0.5 and for dark matter masses of 0.01 < m χ < 0.3 GeV in a vector portal model of dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. Here, these results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.« less
Dark Matter Search in a Proton Beam Dump with MiniBooNE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilar-Arevalo, A. A.; Backfish, M.; Bashyal, A.
The MiniBooNE-DM Collaboration searched for vector-boson mediated production of dark matter using the Fermilab 8-GeV Booster proton beam in a dedicated run with 1.86 × 10 20 protons delivered to a steel beam dump. The MiniBooNE detector, 490 m downstream, is sensitive to dark matter via elastic scattering with nucleons in the detector mineral oil. Analysis methods developed for previous MiniBooNE scattering results were employed, and several constraining data sets were simultaneously analyzed to minimize systematic errors from neutrino flux and interaction rates. No excess of events over background was observed, leading to a 90% confidence limit on the darkmore » matter cross section parameter, Y = ε 2α D(m χ/m V) 4≲10 –8, for α D = 0.5 and for dark matter masses of 0.01 < m χ < 0.3 GeV in a vector portal model of dark matter. This is the best limit from a dedicated proton beam dump search in this mass and coupling range and extends below the mass range of direct dark matter searches. Here, these results demonstrate a novel and powerful approach to dark matter searches with beam dump experiments.« less
Development of a wall-shear-stress sensor and measurements in mini-channels with partial blockages
NASA Astrophysics Data System (ADS)
Afara, Samer; Medvescek, James; Mydlarski, Laurent; Baliga, Bantwal R.; MacDonald, Mark
2014-05-01
The design, construction, operation and validation of a wall-shear-stress sensor, and measurements obtained using this sensor in air flows downstream of partial blockages in a mini-channel are presented. The sensor consisted of a hot wire mounted over a small rectangular slot and operated using a constant-temperature anemometer. It was used to investigate flows similar to those within the mini-channels inside notebook computers. The overall goal of the present work was to develop a sensor suitable for measurements of the wall-shear stress in such flows, which can be used to validate corresponding numerical simulations, as the latter are known to be often surprisingly inaccurate. To this end, measurements of the wall-shear stress, and the corresponding statistical moments and power spectral densities, were obtained at different distances downstream of the partial blockage, with blockage ratios of 39.7, 59.2, and 76.3 %. The Reynolds number (based on average velocity and hydraulic diameter) ranged from 100 to 900. The results confirmed the presence of unsteadiness, separation, reattachment, and laminar-turbulent transition in the ostensibly laminar flow of air in mini-channels with partial blockages. The present results demonstrate why accurate numerical predictions of cooling air flows in laptop and notebook computers remain a challenging task.
MiniDSS: a low-power and high-precision miniaturized digital sun sensor
NASA Astrophysics Data System (ADS)
de Boer, B. M.; Durkut, M.; Laan, E.; Hakkesteegt, H.; Theuwissen, A.; Xie, N.; Leijtens, J. L.; Urquijo, E.; Bruins, P.
2017-11-01
A high-precision and low-power miniaturized digital sun sensor has been developed at TNO. The single-chip sun sensor comprises an application specific integrated circuit (ASIC) on which an active pixel sensor (APS), read-out and processing circuitry as well as communication circuitry are combined. The design was optimized for low recurrent cost. The sensor is albedo insensitive and the prototype combines an accuracy in the order of 0.03° with a mass of just 72 g and a power consumption of only 65 mW.
Development of a Portable AC/DC Welding Power Supply Module
1975-03-01
REPORT DATE MAR 1975 2. REPORT TYPE N/A 3. DATES COVERED - 4. TITLE AND SUBTITLE Development of a Portable AC /DC Welding Power Supply...achieved. Additional bypass capacitors were added to reduce further switch heating and voltage transients. November AC welding was achieved with...Investigate the conversion of inversion frequency back to 60 Hz for AC welding. 4) Investigate a 120V single phase mini supply. VI I Objectives A) Goals
rAAV-compatible MiniPromoters for restricted expression in the brain and eye.
de Leeuw, Charles N; Korecki, Andrea J; Berry, Garrett E; Hickmott, Jack W; Lam, Siu Ling; Lengyell, Tess C; Bonaguro, Russell J; Borretta, Lisa J; Chopra, Vikramjit; Chou, Alice Y; D'Souza, Cletus A; Kaspieva, Olga; Laprise, Stéphanie; McInerny, Simone C; Portales-Casamar, Elodie; Swanson-Newman, Magdalena I; Wong, Kaelan; Yang, George S; Zhou, Michelle; Jones, Steven J M; Holt, Robert A; Asokan, Aravind; Goldowitz, Daniel; Wasserman, Wyeth W; Simpson, Elizabeth M
2016-05-10
Small promoters that recapitulate endogenous gene expression patterns are important for basic, preclinical, and now clinical research. Recently, there has been a promising revival of gene therapy for diseases with unmet therapeutic needs. To date, most gene therapies have used viral-based ubiquitous promoters-however, promoters that restrict expression to target cells will minimize off-target side effects, broaden the palette of deliverable therapeutics, and thereby improve safety and efficacy. Here, we take steps towards filling the need for such promoters by developing a high-throughput pipeline that goes from genome-based bioinformatic design to rapid testing in vivo. For much of this work, therapeutically interesting Pleiades MiniPromoters (MiniPs; ~4 kb human DNA regulatory elements), previously tested in knock-in mice, were "cut down" to ~2.5 kb and tested in recombinant adeno-associated virus (rAAV), the virus of choice for gene therapy of the central nervous system. To evaluate our methods, we generated 29 experimental rAAV2/9 viruses carrying 19 different MiniPs, which were injected intravenously into neonatal mice to allow broad unbiased distribution, and characterized in neural tissues by X-gal immunohistochemistry for icre, or immunofluorescent detection of GFP. The data showed that 16 of the 19 (84 %) MiniPs recapitulated the expression pattern of their design source. This included expression of: Ple67 in brain raphe nuclei; Ple155 in Purkinje cells of the cerebellum, and retinal bipolar ON cells; Ple261 in endothelial cells of brain blood vessels; and Ple264 in retinal Müller glia. Overall, the methodology and MiniPs presented here represent important advances for basic and preclinical research, and may enable a paradigm shift in gene therapy.
Urabe, Tatsuya; Takahashi, Kazuya; Kitagawa, Michiko; Sato, Takafumi; Kondo, Tomohide; Enomoto, Shuichi; Kidera, Masanori; Seto, Yasuo
2014-01-01
A portable mass spectrometer with an electron cyclotron resonance ion source (miniECRIS-MS) was developed. It was used for in situ monitoring of trace amounts of chemical warfare agents (CWAs) in atmospheric air. Instrumental construction and parameters were optimized to realize a fast response, high sensitivity, and a small body size. Three types of CWAs, i.e., phosgene, mustard gas, and hydrogen cyanide were examined to check if the mass spectrometer was able to detect characteristic elements and atomic groups. From the results, it was found that CWAs were effectively ionized in the miniECRIS-MS, and their specific signals could be discerned over the background signals of air. In phosgene, the signals of the 35Cl+ and 37Cl+ ions were clearly observed with high dose-response relationships in the parts-per-billion level, which could lead to the quantitative on-site analysis of CWAs. A parts-per-million level of mustard gas, which was far lower than its lethal dosage (LCt50), was successfully detected with a high signal-stability of the plasma ion source. It was also found that the chemical forms of CWAs ionized in the plasma, i.e., monoatomic ions, fragment ions, and molecular ions, could be detected, thereby enabling the effective identification of the target CWAs. Despite the disadvantages associated with miniaturization, the overall performance (sensitivity and response time) of the miniECRIS-MS in detecting CWAs exceeded those of sector-type ECRIS-MS, showing its potential for on-site detection in the future. Copyright © 2013 Elsevier B.V. All rights reserved.
THE ECOLOGY OF BACTERIA IN THE ALFRESCO ATMOSPHERE
This MiniReview is concerned with the sources,flux and the spacial and temporal distributions of culturable airborne bacteria; how meteorological conditions modulate these distributions; and how death, culture media, and experimental devices relate to measuring airborne bacteria....
Clusters of Galaxies and the Cosmic Web with Square Kilometre Array
NASA Astrophysics Data System (ADS)
Kale, Ruta; Dwarakanath, K. S.; Vir Lal, Dharam; Bagchi, Joydeep; Paul, Surajit; Malu, Siddharth; Datta, Abhirup; Parekh, Viral; Sharma, Prateek; Pandey-Pommier, Mamta
2016-12-01
The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15-1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05-20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the cosmic ray acceleration mechanisms. The higher frequency (>5 GHz) observations will be able to use the Sunyaev-Zel'dovich effect to probe the ICM pressure in addition to tracers such as lobes of head-tail radio sources. The SKA also opens prospects to detect the `off-state' or the lowest level of radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models.
Communicating on a Peanuts Budget.
ERIC Educational Resources Information Center
Holliday, Albert E.
2003-01-01
Describes several low-cost practices school administrators use to communicate with parents and the community, such as using school board meetings as a mini-information forum, plugging into the power structure, asking for opinions, participating in a community newsletter, conducting audits of a school climate, encouraging your employees and…
ObsPy - A Python Toolbox for Seismology - and Applications
NASA Astrophysics Data System (ADS)
Krischer, L.; Megies, T.; Barsch, R.; MacCarthy, J.; Lecocq, T.; Koymans, M. R.; Carothers, L.; Eulenfeld, T.; Reyes, C. G.; Falco, N.; Sales de Andrade, E.
2017-12-01
Recent years witnessed the evolution of Python's ecosystem into one of the most powerful and productive scientific environments across disciplines. ObsPy (https://www.obspy.org) is a fully community driven, open-source project dedicated to provide a bridge for seismology into that ecosystem. It is a Python toolbox offering: Read and write support for essentially every commonly used data format in seismology with a unified interface and automatic format detection. This includes waveform data (MiniSEED, SAC, SEG-Y, Reftek, …) as well as station (SEED, StationXML, SC3ML, …) and event meta information (QuakeML, ZMAP, …). Integrated access to the largest data centers, web services, and real-time data streams (FDSNWS, ArcLink, SeedLink, ...). A powerful signal processing toolbox tuned to the specific needs of seismologists. Utility functionality like travel time calculations with the TauP method, geodetic functions, and data visualizations. ObsPy has been in constant development for more than eight years and is developed and used by scientists around the world with successful applications in all branches of seismology. Additionally it nowadays serves as the foundation for a large number of more specialized packages. Newest features include: Full interoperability of SEED and StationXML/Inventory objects Access to the Nominal Response Library (NRL) for easy and quick creation of station metadata from scratch Support for the IRIS Federated Catalog Service Improved performance of the EarthWorm client Several improvements to MiniSEED read/write module Improved plotting capabilities for PPSD (spectrograms, PSD of discrete frequencies over time, ..) Support for.. Reading ArcLink Inventory XML Reading Reftek data format Writing SeisComp3 ML (SC3ML) Writing StationTXT format This presentation will give a short overview of the capabilities of ObsPy and point out several representative or new use cases and show-case some projects that are based on ObsPy, e.g.: seismo-live.org Seedlink-plotter MSNoise, and others..
ERIC Educational Resources Information Center
Daugherty, Mabel
This module, consisting of materials for use in conducting a consumer education mini-course, deals with effective consumerism. Covered in the individual lessons are the following topics: being prepared with information (sources of consumer information and subscription forms); evaluating warranties and service contracts; evaluating advertising and…
Portable Intravenous Fluid Production Device For Ground Use Project
NASA Technical Reports Server (NTRS)
Oliva-Buisson, Yvette J.
2014-01-01
Several medical conditions require the administration of intravenous (IV) fluids,but limitations of mass, volume, shelf-life, transportation, and local resources can restrict the availability of these important fluids. Such limitations are expected in long-duration space exploration missions and in remote or austere places on Earth. This design uses regular drinking water that is pumped through two filters to produce, in minutes, sterile, ultrapure water that meets the stringent quality standards of the United States Pharmacopeia for Water for Injection (Total Bacteria, Conductivity, Endo - toxins, Total Organic Carbon). The device weighs 2.2 lb (1 kg) and is 10 in. long, 5 in. wide, and 3 in. high (˜25, 13, and 7.5 cm, respectively) in its storage configuration. This handheld device produces one liter of medical-grade water in 21 minutes. Total production capacity for this innovation is expected to be in the hundreds of liters. The device contains one battery powered electric mini-pump. Alternatively, a manually powered pump can be attached and used. Drinking water enters the device from a source water bag, flows through two filters, and final sterile production water exits into a sealed, medical-grade collection bag. The collection bag contains pre-placed crystalline salts to mix with product water to form isotonic intravenous medical solutions. Alternatively, a hypertonic salt solution can be injected into a filled bag. The filled collection bag is detached from the device and is ready for use or storage. This device currently contains one collection bag, but a manifold of several pre-attached bags or replacement of single collection bags under sterile needle technique is possible for the production of multiple liters. The entire system will be flushed, sealed, and radiation-sterilized. Operation of the device is easy and requires minimal training. Drinking water is placed into the collection bag. Inline stopcock flow valves at the source and collection bags are opened, and the mini-pump is turned on by a switch to begin fluid flow. When the collection bag is completely filled with the medical- grade water, the pump can be turned off. The pump is designed so it cannot pump air, and overfilling of the collection bag with fluid is avoided by placing an equal amount of water in the source bag. Backflow is avoided by inline check valves. The filled collection bag is disconnected from its tubing and is ready for use. The source bag can be refilled for production of multiple liters, or the source bag can be replaced with an input tube that can be placed in a larger potable water source if the device is attended. The device functions in all orientations independent of any gravity fields. In addition to creating IV fluids, the device produces medical-grade water, which can be used for mixing with medications for injection, reconstituting freeze-dried blood products for injection, or for wound hydration or irrigation. Potential worldwide use is expected with medical activities in environments that have limited resources, storage, or resupply such as in military field operations, humanitarian relief efforts, submarines, commercial cruise ships, etc.
2014-09-01
Marshall “ Wind Turbines and Energy” • Eugene Whatley 12th Grade T. Marshall “Acceleration of Battery-Powered cars on Different Surfaces” • Jhaelynn...There were several mini-demos including: making a model for wind tunnel, egg carton gliders, and ring wing gliders. C3.3 Robotics Team The...115 F3.6 WHAT ARE WIND TUNNELS
Compact, Portable Pulsed-Power
2006-08-31
adding this fast pulse to a slow, 30kV pulse which is below the threshold for significant corona emission. This scheme is presently being explored with...the smaller stressed electrode area. Further results from these systems were reported at the 2006 Power Modulator Conference in Washington, D.C...BLT and the medium-BLT is similar. The mini BLT electrodes are made of 3 mm thick molybdenum disks with a 3 mm central hole, capped on a hollow OFHC 1
NASA Technical Reports Server (NTRS)
Oneill, Mark J.; Piszczor, Michael F.; Fraas, Lewis M.
1991-01-01
Since 1986, ENTECH and the NASA Lewis Research Center have been developing a new photovoltaic concentrator system for space power applications. The unique refractive system uses small, dome shaped Fresnel lenses to focus sunlight onto high efficiency photovoltaic concentrator cells which use prismatic cell covers to further increase their performance. Highlights of the five-year development include near Air Mass Zero (AM0) Lear Jet flight testing of mini-dome lenses (90 pct. net optical efficiency achieved); tests verifying sun-pointing error tolerance with negligible power loss; simulator testing of prism-covered GaAs concentrator cells (24 pct. AM0 efficiency); testing of prism-covered Boeing GaAs/GaSb tandem cells (31 pct. AM0 efficiency); and fabrication and outdoor testing of a 36-lens/cell element panel. These test results have confirmed previous analytical predictions which indicate substantial performance improvements for this technology over current array systems. Based on program results to date, it appears than an array power density of 300 watts/sq m and a specific power of 100 watts/kg can be achieved in the near term. All components of the array appear to be readily manufacturable from space-durable materials at reasonable cost. A concise review is presented of the key results leading to the current array, and further development plans for the future are briefly discussed.
Computers in Electrical Engineering Education at Virginia Polytechnic Institute.
ERIC Educational Resources Information Center
Bennett, A. Wayne
1982-01-01
Discusses use of computers in Electrical Engineering (EE) at Virginia Polytechnic Institute. Topics include: departmental background, level of computing power using large scale systems, mini and microcomputers, use of digital logic trainers and analog/hybrid computers, comments on integrating computers into EE curricula, and computer use in…
Netbooks: Small but Powerful Friends
ERIC Educational Resources Information Center
Descy, Don E.
2009-01-01
Netbooks, sometimes called "mini-notebooks," are lightweight, small, and low-priced computers. Some writers ridicule them by calling them "one of the hottest tech toys of the year" (Saltzman, 2008). Others enthusiastically embrace them as "my perfect new travel companion" (Grossman, 2009). Netbooks are not toys. They are honest-to-goodness real…
Unified Performance and Power Modeling of Scientific Workloads
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Shuaiwen; Barker, Kevin J.; Kerbyson, Darren J.
2013-11-17
It is expected that scientific applications executing on future large-scale HPC must be optimized not only in terms of performance, but also in terms of power consumption. As power and energy become increasingly constrained resources, researchers and developers must have access to tools that will allow for accurate prediction of both performance and power consumption. Reasoning about performance and power consumption in concert will be critical for achieving maximum utilization of limited resources on future HPC systems. To this end, we present a unified performance and power model for the Nek-Bone mini-application developed as part of the DOE's CESAR Exascalemore » Co-Design Center. Our models consider the impact of computation, point-to-point communication, and collective communication« less
Comparison of complex effluent treatability in different bench scale microbial electrolysis cells.
Ullery, Mark L; Logan, Bruce E
2014-10-01
A range of wastewaters and substrates were examined using mini microbial electrolysis cells (mini MECs) to see if they could be used to predict the performance of larger-scale cube MECs. COD removals and coulombic efficiencies corresponded well between the two reactor designs for individual samples, with 66-92% of COD removed for all samples. Current generation was consistent between the reactor types for acetate (AC) and fermentation effluent (FE) samples, but less consistent with industrial (IW) and domestic wastewaters (DW). Hydrogen was recovered from all samples in cube MECs, but gas composition and volume varied significantly between samples. Evidence for direct conversion of substrate to methane was observed with two of the industrial wastewater samples (IW-1 and IW-3). Overall, mini MECs provided organic treatment data that corresponded well with larger scale reactor results, and therefore it was concluded that they can be a useful platform for screening wastewater sources. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mini-LENS: developing a charged-current approach to measuring CNO and pp solar neutrinos
NASA Astrophysics Data System (ADS)
Vogelaar, R. Bruce
2014-03-01
The Low-Energy Neutrino Spectroscopy (LENS) experiment is based on neutrino detection via a charged-current interaction with 115In and offers the ability to cleanly observe both pp and CNO neutrinos. In contrast, elastic-scattering detectors, such as Borexino and SNO + suffer from virtually inseparable backgrounds. Thus, LENS might be uniquely positioned to resolve the solar metallicity question via measurement of the CNO neutrino flux, as well as test the predicted equivalence of solar luminosity as measured by photons versus neutrinos The mini-LENS program is testing the performance of the optically-segmented 3D lattice geometry unique to LENS. This first-of-a-kind lattice design is also suited for a range of other applications where high segmentation and large light collection are required (eg: sterile neutrinos with sources, double beta decay, and surface detection of reactor neutrinos). The current status and recent design changes of miniLENS at KURF will be presented. funded by NSF: 1001394.
Alió, Jorge L.; Elkady, Bassam; Ortiz, Dolores
2010-01-01
Purpose: To study and compare the effects of the micro-incision cataract surgery (MICS-sub 1.8 mm) and miniincision coaxial phacoemulsification (2.2 mm) on the optical quality of the cornea characterized in terms of corneal aberrations. Materials and Methods: Fifty eyes underwent MICS and 50 mini-incision phacoemulsification, by the same surgeon. Both types of cataract surgery were performed using low ultrasound power and through a clear corneal incision, placed on the steepest corneal meridian ranging from 1.6 to 1.8 in MICS (Group I) and from 2.12 to 2.3 mm in mini-incision coaxial phacoemulsification (Group II). Seidel and Zernike aberration coefficients and RMS values were obtained for a 6-mm pupil preoperatively and one month after surgery. Results: The corneal astigmatism did not show statistically significant changes in either of the two groups: (MICS: –0.73 ± 0.63, –0.65 ± 0.53 D, P = 0.25), (mini-incision phacoemulsification; –1.21 ± 1.52, –1.00 ± 1.19 D, P = 0.12). The total RMS remained unchanged after MICS (1.77 ± 1.7, 1.65 ± 1.3 μm, P = 0.18) and mini-incision phacoemulsification (2.00 ± 1.87, 2.09 ± 1.8 μm, P = 0.41). Statistically significant changes were found for coma (P = 0.004) and higher-order aberrations (P < 0.001), showing MICS significantly less changes in cornea. Conclusions: Both MICS and mini-incision phacoemulsification do not degrade the optical quality of the cornea. Both surgeries do not induce a modification of the corneal astigmatism, even in the axis. It seems that 2 mm is the limit around which no optical changes are induced by cataract surgery in the human cornea. PMID:20543945
Wheat landraces: A mini review
USDA-ARS?s Scientific Manuscript database
Farmers developed and utilized diverse wheat landraces to meet the complexity of a multitude of spatio-temporal, agro-ecological systems and to provide reliable sustenance and a sustainable food source to local communities. The genetic structure of wheat landraces is an evolutionary approach to surv...
A mini axial and a permanent maglev radial heart pump.
Qian, Kun-Xi; Ru, Wei-Min; Wang, Hao; Jing, Teng
2007-05-31
The implantability and durability have been for decades the focus of artificial heart R&D. A mini axial and a maglev radial pump have been developed to meet with such requirements.The mini axial pump weighing 27g (incl.5g rotor) has an outer diameter of 21mm and a length of 10mm in its largest point, but can produce a maximal blood flow of 6l/min with 50mmHg pressure increase. Therefore, it is suitable for the patients of 40-60kg body weight. For other patients of 60-80kg or 80-100kg body weight, the mini axial pumps of 23mm and 25mm outer diameter had been developed before, these devices were acknowledged to be the world smallest LVADs by Guinness World Record Center in 2004.The permanent maglev radial pump weighing 150g is a shaft-less centrifugal pump with permanent magnetic bearings developed by the author. It needs no second coil for suspension of the rotor except the motor coil, different from all other maglev pumps developed in USA, Japan, European, etc. Thus no detecting and controlling systems as well as no additional power supply for maglev are necessary. The pump can produce a blood flow up to as large as 10l/min against 100mmHg pressure.An implantable and durable blood pump will be a viable alternative to natural donor heart for transplantation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zakaria, Irnie Azlin; Mohamed, Wan Ahmad Najmi Wan; Mamat, Aman Mohd Ihsan
Continuous need for an optimum conversion efficiency of a Proton Exchange Membrane Fuel Cell (PEMFC) operation has triggered varieties of advancements namely on the thermal management engineering scope. Nanofluids as an innovative heat transfer fluid solution are expected to be a promising candidate for alternative coolant in mini channel cooling plate of PEMFC. In this work, heat transfer performance of low concentration of 0.1, 0.3 and 0.5 % Al{sub 2}O{sub 3} in water: Ethylene glycol (EG) mixtures of 100:0 and 50:50 nanofluids have been studied and compared against its base fluids at Re number ranging from 10 to 100. Amore » steady, laminar and incompressible flow with constant heat flux is assumed in the channel of 140mm × 200mm. It was found that nanofluids have performed better than the base fluid but the demerit is on the pumping power due to the higher pressure drop across mini channel geometry as expected.« less
NASA Technical Reports Server (NTRS)
Giersch, L.; Winglee, R.; Slough, J.; Ziemba, T.; Euripides, P.
2003-01-01
Mini-Magnetospheric Plasma Propulsion (M2P2) seeks to create a plasma-inflated magnetic bubble capable of intercepting significant thrust from the solar wind for the purposes of high speed, high efficiency spacecraft propulsion. Previous laboratory experiments into the M2P2 concept have primarily used helicon plasma sources to inflate the dipole magnetic field. The work presented here uses an alternative plasma source, the cascaded arc, in a geometry similar to that used in previous helicon experiments. Time resolved measurements of the equatorial plasma density have been conducted and the results are discussed. The equatorial plasma density transitions from an initially asymmetric configuration early in the shot to a quasisymmetric configuration during plasma production, and then returns to an asymmetric configuration when the source is shut off. The exact reasons for these changes in configuration are unknown, but convection of the loaded flux tube is suspected. The diffusion time was found to be an order of magnitude longer than the Bohm diffusion time for the period of time after the plasma source was shut off. The data collected indicate the plasma has an electron temperature of approximately 11 eV, an order of magnitude hotter than plasmas generated by cascaded arcs operating under different conditions. In addition, indirect evidence suggests that the plasma has a beta of order unity in the source region.
Gravitational wave signature of a mini creation event (MCE)
NASA Astrophysics Data System (ADS)
Dhurandhar, S. V.; Narlikar, J. V.
2018-07-01
In light of the recent discoveries of binary black hole events and one neutron star event by the advanced LIGO (aLIGO) and advanced Virgo (aVirgo) detectors, we propose a new astrophysical source, namely, the mini creation event (MCE) as a possible source of gravitational waves (GW) to be detected by advanced detectors. The MCE is at the heart of the quasi steady state cosmology (QSSC) and is not expected to occur in standard cosmology. Generically, the MCE is anisotropic and we assume a Bianchi Tpye I model for its description. We compute its signature waveform and assume masses, distances analogous to the events detected. The striking feature of the waveform associated with this model of the MCE is that it depends only on one amplitude parameter and thus allows for simpler data analysis. By matched filtering the signal we find that, for a broad range of model parameters, the signal to noise ratio of the randomly oriented MCE is sufficiently high for a confident detection by aLIGO and aVirgo. We therefore propose the MCE as a viable astrophysical source of GW. The detection or non-detection of such a source also hold implications for QSSC, namely, whether it is a viable cosmology or not.
21-cm signature of the first sources in the Universe: prospects of detection with SKA
NASA Astrophysics Data System (ADS)
Ghara, Raghunath; Choudhury, T. Roy; Datta, Kanan K.
2016-07-01
Currently several low-frequency experiments are being planned to study the nature of the first stars using the redshifted 21-cm signal from the cosmic dawn and Epoch of Reionization. Using a one-dimensional radiative transfer code, we model the 21-cm signal pattern around the early sources for different source models, I.e. the metal-free Population III (PopIII) stars, primordial galaxies consisting of Population II (PopII) stars, mini-QSOs and high-mass X-ray binaries (HMXBs). We investigate the detectability of these sources by comparing the 21-cm visibility signal with the system noise appropriate for a telescope like the SKA1-low. Upon integrating the visibility around a typical source over all baselines and over a frequency interval of 16 MHz, we find that it will be possible to make a ˜9σ detection of the isolated sources like PopII galaxies, mini-QSOs and HMXBs at z ˜ 15 with the SKA1-low in 1000 h. The exact value of the signal-to-noise ratio (SNR) will depend on the source properties, in particular on the mass and age of the source and the escape fraction of ionizing photons. The predicted SNR decreases with increasing redshift. We provide simple scaling laws to estimate the SNR for different values of the parameters which characterize the source and the surrounding medium. We also argue that it will be possible to achieve an SNR ˜9 even in the presence of the astrophysical foregrounds by subtracting out the frequency-independent component of the observed signal. These calculations will be useful in planning 21-cm observations to detect the first sources.
The Future of the Arab Gulf Monarchies in the Age of Uncertainties
2013-06-01
Suite 1204, Arlington VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law , no person shall be subject to a...excessive powers held by the King and the 10 royal court. The monarch, according to the Saudi Basic Law , has the power to nominate and dismiss minis... Adnan , a Saudi journalist based in Beirut. He urged the ruling elite to reform in order to avoid being forced to change, adding that calls for
Mobile LiDAR Measurement for Aerosol Investigation in South-Central Hebei, China
NASA Astrophysics Data System (ADS)
qin, kai; Wu, Lixin; Zheng, Yunhui; Wong Man, Sing; Wang, Runfeng; Hu, Mingyu; Lang, Hongmei; Wang, Luyao; Bai, Yang; Rao, Lanlan
2016-04-01
With the rapid industrialization and urbanization in China during the last decades, the increasing anthropogenic pollutant emissions have significantly caused serious air pollution problems which are adversely influencing public health. Hebei is one of the most air polluted provinces in China. In January 2013, an extremely severe and persistent haze episode with record-breaking PM2.5 outbreak affecting hundreds of millions of people occurred over eastern and northern China. During that haze episode, 7 of the top 10 most polluted cities in China were located in the Hebei Province according to the report of China's Ministry of Environmental Protection. To investigate and the spatial difference and to characterize the vertical distribution of aerosol in different regions of south-central Hebei, mobile measurements were carried out using a mini micro pulse LiDAR system (model: MiniMPL) in March 2014. The mobile LiDAR kit consisting of a MiniMPL, a vibration reduction mount, a power inverter, a Windows surface tablet and a GPS receiver were mounted in a car watching though the sunroof opening. For comparison, a fixed measurement using a traditional micro pulse LiDAR system (model: MPL-4B) was conducted simultaneously in Shijiazhuang, the capital of Hebei Province. The equipped car was driven from downtown Shijiazhuang by way of suburban and rural area to downtown Cangzhou, Handan, and Baoding respectively at almost stable speed around 100Km per hour along different routes which counted in total more than 1000Km. The results can be summarized as: 1) the spatial distribution of total aerosol optical depth along the measurement routes in south-central Hebei was controlled by local terrain and population in general, with high values in downtown and suburban in the plain areas, and low values in rural areas along Taihang mountain to the west and Yan mountain to the north; 2) obviously high AODs were obtained at roads crossing points, inside densely populated area and nearby industrial emission sources; 3) under the heavy polluted condition, the height of planetary boundary layer (PBL) reduced to 500m. This experimental measurement suggests that mobile LiDAR is capable of detecting the time and area dependent air pollution episode in regional scale. Especially, LiDAR offers active remote sensing of aerosol vertical properties, which makes it feasible to detect the PBL evolution playing a crucial role in the haze formation. With regular weekly/monthly/quarterly mobile detection, some hidden emission sources could be detected and the air pollution local pattern would be revealed.
Hashiguchi, Kazue; Velez N., Lenin; Kato, Hirotomo; Criollo F., Hipatia; Romero A., Daniel; Gomez L., Eduardo; Martini R., Luiggi; Zambrano C., Flavio; Calvopina H., Manuel; Caceres G., Abraham; Hashiguchi, Yoshihisa
2014-01-01
To study the sand fly fauna, surveys were performed at four different leishmaniasis-endemic sites in Ecuador from February 2013 to April 2014. A modified and simplified version of the conventional Shannon trap was named “mini-Shannon trap” and put to multiple uses at the different study sites in limited, forested and narrow spaces. The mini-Shannon, CDC light trap and protected human landing method were employed for sand fly collection. The species identification of sand flies was performed mainly based on the morphology of spermathecae and cibarium, after dissection of fresh samples. In this study, therefore, only female samples were used for analysis. A total of 1,480 female sand flies belonging to 25 Lutzomyia species were collected. The number of female sand flies collected was 417 (28.2%) using the mini-Shannon trap, 259 (17.5%) using the CDC light trap and 804 (54.3%) by human landing. The total number of sand flies per trap collected by the different methods was markedly affected by the study site, probably because of the various composition of species at each locality. Furthermore, as an additional study, the attraction of sand flies to mini-Shannon traps powered with LED white-light and LED black-light was investigated preliminarily, together with the CDC light trap and human landing. As a result, a total of 426 sand flies of nine Lutzomyia species, including seven man-biting and two non-biting species, were collected during three capture trials in May and June 2014 in an area endemic for leishmaniasis (La Ventura). The black-light proved relatively superior to the white-light with regard to capture numbers, but no significant statistical difference was observed between the two traps. PMID:25589880
Hashiguchi, Kazue; Velez N, Lenin; Kato, Hirotomo; Criollo F, Hipatia; Romero A, Daniel; Gomez L, Eduardo; Martini R, Luiggi; Zambrano C, Flavio; Calvopina H, Manuel; Caceres G, Abraham; Hashiguchi, Yoshihisa
2014-12-01
To study the sand fly fauna, surveys were performed at four different leishmaniasis-endemic sites in Ecuador from February 2013 to April 2014. A modified and simplified version of the conventional Shannon trap was named "mini-Shannon trap" and put to multiple uses at the different study sites in limited, forested and narrow spaces. The mini-Shannon, CDC light trap and protected human landing method were employed for sand fly collection. The species identification of sand flies was performed mainly based on the morphology of spermathecae and cibarium, after dissection of fresh samples. In this study, therefore, only female samples were used for analysis. A total of 1,480 female sand flies belonging to 25 Lutzomyia species were collected. The number of female sand flies collected was 417 (28.2%) using the mini-Shannon trap, 259 (17.5%) using the CDC light trap and 804 (54.3%) by human landing. The total number of sand flies per trap collected by the different methods was markedly affected by the study site, probably because of the various composition of species at each locality. Furthermore, as an additional study, the attraction of sand flies to mini-Shannon traps powered with LED white-light and LED black-light was investigated preliminarily, together with the CDC light trap and human landing. As a result, a total of 426 sand flies of nine Lutzomyia species, including seven man-biting and two non-biting species, were collected during three capture trials in May and June 2014 in an area endemic for leishmaniasis (La Ventura). The black-light proved relatively superior to the white-light with regard to capture numbers, but no significant statistical difference was observed between the two traps.
Photo-fermentative hydrogen production from crop residue: A mini review.
Zhang, Quanguo; Wang, Yi; Zhang, Zhiping; Lee, Duu-Jong; Zhou, Xuehua; Jing, Yanyan; Ge, Xumeng; Jiang, Danping; Hu, Jianjun; He, Chao
2017-04-01
Photofermentative hydrogen production from crop residues, if feasible, can lead to complete conversion of organic substances to hydrogen (and carbon dioxide). This mini review lists the studies on photofermentative hydrogen production using crop residues as feedstock. Pretreatment methods, substrate structure, mechanism of photosynthetic bacteria growth and metabolism were discussed. Photofermentative hydrogen production from pure culture, consortia and mutants, and the geometry, light sources, mass transfer resistances and the operational strategies of the photo-bioreactor were herein reviewed. Future studies of regulation mechanism of photosynthetic bacteria, such as highly-efficient strain breeding and gene reconstruction, and development of new-generation photo-bioreactor were suggested. Copyright © 2017 Elsevier Ltd. All rights reserved.
Transformations, Inc.: Partnering to Build Net-Zero Energy Houses in Massachusetts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.; Bergey, D.; Wytrykowska, H.
Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ('Devens'), The Homes at Easthampton Meadow ('Easthampton') andPhase II of the Coppersmith Way Development ('Townsend'). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answers tomore » specific research questions for homes with high R double stud walls and high efficiency ductlessair source heat pump systems ('mini-splits'); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.« less
Transformations, Inc.. Partnering To Build Net-Zero Energy Houses in Massachusetts
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, K.; Bergey, D.; Wytrykowska, H.
Transformations, Inc. is a residential development and building company that has partnered with Building Science Corporation to build new construction net-zero energy houses in Massachusetts under the Building America program. There are three communities that will be constructed through this partnership: Devens Sustainable Housing ("Devens"), The Homes at Easthampton Meadow ("Easthampton") and Phase II of the Coppersmith Way Development ("Townsend"). This report intends to cover all of the single-family new construction homes that have been completed to date. The houses built in these developments are net zero energy homes built in a cold climate. They will contribute to finding answersmore » to specific research questions for homes with high R double stud walls and high efficiency ductless air source heat pump systems ("mini-splits"); allow to explore topics related to the financing of photovoltaic systems and basements vs. slab-on-grade construction; and provide feedback related to the performance of ductless mini-split air source heat pumps.« less
Interplanetary Radiation and Fault Tolerant Mini-Star Tracker System
NASA Technical Reports Server (NTRS)
Rakoczy, John; Paceley, Pete
2015-01-01
The Charles Stark Draper Laboratory, Inc. is partnering with the NASA Marshall Space Flight Center (MSFC) Engineering Directorate's Avionics Design Division and Flight Mechanics & Analysis Division to develop and test a prototype small, low-weight, low-power, radiation-hardened, fault-tolerant mini-star tracker (fig. 1). The project is expected to enable Draper Laboratory and its small business partner, L-1 Standards and Technologies, Inc., to develop a new guidance, navigation, and control sensor product for the growing small sat technology market. The project also addresses MSFC's need for sophisticated small sat technologies to support a variety of science missions in Earth orbit and beyond. The prototype star tracker will be tested on the night sky on MSFC's Automated Lunar and Meteor Observatory (ALAMO) telescope. The specific goal of the project is to address the need for a compact, low size, weight, and power, yet radiation hardened and fault tolerant star tracker system that can be used as a stand-alone attitude determination system or incorporated into a complete attitude determination and control system for emerging interplanetary and operational CubeSat and small sat missions.
Experimental investigation on the miniature mixed refrigerant cooler driven by a mini-compressor
NASA Astrophysics Data System (ADS)
Chen, Gaofei; Gong, Maoqiong; Wu, Yinong
2018-05-01
Three miniature Joule-Thomson cryogenic coolers and a testing set up were built to investigate the cooling performance in this work. Shell-and-tube heat exchanger and plate fin heat exchangers with rectangular micro channels were designed to achieve high specific surface area. The main processing technology of micro mixed refrigerant cooler (MMRC) was described. The design and fabrication processing of the plate fin heat exchangers were also described. The new developed micro plate-fin type heat exchanger shows high compactness with the specific heat surface larger than 1.0x104 m2/m3. The results of experimental investigations on miniature mixed refrigerant J-T cryogenic coolers driven by a Mini-Compressor were discussed. The performance evaluation and comparison of the three coolers was made to find out the features for each type of cooler. Expressions of refrigeration coefficient and exergy efficiency were pointed out. No-load temperature of about 112 K, and the cooling power of 4.0W at 118K with the input power of 120W is achieved. The exergy efficiency of the SJTC is 5.14%.
Assessment of In Situ Time Resolved Shock Experiments at Synchrotron Light Sources*
NASA Astrophysics Data System (ADS)
Belak, J.; Ilavsky, J.; Hessler, J. P.
2005-07-01
Prior to fielding in situ time resolved experiments of shock wave loading at the Advanced Photon Source, we have performed feasibility experiments assessing a single photon bunch. Using single and poly-crystal Al, Ti, V and Cu shock to incipient spallation on the gas gun, samples were prepared from slices normal to the spall plane of thickness 100-500 microns. In addition, single crystal Al of thickness 500 microns was shocked to incipient spallation and soft recovered using the LLNL e-gun mini-flyer system. The e-gun mini-flyer impacts the sample target producing a 10's ns flat-top shock transient. Here, we present results for imaging, small-angle scattering (SAS), and diffraction. In particular, there is little SAS away from the spall plane and significant SAS at the spall plane, demonstrating the presence of sub-micron voids. * Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. W-31-109-Eng-38 and work performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
First tests of a multi-wavelength mini-DIAL system for the automatic detection of greenhouse gases
NASA Astrophysics Data System (ADS)
Parracino, S.; Gelfusa, M.; Lungaroni, M.; Murari, A.; Peluso, E.; Ciparisse, J. F.; Malizia, A.; Rossi, R.; Ventura, P.; Gaudio, P.
2017-10-01
Considering the increase of atmospheric pollution levels in our cities, due to emissions from vehicles and domestic heating, and the growing threat of terrorism, it is necessary to develop instrumentation and gather know-how for the automatic detection and measurement of dangerous substances as quickly and far away as possible. The Multi- Wavelength DIAL, an extension of the conventional DIAL technique, is one of the most powerful remote sensing methods for the identification of multiple substances and seems to be a promising solution compared to existing alternatives. In this paper, first in-field tests of a smart and fully automated Multi-Wavelength mini-DIAL will be presented and discussed in details. The recently developed system, based on a long-wavelength infrared (IR-C) CO2 laser source, has the potential of giving an early warning, whenever something strange is found in the atmosphere, followed by identification and simultaneous concentration measurements of many chemical species, ranging from the most important Greenhouse Gases (GHG) to other harmful Volatile Organic Compounds (VOCs). Preliminary studies, regarding the fingerprint of the investigated substances, have been carried out by cross-referencing database of infrared (IR) spectra, obtained using in-cell measurements, and typical Mixing Ratios in the examined region, extrapolated from the literature. First experiments in atmosphere have been performed into a suburban and moderately-busy area of Rome. Moreover, to optimize the automatic identification of the harmful species to be recognized on the basis of in cell measurements of the absorption coefficient spectra, an advanced multivariate statistical method for classification has been developed and tested.
Flexible mini gamma camera reconstructions of extended sources using step and shoot and list mode.
Gardiazabal, José; Matthies, Philipp; Vogel, Jakob; Frisch, Benjamin; Navab, Nassir; Ziegler, Sibylle; Lasser, Tobias
2016-12-01
Hand- and robot-guided mini gamma cameras have been introduced for the acquisition of single-photon emission computed tomography (SPECT) images. Less cumbersome than whole-body scanners, they allow for a fast acquisition of the radioactivity distribution, for example, to differentiate cancerous from hormonally hyperactive lesions inside the thyroid. This work compares acquisition protocols and reconstruction algorithms in an attempt to identify the most suitable approach for fast acquisition and efficient image reconstruction, suitable for localization of extended sources, such as lesions inside the thyroid. Our setup consists of a mini gamma camera with precise tracking information provided by a robotic arm, which also provides reproducible positioning for our experiments. Based on a realistic phantom of the thyroid including hot and cold nodules as well as background radioactivity, the authors compare "step and shoot" (SAS) and continuous data (CD) acquisition protocols in combination with two different statistical reconstruction methods: maximum-likelihood expectation-maximization (ML-EM) for time-integrated count values and list-mode expectation-maximization (LM-EM) for individually detected gamma rays. In addition, the authors simulate lower uptake values by statistically subsampling the experimental data in order to study the behavior of their approach without changing other aspects of the acquired data. All compared methods yield suitable results, resolving the hot nodules and the cold nodule from the background. However, the CD acquisition is twice as fast as the SAS acquisition, while yielding better coverage of the thyroid phantom, resulting in qualitatively more accurate reconstructions of the isthmus between the lobes. For CD acquisitions, the LM-EM reconstruction method is preferable, as it yields comparable image quality to ML-EM at significantly higher speeds, on average by an order of magnitude. This work identifies CD acquisition protocols combined with LM-EM reconstruction as a prime candidate for the wider introduction of SPECT imaging with flexible mini gamma cameras in the clinical practice.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hidalgo, Paola Rodriguez; Eracleous, Michael; Charlton, Jane
We present the detection of a rare case of dramatic strengthening in the UV absorption profiles in the spectrum of the quasar J115122.14+020426.3 between observations {approx}2.86 yr apart in the quasar rest frame. A spectrum obtained in 2001 by the Sloan Digital Sky Survey shows a C IV ''mini-broad'' absorption line (FWHM = 1220 km s{sup -1}) with a maximum blueshift velocity of {approx}9520 km s{sup -1}, while a later spectrum from the Very Large Telescope shows a significantly broader and stronger absorption line, with a maximum blueshift velocity of {approx}12, 240 km s{sup -1} that qualifies as a broadmore » absorption line. A similar variability pattern is observed in two additional systems at lower blueshifted velocities and in the Ly{alpha} and N V transitions as well. One of the absorption systems appears to be resolved and shows evidence for partial covering of the quasar continuum source (C{sub f} {approx} 0.65), indicating a transverse absorber size of, at least, {approx}6 Multiplication-Sign 10{sup 16} cm. In contrast, a cluster of narrower C IV lines appears to originate in gas that fully covers the continuum and broad emission line sources. There is no evidence for changes in the centroid velocity of the absorption troughs. This case suggests that at least some of the absorbers that produce ''mini-broad'' and broad absorption lines in quasar spectra do not belong to intrinsically separate classes. Here, the ''mini-broad'' absorption line is most likely interpreted as an intermediate phase before the appearance of a broad absorption line due to their similar velocities. While the current observations do not provide enough constraints to discern among the possible causes for this variability, future monitoring of multiple transitions at high resolution will help achieve this goal.« less
Mini-beam collimator enables microcrystallography experiments on standard beamlines
Fischetti, Robert F.; Xu, Shenglan; Yoder, Derek W.; Becker, Michael; Nagarajan, Venugopalan; Sanishvili, Ruslan; Hilgart, Mark C.; Stepanov, Sergey; Makarov, Oleg; Smith, Janet L.
2009-01-01
The high-brilliance X-ray beams from undulator sources at third-generation synchrotron facilities are excellent tools for solving crystal structures of important and challenging biological macromolecules and complexes. However, many of the most important structural targets yield crystals that are too small or too inhomogeneous for a ‘standard’ beam from an undulator source, ∼25–50 µm (FWHM) in the vertical and 50–100 µm in the horizontal direction. Although many synchrotron facilities have microfocus beamlines for other applications, this capability for macromolecular crystallography was pioneered at ID-13 of the ESRF. The National Institute of General Medical Sciences and National Cancer Institute Collaborative Access Team (GM/CA-CAT) dual canted undulator beamlines at the APS deliver high-intensity focused beams with a minimum focal size of 20 µm × 65 µm at the sample position. To meet growing user demand for beams to study samples of 10 µm or less, a ‘mini-beam’ apparatus was developed that conditions the focused beam to either 5 µm or 10 µm (FWHM) diameter with high intensity. The mini-beam has a symmetric Gaussian shape in both the horizontal and vertical directions, and reduces the vertical divergence of the focused beam by 25%. Significant reduction in background was achieved by implementation of both forward- and back-scatter guards. A unique triple-collimator apparatus, which has been in routine use on both undulator beamlines since February 2008, allows users to rapidly interchange the focused beam and conditioned mini-beams of two sizes with a single mouse click. The device and the beam are stable over many hours of routine operation. The rapid-exchange capability has greatly facilitated sample screening and resulted in several structures that could not have been obtained with the larger focused beam. PMID:19240333
NASA Astrophysics Data System (ADS)
Chesny, David
Magnetic reconnection is the source of many of the most powerful explosions of astrophysical plasmas in the universe. Blazars, magnetars, stellar atmospheres, and planetary magnetic fields have all been shown to be primary sites of strong reconnection events. For studying the fundamental physics behind this process, the solar atmosphere is our most accessible laboratory setting. Magnetic reconnection resulting from non-potential fields leads to plasma heating and particle acceleration, often in the form of explosive activity, contributing to coronal heating and the solar wind. Large-scale non-potential (sigmoid) fields in the solar atmosphere are poorly understood due to their crowded neighborhoods. For the first time, small-scale, non-potential loop structures have been observed in quiet Sun EUV observations. Fourteen unique mini-sigmoid events and three diffuse non-potential loops have been discovered, suggesting a multi-scaled self-similarity in the sigmoid formation process. These events are on the order of 10 arcseconds in length and do not appear in X-ray emissions, where large-scale sigmoids are well documented. We have discovered the first evidence of sigmoidal structuring in EUV bright point phenomena, which are prolific events in the solar atmosphere. Observations of these mini-sigmoids suggest that they are being formed via tether-cutting reconnection, a process observed to occur at active region scales. Thus, tether-cutting is suggested to be ubiquitous throughout the solar atmosphere. These dynamics are shown to be a function of the free magnetic energy in the quiet Sun network. Recently, the reconnection process has been reproduced in Earth-based laboratory tokamaks. Easily achievable magnetic field configurations can induce reconnection and result in ion acceleration. Here, magnetic reconnection is utilized as the plasma acceleration mechanism for a theoretical propulsion system. The theory of torsional spine reconnection is shown to result in ion velocities of > 3000 km s-1 and thrusts on the order of 3-15 N. As current in-use ion propulsion technology can only achieve ˜ 30 km s-1, the proposed design can substantially increase thrust on a spacecraft and provide for fast manned interplanetary travel.
NASA Technical Reports Server (NTRS)
Hyland, R. E.
1971-01-01
The mini-cavity reactor is a rocket engine concept which combines the high specific impulse from a central gaseous fueled cavity (0.6 m diam) and NERVA type fuel elements in a driver region that is external to a moderator-reflector zone to produce a compact light weight reactor. The overall dimension including a pressure vessel that is located outside of the spherical reactor is approximately 1.21 m in diameter. Specific impulses up to 2000 sec are obtainable for 220 to 890 N of thrust with pressures less than 1000 atm. Powerplant weights including a radiator for disposing of the power in the driver region are between 4600 and 32,000 kg - less than payloads of the shuttle. This reactor could also be used as a test reactor for gas-core, MHD, breeding and materials research.
On the origin of Hawking mini black-holes and the cold early universe
NASA Technical Reports Server (NTRS)
Canuto, V.
1978-01-01
A simple argument is outlined leading to the result that the mass of mini black holes exploding today is 10 to the 15th power g. A mathematical model is discussed which indicates that the equation of state is greatly softened in the high-density regime and a phase transition may exist, such that any length (particularly very small sizes) will grow with time irrespective of its relation to the size of the particle horizon. It is shown that the effect of spin-2 mesons with respect to the equation of state is to soften the pressure and make it negative. An analytical expression is given for the probability that any particular region in a hot early universe will evolve into a black hole.
Support for designing waste sorting systems: A mini review.
Rousta, Kamran; Ordoñez, Isabel; Bolton, Kim; Dahlén, Lisa
2017-11-01
This article presents a mini review of research aimed at understanding material recovery from municipal solid waste. It focuses on two areas, waste sorting behaviour and collection systems, so that research on the link between these areas could be identified and evaluated. The main results presented and the methods used in the articles are categorised and appraised. The mini review reveals that most of the work that offered design guidelines for waste management systems was based on optimising technical aspects only. In contrast, most of the work that focused on user involvement did not consider developing the technical aspects of the system, but was limited to studies of user behaviour. The only clear consensus among the articles that link user involvement with the technical system is that convenient waste collection infrastructure is crucial for supporting source separation. This mini review reveals that even though the connection between sorting behaviour and technical infrastructure has been explored and described in some articles, there is still a gap when using this knowledge to design waste sorting systems. Future research in this field would benefit from being multidisciplinary and from using complementary methods, so that holistic solutions for material recirculation can be identified. It would be beneficial to actively involve users when developing sorting infrastructures, to be sure to provide a waste management system that will be properly used by them.
Mini-BRU/BIPS 1300 watt (sub)e dynamic power conversion system development: Executive summary
NASA Technical Reports Server (NTRS)
1978-01-01
The status of the Brayton Isotope Power System (BIPS) is summarized. A 1200 watt sub e ground development unit was built and tested in a 0.000010 torr vacuum environment. Peformance mapping and 1000 hours of proof of concept system testing were completed. Specific components, primarily turbocompressor/alternator and recuperator performed according to predictions, thus achieving the design goal of 25 percent net power conversion efficiency. The system was fabricated from superalloy (Hastelloy-X and Waspaloy) thus placing it entirely within current state-of-the-art technology. The system could be flyable in the early 1980's pending flight qualification.
Zinc-oxygen battery development program
NASA Technical Reports Server (NTRS)
Bourland, Deborah S.
1991-01-01
The purpose of this Zinc-Oxygen development program is to incorporate the improved air/oxygen cathode and zinc anode technology developed in recent years into relatively large cells (150-200 amp/hr, 25-100 hour rate) and smaller high rate cells (9-12 amp/hr, 3-12 hour rate). Existing commercial cells manufactured by Duracell and Rayovac are currently being utilized on the Space Shuttle Orbiter in a mini-oscilloscope, the crew radio, and other crew equipment. These applications provide a basis for other Orbiter systems that require portable, storable, electrical power as well as emergency power for the Space Station major payload systems power and for Space Station equipment applications.
Mini-review of the chicken gastrointestinal microbiome
USDA-ARS?s Scientific Manuscript database
We are in the midst of what may, in retrospect, come to be referred to as the golden age of microbial ecology. The microorganisms and their genes associated with higher organisms (the microbiome) that were once viewed primarily as sources of human pathogens are now recognized as complex communities...
Bubble-Good Data: Product Testing and Other Sources.
ERIC Educational Resources Information Center
Atwood, Virginia A.
1985-01-01
The goal of this mini-unit is to teach elementary students economic concepts related to consumerism and to develop problem-solving skills. Students test a product such as sugarless bubble gum and study how it is advertised. The students then make their own advertisement for the product. (RM)
Felyx : A Free Open Software Solution for the Analysis of Large Earth Observation Datasets
NASA Astrophysics Data System (ADS)
Piolle, Jean-Francois; Shutler, Jamie; Poulter, David; Guidetti, Veronica; Donlon, Craig
2014-05-01
GHRSST project, by assembling large collections of earth observation data from various sources and agencies, has also raised the need for providing the user community with tools to inter-compare them, assess and monitor their quality. The ESA /Medspiration project, which implemented the first operating node of GHRSST system for Europe, also paved the way successfully towards such generic analytics tools by developing the High Resolution Diagnostic Dataset System (HR-DDS) and Satellite to In situ Multi-sensor Match-up Databases. Building on this heritage, ESA is now funding the development by IFREMER, PML and Pelamis of felyx, a web tool merging the two capabilities into a single software solution. It will consist in a free open software solution, written in python and javascript, whose aim is to provide Earth Observation data producers and users with an open-source, flexible and reusable tool to allow the quality and performance of data streams (satellite, in situ and model) to be easily monitored and studied. The primary concept of Felyx is to work as an extraction tool, subsetting source data over predefined target areas (which can be static or moving) : these data subsets, and associated metrics, can then be accessed by users or client applications either as raw files, automatic alerts and reports generated periodically, or through a flexible web interface enabling statistical analysis and visualization. Felyx presents itself as an open-source suite of tools, written in python and javascript, enabling : * subsetting large local or remote collections of Earth Observation data over predefined sites (geographical boxes) or moving targets (ship, buoy, hurricane), storing locally the extracted data (refered as miniProds). These miniProds constitute a much smaller representative subset of the original collection on which one can perform any kind of processing or assessment without having to cope with heavy volumes of data. * computing statistical metrics over these miniProds using for instance a set of usual statistical operators (mean, median, rms, ...), fully extensible and applicable to any variable of a dataset. These metrics are stored in a fast search engine, queryable by humans and automated applications. * reporting or alerting, based on user-defined inference rules, through various media (emails, twitter feeds,..) and devices (phones, tablets). * analysing miniProds and metrics through a web interface allowing to dig into this base of information and extracting useful knowledge through multidimensional interactive display functions (time series, scatterplots, histograms, maps). The services provided by felyx will be generic, deployable at users own premises and adaptable enough to integrate any kind of parameters. Users will be able to operate their own felyx instance at any location, on datasets and parameters of their own interest, and the various instances will be able to interact with each other, creating a web of felyx systems enabling aggregation and cross comparison of miniProds and metrics from multiple sources. Initially two instances will be operated simultaneously during a 6 months demonstration phase, at IFREMER - on sea surface temperature (for GHRSST community) and ocean waves datasets - and PML - on ocean colour. We will present results from the Felyx project, demonstrate how the GHRSST community can exploit Felyx and demonstrate how the wider community can make use of the GHRSST data within Felyx.
NASA Technical Reports Server (NTRS)
Christensen, P. R.; Wyatt, M. B.; Glotch, T. D.; Rogers, A. D.; Anwar, S.; Arvidson, R. E.; Bandfield, J. L.; Blaney, D. L.; Budney, C.; Calvin, W. M.
2005-01-01
The Miniature Thermal Emission Spectrometer (Mini-TES) has provided remote measurements of mineralogy, thermophysical properties, and atmospheric temperature profile and composition of the outcrops, rocks, spherules, and soils surrounding the Spirit and Opportunity Rovers. The mineralogy of volcanic rocks provides insights into the composition of the source regions and the nature of martian igneous processes. Carbonates, sulfates, evaporites, and oxides provide information on the role of water in the surface evolution. Oxides, such as crystalline hematite, provide insight into aqueous weathering processes, as would the occurrence of clay minerals and other weathering products. Diurnal temperature measurements can be used to determine particle size and search for the effects of sub-surface layering, which in turn provide clues to the origin of surficial materials through rock disintegration, aeolian transport, atmospheric fallout, or induration. In addition to studying the surface properties, Mini-TES spectra have also been used to determine the temperature profile in the lower boundary layer, providing evidence for convective activity, and have determined the seasonal trends in atmospheric temperature and dust and cloud opacity.
2002-05-24
contrast to the Exdrone is the more conventional, and more Spartan, Pointer UAV. Designed by Paul McCready, PhD., the engineer who designed the “ Gossamer ... Albatross ”, the first human powered aircraft to cross the English Channel, the Pointer UAV’s design reflects an engineering philosophy predicated on
A Mini Axial and a Permanent Maglev Radial Heart Pump§
Qian, Kun-Xi; Ru, Wei-Min; Wang, Hao; Jing, Teng
2007-01-01
The implantability and durability have been for decades the focus of artificial heart R&D. A mini axial and a maglev radial pump have been developed to meet with such requirements. The mini axial pump weighing 27g (incl.5g rotor) has an outer diameter of 21mm and a length of 10mm in its largest point, but can produce a maximal blood flow of 6l/min with 50mmHg pressure increase. Therefore, it is suitable for the patients of 40-60kg body weight. For other patients of 60-80kg or 80-100kg body weight, the mini axial pumps of 23mm and 25mm outer diameter had been developed before, these devices were acknowledged to be the world smallest LVADs by Guinness World Record Center in 2004. The permanent maglev radial pump weighing 150g is a shaft-less centrifugal pump with permanent magnetic bearings developed by the author. It needs no second coil for suspension of the rotor except the motor coil, different from all other maglev pumps developed in USA, Japan, European, etc. Thus no detecting and controlling systems as well as no additional power supply for maglev are necessary. The pump can produce a blood flow up to as large as 10l/min against 100mmHg pressure. An implantable and durable blood pump will be a viable alternative to natural donor heart for transplantation. PMID:19662120
Proteomic researches for lignocellulose-degrading enzymes: A mini-review.
Guo, Hongliang; Wang, Xiao-Dong; Lee, Duu-Jong
2018-05-31
Protective action of lignin/hemicellulose networks and crystalline structures of embedded cellulose render lignocellulose material resistant to external enzymatic attack. To eliminate this bottleneck, research has been conducted in which advanced proteomic techniques are applied to identify effective commercial hydrolytic enzymes. This mini-review summarizes researches on lignocellulose-degrading enzymes, the mechanisms of the responses of various lignocellulose-degrading strains and microbial communities to various carbon sources and various biomass substrates, post-translational modifications of lignocellulose-degrading enzymes, new lignocellulose-degrading strains, new lignocellulose-degrading enzymes and a new method of secretome analysis. The challenges in the practical use of enzymatic hydrolysis process to realize lignocellulose biorefineries are discussed, along with the prospects for the same. Copyright © 2018 Elsevier Ltd. All rights reserved.
The thickness of the shower disc as observed in showers produced by primaries above 10 (19)eV
NASA Technical Reports Server (NTRS)
Lawrence, M. A.; Watson, A. A.; West, A. A.
1985-01-01
The thickness of the shower disk has been measured in showers initiated by primaries of energy to 10 the 19th power eV using the large area water Cerenkov detectors of the Haverah Park array. Results are presented which (1) provide supporting evidence for the accuracy of analysis procedures in giant showers, (2) offer an evaluation of the mini-array technique for the detection of giant showers and (3) extend earlier work on developmental fluctuations above 10 to the 19th power eV.
Environmental testing of CIS based modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willett, D.
1995-11-01
This report describes environmental testing of Siemen`s CIS modules. Charts and diagrams are presented on data concerning: temporary power loss of laminated mini-modules; the 50 thermal cycle test; the 10 humidity freeze cycle test; results after 1000 hours of exposure to damp heat; and interconnect test structures in damp heat testing. It is concluded that moisture ingress causes permanent increases in the series resistance of modules, and that improved packaging is needed for better high humidity reliability. Also, dry dark heat caused temporary power losses which were recovered in sunlight.
NASA Astrophysics Data System (ADS)
Paul, Andrea; Meyer, Klas; Ruiken, Jan-Paul; Illner, Markus; Müller, David-Nicolas; Esche, Erik; Wozny, Günther; Westad, Frank; Maiwald, Michael
2017-03-01
A major industrial reaction based on homogeneous catalysis is hydroformylation for the production of aldehydes from alkenes and syngas. Hydroformylation in microemulsions, which is currently under investigation at Technische Universität Berlin on a mini-plant scale, was identified as a cost efficient approach which also enhances product selectivity. Herein, we present the application of online Raman spectroscopy on the reaction of 1-dodecene to 1-tridecanal within a microemulsion. To achieve a good representation of the operation range in the mini-plant with regard to concentrations of the reactants a design of experiments was used. Based on initial Raman spectra partial least squares regression (PLSR) models were calibrated for the prediction of 1-dodecene and 1-tridecanal. Limits of predictions arise from nonlinear correlations between Raman intensity and mass fractions of compounds in the microemulsion system. Furthermore, the prediction power of PLSR models becomes limited due to unexpected by-product formation. Application of the lab-scale derived calibration spectra and PLSR models on online spectra from a mini-plant operation yielded promising estimations of 1-tridecanal and acceptable predictions of 1-dodecene mass fractions suggesting Raman spectroscopy as a suitable technique for process analytics in microemulsions.
NASA Astrophysics Data System (ADS)
Majumder, Sambit; Majumder, Abhik; Bhaumik, Swapan
2016-07-01
The present microelectronics market demands devices with high power dissipation capabilities having enhanced cooling per unit area. The drive for miniaturizing the devices to even micro level dimensions is shooting up the applied heat flux on such devices, resulting in complexity in heat transfer and cooling management. In this paper, a method of CPU processor cooling is introduced where active and passive cooling techniques are incorporated simultaneously. A heat sink consisting of fins is designed, where water flows internally through the mini-channel fins and air flows externally. Three dimensional numerical simulations are performed for large set of Reynolds number in laminar region using finite volume method for both developing flows. The dimensions of mini-channel fins are varied for several aspect ratios such as 1, 1.33, 2 and 4. Constant temperature (T) boundary condition is applied at heat sink base. Channel fluid temperature, pressure drop are analyzed to obtain best cooling option in the present study. It has been observed that as the aspect ratio of the channel decreases Nusselt number decreases while pressure drop increases. However, Nusselt number increases with increase in Reynolds number.
Chandrayaan-2 dual-frequency SAR: Further investigation into lunar water and regolith
NASA Astrophysics Data System (ADS)
Putrevu, Deepak; Das, Anup; Vachhani, J. G.; Trivedi, Sanjay; Misra, Tapan
2016-01-01
The Space Applications Centre (SAC), one of the major centers of the Indian Space Research Organization (ISRO), is developing a high resolution, dual-frequency Synthetic Aperture Radar as a science payload on Chandrayaan-2, ISRO's second moon mission. With this instrument, ISRO aims to further the ongoing studies of the data from S-band MiniSAR onboard Chandrayaan-1 (India) and the MiniRF of Lunar Reconnaissance Orbiter (USA). The SAR instrument has been configured to operate with both L- and S-bands, sharing a common antenna. The S-band SAR will provide continuity to the MiniSAR data, whereas L-band is expected to provide deeper penetration of the lunar regolith. The system will have a selectable slant-range resolution from 2 m to 75 m, along with standalone (L or S) and simultaneous (L and S) modes of imaging. Various features of the instrument like hybrid and full-polarimetry, a wide range of imaging incidence angles (∼10° to ∼35°) and the high spatial resolution will greatly enhance our understanding of surface properties especially in the polar regions of the Moon. The system will also help in resolving some of the ambiguities in interpreting high values of Circular Polarization Ratio (CPR) observed in MiniSAR data. The added information from full-polarimetric data will allow greater confidence in the results derived particularly in detecting the presence (and estimating the quantity) of water-ice in the polar craters. Being a planetary mission, the L&S-band SAR for Chandrayaan-2 faced stringent limits on mass, power and data rate (15 kg, 100 W and 160 Mbps respectively), irrespective of any of the planned modes of operation. This necessitated large-scale miniaturization, extensive use of on-board processing, and devices and techniques to conserve power. This paper discusses the scientific objectives which drive the requirement of a lunar SAR mission and presents the configuration of the instrument, along with a description of a number of features of the system, designed to meet the science goals with optimum resources.
Power analysis to detect treatment effects in longitudinal clinical trials for Alzheimer's disease.
Huang, Zhiyue; Muniz-Terrera, Graciela; Tom, Brian D M
2017-09-01
Assessing cognitive and functional changes at the early stage of Alzheimer's disease (AD) and detecting treatment effects in clinical trials for early AD are challenging. Under the assumption that transformed versions of the Mini-Mental State Examination, the Clinical Dementia Rating Scale-Sum of Boxes, and the Alzheimer's Disease Assessment Scale-Cognitive Subscale tests'/components' scores are from a multivariate linear mixed-effects model, we calculated the sample sizes required to detect treatment effects on the annual rates of change in these three components in clinical trials for participants with mild cognitive impairment. Our results suggest that a large number of participants would be required to detect a clinically meaningful treatment effect in a population with preclinical or prodromal Alzheimer's disease. We found that the transformed Mini-Mental State Examination is more sensitive for detecting treatment effects in early AD than the transformed Clinical Dementia Rating Scale-Sum of Boxes and Alzheimer's Disease Assessment Scale-Cognitive Subscale. The use of optimal weights to construct powerful test statistics or sensitive composite scores/endpoints can reduce the required sample sizes needed for clinical trials. Consideration of the multivariate/joint distribution of components' scores rather than the distribution of a single composite score when designing clinical trials can lead to an increase in power and reduced sample sizes for detecting treatment effects in clinical trials for early AD.
PARduino: A Simple Device Measuring and Logging Photosynthetically Active Radiation
NASA Astrophysics Data System (ADS)
Barnard, H. R.; Findley, M. C.
2013-12-01
Photosynthetically Active Radiation (PAR, 400 to 700 nm) is one of the primary controls of forest carbon and water relations. In complex terrain, PAR has high spatial-variability. Given the high cost of commercial datalogging equipment, spatially-distributed measurements of PAR have been typically modeled using geographic coordinates and terrain indices. Here, we present a design for a low cost, field-deployable device for measuring and logging PAR built around an Arduino microcontroller (we named it PARduino). PARduino provides for widely distributed sensor arrays and tests the feasibility of using hobbyist-grade electronics for collecting scientific data. PARduino components include a LiCor quantum sensor, EME Systems signal converter/amplifier, and Sparkfun's Arduino Pro Mini microcontroller. Additional components include a real time clock, a microSD flash memory card, and a custom printed circuit board (PCB). We selected the components with an eye towards ease of assembly. Everything can be connected to the PCB using through-hole soldering techniques. Since the device will be deployed in remote research plots that lack easy access to line power, battery life was also a consideration in the design. Extended deployment is possible because PARduino's software keeps it in a low-power sleep mode until ready to make a measurement. PARduino will be open-source hardware for use and improvement by others.
Chen, Wenjun; He, Bin; Nover, Daniel; Duan, Weili; Luo, Chuan; Zhao, Kaiyan; Chen, Wen
2018-01-01
Excessive nitrogen (N) discharge from agriculture causes widespread problems in aquatic ecosystems. Knowledge of spatiotemporal patterns and source attribution of N pollution is critical for nutrient management programs but is poorly studied in headwaters with various small water bodies and mini-point pollution sources. Taking a typical small watershed in the low mountains of Southeastern China as an example, N pollution and source attribution were studied for a multipond system around a village using the Hydrological Simulation Program-Fortran (HSPF) model. The results exhibited distinctive spatio-seasonal variations with an overall seriousness rank for the three indicators: total nitrogen (TN) > nitrate/nitrite nitrogen (NO x - -N) > ammonia nitrogen (NH 3 -N), according to the Chinese Surface Water Quality Standard. TN pollution was severe for the entire watershed, while NO x - -N pollution was significant for ponds and ditches far from the village, and the NH 3 -N concentrations were acceptable except for the ponds near the village in summer. Although food and cash crop production accounted for the largest source of N loads, we discovered that mini-point pollution sources, including animal feeding operations, rural residential sewage, and waste, together contributed as high as 47% of the TN and NH 3 -N loads in ponds and ditches. So, apart from eco-fertilizer programs and concentrated animal feeding operations, the importance of environmental awareness building for resource management is highlighted for small farmers in headwater agricultural watersheds. As a first attempt to incorporate multipond systems into the process-based modeling of nonpoint source (NPS) pollution, this work can inform other hydro-environmental studies on scattered and small water bodies. The results are also useful to water quality improvement for entire river basins.
Ecology and Energy Action Pack.
ERIC Educational Resources Information Center
McDonald's Corp., Oak Brook, IL.
One of five McDonald's Action Packs, these elementary school-level instructional materials are for use as an introduction to existing units of study, supplements to a textbook, or a source of special projects for environmental education. Contents include these six units: Make Your Own Ecology Mini-spinner, Let's Look at a Food Chain, Drip the…
Industrial Education. Mini-Course Cluster: Bikes, Electricity, Small Engines. [Grade 9].
ERIC Educational Resources Information Center
Parma City School District, OH.
Part of a series of curriculum guides dealing with industrial education in junior high schools, this guide provides three units to be used in a one semester course in grade 9 on the subjects of bikes, electricity, and small engines. The section on bicycles is divided into two parts, mechanical and power (i.e. motorcycles) and covers the topics of…
Brown, Douglas M.
2001-01-01
This paper profiles Dr. Lyman Johnston and his contributions in the field of chiropractic research. Postural concepts, diagnostic instruments, therapeutic devices and treatment protocols are reviewed. Set out and briefly discussed are the Posturometer, Pyramidal Man, anterior-posterior gravity line, Postural Spinal Index, tension master, Spine Power Belt and the Mini-Gym. ImagesFigure 1
NASA Astrophysics Data System (ADS)
Fasquelle, Thomas; Falcoz, Quentin; Neveu, Pierre; Lecat, Florent; Boullet, Nicolas; Flamant, Gilles
2017-06-01
A thermocline thermal energy storage tank consists in using one single tank to store sensible heat. At almost any time, three zones coexist in the tank: a hot fluid zone at the top, a cold fluid zone at the bottom, and an intermediate zone called thermocline. Filling the tank with solid materials enables to reduce cost and to maintain the thermal stratification during stand-by periods. The present paper deals with a 230 kWh experimental thermocline tank that is included into a 150 kWth parabolic trough mini power plant. The heat transfer fluid is a non-pressurized synthetic oil (dibenzyltoluene) that flows through alumina spheres in the storage tank. The solid materials are contained into baskets in order to facilitate their removing and replacement. Thermocouples measure temperature along the center of the cylinder and along its radius. It is therefore possible to study the thermocline behavior thanks to the measured temperature profiles. A typical charge, a typical discharge and a stand-by process are presented and storage performances are discussed. The behavior of the tank in a dynamic system is also considered, by analyzing a typical day of solar production and storage of the energy surplus.
Oil-Free Rotor Support Technologies for Long Life, Closed Cycle Brayton Turbines
NASA Technical Reports Server (NTRS)
Lucero, John M.; DellaCorte, Christopher
2004-01-01
The goal of this study is to provide technological support to ensure successful life and operation of a 50-300 kW dynamic power conversion system specifically with response to the rotor support system. By utilizing technical expertise in tribology, bearings, rotordynamic, solid lubricant coatings and extensive test facilities, valuable input for mission success is provided. A discussion of the history of closed cycle Brayton turboalternators (TA) will be included. This includes the 2 kW Mini-Brayton Rotating Unit (Mini-BRU), the 10kW Brayton Rotating Unit (BRU) and the 125 kW turboalternator-compressor (TAC) designed in mid 1970's. Also included is the development of air-cycle machines and terrestrial oil-free gas turbine power systems in the form of microturbines, specifically Capstone microturbines. A short discussion of the self-acting compliant surface hydrodynamic fluid film bearings, or foil bearings, will follow, including a short history of the load capacity advances, the NASA coatings advancements as well as design model advances. Successes in terrestrial based machines will be noted and NASA tribology and bearing research test facilities will be described. Finally, implementation of a four step integration process will be included in the discussion.
Measurement of the atmospheric muon flux with the NEMO Phase-1 detector
NASA Astrophysics Data System (ADS)
Aiello, S.; Ameli, F.; Amore, I.; Anghinolfi, M.; Anzalone, A.; Barbarino, G.; Battaglieri, M.; Bazzotti, M.; Bersani, A.; Beverini, N.; Biagi, S.; Bonori, M.; Bouhadef, B.; Brunoldi, M.; Cacopardo, G.; Capone, A.; Caponetto, L.; Carminati, G.; Chiarusi, T.; Circella, M.; Cocimano, R.; Coniglione, R.; Cordelli, M.; Costa, M.; D'Amico, A.; De Bonis, G.; De Marzo, C.; De Rosa, G.; De Ruvo, G.; De Vita, R.; Distefano, C.; Falchini, E.; Flaminio, V.; Fratini, K.; Gabrielli, A.; Galatà, S.; Gandolfi, E.; Giacomelli, G.; Giorgi, F.; Giovanetti, G.; Grimaldi, A.; Habel, R.; Imbesi, M.; Kulikovsky, V.; Lattuada, D.; Leonora, E.; Lonardo, A.; Lo Presti, D.; Lucarelli, F.; Marinelli, A.; Margiotta, A.; Martini, A.; Masullo, R.; Migneco, E.; Minutoli, S.; Morganti, M.; Musico, P.; Musumeci, M.; Nicolau, C. A.; Orlando, A.; Osipenko, M.; Papaleo, R.; Pappalardo, V.; Piattelli, P.; Piombo, D.; Raia, G.; Randazzo, N.; Reito, S.; Ricco, G.; Riccobene, G.; Ripani, M.; Rovelli, A.; Ruppi, M.; Russo, G. V.; Russo, S.; Sapienza, P.; Sciliberto, D.; Sedita, M.; Shirokov, E.; Simeone, F.; Sipala, V.; Spurio, M.; Taiuti, M.; Trasatti, L.; Urso, S.; Vecchi, M.; Vicini, P.; Wischnewski, R.
2010-05-01
The NEMO Collaboration installed and operated an underwater detector including prototypes of the critical elements of a possible underwater km 3 neutrino telescope: a four-floor tower (called Mini-Tower) and a Junction Box. The detector was developed to test some of the main systems of the km 3 detector, including the data transmission, the power distribution, the timing calibration and the acoustic positioning systems as well as to verify the capabilities of a single tridimensional detection structure to reconstruct muon tracks. We present results of the analysis of the data collected with the NEMO Mini-Tower. The position of photomultiplier tubes (PMTs) is determined through the acoustic position system. Signals detected with PMTs are used to reconstruct the tracks of atmospheric muons. The angular distribution of atmospheric muons was measured and results compared to Monte Carlo simulations.
a Mini Multi-Gas Detection System Based on Infrared Principle
NASA Astrophysics Data System (ADS)
Zhijian, Xie; Qiulin, Tan
2006-12-01
To counter the problems of gas accidents in coal mines, family safety resulted from using gas, a new infrared detection system with integration and miniaturization has been developed. The infrared detection optics principle used in developing this system is mainly analyzed. The idea that multi gas detection is introduced and guided through analyzing single gas detection is got across. Through researching the design of cell structure, the cell with integration and miniaturization has been devised. The way of data transmission on Controller Area Network (CAN) bus is explained. By taking Single-Chip Microcomputer (SCM) as intelligence handling, the functional block diagram of gas detection system is designed with its hardware and software system analyzed and devised. This system designed has reached the technology requirement of lower power consumption, mini-volume, big measure range, and able to realize multi-gas detection.
He, Chuan-Shu; Mu, Zhe-Xuan; Yang, Hou-Yun; Wang, Ya-Zhou; Mu, Yang; Yu, Han-Qing
2015-12-01
Microbial fuel cells (MFCs) have gained tremendous global interest over the last decades as a device that uses bacteria to oxidize organic and inorganic matters in the anode with bioelectricity generation and even for purpose of bioremediation. However, this prospective technology has not yet been carried out in field in particular because of its low power yields and target compounds removal which can be largely influenced by electron acceptors contributing to overcome the potential losses existing on the cathode. This mini review summarizes various electron acceptors used in recent years in the categories of inorganic and organic compounds, identifies their merits and drawbacks, and compares their influences on performance of MFCs, as well as briefly discusses possible future research directions particularly from cathode aspect. Copyright © 2015 Elsevier Ltd. All rights reserved.
Extensions of the MCNP5 and TRIPOLI4 Monte Carlo Codes for Transient Reactor Analysis
NASA Astrophysics Data System (ADS)
Hoogenboom, J. Eduard; Sjenitzer, Bart L.
2014-06-01
To simulate reactor transients for safety analysis with the Monte Carlo method the generation and decay of delayed neutron precursors is implemented in the MCNP5 and TRIPOLI4 general purpose Monte Carlo codes. Important new variance reduction techniques like forced decay of precursors in each time interval and the branchless collision method are included to obtain reasonable statistics for the power production per time interval. For simulation of practical reactor transients also the feedback effect from the thermal-hydraulics must be included. This requires coupling of the Monte Carlo code with a thermal-hydraulics (TH) code, providing the temperature distribution in the reactor, which affects the neutron transport via the cross section data. The TH code also provides the coolant density distribution in the reactor, directly influencing the neutron transport. Different techniques for this coupling are discussed. As a demonstration a 3x3 mini fuel assembly with a moving control rod is considered for MCNP5 and a mini core existing of 3x3 PWR fuel assemblies with control rods and burnable poisons for TRIPOLI4. Results are shown for reactor transients due to control rod movement or withdrawal. The TRIPOLI4 transient calculation is started at low power and includes thermal-hydraulic feedback. The power rises about 10 decades and finally stabilises the reactor power at a much higher level than initial. The examples demonstrate that the modified Monte Carlo codes are capable of performing correct transient calculations, taking into account all geometrical and cross section detail.
NASA Technical Reports Server (NTRS)
Fredrickson, Steven E.; Duran, Steve G.; Braun, Angela N.; Straube, Timothy M.; Mitchell, Jennifer D.
2006-01-01
The NASA Johnson Space Center has developed a nanosatellite-class Free Flyer intended for future external inspection and remote viewing of human spacecraft. The Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) technology demonstration unit has been integrated into the approximate form and function of a flight system. The spherical Mini AERCam Free Flyer is 7.5 inches in diameter and weighs approximately 10 pounds, yet it incorporates significant additional capabilities compared to the 35-pound, 14-inch diameter AERCam Sprint that flew as a Shuttle flight experiment in 1997. Mini AERCam hosts a full suite of miniaturized avionics, instrumentation, communications, navigation, power, propulsion, and imaging subsystems, including digital video cameras and a high resolution still image camera. The vehicle is designed for either remotely piloted operations or supervised autonomous operations, including automatic stationkeeping, point-to-point maneuvering, and waypoint tracking. The Mini AERCam Free Flyer is accompanied by a sophisticated control station for command and control, as well as a docking system for automated deployment, docking, and recharge at a parent spacecraft. Free Flyer functional testing has been conducted successfully on both an airbearing table and in a six-degree-of-freedom closed-loop orbital simulation with avionics hardware in the loop. Mini AERCam aims to provide beneficial on-orbit views that cannot be obtained from fixed cameras, cameras on robotic manipulators, or cameras carried by crewmembers during extravehicular activities (EVA s). On Shuttle or International Space Station (ISS), for example, Mini AERCam could support external robotic operations by supplying orthogonal views to the intravehicular activity (IVA) robotic operator, supply views of EVA operations to IVA and/or ground crews monitoring the EVA, and carry out independent visual inspections of areas of interest around the spacecraft. To enable these future benefits with minimal impact on IVA operators and ground controllers, the Mini AERCam system architecture incorporates intelligent systems attributes that support various autonomous capabilities. 1) A robust command sequencer enables task-level command scripting. Command scripting is employed for operations such as automatic inspection scans over a region of interest, and operator-hands-off automated docking. 2) A system manager built on the same expert-system software as the command sequencer provides detection and smart-response capability for potential system-level anomalies, like loss of communications between the Free Flyer and control station. 3) An AERCam dynamics manager provides nominal and off-nominal management of guidance, navigation, and control (GN&C) functions. It is employed for safe trajectory monitoring, contingency maneuvering, and related roles. This paper will describe these architectural components of Mini AERCam autonomy, as well as the interaction of these elements with a human operator during supervised autonomous control.
Mapping of radiation anomalies using UAV mini-airborne gamma-ray spectrometry.
Šálek, Ondřej; Matolín, Milan; Gryc, Lubomír
2018-02-01
Localization of size-limited gamma-ray anomalies plays a fundamental role in uranium prospecting and environmental studies. Possibilities of a newly developed mini-airborne gamma-ray spectrometric equipment were tested on a uranium anomaly near the village of Třebsko, Czech Republic. The measurement equipment was based on a scintillation gamma-ray spectrometer specially developed for unmanned aerial vehicles (UAV) mounted on powerful hexacopter. The gamma-ray spectrometer has two 103 cm 3 BGO scintillation detectors of relatively high sensitivity. The tested anomaly, which is 80 m by 40 m in size, was investigated by ground gamma-ray spectrometric measurement in a detail rectangular measurement grid. Average uranium concentration is 25 mg/kg eU attaining 700 mg/kg eU locally. The mini-airborne measurement across the anomaly was carried out on three 100 m long parallel profiles at eight flight altitudes from 5 to 40 m above the ground. The resulting 1 s 1024 channel gamma-ray spectra, recorded in counts per second (cps), were processed to concentration units of K, U and Th, while total count (TC) was reported in cps. Increased gamma ray intensity of the anomaly was indicated by mini-airborne measurement at all profiles and altitudes, including the highest altitude of 40 m, at which the recorded intensity is close to the natural radiation background. The reported instrument is able to record data with comparable quality as standard airborne survey, due to relative sensitive detector, lower flight altitude and relatively low flight speed of 1 m/s. The presented experiment brings new experience with using unmanned semi-autonomous aerial vehicles and the latest mini-airborne radiometric instrument. The experiment has demonstrated the instrument's ability to localize size-limited uranium anomalies. Copyright © 2017 Elsevier Ltd. All rights reserved.
High-resolution (noble) gas time series for aquatic research
NASA Astrophysics Data System (ADS)
Popp, A. L.; Brennwald, M. S.; Weber, U.; Kipfer, R.
2017-12-01
We developed a portable mass spectrometer (miniRUEDI) for on-site quantification of gas concentrations (He, Ar, Kr, N2, O2, CO2, CH4, etc.) in terrestrial gases [1,2]. Using the gas-equilibrium membrane-inlet technique (GE-MIMS), the miniRUEDI for the first time also allows accurate on-site and long-term dissolved-gas analysis in water bodies. The miniRUEDI is designed for operation in the field and at remote locations, using battery power and ambient air as a calibration gas. In contrast to conventional sampling and subsequent lab analysis, the miniRUEDI provides real-time and continuous time series of gas concentrations with a time resolution of a few seconds.Such high-resolution time series and immediate data availability open up new opportunities for research in highly dynamic and heterogeneous environmental systems. In addition the combined analysis of inert and reactive gas species provides direct information on the linkages of physical and biogoechemical processes, such as the air/water gas exchange, excess air formation, O2 turnover, or N2 production by denitrification [1,3,4].We present the miniRUEDI instrument and discuss its use for environmental research based on recent applications of tracking gas dynamics related to rapid and short-term processes in aquatic systems. [1] Brennwald, M.S., Schmidt, M., Oser, J., and Kipfer, R. (2016). Environmental Science and Technology, 50(24):13455-13463, doi: 10.1021/acs.est.6b03669[2] Gasometrix GmbH, gasometrix.com[3] Mächler, L., Peter, S., Brennwald, M.S., and Kipfer, R. (2013). Excess air formation as a mechanism for delivering oxygen to groundwater. Water Resources Research, doi:10.1002/wrcr.20547[4] Mächler, L., Brennwald, M.S., and Kipfer, R. (2013). Argon Concentration Time-Series As a Tool to Study Gas Dynamics in the Hyporheic Zone. Environmental Science and Technology, doi: 10.1021/es305309b
Polymer electrolyte fuel cell mini power unit for portable application
NASA Astrophysics Data System (ADS)
Urbani, F.; Squadrito, G.; Barbera, O.; Giacoppo, G.; Passalacqua, E.; Zerbinati, O.
This paper describes the design, realisation and test of a power unit based on a polymer electrolyte fuel cell, operating at room temperature, for portable application. The device is composed of an home made air breathing fuel cell stack, a metal hydride tank for H 2 supply, a dc-dc converter for power output control and a fan for stack cooling. The stack is composed by 10 cells with an active surface of 25 cm 2 and produces a rated power of 15 W at 6 V and 2 A. The stack successfully runs with end-off fed hydrogen without appreciable performance degradation during the time. The final assembled system is able to generate 12 W at 9.5 V, and power a portable DVD player for 3 h in continuous. The power unit has collected about 100 h of operation without maintenance.
Indoor Soiling Method and Outdoor Statistical Risk Analysis of Photovoltaic Power Plants
NASA Astrophysics Data System (ADS)
Rajasekar, Vidyashree
This is a two-part thesis. Part 1 presents an approach for working towards the development of a standardized artificial soiling method for laminated photovoltaic (PV) cells or mini-modules. Construction of an artificial chamber to maintain controlled environmental conditions and components/chemicals used in artificial soil formulation is briefly explained. Both poly-Si mini-modules and a single cell mono-Si coupons were soiled and characterization tests such as I-V, reflectance and quantum efficiency (QE) were carried out on both soiled, and cleaned coupons. From the results obtained, poly-Si mini-modules proved to be a good measure of soil uniformity, as any non-uniformity present would not result in a smooth curve during I-V measurements. The challenges faced while executing reflectance and QE characterization tests on poly-Si due to smaller size cells was eliminated on the mono-Si coupons with large cells to obtain highly repeatable measurements. This study indicates that the reflectance measurements between 600-700 nm wavelengths can be used as a direct measure of soil density on the modules. Part 2 determines the most dominant failure modes of field aged PV modules using experimental data obtained in the field and statistical analysis, FMECA (Failure Mode, Effect, and Criticality Analysis). The failure and degradation modes of about 744 poly-Si glass/polymer frameless modules fielded for 18 years under the cold-dry climate of New York was evaluated. Defect chart, degradation rates (both string and module levels) and safety map were generated using the field measured data. A statistical reliability tool, FMECA that uses Risk Priority Number (RPN) is used to determine the dominant failure or degradation modes in the strings and modules by means of ranking and prioritizing the modes. This study on PV power plants considers all the failure and degradation modes from both safety and performance perspectives. The indoor and outdoor soiling studies were jointly performed by two Masters Students, Sravanthi Boppana and Vidyashree Rajasekar. This thesis presents the indoor soiling study, whereas the other thesis presents the outdoor soiling study. Similarly, the statistical risk analyses of two power plants (model J and model JVA) were jointly performed by these two Masters students. Both power plants are located at the same cold-dry climate, but one power plant carries framed modules and the other carries frameless modules. This thesis presents the results obtained on the frameless modules.
Chen, Hua; Li, Huibo; Deng, Yuxiao; Rong, Xin; Gong, Quan; Li, Tao; Song, Yueming; Liu, Hao
2017-04-01
Lateral mass mini-screws used in plated cervical laminoplasty might penetrate into facet joints. The objective is to observe this complication incidence and to identify the optimal areas for 5- and 7-mm-long mini-screws to implant on lateral mass. 47 patients who underwent plated cervical laminoplasty were included. The optimal area for mini-screws implanting was set according to pre-operative 3D CT reconstruction data. Then, each posterior-lateral mass surface was divided into three regions: 7-mm region, 5-mm region, and dangerous area. The mini-screw implanted region was recorded. Post-operative CT images were used to identify whether the mini-screws penetrated into facet joints. 235 mini-plates and 470 lateral mass mini-screws were used in the study. 117 (24.9%) mini-screws penetrated 88 (37.4%) facet joints. The 5-mm-long mini-screw optimal area occupied the upper 72, 65, 65, 64, and 65 % area of the posterior-lateral mass surface for C3-7, while the 7-mm-long mini-screw optimal area encompassed the upper 54, 39, 40, 33, and 32 %. Only 7-mm-long mini-screws were used to fix the plate to the lateral mass. 4 of 240 mini-screws in 7-mm region, 67 of the 179 mini-screws in 5-mm region, and 46 of the 51 mini-screws in dangerous region penetrated into the facet joint. The differences in the rate of facet joint penetration related to region were statistically significant (P < 0.001). The facet joint destruction by mini-screws was not a rare complication in plated cervical laminoplasty. The optimal areas we proposed may help guide the mini-screw implantation positions.
NASA Astrophysics Data System (ADS)
Kolodny, Michael A.
2017-05-01
Today's battlefield space is extremely complex, dealing with an enemy that is neither well-defined nor well-understood. Adversaries are comprised of widely-distributed, loosely-networked groups engaging in nefarious activities. Situational understanding is needed by decision makers; understanding of adversarial capabilities and intent is essential. Information needed at any time is dependent on the mission/task at hand. Information sources potentially providing mission-relevant information are disparate and numerous; they include sensors, social networks, fusion engines, internet, etc. Management of these multi-dimensional informational sources is critical. This paper will present a new approach being undertaken to answer the challenge of enhancing battlefield understanding by optimizing the utilization of available informational sources (means) to required missions/tasks as well as determining the "goodness'" of the information acquired in meeting the capabilities needed. Requirements are usually expressed in terms of a presumed technology solution (e.g., imagery). A metaphor of the "magic rabbits" was conceived to remove presumed technology solutions from requirements by claiming the "required" technology is obsolete. Instead, intelligent "magic rabbits" are used to provide needed information. The question then becomes: "WHAT INFORMATION DO YOU NEED THE RABBITS TO PROVIDE YOU?" This paper will describe a new approach called Mission-Informed Needed Information - Discoverable, Available Sensing Sources (MINI-DASS) that designs a process that builds information acquisition missions and determines what the "magic rabbits" need to provide in a manner that is machine understandable. Also described is the Missions and Means Framework (MMF) model used, the process flow utilized, the approach to developing an ontology of information source means and the approach for determining the value of the information acquired.
Pressure retarded osmosis as a controlling system for traditional renewables
NASA Astrophysics Data System (ADS)
Carravetta, Armando; Fecarotta, Oreste; La Rocca, Michele; Martino, Riccardo
2015-04-01
Pressure retarded osmosis (PRO) is a viable but still not diffused form of renewable energy (see Maisonneuve et al., 2015 for a recent literature review). In PRO, water from a low salinity feed solution permeates through a membrane into a pressurized, high salinity draw solution, giving rise to a positive pressure drop; then energy is obtained by depressurizing the permeate through a hydro-turbine and brackish water is discharged. Many technological, environmental and economical aspects are obstacles in the diffusion of PRO, like the vulnerability of the membranes to fouling, the impact of the brackish water on the local marine environment, the high cost of membranes, etc. We are interested in the use of PRO as a combined form of energy with other renewable energy source like solar, wind or mini hydro in water supply networks (WSN). For the wide diffusion of renewables one of the major concerns of commercial power companies is to obtain very stable form of energy to comply with prescriptions of electricity grid operators and with the instant energy demand curve. Renewables are generally very variable form of energy, for the influence of climatic conditions on available power, and of the fluctuation in water demand in WSN. PRO is a very flexible technology where with appropriate turbines and control system power can be varied continuously to compensate for variation of other source of energy. Therefore, PRO is suitable to be used as a balancing system for commercial power system. We will present a simulation of the performance of a PRO used in combination with three different renewables. In the first two scenarios PRO compensate the difference between energy demand and energy production of a solar power plant and hydro power plant in a WSN. In the third scenario PRO is used to compensate daily variation of energy production in a wind power plant. Standard curves of energy production and energy demand for southern Italy are used. In order to control PRO production an appropriate hydro turbine system is necessary. Therefore, pumps as turbine (PAT) are used in alternative to a classical hydraulic turbine (Carravetta et al., 2013). PAT can be easily regulated by hydraulic system, of by an inverter, granting the necessary flexibility of energy production with a sensible reduction of machinery cost. Maisonneuve J, Pillay P, Laflamme C.B. Pressure-retarded osmotic power system model considering non-ideal effects. Renewable Energy. 2015; 75(3): 416-424. Carravetta A, Del Giudice G, Fecarotta O, Ramos HM. Pump as Turbine (PAT) Design in Water Distribution Network by System Effectiveness. Water. 2013; 5(3):1211-1225.
Takagaki, Kyozo; Gonda, Tomoya; Maeda, Yoshinobu
2015-09-01
Lateral force to mini-implants should be avoided because mini-implants are weak mechanically because of its small diameter. Overdentures retained by mini-implants are usually formed using ball attachments. However, bar attachments can offer the advantage of splinting the mini-implants. This study examined the effect of attachments in withstanding these lateral forces in tilted mini-implants of overdentures. Strain gauges were attached to the mini-implants (2.5 × 18 mm) embedded in an acrylic resin block. Two mini-implants were inserted vertically (Control) or with one mini-implant inclined at 10° or 20° (10-inclined and 20-inclined, respectively). The female portions of the attachments were secured to the denture base. A prefabricated ball attachment and CAD/CAM-fabricated bar attachment were compared. A vertical load of 49 N was applied to the occlusal surface at a distance 10 mm away from the center of two mini-implants. The lateral force borne by the mini-implants was measured via the attached strain gauge. Mann-Whitney U-test and an analysis of Bonferroni correction were used to compare differences between the two attachments and among the three models (P < 0.05). The lateral force exerted to the inclined mini-implant was significantly greater than that borne by a vertical mini-implant for both attachment types. The lateral force on the 20° inclined mini-implants with bar attachments was smaller than that on mini-implants with ball attachments. Inclined mini-implants are subjected to greater stresses than vertical ones, and a bar attachment can reduce the lateral forces borne by the mini-implant when one mini-implant inclined at 20°. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
A micro alkaline direct ethanol fuel cell with platinum-free catalysts
NASA Astrophysics Data System (ADS)
Verjulio, R. W.; Alcaide, F.; Álvarez, G.; Sabaté, N.; Torres-Herrero, N.; Esquivel, J. P.; Santander, J.
2013-11-01
This paper presents the fabrication and characterization of a micro alkaline direct ethanol fuel cell. The device has been conceived as a feasibility demonstrator, using microtechnologies for the fabrication of the current collectors and traditional techniques for the membrane electrode assembly production. The fuel cell works in passive mode, as expected for the simplicity required for micro power systems. Non-noble catalysts have been used in order to implement the main advantage of alkaline systems, showing the feasibility of such a device as a potential very-low-cost power device at mini- and micro scales.
2009-12-01
pressure transducers were calibrated (designated INLET and EXIT) using a portable pressure calibrator ( Druck , DPI 610). The unit has an accuracy of 0.025...of full scale (fs) with macro and micro pressure adjustment capabilities. The Druck pressure range was 14.7-300 psia. The transducers (Omega PX303...050A5V) had a range of 0-50 psig with an output voltage of 0.5-5 VDC. The inlet and exit transducers were calibrated separately using the Druck
Inspiring Students through Digital Media Teleschool Teacher, Hawaii Schools Digital Media Program
ERIC Educational Resources Information Center
Yamashita, Irene
2005-01-01
Video is a powerful tool, and it can be used to motivate student achievement and learning. One of the greatest advantages in getting students to work with digital media is that they can retake and re-edit a project until they are satisfied with it. Students become very occupied in applying what they have learned by producing mini-documentaries,…
1974-06-01
retrans- minied modulation signals. A phase-lock loop was used to provide correlation detection, allowing automatic acquisition and phase tracking at...steel strips, 0.5-inch-wide by 0.009-inch-thick, and formed to a 0.75-inch radius. Each antenne -was plated with silver to imprive con- dutivity...Telemetry Requirements k. Phase Detector Output Requirements 1. Primary Power Requirements m. AM Suppression Requirements n. Data Feedback Loop Gain
Experimental study of mini SCADA renewable energy management system on microgrid using Raspberry Pi
NASA Astrophysics Data System (ADS)
Tridianto, E.; Permatasari, P. D.; Ali, I. R.
2018-03-01
Renewable Energy Management System (REMS) is a device that can be able to monitor power through a microgrid. The purpose of this system is to optimize power usage that produced from renewable energy with the result that reduces power demand from the grid. To reach the goal this device manage the load power needs fully supplied by renewable energy when the power produced from renewable energy is higher than load demand, besides power surplus will be stored in battery in this way energy stored in battery can be used when it needed. When the power produced from renewable energy can not satisfy the power demand, power will supply by renewable energy and grid. This device uses power meters for record any power flow through microgrid. In order to manage power flow in microgrid this system use relay module. The user can find out energy consumption (consumed by the load) and production (produced by renewable energy) in a period of time so that the user can switch on the load in right time.
NASA Astrophysics Data System (ADS)
Lufrano, F.; Baglio, V.; Staiti, P.; Stassi, A.; Aricò, A. S.; Antonucci, V.
This paper reports on the development of polymer electrolyte membranes (PEMs) based on sulfonated polysulfone for application in a DMFC mini-stack operating at room temperature in passive mode. The sulfonated polysulfone (SPSf) with two degrees of sulfonation (57 and 66%) was synthesized by a well-known sulfonation process. SPSf membranes with different thicknesses were prepared and investigated. These membranes were characterized in terms of methanol/water uptake, proton conductivity, and fuel cell performance in a DMFC single cell and mini-stack operating at room temperature. The study addressed (a) control of the synthesis of sulfonated polysulfone, (b) optimization of the assembling procedure, (c) a short lifetime investigation and (d) a comparison of DMFC performance in active-mode operation vs. passive-mode operation. The best passive DMFC performance was 220 mW (average cell power density of about 19 mW cm -2), obtained with a thin SPSf membrane (70 μm) at room temperature, whereas the performance of the same membrane-based DMFC in active mode was 38 mW cm -2. The conductivity of this membrane, SPSf (IEC = 1.34 mequiv. g -1) was 2.8 × 10 -2 S cm -1. A preliminary short-term test (200 min) showed good stability during chrono-amperometry measurements.
Fluorescence decay of naphthalene studied in an electrostatic storage ring, the Mini-Ring
NASA Astrophysics Data System (ADS)
Martin, S.; Matsumoto, J.; Kono, N.; Ji, M.-C.; Brédy, R.; Bernard, J.; Cassimi, A.; Chen, L.
2017-10-01
The cooling of naphthalene cations (C10H8)+ has been studied in a compact electrostatic ion storage ring, the Mini-Ring. A nano second laser pulse of 532 nm (2.33 eV) was used to probe the internal energy distribution every millisecond during the storage time up to 5 ms. The evolution of the internal energy distribution of the stored ions was simulated with a model taking into account the dissociation and the radiative decay processes. Calculated decay curves were fitted to the corresponding laser induced neutral decays. For a laser power of 200 μJ/pulse, a good agreement between experiment and modeling was found using an initial Gaussian energy distribution centered to 5.9 eV and a fluorescence decay rate varying from 200 to 300 s-1 in the energy range from 6 to 7 eV. This fast decay was attributed to the delayed Poincaré fluorescence process.
Mini-Laparoscopy: Instruments and Economics.
Shadduck, Phillip P; Paquentin, Eduardo Moreno; Carvalho, Gustavo L; Redan, Jay A
2015-11-01
Mini-laparoscopy (Mini) was pioneered more than 20 years ago, initially with instruments borrowed from other specialties and subsequently with tools designed specifically for Mini. Early adoption of Mini was inhibited though by the limitations of these first-generation instruments, especially functionality and durability. Newer generation Mini instruments have recently become available with improved effector tips, a choice of shaft diameters and lengths, better shaft insulation and electrosurgery capability, improved shaft strength and rotation, more ergonomic handles, low-friction trocar options, and improved instrument durability. Improvements are also occurring in imaging and advanced energy for Mini. The current status of mini-laparoscopy instruments and economics are presented.
NASA Technical Reports Server (NTRS)
1973-01-01
Major conclusions of the space shuttle heat source assembly study are reported that project a minimum weight design for a Titan 3 C synchronous orbit mission; requirements to recover the heat source in orbit are eliminated. This concept permits location of the heat source end enclosure supports and heat source assembly support housing in a low temperature region external to the insulation enclosure and considers titanium and beryllium alloys for these support elements. A high melting insulation blanket consisting of nickel foil coated with zirconia, or of gold foil separated with glass fiber layers, is selected to provide emergency cooling in the range 2000 to 2700 F to prevent the isotope heat source from reaching unsafe temperatures. A graphic view of the baseline heat source assembly is included.
The Athena Mars Rover Science Payload
NASA Technical Reports Server (NTRS)
Squyes, S. W.; Arvidson, R.; Bell, J. F., III; Carr, M.; Christensen, P.; DesMarais, D.; Economou, T.; Gorevan, S.; Klingelhoefer, G.; Haskin, L.
1998-01-01
The Mars Surveyor missions that will be launched in April of 2001 will include a highly capable rover that is a successor to the Mars Pathfinder mission's Sojourner rover. The design goals for this rover are a total traverse distance of at least 10 km and a total lifetime of at least one Earth year. The rover's job will be to explore a site in Mars' ancient terrain, searching for materials likely to preserve a record of ancient martian water, climate, and possibly biology. The rover will collect rock and soil samples, and will store them for return to Earth by a subsequent Mars Surveyor mission in 2005. The Athena Mars rover science payload is the suite of scientific instruments and sample collection tools that will be used to perform this job. The specific science objectives that NASA has identified for the '01 rover payload are to: (1) Provide color stereo imaging of martian surface environments, and remotely-sensed point discrimination of mineralogical composition. (2) Determine the elemental and mineralogical composition of martian surface materials. (3) Determine the fine-scale textural properties of these materials. (4) Collect and store samples. The Athena payload has been designed to meet these objectives. The focus of the design is on field operations: making sure the rover can locate, characterize, and collect scientifically important samples in a dusty, dirty, real-world environment. The topography, morphology, and mineralogy of the scene around the rover will be revealed by Pancam/Mini-TES, an integrated imager and IR spectrometer. Pancam views the surface around the rover in stereo and color. It uses two high-resolution cameras that are identical in most respects to the rover's navigation cameras. The detectors are low-power, low-mass active pixel sensors with on-chip 12-bit analog-to-digital conversion. Filters provide 8-12 color spectral bandpasses over the spectral region from 0.4 to 1.1 micron Narrow-angle optics provide an angular resolution of 0.28 mrad/pixel, nearly a factor of four higher than that of the Mars Pathfinder and Mars Surveyor '98 cameras. Image compression will be performed using a wavelet compression algorithm. The Mini-Thermal Emission Spectrometer (Mini-TES) is a point spectrometer operating in -the thermal IR. It produces high spectral resolution (5 /cm) image cubes with a wavelength range of 5-40 gm, a nominal signal/noise ratio of 500:1, and a maximum angular resolution of 7 mrad (7 cm at a distance of 10 in). The wavelength region over which it operates samples the diagnostic fundamental absorption features of rockforming minerals, and also provides some capability to see through dust coatings that could tend to obscure spectral features. The mineralogical information that Mini-TES provides will be used to select from a distance the rocks and soils that will be investigated in more detail and ultimately sampled. Mini-TES is derived from the MO/MGS TES instrument, but is significantly smaller and simpler. The instrument uses an 8-cm Cassegrain telescope, a Michelson interferometer, and uncooled pyroelectric detectors. Along with its mineralogical capabilities, Mini-TES can provide information on the thermophysical properties of rocks and soils. Viewing upward, it can also provide temperature profiles through the martian atmospheric boundary layer. Elemental and Mineralogical Composition: Once promising samples have been identified from a distance using Pancam/Mini-TES, they will be studied in detail using up to three compositional sensors that can be placed directly against them by an Instrument Arm. The two compositional sensors, presently on the payload are an Alpha-Proton-X-Ray Spectrometer (APXS), and a Mossbauer Spectrometer. The APXS is derived closely from the instrument that flew on Mars Pathfinder. Radioactive alpha sources and three detection modes (alpha, proton, and x-ray) provide elemental abundances of rocks and soils to complement and constrain mineralogical data. The Athena APXS will have a revised mechanical design that will cut down significantly on backscattering of alpha particles from martian atmospheric carbon. It will also include a target of known elemental composition that will be used for calibration purposes. The Athena Mossbauer Spectrometer is a diagnostic instrument for the mineralogy and oxidation state of Fe-bearing phases, which are particularly important on Mars. The instrument measures the resonant absorption of gamma rays produced by a Co-57 source to determine splitting of nuclear energy levels in Fe atoms that is related to the electronic environment surrounding them. It has been under development for space flight for many years at the Technical University of Darmstadt. The Mossbauer Spectrometer (and the other arm instruments) will be able to view a small permanent magnet array that will attract magnetic particles in the martian soil. The payload may also include a Raman Spectrometer. If included, the Raman Spectrometer will provide precise identification of major and minor mineral phases. It requires no sample preparation, and is also sensitive to organics. Fine-Scale Texture: The Instrument Arm a also carries a Microscopic Imager that will obtain high-resolution monochromatic images of the same materials for which compositional data will be obtained. Its spatial resolution is 20 micron/pixel over a 1 cm depth of field, and 40 micron/pixel over a 1-cm depth of field. Like Pancam, it uses the same active pixel sensor detectors and electronics as the rover's navigation cameras. The Instrument Arm is a three degree-of-freedom arm that uses designs and components from the Mars Pathfinder and Mars Surveyor '98 projects. Its primary function is instrument positioning. Along with the instruments noted above, it also carries a brush that can be used to remove dust and other loose coatings from rocks. Sample Collection and Storage: Martian rock and soil samples will be collected using a low-power rotary coring drill called the Mini-Corer. An important characteristic of this device is that it can obtain intact samples of rock from up to 5 cm within strong boulders and bedrock, Nominal core dimensions are 8xl7 mm. The Mini-Corer drills a core to the commanded depth in a rock, shears it off, retains it, and extracts it. It can also acquire samples of loose soil, using soil sample cups that are pressed downward into loose material. The Mini-Corer can drill at angles from vertical to 45' off vertical. It has six interchangeable bits for long life. Mechanical damage to the sample during drilling is minimal, and heating is negligible. After acquisition, the sample may be viewed by the arm instruments, and/or placed in one of 104 compartments in the Sample Container. A subset of the acquired samples may be replaced with other samples obtained later if desired. The Sample Container has no moving parts, and is mounted external to the rover for easy removal by the Mars Surveyor 2005 flight system. Operation of the rover will make extensive use of automated onboard navigation and hazard avoidance capabilities. Otherwise, use of onboard autonomy is minimal. Data downlink capability is about 40 Mbit/sol, and the use of the Mars Surveyor '01 orbiter for data relay imposes a limit of at most two command cycles per sol. Because of the significant amount of time available between command cycles, all payload elements will be operated sequentially, rather than in parallel.; this approach also significantly simplifies operations and minimizes peak power usage. The landing site for the '01 rover has not been selected yet. Site selection will make as full use as possible of Mars Global Surveyor data, and will involve substantial input from the broad Mars science community. Summary: The following table describes the mass, power, providers, and key scientific objectives of all the major elements of the Athena payload. Additional Athena payload information may be found at: http://astrosun.tn.cornell.edu/ athena/index.html. Additional information contained in the original.
Bennett, Mark J; Rajakaruna, Cha; Bazerbashi, Samer; Webb, Gerry; Gomez-Cano, Mayam; Lloyd, Clinton
2013-06-01
To investigate the combined influence of blood flow and haemodilution with either a miniaturized (Mini-CPB) or a conventional cardiopulmonary bypass (C-CPB) circuit on average oxygen delivery during bypass. The influence of this on clinical outcome, particularly renal dysfunction after routine coronary artery bypass surgery (CABG), was measured. Retrospective analysis in two groups of 160 patients based on the surgeon's preference for bypass circuit. We compared consecutive patients undergoing isolated CABG surgery by two surgeons using Mini-CPB with a matched cohort of patients, from the same period, undergoing isolated CABG surgery by four other surgeons using a C-CPB. No trial-related intervention occurred. Data on bypass circuit parameters and clinical outcomes were acquired from routinely collected data sources. Average cardiopulmonary bypass pump flow was significantly lower with Mini-CPB compared with C-CPB. Mini-CPB resulted in significantly less haemodilution. The resultant calculated average oxygen delivery provided by the two systems was the same. Percentage change in plasma creatinine was significantly and inversely related to the oxygen delivery during CPB. There was no difference in percentage change in plasma creatinine between groups. The risk of having Acute Kidney Injury Network (AKIN) score ≥ 1 increased 1% for every 1 ml min(-1) m(-2) decrease in oxygen delivery (P = 0.0001, OR 0.990, 95% CI 0.984-0.995). Despite aiming for the same target pump flow, periodic limitations of venous return to the pump resulted in a significant reduction in average flow delivered to the patient by Mini-CPB. Less haemodilution compensated for this reduction, so that the average oxygen delivery was the same. The association between oxygen delivery and postoperative change in plasma creatinine was evident in both groups. Further work to understand whether there is a particular cohort of patients who benefit (or are put at risk) by one method of CPB vs the other is warranted.
Nanostructured severe plastic deformation processed titanium for orthodontic mini-implants.
Serra, Glaucio; Morais, Liliane; Elias, Carlos Nelson; Semenova, Irina P; Valiev, Ruslan; Salimgareeva, Gulnaz; Pithon, Matheus; Lacerda, Rogério
2013-10-01
Titanium mini-implants have been successfully used as anchorage devices in Orthodontics. Commercially pure titanium (cpTi) was recently replaced by Ti-6Al-4V alloy as the mini-implant material base due to the higher strength properties of the alloy. However, the lower corrosion resistance and the lower biocompatibility have been lowering the success rate of Ti-6Al-4V mini-implants. Nanostructured titanium (nTi) is commercially pure titanium that was nanostructured by a specific technique of severe plastic deformation. It is bioinert, does not contain potentially toxic or allergic additives, and has higher specific strength properties than any other titanium applied in medical implants. The higher strength properties associated to the higher biocompatibility make nTi potentially useful for orthodontic mini-implant applications, theoretically overcoming cpTi and Ti-6Al-4V mini-implants. The purposes of the this work were to process nTi, to mechanically compare cpTi, Ti-6Al-4V, and nTi mini-implants by torque test, and to evaluate both the surface morphology and the fracture surface characteristics of them by SEM. Torque test results showed significant increase in the maximum torque resistance of nTi mini-implants when compared to cpTi mini-implants, and no statistical difference between Ti-6Al-4V and nTi mini-implants. SEM analysis demonstrated smooth surface morphology and transgranular fracture aspect for nTi mini-implants. Since nanostructured titanium mini-implants have mechanical properties comparable to titanium alloy mini-implants, and biocompatibility comparable to commercially pure titanium mini-implants, it is suggestive that nanostructured titanium can replace Ti-6Al-4V alloy as the material base for mini-implants. Copyright © 2013 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lilienthal, P.
1997-12-01
This paper describes three different computer codes which have been written to model village power applications. The reasons which have driven the development of these codes include: the existance of limited field data; diverse applications can be modeled; models allow cost and performance comparisons; simulations generate insights into cost structures. The models which are discussed are: Hybrid2, a public code which provides detailed engineering simulations to analyze the performance of a particular configuration; HOMER - the hybrid optimization model for electric renewables - which provides economic screening for sensitivity analyses; and VIPOR the village power model - which is amore » network optimization model for comparing mini-grids to individual systems. Examples of the output of these codes are presented for specific applications.« less
Compatibility of high-Δm2 νe and ν¯e neutrino oscillation searches
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Martin, P. S.; McGregor, G.; Metcalf, W.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Nelson, R. H.; Nguyen, V. T.; Nienaber, P.; Ouedraogo, S.; Patterson, R. B.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Schirato, R.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; van de Water, R.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.
2008-07-01
This article presents the compatibility of experimental data from neutrino oscillation experiments with a high-Δm2 two-neutrino oscillation hypothesis. Data is provided by the Bugey, Karlsruhe Rutherford Medium Energy Neutrino Experiment 2 (KARMEN2), Los Alamos Liquid Scintillator Neutrino Detector (LSND), and MiniBooNE experiments. The LSND, KARMEN2, and MiniBooNE results are 25.36% compatible within a two-neutrino oscillation hypothesis. However, the point of maximal compatibility is found in a region that is excluded by the Bugey data. A joint analysis of all four experiments, performed in the sin22θvsΔm2 region common to all data, finds a maximal compatibility of 3.94%. This result does not account for additions to the neutrino oscillation model from sources such as CP violation or sterile neutrinos.
NASA Astrophysics Data System (ADS)
Ware, John; Kort, Eric A.; DeCola, Phil; Duren, Riley
2016-08-01
Atmospheric observations of greenhouse gases provide essential information on sources and sinks of these key atmospheric constituents. To quantify fluxes from atmospheric observations, representation of transport—especially vertical mixing—is a necessity and often a source of error. We report on remotely sensed profiles of vertical aerosol distribution taken over a 2 year period in Pasadena, California. Using an automated analysis system, we estimate daytime mixing layer depth, achieving high confidence in the afternoon maximum on 51% of days with profiles from a Sigma Space Mini Micropulse LiDAR (MiniMPL) and on 36% of days with a Vaisala CL51 ceilometer. We note that considering ceilometer data on a logarithmic scale, a standard method, introduces, an offset in mixing height retrievals. The mean afternoon maximum mixing height is 770 m Above Ground Level in summer and 670 m in winter, with significant day-to-day variance (within season σ = 220m≈30%). Taking advantage of the MiniMPL's portability, we demonstrate the feasibility of measuring the detailed horizontal structure of the mixing layer by automobile. We compare our observations to planetary boundary layer (PBL) heights from sonde launches, North American regional reanalysis (NARR), and a custom Weather Research and Forecasting (WRF) model developed for greenhouse gas (GHG) monitoring in Los Angeles. NARR and WRF PBL heights at Pasadena are both systematically higher than measured, NARR by 2.5 times; these biases will cause proportional errors in GHG flux estimates using modeled transport. We discuss how sustained lidar observations can be used to reduce flux inversion error by selecting suitable analysis periods, calibrating models, or characterizing bias for correction in post processing.
Ware, John; Kort, Eric A; DeCola, Phil; Duren, Riley
2016-08-27
Atmospheric observations of greenhouse gases provide essential information on sources and sinks of these key atmospheric constituents. To quantify fluxes from atmospheric observations, representation of transport-especially vertical mixing-is a necessity and often a source of error. We report on remotely sensed profiles of vertical aerosol distribution taken over a 2 year period in Pasadena, California. Using an automated analysis system, we estimate daytime mixing layer depth, achieving high confidence in the afternoon maximum on 51% of days with profiles from a Sigma Space Mini Micropulse LiDAR (MiniMPL) and on 36% of days with a Vaisala CL51 ceilometer. We note that considering ceilometer data on a logarithmic scale, a standard method, introduces, an offset in mixing height retrievals. The mean afternoon maximum mixing height is 770 m Above Ground Level in summer and 670 m in winter, with significant day-to-day variance (within season σ = 220m≈30%). Taking advantage of the MiniMPL's portability, we demonstrate the feasibility of measuring the detailed horizontal structure of the mixing layer by automobile. We compare our observations to planetary boundary layer (PBL) heights from sonde launches, North American regional reanalysis (NARR), and a custom Weather Research and Forecasting (WRF) model developed for greenhouse gas (GHG) monitoring in Los Angeles. NARR and WRF PBL heights at Pasadena are both systematically higher than measured, NARR by 2.5 times; these biases will cause proportional errors in GHG flux estimates using modeled transport. We discuss how sustained lidar observations can be used to reduce flux inversion error by selecting suitable analysis periods, calibrating models, or characterizing bias for correction in post processing.
LED mini-lidar as minimum setup
NASA Astrophysics Data System (ADS)
Shiina, Tatsuo
2014-10-01
The LED mini-lidar has been designed and demonstrated as the near range atmosphere monitoring, dust and gas detections. The LED lamp is used as a lidar light source. It is not a special one, and just used as a small status indicator or a spot luminaire. For the atmospheric monitoring in the near range of a few hundreds meters, the energy of 1nJ (=100mW/10ns) is enough for lidar observation in the nighttime. The LED lamp is excited at the high repetition frequency of < 1MHz. The signal-to-noise ratio can be increased by this high frequency even if the receiving photons are a little at each pulse. It is adequate because the spatiotemporal scale of the low-altitude atmosphere is small of a ten seconds and a few tens meters. To pursue such quick motion of the atmosphere and dust, the high-speed photon counter has been developed. It can act with BIN width of 4ns (Spatial resolution 0.6m) at the repetition frequency of <500kHz. The LED mini-lidar has been demonstrated to monitor the actual atmosphere of the observation range of <500m in the nighttime and <100m in the daytime with the receiving lens of 200mmφ. The interest approach is tired to distinguish the dust characteristics by using the counting rate of dust echoes. It is effective in the case that the dust material is given. And for trial, the LED mini-Raman-lidar is developed to monitor certain gas detection in near distance, too.
[An ultra-low power, wearable, long-term ECG monitoring system with mass storage].
Liu, Na; Chen, Yingmin; Zhang, Wenzan; Luo, Zhangyuan; Jin, Xun; Ying, Weihai
2012-01-01
In this paper, we described an ultra-low power, wearable ECG system capable of long term monitoring and mass storage. This system is based on micro-chip PIC18F27J13 with consideration of its high level of integration and low power consumption. The communication with the micro-SD card is achieved through SPI bus. Through the USB, it can be connected to the computer for replay and disease diagnosis. Given its low power cost, lithium cells are used to support continuous ECG acquiring and storage for up to 15 days. Meanwhile, the wearable electrodes avoid the pains and possible risks in implanting. Besides, the mini size of the system makes long wearing possible for patients and meets the needs of long-term dynamic monitoring and mass storage requirements.
Solar-Diesel Hybrid Power System Optimization and Experimental Validation
NASA Astrophysics Data System (ADS)
Jacobus, Headley Stewart
As of 2008 1.46 billion people, or 22 percent of the World's population, were without electricity. Many of these people live in remote areas where decentralized generation is the only method of electrification. Most mini-grids are powered by diesel generators, but new hybrid power systems are becoming a reliable method to incorporate renewable energy while also reducing total system cost. This thesis quantifies the measurable Operational Costs for an experimental hybrid power system in Sierra Leone. Two software programs, Hybrid2 and HOMER, are used during the system design and subsequent analysis. Experimental data from the installed system is used to validate the two programs and to quantify the savings created by each component within the hybrid system. This thesis bridges the gap between design optimization studies that frequently lack subsequent validation and experimental hybrid system performance studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zelenyuk, Alla; Imre, D.; Wilson, Jacqueline M.
2015-02-01
Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles - two fundamental properties that determine an aerosol’s optical properties and ability to serve as cloud condensation or ice nuclei. Here we present miniSPLAT, our new aircraft compatible single particle mass spectrometer, that measures in-situ and in real-time size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. miniSPLAT operates in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations,more » size distributions, density, and asphericity with high temporal resolution. When compared to our previous instrument, SPLAT II, miniSPLAT has been significantly reduced in size, weight, and power consumption without loss in performance. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle composition and their activity as cloud condensation nuclei.« less
Variable X-Ray Absorption in the Mini-BAL QSO PG 1126-041
NASA Technical Reports Server (NTRS)
Giustini, M.; Cappi, M.; Chartas, G.; Dadina, M.; Eracleous, M.; Ponti, G.; Proga, D.; Tombesi, F.; Vignali, C.; Palumbo, G. G. C.
2011-01-01
Context. X-ray studies of AGN with powerful nuclear winds are important to constrain the physics of the inner accretion/ejection flow around SMBH, and to understand the impact of such winds on the AGN environment. Aims. Our main scientific goal is to constrain the properties of a variable outflowing absorber that is thought to be launched near the SMBH of the mini-BAL QSO PG 1126-041 using a multi-epoch observational campaign performed with XMM-Newton. Methods. We performed temporally resolved X-ray spectroscopy and simultaneous UV and X-ray photometry on the most complete set of observations and on the deepest X-ray exposure of a mini-BAL QSO to date. Results. We found complex X-ray spectral variability on time scales of both months and hours, best reproduced by means of variable massive ionized absorbers along the line of sight. As a consequence, the observed optical-to-X-ray spectral index is found to be variable with time. In the highest signal-to-noise observation we detected highly ionized X-ray absorbing material outflowing much faster (u(sub X) approx. 16 500 km/s) than the UV absorbing one (u(sub uv) approx. 5,000 km/s). This highly ionized absorber is found to be variable on very short (a few kiloseconds) time scales. Conclusions. Our findings are qualitatively consistent with line driven accretion disk winds scenarios. Our observations have opened the time-resolved X-ray spectral analysis field for mini-BAL QSOs; only with future deep studies will we be able to map the dynamics of the inner flow and understand the physics of AGN winds and their impact on the environment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lubliner, Michael; Howard, Luke; Hales, David
The Woods is a Habitat for Humanity (HFH) community of ENERGY STAR Homes Northwest (ESHNW)-certified homes located in the marine climate of Tacoma/Pierce County, Washington. This research report builds on an earlier preliminary draft 2014 BA report, and includes significant billing analysis and cost effectiveness research from a collaborative, ongoing Ductless Heat Pump (DHP)research effort for Tacoma Public Utilities (TPU) and Bonneville Power Administration (BPA). This report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and Octobermore » 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing such as HFH. Tacoma Public Utilities (TPU) and Bonneville Power Administration (BPA). This report focuses on the results of field testing, modeling, and monitoring of ductless mini-split heat pump hybrid heating systems in seven homes built and first occupied at various times between September 2013 and October 2014. The report also provides WSU documentation of high-performance home observations, lessons learned, and stakeholder recommendations for builders of affordable high-performance housing such as HFH.« less
miniTri Mantevo miniapp v. 1.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berry, Johathan; Stark, Dylan; Wolf, Michael
2016-02-02
miniTri is a miniapplication developed as part of the Mantevo project. Given a graph, miniTri enumerates all triangles in this graph and computes a metric for each triangle based on the triangle edge and vertex degree. The output of miniTri is a summary of this metric. miniTri mimics the computational requirements of an important set of data science applications. Several approaches to this problem are included in the miniTri software.
Gas Sensors Based on Tin Oxide Nanoparticles Synthesized from a Mini-Arc Plasma Source
Lu, Ganhua; Huebner, Kyle L.; Ocola, Leonidas E.; ...
2006-01-01
Minimore » aturized gas sensors or electronic noses to rapidly detect and differentiate trace amount of chemical agents are extremely attractive. In this paper, we report on the fabrication and characterization of a functional tin oxide nanoparticle gas sensor. Tin oxide nanoparticles are first synthesized using a convenient and low-cost mini-arc plasma source. The nanoparticle size distribution is measured online using a scanning electrical mobility spectrometer (SEMS). The product nanoparticles are analyzed ex-situ by high resolution transmission electron microscopy (HRTEM) for morphology and defects, energy dispersive X-ray (EDX) spectroscopy for elemental composition, electron diffraction for crystal structure, and X-ray photoelectron spectroscopy (XPS) for surface composition. Nonagglomerated rutile tin oxide ( SnO 2 ) nanoparticles as small as a few nm have been produced. Larger particles bear a core-shell structure with a metallic core and an oxide shell. The nanoparticles are then assembled onto an e-beam lithographically patterned interdigitated electrode using electrostatic force to fabricate the gas sensor. The nanoparticle sensor exhibits a fast response and a good sensitivity when exposed to 100 ppm ethanol vapor in air.« less
A Mini-BAL Outflow at 900 pc from the Central Source: VLT/X-shooter Observations
NASA Astrophysics Data System (ADS)
Xu, Xinfeng; Arav, Nahum; Miller, Timothy; Benn, Chris
2018-05-01
We determine the physical conditions and location of the outflow material seen in the mini-BAL quasar SDSS J1111+1437 (z = 2.138). These results are based on the analysis of a high S/N, medium-resolution VLT/X-shooter spectrum. The main outflow component spans the velocity range ‑1500 to ‑3000 km s‑1 and has detected absorption troughs from both high-ionization species: C IV, N V, O VI, Si IV, P V, and S IV; and low-ionization species: H I, C II, Mg II, Al II, Al III, Si II, and Si III. Measurements of these troughs allow us to derive an accurate photoionization solution for this absorption component: a hydrogen column density, {log}({N}{{H}})={21.47}-0.27+0.21 cm‑2 and ionization parameter, {log}({U}{{H}})=-{1.23}-0.25+0.20. Troughs produced from the ground and excited states of S IV combined with the derived {U}{{H}} value allow us to determine an electron number density of {log}({n}{{e}})={3.62}-0.11+0.09 cm‑3 and to obtain the distance of the ionized gas from the central source: R={880}-260+210 pc.
Efficient Plasma Production in Low Background Neutral Pressures with the M2P2 Prototype
NASA Technical Reports Server (NTRS)
Ziemba, T.; Euripides, P.; Winglee, R.; Slough, J.; Giersch, L.
2003-01-01
Mini-Magnetospheric Plasma Propulsion (M2P2) seeks the creation of a large-scale (10 km radius) magnetic wall or bubble (i.e. a magnetosphere) by the electromagnetic inflation of a small-scale (20 cm radius) dipole magnet. The inflated magnetosphere will intercept the solar wind and thereby provide high-speed propulsion with modest power and fuel requirements due to the gain provided by the ambient medium. Magnetic field inflation is produced by the injection of plasma onto the dipole magnetic field eliminating the need for large mechanical structures and added material weight at launch. For successful inflation of the magnetic bubble a beta near unity must be achieved along the imposed dipole field. This is dependent on the plasma parameters that can be achieved with a plasma source that provide continuous operation at the desired power levels of 1 to 2 kilowatts. Over the last two years we have been developing a laboratory prototype to demonstrate the inflation of the magnetic field under space-like conditions. In this paper we will present some of the latest results from the prototype development at the University of Washington and show that the prototype can produce high ionization efficiencies while operating in near space like neutral background pressures producing electron temperatures of a few tens of electron volts. This allows for operation with propellant expenditures lower than originally estimated.
ERIC Educational Resources Information Center
Cook, David A.; Beckman, Thomas J.; Mandrekar, Jayawant N.; Pankratz, V. Shane
2010-01-01
The mini-CEX is widely used to rate directly observed resident-patient encounters. Although several studies have explored the reliability of mini-CEX scores, the dimensionality of mini-CEX scores is incompletely understood. Objective: Explore the dimensionality of mini-CEX scores through factor analysis and generalizability analysis. Design:…
A Mini-review on the Effect of Mini-implants on Contemporary Orthodontic Science
Nosouhian, Saeid; Rismanchian, Mansour; Sabzian, Roya; Shadmehr, Elham; Badrian, Hamid; Davoudi, Amin
2015-01-01
The purpose of this literature review was to screen the valuable published articles regarding to the impacts of mini-implants on orthodontic science, briefly. The searching category was performed on the Pubmed using MeSH words such as “dental (mini) implants, orthodontic anchorage procedures, and orthodontic appliances.” After preliminary sketch, they were grouped as follow: Those evaluating (a) common appliances for providing orthodontic anchorage, (b) biomechanical details of mini-implants and their insertion, (c) clinical application of mini-implants for orthognathic treatments, (d) limitations and possible complications. In conclusion, mini-implant evolved the orthodontic treatment plans and compromised the required orthognathic surgery. Malocclusion treatment and pure orthodontic or orthopedic movements in the three-dimensions have become recently possible by using mini-implant to provide skeletal anchorage. PMID:26225113
Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger
NASA Astrophysics Data System (ADS)
Bowen, Dennis B.; Mewes, Vassilios; Campanelli, Manuela; Noble, Scott C.; Krolik, Julian H.; Zilhão, Miguel
2018-01-01
We present the first magnetohydrodynamic simulation in which a circumbinary disk around a relativistic binary black hole feeds mass to individual accretion disks (“mini-disks”) around each black hole. Mass flow through the accretion streams linking the circumbinary disk to the mini-disks is modulated quasi-periodically by the streams’ interaction with a nonlinear m = 1 density feature, or “lump,” at the inner edge of the circumbinary disk: the stream supplying each mini-disk comes into phase with the lump at a frequency 0.74 times the binary orbital frequency. Because the binary is relativistic, the tidal truncation radii of the mini-disks are not much larger than their innermost stable circular orbits; consequently, the mini-disks’ inflow times are shorter than the conventional estimate and are comparable to the stream modulation period. As a result, the mini-disks are always in inflow disequilibrium, with their masses and spiral density wave structures responding to the stream’s quasi-periodic modulation. The fluctuations in each mini-disk’s mass are so large that as much as 75% of the total mini-disk mass can be contained within a single mini-disk. Such quasi-periodic modulation of the mini-disk structure may introduce distinctive time-dependent features in the binary’s electromagnetic emission.
Experimental Anomalies in Neutrino Physics
NASA Astrophysics Data System (ADS)
Palamara, Ornella
2014-03-01
In recent years, experimental anomalies ranging in significance (2.8-3.8 σ) have been reported from a variety of experiments studying neutrinos over baselines less than 1 km. Results from the LSND and MiniBooNE short-baseline νe /νe appearance experiments show anomalies which cannot be described by oscillations between the three standard model neutrinos (the ``LSND anomaly''). In addition, a re-analysis of the anti-neutrino flux produced by nuclear power reactors has led to an apparent deficit in νe event rates in a number of reactor experiments (the ``reactor anomaly''). Similarly, calibration runs using 51Cr and 37Ar radioactive sources in the Gallium solar neutrino experiments GALLEX and SAGE have shown an unexplained deficit in the electron neutrino event rate over very short distances (the ``Gallium anomaly''). The puzzling results from these experiments, which together may suggest the existence of physics beyond the Standard Model and hint at exciting new physics, including the possibility of additional low-mass sterile neutrino states, have raised the interest in the community for new experimental efforts that could eventually solve this puzzle. Definitive evidence for sterile neutrinos would be a revolutionary discovery, with implications for particle physics as well as cosmology. Proposals to address these signals by employing accelerator, reactor and radioactive source experiments are in the planning stages or underway worldwide. In this talk some of these will be reviewed, with emphasis on the accelerator programs.
Salameh, Pascale; Farah, Rita; Hallit, Souheil; Zeidan, Rouba Karen; Chahine, Mirna N; Asmar, Roland; Hosseini, Hassan
2018-02-20
Stroke is a disease related to high mortality and morbidity, particularly in developing countries. Some studies have linked self-reported indoor and outdoor pollution to stroke and mini-stroke, while some others showed no association. Our objective was to assess this association in Lebanon, a Middle Eastern developing country. A national cross-sectional study was conducted all over Lebanon. In addition to self-reported items of pollution exposure, we assessed potential predictors of stroke and mini-stroke, including sociodemographic characteristics, self-reported health information, and biological measurements. Moreover, we assessed dose-effect relationship of pollution items in relation with stroke. Self-reported indoor pollution exposure was associated with stroke and mini-stroke, with or without taking biological values into account. Moreover, we found a dose-effect relationship of exposure with risk of disease, but this effect did not reach statistical significance after adjustment for sociodemographics and biological characteristics. No association was found for any outdoor pollution item. Although additional studies would be necessary to confirm these findings, sensitizing the population about the effect of pollution on chronic diseases, working on reducing pollution, and improving air quality should be implemented to decrease the burden of the disease on the population and health system.
Belcaro, Gianni; Dugall, Mark; Corsi, Marcello; Agus, Giovanni B; Ippolito, Edmondo
2016-08-01
This registry study evaluated low-cost outpatient surgery (mini-S) for venous insufficiency as an alternative to stripping. This 20-year follow-up is focused on the recurrence of varices and on the long-term efficacy of the mini-S (group 1) in comparison with controls (2, stripping), sclerotherapy (3) or a combination of mini-S+sclerotherapy (4). Costs were compared. At 20-years of follow-up, considering recurrence/development of new varicose veins, 24.05% of the limbs treated with mini-S developed new varices in comparison with 64.4% in group 2, 24.1% in group 3 and 15.4% in group 4 (P<0.05). New surgical procedures were needed in 18.9% of mini-S patients vs. 58.5% in group 2, 21.9% in group 3 and 19.7% in group 4 (P<0.05 between group 2 and the other groups). Sclerotherapy (in the years following the initial treatment) was used in 37.9% of mini-S patients in comparison with 67.7% of subjects in group 2 patients, 33.1% in group 3 and 22.8% in group 4 (P<0.05 between outpatient treatment and group 2). The superficial venous system was incompetent in 21% of mini-S patients in comparison with 38.8% in group 2 (P<0.05), 20.7% in group 3 and 17.9% of group 4. At 20 years edema was present in 10.5% of limbs in group 2 in comparison with a <3% (range 2.2-2.1%) in the other groups. Edema was more significant after stripping. Ambulatory venous pressure measurements in subgroups was lower in groups 1, 3 and 4 with a lower refilling time (P<0.05). The cost of in-hospital, daily surgical treatments were €1978 (covered by the heathcare provider). The cost of mini-S was on average €488 per limb (covered by patients). Outpatients procedures, in particular the mini-S management plan, were cheaper than stripping and more effective at 20-years follow-up. They could be a model for emerging contries with restricted budgets for vein surgery. Also being cheaper more people may have benefits from treatment when/where hospital procedures are not covered by an healthcare provider.
Failure rates of mini-implants placed in the infrazygomatic region.
Uribe, Flavio; Mehr, Rana; Mathur, Ajay; Janakiraman, Nandakumar; Allareddy, Veerasathpurush
2015-01-01
The purpose of this pilot study was to evaluate the failure rates of mini-implants placed in the infrazygomatic region and to evaluate factors that affect their stability. A retrospective cohort study of 30 consecutive patients (55 mini-implants) who had infrazygomatic mini-implants at a University Clinic were evaluated for failure rates. Patient, mini-implant, orthodontic, surgical, and mini-implant maintenance factors were evaluated by univariate logistic regression models for association to failure rates. A 21.8 % failure rate of mini-implants placed in the infazygomatic region was observed. None of the predictor variables were significantly associated with higher or lower odds for failed implants. Failure rates for infrazygomatic mini-implants were slightly higher than those reported in other maxilla-mandibular osseous locations. No predictor variables were found to be associated to the failure rates.
Comparison of success rates of orthodontic mini-screws by the insertion method.
Kim, Jung Suk; Choi, Seong Hwan; Cha, Sang Kwon; Kim, Jang Han; Lee, Hwa Jin; Yeom, Sang Seon; Hwang, Chung Ju
2012-10-01
The aim of this study was to compare the success rates of the manual and motor-driven mini-screw insertion methods according to age, gender, length of mini-screws, and insertion sites. We retrospectively reviewed 429 orthodontic mini-screw placements in 286 patients (102 in men and 327 in women) between 2005 and 2010 at private practice. Age, gender, mini-screw length, and insertion site were cross-tabulated against the insertion methods. The Cochran-Mantel-Haenszel test was performed to compare the success rates of the 2 insertion methods. The motor-driven method was used for 228 mini-screws and the manual method for the remaining 201 mini-screws. The success rates were similar in both men and women irrespective of the insertion method used. With respect to mini-screw length, no difference in success rates was found between motor and hand drivers for the 6-mm-long mini-screws (68.1% and 69.5% with the engine driver and hand driver, respectively). However, the 8-mm-long mini-screws exhibited significantly higher success rates (90.4%, p < 0.01) than did the 6-mm-long mini-screws when placed with the engine driver. The overall success rate was also significantly higher in the maxilla (p < 0.05) when the engine driver was used. Success rates were similar among all age groups regardless of the insertion method used. Taken together, the motor-driven insertion method can be helpful to get a higher success rate of orthodontic mini-screw placement.
Radar Scattering and Block Size Properties of Lunar Crater Ejecta From Mini-RF and LROC NAC Data
NASA Technical Reports Server (NTRS)
Spudis, P. D.; Baloga, S. M.; Glaze, L. S.; Dixit, V.; Pantone, S. M.; Juvanescu, I.
2012-01-01
A major objective of the Mini-RF experiment is to distinguish lunar surfaces that may contain water/ice deposits [1,2]. Better understanding of the backscattering properties of craters of varying age and size is crucial for interpreting data received from the Mini-RF. The Mini-RF transmits a circularly polarized RF electromagnetic energy and coherently receives orthogonal linear polarization echoes [1]. The Mini- RF maps in two separate bands ( =12.6 and 4.5 cm) at a high resolution mode of 30 m/pixel [1]. Given the variables mentioned, the four stokes parameters are reconstructed. The Circular Polarization Ratio (CPR) is calculated for the purposes of understanding subsurface and surface roughness. The CPR is determined from reflections acquired from the ratio of power of the transmitted radio wave in same sense to the reflected radio wave in the opposite sense [1]. Ice in the permanently shadowed regions (PSRs) would be transparent to radar, but the inclusions of materials and imperfections would cause the radio wave to reflect multiple times [3], enhancing the number of same sense reflections and increasing the CPR. In addition, ice also displays the coherent backscatter opposition effect (CBOE), an interferrometric addition of same sense backscatter that further increases the CPR of ice targets [7]. High CPR values also correlate to multiple reflections and are typically associated with very rough surfaces [3]. The average dry lunar surface has a CPR in the range of 0.2-0.4 at 48deg incidence [3]. The purpose of this study is to begin to quantify degrees of surface wavelength-scale roughness with CPR and to understand how such surface roughness is created and gradually destroyed by erosion on the lunar surface. Another goal is to identify and isolate the possible causes of high CPR within the shadowed areas of anomalous polar craters [3]. All the studied craters are non-polar, so that we can see into their interiors in NAC images. The idea is to understand what controls blockiness in these craters so that we can rule out rocks (and rule in ice) for the anomalous polar dark ones [3].
Miniature Thermal Emission Spectrometer for the Mars Exploration Rovers
NASA Astrophysics Data System (ADS)
Christensen, Philip R.; Mehall, Greg L.; Silverman, Steven H.; Anwar, Saadat; Cannon, George; Gorelick, Noel; Kheen, Rolph; Tourville, Tom; Bates, Duane; Ferry, Steven; Fortuna, Teresa; Jeffryes, John; O'Donnell, William; Peralta, Richard; Wolverton, Thomas; Blaney, Diana; Denise, Robert; Rademacher, Joel; Morris, Richard V.; Squyres, Steven
2003-12-01
The Miniature Thermal Emission Spectrometer (Mini-TES) will provide remote measurements of mineralogy and thermophysical properties of the scene surrounding the Mars Exploration Rovers and guide the rovers to key targets for detailed in situ measurements by other rover experiments. The specific scientific objectives of the Mini-TES investigation are to (1) determine the mineralogy of rocks and soils, (2) determine the thermophysical properties of selected soil patches, and (3) determine the temperature profile, dust and water-ice opacity, and water vapor abundance in the lower atmospheric boundary layer. The Mini-TES is a Fourier Transform Spectrometer covering the spectral range 5-29 μm (339.50 to 1997.06 cm-1) with a spectral sample interval of 9.99 cm-1. The Mini-TES telescope is a 6.35-cm-diameter Cassegrain telescope that feeds a flat-plate Michelson moving mirror mounted on a voice-coil motor assembly. A single deuterated triglycine sulfate (DTGS) uncooled pyroelectric detector with proven space heritage gives a spatial resolution of 20 mrad; an actuated field stop can reduce the field of view to 8 mrad. Mini-TES is mounted within the rover's Warm Electronics Box and views the terrain using its internal telescope looking up the hollow shaft of the Pancam Mast Assembly (PMA) to the fixed fold mirror and rotating elevation scan mirror in the PMA head located ~1.5 m above the ground. The PMA provides a full 360°of azimuth travel and views from 30° above the nominal horizon to 50° below. An interferogram is collected every two seconds and transmitted to the Rover computer, where the Fast Fourier Transform, spectral summing, lossless compression, and data formatting are performed prior to transmission to Earth. Radiometric calibration is provided by two calibration V-groove blackbody targets instrumented with platinum thermistor temperature sensors with absolute temperature calibration of +/-0.1°C. One calibration target is located inside the PMA head; the second is on the Rover deck. The Mini-TES temperature is expected to vary diurnally from -10 to +30°C, with most surface composition data collected at scene temperatures >270 K. For these conditions the radiometric precision for two-spectra summing is +/-1.8 × 10-8 W cm-2 sr-1/cm-1 between 450 and 1500 cm-1, increasing to ~4.2 × 10-8 W cm-2 sr-1/cm-1 at shorter (300 cm-1) and longer (1800 cm-1) wave numbers. The absolute radiance error will be <5 × 10-8 W cm-2 sr-1/cm-1, decreasing to ~1 × 10-8 W cm-2 sr-1/cm-1 over the wave number range where the scene temperature will be determined (1200-1600 cm-1). The worst-case sum of these random and systematic radiance errors corresponds to an absolute temperature error of ~0.4 K for a true surface temperature of 270 K and ~1.5 K for a surface at 180 K. The Mini-TES will be operated in a 20-mrad panorama mode and an 8-mrad targeted mode, producing two-dimensional rasters and three-dimensional hyperspectral image cubes of varying sizes. The overall Mini-TES envelope size is 23.5 × 16.3 × 15.5 cm, and the mass is 2.40 kg. The power consumption is 5.6 W average. The Mini-TES was developed by Arizona State University and Raytheon Santa Barbara Remote Sensing.
Decoration of vertical graphene with aerosol nanoparticles for gas sensing
NASA Astrophysics Data System (ADS)
Cui, Shumao; Guo, Xiaoru; Ren, Ren; Zhou, Guihua; Chen, Junhong
2015-08-01
A facile method was demonstrated to decorate aerosol Ag nanoparticles onto vertical graphene surfaces using a mini-arc plasma reactor. The vertical graphene was directly grown on a sensor electrode using a plasma-enhanced chemical vapor deposition (PECVD) method. The aerosol Ag nanoparticles were synthesized by a simple vapor condensation process using a mini-arc plasma source. Then, the nanoparticles were assembled on the surface of vertical graphene through the assistance of an electric field. Based on our observation, nonagglomerated Ag nanoparticles formed in the gas phase and were assembled onto vertical graphene sheets. Nanohybrids of Ag nanoparticle-decorated vertical graphene were characterized for ammonia gas detection at room temperature. The vertical graphene served as the conductance channel, and the conductance change upon exposure to ammonia was used as the sensing signal. The sensing results show that Ag nanoparticles significantly improve the sensitivity, response time, and recovery time of the sensor.
A software bus for thread objects
NASA Technical Reports Server (NTRS)
Callahan, John R.; Li, Dehuai
1995-01-01
The authors have implemented a software bus for lightweight threads in an object-oriented programming environment that allows for rapid reconfiguration and reuse of thread objects in discrete-event simulation experiments. While previous research in object-oriented, parallel programming environments has focused on direct communication between threads, our lightweight software bus, called the MiniBus, provides a means to isolate threads from their contexts of execution by restricting communications between threads to message-passing via their local ports only. The software bus maintains a topology of connections between these ports. It routes, queues, and delivers messages according to this topology. This approach allows for rapid reconfiguration and reuse of thread objects in other systems without making changes to the specifications or source code. A layered approach that provides the needed transparency to developers is presented. Examples of using the MiniBus are given, and the value of bus architectures in building and conducting simulations of discrete-event systems is discussed.
Production of extended release mini-tablets using directly compressible grades of HPMC.
Mohamed, Faiezah A A; Roberts, Matthew; Seton, Linda; Ford, James L; Levina, Marina; Rajabi-Siahboomi, Ali R
2013-11-01
Hypromellose (HPMC) has been previously used to control drug release from mini-tablets. However, owing to poor flow, production of mini-tablets containing high HPMC levels is challenging. Directly compressible (DC) HPMC grades have been developed by Dow Chemical Company. To compare the properties of HPMC DC (METHOCEL™ K4M and K100M) with regular (REG) HPMC grades. Particle size distribution and flowability of HPMC REG and DC were evaluated. 3 mm mini-tablets, containing hydrocortisone or theophylline as model drugs and 40% w/w HPMC DC or REG were produced. Mini-tablets containing HPMC DC grades were manufactured using a rotary press simulator at forces between 2-4 kN and speeds of 5, 10, 15 or 20 rpm. Mini-tablets containing HPMC REG were produced manually. The improved flowability of HPMC DC grades, which have a narrower particle size distribution and larger particle sizes, meant that simulated large scale production of mini-tablets with good weight uniformity (CV 1.79-4.65%) was feasible. It was not possible to automatically manufacture mini-tablets containing HPMC REG due to the poor flowability of the formulations. Drug release from mini-tablets comprising HPMC DC and REG were comparable. Mini-tablets containing HPMC DC illustrated a higher tensile strength compared to mini-tablets made with HPMC REG. Mini-tablets produced with HPMC DC at different compression speeds had similar drug release profiles. Production of extended release mini-tablets was successfully achieved when HPMC DC was used. Drug release rate was not influenced by the different HPMC DC grades (K4M or K100M) or production speed.
Chan, Robin F.; Lewellyn, Lara; DeLoyht, Jacqueline M.; Sennett, Kristyn; Coffman, Scarlett; Hewitt, Matthew; Bettinger, Jill C.; Warrick, John M.; Grotewiel, Mike
2014-01-01
Background The fruit fly Drosophila melanogaster has been used extensively to investigate genetic mechanisms of ethanol-related behaviors. Many past studies in flies, including studies from our laboratory, have manipulated gene expression using transposons carrying the genetic-phenotypic marker mini-white, a derivative of the endogenous gene white. Whether the mini-white transgenic marker or the endogenous white gene influence behavioral responses to acute ethanol exposure in flies has not been systematically investigated. Methods We manipulated mini-white and white expression via (i) transposons marked with mini-white, (ii) RNAi against mini-white and white and (iii) a null allele of white. We assessed ethanol sensitivity and tolerance using a previously described eRING assay (based on climbing in the presence of ethanol) and an assay based on ethanol-induced sedation. Results In eRING assays, ethanol-induced impairment of climbing correlated inversely with expression of the mini-white marker from a series of transposon insertions. Additionally, flies harboring a null allele of white or flies with RNAi-mediated knockdown of mini-white were significantly more sensitive to ethanol in eRING assays than controls expressing endogenous white or the mini-white marker. In contrast, ethanol sensitivity and rapid tolerance measured in the ethanol sedation assay were not affected by decreased expression of mini-white or endogenous white in flies. Conclusions Ethanol sensitivity measured in the eRING assay is noticeably influenced by white and mini-white, making eRING problematic for studies on ethanol-related behavior in Drosophila using transgenes marked with mini-white. In contrast, the ethanol sedation assay described here is a suitable behavioral paradigm for studies on ethanol sedation and rapid tolerance in Drosophila including those that use widely available transgenes marked with mini-white. PMID:24890118
Lee, Jin-Hwa; Choo, Hyeran; Kim, Seong-Hun; Chung, Kyu-Rhim; Giannuzzi, Lucille A; Ngan, Peter
2011-06-01
When mini-implants fail during orthodontic treatment, there is a need to have a backup plan to either replace the failed implant in the adjacent interradicular area or wait for the bone to heal before replacing the mini-implant. We propose a novel way to overcome this problem by replacement with a miniplate so as not to interrupt treatment or prolong treatment time. The indications, advantages, efficacy, and procedures for switching from a mini-implant to a miniplate are discussed. Two patients who required replacement of failed mini-implants are presented. In the first patient, because of the proximity of the buccal vestibule to the mini-implant, it was decided to replace the failed mini-implant by an I-shaped C-tube miniplate. In the second patient, radiolucencies were found around the failed mini-implants, making the adjacent alveolar bone unavailable for immediate placement of another mini-implant. In addition, the maxillary sinus pneumatization was expanded deeply into the interradicular spaces; this further mandated an alternative placement site. One failed mini-implant was examined under a scanning electron microscope for bone attachment. Treatment was completed in both patients after replacement with miniplates without interrupting the treatment mechanics or prolonging the treatments. Examination under the scanning electron microscope showed partial bone growth into the coating pores and titanium substrate interface even after thorough cleaning and sterilization. Replacement with a miniplate is a viable solution for failed mini-implants during orthodontic treatment. The results from microscopic evaluation of the failed mini-implant suggest that stringent guidelines are needed for recycling used mini-implants. Copyright © 2011 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.
2011-03-01
68 3. Photovoltaic Effect ..........................69 4. Factors Affecting Cell Efficiency ............69 D. THIN-FILM...resistance. (After [3])...........................................120 xvi Table 21. Average battery capacity (AH) and battery energy capacity (WH...which is directly limited by the on-board battery capacity . The other key drawbacks are the weight and size of the mini- xviii UAV, which restrict the
NASA Astrophysics Data System (ADS)
Bamford, Ruth; Kellett, Barry; Bradford, John; Todd, Tom N.; Stafford-Allen, Robin; Alves, E. Paulo; Silva, Luis; Collingwood, Cheryl; Crawford, Ian A.; Bingham, Robert
2014-12-01
In this paper we explore the effectiveness of an artificial mini-magnetosphere as a potential radiation shelter for long term human space missions. Our study includes the differences that the plasma environment makes to the efficiency of the shielding from the high energy charged particle component of solar and cosmic rays, which radically alters the power requirements. The incoming electrostatic charges are shielded by fields supported by the self captured environmental plasma of the solar wind, potentially augmented with additional density. The artificial magnetic field generated on board acts as the means of confinement and control. Evidence for similar behaviour of electromagnetic fields and ionised particles in interplanetary space can be gained by the example of the enhanced shielding effectiveness of naturally occurring "mini-magnetospheres" on the moon. The shielding effect of surface magnetic fields of the order of ~100s nanoTesla is sufficient to provide effective shielding from solar proton bombardment that culminate in visible discolouration of the lunar regolith known as "lunar swirls". Supporting evidence comes from theory, laboratory experiments and computer simulations that have been obtained on this topic. The result of this work is, hopefully, to provide the tools for a more realistic estimation of the resources versus effectiveness and risk that spacecraft engineers need to work with in designing radiation protection for long-duration human space missions.
A Portable and Autonomous Mass Spectrometric System for On-Site Environmental Gas Analysis.
Brennwald, Matthias S; Schmidt, Mark; Oser, Julian; Kipfer, Rolf
2016-12-20
We developed a portable mass spectrometric system ("miniRuedi") for quantificaton of the partial pressures of He, Ne (in dry gas), Ar, Kr, N 2 , O 2 , CO 2 , and CH 4 in gaseous and aqueous matrices in environmental systems with an analytical uncertainty of 1-3%. The miniRuedi does not require any purification or other preparation of the sampled gases and therefore allows maintenance-free and autonomous operation. The apparatus is most suitable for on-site gas analysis during field work and at remote locations due to its small size (60 cm × 40 cm × 14 cm), low weight (13 kg), and low power consumption (50 W). The gases are continuously sampled and transferred through a capillary pressure reduction system into a vacuum chamber, where they are analyzed using a quadrupole mass spectrometer with a time resolution of ≲1 min. The low gas consumption rate (<0.1 mL/min) minimizes interference with the natural mass balance of gases in environmental systems, and allows the unbiased quantification of dissolved-gas concentrations in water by gas/water equilibration using membrane contractors (gas-equilibrium membrane-inlet mass spectrometry, GE-MIMS). The performance of the miniRuedi is demonstrated in laboratory and field tests, and its utility is illustrated in field applications related to soil-gas formation, lake/atmosphere gas exchange, and seafloor gas emanations.
Ng'etich, Annette I; Rawago, Fredrick O; Jura, Walter G Z O; Mwinzi, Pauline N; Won, Kimberly Y; Odiere, Maurice R
2016-02-16
Identification of populations to be targeted for individual treatment and broad-spectrum therapy in schistosomiasis-endemic areas, assessment of therapy efficacy, morbidity, and evaluation of control strategies need to be based on reliable diagnostic tools. Kato-Katz is routinely used and remains the standard diagnostic technique for schistosomiasis, despite its many challenges. This study was conducted in Nyamanga village, Mbita, western Kenya, and evaluated the diagnostic performance of Kato-Katz, Mini-Parasep and modified Mini-FLOTAC techniques in detection of Schistosoma mansoni and soil-transmitted helminths (Ascaris lumbricoides, Trichuris trichiura and hookworm) ova. Stool samples from 132 individuals were screened for eggs of S. mansoni by the 3 techniques. Mini-Parasep faecal parasite concentrator (Apacor Ltd, England), a single-use diagnostic device with a built-in filter for faecal concentration of helminth eggs by sedimentation was employed on stool samples fixed in 10% formalin. A modified Mini-FLOTAC (University of Naples, Italy) was based on floatation of helminths eggs with two different solutions (FS2 and FS7) using a closed system (Fill-FLOTAC) with 5% formalin. Kato-Katz was performed following WHO recommendation. Prevalence of S. mansoni and STH, sensitivity and degree of agreement among the 3 techniques were determined. Prevalence of S. mansoni was 47.0%, 34.1% and 20.5% by Mini-Parasep, Kato-Katz and modified Mini-FLOTAC FS7 techniques, respectively. Prevalence of any STH infection was 6.1%, 3.0%, 6.1% and 6.8% by Mini-Parasep, Kato-Katz, modified Mini-FLOTAC FS2 and modified Mini-FLOTAC FS7 techniques, respectively. Considering the pooled results of the three methods (Mini-Parasep, Kato-Katz and modified Mini-FLOTAC FS7) as diagnostic 'gold' standard, the sensitivity of Mini-Parasep, Kato-Katz and modified Mini-FLOTAC FS7 for S. mansoni was 77.5%, 56.1%, and 33.8%, respectively. Mini-Parasep and modified Mini-FLOTAC FS7 techniques had moderate (κ = 0.46) and fairly good (κ = 0.25) agreements with Kato-Katz for S. mansoni, respectively. Mini-Parasep detected a higher proportion of light intensity S. mansoni infections compared to Kato-Katz, which detected high proportions of heavy infections. Mini-Parasep detected a similar mean number of S. mansoni eggs per gram (EPG) of stool compared to the standard Kato-Katz (62.9 vs 97.3; t (131) = -0.49, P = 0.6265) and significantly higher EPG compared to the modified Mini-FLOTAC FS7 (62.9 vs 34.6; t (131) = 5.39, P < 0.0001). The high sensitivity of Mini-Parasep suggests its promising potential as an alternative tool in enhancing diagnosis and in monitoring schistosomiasis transmission and determining endpoint of intervention programs, especially in low endemicity areas. Mini-Parasep is also easy to operate, safe and also permits work with fresh stool.
Chan, Robin F; Lewellyn, Lara; DeLoyht, Jacqueline M; Sennett, Kristyn; Coffman, Scarlett; Hewitt, Matthew; Bettinger, Jill C; Warrick, John M; Grotewiel, Mike
2014-06-01
The fruit fly Drosophila melanogaster has been used extensively to investigate genetic mechanisms of ethanol (EtOH)-related behaviors. Many past studies in flies, including studies from our laboratory, have manipulated gene expression using transposons carrying the genetic-phenotypic marker mini-white(mini-w), a derivative of the endogenous gene white(w). Whether the mini-w transgenic marker or the endogenous w gene influences behavioral responses to acute EtOH exposure in flies has not been systematically investigated. We manipulated mini-w and w expression via (i) transposons marked with mini-w, (ii) RNAi against mini-w and w, and (iii) a null allele of w. We assessed EtOH sensitivity and tolerance using a previously described eRING assay (based on climbing in the presence of EtOH) and an assay based on EtOH-induced sedation. In eRING assays, EtOH-induced impairment of climbing correlated inversely with expression of the mini-w marker from a series of transposon insertions. Additionally, flies harboring a null allele of w or flies with RNAi-mediated knockdown of mini-w were significantly more sensitive to EtOH in eRING assays than controls expressing endogenous w or the mini-w marker. In contrast, EtOH sensitivity and rapid tolerance measured in the EtOH sedation assay were not affected by decreased expression of mini-w or endogenous w in flies. EtOH sensitivity measured in the eRING assay is noticeably influenced by w and mini-w, making eRING problematic for studies on EtOH-related behavior in Drosophila using transgenes marked with mini-w. In contrast, the EtOH sensitivity assay described here is a suitable behavioral paradigm for studies on EtOH sensitivity and rapid tolerance in Drosophila including those that use widely available transgenes marked with mini-w. Copyright © 2014 by the Research Society on Alcoholism.
Equilibrium Partitioning Sediment Guidelines (ESGs) for the ...
... PLC = partial life-cycle ... 5 ii mini iiiiiiiii iiiiiii mi 1 1 iii mini ii i B : - Benthic vs WQC i— w ~_ ~ _ o° _ -0 ° - - - ii mini iiiiiiiii iiiiiii iiiiiiiii mini ii 0.1 ... PhD thesis. ...
Walther, Frans J.; Waring, Alan J.; Hernandez-Juviel, Jose M.; Gordon, Larry M.; Wang, Zhengdong; Jung, Chun-Ling; Ruchala, Piotr; Clark, Andrew P.; Smith, Wesley M.; Sharma, Shantanu; Notter, Robert H.
2010-01-01
Background Surfactant protein B (SP-B; 79 residues) belongs to the saposin protein superfamily, and plays functional roles in lung surfactant. The disulfide cross-linked, N- and C-terminal domains of SP-B have been theoretically predicted to fold as charged, amphipathic helices, suggesting their participation in surfactant activities. Earlier structural studies with Mini-B, a disulfide-linked construct based on the N- and C-terminal regions of SP-B (i.e., ∼residues 8–25 and 63–78), confirmed that these neighboring domains are helical; moreover, Mini-B retains critical in vitro and in vivo surfactant functions of the native protein. Here, we perform similar analyses on a Super Mini-B construct that has native SP-B residues (1–7) attached to the N-terminus of Mini-B, to test whether the N-terminal sequence is also involved in surfactant activity. Methodology/Results FTIR spectra of Mini-B and Super Mini-B in either lipids or lipid-mimics indicated that these peptides share similar conformations, with primary α-helix and secondary β-sheet and loop-turns. Gel electrophoresis demonstrated that Super Mini-B was dimeric in SDS detergent-polyacrylamide, while Mini-B was monomeric. Surface plasmon resonance (SPR), predictive aggregation algorithms, and molecular dynamics (MD) and docking simulations further suggested a preliminary model for dimeric Super Mini-B, in which monomers self-associate to form a dimer peptide with a “saposin-like” fold. Similar to native SP-B, both Mini-B and Super Mini-B exhibit in vitro activity with spread films showing near-zero minimum surface tension during cycling using captive bubble surfactometry. In vivo, Super Mini-B demonstrates oxygenation and dynamic compliance that are greater than Mini-B and compare favorably to full-length SP-B. Conclusion Super Mini-B shows enhanced surfactant activity, probably due to the self-assembly of monomer peptide into dimer Super Mini-B that mimics the functions and putative structure of native SP-B. PMID:20084172
Development of a mini-mobile digital radiography system by using wireless smart devices.
Jeong, Chang-Won; Joo, Su-Chong; Ryu, Jong-Hyun; Lee, Jinseok; Kim, Kyong-Woo; Yoon, Kwon-Ha
2014-08-01
The current technologies that trend in digital radiology (DR) are toward systems using portable smart mobile as patient-centered care. We aimed to develop a mini-mobile DR system by using smart devices for wireless connection into medical information systems. We developed a mini-mobile DR system consisting of an X-ray source and a Complementary Metal-Oxide Semiconductor (CMOS) sensor based on a flat panel detector for small-field diagnostics in patients. It is used instead of the systems that are difficult to perform with a fixed traditional device. We also designed a method for embedded systems in the development of portable DR systems. The external interface used the fast and stable IEEE 802.11n wireless protocol, and we adapted the device for connections with Picture Archiving and Communication System (PACS) and smart devices. The smart device could display images on an external monitor other than the monitor in the DR system. The communication modules, main control board, and external interface supporting smart devices were implemented. Further, a smart viewer based on the external interface was developed to display image files on various smart devices. In addition, the advantage of operators is to reduce radiation dose when using remote smart devices. It is integrated with smart devices that can provide X-ray imaging services anywhere. With this technology, it can permit image observation on a smart device from a remote location by connecting to the external interface. We evaluated the response time of the mini-mobile DR system to compare to mobile PACS. The experimental results show that our system outperforms conventional mobile PACS in this regard.
Øhre, Beate; Saltnes, Hege; von Tetzchner, Stephen; Falkum, Erik
2014-05-22
There is a need for psychiatric assessment instruments that enable reliable diagnoses in persons with hearing loss who have sign language as their primary language. The objective of this study was to assess the validity of the Norwegian Sign Language (NSL) version of the Mini International Neuropsychiatric Interview (MINI). The MINI was translated into NSL. Forty-one signing patients consecutively referred to two specialised psychiatric units were assessed with a diagnostic interview by clinical experts and with the MINI. Inter-rater reliability was assessed with Cohen's kappa and "observed agreement". There was 65% agreement between MINI diagnoses and clinical expert diagnoses. Kappa values indicated fair to moderate agreement, and observed agreement was above 76% for all diagnoses. The MINI diagnosed more co-morbid conditions than did the clinical expert interview (mean diagnoses: 1.9 versus 1.2). Kappa values indicated moderate to substantial agreement, and "observed agreement" was above 88%. The NSL version performs similarly to other MINI versions and demonstrates adequate reliability and validity as a diagnostic instrument for assessing mental disorders in persons who have sign language as their primary and preferred language.
NASA Astrophysics Data System (ADS)
Alpat, Behcet; Ergin, Tulun; Kalemci, Emrah
2016-07-01
The Mini-SPT project is the first, and most important, step towards the ambitious goal of creating a low-cost, compact, radiation hardened and high performance space particle telescope that can be mounted, in the near future, as standard particle detector on any satellite. Mini-SPT will be capable of providing high quality physics data on local space environment. In particular high precision flux measurement and tracking of low energy protons and electrons on different orbits with same instrumentation is of paramount importance for studies as geomagnetically trapped fluxes and space weather dynamics, dark matter search, low energy proton anisotropy and its effects on ICs as well as the solar protons studies. In addition, it will provide real-time "differentiable warnings" about the local space radiation hazard to other electronics systems on board the hosting satellite, including different criticality levels and alarm signals to activate mitigation techniques whenever this is strictly necessary to protect them from temporary/permanent failures. A real-time warning system will help satellite subsystems to save significant amount of power and memory with respect to other conventional techniques where the "mitigation" solutions are required to be active during entire mission life. The Mini-SPT will combine the use of technologies developed in cutting-edge high energy physics experiments (including technology from CMS experiments at CERN) and the development of new charged particle detecting systems for their use for the first time in space. The Mini-SPT essential objective is, by using for the first time in space SIPMs (Silicon Photomultipliers) technology for TOF and energy measurements, the production of high quality data with a good time, position and energy resolutions. The mini-SPT will consists of three main sub-units: a- A tracking and dE/dX measuring sub-detector which will be based on silicon pixel detectors (SPD) coupled to the rad-hard chip ROC-DIG (Read Out Chip-Digital version), developed and bump bonded to high accuracy radiation hardened particle barrel pixel detector in CMS (Compact Magnetic Solenoid) experiment of LHC (Large Hadron Collider) at CERN-Geneva b- The calorimeter (CCAL) system will consist of a scintillating crystal optically coupled to an array of silicon photomultipliers (SIPMs) to read out the photons created in the crystal by impinging charged particles. c- The TOF and associated trigger compose the third detecting sub-unit of the Mini-SPT , consisting basically of two small (~2 cm diameter) plastic scintillator layers The challenge is to develop a high performing scientific payload to fit in 6U Cubesat format with very good electron, proton and heavier particles separation as well as direct energy spectra measurement for protons up to almost 1 GeV and for electrons up to few tens of MeV. The angular acceptance of full mini-SPT payload is 6-5 degrees. If only tracking elements (SPDs) are considered the opening angle increases15 degrees.
Reasons for mini-implants failure: choosing installation site should be valued!
Consolaro, Alberto; Romano, Fábio Lourenço
2014-01-01
Mini-implant loss is often associated with physical and mechanical aspects that result from choosing an inappropriate placement site. It is worth highlighting that: a) Interdental alveolar bone crests are flexible and deformable. For this reason, they may not offer the ideal absolute anchorage. The more cervical the structures, the more delicate they are, thus offering less physical support for mini-implant placement; b) Alveolar bone crests of triangular shape are more deformable, whereas those of rectangular shape are more flexible; c) The bases of the alveolar processes of the maxilla and the mandible are not flexible, for this reason, they are more likely to receive mini-implants; d) The more cervical a mini-implant is placed, the higher the risk of loss; the more apical a mini-implant is placed, the better its prognosis will be; e) 3D evaluations play a major role in planning the use of mini-implants. Based on the aforementioned considerations, the hypotheses about mini-implant loss are as follows: 1) Deflection of maxillary and mandibular alveolar processes when mini-implants are more cervically placed; 2) Mini-implants placed too near the periodontal ligament, with normal intra-alveolar tooth movement; 3) Low bone density, low thickness and low alveolar bone volume; 4) Low alveolar cortical bone thickness; 5) Excessive pressure inducing trabecular bone microfracture; 6) Sites of higher anatomical weakness in the mandible and the maxilla; 7) Thicker gingival tissue not considered when choosing the mini-implant. PMID:24945511
NASA Astrophysics Data System (ADS)
Yulkifli; Afandi, Zurian; Yohandri
2018-04-01
Development of gravitation acceleration measurement using simple harmonic motion pendulum method, digital technology and photogate sensor has been done. Digital technology is more practical and optimizes the time of experimentation. The pendulum method is a method of calculating the acceleration of gravity using a solid ball that connected to a rope attached to a stative pole. The pendulum is swung at a small angle resulted a simple harmonic motion. The measurement system consists of a power supply, Photogate sensors, Arduino pro mini and seven segments. The Arduino pro mini receives digital data from the photogate sensor and processes the digital data into the timing data of the pendulum oscillation. The calculation result of the pendulum oscillation time is displayed on seven segments. Based on measured data, the accuracy and precision of the experiment system are 98.76% and 99.81%, respectively. Based on experiment data, the system can be operated in physics experiment especially in determination of the gravity acceleration.
Identification of best particle radiation shielded region through Energetic Neutral Atoms mapping
NASA Astrophysics Data System (ADS)
Milillo, A.; De Angelis, E.; Mura, A.; Orsini, S.; Mangano, V.; Massetti, S.; Rispoli, R.; Lazzarotto, F.; Vertolli, N.; Lavagna, M.; Ferrari, F.; Lunghi, P.; Attinà, P.; Parissenti, G.
2017-09-01
The lunar surface is directly exposed either to direct solar wind, or to Earth's magnetospheric plasma due to the Moon's lack of a magnetosphere or a dense atmosphere. This exposure could create inhospitable conditions for a possible human presence on the Moon, so it is crucial to investigate the close-to-surface environment for establishing the best reliable locations for future human bases. Although it lacks a global magnetic field, the Moon possesses magnetic anomalies that create mini-magnetospheres, where the solar wind is partly deflected. The local protection of the surface from the solar wind radiation inside the mini-magnetospheres could make these sites preferred for future lunar colonization. It is crucial a detailed characterization of these sites. In this paper, an investigation based on the detection of Energetic Neutral Atoms (ENA) from the surface for identifying the best particle radiation shielded region is proposed. A high spatial resolution mapping via ENA is a feasible and it is powerful way for reaching this goal.
How to create a very-low-cost, very-low-power, credit-card-sized and real-time-ready datalogger
NASA Astrophysics Data System (ADS)
Bès de Berc, M.; Grunberg, M.; Engels, F.
2015-03-01
In order to improve an existing network, a field seismologist would have to add some extra sensors to a remote station. However, additional ADCs (analogue-to-digital converters) are not always implemented on commercial dataloggers, or, if they are, they may already be used. Installing additional ADCs often implies an expensive development, or the purchase of a new datalogger. We present here a simple method to take advantage of the ADCs of an embedded computer in order to create data in a seismological standard format and integrate them within the real-time data stream from the station. Our first goal is to plug temperature and pressure sensors on the ADCs, read data and record them in mini-seed format (seed stands for Standard for the Exchange of the Earthquake Data), and eventually transfer them to a central server together with the seismic data, by using seedlink, since mini-seed and seedlink are standard for seismology.
Proteomics of edible mushrooms: A mini-review.
Al-Obaidi, Jameel R
2016-05-01
Mushrooms are considered an important food for their traditionally famous nutritional and medicinal values, although much information about their potential at the molecular level is unfortunately unknown. Edible mushrooms include fungi that are either collected wild or cultivated. Many important species are difficult to cultivate but attempts have been made with varying degrees of success, with the results showing unsatisfactory economical cultivation methods. Recently, proteomic analysis has been developed as a powerful tool to study the protein content of fungi, particularly basidiomycetes. This mini-review article highlights the contribution of proteomics platforms to the study of edible mushrooms, focusing on the molecular mechanisms involved in developmental stages. This includes extracellular and cytoplasmic effector proteins that have potential or are involved in the synthesis of anticancer, antidiabetic, antioxidant, and antibiotic, in blood pressure control, in the supply of vitamins and minerals, and in other responses to environmental changes. The contribution of different proteomics techniques including classical and more advanced techniques is also highlighted. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effect of inner guide on performances of cross flow turbine
NASA Astrophysics Data System (ADS)
Kokubu, K.; Yamasaki, K.; Honda, H.; Kanemoto, T.
2012-11-01
To get the sustainable society, the hydropower with not only the large but also the mini/micro capacity has been paid attention to the power generation. The cross-flow turbines can work efficiently at the comparatively low head and/or low discharge in the onshore and the offshore, and the runner and the casing profiles have been optimizing. In this paper, the turbine composed of the optimal profiles has prepared to provide for the mini/micro hydropower, and the performances have been investigated at the low head. The hydraulic efficiency is maximal at the normal guide vane opening and deteriorates at the lower and the higher discharge than the normal discharge. Such deteriorations are brought from the unacceptable flow conditions crossing in the runner, that is, the flow direction does not meet the setting angle of the blade at the inner radius. To improve dramatically the performances, the inner guide, which guards the shaft from the water jet and adjusts the flow direction, was installed in the runner.
Revisiting the stability of mini-implants used for orthodontic anchorage.
Yao, Chung-Chen Jane; Chang, Hao-Hueng; Chang, Jenny Zwei-Chieng; Lai, Hsiang-Hua; Lu, Shao-Chun; Chen, Yi-Jane
2015-11-01
The aim of this study is to comprehensively analyze the potential factors affecting the failure rates of three types of mini-implants used for orthodontic anchorage. Data were collected on 727 mini-implants (miniplates, predrilled titanium miniscrews, and self-drilling stainless steel miniscrews) in 220 patients. The factors related to mini-implant failure were investigated using a Chi-square test for univariate analysis and a generalized estimating equation model for multivariate analysis. The failure rate for miniplates was significantly lower than for miniscrews. All types of mini-implants, especially the self-drilling stainless steel miniscrews, showed decreased stability if the previous implantation had failed. The stability of predrilled titanium miniscrews and self-drilling stainless steel miniscrews were comparable at the first implantation. However, the failure rate of stainless steel miniscrews increased at the second implantation. The univariate analysis showed that the following variables had a significant influence on the failure rates of mini-implants: age of patient, type of mini-implant, site of implantation, and characteristics of the soft tissue around the mini-implants. The generalized estimating equation analysis revealed that mini-implants with miniscrews used in patients younger than 35 years, subjected to orthodontic loading after 30 days and implanted on the alveolar bone ridge, have a significantly higher risk of failure. This study revealed that once the dental surgeon becomes familiar with the procedure, the stability of orthodontic mini-implants depends on the type of mini-implant, age of the patient, implantation site, and the healing time of the mini-implant. Miniplates are a more feasible anchorage system when miniscrews fail repeatedly. Copyright © 2014. Published by Elsevier B.V.
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2015-01-01
The MLA and IFA of the instrument on the IceCube require a 20 C temperature and a thermal stability of +/-1 C. The thermal environment of the ISS orbit for the IceCube is very unstable due to solar beta angles in the -75deg to +75deg range. Additionally the instrument is powered off in every eclipse to conserve electrical power. These two factors cause thermal instability to the MLA and IFA. This paper presents a thermal design of using mini paraffin PCM packs to meet the thermal requirements of these instrument components. With a 31 g mass plus a 30% margin of n-hexadecane, the MLA and IFA are powered on for 32.3 minutes in sunlight at a 0deg beta angle to melt the paraffin. The powered-on time increases to 38 minutes at a 75deg (+/-) beta angle. When the MLA and IFA are powered off, the paraffin freezes.
NASA Technical Reports Server (NTRS)
Fisher, Edward M., Jr.
1991-01-01
Additional power is required to support Space Station Freedom (SSF) evolution. Boeing Defense and Space Group, LeRC, and Entech Corporation have participated in the development of efficiency gallium arsenide and gallium antimonide solar cells make up the solar array tandem cell stacks. Entech's Mini-Dome Fresnel Lens Concentrators focus solar energy onto the active area of the solar cells at 50 times one solar energy flux. Development testing for a flight array, to be launched in Nov. 1992 is under way with support from LeRC. The tandem cells, interconnect wiring, concentrator lenses, and structure were integrated into arrays subjected to environmental testing. A tandem concentrator array can provide high mass and area specific power and can provide equal power with significantly less array area and weight than the baseline array design. Alternatively, for SSF growth, an array of twice the baseline power can be designed which still has a smaller drag area than the baseline.
Psychometric Properties of the Mini-Social Phobia Inventory
Seeley-Wait, Elizabeth; Rapee, Ronald M.
2009-01-01
Objective: Although a potentially useful measure, to date, there has been only one published test of the psychometric properties of the Mini-Social Phobia Inventory (Mini-SPIN). Therefore, the psychometric properties of the Mini-SPIN, a brief 3-item screen for social anxiety disorder, were examined. Method: Participants were 186 patients diagnosed with social anxiety disorder (DSM-IV criteria) attending a specialized anxiety disorders clinic for treatment, and 56 nonclinical participants were recruited to serve as comparisons. Participants were diagnosed using the Anxiety Disorders Interview Schedule for DSM-IV, and they also completed the Mini-SPIN, the Social Interaction Anxiety Scale (SIAS), and the Social Phobia Scale (SPS). Construct validity for the Mini-SPIN was assessed by its correlations with the SIAS and the SPS. Reliability, internal consistency, discriminant validity, and sensitivity to change were also examined, and receiver operating characteristic curve analysis was conducted to determine guidelines regarding cutoff scores for the Mini-SPIN. The study was conducted between April 1999 and December 2001. Results: Supporting findings from a previous study, strong support was found for the Mini-SPIN's ability to discriminate individuals with social anxiety disorder from those without the disorder. Receiver operating characteristic analysis revealed that using a cutoff score of 6 or greater (P < .001), the Mini-SPIN demonstrates excellent sensitivity, specificity, and positive and negative predictive values. Conclusions: Findings suggest that the Mini-SPIN is a reliable and valid instrument for screening social anxiety disorder in adults. Importantly, the use of the Mini-SPIN in primary care may be one way to address the underrecognition of social anxiety disorder in such settings. Due to the ease and brevity of the measure, it also shows potential for use in epidemiology. Given that this study has revealed the ability of the Mini-SPIN to reflect treatment change, the Mini-SPIN may also be considered for use in treatment outcome studies that specifically require minimal assessment. PMID:19956461
Raju, Murugesan; Santhoshkumar, Puttur; Sharma, K. Krishna
2012-01-01
Background A substitution mutation in human αA-crystallin (αAG98R) is associated with autosomal dominant cataract. The recombinant mutant αAG98R protein exhibits altered structure, substrate-dependent chaperone activity, impaired oligomer stability and aggregation on prolonged incubation at 37°C. Our previous studies have shown that αA-crystallin–derived mini-chaperone (DFVIFLDVKHFSPEDLTVK) functions like a molecular chaperone by suppressing the aggregation of denaturing proteins. The present study was undertaken to determine the effect of αA-crystallin–derived mini-chaperone on the stability and chaperone activity of αAG98R-crystallin. Methodology/Principal Findings Recombinant αAG98R was incubated in presence and absence of mini-chaperone and analyzed by chromatographic and spectrometric methods. Transmission electron microscope was used to examine the effect of mini-chaperone on the aggregation propensity of mutant protein. Mini-chaperone containing photoactive benzoylphenylalanine was used to confirm the interaction of mini-chaperone with αAG98R. The rescuing of chaperone activity in mutantα-crystallin (αAG98R) by mini-chaperone was confirmed by chaperone assays. We found that the addition of the mini-chaperone during incubation of αAG98R protected the mutant crystallin from forming larger aggregates that precipitate with time. The mini-chaperone-stabilized αAG98R displayed chaperone activity comparable to that of wild-type αA-crystallin. The complexes formed between mini-αA–αAG98R complex and ADH were more stable than the complexes formed between αAG98R and ADH. Western-blotting and mass spectrometry confirmed the binding of mini-chaperone to mutant crystallin. Conclusion/Significance These results demonstrate that mini-chaperone stabilizes the mutant αA-crystallin and modulates the chaperone activity of αAG98R. These findings aid in our understanding of how to design peptide chaperones that can be used to stabilize mutant αA-crystallins and preserve the chaperone function. PMID:22970163
Evaluation of fracture torque resistance of orthodontic mini-implants.
Dalla Rosa, Fernando; Burmann, Paola Fp; Ruschel, Henrique C; Vargas, Ivana A; Kramer, Paulo F
2016-12-01
This study sought to assess the fracture torque resistance of mini-implants used for orthodontic anchorage. Five commercially available brands of mini-implants were used (SIN®, CONEXÃO®, NEODENT®, MORELLI®, andFORESTADENT®). Ten mini-implants of each diameter of each brand were tested, for a total 100 specimens. The mini-implants were subject to a static torsion test as described in ASTMstandard F543. Analysis of variance (ANOVA) with the Tukey multiple comparisons procedure was used to assess results. Overall, mean fracture strength ranged from 15.7 to 70.4 N·cm. Mini-implants with larger diameter exhibited higher peak torque values at fracture and higher yield strength, regardless of brand. In addition, significant differences across brands were observed when implants were stratified by diameter. In conclusion, larger mini-implant diameter is associated with increased fracture torque resistance. Additional information on peak torque values at fracture of different commercial brands of mini-implants may increase the success rate of this orthodontic anchorage modality. Sociedad Argentina de Investigación Odontológica.
Sheehan, David V; Sheehan, Kathy H; Shytle, R Douglas; Janavs, Juris; Bannon, Yvonne; Rogers, Jamison E; Milo, Karen M; Stock, Saundra L; Wilkinson, Berney
2010-03-01
To investigate the concurrent validity and reliability of the Mini International Neuropsychiatric Interview for Children and Adolescents (MINI-KID), a short structured diagnostic interview for DSM-IV and ICD-10 psychiatric disorders in children and adolescents. Participants were 226 children and adolescents (190 outpatients and 36 controls) aged 6 to 17 years. To assess the concurrent validity of the MINI-KID, participants were administered the MINI-KID and the Schedule for Affective Disorders and Schizophrenia for School Aged Children-Present and Lifetime Version (K-SADS-PL) by blinded interviewers in a counterbalanced order on the same day. Participants also completed a self-rated measure of disability. In addition, interrater (n = 57) and test-retest (n = 83) reliability data (retest interval, 1-5 days) were collected, and agreement between the parent version of the MINI-KID and the standard MINI-KID (n = 140) was assessed. Data were collected between March 2004 and January 2008. Substantial to excellent MINI-KID to K-SADS-PL concordance was found for syndromal diagnoses of any mood disorder, any anxiety disorder, any substance use disorder, any ADHD or behavioral disorder, and any eating disorder (area under curve [AUC] = 0.81-0.96, kappa = 0.56-0.87). Results were more variable for psychotic disorder (AUC = 0.94, kappa = 0.41). Sensitivity was substantial (0.61-1.00) for 15/20 individual DSM-IV disorders. Specificity was excellent (0.81-1.00) for 18 disorders and substantial (> 0.73) for the remaining 2. The MINI-KID identified a median of 3 disorders per subject compared to 2 on the K-SADS-PL and took two-thirds less time to administer (34 vs 103 minutes). Interrater and test-retest kappas were substantial to almost perfect (0.64-1.00) for all individual MINI-KID disorders except dysthymia. Concordance of the parent version (MINI-KID-P) with the standard MINI-KID was good. The MINI-KID generates reliable and valid psychiatric diagnoses for children and adolescents and does so in a third of the time as the K-SADS-PL. (c) 2010 Physicians Postgraduate Press, Inc.
Use of mini-refuges by female northern pintails wintering in southwestern Louisiana
Cox, Robert R.; Afton, Alan D.
1998-01-01
The Gulf Coast Joint Venture of the North American Waterfowl Management Plan began contracting private agricultural lands (hereafter mini-refuges) in 1988 to expand existing sanctuaries for northern pintails (Anas acuta) in southwestern Louisiana. Previous research suggested that mini-refuges may prove more attractive to pintails than permanent, open-water pools (pools) on refuges because mini-refuges provide sanctuary and food during the day, whereas pools generally provide only sanctuary (Rave and Cordes 1993). We used radiotelemetry to compare diel use of mini-refuges and pools (Lacassine Pool and Amoco Pool) by female pintails in southwestern Louisiana during winters of 1991-1992 and 1992-1993. We examined variation in use of these areas in relation to female age (immature or adult), time period (prehunting season, first hunting season, time between split hunting seasons, second hunting season, and posthunting season), and winter (1991-1992 and 1992-1993). Diurnal use of min-refuges and pools differed among time periods, but differences were not consistent between winters. Mini-refuges accounted for <2% of diurnal use by pintails in 7 of 10 time-period and winter comparisons. Diurnal use of mini-refuges was lower than that of Lacassine Pool in 8 of 10 time-period and winter comparisons. Diurnal use of mini-refuges was lower than tha of Amoco pool during first hunting season in 1992-1993, but use of these areas did not differ within other time periods and winters. Nocturnal use of mini-refuges and pools did not differ in relation to female age, time period, winter, or individual bird. Nocturnal use of mini-refuges did not differ from that of Lacassine Pool. In contrast to predictions and findings by Rave and Cordes (1993), we found that: (1) female pintails did not use mini-refuges more than pools, and (2) female pintails used mini-refuges at night. We believe that use of mini-refuges by pintails could be increased if mini-refuges were (1) located in areas of traditionally high pintail use, (2) increased in size, (3) flooded immediately prior to hunting season, and (4) cleared of dense vegetation by rolling, disking, or burning.
17. NBS TOOL ROOM. MISCELLANEOUS TOOLS USED DURING EXTRA VEHICULAR ...
17. NBS TOOL ROOM. MISCELLANEOUS TOOLS USED DURING EXTRA VEHICULAR ACTIVITY (EVA) MISSIONS AND NBS TRAINING. FROM LEFT TO RIGHT THE TOOLS ARE: SHUTTLE TRANSPORTATION SYSTEM (STS) PORTABLE FOOT RESTRAINT (PFR), ESSEX WRENCH, SOCKET WRENCH, SAFETY TETHER REEL (LEFT REAR), MINI WORKSTATION (CENTER REAR), TETHERS (FRONT CENTER), HUBBLE SPACE TELESCOPE (HST) POWER TOOL (FRONT RIGHT), HUBBLE SPACE TELESCOPE & PORTABLE FOOT RESTRAINT (REAR RIGHT). - Marshall Space Flight Center, Neutral Buoyancy Simulator Facility, Rideout Road, Huntsville, Madison County, AL
Inorganic nanostructured materials for high performance electrochemical supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng
2014-01-01
Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.
GOES data-collection system instrumentation, installation, and maintenance manual
Blee, J.W.; Herlong, H.E.; Kaufmann, C.D.; Hardee, J.H.; Field, M.L.; Middelburg, R.F.
1986-01-01
The purpose of the manual is to describe the installation, operation, and maintenance of Geostationary Operational Environmental Satellite (GOES) data collection platforms (DCP's) and associated equipment. This manual is not a substitute for DCP manufacturers ' manuals but is additional material that describes the application of data-collection platforms in the Water Resources Division. Power supplies, encoders, antennas, Mini Monitors, voltage analog devices, and the installation of these at streamflow-gaging stations are discussed in detail. (USGS)
Inorganic nanostructured materials for high performance electrochemical supercapacitors.
Liu, Sheng; Sun, Shouheng; You, Xiao-Zeng
2014-02-21
Electrochemical supercapacitors (ES) are a well-known energy storage system that has high power density, long life-cycle and fast charge-discharge kinetics. Nanostructured materials are a new generation of electrode materials with large surface area and short transport/diffusion path for ions and electrons to achieve high specific capacitance in ES. This mini review highlights recent developments of inorganic nanostructure materials, including carbon nanomaterials, metal oxide nanoparticles, and metal oxide nanowires/nanotubes, for high performance ES applications.
Recent developments in refractive concentrators for space photovoltaic power systems
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; Oneill, Mark J.
1993-01-01
Since SPRAT 11, significant progress has been made in the development of refractive concentrator elements and components designed specifically for space applications. The status of the mini-dome Fresnel lens concentrator array is discussed and then the results of work recently completed in the area of prismatic cell covers for concentrator systems are summarized. This is followed by a brief discussion of some work just starting in the area of line-focus refractive concentrators for space.
High brightness laser-diode device emitting 160 watts from a 100 μm/NA 0.22 fiber.
Yu, Junhong; Guo, Linui; Wu, Hualing; Wang, Zhao; Tan, Hao; Gao, Songxin; Wu, Deyong; Zhang, Kai
2015-11-10
A practical method of achieving a high-brightness and high-power fiber-coupled laser-diode device is demonstrated both by experiment and ZEMAX software simulation, which is obtained by a beam transformation system, free-space beam combining, and polarization beam combining based on a mini-bar laser-diode chip. Using this method, fiber-coupled laser-diode module output power from the multimode fiber with 100 μm core diameter and 0.22 numerical aperture (NA) could reach 174 W, with equalizing brightness of 14.2 MW/(cm2·sr). By this method, much wider applications of fiber-coupled laser-diodes are anticipated.
Eco-development and energy efficient technologies in Russia: prospects and reality
NASA Astrophysics Data System (ADS)
Kurakova, Oksana
2017-10-01
The article highlights the concept of eco-standards in Russia, and discusses new technologies that allow to build energy-efficient houses in the form of countryside real estate. Special attention is given to the principle of heat production based on the use of individual facilities, power centers mini thermal power plants, as well as to ways to reduce water consumption at home. Presents analysis of the advantages projects “built-to-suit” for the introduction of the energy efficient technologies. Justified idea and principles of “green construction” in Russia in the real estate market. Conclusion about the effectiveness of the use, opportunities and development of energy efficient technologies.
Zhang, Xi; Jiang, Hongrui
2015-03-09
Photo-self-charging cells (PSCs) are compact devices with dual functions of photoelectric conversion and energy storage. By introducing a scattering layer in polymer-based quasi-solid-state dye-sensitized solar cells, two-electrode PSCs with highly compact structure were obtained. The charge storage function stems from the formed ion channel network in the scattering layer/polymer electrolyte system. Both the photoelectric conversion and the energy storage functions are integrated in only the photoelectrode of such PSCs. This design of PSC could continuously output power as a solar cell with considerable efficiency after being photo-charged. Such PSCs could be applied in highly-compact mini power devices.
Turboexpanders for OTEC power plants
NASA Astrophysics Data System (ADS)
Holm, J.
1981-12-01
Centripetal (radial inflow) turboexpanders are well adapted to energy conservation schemes. A mini OTEC demonstration program, completed in 1979, uses a closed ammonia cycle to drive a 50 kw turboexpander generator unit. The turboexpander, which incorporates mechanical designs of low temperature and high speed machinery, has very high levels of reliability and efficiency. Stiff shaft designs have eliminated shaft and bearing criticals in the entire operating range. Rotor resonance problems are almost totally eliminated, and thrust bearing problems can be accurately monitored and controlled. Condensing streams and dust in gas can also be handled without erosion. Designs for radial inflow turboexpanders in sizes up to 70 MWe are presently available for use in OTEC and other power plants.
SIMTECH 2007 Mini-Symposium and Workshop Proceedings
2000-04-17
the participants validated that key SJMTECH 97 recommendations that were not fully acted on during the past decade (e.g., the need for focused... successes . First, it catalyzed Service investments in M&S. Subsequently, it was a source for the newly created Defense Modeling and Simulation Office...waterfall development model). In retrospect, there were several areas in which SIMTECH 97 was less successful . First, while looking out a decade, it
2007-08-01
26 8. ISTC Simulation Comparisons...Comparison c. Ground Range Comparison Figure 8. ISTC Simulation Comparisons Mini-Rocket User Guide REAL-WORLD COMPARISON 30 In particular, note...even though Mini-Rocket does not directly model the missile rigid body dynamics. The ISTC subsequently used Mini-Rocket as a driver to stimulate other
Exposure to manganese: health effects on the general population, a pilot study in central Mexico.
Santos-Burgoa, C; Rios, C; Mercado, L A; Arechiga-Serrano, R; Cano-Valle, F; Eden-Wynter, R A; Texcalac-Sangrador, J L; Villa-Barragan, J P; Rodriguez-Agudelo, Y; Montes, S
2001-02-01
To support a risk assessment of manganese exposure in two communities living within a manganese mining district a cross-sectional study was performed on a sample of the adult population of long-term residents. One community was exposed to a point source from an ore primary refining plant. Manganese is an essential mineral for human life. It is also the fourth in importance for industrial metal making. Data were collected on socioeconomic living conditions, emission sources, environmental media concentrations (air, water, soil, dust, food), respiratory symptomatology, and a neuropsychological examination (Mini-Mental Screening test, the Hooper Visual Organization test, the Ardila-Ostroski, and others). We examined 73 subjects (52 women), most of low socioeconomic status. Environmental air concentrations were 2 to 3 times higher than those in other urban concentrations. Manganese blood concentrations ranged from 7.5 to 88 microg/L, with a median concentration of 15, the upper quartile starting at 20 microg/L; the upper 10% was above 25 microg/L. Lead and manganese were highly correlated; there was an inverse relation to hemoglobin. Reduced levels of plasma lipid peroxidation were associated with blood manganese. Using multivariate logistic regression, we identified B-Mn as increasing the risk of deficient cognitive performance 12 times (Mini-Mental score of less than 17). Copyright 2001 Academic Press.
Abbassy, Mona A.; Sabban, Hanady M.; Hassan, Ali H.; Zawawi, Khalid H.
2015-01-01
Objectives: To evaluate the accuracy of using routine 2-dimensional (2D) radiographs (panoramic and periapical) when evaluating the position of orthodontic temporary anchorage devices (mini-implants) in the maxilla, and to compare the results to 3-dimensional cone-beam computed tomography (CBCT). Methods: This cross-sectional study was conducted at King Abdulaziz University, Faculty of Dentistry, Jeddah, Kingdom of Saudi Arabia from February 2014 to January 2015. Panoramic and periapical radiographs were used to examine the position of mini-implants in relation to the adjacent roots. Rating of mini-implants position was performed by 82 dentists from different specialties, using 2 D images according to the following criteria: 1) away from the root; 2) mini-implant tip appears touching the lamina dura; and 3) mini-implant overlays the lamina dura. The results were compared with CBCT findings. Results: There was no difference between dentists from different specialties when rating the position of the mini-implants (Cronbach’s alpha=0.956). The accuracy of the periapical images was 45.1%, while the panoramic images 33.6%. However, both panoramic and periapical radiographs were significantly inaccurate when assessing the mini-implant position when compared with the CBCT findings (p=0.0001). Conclusion: Three-dimensional CBCT technology allows better visualization of mini-implant placement. The use of CBCT when assessing the position of mini-implants is recommended. PMID:26593168
De Ceulaer, Geert; Pascoal, David; Vanpoucke, Filiep; Govaerts, Paul J
2017-11-01
The newest Nucleus CI processor, the CP900, has two new options to improve speech-in-noise perception: (1) use of an adaptive directional microphone (SCAN mode) and (2) wireless connection to MiniMic1 and MiniMic2 wireless remote microphones. An analysis was made of the absolute and relative benefits of these technologies in a real-world mimicking test situation. Speech perception was tested using an adaptive speech-in-noise test (sentences-in-babble noise). In session A, SRTs were measured in three conditions: (1) Clinical Map, (2) SCAN and (3) MiniMic1. Each was assessed for three distances between speakers and CI recipient: 1 m, 2 m and 3 m. In session B, the benefit of the use of MiniMic2 was compared to benefit of MiniMic1 at 3 m. A group of 13 adult CP900 recipients participated. SCAN and MiniMic1 improved performance compared to the standard microphone with a median improvement in SRT of 2.7-3.9 dB for SCAN at 1 m and 3 m, respectively, and 4.7-10.9 dB for the MiniMic1. MiniMic1 improvements were significant. MiniMic2 showed an improvement in SRT of 22.2 dB compared to 10.0 dB for MiniMic1 (3 m). Digital wireless transmission systems (i.e. MiniMic) offer a statistically and clinically significant improvement in speech perception in challenging, realistic listening conditions.
NREL: International Activities - Country Programs
for use of mini-grid quality assurance and design standards and advising on mini-grid business models communities of practice and technical collaboration across countries on mini-grid development, modeling and interconnection standards and procedures, and with strengthening mini-grids and energy access programs. NREL is
Novel Propulsion and Power Concepts for 21st Century Aviation
NASA Technical Reports Server (NTRS)
Sehra, Arun K.
2003-01-01
The air transportation for the new millennium will require revolutionary solutions to meeting public demand for improving safety, reliability, environmental compatibility, and affordability. NASA s vision for 21st Century Aircraft is to develop propulsion systems that are intelligent, virtually inaudible (outside the airport boundaries), and have near zero harmful emissions (CO2 and NO(x)). This vision includes intelligent engines that will be capable of adapting to changing internal and external conditions to optimally accomplish the mission with minimal human intervention. The distributed vectored propulsion will replace two to four wing mounted or fuselage mounted engines by a large number of small, mini, or micro engines. And the electric drive propulsion based on fuel cell power will generate electric power, which in turn will drive propulsors to produce the desired thrust. Such a system will completely eliminate the harmful emissions.
Stackable air-cooled heatsinks for diode lasers
NASA Astrophysics Data System (ADS)
Crum, T. R.; Harrison, J.; Srinivasan, R.; Miller, R. L.
2007-02-01
Micro-channel heatsink assemblies made from bonding multi-layered etched metal sheets are commercially available and are often used for removing the high waste heat loads generated by the operation of diode-laser bars. Typically, a diode-laser bar is bonded onto a micro-channel (also known as mini-channel) heatsink then stacked in an array to create compact high power diode-laser sources for a multitude of applications. Under normal operation, the diode-laser waste heat is removed by passing coolant (typically de-ionized water) through the channels of the heatsink. Because of this, the heatsink internal structure, including path length and overall channel size, is dictated by the liquid coolant properties. Due to the material characteristics of these conductive heatsinks, and the necessary electrically serial stacking geometry, there are several restrictions imparted on the coolant liquid to maintain performance and lifetime. Such systems require carefully monitored and conductive limited de-ionized water, as well as require stable pH levels, and suitable particle filtration. These required coolant systems are either stand alone, or heat exchangers are typically costly and heavy restricting certain applications where minimal weight to power ratios are desired. In this paper, we will baseline the existing water cooled Spectra-Physics Monsoon TM heatsink technology utilizing compressed air, and demonstrate a novel modular stackable heatsink concept for use with gaseous fluids that, in some applications may replace the existing commercially available water-cooled heatsink technology. We will explain the various benefits of utilizing air while maintaining mechanical form factors and packing densities. We will also show thermal-fluid modeling results and predictions as well as operational performance curves for efficiency and power and compare these data to the existing commercially available technology.
Sterile Neutrino Searches in MiniBooNE and MicroBooNE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ignarra, Christina M.
Tension among recent short baseline neutrino experiments has pointed toward the possible need for the addition of one or more sterile (non-interacting) neutrino states into the existing neutrino oscillation framework. This thesis fi rst presents the motivation for sterile neutrino models by describing the short-baseline anomalies that can be addressed with them. This is followed by a discussion of the phenomenology of these models. The MiniBooNE experiment and results are then described in detail, particularly the most recent antineutrino analysis. This will be followed by a discussion of global fits to world data, including the anomalous data sets. Lastly, futuremore » experiments will be addressed, especially focusing on the MicroBooNE experiment and light collection studies. In particular, understanding the degradation source of TPB, designing the TPB-coated plates for MicroBooNE and developing lightguide collection systems will be discussed. We find an excess of events in the MiniBooNE antineutrino mode results consistent with the LSND anomaly, but one that has a di fferent energy dependence than the low-energy excess reported in neutrino mode. This disagreement creates tension within global fi ts which include up to three sterile neutrinos. The low-energy excess will be addressed by the MicroBooNE experiment, which is expected to start taking data in early 2015. Tension among existing experiments calls for additional, more decisive future experiments.« less
NASA Astrophysics Data System (ADS)
Riffel, Katharina; Sebastian, Donner; Shaiganfar, Reza; Wagner, Thomas; Dörner, Steffen
2016-04-01
The MAX DOAS-Method (Multi-AXis Differential Optical Absorption Spectroscopy) is used to analyze different trace gases (e.g. NO2, SO2, HCHO) at the same time and to determine the trace gas vertical column density (vertically integrated concentration). In summer 2015 we performed car-MAX-DOAS measurements in Romania during the AROMAT2 campaign. We encircled Bucharest at different weather situations and different times of the day. Afterwards the total NOx emissions were derived from the mobile MAX-DOAS observations in combination with wind data. In Germany we performed the same measurement procedure in fall/ winter/ spring 2015 /2016 by encircling the cities Mainz and Frankfurt. For the setting we mounted two MAX-DOAS instruments with different viewing directions (forward and backward) on the roof of a car. One instrument is a commercial mini MAX-DOAS that is built by the German company Hoffmann Messtechnik. The second one was built at the MPI in Mainz. This so-called Tube MAX-DOAS uses an AVANTES spectrometer with better optical characteristics than Hoffmann's mini MAX-DOAS. The advantage of two instruments working at the same time is (besides redundancy) that localized emission plumes can be measured from different directions at different locations. Thus, especially for emission plumes from power plants, tomographic methods can be applied to derive information about the plume altitude. Car-MAX-DOAS observations can cover large areas at a short time with reasonable resolution (depending on the speed of the car and the instruments integration time). Thus these measurements are well suited to validate satellites observations. This work will show the first AROMAT2 results of NOx emissions derived in Romania and in the Rhein-Main region, which is one of the most polluted area in Germany.
Reading Mini-Lessons: An Instructional Practice for Meaning Centered Reading Programs.
ERIC Educational Resources Information Center
Barrentine, Shelby; And Others
1995-01-01
Mini-lessons (brief, informative explanations that demonstrate what readers do) are a key instructional practice in meaning centered reading programs. The content of the mini-lessons is determined by the needs of learners. In procedural mini-lessons, teachers explain the steps for successfully completing a task or performing a reading-related…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flint, D B; O’Brien, D J; McFadden, C H
Purpose: To determine the effect of gold-nanoparticles (AuNPs) on energy deposition in water for different irradiation conditions. Methods: TOPAS version B12 Monte Carlo code was used to simulate energy deposition in water from monoenergetic 40 keV and 85 keV photon beams and a 6 MV Varian Clinac photon beam (IAEA phase space file, 10x10 cm{sup 2}, SSD 100 cm). For the 40 and 85 keV beams, monoenergetic 2x2 mm{sup 2} parallel beams were used to irradiate a 30x30x10 µm {sup 3} water mini-phantom located at 1.5 cm depth in a 30x30x50 cm{sup 3} water phantom. 5000 AuNPs of 50 nmmore » diameter were randomly distributed inside the mini-phantom. Energy deposition was scored in the mini-phantom with the AuNPs’ material set to gold and then water. For the 6 MV beam, we created another phase space (PHSP) file on the surface of a 2 mm diameter sphere located at 1.5 cm depth in the water phantom. The PHSP file consisted of all particles entering the sphere including backscattered particles. Simulations were then performed using the new PHSP as the source with the mini-phantom centered in a 2 mm diameter water sphere in vacuum. The g4em-livermore reference list was used with “EMRangeMin/EMRangeMax = 100 eV/7 MeV” and “SetProductionCutLowerEdge = 990 eV” to create the new PHSP, and “SetProductionCutLowerEdge = 100 eV” for the mini-phantom simulations. All other parameters were set as defaults (“finalRange = 100 µm”). Results: The addition of AuNPs resulted in an increase in the mini-phantom energy deposition of (7.5 ± 8.7)%, (1.6 ± 8.2)%, and (−0.6 ± 1.1)% for 40 keV, 85 keV and 6 MV beams respectively. Conclusion: Enhanced energy deposition was seen at low photon energies, but decreased with increasing energy. No enhancement was observed for the 6 MV beam. Future work is required to decrease the statistical uncertainties in the simulations. This research is partially supported from institutional funds from the Center for Radiation Oncology Research, The University of Texas MD Anderson Cancer Center.« less
Yingyongyudha, Anyamanee; Saengsirisuwan, Vitoon; Panichaporn, Wanvisa; Boonsinsukh, Rumpa
2016-01-01
Balance deficits a significant predictor of falls in older adults. The Balance Evaluation Systems Test (BESTest) and the Mini-Balance Evaluation Systems Test (Mini-BESTest) are tools that may predict the likelihood of a fall, but their capabilities and accuracies have not been adequately addressed. Therefore, this study aimed at examining the capabilities of the BESTest and Mini-BESTest for identifying older adult with history of falls and comparing the participants with history of falls identification accuracy of the BESTest, Mini-BESTest, Berg Balance Scale (BBS), and the Timed Up and Go Test (TUG) for identifying participants with a history of falls. Two hundred healthy older adults with a mean age of 70 years were classified into participants with and without history of fall groups on the basis of their 12-month fall history. Their balance abilities were assessed using the BESTest, Mini-BESTest, BBS, and TUG. An analysis of the resulting receiver operating characteristic curves was performed to calculate the area under the curve (AUC), sensitivity, specificity, cutoff score, and posttest accuracy of each. The Mini-BESTest showed the highest AUC (0.84) compared with the BESTest (0.74), BBS (0.69), and TUG (0.35), suggesting that the Mini-BESTest had the highest accuracy in identifying older adult with history of falls. At the cutoff score of 16 (out of 28), the Mini-BESTest demonstrated a posttest accuracy of 85% with a sensitivity of 85% and specificity of 75%. The Mini-BESTest had the highest posttest accuracy, with the others having results of 76% (BESTest), 60% (BBS), and 65% (TUG). The Mini-BESTest is the most accurate tool for identifying older adult with history of falls compared with the BESTest, BBS, and TUG.
Bortoluzzi, C; Paras, K L; Applegate, T J; Verocai, G G
2018-04-30
Monitoring Eimeria shedding has become more important due to the recent restrictions to the use of antibiotics within the poultry industry. Therefore, there is a need for the implementation of more precise and accurate quantitative diagnostic techniques. The objective of this study was to compare the precision and accuracy between the Mini-FLOTAC and the McMaster techniques for quantitative diagnosis of Eimeria maxima oocyst in poultry. Twelve pools of excreta samples of broiler chickens experimentally infected with E. maxima were analyzed for the comparison between Mini-FLOTAC and McMaster technique using, the detection limits (dl) of 23 and 25, respectively. Additionally, six excreta samples were used to compare the precision of different dl (5, 10, 23, and 46) using the Mini-FLOTAC technique. For precision comparisons, five technical replicates of each sample (five replicate slides on one excreta slurry) were read for calculating the mean oocyst per gram of excreta (OPG) count, standard deviation (SD), coefficient of variation (CV), and precision of both aforementioned comparisons. To compare accuracy between the methods (McMaster, and Mini-FLOTAC dl 5 and 23), excreta from uninfected chickens was spiked with 100, 500, 1,000, 5,000, or 10,000 OPG; additional samples remained unspiked (negative control). For each spiking level, three samples were read in triplicate, totaling nine reads per spiking level per technique. Data were transformed using log10 to obtain normality and homogeneity of variances. A significant correlation (R = 0.74; p = 0.006) was observed between the mean OPG of the McMaster dl 25 and the Mini-FLOTAC dl 23. Mean OPG, CV, SD, and precision were not statistically different between the McMaster dl 25 and Mini-FLOTAC dl 23. Despite the absence of statistical difference (p > 0.05), Mini-FLOTAC dl 5 showed a numerically lower SD and CV than Mini-FLOTAC dl 23. The Pearson correlation coefficient revealed significant and positive correlation among the four dl (p ≤ 0.05). In the accuracy study, it was observed that the Mini-FLOTAC dl 5 and 23 were more accurate than the McMaster for 100 OPG, and the Mini-FLOTAC dl 23 had the highest accuracy for 500 OPG. The McMaster and Mini-FLOTAC dl 23 techniques were more accurate than the Mini-FLOTAC dl 5 for 5,000 OPG, and both dl of the Mini-FLOTAC were less accurate for 10,000 OPG counts than the McMaster technique. However, the overall accuracy of the Mini-FLOTAC dl 23 was higher than the McMaster and Mini-FLOTAC dl 5 techniques. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Mase, Kenichi
A smart community can be considered an essential component to realize a sustainable, low-carbon, and disaster-tolerant society, thereby providing a base for community inhabitants to lead a simple, healthy, and energy-saving way of life as well as ensuring safety, security, and a high quality-of-life in the community. In particular, a smart community can be essential for senior citizens in an aging society. Smart community enablers such as information and communication technology (ICT) and electric vehicles (EVs) can perform essential roles to realize a smart community. With regard to ICT, the necessity of a dedicated wireless sensor backbone has been identified. With regard to EV, a small-sized EV with one or two seats (Mini-EV) has been identified as an emerging player to support personal daily mobility in an aged society. The Mini-EV may be powered by a solar battery, thereby mitigating vehicular maintenance burden for the elderly. It is essential to realize a dependable ICT network and communication service for a smart community. In the study, we present the concept of trans-locatable design to achieve this goal. The two possible roles of EVs in contributing to a dependable ICT network are highlighted; these include EV charging of the batteries of the base stations in the network, and the creation of a Mini-EV based ad-hoc network that can enable applications such as safe driving assistance and secure neighborhoods.
Perovskites: transforming photovoltaics, a mini-review
Chilvery, Ashwith Kumar; Batra, Ashok K.; Yang, Bin; ...
2015-01-06
The recent power-packed advent of perovskite solar cells is transforming photovoltaics (PV) with their superior efficiencies, ease of fabrication, and cost. This perovskite solar cell further boasts of many unexplored features that can further enhance its PV properties and lead to it being branded as a successful commercial product. This paper provides a detailed insight of the organometal halide based perovskite structure, its unique stoichiometric design, and its underlying principles for PV applications. Finally, the compatibility of various PV layers and its fabrication methods is also discussed.
2013-11-04
ISS037-E-025870 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
2013-11-04
ISS037-E-025868 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
DOD SPHERES-RINGS Test Session
2013-11-04
ISS037-E-025915 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
2013-11-04
ISS037-E-025866 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
2013-11-04
ISS037-E-025872 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
2013-11-04
ISS037-E-025879 (4 Nov. 2013) --- In the International Space Station?s Kibo laboratory, NASA astronaut Michael Hopkins, Expedition 37 flight engineer, conducts a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
Mini- and microgenerators applicable in the MEMS technology
NASA Astrophysics Data System (ADS)
Fiala, P.; Szabo, Z.; Marcon, P.; Roubal, Z.
2017-06-01
The article presents certain general conclusions obtained from an investigation of a vibration-powered milli- or microgenerator functioning as a harvester. In this context, the authors summarize the parameters that are critical in designing optimal generators to retrieve the residual energy contained in an electromechanical system and transferred through the vibrations of an independent structure. The discussion exploits our previous results, which theoretically define the properties characterizing the models of individual basic configurations of a generator based on Faraday's law of induction.
ERIC Educational Resources Information Center
Campbell, Thomas F.
2013-01-01
This case study will investigate teachers' and administrators' perceptions of the relationship between mini observations and teacher performance to understand what effect, if any, a system of mini observations has on teacher performance, and if mini observations influences a teacher's pedagogical practice differently than a…
[Research status and prospects of DNA test on difficult specimens].
Dang, Hua-Wei; Mao, Jiong; Wang, Hui; Huang, Jiang-Ping; Bai, Xiao-Gang
2012-02-01
This paper reviews the advances of DNA detection on three types of difficult biological specimens including degraded samples, trace evidences and mixed samples. The source of different samples, processing methods and announcements were analyzed. New methods such as mitochondrial test system, changing the original experimental conditions, low-volume PCR amplification and new technologies such as whole genome amplification techniques, laser capture micro-dissection, and mini-STR technology in recent years are introduced.
Translationa on Environmental Quality No. 184.
1978-11-06
sonnel and facilities for quak« defection . The team sent by the Minis- try of Science and Technology also urged the government to conduct a nation...Municipal Department of Water and Sewers, Napoleao Rodrigues de Freitas shows why. Pesticides DMAE [Municipal Department of Water and Sewers] report...do Sul region," the report states, "causes great concern for the DMAE because it serves as a supply 15 source for the city of Porto Alegre. The
Lee, Robert J; Moon, Won; Hong, Christine
2017-05-01
Bone-borne palatal expansion relies on mini-implant stability for successful orthopedic expansion. The large magnitude of applied force experienced by mini-implants during bone-borne expansion may lead to high failure rates. Use of bicortical mini-implant anchorage rather than monocortical anchorage may improve mini-implant stability. The aims of this study were to analyze and compare the effects of bicortical and monocortical anchorages on stress distribution and displacement during bone-borne palatal expansion using finite element analysis. Two skull models were constructed to represent expansion before and after midpalatal suture opening. Three clinical situations with varying mini-implant insertion depths were studied in each skull model: monocortical, 1-mm bicortical, and 2.5-mm bicortical. Finite element analysis simulations were performed for each clinical situation in both skull models. Von Mises stress distribution and transverse displacement were evaluated for all models. Peri-implant stress was greater in the monocortical anchorage model compared with both bicortical anchorage models. In addition, transverse displacement was greater and more parallel in the coronal plane for both bicortical models compared with the monocortical model. Minimal differences were observed between the 1-mm and the 2.5-mm bicortical models for both peri-implant stress and transverse displacement. Bicortical mini-implant anchorage results in improved mini-implant stability, decreased mini-implant deformation and fracture, more parallel expansion in the coronal plane, and increased expansion during bone-borne palatal expansion. However, the depth of bicortical mini-implant anchorage was not significant. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Lee, Robert J.; Moon, Won; Hong, Christine
2017-01-01
Introduction Bone-borne palatal expansion relies on mini-implant stability for successful orthopedic expansion. The large magnitude of applied force experienced by mini-implants during bone-borne expansion may lead to high failure rates. Use of bicortical mini-implant anchorage rather than monocortical anchorage may improve mini-implant stability. The aim of this study was to analyze and compare the effects of bicortical and monocortical anchorage on stress distribution and displacement during bone-borne palatal expansion using finite element analysis (FEA). Methods Two skull models were constructed to represent expansion prior to and after midpalatal suture opening. Three clinical situations with varying mini-implant insertion depths were studied in each skull model: monocortical, 1mm bicortical, and 2.5mm bicortical. FEA simulations were performed for each clinical situation in both skull models. Von Mises stress distribution and transverse displacement was evaluated for all models. Results Peri-implant stress was greater in the monocortical anchorage model compared to both bicortical anchorage models. In addition, transverse displacement was greater and more parallel in the coronal plane for both bicortical models compared to the monocortical model. Minimal differences were observed between the 1mm bicortical and 2.5mm bicortical models for both peri-implant stress and transverse displacement. Conclusions Bicortical mini-implant anchorage results in improved mini-implant stability, decreased mini-implant deformation and fracture, more parallel expansion in the coronal plane, and increased expansion during bone-borne palatal expansion. However, the depth of bicortical mini-implant anchorage was not significant. PMID:28457266
Gaber, Dina M; Nafee, Noha; Abdallah, Osama Y
2015-07-05
Whether mini-tablets (tablets, diameters ≤6mm) belong to single- or multiple-unit dosage forms is still questionable. Accordingly, Pharmacopoeial evaluation procedures for mini-tablets are lacking. In this study, the aforementioned points were discussed. Moreover, their potential for oral controlled delivery was assessed. The antidepressant venlafaxine hydrochloride (Vx), a highly soluble drug undergoing first pass effect, low bioavailability and short half-life was selected as a challenging payload. In an attempt to weigh up mini-tablets versus pellets as multiparticulate carriers, Vx-loaded mini-tablets were compared to formulated pellets of the same composition and the innovator Effexor(®)XR pellets. Formulations were prepared using various polymer hydrogels in the core and ethyl cellulose film coating with increasing thickness. Mini-tablets (diameter 2mm) showed extended Vx release (<60%, 8h). Indeed, release profiles comparable to Effexor(®)XR pellets were obtained. Remarkably higher coating thickness was required for pellets to provide equivalent retardation. Ethyl cellulose in the core ensured faster release due to polymer migration to the surface and pore formation in the coat. mini-tablets showed higher stability to pellets upon storage. Industrially speaking, mini-tablets proved to be superior to pellets in terms of manufacturing, product quality and economical aspects. Results point out the urgent need for standardized evaluation procedures for mini-tablets. Copyright © 2015. Published by Elsevier B.V.
Garside, Mark J; Fisher, James M; Blundell, Adrian G; Gordon, Adam L
2018-01-01
Mini Geriatric E-Learning Modules (Mini-GEMs) are short, focused, e-learning videos on geriatric medicine topics, hosted on YouTube, which are targeted at junior doctors working with older people. This study aimed to explore how these resources are accessed and used. The authors analyzed the viewing data from 22 videos published over the first 18 months of the Mini-GEM project. We conducted a focus group of U.K. junior doctors considering their experiences with Mini-GEMS. The Mini-GEMs were viewed 10,291 times over 18 months, equating to 38,435 minutes of total viewing time. The average viewing time for each video was 3.85 minutes. Learners valued the brevity and focused nature of the Mini-GEMs and reported that they watched them in a variety of settings to supplement clinical experiences and consolidate learning. Watching the videos led to an increase in self-reported confidence in managing older patients. Mini-GEMs can effectively disseminate clinical teaching material to a wide audience. The videos are valued by junior doctors due to their accessibility and ease of use.
Impact of implant design on primary stability of orthodontic mini-implants.
Wilmes, Benedict; Ottenstreuer, Stephanie; Su, Yu-Yu; Drescher, Dieter
2008-01-01
Skeletal anchorage with mini-implants has greatly broadened the treatment possibilities in orthodontics over the last few years. To reduce implant failure rates, it is advisable to obtain adequate primary stability. The aim of this study was to quantitatively analyze the impact of implant design and dimension on primary stability. Forty-two porcine iliac bone segments were prepared and embedded in resin. To evaluate the primary stability, we documented insertion torques of the following mini-implants: Aarhus Screw, AbsoAnchor, LOMAS, Micro-Anchorage-System, ORLUS and Spider Screw. In each bone, five Dual Top Screws were inserted for reference purposes to achieve comparability among the specimens. We observed wide variation in insertion torques and hence primary stability, depending on mini-implant design and dimension; the great impact that mini-implant diameter has on insertion torques was particularly conspicuous. Conical mini-implants achieved higher primary stabilities than cylindrical designs. The diameter and design of the mini-implant thread have a distinctive impact on primary stability. Depending on the region of insertion and local bone quality, the choice of the mini-implant design and size is crucial to establish sufficient primary stability.
Measuring the Neutron Cross Section and Detector Response from Interactions in Liquid Argon
NASA Astrophysics Data System (ADS)
Kamp, Nicholas; Collaboration, Captain
2017-09-01
The main objective of the CAPTAIN (Cryogenic Apparatus for Precision Tests of Argon Interactions with Neutrinos) program is to measure neutron and neutrino interactions in liquid argon. These results will be essential to the development of both short and long baseline neutrino experiments. The full CAPTAIN experiment involves a 10 ton liquid argon time projection chamber (LArTPC) that will take runs at a low-energy ( 10-50 MeV) stopped pion neutrino source. A two ton LArTPC, MiniCAPTAIN, will serve as a prototype for the full CAPTAIN detector. MiniCAPTAIN has been deployed to take data at the Los Alamos Neutron Science Center in late July. During this run, it will both test new LArTPC technologies and measure the cross section and detector response of neutron interactions in liquid argon. The results will be helpful in characterizing neutral current neutrino interactions and identifying background in future neutrino detection experiments. This poster gives an overview of these results and a status update on the CAPTAIN collaboration.
Development of a new linearly variable edge filter (LVEF)-based compact slit-less mini-spectrometer
NASA Astrophysics Data System (ADS)
Mahmoud, Khaled; Park, Seongchong; Lee, Dong-Hoon
2018-02-01
This paper presents the development of a compact charge-coupled detector (CCD) spectrometer. We describe the design, concept and characterization of VNIR linear variable edge filter (LVEF)- based mini-spectrometer. The new instrument has been realized for operation in the 300 nm to 850 nm wavelength range. The instrument consists of a linear variable edge filter in front of CCD array. Low-size, light-weight and low-cost could be achieved using the linearly variable filters with no need to use any moving parts for wavelength selection as in the case of commercial spectrometers available in the market. This overview discusses the main components characteristics, the main concept with the main advantages and limitations reported. Experimental characteristics of the LVEFs are described. The mathematical approach to get the position-dependent slit function of the presented prototype spectrometer and its numerical de-convolution solution for a spectrum reconstruction is described. The performance of our prototype instrument is demonstrated by measuring the spectrum of a reference light source.
Nonlinear Modeling of Joint Dominated Structures
NASA Technical Reports Server (NTRS)
Chapman, J. M.
1990-01-01
The development and verification of an accurate structural model of the nonlinear joint-dominated NASA Langley Mini-Mast truss are described. The approach is to characterize the structural behavior of the Mini-Mast joints and struts using a test configuration that can directly measure the struts' overall stiffness and damping properties, incorporate this data into the structural model using the residual force technique, and then compare the predicted response with empirical data taken by NASA/LaRC during the modal survey tests of the Mini-Mast. A new testing technique, referred to as 'link' testing, was developed and used to test prototype struts of the Mini-Masts. Appreciable nonlinearities including the free-play and hysteresis were demonstrated. Since static and dynamic tests performed on the Mini-Mast also exhibited behavior consistent with joints having free-play and hysteresis, nonlinear models of the Mini-Mast were constructed and analyzed. The Residual Force Technique was used to analyze the nonlinear model of the Mini-Mast having joint free-play and hysteresis.
[Bone remodeling and modeling/mini-modeling.
Hasegawa, Tomoka; Amizuka, Norio
Modeling, adapting structures to loading by changing bone size and shapes, often takes place in bone of the fetal and developmental stages, while bone remodeling-replacement of old bone into new bone-is predominant in the adult stage. Modeling can be divided into macro-modeling(macroscopic modeling)and mini-modeling(microscopic modeling). In the cellular process of mini-modeling, unlike bone remodeling, bone lining cells, i.e., resting flattened osteoblasts covering bone surfaces will become active form of osteoblasts, and then, deposit new bone onto the old bone without mediating osteoclastic bone resorption. Among the drugs for osteoporotic treatment, eldecalcitol(a vitamin D3 analog)and teriparatide(human PTH[1-34])could show mini-modeling based bone formation. Histologically, mature, active form of osteoblasts are localized on the new bone induced by mini-modeling, however, only a few cell layer of preosteoblasts are formed over the newly-formed bone, and accordingly, few osteoclasts are present in the region of mini-modeling. In this review, histological characteristics of bone remodeling and modeling including mini-modeling will be introduced.
Ishida, Hideyuki; Sobajima, Jun; Yokoyama, Masaru; Nakada, Hiroshi; Okada, Norimichi; Kumamoto, Kensuke; Ishibashi, Keiichiro
2014-01-01
We performed a retrospective review of non-overweight (body mass index ≤ 25 kg/m2) patients scheduled to undergo a curative resection of locally advanced colon cancer via a transverse mini-incision (n = 62) or a longitudinal mini-incision (skin incision ≤7 cm, n = 62), with the latter group of patients randomly selected as historical controls matched with the former group according to tumor location. Extension of the transverse mini-incision wound was necessary in 3 patients (5%). Both groups were largely equivalent in terms of demographic, clinicopathological, and surgical factors and frequency of postoperative complications. Postoperative analgesic was significantly less (P = 0.04) and postoperative length of the hospital stay was significantly shorter (P < 0.01) in the transverse mini-incision group. Concerning a mini-incision approach for locally advanced colonic cancer, a transverse incision seems to be advantageous with regard to minimal invasiveness and early recovery compared with a longitudinal incision. PMID:24833142
Domínguez-Vicent, Alberto; Esteve-Taboada, Jose Juan; Recchioni, Alberto; Brautaset, Rune
2018-05-01
To assess the power profile and in vitro optical quality of scleral contact lenses with different powers as a function of the optical aperture. The mini and semiscleral contact lenses (Procornea) were measured for five powers per design. The NIMO TR-1504 (Lambda-X) was used to assess the power profile and Zernike coefficients of each contact lens. Ten measurements per lens were taken at 3- and 6-mm apertures. Furthermore, the optical quality of each lens was described in Zernike coefficients, modulation transfer function, and point spread function (PSF). A convolution of each lens PSF with an eye-chart image was also computed. The optical power fluctuated less than 0.5 diopters (D) along the optical zone of each lens. However, the optical power obtained for some lenses did not match with its corresponding nominal one, the maximum difference being 0.5 D. In optical quality, small differences were obtained among all lenses within the same design. Although significant differences were obtained among lenses (P<0.05), these showed small impact in the image quality of each convolution. Insignificant power fluctuations were obtained along the optical zone measured for each scleral lens. Additionally, the optical quality of both lenses has showed to be independent of the lens power within the same aperture.
Mini-marathon groups: psychological "first aid" following disasters.
Terr, L C
1992-01-01
Large group counseling sessions for soldiers following battle have been commonly used since World War II. The author conceptualizes and demonstrates how these mini-marathon sessions can be adapted to support all ages and types of civilians involved in disasters. Mini-marathons take about 3 hours and are divided into three sections: story sharing, symptom sharing, and suggestions for self-help, including sharing tales of heroism and survival. After an initial mini-marathon session, a second session may be held emphasizing creativity. The author also describes how mini-marathons can be adapted for therapists who will lead their own sessions.
Quantifying Motor Experience in the Infant Brain: EEG Power, Coherence, and Mu Desynchronization
Gonzalez, Sandy L.; Reeb-Sutherland, Bethany C.; Nelson, Eliza L.
2016-01-01
The emergence of new motor skills, such as reaching and walking, dramatically changes how infants engage with the world socially and cognitively. Several examples of how motor experience can cascade into cognitive and social development have been documented, yet a significant knowledge gap remains in our understanding of whether these observed behavioral changes are accompanied by underlying neural changes. We propose that electroencephalography (EEG) measures such as power, coherence, and mu desynchronization are optimal tools to quantify motor experience in the infant brain. In this mini-review, we will summarize existing infant research that has separately assessed the relation between motor, cognitive, or social development with coherence, power, or mu desynchronization. We will discuss how the reviewed neural changes seen in seemingly separate developmental domains may be linked based on existing behavioral evidence. We will further propose that power, coherence, and mu desynchronization be used in research exploring the links between motor experience and cognitive and social development. PMID:26925022
NASA Astrophysics Data System (ADS)
Konishi, Takeshi; Hase, Shin-Ichi; Nakamichi, Yoshinobu; Nara, Hidetaka; Uemura, Tadashi
Interest has been shown in the concept of an energy storage system aimed at leveling load and improving energy efficiency by charging during vehicle regeneration and discharging during running. Such a system represents an efficient countermeasure against pantograph point voltage drop, power load fluctuation and regenerative power loss. We selected an EDLC model as an energy storage medium and a step-up/step-down chopper as a power converter to exchange power between the storage medium and overhead lines. Basic verification was conducted using a mini-model for DC 400V, demonstrating characteristics suitable for its use as an energy storage system. Based on these results, an energy storage system was built for DC 600V and a verification test conducted in conjunction with the Enoshima Electric Railway Co. Ltd. This paper gives its experimental analysis of voltage drop compensation in a DC electrified railway and some discussions based on the test.
A programmable palm-size gas analyzer for use in micro-autonomous systems
NASA Astrophysics Data System (ADS)
Gordenker, Robert J. M.; Wise, Kensall D.
2012-06-01
Gas analysis systems having small size, low power, and high selectivity are badly needed for defense (detection of explosives and chemical warfare agents), homeland security, health care, and environmental applications. This paper presents a palm-size gas chromatography system having analysis times of 5-50sec, detection limits less than 1ppb, and an average power dissipation less than one watt. It uses no consumables. The three-chip fluidic system consists of a preconcentrator, a 25cm-3m separation column, and a chemi-resistive detector and is supported by a microcomputer and circuitry for programmable temperature control. The entire system, including the mini-pump and battery, occupies less than 200cc and is configured for use on autonomous robotic vehicles.
Turboexpanders for OTEC power plants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holm, J.
1981-01-01
Centripetal (radial inflow) turboexpanders are well adapted to energy conservation schemes. A mini OTEC demonstration program, completed in 1979, uses a closed ammonia cycle to drive a 50 kw turboexpander generator unit. The turboexpander, which incorporates mechanical designs of low temperature and high speed machinery, has very high levels of reliability and efficiency. Stiff shaft designs have eliminated shaft and bearing criticals in the entire operating range. Rotor resonance problems are almost totally eliminated, and thrust bearing problems can be accurately monitored and controlled. Condensing streams and dust in gas can also be handled without erosion. Designs for radial inflowmore » turboexpanders in sizes up to 70 MWe are presently available for use in OTEC and other power plants.« less
Correlation between disease severity and brain electric LORETA tomography in Alzheimer's disease.
Gianotti, Lorena R R; Künig, Gabriella; Lehmann, Dietrich; Faber, Pascal L; Pascual-Marqui, Roberto D; Kochi, Kieko; Schreiter-Gasser, Ursula
2007-01-01
To compare EEG power spectra and LORETA-computed intracortical activity between Alzheimer's disease (AD) patients and healthy controls, and to correlate the results with cognitive performance in the AD group. Nineteen channel resting EEG was recorded in 21 mild to moderate AD patients and in 23 controls. Power spectra and intracortical LORETA tomography were computed in seven frequency bands and compared between groups. In the AD patients, the EEG results were correlated with cognitive performance (Mini Mental State Examination, MMSE). AD patients showed increased power in EEG delta and theta frequency bands, and decreased power in alpha2, beta1, beta2 and beta3. LORETA specified that increases and decreases of power affected different cortical areas while largely sparing prefrontal cortex. Delta power correlated negatively and alpha1 power positively with the AD patients' MMSE scores; LORETA tomography localized these correlations in left temporo-parietal cortex. The non-invasive EEG method of LORETA localized pathological cortical activity in our mild to moderate AD patients in agreement with the literature, and yielded striking correlations between EEG delta and alpha1 activity and MMSE scores in left temporo-parietal cortex. The present data support the hypothesis of an asymmetrical progression of the Alzheimer's disease.
Revolutionary Propulsion Systems for 21st Century Aviation
NASA Technical Reports Server (NTRS)
Sehra, Arun K.; Shin, Jaiwon
2003-01-01
The air transportation for the new millennium will require revolutionary solutions to meeting public demand for improving safety, reliability, environmental compatibility, and affordability. NASA's vision for 21st Century Aircraft is to develop propulsion systems that are intelligent, virtually inaudible (outside the airport boundaries), and have near zero harmful emissions (CO2 and Knox). This vision includes intelligent engines that will be capable of adapting to changing internal and external conditions to optimally accomplish the mission with minimal human intervention. The distributed vectored propulsion will replace two to four wing mounted or fuselage mounted engines by a large number of small, mini, or micro engines, and the electric drive propulsion based on fuel cell power will generate electric power, which in turn will drive propulsors to produce the desired thrust. Such a system will completely eliminate the harmful emissions. This paper reviews future propulsion and power concepts that are currently under development at NASA Glenn Research Center.
Adamowska, Sylwia; Sylwia, Adamowska; Adamowski, Tomasz; Tomasz, Adamowski; Frydecka, Dorota; Dorota, Frydecka; Kiejna, Andrzej; Andrzej, Kiejna
2014-10-01
Since over forty years structuralized interviews for clinical and epidemiological research in child and adolescent psychiatry are being developed that should increase validity and reliability of diagnoses according to classification systems (DSM and ICD). The aim of the study is to assess the validity of the Polish version of MINI-KID (Mini International Neuropsychiatric Interview for Children and Adolescents) in comparison to clinical diagnosis made by a specialist in the field of child and adolescent psychiatry. There were 140 patients included in the study (93 boys, 66.4%, mean age 11.8±3.0 and 47 girls 33.5%, mean age 14.0±2.9). All the patients were diagnosed by the specialist in the field of child and adolescent psychiatry according to ICD-10 criteria and by the independent interviewer with the Polish version of MINI-KID (version 2.0, 2001). There was higher agreement between clinical diagnoses and diagnoses based on MINI-KID interview with respect to eating disorders and externalizing disorders (κ 0.43-0.56) and lower in internalizing disorders (κ 0.13-0.45). In the clinical interview, there was smaller number of diagnostic categories (maximum 3 diagnoses per one patient) in comparison to MINI-KID (maximum 10 diagnoses per one patient), and the smaller percentage of patients with one diagnosis (65,7%) in comparison to MINI-KID interview (72%). Our study has shown satisfactory validity parameters of MINI-KID questionnaire, promoting its use for clinical and epidemiological settings. The Mini International Neuropsychiatry Interview for Children and Adolescent (MINI-KID) is the first structuralized diagnostic interview for assessing mental status in children and adolescents, which has been translated into Polish language. Our validation study demonstrated satisfactory psychometric properties of the questionnaire, enabling its use in clinical practice and in research projects. Copyright © 2014 Elsevier Inc. All rights reserved.
Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.
2007-10-02
A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.
Madhavan, Sangeetha; Bishnoi, Alka
2017-12-01
The Mini-BESTest is a recently developed balance assessment tool that incorporates challenging dynamic balance tasks. Few studies have compared the psychometric properties of the Mini-BESTest to the commonly used Berg Balance Scale (BBS). However, the utility of these scales in relationship to post stroke walking speeds has not been explored. The purpose of this study was to compare the sensitivity and specificity of the Mini-BESTest and BBS to evaluate walking speeds in individuals with stroke. A retrospective exploratory design. Forty-one individuals with chronic stroke were evaluated with the Mini-BESTest, BBS, and 10-meter self-selected walk test (10MWT). Based on their self-selected gait speeds (below or above 0.8 m/s), participants were classified as slow and fast walkers. Significant linear correlations were observed between the Mini-BESTest vs. BBS (r = 0.72, p ≤ 0.001), Mini-BESTest vs. 10MWT (r = 0.58, p ≤ 0.001), and BBS vs. 10MWT (r = 0.30, p = 0.05). Independent t-tests comparing the balance scores for the slow and fast walkers revealed significant group differences for the Mini-BESTest (p = 0.003), but not for the BBS (p = 0.09). The Mini-BESTest demonstrated higher sensitivity (93%) and specificity (64%) compared to the BBS (sensitivity 81%, specificity 56%) for discriminating participants into slow and fast walkers. The Mini-BESTest has a greater discriminative ability than the BBS to categorize individuals with stroke into slow and fast walkers.
Madhavan, Sangeetha; Bishnoi, Alka
2017-01-01
Background The Mini-BESTest is a recently developed balance assessment tool that incorporates challenging dynamic balance tasks. Few studies have compared the psychometric properties of the Mini-BESTest to the commonly used Berg Balance Scale (BBS). However, the utility of these scales in relationship to post stroke walking speeds has not been explored. Objectives The purpose of this study was to compare the sensitivity and specificity of the Mini-BESTest and BBS to evaluate walking speeds in individuals with stroke. Design A retrospective exploratory design. Methods Forty-one individuals with chronic stroke were evaluated with the Mini-BESTest, BBS, and 10-meter self-selected walk test (10MWT). Based on their self-selected gait speeds (below or above 0.8 m/s), participants were classified as slow and fast walkers. Results Significant linear correlations were observed between the Mini-BESTest vs. BBS (r = 0.72, p ≤ 0.001), Mini-BESTest vs. 10MWT (r = 0.58, p ≤ 0.001), and BBS vs. 10MWT (r = 0.30, p = 0.05). Independent t-tests comparing the balance scores for the slow and fast walkers revealed significant group differences for the Mini-BESTest (p =0.003), but not for the BBS (p = 0.09). The Mini-BESTest demonstrated higher sensitivity (93%) and specificity (64%) compared to the BBS (sensitivity 81%, specificity 56%) for discriminating participants into slow and fast walkers. No significant results were observed with the FMLE-M scores. Conclusions The Mini-BESTest has a greater discriminative ability than the BBS to categorize individuals with stroke into slow and fast walkers. PMID:28826325
Ranta, Klaus; Kaltiala-Heino, Riittakerttu; Rantanen, Päivi; Marttunen, Mauri
2012-07-01
Onset of social phobia (SP) typically occurs in adolescence. Short screening instruments for its assessment are needed for use in primary health and school settings. The 3-item Mini-Social Phobia Inventory (SPIN) has demonstrated effectiveness in screening for generalized SP (GSP) in adults. This study examined the psychometrics of the Mini-SPIN in an adolescent general population sample. Three hundred fifty adolescents aged 12 to 17 years were clinically interviewed using the Schedule for Affective Disorders and Schizophrenia for School-Age Children-Present and Lifetime Version for identification of SP and other Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Axis I disorders, blind to their Mini-SPIN status. Associations between SP; subclinical SP; other anxiety, depressive, and disruptive disorders; and Mini-SPIN scores were examined, and diagnostic efficiency statistics were calculated. The association between Mini-SPIN scores and the generalized subtype of SP was also examined. As in adults, the Mini-SPIN items differentiated subjects with SP from those without. A score of 6 points or greater was found optimal in predicting SP with a sensitivity of 86%, specificity of 84%, and positive and negative predictive values of 26% and 99%. The Mini-SPIN also possessed discriminative validity, as scores were higher for adolescents with SP than they were for those with depressive, disruptive, and other anxiety disorders. The Mini-SPIN was also able to differentiate adolescents with GSP from the rest of the sample. The Mini-SPIN has good psychometrics for screening SP in adolescents from general population and may have value in screening for GSP. Copyright © 2012 Elsevier Inc. All rights reserved.
Akbulut, Fatih; Kucuktopcu, Onur; Kandemir, Emre; Sonmezay, Erkan; Simsek, Abdulmuttalip; Ozgor, Faruk; Binbay, Murat; Muslumanoglu, Ahmet Yaser; Gurbuz, Gokhan
2016-01-01
To compare the outcomes of flexible ureterorenoscopy (F-URS) and mini-percutaneous nephrolithotomy (mini-PNL) in the treatment of lower calyceal stones smaller than 2 cm. Patients who underwent F-URS and mini-PNL for the treatment of lower calyceal stones smaller than 2 cm between March 2009 and December 2014 were retrospectively evaluated. Ninety-four patients were divided into two groups by treatment modality: F-URS (Group 1: 63 patients) and mini-PNL (Group 2: 31 patients). All patients were preoperatively diagnosed with intravenous pyelography or computed tomography. Success rates for F-URS and mini-PNL at postoperative first month were 85.7% and 90.3%, respectively. Operation time, fluoroscopy time, and hospitalization time for F-URS and mini-PNL patients were 44.40 min, 2.9 min, 22.4 h, and 91.9 min, 6.4 min, and 63.8 h, respectively. All three parameters were significantly shorter among the F-URS group (p < 0.001). Postoperative hemoglobin drop was significantly lower in F-URS group compared to mini-PNL group (0.39 mg/dL vs. 1.15 mg/dL, p = 0.001). A comparison of complications according to the Clavien classification demonstrated significant differences between the groups (p = 0.001). More patients in the F-URS groups require antibiotics due to urinary tract infection, and more patients in the mini-PNL group required ureteral double J catheter insertion under general anesthesia. Although both F-URS and mini-PNL have similar success rates for the treatment of lower calyceal stones, F-URS appears to be more favorable due to shorter fluoroscopy and hospitalization times; and lower hemoglobin drops. Multicenter and studies using higher patient volumes are needed to confirm these findings.
Howard University Energy Expert Systems Institute Summer Program (EESI)
NASA Technical Reports Server (NTRS)
Momoh, James A.; Chuku, Arunsi; Abban, Joseph
1996-01-01
Howard University, under the auspices of the Center for Energy Systems and Controls runs the Energy Expert Systems Institute (EESI) summer outreach program for high school/pre-college minority students. The main objectives are to introduce precollege minority students to research in the power industry using modern state-of-the-art technology such as Expert Systems, Fuzzy Logic and Artificial Neural Networks; to involve minority students in space power management, systems and failure diagnosis; to generate interest in career options in electrical engineering; and to experience problem-solving in a teamwork environment consisting of faculty, senior research associates and graduate students. For five weeks the students are exposed not only to the exciting experience of college life, but also to the inspiring field of engineering, especially electrical engineering. The program consists of lectures in the fundamentals of engineering, mathematics, communication skills and computer skills. The projects are divided into mini and major. Topics for the 1995 mini projects were Expert Systems for the Electric Bus and Breast Cancer Detection. Topics on the major projects include Hybrid Electric Vehicle, Solar Dynamics and Distribution Automation. On the final day, designated as 'EESI Day' the students did oral presentations of their projects and prizes were awarded to the best group. The program began in the summer of 1993. The reaction from the students has been very positive. The program also arranges field trips to special places of interest such as the NASA Goddard Space Center.
Restrictive loads powered by separate or by common electrical sources
NASA Technical Reports Server (NTRS)
Appelbaum, J.
1989-01-01
In designing a multiple load electrical system, the designer may wish to compare the performance of two setups: a common electrical source powering all loads, or separate electrical sources powering individual loads. Three types of electrical sources: an ideal voltage source, an ideal current source, and solar cell source powering resistive loads were analyzed for their performances in separate and common source systems. A mathematical proof is given, for each case, indicating the merit of the separate or common source system. The main conclusions are: (1) identical resistive loads powered by ideal voltage sources perform the same in both system setups, (2) nonidentical resistive loads powered by ideal voltage sources perform the same in both system setups, (3) nonidentical resistive loads powered by ideal current sources have higher performance in separate source systems, and (4) nonidentical resistive loads powered by solar cells have higher performance in a common source system for a wide range of load resistances.
DOE/NREL supported wind energy activities in Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drouilhet, S.
1997-12-01
This paper describes three wind energy related projects which are underway in Indonesia. The first is a USAID/Winrock Wind for Island and Nongovernmental Development (WIND) project. The objectives of this project are to train local nongovernmental organizations (NGOs) in the siting, installation, operation, and maintenance of small wind turbines. Then to install up to 20 wind systems to provide electric power for productive end uses while creating micro-enterprises which will generate enough revenue to sustain the wind energy systems. The second project is a joint Community Power Corporation/PLN (Indonesian National Electric Utility) case study of hybrid power systems in villagemore » settings. The objective is to evaluate the economic viability of various hybrid power options for several different situations involving wind/photovoltaics/batteries/diesel. The third project is a World Bank/PLN preliminary market assessment for wind/diesel hybrid systems. The objective is to estimate the size of the total potential market for wind/diesel hybrid power systems in Indonesia. The study will examine both wind retrofits to existing diesel mini-grids and new wind-diesel plants in currently unelectrified villages.« less
NASA Technical Reports Server (NTRS)
1978-01-01
The results of study to determine the applicability of the Remote Mobile Emplacement Package (RMEP) design concept as a mobility aid for the proposed post-'84 Mars missions are presented. The RMEP wheel and mobility subsystem parameters: wheel tire size, weight, stowed volume, and environmental effects; obstacle negotiation; reliability and wear; motor and drive train; and electrical power demand were reviewed. Results indicated that: (1) the basic RMEP wheel design would be satisfactory, with additional attention to heating, side loading, tread wear and ultraviolet radiation protection; (2) motor and drive train power requirements on Mars would be less than on Earth; and (3) the mobility electrical power requirements would be small enough to offer the option of operating the Mars mini rover untethered. Payload power required for certain sampling functions would preclude the use of battery power for these missions. Hazard avoidance and reverse direction maneuvers are discussed. Limited examination of vehicle payload integration and thermal design was made, pending establishment of a baseline vehicle/payload design.
ERIC Educational Resources Information Center
Wilson, Rachel; Bradbury, Leslie
2016-01-01
The diet of many students consists of on-the-go processed food. As part of a larger school garden project, the authors wanted students to consider the relevance of plants in their own lives, both as food sources for us and for the animals that we eat. In this article, they present a mini-unit they taught in a third-grade classroom that helped…
NASA Astrophysics Data System (ADS)
Mentis, Dimitrios; Howells, Mark; Rogner, Holger; Korkovelos, Alexandros; Arderne, Christopher; Siyal, Shahid; Zepeda, Eduardo; Taliotis, Constantinos; Bazilian, Morgan; de Roo, Ad; Tanvez, Yann; Oudalov, Alexandre; Scholtz, Ernst
2017-04-01
In September 2015, the United Nations General Assembly adopted Agenda 2030, which comprises a set of 17 Sustainable Development Goals (SDGs) defined by 169 targets. "Ensuring access to affordable, reliable, sustainable and modern energy for all by 2030" is the seventh goal (SDG7). While access to energy refers to more than electricity, the latter is the central focus of this work. According to the World Bank's 2015 Global Tracking Framework, roughly 15% of world population (or 1.1 billion people) lack access to electricity, and many more rely on poor quality electricity services. The majority of those without access (87%) reside in rural areas. This paper presents results of a Geographic Information Systems (GIS) approach coupled with open access data and linked to the Electricity Model Base for Africa (TEMBA), a model that represents each continental African country's electricity supply system. We present least-cost electrification strategies on a country-by-country basis for Sub-Saharan Africa. The electrification options include grid extension, mini-grid and stand-alone systems for rural, peri-urban, and urban contexts across the economy. At low levels of electricity demand there is a strong penetration of standalone technologies. However, higher electricity demand levels move the favourable electrification option from stand-alone systems to mini grid and to grid extensions.
[Validation of the portuguese version of the Mini-Social Phobia Inventory (Mini-SPIN)].
D'El Rey, Gustavo José Fonseca; Matos, Cláudia Wilmor
2009-01-01
Social phobia (also known as social anxiety disorder) is a severe mental disorder that brings distress and disability. The aim of this study was validate to the Portuguese language the Mini-Social Phobia Inventory (Mini-SPIN) in a populational sample. We performed a discriminative validity study of the Mini-SPIN in a sample of 644 subjects (Mini-SPIN positive group: n = 218 and control/negative group: n = 426) of a study of anxiety disorders' prevalence in the city of Santo André-SP. The Portuguese version of the Mini-SPIN (with score of 6 points, suggested in the original English version) demonstrated a sensitivity of 95.0%, specificity of 80.3%, positive predictive value of 52.8%, negative predictive value of 98.6% and incorrect classification rate of 16.9%. With score of 7 points, was observed an increase in the specificity and positive predictive value (88.6% and 62.7%), while the sensitivity and negative predictive value (84.8% and 96.2%) remained high. The Portuguese version of the Mini-SPIN showed satisfactory psychometric qualities in terms of discriminative validity. In this study, the cut-off of 7, was considered to be the most suitable to screening of the generalized social phobia.
A simple three-dimensional stent for proper placement of mini-implant
2013-01-01
Background This paper deals with the fabrication of a three-dimensional stent which is simple in design but provides an accurate placement of a mini-implant in three planes of space, namely, sagittal (root proximity), vertical (attached gingiva/alveolar mucosa) and transverse (angulation). Findings The stent is made of 0.018 × 0.025 in. stainless steel archwire which consists of a ‘u loop’ angulated at 20°, a vertical limb, a horizontal limb and a stop. The angulation of the ‘u’ helps in the placement of the mini-implant at 70° to the long axis of the tooth. The vertical height is determined such that the mini-implant is placed at the mucogingival junction. The mini-implant is placed with the aid of the stent, and its angulation and proximity to the adjacent roots are checked with a cone beam computed tomography image. The cone beam computed tomography image showed the mini-implant at an angle of 70° to the long axis of the tooth. There is no contact between mini-implant and the roots of the adjacent teeth. Conclusion This stent is simple, easy to fabricate, cost-effective, and provides ease of insertion/removal, and three-dimensional orientation of the mini-implant. PMID:24326158
Graph Partitioning for Parallel Applications in Heterogeneous Grid Environments
NASA Technical Reports Server (NTRS)
Bisws, Rupak; Kumar, Shailendra; Das, Sajal K.; Biegel, Bryan (Technical Monitor)
2002-01-01
The problem of partitioning irregular graphs and meshes for parallel computations on homogeneous systems has been extensively studied. However, these partitioning schemes fail when the target system architecture exhibits heterogeneity in resource characteristics. With the emergence of technologies such as the Grid, it is imperative to study the partitioning problem taking into consideration the differing capabilities of such distributed heterogeneous systems. In our model, the heterogeneous system consists of processors with varying processing power and an underlying non-uniform communication network. We present in this paper a novel multilevel partitioning scheme for irregular graphs and meshes, that takes into account issues pertinent to Grid computing environments. Our partitioning algorithm, called MiniMax, generates and maps partitions onto a heterogeneous system with the objective of minimizing the maximum execution time of the parallel distributed application. For experimental performance study, we have considered both a realistic mesh problem from NASA as well as synthetic workloads. Simulation results demonstrate that MiniMax generates high quality partitions for various classes of applications targeted for parallel execution in a distributed heterogeneous environment.
Feasibility study of a mini fuel cell to detect interference from a cellular phone
NASA Astrophysics Data System (ADS)
Abdullah, M. O.; Gan, Y. K.
Fuel cells produce electricity without involving combustion processes. They generate no noise, vibration or air pollution and are therefore suitable for use in many vibration-free power-generating applications. In this study, a mini alkaline fuel cell signal detector system has been designed, constructed and tested. The initial results have shown the applicability of such system for used as an indicator of signal disturbance from cellular phones. A small disturbance even at 4 mV cm -1, corresponding to an amplitude of 12-18 mG in terms of electromagnetic field, can be well detected by such a device. Subsequently, a thermodynamics model has been developed to provide a parametric study by simulation to show the likely performance of the fuel cell alone in other environments. As such the model can provide many useful generic design data for alkaline fuel cells. Two general conclusions can be drawn from the present theoretical study: (i) fuel cell performance increases with temperature, pressure and correction factor, C f; (ii) the temperature factor (E/ T) increases with increasing temperature and with increasing pressure factor.
NASA Astrophysics Data System (ADS)
Shang, Jing; Li, Juexin; Xu, Bing; Li, Yuxiong
2011-10-01
Electron accelerators are employed widely for diverse purposes in the irradiation-processing industry, from sterilizing medical products to treating gemstones. Because accelerators offer high efficiency, high power, and require little preventative maintenance, they are becoming more and more popular than using the 60Co isotope approach. However, the electron accelerator exposes potential radiation hazards. To protect workers and the public from exposure to radiation, the radiation field around the electronic accelerator must be assessed, especially that outside the shielding. Thus, we measured the radiation dose at different positions outside the shielding of a 10-MeV electron accelerator using a new data-acquisition unit named Mini-DDL (Mini-Digital Data Logging). The measurements accurately reflect the accelerator's radiation status. In this paper, we present our findings, results and compare them with our theoretical calculations. We conclude that the measurements taken outside the irradiation hall are consistent with the findings from our calculations, except in the maze outside the door of the accelerator room. We discuss the reason for this discrepancy.
NASA Astrophysics Data System (ADS)
Sutcliffe, G. D.; Frenje, J. A.; Gatu Johnson, M.; Li, C. K.; Parker, C.; Simpson, R.; Sio, H.; Seguin, F. H.; Petrasso, R. D.; Zylstra, A.
2017-10-01
A compact and highly efficient Mini Orange Spectrometer (MOS) is being designed for measurements of energy spectra of protons and alphas in the range of 1-12 MeV in experiments at the OMEGA laser facility and the National Ignition Facility (NIF). The MOS will extend charged-particle spectrometry at these laser facilities to lower energies (<5 MeV) and lower yields (<5×108) than current instrumentation allows. This new spectrometer will enable studies of low-probability stellar nucleosynthesis reactions, including the 3He+3He reaction that is part of the solar proton-proton chain. Its unique capabilities will also be exploited in other basic science experiments, including studies of stopping power in ICF-relevant plasmas, astrophysical shocks and kinetic physics. The MOS design achieves high efficiency by maximizing the solid angle of particle acceptance. The optimization of the MOS design uses simulated magnetic fields and particle tracing. Performance requirements of the MOS system, including desired detection efficiencies and energy resolution, are discussed. This work was supported in part by the U.S. DoE, LLNL, and LLE.
First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES
NASA Technical Reports Server (NTRS)
Smith, Michael D.; Wolff, Michael J.; Lemmon, Mark T.; Spanovich, Nicole; Banfield, Don; Budney, Charles J.; Clancy, R. Todd; Ghosh, Amitabha; Landis, Geoffrey A.; Smith, Peter;
2004-01-01
Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.
First Atmospheric Science Results from the Mars Exploration Rovers Mini-TES.
Smith, Michael D; Wolff, Michael J; Lemmon, Mark T; Spanovich, Nicole; Banfield, Don; Budney, Charles J; Clancy, R Todd; Ghosh, Amitabha; Landis, Geoffrey A; Smith, Peter; Whitney, Barbara; Christensen, Philip R; Squyres, Steven W
2004-12-03
Thermal infrared spectra of the martian atmosphere taken by the Miniature Thermal Emission Spectrometer (Mini-TES) were used to determine the atmospheric temperatures in the planetary boundary layer and the column-integrated optical depth of aerosols. Mini-TES observations show the diurnal variation of the martian boundary layer thermal structure, including a near-surface superadiabatic layer during the afternoon and an inversion layer at night. Upward-looking Mini-TES observations show warm and cool parcels of air moving through the Mini-TES field of view on a time scale of 30 seconds. The retrieved dust optical depth shows a downward trend at both sites.
Arc-to-Arc mini-sling 1999: a critical analysis of concept and technology.
Palma, Paulo
2011-01-01
The aim of this study was to critically review the Arc-to-Arc mini-sling (Palma's technique) a less invasive mid-urethral sling using bovine pericardium as the sling material. The Arc-to-Arc mini-sling, using bovine pericardium, was the first published report of a mini-sling, in 1999. The technique was identical to the "tension-free tape" operation, midline incision and dissection of the urethra. The ATFP (white line) was identified by blunt dissection, and the mini-sling was sutured to the tendinous arc on both sides with 2 polypropylene 00 sutures. The initial results were encouraging, with 9/10 patients cured at the 6 weeks post-operative visit. However, infection and extrusion of the mini-sling resulted in sling extrusion and removal, with 5 patients remaining cured at 12 months. The Arc-to-Arc mini-sling was a good concept, but failed because of the poor technology available at that time. Further research using new materials and better technology has led to new and safer alternatives for the management of stress urinary incontinence.
Corneal oedema in a unilateral corneal graft patient induced by high Dk mini-scleral contact lens.
Guillon, Natalie C; Godfrey, Andrew; Hammond, David S
2018-05-24
Scleral contact lenses are increasingly becoming accepted as the method of choice for visual correction of the irregular cornea. As such, cases have surfaced which demonstrate complications arising from mini-scleral lenses. Identification of these issues and adjusting fitting techniques accordingly is necessary for reducing the risks associated with mini-scleral lens wear. A 58 year old Caucasian female was referred for rigid gas permeable contact lens fitting for correction of right irregular astigmatism post penetrating keratoplasty. After four months of successful mini-scleral contact lens wear, the patient experienced a graft rejection episode and treated accordingly, then refit with a new mini-scleral lens. Five months after the lens refit, the patient presented with complaints of hazy vision, and a diagnosis of lens-induced corneal oedema made. Increased awareness of the potential complications of mini-scleral lenses is necessary to encourage and enforce mini-scleral lens fitting techniques that meet the requirements of minimum vault but adequate protection of the compromised cornea. Copyright © 2018 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.
A single mini-barcode test to screen for Australian mammalian predators from environmental samples
MacDonald, Anna J; Sarre, Stephen D
2017-01-01
Abstract Identification of species from trace samples is now possible through the comparison of diagnostic DNA fragments against reference DNA sequence databases. DNA detection of animals from non-invasive samples, such as predator faeces (scats) that contain traces of DNA from their species of origin, has proved to be a valuable tool for the management of elusive wildlife. However, application of this approach can be limited by the availability of appropriate genetic markers. Scat DNA is often degraded, meaning that longer DNA sequences, including standard DNA barcoding markers, are difficult to recover. Instead, targeted short diagnostic markers are required to serve as diagnostic mini-barcodes. The mitochondrial genome is a useful source of such trace DNA markers because it provides good resolution at the species level and occurs in high copy numbers per cell. We developed a mini-barcode based on a short (178 bp) fragment of the conserved 12S ribosomal ribonucleic acid mitochondrial gene sequence, with the goal of discriminating amongst the scats of large mammalian predators of Australia. We tested the sensitivity and specificity of our primers and can accurately detect and discriminate amongst quolls, cats, dogs, foxes, and devils from trace DNA samples. Our approach provides a cost-effective, time-efficient, and non-invasive tool that enables identification of all 8 medium-large mammal predators in Australia, including native and introduced species, using a single test. With modification, this approach is likely to be of broad applicability elsewhere. PMID:28810700
Why are mini-implants lost: the value of the implantation technique!
Romano, Fabio Lourenço; Consolaro, Alberto
2015-01-01
The use of mini-implants have made a major contribution to orthodontic treatment. Demand has aroused scientific curiosity about implant placement procedures and techniques. However, the reasons for instability have not yet been made totally clear. The aim of this article is to establish a relationship between implant placement technique and mini-implant success rates by means of examining the following hypotheses: 1) Sites of poor alveolar bone and little space between roots lead to inadequate implant placement; 2) Different sites require mini-implants of different sizes! Implant size should respect alveolar bone diameter; 3) Properly determining mini-implant placement site provides ease for implant placement and contributes to stability; 4) The more precise the lancing procedures, the better the implant placement technique; 5) Self-drilling does not mean higher pressures; 6) Knowing where implant placement should end decreases the risk of complications and mini-implant loss.
VAST 2010 Challenge: Arms Dealings and Pandemics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Grinstein, Georges; Konecni, Shawn; Plaisant, Catherine
2010-10-23
The 5th VAST Challenge consisted of three mini-challenges that involved both intelligence analysis and bioinformatics. Teams could solve one, two or all three mini-challenges and assess the overall situation to enter the Grand Challenge. Mini-challenge one involved text reports about people and events giving information about arms dealers, situations in various countries and linkages between different countries. Mini-challenge two involved hospital admission and death records from various countries providing information about the spread of a world wide pandemic. Mini-challenge three involved genetic data to be used to identify the origin of the pandemic and the most dangerous viral mutations. Themore » Grand Challenge was to determine how these various mini-challenges were connected. As always the goal was to analyze the data and provide novel interactive visualizations useful in the analytic process. We received 58 submissions in total and gave 15 awards.« less
Residency Mini-fellowships in the PGY-5 Year: Is There Added Value?
Shenoy-Bhangle, Anuradha S; Eisenberg, Ronald L; Fineberg, Tabitha; Slanetz, Priscilla J
2018-06-01
With the restructuring of radiology board certification, many residencies created PGY-5 "mini-fellowships," during which residents spend focused time pursuing advanced subspecialty training or developing nonclinical skills in leadership, health policy and health-care economics, education, quality improvement, informatics, research, or global health. We surveyed graduates of an academic diagnostic radiology residency to assess the relative value and impact of PGY-5 mini-fellowships on career satisfaction and success. From 2012 to 2016, 39 radiology residents at our institution were offered the opportunity to pursue a 3- to 6-month mini-fellowship during the PGY-5 year. Thirty of 39 radiology residents (77%) participated, whereas 9 of 39 (23%) opted out. Of 39 residents, 13 completed two clinical mini-fellowships, 3 completed research mini-fellowships only, and 14 completed one nonclinical and one clinical mini-fellowship. Through SurveyMonkey, 23 of 39 residents (59%) responded to a questionnaire that collected basic demographic information and asked respondents about the value of this experience as it relates to fellowship choice and career using a five-point Likert scale. Of 23 respondents (14 male, 8 female,1 not specified), 78.3% practice in an academic university-based setting, with 8.7% in a community-based hospital practice, 4.3% in the veterans system, and 4.3% in a private practice setting. Of 23 respondents, the most popular clinical mini-fellowships were magnetic resonance imaging (31.6%), neuroradiology (21.1%), and interventional radiology (15.8%). For nonclinical mini-fellowships, the most popular were research (10.5%), education (10.5%), global health (5.3%), and healthcare economics (5.3%). Of 23 respondents who did mini-fellowships, 95% felt that the mini-fellowship prepared them well for their career, 85% felt it gave them the necessary skills to succeed, 85% cited that it gave them additional skills beyond their peers, and 40% felt it helped them create a life-long connection to a mentor. Ninety-five percent of respondents would choose to do the mini-fellowship again. Respondents suggested increasing the duration to 6-9 months and to develop a more structured curriculum and mentorship component. Only one respondent felt that the nonclinical mini-fellowship took away time from furthering clinical skills. Graduates of a university-affiliated academic radiology residency who participated in clinical and nonclinical mini-fellowships during the PGY-5 year of residency greatly value this experience and uniformly recommend that this type of program continue to be offered to trainees given its ability to develop skills perceived to be vital to ultimate career satisfaction and success. Published by Elsevier Inc.
Fluorescent carbon dots from mono- and polysaccharides: synthesis, properties and applications
Hill, Stephen
2017-01-01
Fluorescent carbon dots (FCDs) are an emerging class of nanomaterials made from carbon sources that have been hailed as potential non-toxic replacements to traditional semiconductor quantum dots (QDs). Particularly in the areas of live imaging and drug delivery, due to their water solubility, low toxicity and photo- and chemical stability. Carbohydrates are readily available chiral biomolecules in nature which offer an attractive and cheap starting material from which to synthesise FCDs with distinct features and interesting applications. This mini-review article will cover the progress in the development of FCDs prepared from carbohydrate sources with an emphasis on their synthesis, functionalization and technical applications, including discussions on current challenges. PMID:28503203
Matys, Jacek; Flieger, Rafał; Tenore, Gianluca; Grzech-Leśniak, Kinga; Romeo, Umberto; Dominiak, Marzena
2018-04-01
It is important to identify factors that affect primary stability of orthodontic mini-implants because it determines the success of treatment. We assessed mini-implant primary stability (initial mechanical engagement with the bone) placed in pig jaws. We also assessed mini-implant insertion failure rate (mini-implant fracture, mini-implants to root contact). A total of 80 taper-shaped mini-implants (Absoanchor® Model SH1312-6; Dentos Inc., Daegu, Korea) 6 mm long with a diameter of 1.1 mm were used. Bone decortication was made before mini-implant insertion by means of three different methods: Group G1: Er:YAG laser (LiteTouch®, Light Instruments, Yokneam, Israel) at energy of 300 mJ, frequency 25 Hz, fluence 38.2 J/cm2, cooling 14 ml/min, tip 1.0 × 17 mm, distance 1 mm, time of irradiation 6 s; Group G2: drill (Hager & Meisinger GmbH, Hansemannstr, Germany); Group G3: piezosurgery (Piezotom Solo, Acteon, NJ, USA). In G4 group (control), mini-implants were driven by a self-drilling method. The primary stability of mini-implants was assessed by measuring damping characteristics between the implant and the tapping head of Periotest device (Gulden-Medizinteknik, Eschenweg, Modautal, Germany). The results in range between - 8 to + 9 allowed immediate loading. Significantly lower Periotest value was found in the control group (mean 0.59 ± 1.57, 95% CI 0.7, 2.4) as compared with Er:YAG laser (mean 4.44 ± 1.64, 95% CI 3.6, 5.3), piezosurgery (mean 17.92 ± 2.73, 95% CI 16.5, 19.3), and a drill (mean 5.91 ± 1.52, 95% CI 5.2, 6.6) (p < 0.05). The highest failure rate (33.3%) during mini-implant insertion was noted for self-drilling method (G4) as compared with G1, G2, and G3 groups (p < 0.05). The small diameter decortication by Er:YAG laser appeared to provide better primary stability as compared to drill and piezosurgery. Decortication of the cortical bone before mini-implant insertion resulted in reduced risk of implant fracture or injury of adjacent teeth. The high initial stability with a smaller diameter of the mini-implant resulted in increased risk of fracture, especially for a self-drilling method.
Comparative analysis of numerical and experimental data of orthodontic mini-implants.
Chatzigianni, Athina; Keilig, Ludger; Duschner, Heinz; Götz, Hermann; Eliades, Theodore; Bourauel, Christoph
2011-10-01
The purpose of this study was to compare numerical simulation data derived from finite element analysis (FEA) to experimental data on mini-implant loading. Nine finite element (FE) models of mini-implants and surrounding bone were derived from corresponding experimental specimens. The animal bone in the experiment consisted of bovine rib. The experimental groups were based on implant type, length, diameter, and angle of insertion. One experimental specimen was randomly selected from each group and was digitized in a microCT scanner. The FE models consisted of bone pieces containing Aarhus mini-implants with dimensions 1.5 × 7 mm and 1.5 × 9 mm or LOMAS mini-implants (dimensions 1.5 × 7 mm, 1.5 × 9 mm, and 2 × 7 mm). Mini-implants were inserted in two different ways, perpendicular to the bone surface or at 45 degrees to the direction of the applied load. Loading and boundary conditions in the FE models were adjusted to match the experimental situation, with the force applied on the neck of the mini-implants, along the mesio-distal direction up to a maximum of 0.5 N. Displacement and rotation of mini-implants after force application calculated by FEA were compared to previously recorded experimental deflections of the same mini-implants. Analysis of data with the Altman-Bland test and the Youden plot demonstrated good agreement between numerical and experimental findings (P = not significant) for the models selected. This study provides further evidence of the appropriateness of the FEA as an investigational tool in relevant research.
Kirac, Mustafa; Bozkurt, Ömer Faruk; Tunc, Lutfi; Guneri, Cagri; Unsal, Ali; Biri, Hasan
2013-06-01
The aim of this study was to compare the outcomes of retrograde intrarenal surgery (RIRS) and miniaturized percutaneous nephrolithotomy (mini-PNL) in management of lower-pole renal stones with a diameter smaller than 15 mm. Between December 2009 and July 2012, the patients with the diagnosis of lower-pole stones were evaluated by ultrasonography, intravenous pyelography and computed tomography. The records of 73 evaluable patients who underwent mini-PNL (n = 37) or RIRS (n = 36) for lower-pole (LP) stones with diameter smaller than 15 mm were reviewed retrospectively. Of the 73 patients, 37 underwent mini-PNL and 36 underwent RIRS. The stone-free rates were 89.1 and 88.8 % for mini-PNL and RIRS groups, respectively. The mean operation time was 53.7 ± 14.5 in the mini-PNL group but 66.4 ± 15.8 in the RIRS group (P = 0.01). The mean fluoroscopy times and hospitalization times were significantly higher in the mini-PNL group. There was no major complication in any patient. RIRS and mini-PNL are safe and effective methods for treatment of LP calculi with a diameter smaller than 15 mm. RIRS is a non-invasive and feasible treatment option, and has also short hospitalization time, low morbidity and complication rate. It may be an alternative of mini-PNL in the treatment LP calculi with smaller than 15 mm.
Zelenyuk, Alla; Imre, Dan; Wilson, Jacqueline; Zhang, Zhiyuan; Wang, Jun; Mueller, Klaus
2015-02-01
Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles-two fundamental properties that determine an aerosol's optical properties and ability to serve as cloud condensation or ice nuclei. Here we present our aircraft-compatible single particle mass spectrometers, SPLAT II and its new, miniaturized version, miniSPLAT that measure in-situ and in real-time the size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. Although miniSPLAT's size, weight, and power consumption are significantly smaller, its performance is on par with SPLAT II. Both instruments operate in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations, size distributions, density, and asphericity with high temporal resolution. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle compositions and their activity as cloud condensation nuclei.
NASA Astrophysics Data System (ADS)
Gianotti, Fulvio; Fioretti, Valentina; Tanci, Claudio; Conforti, Vito; Tacchini, Alessandro; Leto, Giuseppe; Gallozzi, Stefano; Bulgarelli, Andrea; Trifoglio, Massimo; Malaguti, Giuseppe; Zoli, Andrea
2014-07-01
ASTRI is an Italian flagship project whose first goal is the realization of an end-to-end telescope prototype, named ASTRI SST-2M, for the Cherenkov Telescope Array (CTA). The prototype will be installed in Italy during Fall 2014. A second goal will be the realization of the ASTRI/CTA mini-array which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The Information and Communication Technology (ICT) equipment necessary to drive the infrastructure for the ASTRI SST-2M prototype is being designed as a complete and stand-alone computer center. The design goal is to obtain basic ICT equipment that might be scaled, with a low level of redundancy, for the ASTRI/CTA mini-array, taking into account the necessary control, monitor and alarm system requirements. The ICT equipment envisaged at the Serra La Nave observing station in Italy, where the ASTRI SST-2M telescope prototype will operate, includes computers, servers and workstations, network devices, an uninterruptable power supply system, and air conditioning systems. Suitable hardware and software tools will allow the parameters related to the behavior and health of each item of equipment to be controlled and monitored. This paper presents the proposed architecture and technical solutions that integrate the ICT equipment in the framework of the Observatory Control System package of the ASTRI/CTA Mini- Array Software System, MASS, to allow their local and remote control and monitoring. An end-toend test case using an Internet Protocol thermometer is reported in detail.
DETECTION OF SMALL-SCALE GRANULAR STRUCTURES IN THE QUIET SUN WITH THE NEW SOLAR TELESCOPE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abramenko, V. I.; Yurchyshyn, V. B.; Goode, P. R.
2012-09-10
Results of a statistical analysis of solar granulation are presented. A data set of 36 images of a quiet-Sun area on the solar disk center was used. The data were obtained with the 1.6 m clear aperture New Solar Telescope at Big Bear Solar Observatory and with a broadband filter centered at the TiO (705.7 nm) spectral line. The very high spatial resolution of the data (diffraction limit of 77 km and pixel scale of 0.''0375) augmented by the very high image contrast (15.5% {+-} 0.6%) allowed us to detect for the first time a distinct subpopulation of mini-granular structures.more » These structures are dominant on spatial scales below 600 km. Their size is distributed as a power law with an index of -1.8 (which is close to the Kolmogorov's -5/3 law) and no predominant scale. The regular granules display a Gaussian (normal) size distribution with a mean diameter of 1050 km. Mini-granular structures contribute significantly to the total granular area. They are predominantly confined to the wide dark lanes between regular granules and often form chains and clusters, but different from magnetic bright points. A multi-fractality test reveals that the structures smaller than 600 km represent a multi-fractal, whereas on larger scales the granulation pattern shows no multi-fractality and can be considered as a Gaussian random field. The origin, properties, and role of the population of mini-granular structures in the solar magnetoconvection are yet to be explored.« less
Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, Jordan; Podorson, David; Varshney, Kapil
Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less
Replacing Resistance Heating with Mini-Split Heat Pumps, Sharon, Connecticut (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less
Mini-Split Heat Pumps Multifamily Retrofit Feasibility Study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dentz, J.; Podorson, D.; Varshney, K.
2014-05-01
Mini-split heat pumps can provide space heating and cooling in many climates and are relatively affordable. These and other features make them potentially suitable for retrofitting into multifamily buildings in cold climates to replace electric resistance heating or other outmoded heating systems. This report investigates the suitability of mini-split heat pumps for multifamily retrofits. Various technical and regulatory barriers are discussed and modeling was performed to compare long-term costs of substituting mini-splits for a variety of other heating and cooling options. A number of utility programs have retrofit mini-splits in both single family and multifamily residences. Two such multifamily programsmore » are discussed in detail.« less
Diversifying biological fuel cell designs by use of nanoporous filters.
Biffinger, Justin C; Ray, Ricky; Little, Brenda; Ringeisen, Bradley R
2007-02-15
The use of proton exchange membranes (PEMs) in biological fuel cells limits the diversity of novel designs for increasing output power or enabling autonomous function in unique environments. Here we show that selected nanoporous polymer filters (nylon, cellulose, or polycarbonate) can be used effectively in place of PEMs in a miniature microbial fuel cell (mini-MFC, device cross-section 2 cm2), generating a power density of 16 W/m3 with an uncoated graphite felt oxygen reduction reaction (ORR) cathode. The incorporation of polycarbonate or nylon membranes into biological fuel cell designs produced comparable power and durability to Nafion-117 membranes. Also, high power densities for novel larger (5 cm3 anode volume, 0.6 W/m3) and smaller (0.025 cm3 projected geometric volume, average power density 10 W/m3) chamberless and pumpless microbial fuel cells were observed. As an additional benefit, the nanoporous membranes isolated the anode from invading natural bacteria, increasing the potential applications for MFCs beyond aquatic sediment environments. This work is a practical solution for decreasing the cost of biological fuel cells while incorporating new features for powering long-term autonomous devices.
Stress-Driven Selection of Novel Phenotypes
NASA Technical Reports Server (NTRS)
Fox, George E.; Stepaov, Victor G.; Liu, Yamei
2011-01-01
A process has been developed that can confer novel properties, such as metal resistance, to a host bacterium. This same process can also be used to produce RNAs and peptides that have novel properties, such as the ability to bind particular compounds. It is inherent in the method that the peptide or RNA will behave as expected in the target organism. Plasmid-born mini-gene libraries coding for either a population of combinatorial peptides or stable, artificial RNAs carrying random inserts are produced. These libraries, which have no bias towards any biological function, are used to transform the organism of interest and to serve as an initial source of genetic variation for stress-driven evolution. The transformed bacteria are propagated under selective pressure in order to obtain variants with the desired properties. The process is highly distinct from in vitro methods because the variants are selected in the context of the cell while it is experiencing stress. Hence, the selected peptide or RNA will, by definition, work as expected in the target cell as the cell adapts to its presence during the selection process. Once the novel gene, which produces the sought phenotype, is obtained, it can be transferred to the main genome to increase the genetic stability in the organism. Alternatively, the cell line can be used to produce novel RNAs or peptides with selectable properties in large quantity for separate purposes. The system allows for easy, large-scale purification of the RNAs or peptide products. The process has been reduced to practice by imposing sub-inhibitory concentrations of NiCl2 on cells of the bacterium Escherichia coli that were transformed separately with the peptide library and RNA library. The evolved resistant clones were isolated, and sequences of the selected mini-gene variants were established. Clones resistant to NiCl2 were found to carry identical plasmid variants with a functional mini-gene that specifically conferred significant nickel tolerance on the host cells. Sequencing of the selected mini-gene revealed a propensity of the encoded peptide to bind transient metal ions. Expression of the mini-gene markedly improved growth parameters of the evolved clones at sub-inhibitory concentrations of NiCl2 while being slightly detrimental in the absence of stress. Similar results have been obtained with the RNA libraries. Overall, the results demonstrate a very natural outcome of the selection experiments in which the mini-genes were expected to be either successfully integrated into bacterial genetic networks, or rejected depending upon their effect on host fitness. This described approach can be useful as a laboratory model to study the dynamics of bacterial adaptive evolution on the molecular level. It can also provide a strategy for screening expressed DNA libraries in search of novel genes with desirable properties.
Environmental Assessment: Proposed Construction of Army and Air Force Exchange Service Mini-Mall
2003-10-01
fast food style restaurant would be accommodated in the mini-mall. Data on electrical consumption for the Burger King restaurant at MAFB (Building...MAFB-Gunter Annex. Assuming the new restaurant in the mini-mall consumes approximately the same quantity of electricity annually as the Burger King ...in the mini-mall. Data on natural gas consumption for the Burger King restaurant at MAFB (Building 1087) in FY 2001 reveals that this facility
MINI PILOT PLANT FOR DRINKING WATER RESEARCH
The Water Supply & Water Resources Division (WSWRD) has constructed 2 mini-pilot plant systems used to conduct drinking water research. These two systems each have 2 parallel trains for comparative research. The mini-pilot plants are small conventional drinking water treatment ...
Measurement of fault latency in a digital avionic mini processor, part 2
NASA Technical Reports Server (NTRS)
Mcgough, J.; Swern, F.
1983-01-01
The results of fault injection experiments utilizing a gate-level emulation of the central processor unit of the Bendix BDX-930 digital computer are described. Several earlier programs were reprogrammed, expanding the instruction set to capitalize on the full power of the BDX-930 computer. As a final demonstration of fault coverage an extensive, 3-axis, high performance flght control computation was added. The stages in the development of a CPU self-test program emphasizing the relationship between fault coverage, speed, and quantity of instructions were demonstrated.
2014-07-10
ISS040-E-059344 (10 July 2014) --- In the International Space Station’s Kibo laboratory, NASA astronaut Reid Wiseman (left) and European Space Agency astronaut Alexander Gerst, both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
2014-07-10
ISS040-E-059467 (10 July 2014) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Alexander Gerst and NASA astronaut Reid Wiseman (mostly obscured), both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
2014-07-10
ISS040-E-059478 (10 July 2014) --- In the International Space Station's Kibo laboratory, European Space Agency astronaut Alexander Gerst (left) and NASA astronaut Reid Wiseman, both Expedition 40 flight engineers, conduct a session with a pair of bowling-ball-sized free-flying satellites known as Synchronized Position Hold, Engage, Reorient, Experimental Satellites, or SPHERES. Surrounding the two SPHERES mini-satellites is ring-shaped hardware known as the Resonant Inductive Near-field Generation System, or RINGS. SPHERES-RINGS seeks to demonstrate wireless power transfer between satellites at a distance for enhanced operations.
2018-01-01
promote cooperative research and information exchange, and secondly an in-house delivery business model where S&T activities are conducted in a NATO...Panel These Panels and Group are the power-house of the collaborative model and are made up of national representatives as well as recognised world...of Radiation Injury and Recovery 1-31 1.3.3.2 Mini-Pig Model of Acute Radiation Syndrome ( ARS ) 1-31 1.3.3.3 Medical Countermeasures (MedCM) 1-32
Hunting the Dark Matter with DEAP/CLEAN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giuliani, F.
2010-02-10
The potential of the DEAP/CLEAN program for direct Dark Matter detection to test various dark matter models is illustrated. The scintillation pulse of a noble liquid like Argon or Neon has two well distinguished time constants allowing a very reliable correlation between pulse shape and type of event. This pulse shape discrimination already provides the power of rejecting a background10{sup 8}-10{sup 9} times larger than the signal. MiniCLEAN, a 500 kg LAr detector, is currently under construction, and a 3.6 ton detector, DEAP-3600, under development.
Tank Investigation of a Powered Dynamic Model of a Large Long-Range Flying Boat
1947-01-01
gravity=0.8066o’ Ma* W 82.1740 ftZsec* Moment of inDrtiaosfNi1. ( ludicate axis of . radius of gyration k by proper subscript.) Coefficient of...8217". ^Velocities ,3* Designation Sym-- bol . Positive ,.- direction Designa- £" tion « lOJs’ ., ,f._.’y. r.. jSpf •Linear . (compo- nent along aria...Principles for designing the optimum hull for a large long- range flying boat to meet the requirements of seaworthiness, mini- mum drag, and ability
NASA Astrophysics Data System (ADS)
Rau, J.-Y.; Jhan, J.-P.; Huang, C.-Y.
2015-08-01
Miniature Multiple Camera Array (MiniMCA-12) is a frame-based multilens/multispectral sensor composed of 12 lenses with narrow band filters. Due to its small size and light weight, it is suitable to mount on an Unmanned Aerial System (UAS) for acquiring high spectral, spatial and temporal resolution imagery used in various remote sensing applications. However, due to its wavelength range is only 10 nm that results in low image resolution and signal-to-noise ratio which are not suitable for image matching and digital surface model (DSM) generation. In the meantime, the spectral correlation among all 12 bands of MiniMCA images are low, it is difficult to perform tie-point matching and aerial triangulation at the same time. In this study, we thus propose the use of a DSLR camera to assist automatic aerial triangulation of MiniMCA-12 imagery and to produce higher spatial resolution DSM for MiniMCA12 ortho-image generation. Depending on the maximum payload weight of the used UAS, these two kinds of sensors could be collected at the same time or individually. In this study, we adopt a fixed-wing UAS to carry a Canon EOS 5D Mark2 DSLR camera and a MiniMCA-12 multi-spectral camera. For the purpose to perform automatic aerial triangulation between a DSLR camera and the MiniMCA-12, we choose one master band from MiniMCA-12 whose spectral range has overlap with the DSLR camera. However, all lenses of MiniMCA-12 have different perspective centers and viewing angles, the original 12 channels have significant band misregistration effect. Thus, the first issue encountered is to reduce the band misregistration effect. Due to all 12 MiniMCA lenses being frame-based, their spatial offsets are smaller than 15 cm and all images are almost 98% overlapped, we thus propose a modified projective transformation (MPT) method together with two systematic error correction procedures to register all 12 bands of imagery on the same image space. It means that those 12 bands of images acquired at the same exposure time will have same interior orientation parameters (IOPs) and exterior orientation parameters (EOPs) after band-to-band registration (BBR). Thus, in the aerial triangulation stage, the master band of MiniMCA-12 was treated as a reference channel to link with DSLR RGB images. It means, all reference images from the master band of MiniMCA-12 and all RGB images were triangulated at the same time with same coordinate system of ground control points (GCP). Due to the spatial resolution of RGB images is higher than the MiniMCA-12, the GCP can be marked on the RGB images only even they cannot be recognized on the MiniMCA images. Furthermore, a one meter gridded digital surface model (DSM) is created by the RGB images and applied to the MiniMCA imagery for ortho-rectification. Quantitative error analyses show that the proposed BBR scheme can achieve 0.33 pixels of average misregistration residuals length and the co-registration errors among 12 MiniMCA ortho-images and between MiniMCA and Canon RGB ortho-images are all less than 0.6 pixels. The experimental results demonstrate that the proposed method is robust, reliable and accurate for future remote sensing applications.
History and current status of mini-invasive thoracic surgery
He, Jianxing
2011-01-01
Mini-invasive thoracic technique mainly refers to a technique involving the significant reduction of the chest wall access-related trauma. Notably, thoracoscope is the chief representative. The development of thoracoscope technique is characterized by: developing from direct peep to artificial lighting, then combination with image and video technique in equipments; technically developing from diagnostic to therapeutic approaches; developing from simpleness to complexity in application scope; and usually developing together with other techniques. At present, the widely used mini-invasive thoracic surgery refers to the mini-open thoracic surgery performed mainly by using some instruments to control target tissues and organs based on the vision associated with multi-limb coordination, which may be hand-assisted if necessary. The mini-invasive thoracic surgery consists of three approaches including video-assisted thoracic surgery (VATS), video-assisted Hybrid and hand-assisted VATS. So far the mini-invasive thoracic technique has achieved great advances due to the development in instruments of mini-invasive thoracic surgery which has the following features: instruments of mini-invasive thoracic surgery appear to be safe and practical, and have successive improvement and diversification in function; the specific instruments of open surgeries has been successively developed into dedicated instruments of endoscopic surgery; the application of endoscopic mechanical suture device generates faster fragmentation and reconstruction of organ tissues; the specific delicated instruments of endoscopic surgery have rapid development and application; and the simple instruments structurally similar to the conventional instruments are designed according to the mini-incison. In addition, the mini-invasive thoracic technique is widely used in five aspects including diseases of pleura membrane and chest wall, lung diseases, esophageal diseases, mediastinal diseases and heart diseases. However, there remain many problems in specifications and trainings, economic cost, conservation and innovation. Therefore, particular attention should be paid to these problems. Nevertheless, the promotion of thoracic surgery appears promising in the future. PMID:22263074
Catalán, Alfonso; Martínez, Alejandra; Marchesani, Francisco; González, Urcesino
2016-07-01
Patients with atrophic edentulous ridges generally have problems with retention, therapeutic satisfaction, and comfort with their complete dentures. An alternative treatment to assist in improving retention and stability involves the use of mini-implants. The aim of this study was to evaluate the retention of mandibular overdentures connected to two mini-implants and overall patient satisfaction with them. Seven patients with atrophic mandibular ridges (Type 4D Misch classification), aged 62 to 74 years old were rehabilitated with complete dentures. In each patient, two mini-implants measuring 15 or 13 mm in length and 1.8 mm in diameter were placed. After 15 days, overdentures were connected to the mini-implants with O-ring attachments. In each patient, retention of the overdentures was measured, and a survey of therapeutic satisfaction before and after connection to the mini-implants was administered. Prosthesis retention was measured with a digital dynamometer at 1 month, 6 months, and 2, 3, 5, and 7 years after mini-implant placement. Patient satisfaction was assessed with a survey. Data were analyzed with Student's t-test (satisfaction survey) and the Friedman test (retention measurements and satisfaction survey). The initial retention values (0.34 to 0.63 N without mini-implants) varied significantly (p ≤ 0.050). These values were less than the subsequent measurements of 3.92 to 9.64 N, taken after placement of the mini-implants and connecting them to the dentures. Satisfaction was good to very good over the 7-year observation period. Mucosa and peri-implant bone showed no pathological changes. In this limited sample size clinical study the results indicated that after connecting mandibular overdentures to two mini-implants, patient satisfaction significantly increased and retention significantly improved during the 7-year observation period. © 2015 by the American College of Prosthodontists.
Ergin, Giray; Kirac, Mustafa; Kopru, Burak; Ebiloglu, Turgay; Biri, Hasan
2018-04-22
To compare the pain status and stone free rates of flexible ureterorenoscopy (F-URS) versus mini-percutaneousnephrolithotomy (mini-PNL) for the treatment of 1-to 2-cm renal stones. This study was retrospectively designed with match paired method. Between January 2013 and December 2016, 387 patients underwent stone surgery for renal stones, 45 patients underwent FURS and 45 patients underwent mini-PNL. 90 patients were divided into two groups according to the surgical procedures. Group 1 patients underwent F-URS, and Group 2 patients underwent mini-PNL. During the intraoperative andpostoperative periods, pain management for all patients was standardized. Pain scores were determined using a visual analogue scale (VAS) completed at 2, 6, 12 and 24 hours postoperatively. The stone free status, hemoglobin levels, fluoroscopy time (FT), operation time (OT), hospitalization time (HT), return to work time (RWT), and complications were noted for each patient. Of all patients, the mean age was 41.1 ± 12.1 years and the mean stone size was 13.9 ± 2.9 mm. The VAS scores were significantly higher in the mini-PNL group at 2, 6, 12 and 24 hours (P < .05). The stone-free status and complication rates were similar between the two groups (P > .05); however, the hemoglobin decreases and the fluoroscopy, operation, hospitalization and return to work times were higher in the mini-PNL group than in the F-URS group (P < .05). F-URS is less painful than mini-PNL for the treatment of 1- to 2-cm renal stones. However, the stone free rate is similar between the two procedures while mini-PNL is superior in terms of fluoroscopy, operation, hospitalization and return to work duration. We think that F-URS is more comfortable and less painful than mini-PNL and achieves a similar stone free rate for the treatment of 1- to 2-cm renal stones.
Research on power source structure optimization for East China Power Grid
NASA Astrophysics Data System (ADS)
Xu, Lingjun; Sang, Da; Zhang, Jianping; Tang, Chunyi; Xu, Da
2017-05-01
The structure of east china power grid is not reasonable for the coal power takes a much higher proportion than hydropower, at present the coal power takes charge of most peak load regulation, and the pressure of peak load regulation cannot be ignored. The nuclear power, wind power, photovoltaic, other clean energy and hydropower, coal power and wind power from outside will be actively developed in future, which increases the pressure of peak load regulation. According to development of economic and social, Load status and load prediction, status quo and planning of power source and the characteristics of power source, the peak load regulation balance is carried out and put forward a reasonable plan of power source allocation. The ultimate aim is to optimize the power source structure and to provide reference for power source allocation in east china.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mankey, G J; Morton, S A; Tobin, J G
A spin- and angle-resolved x-ray photoelectron spectrometer for the study of magnetic materials will be discussed. It consists of a turntable with electron lenses connected to a large hemispherical analyzer. A mini-Mott spin detector is fitted to the output of the hemispherical analyzer. This system, when coupled to a synchrotron radiation source will allow determination of a complete set of quantum numbers of a photoelectron. This instrument will be used to study ferromagnetic, antiferromagnetic and nonmagnetic materials. Some prototypical materials systems to be studied with this instrument system will be proposed.
A Decision for War: The Formulation of English Foreign Policy from September 1754 to July 1755.
1981-07-31
traditional colonial enemy in an area of vital economic importance . 8 3 Thus, when Mirepoix arrived in London on 14 January, both England and France earnestly...and her position in the event of an Anglo-French confrontation either in Europe or America was of the utmost importance . France drew attention to the...of Honduras remained sources of Anglo-Spanish friction. The English mini- stry realized the importance of retaining the goodwill and neutrality of
Medical Surveillance Monthly Report. Volume 23, Number 3
2016-03-01
e use of electronic immunization data sources mini - mizes recall bias, but this bias is still a threat to internal validity. Th ere is less...diagnosis when service members (particularly recruits) present with muscular pain and swell- ing, limited range of motion, or the excretion of dark... plus a diagnosis in any posi- tion of one of the following: “volume deple- tion (dehydration)” (ICD-9: 276.5x; ICD-10: E86.0, E86.1, E86.9), “eff ects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katori, Teppei
2008-12-01
The Mini-Booster neutrino experiment (MiniBooNE) at Fermi National Accelerator Laboratory (Fermilab) is designed to search for v μ → v e appearance neutrino oscillations. Muon neutrino charged-current quasi-elastic (CCQE) interactions (v μ + n → μ + p) make up roughly 40% of our data sample, and it is used to constrain the background and cross sections for the oscillation analysis. Using high-statistics MiniBooNE CCQE data, the muon-neutrino CCQE cross section is measured. The nuclear model is tuned precisely using the MiniBooNE data. The measured total cross section is σ = (1.058 ± 0.003 (stat) ± 0.111 (syst)) x 10more » -38 cm 2 at the MiniBooNE muon neutrino beam energy (700-800 MeV). v e appearance candidate data is also used to search for Lorentz violation. Lorentz symmetry is one of the most fundamental symmetries in modern physics. Neutrino oscillations offer a new method to test it. We found that the MiniBooNE result is not well-described using Lorentz violation, however further investigation is required for a more conclusive result.« less
Do dual-thread orthodontic mini-implants improve bone/tissue mechanical retention?
Lin, Yang-Sung; Chang, Yau-Zen; Yu, Jian-Hong; Lin, Chun-Li
2014-12-01
The aim of this study was to understand whether the pitch relationship between micro and macro thread designs with a parametrical relationship in a dual-thread mini-implant can improve primary stability. Three types of mini-implants consisting of single-thread (ST) (0.75 mm pitch in whole length), dual-thread A (DTA) with double-start 0.375 mm pitch, and dual-thread B (DTB) with single-start 0.2 mm pitch in upper 2-mm micro thread region for performing insertion and pull-out testing. Histomorphometric analysis was performed in these specimens in evaluating peri-implant bone defects using a non-contact vision measuring system. The maximum inserted torque (Tmax) in type DTA was found to be the smallest significantly, but corresponding values found no significant difference between ST and DTB. The largest pull-out strength (Fmax) in the DTA mini-implant was found significantly greater than that for the ST mini-implant regardless of implant insertion orientation. Mini-implant engaged the cortical bone well as observed in ST and DTA types. Dual-thread mini-implant with correct micro thread pitch (parametrical relationship with macro thread pitch) in the cortical bone region can improve primary stability and enhanced mechanical retention.
Duncan, Laura; Georgiades, Kathy; Wang, Li; Van Lieshout, Ryan J; MacMillan, Harriet L; Ferro, Mark A; Lipman, Ellen L; Szatmari, Peter; Bennett, Kathryn; Kata, Anna; Janus, Magdalena; Boyle, Michael H
2017-12-04
The goals of the study were to examine test-retest reliability, informant agreement and convergent and discriminant validity of nine DSM-IV-TR psychiatric disorders classified by parent and youth versions of the Mini International Neuropsychiatric Interview for Children and Adolescents (MINI-KID). Using samples drawn from the general population and child mental health outpatient clinics, 283 youth aged 9 to 18 years and their parents separately completed the MINI-KID with trained lay interviewers on two occasions 7 to 14 days apart. Test-retest reliability estimates based on kappa (κ) went from 0.33 to 0.79 across disorders, samples and informants. Parent-youth agreement on disorders was low (average κ = 0.20). Confirmatory factor analysis provided evidence supporting convergent and discriminant validity. The MINI-KID disorder classifications yielded estimates of test-retest reliability and validity comparable to other standardized diagnostic interviews in both general population and clinic samples. These findings, in addition to the brevity and low administration cost, make the MINI-KID a good candidate for use in epidemiological research and clinical practice. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Kim, Seong-Hun; Choi, Yong-Suk; Hwang, Eui-Hwan; Chung, Kyu-Rhim; Kook, Yoon-Ah; Nelson, Gerald
2007-04-01
This article illustrates a new surgical guide system that uses cone-beam computed tomography (CBCT) images to replicate dental models; surgical guides for the proper positioning of orthodontic mini-implants were fabricated on the replicas, and the guides were used for precise placement. The indications, efficacy, and possible complications of this method are discussed. Patients who were planning to have orthodontic mini-implant treatment were recruited for this study. A CBCT system (PSR 9000N, Asahi Roentgen, Kyoto, Japan) was used to acquire virtual slices of the posterior maxilla that were 0.1 to 0.15 mm thick. Color 3-dimensional rapid prototyping was used to differentiate teeth, alveolus, and maxillary sinus wall. A surgical guide for the mini-implant was fabricated on the replica model. Proper positioning for mini-implants on the posterior maxilla was determined by viewing the CBCT images. The surgical guide was placed on the clinical site, and it allowed precise pilot drilling and accurate placement of the mini-implant. CBCT imaging allows remarkably lower radiation doses and thinner acquisition slices compared with medical computed tomography. Virtually reproduced replica models enable precise planning for mini-implant positions in anatomically complex sites.
NASA Technical Reports Server (NTRS)
Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.
1991-01-01
A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.
NASA Astrophysics Data System (ADS)
Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.
A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.
NASA Astrophysics Data System (ADS)
Aguilar-Arevalo, A. A.; Anderson, C. E.; Bartoszek, L. M.; Bazarko, A. O.; Brice, S. J.; Brown, B. C.; Bugel, L.; Cao, J.; Coney, L.; Conrad, J. M.; Cox, D. C.; Curioni, A.; Djurcic, Z.; Finley, D. A.; Fleming, B. T.; Ford, R.; Garcia, F. G.; Garvey, G. T.; Green, C.; Green, J. A.; Hart, T. L.; Hawker, E.; Imlay, R.; Johnson, R. A.; Karagiorgi, G.; Kasper, P.; Katori, T.; Kobilarcik, T.; Kourbanis, I.; Koutsoliotas, S.; Laird, E. M.; Linden, S. K.; Link, J. M.; Liu, Y.; Liu, Y.; Louis, W. C.; Mahn, K. B. M.; Marsh, W.; Martin, P. S.; McGregor, G.; Metcalf, W.; Meyer, H.-O.; Meyers, P. D.; Mills, F.; Mills, G. B.; Monroe, J.; Moore, C. D.; Nelson, R. H.; Nguyen, V. T.; Nienaber, P.; Nowak, J. A.; Ouedraogo, S.; Patterson, R. B.; Perevalov, D.; Polly, C. C.; Prebys, E.; Raaf, J. L.; Ray, H.; Roe, B. P.; Russell, A. D.; Sandberg, V.; Sands, W.; Schirato, R.; Schofield, G.; Schmitz, D.; Shaevitz, M. H.; Shoemaker, F. C.; Smith, D.; Soderberg, M.; Sorel, M.; Spentzouris, P.; Stancu, I.; Stefanski, R. J.; Sung, M.; Tanaka, H. A.; Tayloe, R.; Tzanov, M.; Van de Water, R.; Wascko, M. O.; White, D. H.; Wilking, M. J.; Yang, H. J.; Zeller, G. P.; Zimmerman, E. D.; MiniBooNE Collaboration
2009-02-01
The MiniBooNE neutrino detector was designed and built to look for ν→ν oscillations in the (sin 2θ,Δm) parameter space region where the LSND experiment reported a signal. The MiniBooNE experiment used a beam energy and baseline that were an order of magnitude larger than those of LSND so that the backgrounds and systematic errors would be completely different. This paper provides a detailed description of the design, function, and performance of the MiniBooNE detector.
Systems and methods for an integrated electrical sub-system powered by wind energy
Liu, Yan [Ballston Lake, NY; Garces, Luis Jose [Niskayuna, NY
2008-06-24
Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.
Obeidat, Wasfy M; Sahni, Ekneet; Kessler, William; Pikal, Michael
2018-02-01
The goal of the work described in this publication was to evaluate a new, small, material-sparing freeze dryer, denoted as the "mini-freeze dryer or mini-FD", capable of reproducing the product temperature history of larger freeze dryers, thereby facilitating scale-up. The mini-FD wall temperatures can be controlled to mimic loading procedures and dryer process characteristics of larger dryers. The mini-FD is equipped with a tunable diode laser absorption spectroscopy (TDLAS) water vapor mass flow monitor and with other advanced process analytical technology (PAT) sensors. Drying experiments were performed to demonstrate scalability to larger freeze dryers, including the determination of vial heat transfer coefficients, K v . Product temperature histories during K v runs were evaluated and compared with those obtained with a commercial laboratory-scale freeze dryer (LyoStar II) for sucrose and mannitol product formulations. When the mini-FD wall temperature was set at the LyoStar II band temperature (- 20°C) to mimic lab dryer edge vials, edge vial drying in the mini-FD possessed an average K v within 5% of those obtained during drying in the LyoStar II. When the wall temperature of the mini-FD was set equal to the central vial product temperature, edge vials behaved as center vials, possessing a K v value within 5% of those measured in the LyoStar II. During both K v runs and complete product freeze drying runs, the temperature-time profiles for the average edge vials and central vial in the mini-FD agreed well with the average edge and average central vials of the LyoStar II.
Loftus, Christopher J; Hinck, Bryan; Makovey, Iryna; Sivalingam, Sri; Monga, Manoj
2018-04-01
To determine how sheath and endoscope size affect intrarenal pelvic pressures and risk of postoperative infectious complications comparing "Mini" vs "Standard" percutaneous nephrolithotomy (PCNL). Uropathogenic Escherichia coli were grown and 10 9 of them were instilled into the porcine renal pelvis through retrograde access for 1 hour. Percutaneous access utilized a 14/16F 20 cm ureteral access sheath for the Mini arm and a 30F sheath for the Standard arm. Nephroscopy was simulated utilizing either an 8/9.8F semirigid ureteroscope or 26F nephroscope for 1 hour while intrarenal pelvic pressure was continuously monitored. Blood and tissue cultures of kidney, liver, and spleen biopsies were plated and incubated and positive cultures were confirmed with polymerase chain reaction. Intrapelvic pressures were higher in the Mini group, 18.76 ± 5.82 mm Hg vs 13.56 ± 5.82 mm Hg (p < 0.0001). Time spent above 30 mm Hg was greater in the Mini arm, 117.0 seconds vs 66.1 seconds (p = 0.0452). All pigs had positive kidney tissue cultures whereas spleen cultures were positive in 100% and 60% of pigs in the Mini and Standard arms, respectively (p = 0.0253); 90% and 30% had positive liver tissue culture in the Mini and Standard arms, respectively (p = 0.0062). Blood cultures were positive in 30% of pigs in the Mini arm compared with none in the Standard arm (p = 0.0603). Mini-PCNL was associated with higher intrarenal pressures and higher risk of end organ bacterial seeding in the setting of an infected collecting system. This suggests a higher potential for infectious complications in a clinical setting.
Complete overdentures retained by mini implants: A systematic review.
Lemos, Cleidiel Aparecido Araujo; Verri, Fellippo Ramos; Batista, Victor Eduardo de Souza; Júnior, Joel Ferreira Santiago; Mello, Caroline Cantieri; Pellizzer, Eduardo Piza
2017-02-01
The purpose of this systematic review was to evaluate the use of mini implants to retain complete overdentures in terms of survival rates of mini implants, marginal bone loss, satisfaction, and quality of life. This report followed the PRISMA Statement and PICO question. This review has been registered at PROSPERO under the number CRD42016036141. Two independent reviewers performed a comprehensive search of studies published until September 2016 and listed in the PubMed/MEDLINE, Embase, and The Cochrane Library databases. The focused question was: is the use of mini implants feasible for prosthodontic rehabilitation with complete overdentures? The 24 studies selected for review evaluated 1273 patients whose mean age was 65.93 years; these patients had received 2494 mini implants and 386 standard implants for retaining overdenture prosthesis. The mean follow-up time was 2.48 years (range: 1-7 years). There was a higher survival rate of mini implants (92.32%). More frequent failures for maxillary (31.71%) compared with mandibular arches (4.89%). The majority of studies revealed marginal bone loss values similar to those of standard implants (<1.5mm). All studies verified an increase in satisfaction and quality of life after rehabilitation treatment with mini dental implants. The present systematic review indicates that the use of mini implants for retaining overdenture prosthesis is considered an alternative treatment when standard treatment is not possible, since it presents high survival rates, acceptable marginal bone loss, and improvements in variables related to satisfaction and quality of life. Based on the results of this study, the use of a minimum 4 and 6 mini implants can be considered a satisfactory treatment option for rehabilitation of the mandibular and maxillary arches respectively with a complete overdenture. Copyright © 2016. Published by Elsevier Ltd.
Mini-Membrane Evaporator for Contingency Spacesuit Cooling
NASA Technical Reports Server (NTRS)
Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Petty, Brian; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew
2015-01-01
The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only approximately 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini-ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.
Mini-Membrane Evaporator for Contingency Spacesuit Cooling
NASA Technical Reports Server (NTRS)
Makinen, Janice V.; Bue, Grant C.; Campbell, Colin; Craft, Jesse; Lynch, William; Wilkes, Robert; Vogel, Matthew
2014-01-01
The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini- ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS.
Fracture strength of orthodontic mini-implants
Assad-Loss, Tatiana Feres; Kitahara-Céia, Flávia Mitiko Fernandes; Silveira, Giordani Santos; Elias, Carlos Nelson; Mucha, José Nelson
2017-01-01
ABSTRACT Objective: This study aimed at evaluating the design and dimensions of five different brands of orthodontic mini-implants, as well as their influence on torsional fracture strength. Methods: Fifty mini-implants were divided into five groups corresponding to different manufactures (DEN, RMO, CON, NEO, SIN). Twenty-five mini-implants were subjected to fracture test by torsion in the neck and the tip, through arbors attached to a Universal Mechanical Testing Machine. The other 25 mini-implants were subjected to insertion torque test into blocks of pork ribs using a torquimeter and contra-angle handpiece mounted in a surgical motor. The shape of the active tip of the mini-implants was evaluated under microscopy. The non-parametric Friedman test and Snedecor’s F in analysis of variance (ANOVA) were used to evaluate the differences between groups. Results: The fracture torque of the neck ranged from 23.45 N.cm (DEN) to 34.82 N.cm (SIN), and of the tip ranged from 9.35 N.cm (CON) to 24.36 N.cm (NEO). Insertion torque values ranged from 6.6 N.cm (RMO) to 10.2 N.cm (NEO). The characteristics that most influenced the results were outer diameter, inner diameter, the ratio between internal and external diameters, and the existence of milling in the apical region of the mini-implant. Conclusions: The fracture torques were different for both the neck and the tip of the five types evaluated. NEO and SIN mini-implants showed the highest resistance to fracture of the neck and tip. The fracture torques of both tip and neck were higher than the torque required to insert mini-implants. PMID:28746487
Espinar-Escalona, Eduardo; Bravo-Gonzalez, Luis-Alberto; Pegueroles, Marta; Gil, Francisco Javier
2016-06-01
Self-drilling orthodontic mini-implants can be used as temporary devices for orthodontic treatments. Our main goal was to evaluate surface characteristics, roughness and wettability, of surface modified mini-implants to increase their stability during orthodontic treatment without inducing bone fracture and tissue destruction during unscrewing. Modified mini-implants by acid etching, grit-blasting and its combination were implanted in 20 New Zealand rabbits during 10 weeks. After that, the bone-to-implant (BIC) parameter was determined and the torque during unscrewing was measured. The surface characteristics, roughness and wettability, were also measured, onto modified Ti c.p. discs. Acid-etched mini-implants (R a ≈ 1.7 μm, contact angle (CA) ≈ 66°) significantly improved the bone-to-implant parameter, 26 %, compared to as-machined mini-implants (R a ≈ 0.3 μm, CA ≈ 68°, BIC = 19 %) due to its roughness. Moreover, this surface treatment did not modify torque during unscrewing due to their statistically similar wettability (p > 0.05). Surface treatments with higher roughness and hydrophobicity (R a ≈ 4.5 μm, CA ≈ 74°) lead to a greater BIC and to a higher removal torque during unscrewing, causing bone fracture, compared to as-machined mini-implants. Based on these in vivo findings, we conclude that acid-etching surface treatment can support temporary anchoring of titanium mini-implants. This treatment represents a step forward in the direction of reducing the time prior to mini-implant loading by increasing their stability during orthodontic treatment, without inducing bone fracture and tissue destruction during unscrewing.
MINIS: Multipurpose Interactive NASA Information System
NASA Technical Reports Server (NTRS)
1976-01-01
The Multipurpose Interactive NASA Information Systems (MINIS) was developed in response to the need for a data management system capable of operation on several different minicomputer systems. The desired system had to be capable of performing the functions of a LANDSAT photo descriptive data retrieval system while remaining general in terms of other acceptable user definable data bases. The system also had to be capable of performing data base updates and providing user-formatted output reports. The resultant MINI System provides all of these capabilities and several other features to complement the data management system. The MINI System is currently implemented on two minicomputer systems and is in the process of being installed on another minicomputer system. The MINIS is operational on four different data bases.
Intelligent power management in a vehicular system with multiple power sources
NASA Astrophysics Data System (ADS)
Murphey, Yi L.; Chen, ZhiHang; Kiliaris, Leonidas; Masrur, M. Abul
This paper presents an optimal online power management strategy applied to a vehicular power system that contains multiple power sources and deals with largely fluctuated load requests. The optimal online power management strategy is developed using machine learning and fuzzy logic. A machine learning algorithm has been developed to learn the knowledge about minimizing power loss in a Multiple Power Sources and Loads (M_PS&LD) system. The algorithm exploits the fact that different power sources used to deliver a load request have different power losses under different vehicle states. The machine learning algorithm is developed to train an intelligent power controller, an online fuzzy power controller, FPC_MPS, that has the capability of finding combinations of power sources that minimize power losses while satisfying a given set of system and component constraints during a drive cycle. The FPC_MPS was implemented in two simulated systems, a power system of four power sources, and a vehicle system of three power sources. Experimental results show that the proposed machine learning approach combined with fuzzy control is a promising technology for intelligent vehicle power management in a M_PS&LD power system.
Next Generation Fast Neutron Detector for Space Exploration (Mini-FND)
NASA Astrophysics Data System (ADS)
Hassler, D. M.; Ehresmann, B.
2018-02-01
SwRI has developed a miniature Fast Neutron Detector (mini-FND), for use in the Deep Space Gateway, to characterize the neutron albedo radiation. Mini-FND will provide coverage of the biologically relevant neutrons at energies of 500 keV and greater.
Controller Evaluation of Initial Data Link Air Traffic Control Services, Mini Study 1, Volume 2
DOT National Transportation Integrated Search
1988-09-01
This report details the results of Mini Study 1. This mini study was conducted : at the Federal Aviation Administration (FAA) Technical Center utilizing the Data : Link testbed. Initial Data Link air traffic control services were evaluated : under pa...
A regulatory toolbox of MiniPromoters to drive selective expression in the brain.
Portales-Casamar, Elodie; Swanson, Douglas J; Liu, Li; de Leeuw, Charles N; Banks, Kathleen G; Ho Sui, Shannan J; Fulton, Debra L; Ali, Johar; Amirabbasi, Mahsa; Arenillas, David J; Babyak, Nazar; Black, Sonia F; Bonaguro, Russell J; Brauer, Erich; Candido, Tara R; Castellarin, Mauro; Chen, Jing; Chen, Ying; Cheng, Jason C Y; Chopra, Vik; Docking, T Roderick; Dreolini, Lisa; D'Souza, Cletus A; Flynn, Erin K; Glenn, Randy; Hatakka, Kristi; Hearty, Taryn G; Imanian, Behzad; Jiang, Steven; Khorasan-zadeh, Shadi; Komljenovic, Ivana; Laprise, Stéphanie; Liao, Nancy Y; Lim, Jonathan S; Lithwick, Stuart; Liu, Flora; Liu, Jun; Lu, Meifen; McConechy, Melissa; McLeod, Andrea J; Milisavljevic, Marko; Mis, Jacek; O'Connor, Katie; Palma, Betty; Palmquist, Diana L; Schmouth, Jean-François; Swanson, Magdalena I; Tam, Bonny; Ticoll, Amy; Turner, Jenna L; Varhol, Richard; Vermeulen, Jenny; Watkins, Russell F; Wilson, Gary; Wong, Bibiana K Y; Wong, Siaw H; Wong, Tony Y T; Yang, George S; Ypsilanti, Athena R; Jones, Steven J M; Holt, Robert A; Goldowitz, Daniel; Wasserman, Wyeth W; Simpson, Elizabeth M
2010-09-21
The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination "knockins" in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5' of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type-specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kino, Motoki; Ito, Hirotaka; Kawakatu, Nozomu
We explore non-thermal emission from a shocked interstellar medium, which is identified as an expanding shell, driven by a relativistic jet in active galactic nuclei (AGNs). In this work, we particularly focus on parsec-scale size mini shells surrounding mini radio lobes. From the radio to X-ray band, the mini radio lobe emission dominates the faint emission from the mini shell. On the other hand, we find that inverse-Compton (IC) emission from the shell can overwhelm the associated lobe emission at the very high energy (VHE; E > 100 GeV) {gamma}-ray range, because energy densities of synchrotron photons from the lobemore » and/or soft photons from the AGN nucleus are large and IC scattering works effectively. The predicted IC emission from nearby mini shells can be detected with the Cherenkov Telescope Array and they are potentially a new class of VHE {gamma}-ray emitters.« less
NASA Astrophysics Data System (ADS)
DiGregorio, A.; Wilson, E. L.; Palmer, P. I.; Mao, J.; Feng, L.
2017-12-01
We present the simulated impact of a small (50 instrument) ground network of NASA Goddard Space Flight Center's miniaturized laser heterodyne radiometer (mini-LHR), a small, low cost ( 50k), portable, and high precision CH4 and CO2 measuring instrument. Partnered with AERONET as a non-intrusive accessory, the mini-LHR is able to leverage the 500+ instrument AERONET network for rapid network deployment and testing, and simultaneously retrieve co-located aerosol data, an important input for sattelite measurements. This observing systems simulation experiment (OSSE) uses the 3-D GEOS-Chem chemistry transport model and 50 strategically selected sites to model flux estimate uncertainty reduction of both TCCON and mini-LHR instruments. We found that 50 mini-LHR sites are capable of improving global uncertainty by up to 70%, with local improvements in the Southern Hemisphere reaching to 90%. Our studies show that addition of the mini-LHR to current ground networks will play a major role in reduction of global carbon flux uncertainty.
Seed Embryo Development Is Regulated via an AN3-MINI3 Gene Cascade
Meng, Lai-Sheng; Wang, Yi-Bo; Loake, Gary J.; Jiang, Ji-Hong
2016-01-01
In agriculture, seed mass is one of the most important components related to seed yield. MINISEED3 (MINI3) which encodes the transcriptional activator WRKY10, is thought to be a pivotal regulator of seed mass. In Arabidopsis SHORT HYPOCOTYL UNDER BLUE1 (SHB1) associates with the promoter of MINI3, regulating embryo cell proliferation (both cell division and elongation), which, in turn, modulates seed mass. Furthermore, the recruitment of SHB1 via MINI3 to both its cognate promoter and that of IKU2 implies a two-step amplification for countering the low expression level of IKU2, which is thought to function as a molecular switch for seed cavity enlargement. However, it is largely unknown how embryo cell proliferation, which encompasses both cell division and elongation, is regulated by SHB1 and MINI3 function. Here, we show that a loss of function mutation within the transcriptional coactivator ANGUSTIFOLIA3 (AN3), increases seed mass. Further, AN3 associates with the MINI3 promoter in vivo. Genetic evidence indicates that the absence of MINI3 function suppresses the decrease of cell number observed in an3-4 mutants by regulating cell division and in turn inhibits increased cell size of the an3-4 line by controlling cell elongation. Thus, seed embryo development is modulated via an AN3-MINI3 gene cascade. This regulatory model provides a deeper understanding of seed mass regulation, which may in turn lead to increased crop yields. PMID:27857719
The mini-cog: a cognitive 'vital signs' measure for dementia screening in multi-lingual elderly.
Borson, S; Scanlan, J; Brush, M; Vitaliano, P; Dokmak, A
2000-11-01
The Mini-Cog, a composite of three-item recall and clock drawing, was developed as a brief test for discriminating demented from non-demented persons in a community sample of culturally, linguistically, and educationally heterogeneous older adults. All 129 who met criteria for probable dementia based on informant interviews and 120 with no history of cognitive decline were included; 124 were non-English speakers. Sensitivity, specificity, and diagnostic value of the Mini-Cog were compared with those of the Mini-Mental State Exam (MMSE) and Cognitive Abilities Screening Instrument (CASI). The Mini-Cog had the highest sensitivity (99%) and correctly classified the greatest percentage (96%) of subjects. Moreover, its diagnostic value was not influenced by education or language, while that of the CASI was adversely influenced by low education, and both education and language compromised the diagnostic value of the MMSE. Administration time for the Mini-Cog was 3 minutes vs 7 minutes for the MMSE. The Mini-Cog required minimal language interpretation and training to administer, and no test forms of scoring modifications were needed to compensate for the extensive linguistic and educational heterogeneity of the sample. Validation in clinical and population-based samples is warranted, as its brevity and ease of administration suggest that the Mini-Cog might be readily incorporated into general practice and senior care settings as a routine 'cognitive vital signs' measure. Copyright 2000 John Wiley & Sons, Ltd.
Fully customized placement of orthodontic miniplates: a novel clinical technique
2014-01-01
Introduction The initial stability and survival rate of orthodontic mini-implants are highly dependent on the amount of cortical bone at their insertion site. In areas with limited bone availability, mini-plates are preferred to provide effective skeletal anchorage. The purpose of this paper was to present a new clinical technique for the insertion of mini-plates. Methods In order to apply this new technique, a cone-beam image of the insertion area is required. A software (Galaxy Sirona, Bensheim, Germany) is used to construct a three-dimensional image of the scanned area and to virtually determine the exact location of the mini-plate as well as the position of the fixation screws. A stereolithographic model (STL) is then created by means of a three-dimensional scanner. Prior to its surgical insertion, the bone plate is adapted to the stereo-lithographic model. Finally, a custom transfer jig is fabricated in order to assist with accurate placement of the mini-plate intra-operatively. Results The presented technique minimizes intra-operative decision making, because the final position of the bone plate is determined pre-surgically. This significantly reduces the duration of the surgical procedure and improves its outcome. Conclusions A novel method for surgical placement of orthodontic mini-plates is presented. The technique facilitates accurate adaptation of mini-plates and insertion of retaining surgical screws; thereby enabling clinicians to more confidently increase the use of bone plates, especially in anatomical areas where the success of non-osseointegrated mini-screws is less favorable. PMID:24886597
Controller Evaluation of Initial Data Link Air Traffic Control Services: Mini Study 2 Volume II
DOT National Transportation Integrated Search
1989-03-01
This report details the results of Mini Study 2. This Mini Study was conducted at the Federal Aviation Administration (FAA) Technical Center utilizing the Data Link test bed. Initial Data Link air traffic control services were evaluated under part ta...
Mini-Lectures: A Taster to Engage the Audience for the Main Event
ERIC Educational Resources Information Center
Ingram, Matthew J.; Crane, Simeon; Mokree, Alan; Curdy, Marion E.; Patel, Bhavik A.
2017-01-01
This article explores the use of pre-recorded video mini-lectures to support and enhance traditional face-to-face lectures for undergraduate students. Mini-lectures guide students through key concepts so that they can understand and assimilate key content before attending lectures.
Controller Evaluation of Initial Data Link Air Traffic Control Services: Mini Study 2 Volume I
DOT National Transportation Integrated Search
1989-03-01
This report details the results of Mini Study 2. This Mini Study was conducted at the Federal Aviation Administration (FAA) Technical Center utilizing the Data Link test bed. Initial Data Link air traffic control services were evaluated under part ta...
Controller Evaluation of Initial Data Link Air Traffic Control Services, Mini Study 1, Volume 1
DOT National Transportation Integrated Search
1988-09-01
This report details the results of Mini Study 1. This mini study was conducted : at the Federal Aviation (FAA) Technical Center utilizing the Data Link testbed. : Initial Data Link air traffic control services were under part task simulation : condit...
, micro and mini-grid policies and regulations, and international clean energy policy analysis. He has technologies, such as micro- and mini-grids. Strategic energy planning, focusing on both renewable and energy Considerations and Good Practices, NREL Technical Report (2015) Quality Assurance Framework for Mini-Grids, NREL
Passive radio frequency peak power multiplier
Farkas, Zoltan D.; Wilson, Perry B.
1977-01-01
Peak power multiplication of a radio frequency source by simultaneous charging of two high-Q resonant microwave cavities by applying the source output through a directional coupler to the cavities and then reversing the phase of the source power to the coupler, thereby permitting the power in the cavities to simultaneously discharge through the coupler to the load in combination with power from the source to apply a peak power to the load that is a multiplication of the source peak power.
NASA Astrophysics Data System (ADS)
Dafov, L. N.; Eze, P. C.; Haines, S. S.; Graham, S. A.; McHargue, T.; Hosford Scheirer, A.
2017-12-01
Natural gas bearing hydrates are a focus of research as a potential source of energy and carbon storage because they occur globally in permafrost regions and marine sediment along every continent. This study focuses on the structural and stratigraphic architecture of the Terrebonne mini-basin, northwest Walker Ridge, Gulf of Mexico, to characterize the depositional architecture and to describe possible migration pathways for petroleum. Questions addressed include: a) continuity of sand layers b) effects of faulting and c) ponding versus fill and spill. To address these questions, seven of forty-two high resolution USGS 2D seismic lines were interpreted and then verified with WesternGeco 3D seismic data, yielding three qualitative models for the depositional environment of hydrate-bearing sand intervals. Deeper hydrate-bearing sand reservoirs were deposited as sheet-like turbidite lobes. Two shallower hydrate-bearing intervals display two possible depositional systems which form reservoirs- 1) sandy to muddy channel sealed laterally by muddy levees with associated sandy crevasse splays, and 2) ponded sandy lobes cut by channels filled with sand lags and mud. Additional observations in the 2D seismic include mass transport deposits and possible contourites. Salt movement facilitated mini-basin formation which was then ponded by sediment and followed by episodes of fill-and-spill and erosion. These seismic interpretations indicate periodic salt uplift. Overturn of salt along the northwestern edge of the basin resulted in thrust faults. The faults and erosional surfaces act as seals to reservoirs. The greatest volume of sandy reservoir potential occurs in sheet-like turbidite lobes with high lateral continuity, which facilitates updip migration of deep-sourced thermogenic gas along bedding surfaces. Channel levees serve as lateral seals to gas hydrate reservoirs, whereas faults, erosional surfaces, and shales provide vertical seals. Characterization of the Terrebonne Basin depositional system and basin fill dynamics will inform a 3D basin and petroleum system model through time. The Earth model may serve as a platform within which future lab and production test findings can be integrated.
Bioactive compounds in lipid fractions of pumpkin (Cucurbita sp) seeds for use in food.
Veronezi, Carolina Médici; Jorge, Neuza
2012-06-01
Seeds are considered to be agro-industrial residues, which can be used as source of macronutrients and/or raw material for extraction of vegetable oils, since they present great quantities of bioactive compounds. This study aimed to characterize the lipid fractions and the seeds of pumpkin (Cucurbita sp) varieties Nova Caravela, Mini Paulista, Menina Brasileira, and Moranga de Mesa aiming at using them in food. The chemical composition of the seeds was performed according to the official methods of American Oil Chemists' Society and Association of Official Analytical Chemists. Total carotenoids and phenolic compounds were determined by spectrophotometry, while the levels of tocopherols were analyzed by high efficiency liquid chromatography. It was noted that the seeds contain high amounts of macronutrients that are essential for the functioning of the human organism. As to total carotenoids, Mini Paulista and Menina Brasileira pumpkin varieties presented significant amounts, 26.80 and 26.03 μg/g, respectively. Mini Paulista and Nova Caravela pumpkin varieties showed high amounts of total phenolic compounds in the lipid fractions and in the seeds. It was also found that γ-tocopherol is the isomer that stood out in the lipid fractions and in the seeds, mainly in Menina Brasileira. Finally, the consumption of these seeds and use of lipid fractions provide the supply of large quantities of compounds that are beneficial for health and that may be potentially used in food, besides representing an alternative to better use of agro-industrial residues. Bioactive compounds, besides presenting basic nutritional functions, provide metabolic and physiological health benefits when consumed as part of the usual diet. Therefore, there is a growing interest in vegetable oils of special composition, such as the ones extracted from fruit seeds. The seeds of Cucurbita sp are shown to be promising sources of oils, and especially the Cucurbita moschata and maxima species have not yet been fully elucidated. For this reason, it becomes important to investigate the chemical composition and lipid fractions of these seeds, aiming to use them in food. Journal of Food Science © 2012 Institute of Food Technologists® No claim to original US government works.
Development of a colorimetric microfluidic pH sensor for autonomous seawater measurements.
Rérolle, Victoire M C; Floquet, Cedric F A; Harris, Andy J K; Mowlem, Matt C; Bellerby, Richard R G J; Achterberg, Eric P
2013-07-05
High quality carbonate chemistry measurements are required in order to fully understand the dynamics of the oceanic carbonate system. Seawater pH data with good spatial and temporal coverage are particularly critical to apprehend ocean acidification phenomena and their consequences. There is a growing need for autonomous in situ instruments that measure pH on remote platforms. Our aim is to develop an accurate and precise autonomous in situ pH sensor for long term deployment on remote platforms. The widely used spectrophotometric pH technique is capable of the required high-quality measurements. We report a key step towards the miniaturization of a colorimetric pH sensor with the successful implementation of a simple microfluidic design with low reagent consumption. The system is particularly adapted to shipboard deployment: high quality data was obtained over a period of more than a month during a shipboard deployment in northwest European shelf waters, and less than 30 mL of indicator was consumed. The system featured a short term precision of 0.001 pH (n=20) and an accuracy within the range of a certified Tris buffer (0.004 pH). The quality of the pH system measurements have been checked using various approaches: measurements of certified Tris buffer, measurement of certified seawater for DIC and TA, comparison of measured pH against calculated pH from pCO2, DIC and TA during the cruise in northwest European shelf waters. All showed that our measurements were of high quality. The measurements were made close to in situ temperature (+0.2°C) in a sampling chamber which had a continuous flow of the ship's underway seawater supply. The optical set up was robust and relatively small due to the use of an USB mini-spectrometer, a custom made polymeric flow cell and an LED light source. The use of a three wavelength LED with detection that integrated power across the whole of each LED output spectrum indicated that low wavelength resolution detectors can be used instead of the current USB mini spectrophotometer. Artefacts due to the polychromatic light source and inhomogeneity in the absorption cell are shown to have a negligible impact on the data quality. The next step in the miniaturization of the sensor will be the incorporation of a photodiode as detector to replace the spectrophotometer. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.
Predictors of Rater Bias in the Assessment of Social-Emotional Competence
ERIC Educational Resources Information Center
Shapiro, Valerie B.; Kim, B. K. Elizabeth; Accomazzo, Sarah; Roscoe, Joe N.
2016-01-01
"The Devereux Student Strengths Assessment Mini" (DESSA-Mini) (LeBuffe, Shapiro, & Naglieri, 2014) efficiently monitors the growth of Social-Emotional Competence (SEC) in the routine implementation of Social Emotional Learning programs. The DESSA-Mini is used to assess approximately half a million children around the world. Since…
2007-08-01
26 ISTC Simulation Comparisons ............................................................................... 29 STARS...Range Comparison Figure 8. ISTC Simulntioiz Comparisons 29 Mini-Rocket User Guide REAL-WORLD COMPARISON In particular, note the very high angle-of...not directly model the missile rigid body dynamics. The ISTC subsequently used Mini-Rocket as a driver to stimulate other models and as a risk
Teaching Economics in the Mini-Economy.
ERIC Educational Resources Information Center
Indiana State Dept. of Education, Indianapolis.
This booklet produced by the State of Indiana introduces elementary teachers to economic concepts appropriate to the elementary curriculum and explains how to use mini-economy activities to teach these concepts. Chapter 1 describes how the mini-economy works, while chapter 2 introduces basic economic vocabulary and discusses market economy. Ideas…
Partners | Integrated Energy Solutions | NREL
Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL has teamed with the Africa to develop a Quality Assurance Framework for isolated mini-grids. NREL Enhances Energy Resiliency Partnership Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL has teamed
NREL Partnership Develops Off-Grid Energy Access through Quality Assurance
Framework for Mini-Grids | Integrated Energy Solutions | NREL Partnership Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL Partnership Develops Off-Grid Energy Access through Quality Assurance Framework for Mini-Grids NREL has teamed with the Global Lighting
NREL: International Activities - Energy Access
experience with off-grid solutions to support mini and microgrid projects, policies, and programs that are prohibitively expensive. Investment interest in mini and microgrids for energy access has been growing among Quality Assurance Framework (QAF) for mini-grids was developed to address the root challenges to providing
NASA Technical Reports Server (NTRS)
Chinellato, J. A.; Dobrigkeit, C.; Bellandifilho, J.; Lattes, C. M. G.; Menon, M. J.; Navia, C. E.; Pamilaju, A.; Sawayanagi, K.; Shibuya, E. H.; Turtelli, A., Jr.
1985-01-01
Experimental results of mini-clusters observed in Chacaltaya emulsion chamber no.19 are summarized. The study was made on 54 single core shower upper and 91 shower clusters of E(gamma) 10 TeV from 30 families which are visible energy greater than 80 TeV and penetrate through both upper and lower detectors of the two-story chamber. The association of hadrons in mini-cluster is made clear from their penetrative nature and microscopic observation of shower continuation in lower chamber. Small P sub t (gamma) of hadrons in mini-clusters remained in puzzle.
Time domain modal identification/estimation of the mini-mast testbed
NASA Technical Reports Server (NTRS)
Roemer, Michael J.; Mook, D. Joseph
1991-01-01
The Mini-Mast is a 20 meter long 3-dimensional, deployable/retractable truss structure designed to imitate future trusses in space. Presented here are results from a robust (with respect to measurement noise sensitivity), time domain, modal identification technique for identifying the modal properties of the Mini-Mast structure even in the face of noisy environments. Three testing/analysis procedures are considered: sinusoidal excitation near resonant frequencies of the Mini-Mast, frequency response function averaging of several modal tests, and random input excitation with a free response period.
Accuracy of mini peak flow meters in indicating changes in lung function in children with asthma.
Sly, P. D.; Cahill, P.; Willet, K.; Burton, P.
1994-01-01
OBJECTIVE--To assess whether mini flow meters used to measure peak expiratory flow can track changes in lung function and indicate clinically important changes. DESIGN--Comparison of measurements with a spirometer and different brands of mini flow meter; the meters were allocated to subjects haphazardly. SUBJECTS--12 boys with asthma aged 11 to 17 attending boarding school. MAIN OUTCOME MEASURES--Peak expiratory flow measured twice daily for three months with a spirometer and at least one of four brands of mini flow meter. RESULTS--The relation between changes in lung function measured with the spirometer and those measured with the mini flow meters was generally poor. In all, 26 episodes (range 1-3 in an individual child) of clinically important deterioration in lung function were detected from the records obtained with the spirometer. One mini flow meter detected six of 19 episodes, one detected six of 15, one detected six of 18, and one detected three of 21. CONCLUSIONS--Not only are the absolute values of peak expiratory flow obtained with mini flow meters inaccurate but the clinical message may also be incorrect. These findings do not imply that home monitoring of peak expiratory flow has no place in the management of childhood asthma but that the values obtained should be interpreted cautiously. PMID:8148680
V, Pavana Jyothi; S, Akila; Selvan, Malini K; Naidu, Hariprasad; Raghunathan, Shwethaa; Kota, Sathish; Sundaram, R C Raja; Rana, Samir Kumar; Raj, G Dhinakar; Srinivasan, V A; Mohana Subramanian, B
2016-12-01
Canine parvovirus (CPV) is a non-enveloped single stranded DNA virus with an icosahedral capsid. Mini-sequencing based CPV typing was developed earlier to detect and differentiate all the CPV types and FPV in a single reaction. This technique was further evaluated in the present study by performing the mini-sequencing directly from fecal samples which avoided tedious virus isolation steps by cell culture system. Fecal swab samples were collected from 84 dogs with enteritis symptoms, suggestive of parvoviral infection from different locations across India. Seventy six of these samples were positive by PCR; the subsequent mini-sequencing reaction typed 74 of them as type 2a virus, and 2 samples as type 2b. Additionally, 25 of the positive samples were typed by cycle sequencing of PCR products. Direct CPV typing from fecal samples using mini-sequencing showed 100% correlation with CPV typing by cycle sequencing. Moreover, CPV typing was achieved by mini-sequencing even with faintly positive PCR amplicons which was not possible by cycle sequencing. Therefore, the mini-sequencing technique is recommended for regular epidemiological follow up of CPV types, since the technique is rapid, highly sensitive and high capacity method for CPV typing. Copyright © 2016. Published by Elsevier B.V.
Spurious RF signals emitted by mini-UAVs
NASA Astrophysics Data System (ADS)
Schleijpen, Ric (H. M. A.); Voogt, Vincent; Zwamborn, Peter; van den Oever, Jaap
2016-10-01
This paper presents experimental work on the detection of spurious RF emissions of mini Unmanned Aerial Vehicles (mini-UAV). Many recent events have shown that mini-UAVs can be considered as a potential threat for civil security. For this reason the detection of mini-UAVs has become of interest to the sensor community. The detection, classification and identification chain can take advantage of different sensor technologies. Apart from the signatures used by radar and electro-optical sensor systems, the UAV also emits RF signals. These RF signatures can be split in intentional signals for communication with the operator and un-intentional RF signals emitted by the UAV. These unintentional or spurious RF emissions are very weak but could be used to discriminate potential UAV detections from false alarms. The goal of this research was to assess the potential of exploiting spurious emissions in the classification and identification chain of mini-UAVs. It was already known that spurious signals are very weak, but the focus was on the question whether the emission pattern could be correlated to the behaviour of the UAV. In this paper experimental examples of spurious RF emission for different types of mini-UAVs and their correlation with the electronic circuits in the UAVs will be shown
A DNA Mini-Barcoding System for Authentication of Processed Fish Products.
Shokralla, Shadi; Hellberg, Rosalee S; Handy, Sara M; King, Ian; Hajibabaei, Mehrdad
2015-10-30
Species substitution is a form of seafood fraud for the purpose of economic gain. DNA barcoding utilizes species-specific DNA sequence information for specimen identification. Previous work has established the usability of short DNA sequences-mini-barcodes-for identification of specimens harboring degraded DNA. This study aims at establishing a DNA mini-barcoding system for all fish species commonly used in processed fish products in North America. Six mini-barcode primer pairs targeting short (127-314 bp) fragments of the cytochrome c oxidase I (CO1) DNA barcode region were developed by examining over 8,000 DNA barcodes from species in the U.S. Food and Drug Administration (FDA) Seafood List. The mini-barcode primer pairs were then tested against 44 processed fish products representing a range of species and product types. Of the 44 products, 41 (93.2%) could be identified at the species or genus level. The greatest mini-barcoding success rate found with an individual primer pair was 88.6% compared to 20.5% success rate achieved by the full-length DNA barcode primers. Overall, this study presents a mini-barcoding system that can be used to identify a wide range of fish species in commercial products and may be utilized in high throughput DNA sequencing for authentication of heavily processed fish products.
Replacing the AMOR with the miniDOAS in the ammonia monitoring network in the Netherlands
NASA Astrophysics Data System (ADS)
Berkhout, Augustinus J. C.; Swart, Daan P. J.; Volten, Hester; Gast, Lou F. L.; Haaima, Marty; Verboom, Hans; Stefess, Guus; Hafkenscheid, Theo; Hoogerbrugge, Ronald
2017-11-01
In this paper we present the continued development of the miniDOAS, an active differential optical absorption spectroscopy (DOAS) instrument used to measure ammonia concentrations in ambient air. The miniDOAS has been adapted for use in the Dutch National Air Quality Monitoring Network. The miniDOAS replaces the life-expired continuous-flow denuder ammonia monitor (AMOR). From September 2014 to December 2015, both instruments measured in parallel before the change from AMOR to miniDOAS was made. The instruments were deployed at six monitoring stations throughout the Netherlands. We report on the results of this intercomparison. Both instruments show a good uptime of ca. 90 %, adequate for an automatic monitoring network. Although both instruments produce 1 min values of ammonia concentrations, a direct comparison on short timescales such as minutes or hours does not give meaningful results because the AMOR response to changing ammonia concentrations is slow. Comparisons between daily and monthly values show good agreement. For monthly averages, we find a small average offset of 0.65 ± 0.28 µg m-3 and a slope of 1.034 ± 0.028, with the miniDOAS measuring slightly higher than the AMOR. The fast time resolution of the miniDOAS makes the instrument suitable not only for monitoring but also for process studies.
Risperidone oral disintegrating mini-tablets: A robust-product for pediatrics.
El-Say, Khalid M; Ahmed, Tarek A; Abdelbary, Maged F; Ali, Bahaa E; Aljaeid, Bader M; Zidan, Ahmed S
2015-12-01
This study was aimed at developing risperidone oral disintegrating mini-tablets (OD-mini-tablets) as age-appropriate formulations and to assess their suitability for infants and pediatric use. An experimental Box-Behnken design was applied to assure high quality of the OD-mini-tablets and reduce product variability. The design was employed to understand the influence of the critical excipient combinations on the production of OD-mini-tablets and thus guarantee the feasibility of obtaining products with dosage form uniformity. The variables selected were mannitol percent in Avicel (X1), swelling pressure of the superdisintegrant (X2), and the surface area of Aerosil as a glidant (X3). Risperidone-excipient compatibilities were investigated using FTIR and the spectra did not display any interaction. Fifteen formulations were prepared and evaluated for pre- and post-compression characteristics. The prepared OD-mini-tablet batches were also assessed for disintegration in simulated salivary fluid (SSF, pH 6.2) and in reconstituted skimmed milk. The optimized formula fulfilled the requirements for crushing strength of 5 kN with minimal friability, disintegration times of 8.4 and 53.7 s in SSF and skimmed milk, respectively. This study therefore proposes the risperidone OD-mini-tablet formula having robust mechanical properties, uniform and precise dosing of medication with short disintegration time suitable for pediatric use.
Agent-based power sharing scheme for active hybrid power sources
NASA Astrophysics Data System (ADS)
Jiang, Zhenhua
The active hybridization technique provides an effective approach to combining the best properties of a heterogeneous set of power sources to achieve higher energy density, power density and fuel efficiency. Active hybrid power sources can be used to power hybrid electric vehicles with selected combinations of internal combustion engines, fuel cells, batteries, and/or supercapacitors. They can be deployed in all-electric ships to build a distributed electric power system. They can also be used in a bulk power system to construct an autonomous distributed energy system. An important aspect in designing an active hybrid power source is to find a suitable control strategy that can manage the active power sharing and take advantage of the inherent scalability and robustness benefits of the hybrid system. This paper presents an agent-based power sharing scheme for active hybrid power sources. To demonstrate the effectiveness of the proposed agent-based power sharing scheme, simulation studies are performed for a hybrid power source that can be used in a solar car as the main propulsion power module. Simulation results clearly indicate that the agent-based control framework is effective to coordinate the various energy sources and manage the power/voltage profiles.
Chang, Jianfang; Tse, Chi-Shing; Leung, Grace Tak Yu; Fung, Ada Wai Tung; Hau, Kit-Tai; Chiu, Helen Fung Kum; Lam, Linda Chiu Wa
2014-06-01
Education has a profound effect on older adults' cognitive performance. In Hong Kong, some dementia screening tasks were originally designed for developed population with, on average, higher education. We compared the screening power of these tasks for Chinese older adults with different levels of education. Community-dwelling older adults who were healthy (N = 383) and with very mild dementia (N = 405) performed the following tasks: Mini-Mental State Examination, Alzheimer's Disease Assessment Scale-Cognitive subscales, Verbal Fluency, Abstract Thinking, and Visual/Digit Span. Logistic regression was used to examine the power of these tasks to predict Clinical Dementia Rating (CDR 0.5 vs. 0). Logistic regression analysis showed that while the screening power of the total scores in all tasks was similar for high and low education groups, there were education biases in some items of these tasks. The differential screening power in high and low education groups was not identical across items in some tasks. Thus, in cognitive assessments, we should exercise great caution when using these potentially biased items for older adults with limited education.
Airborne emissions in the harbour and port of Cork.
Sodeau, John R; Hellebust, Stig; Allanic, Arnaud; O'Connor, Ian; Healy, David A; Healy, Robert; Wenger, John
2009-07-01
It is now accepted that the transport sector is responsible for a large and growing share of global emissions affecting both health and climate. The quantification of these effects requires, as an essential first step, a comprehensive analysis and characterization of the contributing subsectors, i.e. road transport, shipping, aviation and rail. The shipping contribution in dock/harbour areas is of particular interest because many vessels use old engines powered with old technology giving rise to high levels of particulate emissions mainly because the fuel employed contains high levels of sulphur, up to 4.5%. Large amounts of polyaromatic hydrocarbons and varying contents of transition metals are also detected. Few studies on the physicochemical composition of direct emissions from ship fuels have been performed; none have been compared to actual contents in local harbour or port atmospheres. The transformation of these ship-related materials to toxicologically active species may be much more efficient than corresponding road emission or domestic sources because of the expected highly acidic nature of the particulates. Surface, toxic material may therefore become readily bioavailable under such conditions but such studies have not been performed hitherto. This mini-review outlines in detail the issues raised above in the context of measurements made in Cork, Ireland.
Phillips, Anastasia; Sotomayor, Cristina; Wang, Qinning; Holmes, Nadine; Furlong, Catriona; Ward, Kate; Howard, Peter; Octavia, Sophie; Lan, Ruiting; Sintchenko, Vitali
2016-09-15
Salmonella Typhimurium (STM) is an important cause of foodborne outbreaks worldwide. Subtyping of STM remains critical to outbreak investigation, yet current techniques (e.g. multilocus variable number tandem repeat analysis, MLVA) may provide insufficient discrimination. Whole genome sequencing (WGS) offers potentially greater discriminatory power to support infectious disease surveillance. We performed WGS on 62 STM isolates of a single, endemic MLVA type associated with two epidemiologically independent, food-borne outbreaks along with sporadic cases in New South Wales, Australia, during 2014. Genomes of case and environmental isolates were sequenced using HiSeq (Illumina) and the genetic distance between them was assessed by single nucleotide polymorphism (SNP) analysis. SNP analysis was compared to the epidemiological context. The WGS analysis supported epidemiological evidence and genomes of within-outbreak isolates were nearly identical. Sporadic cases differed from outbreak cases by a small number of SNPs, although their close relationship to outbreak cases may represent an unidentified common food source that may warrant further public health follow up. Previously unrecognised mini-clusters were detected. WGS of STM can discriminate foodborne community outbreaks within a single endemic MLVA clone. Our findings support the translation of WGS into public health laboratory surveillance of salmonellosis.
Kim, Ji-Sun; An, Chul Geon; Park, Jong-Suk; Lim, Yong Pyo; Kim, Suna
2016-06-15
In this study, we investigated carotenoid profiles and contents from 27 types of paprika with different colors (red, orange, and yellow), shapes (blocky and conical), and cultivation methods (soil and soilless). We simultaneously analyzed 12 kinds of carotenoids using UPLC equipped with an HSS T3 column for 30 min, and we identified six kinds of carotenoids in red paprika and nine types in orange and yellow paprika. Zeaxanthin concentrations in orange paprika were in the range of 85.06±23.37-151.39±5.94 mg/100 g dry weight (dw), which shows that orange paprika is a great source of zeaxanthin. Generally, red paprika is a great source of capsanthin. However, a new cultivar, 'Mini Goggal Red', contained large amounts of zeaxanthin (121.41±30.10 mg/100 g dw) even though its visible color is red. This is very meaningful considering that consumers have a preference for red color and the potent functional value of zeaxanthin. Carotenoid profiles and concentrations in blocky and conical type paprika were not significantly different in red paprika except the 'Mini Goggal Red' cultivar and yellow paprika. Blocky type orange paprika contains plenty of zeaxanthin, unlike conical type orange paprika. Three new cultivars of the conical type were cultivated in both soil culture and soilless culture in the same province, and carotenoid profiles and concentrations were similar, showing that both cultivations methods can be used. Copyright © 2016. Published by Elsevier Ltd.
The MiniPET: a didactic PET system
NASA Astrophysics Data System (ADS)
Pedro, R.; Silva, J.; Gurriana, L.; Silva, J. M.; Maio, A.; Soares Augusto, J.
2013-03-01
The MiniPET project aims to design and build a small PET system. It consists of two 4 × 4 matrices of 16 LYSO scintillator crystals and two PMTs with 16 channels resulting in a low cost system with the essential functionality of a clinical PET instrument. It is designed to illustrate the physics of the PET technique and to provide a didactic platform for the training of students and nuclear imaging professionals as well as for scientific outreach. The PET modules can be configured to test for the coincidence of 511 keV gamma rays. The model has a flexible mechanical setup [1] and can simulate 14 diferent ring geometries, from a configuration with as few as 18 detectors per ring (ring radius phi=51 mm), up to a geometry with 70 detectors per ring (phi=200 mm). A second version of the electronic system [2] allowed measurement and recording of the energy deposited in 4 detector channels by photons from a 137Cs radioactive source and by photons resulting of the annihilation of positrons from a 22Na radioactive source. These energy spectra are used for detector performance studies, as well as angular dependency studies. In this paper, the mechanical setup, the front-end high-speed analog electronics, the digital acquisition and control electronics implemented in a FPGA, as well as the data-transfer interface between the FPGA board and a host PC are described. Recent preliminary results obtained with the 4 active channels in the prototype are also presented.
NASA Astrophysics Data System (ADS)
Ihsani, Alvin; Farncombe, Troy
2016-02-01
The modelling of the projection operator in tomographic imaging is of critical importance especially when working with algebraic methods of image reconstruction. This paper proposes a distance-driven projection method which is targeted to single-pinhole single-photon emission computed tomograghy (SPECT) imaging since it accounts for the finite size of the pinhole, and the possible tilting of the detector surface in addition to other collimator-specific factors such as geometric sensitivity. The accuracy and execution time of the proposed method is evaluated by comparing to a ray-driven approach where the pinhole is sub-sampled with various sampling schemes. A point-source phantom whose projections were generated using OpenGATE was first used to compare the resolution of reconstructed images with each method using the full width at half maximum (FWHM). Furthermore, a high-activity Mini Deluxe Phantom (Data Spectrum Corp., Durham, NC, USA) SPECT resolution phantom was scanned using a Gamma Medica X-SPECT system and the signal-to-noise ratio (SNR) and structural similarity of reconstructed images was compared at various projection counts. Based on the reconstructed point-source phantom, the proposed distance-driven approach results in a lower FWHM than the ray-driven approach even when using a smaller detector resolution. Furthermore, based on the Mini Deluxe Phantom, it is shown that the distance-driven approach has consistently higher SNR and structural similarity compared to the ray-driven approach as the counts in measured projections deteriorates.
Negative ion beam characterisation in BATMAN by mini-STRIKE: Improved design and new measurements
NASA Astrophysics Data System (ADS)
Serianni, G.; Bonomo, F.; Brombin, M.; Cervaro, V.; Chitarin, G.; Cristofaro, S.; Delogu, R.; De Muri, M.; Fasolo, D.; Fonnesu, N.; Franchin, L.; Franzen, P.; Ghiraldelli, R.; Molon, F.; Muraro, A.; Pasqualotto, R.; Ruf, B.; Schiesko, L.; Tollin, M.; Veltri, P.
2015-04-01
The ITER project requires additional heating provided by two injectors of neutral beams resulting from the neutralisation of accelerated negative ions. To study and optimise negative ion production, the SPIDER test facility (particle energy 100keV; beam current 50A) is under construction in Padova, with the aim of testing beam characteristics and to verify the source proper operation. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon fibre carbon composite tiles. Some prototype tiles have been employed in 2012 as a small-scale version (mini-STRIKE) of the entire system to investigate the features of the beam from BATMAN at IPP-Garching. As the BATMAN beamlets are superposed at the measurement position, about 1m from the grounded grid, an actively cooled copper mask is located in front of the tiles; holes in the mask create an artificial beamlet structure. Recently the mini-STRIKE has been updated, taking into account the results obtained in the first campaign. In particular the spatial resolution of the system has been improved by increasing the number of the copper mask holes. Moreover a custom measurement system has been realized for the thermocouple signals and employed in BATMAN in view of its use in SPIDER. The present contribution gives a description of the new design of the system as well as of the thermocouple measurements system and its field test. A new series of measurements has been carried out in BATMAN. The BATMAN beam characterisation in different experimental conditions is presented.
Negative ion beam characterisation in BATMAN by mini-STRIKE: Improved design and new measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; Brombin, M.; Cervaro, V.
The ITER project requires additional heating provided by two injectors of neutral beams resulting from the neutralisation of accelerated negative ions. To study and optimise negative ion production, the SPIDER test facility (particle energy 100keV; beam current 50A) is under construction in Padova, with the aim of testing beam characteristics and to verify the source proper operation. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon fibre carbon composite tiles. Some prototype tiles have been employed in 2012 as a small-scale version (mini-STRIKE) of the entire system to investigate the features ofmore » the beam from BATMAN at IPP-Garching. As the BATMAN beamlets are superposed at the measurement position, about 1m from the grounded grid, an actively cooled copper mask is located in front of the tiles; holes in the mask create an artificial beamlet structure. Recently the mini-STRIKE has been updated, taking into account the results obtained in the first campaign. In particular the spatial resolution of the system has been improved by increasing the number of the copper mask holes. Moreover a custom measurement system has been realized for the thermocouple signals and employed in BATMAN in view of its use in SPIDER. The present contribution gives a description of the new design of the system as well as of the thermocouple measurements system and its field test. A new series of measurements has been carried out in BATMAN. The BATMAN beam characterisation in different experimental conditions is presented.« less
Elevated Radiation Exposure Associated With Above Surface Flat Detector Mini C-Arm Use.
Martin, Dennis P; Chapman, Talia; Williamson, Christopher; Tinsley, Brian; Ilyas, Asif M; Wang, Mark L
2017-11-01
This study aims to test the hypothesis that: (1) radiation exposure is increased with the intended use of Flat Surface Image Intensifier (FSII) units above the operative surface compared with the traditional below-table configuration; (2) this differential increases in a dose-dependent manner; and (3) radiation exposure varies with body part and proximity to the radiation source. A surgeon mannequin was seated at a radiolucent hand table, positioned for volar distal radius plating. Thermoluminescent dosimeters measured exposure to the eyes, thyroid, chest, hand, and groin, for 1- and 15-minute trials from a mini C-arm FSII unit positioned above and below the operating surface. Background radiation was measured by control dosimeters placed within the operating theater. At 1-minute of exposure, hand and eye dosages were significantly greater with the flat detector positioned above the table. At 15-minutes of exposure, hand radiation dosage exceeded that of all other anatomic sites with the FSII in both positions. Hand exposure was increased in a dose-dependent manner with the flat detector in either position, whereas groin exposure saw a dose-dependent only with the flat detector beneath the operating table. These findings suggest that the surgeon's hands and eyes may incur greater radiation exposure compared with other body parts, during routine mini C-arm FSII utilization in its intended position above the operating table. The clinical impact of these findings remains unclear, and future long-term radiation safety investigation is warranted. Surgeons should take precautions to protect critical body parts, particularly when using FSII technology above the operating with prolonged exposure time.
GreenNet: A Global Ground-Based Network of Instruments Measuring Greenhouse Gases in the Atmosphere
NASA Astrophysics Data System (ADS)
Floyd, M.; Grunberg, M.; Wilson, E. L.
2017-12-01
Climate change is the most important crisis of our lifetime. For policy makers to take action to combat the effects of climate change, they will need definitive proof that it is occurring globally. We have developed a low-cost ground instrument - a portable miniaturized laser heterodyne radiometer (mini-LHR) - capable of measuring concentrations of two of the most potent anthropogenic greenhouse gases, CO2 and methane, in columns in the atmosphere. They work by combining sunlight that has undergone absorption by gases with light from a laser. This combined light is detected by a photoreciever and a radio frequency beat signal is produced. From this beat signal, concentrations of these gases throughout the atmospheric column can be determined. A network of mini-LHR instruments in locations around the world will give us the data necessary to significantly reduce uncertainty in greenhouse gas sinks and sources contributing to climate change. Each instrument takes one reading per minute while the sun is up. With a goal to establish up to 500 instrument sites, the estimated total data per day will likely exceed 1GB. Every piece of data must be sorted as it comes in to determine whether it is a good or bad reading. The goal of the citizen science project is to collaborate with citizen scientists enrolled with Zooniverse.org to cycle through our data and help sort it, while also learning about the mini-LHR, greenhouse gases and climate change. This data will be used to construct an algorithm to automatically sort data that relies on statistical analyses of the previously sorted data.
NASA Astrophysics Data System (ADS)
Serianni, G.; De Muri, M.; Muraro, A.; Veltri, P.; Bonomo, F.; Chitarin, G.; Pasqualotto, R.; Pavei, M.; Rizzolo, A.; Valente, M.; Franzen, P.; Ruf, B.; Schiesko, L.
2014-02-01
The Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) test facility is under construction in Padova to optimise the operation of the beam source of ITER neutral beam injectors. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon-fibre-carbon-composite tiles. A small-scale version of the entire system has been employed in the BAvarian Test MAchine for Negative ions (BATMAN) testbed by arranging two prototype tiles in the vertical direction. The paper presents a description of the mini-STRIKE system and of the data analysis procedures, as well as some results concerning the BATMAN beam under varying operating conditions.
NASA Astrophysics Data System (ADS)
Muranaka, T.; Debu, P.; Dupré, P.; Liszkay, L.; Mansoulie, B.; Pérez, P.; Rey, J. M.; Ruiz, N.; Sacquin, Y.; Crivelli, P.; Gendotti, U.; Rubbia, A.
2010-04-01
We have installed in Saclay a facility for an intense positron source in November 2008. It is based on a compact 5.5 MeV electron linac connected to a reaction chamber with a tungsten target inside to produce positrons via pair production. The expected production rate for fast positrons is 5·1011 per second. The study of moderation of fast positrons and the construction of a slow positron trap are underway. In parallel, we have investigated an efficient positron-positronium convertor using porous silica materials. These studies are parts of a project to produce positively charged antihydrogen ions aiming to demonstrate the feasibility of a free fall antigravity measurement of neutral antihydrogen.
Ion ejection from a permanent-magnet mini-helicon thruster
NASA Astrophysics Data System (ADS)
Chen, Francis F.
2014-09-01
A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant values by applying to the endplate of the discharge a small voltage relative to spacecraft ground.
Ion ejection from a permanent-magnet mini-helicon thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Francis F.
2014-09-15
A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant valuesmore » by applying to the endplate of the discharge a small voltage relative to spacecraft ground.« less
A comprehensive experimental characterization of the iPIX gamma imager
NASA Astrophysics Data System (ADS)
Amgarou, K.; Paradiso, V.; Patoz, A.; Bonnet, F.; Handley, J.; Couturier, P.; Becker, F.; Menaa, N.
2016-08-01
The results of more than 280 different experiments aimed at exploring the main features and performances of a newly developed gamma imager, called iPIX, are summarized in this paper. iPIX is designed to quickly localize radioactive sources while estimating the ambient dose equivalent rate at the measurement point. It integrates a 1 mm thick CdTe detector directly bump-bonded to a Timepix chip, a tungsten coded-aperture mask, and a mini RGB camera. It also represents a major technological breakthrough in terms of lightness, compactness, usability, response sensitivity, and angular resolution. As an example of its key strengths, an 241Am source with a dose rate of only few nSv/h can be localized in less than one minute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serianni, G., E-mail: gianluigi.serianni@igi.cnr.it; De Muri, M.; Veltri, P.
2014-02-15
The Source for Production of Ion of Deuterium Extracted from Rf plasma (SPIDER) test facility is under construction in Padova to optimise the operation of the beam source of ITER neutral beam injectors. The SPIDER beam will be characterised by the instrumented calorimeter STRIKE, whose main components are one-directional carbon-fibre-carbon-composite tiles. A small-scale version of the entire system has been employed in the BAvarian Test MAchine for Negative ions (BATMAN) testbed by arranging two prototype tiles in the vertical direction. The paper presents a description of the mini-STRIKE system and of the data analysis procedures, as well as some resultsmore » concerning the BATMAN beam under varying operating conditions.« less
Alternate energy source usage methods for in situ heat treatment processes
Stone, Jr., Francis Marion; Goodwin, Charles R; Richard, Jr., James E
2014-10-14
Systems, methods, and heaters for treating a subsurface formation are described herein. At least one method for providing power to one or more subsurface heaters is described herein. The method may include monitoring one or more operating parameters of the heaters, the intermittent power source, and a transformer coupled to the intermittent power source that transforms power from the intermittent power source to power with appropriate operating parameters for the heaters; and controlling the power output of the transformer so that a constant voltage is provided to the heaters regardless of the load of the heaters and the power output provided by the intermittent power source.
46 CFR 183.310 - Power sources.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 7 2010-10-01 2010-10-01 false Power sources. 183.310 Section 183.310 Shipping COAST...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be...
46 CFR 183.310 - Power sources.
Code of Federal Regulations, 2013 CFR
2013-10-01
...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be... 46 Shipping 7 2013-10-01 2013-10-01 false Power sources. 183.310 Section 183.310 Shipping COAST...
46 CFR 183.310 - Power sources.
Code of Federal Regulations, 2012 CFR
2012-10-01
...) ELECTRICAL INSTALLATION Power Sources and Distribution Systems § 183.310 Power sources. (a)(1) Each vessel that relies on electricity to power the following loads must be arranged so that the loads can be... 46 Shipping 7 2012-10-01 2012-10-01 false Power sources. 183.310 Section 183.310 Shipping COAST...