NASA Astrophysics Data System (ADS)
Yu, Li-Li; Shou, Wen-De; Hui, Chun
2012-02-01
A theoretical model of focused acoustic field for a multi-annular phased array on concave spherical surface is proposed. In this model, the source boundary conditions of the spheroidal beam equation (SBE) for multi-annular phased elements are studied. Acoustic field calculated by the dynamic focusing model of SBE is compared with numerical results of the O'Neil and Khokhlov—Zabolotskaya—Kuznetsov (KZK) model, respectively. Axial dynamic focusing and the harmonic effects are presented. The results demonstrate that the dynamic focusing model of SBE is good valid for a concave multi-annular phased array with a large aperture angle in the linear or nonlinear field.
Mapping lightning in the sky with a mini array
NASA Astrophysics Data System (ADS)
Füllekrug, Martin; Liu, Zhongjian; Koh, Kuang; Mezentsev, Andrew; Pedeboy, Stéphane; Soula, Serge; Enno, Sven-Erik; Sugier, Jacqueline; Rycroft, Michael J.
2016-10-01
Mini arrays are commonly used for infrasonic and seismic studies. Here we report for the first time the detection and mapping of distant lightning discharges in the sky with a mini array. The array has a baseline to wavelength ratio ˜4.2·10-2 to record very low frequency electromagnetic waves from 2 to 18 kHz. It is found that the mini array detects ˜69 lightning pulses per second from cloud-to-ground and in-cloud discharges, even though the parent thunderstorms are ˜900-1100 km away and a rigorous selection criterion based on the quality of the wavefront across the array is used. In particular, lightning pulses that exhibit a clockwise phase progression are found at larger elevation angles in the sky as the result of a birefringent subionospheric wave propagation attributed to ordinary and extraordinary waves. These results imply that long range lightning detection networks might benefit from an exploration of the wave propagation conditions with mini arrays.
Double emulsions from a capillary array injection microfluidic device.
Shang, Luoran; Cheng, Yao; Wang, Jie; Ding, Haibo; Rong, Fei; Zhao, Yuanjin; Gu, Zhongze
2014-09-21
A facile microfluidic device was developed by inserting an annular capillary array into a collection channel for single-step emulsification of double emulsions. By inserting multiple inner-phase solutions into the capillary array, multicomponent double emulsions or microcapsules with inner droplets of different content could also be obtained from the device.
Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure
NASA Technical Reports Server (NTRS)
Oeftering, Richard C. (Inventor)
2000-01-01
A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.
The CDRH helix. A phase I clinical trial.
Shimm, D S; Cetas, T C; Hynynen, K H; Buechler, D N; Anhalt, D P; Sykes, H F; Cassady, J R
1989-04-01
Seventeen patients have been given regional hyperthermia treatments using the Center for Devices and Radiologic Health (CDRH) Helix, a resonant helical coil unit. Most of these patients had large, clinically advanced tumors, whose mean volume exceeded 1000 cc. Mean maximum, minimum, and average temperatures were 40.6, 38.6, and 39.6 degrees C, respectively, for all sites combined. The pelvic heating capabilities of the CDRH Helix and the BSD-1000 annular phased array were compared, and generally were equivalent. Although the Helix could be used in a wider variety of locations, and was more comfortable and easier to use than the BSD-1000 annular phased array, neither device was particularly effective in generating clinically useful temperatures; the Helix is currently under investigation for use in regional-systemic hyperthermia in combination with antineoplastic drugs and biologic response modifiers.
Hou, Hong Q.; Coltrin, Michael E.; Choquette, Kent D.
2001-01-01
A process for forming an array of vertical cavity optical resonant structures wherein the structures in the array have different detection or emission wavelengths. The process uses selective area growth (SAG) in conjunction with annular masks of differing dimensions to control the thickness and chemical composition of the materials in the optical cavities in conjunction with a metalorganic vapor phase epitaxy (MOVPE) process to build these arrays.
NASA Astrophysics Data System (ADS)
Seip, Ralf; Chen, Wohsing; Carlson, Roy; Frizzell, Leon; Warren, Gary; Smith, Nadine; Saleh, Khaldon; Gerber, Gene; Shung, Kirk; Guo, Hongkai; Sanghvi, Narendra T.
2005-03-01
This paper presents engineering progress and the latest in-vitro and in-vivo results obtained with a 4.0 MHz, 20 element, PZT annular transrectal HIFU array and several 4.0 MHz, 211 element, PZT and piezocomposite cylindrical transrectal HIFU arrays for the treatment of prostate cancer. The geometries of both arrays were designed and analyzed to steer the HIFU beams to the desired sites in the prostate volume using multi-channel electronic drivers, with the intent to increase treatment efficiency and reliability for the next generation of HIFU systems. The annular array is able to focus in depth from 25 mm to 50 mm, generate total acoustic powers in excess of 60W, and has been integrated into a modified Sonablate®500 HIFU system capable of controlling such an applicator through custom treatment planning and execution software. Both PZT- and piezocomposite cylindrical arrays were constructed and their characteristics were compared for the transrectal applications. These arrays have been installed into appropriate transducer housings, and have undergone characterization tests to determine their total acoustic power output, focusing range (in depth and laterally), focus quality, efficiency, and comparison tests to determine the material and technology of choice (PZT or piezocomposite) for intra-cavity HIFU applications. Array descriptions, characterization results, in-vitro and in-vivo results, and an overview of their intended use through the application software is shown.
NASA Astrophysics Data System (ADS)
Zhang, Hui-Yong; Li, Jun-Ming; Sun, Ji-Liang; Wang, Bu-Xuan
2016-01-01
A theoretical model is developed for condensation heat transfer of binary refrigerant mixtures in mini-tubes with diameter about 1.0 mm. Condensation heat transfer of R410A and R32/R134a mixtures at different mass fluxes and saturated temperatures are analyzed, assuming that the phase flow pattern is annular flow. The results indicate that there exists a maximum interface temperature at the beginning of condensation process for azeotropic and zeotropic mixtures and the corresponding vapor quality to the maximum value increases with mass flux. The effects of mass flux, heat flux, surface tension and tube diameter are analyzed. As expected, the condensation heat transfer coefficients increase with mass flux and vapor quality, and increase faster in high vapor quality region. It is found that the effects of heat flux and surface tension are not so obvious as that of tube diameter. The characteristics of condensation heat transfer of zeotropic mixtures are consistent to those of azeotropic refrigerant mixtures. The condensation heat transfer coefficients increase with the concentration of the less volatile component in binary mixtures.
Stage 3 bucket shank bypass holes and related method
Leone, Sal Albert; Eldrid, Sacheverel Quentin; Lupe, Douglas Arthur
2002-01-01
In a multi-stage turbine wherein at least one turbine wheel supports a row of buckets for rotation, and wherein the turbine wheel is located axially between first and second annular fixed arrays of nozzles, a cooling air circuit for purging a wheelspace between the turbine wheel and the second fixed annular array of nozzles comprising a flowpath through a shank portion of one or more buckets connecting a wheelspace between the turbine wheel and the first fixed annular array of nozzles with the wheelspace between the turbine wheel and the second fixed annular array of nozzles.
Portable compton gamma-ray detection system
Rowland, Mark S [Alamo, CA; Oldaker, Mark E [Pleasanton, CA
2008-03-04
A Compton scattered gamma-ray detector system. The system comprises a gamma-ray spectrometer and an annular array of individual scintillators. The scintillators are positioned so that they are arrayed around the gamma-ray spectrometer. The annular array of individual scintillators includes a first scintillator. A radiation shield is positioned around the first scintillator. A multi-channel analyzer is operatively connected to the gamma-ray spectrometer and the annular array of individual scintillators.
Dynamic-Receive Focusing with High-Frequency Annular Arrays
NASA Astrophysics Data System (ADS)
Ketterling, J. A.; Mamou, J.; Silverman, R. H.
High-frequency ultrasound is commonly employed for ophthalmic and small-animal imaging because of the fine-resolution images it affords. Annular arrays allow improved depth of field and lateral resolution versus commonly used single-element, focused transducers. The best image quality from an annular array is achieved by using synthetic transmit-to-receive focusing while utilizing data from all transmit-to-receive element combinations. However, annular arrays must be laterally scanned to form an image and this requires one pass for each of the array elements when implementing full synthetic transmit-to-receive focusing. A dynamic-receive focusing approach permits a single pass, although at a sacrifice of depth of field and lateral resolution. A five-element, 20-MHz annular array is examined to determine the acoustic beam properties for synthetic and dynamic-receive focusing. A spatial impulse response model is used to simulate the acoustic beam properties for each focusing case and then data acquired from a human eye-bank eye are processed to demonstrate the effect of each approach on image quality.
Ringlight for use in high radiation
Baylor, G.A.; Jacket, H.S.
1992-09-01
A ringlight having an annular array of light-emitting elements centered about a viewing passage has an outer annular body with an inner annular body fitted concentrically within the outer body to form an annular void and a light-emitting aperture therebetween. A plurality of optical fibers extends into the void with end portions of the optical fibers secured therein to form an annular array at the light-emitting aperture. The first and second annular bodies cooperate to angle the end portions of the optical fibers towards a central axis of the viewing passage. 3 figs.
A study of the flow boiling heat transfer in an annular heat exchanger with a mini gap
NASA Astrophysics Data System (ADS)
Musiał, Tomasz; Piasecka, Magdalena; Hożejowska, Sylwia
In this paper the research on flow boiling heat transfer in an annular mini gap was discussed. A one- dimensional mathematical approach was proposed to describe stationary heat transfer in the gap. The mini gap 1 mm wide was created between a metal pipe with enhanced exterior surface and an external tempered glass pipe positioned along the same axis. The experimental test stand consists of several systems: the test loop in which distilled water circulates, the data and image acquisition system and the supply and control system. Known temperature distributions of the metal pipe with enhanced surface and of the working fluid helped to determine, from the Robin boundary condition, the local heat transfer coefficients at the fluid - heated surface contact. In the proposed mathematical model it is assumed that the cylindrical wall is a planar multilayer wall. The numerical results are presented on a chart as function of the heat transfer coefficient along the length of the mini gap.
Zhang, Y; Joines, W T; Jirtle, R L; Samulski, T V
1993-08-01
The magnitude of E-field patterns generated by an annular array prototype device has been calculated and measured. Two models were used to describe the radiating sources: a simple linear dipole and a stripline antenna model. The stripline model includes detailed geometry of the actual antennas used in the prototype and an estimate of the antenna current based on microstrip transmission line theory. This more detailed model yields better agreement with the measured field patterns, reducing the rms discrepancy by a factor of about 6 (from approximately 23 to 4%) in the central region of interest where the SEM is within 25% of the maximum. We conclude that accurate modeling of source current distributions is important for determining SEM distributions associated with such heating devices.
Held, Robert Thomas; Zderic, Vesna; Nguyen, Thuc Nghi; Vaezy, Shahram
2006-02-01
An ultrasound (US), image-guided high-intensity focused ultrasound (HIFU) device was developed for noninvasive ablation of uterine fibroids. The HIFU device was an annular phased array, with a focal depth range of 30-60 mm, a natural focus of 50 mm, and a resonant frequency of 3 MHz. The in-house control software was developed to operate the HIFU electronics drive system for inducing tissue coagulation at different distances from the array. A novel imaging algorithm was developed to minimize the HIFU-induced noise in the US images. The device was able to produce lesions in bovine serum albumin-embedded polyacrylamide gels and excised pig liver. The lesions could be seen on the US images as hyperechoic regions. Depths ranging from 30 to 60 mm were sonicated at acoustic intensities of 4100 and 6100 W/cm2 for 15 s each, with the latter producing average lesion volumes at least 63% larger than the former. Tissue sonication patterns that began distal to the transducer produced longer lesions than those that began proximally. The variation in lesion dimensions indicates the possible development of HIFU protocols that increase HIFU throughput and shorten tumor treatment times.
NASA Astrophysics Data System (ADS)
Kang, Woojin; Jung, Joontaek; Lee, Wonjun; Ryu, Jungho; Choi, Hongsoo
2018-07-01
Micro-electromechanical system (MEMS) technologies were used to develop a thickness-mode piezoelectric micromachined ultrasonic transducer (Tm-pMUT) annular array utilizing a lead magnesium niobate–lead zirconate titanate (PMN–PZT) single crystal prepared by the solid-state single-crystal-growth method. Dicing is a conventional processing method for PMN–PZT single crystals, but MEMS technology can be adopted for the development of Tm-pMUT annular arrays and has various advantages, including fabrication reliability, repeatability, and a curved element shape. An inductively coupled plasma–reactive ion etching process was used to etch a brittle PMN–PZT single crystal selectively. Using this process, eight ring-shaped elements were realized in an area of 1 × 1 cm2. The resonance frequency and effective electromechanical coupling coefficient of the Tm-pMUT annular array were 2.66 (±0.04) MHz, 3.18 (±0.03) MHz, and 30.05%, respectively, in the air. The maximum positive acoustic pressure in water, measured at a distance of 7.27 mm, was 40 kPa from the Tm-pMUT annular array driven by a 10 Vpp sine wave at 2.66 MHz without beamforming. The proposed Tm-pMUT annular array using a PMN–PZT single crystal has the potential for various applications, such as a fingerprint sensor, and for ultrasonic cell stimulation and low-intensity tissue stimulation.
Ding, Qiuning; Tao, Chao; Liu, Xiaojun
2017-03-20
Speed-of-sound and optical absorption reflect the structure and function of tissues from different aspects. A dual-mode microscopy system based on a concentric annular ultrasound array is proposed to simultaneously acquire the long depth-of-field images of speed-of-sound and optical absorption of inhomogeneous samples. First, speed-of-sound is decoded from the signal delay between each element of the annular array. The measured speed-of-sound could not only be used as an image contrast, but also improve the resolution and accuracy of spatial location of photoacoustic image in inhomogeneous acoustic media. Secondly, benefitting from dynamic focusing of annular array and the measured speed-of-sound, it is achieved an advanced acoustic-resolution photoacoustic microscopy with a precise position and a long depth-of-field. The performance of the dual-mode imaging system has been experimentally examined by using a custom-made annular array. The proposed dual-mode microscopy might have the significances in monitoring the biological physiological and pathological processes.
Phased Array Probe Optimization for the Inspection of Titanium Billets
NASA Astrophysics Data System (ADS)
Rasselkorde, E.; Cooper, I.; Wallace, P.; Lupien, V.
2010-02-01
The manufacturing process of titanium billets can produce multiple sub-surface defects that are particularly difficult to detect during the early stages of production. Failure to detect these defects can lead to subsequent in-service failure. A new and novel automated quality control system is being developed for the inspection of titanium billets destined for use in aerospace applications. The sensors will be deployed by an automated system to minimise the use of manual inspections, which should improve the quality and reliability of these critical inspections early on in the manufacturing process. This paper presents the first part of the work, which is the design and the simulation of the phased array ultrasonic inspection of the billets. A series of phased array transducers were designed to optimise the ultrasonic inspection of a ten inch diameter billet made from Titanium 6Al-4V. A comparison was performed between different probes including a 2D annular sectorial array.
Passive magnetic bearing for a horizontal shaft
Post, Richard F.
2003-12-02
A passive magnetic bearing is composed of a levitation element and a restorative element. The levitation element is composed of a pair of stationary arcuate ferromagnetic segments located within an annular radial-field magnet array. The magnet array is attached to the inner circumference of a hollow shaft end. An attractive force between the arcuate segments and the magnet array acts vertically to levitate the shaft, and also in a horizontal transverse direction to center the shaft. The restorative element is comprised of an annular Halbach array of magnets and a stationary annular circuit array located within the Halbach array. The Halbach array is attached to the inner circumference of the hollow shaft end. A repulsive force between the Halbach array and the circuit array increases inversely to the radial space between them, and thus acts to restore the shaft to its equilibrium axis of rotation when it is displaced therefrom.
Annular solid-immersion lenslet array super-resolution optical microscopy
NASA Astrophysics Data System (ADS)
Liau, Z. L.
2012-10-01
We describe a novel solid-immersion lenslet array, micro-fabricated in a chip form in the high-index (3.45) gallium phosphide. The innovatively designed lenslet features an annular aperture with appropriately patterned light absorbers and antireflection coatings. The array chip is easy to handle and enables the direct deposition of the specimen of interest onto its back-plane for tight adhesion and good optical coupling. The ensuing diffraction from the near field can yield supercritical rays inside the high-index lenslet and can, therefore, overcome the refraction and critical-angle limitations. This model showed agreement with the experimental observation of the solid-immersion fluorescence microscopy imaging, in which the refracted rays were completely blocked by the annular aperture. A large longitudinal (depth) magnification effect was also predicted and showed agreement with experiment. The annular lenslet's additional advantages of improved resolution and contrast were also discussed. Resolution of nested-L patterns with grating pitch as small as 100 nm was experimentally demonstrated. The demonstrated annular solid-immersion lenslet array concept is promising for a wider use in super-resolution optical microscopy.
Localization and Ordering of Lipids Around Aquaporin-0: Protein and Lipid Mobility Effects.
Briones, Rodolfo; Aponte-Santamaría, Camilo; de Groot, Bert L
2017-01-01
Hydrophobic matching, lipid sorting, and protein oligomerization are key principles by which lipids and proteins organize in biological membranes. The Aquaporin-0 channel (AQP0), solved by electron crystallography (EC) at cryogenic temperatures, is one of the few protein-lipid complexes of which the structure is available in atomic detail. EC and room-temperature molecular dynamics (MD) of dimyristoylglycerophosphocholine (DMPC) annular lipids around AQP0 show similarities, however, crystal-packing and temperature might affect the protein surface or the lipids distribution. To understand the role of temperature, lipid phase, and protein mobility in the localization and ordering of AQP0-lipids, we used MD simulations of an AQP0-DMPC bilayer system. Simulations were performed at physiological and at DMPC gel-phase temperatures. To decouple the protein and lipid mobility effects, we induced gel-phase in the lipids or restrained the protein. We monitored the lipid ordering effects around the protein. Reducing the system temperature or inducing lipid gel-phase had a marginal effect on the annular lipid localization. However, restraining the protein mobility increased the annular lipid localization around the whole AQP0 surface, resembling EC. The distribution of the inter-phosphate and hydrophobic thicknesses showed that stretching of the DMPC annular layer around AQP0 surface is the mechanism that compensates the hydrophobic mismatch in this system. The distribution of the local area-per-lipid and the acyl-chain order parameters showed particular fluid- and gel-like areas that involved several lipid layers. These areas were in contact with the surfaces of higher and lower protein mobility, respectively. We conclude that the AQP0 surfaces induce specific fluid- and gel-phase prone areas. The presence of these areas might guide the AQP0 lipid sorting interactions with other membrane components, and is compatible with the squared array oligomerization of AQP0 tetramers separated by a layer of annular lipids.
NASA Astrophysics Data System (ADS)
Xiao, Jian; Luo, Xiaoping; Feng, Zhenfei; Zhang, Jinxin
2018-01-01
This work combines fuzzy logic and a support vector machine (SVM) with a principal component analysis (PCA) to create an artificial-intelligence system that identifies nanofluid gas-liquid two-phase flow states in a vertical mini-channel. Flow-pattern recognition requires finding the operational details of the process and doing computer simulations and image processing can be used to automate the description of flow patterns in nanofluid gas-liquid two-phase flow. This work uses fuzzy logic and a SVM with PCA to improve the accuracy with which the flow pattern of a nanofluid gas-liquid two-phase flow is identified. To acquire images of nanofluid gas-liquid two-phase flow patterns of flow boiling, a high-speed digital camera was used to record four different types of flow-pattern images, namely annular flow, bubbly flow, churn flow, and slug flow. The textural features extracted by processing the images of nanofluid gas-liquid two-phase flow patterns are used as inputs to various identification schemes such as fuzzy logic, SVM, and SVM with PCA to identify the type of flow pattern. The results indicate that the SVM with reduced characteristics of PCA provides the best identification accuracy and requires less calculation time than the other two schemes. The data reported herein should be very useful for the design and operation of industrial applications.
A dual frequency microstrip antenna for Ka band
NASA Technical Reports Server (NTRS)
Lee, R. Q.; Baddour, M. F.
1985-01-01
For fixed satellite communication systems at Ka band with downlink at 17.7 to 20.2 GHz and uplink at 27.5 to 30.0 GHz, the focused optics and the unfocused optics configurations with monolithic phased array feeds have often been used to provide multiple fixed and multiple scanning spot beam coverages. It appears that a dual frequency microstrip antenna capable of transmitting and receiving simultaneously is highly desirable as an array feed element. This paper describes some early efforts on the development and experimental testing of a dual frequency annular microstrip antenna. The antenna has potential application for use in conjunction with a monolithic microwave integrated circuit device as an active radiating element in a phased array of phased array feeds. The antenna is designed to resonate at TM sub 12 and TM sub 13 modes and tuned with a circumferential microstrip ring to vary the frequency ratio. Radiation characteristics at both the high and low frequencies are examined. Experimental results including radiating patterns and swept frequency measurements are presented.
NASA Astrophysics Data System (ADS)
Liu, Mingliang; Lü, Zhe; Wei, Bo; Huang, Xiqiang; Zhang, Yaohui; Su, Wenhui
An annular micro-stack array consisting of four fuel cells has been fabricated and operated successfully in single-chamber conditions using a nitrogen-diluted oxygen-methane mixture as the operating gas. The single cells consist of a state-of-the-art porous NiO/Y 2O 3-stabilized ZrO 2 (YSZ) anode support, a YSZ electrolyte membrane and a modified La 0.7Sr 0.3MnO 3 (LSM) cathode. The annular configuration of the array is favorable for utilizing the heating effect. The maximum power output of the annular stack decreases with increasingCH 4/O 2 ratio. Its performance increases with increasing CH 4 flow rate and decreases with increasing N 2 flow rate. The power output of the stack is ∼380 mW at CH 4/O 2 = 1 and an N 2 flow rate of 100 sccm and the average maximum power density of each cell is ∼190 mW cm -2. The average performance of each cell in the annular micro-stack array is higher than that of an additional single cell placed next to the stack.
NASA Astrophysics Data System (ADS)
Elazhary, Amr Mohamed; Soliman, Hassan M.
2012-10-01
An experimental study was conducted in order to investigate two-phase flow regimes and fully developed pressure drop in a mini-size, horizontal rectangular channel. The test section was machined in the form of an impacting tee junction in an acrylic block (in order to facilitate visualization) with a rectangular cross-section of 1.87-mm height on 20-mm width on the inlet and outlet sides. Pressure drop measurement and flow regime identification were performed on all three sides of the junction. Air-water mixtures at 200 kPa (abs) and room temperature were used as the test fluids. Four flow regimes were identified visually: bubbly, plug, churn, and annular over the ranges of gas and liquid superficial velocities of 0.04 ≤ JG ≤ 10 m/s and 0.02 ≤ JL ≤ 0.7 m/s, respectively, and a flow regime map was developed. Accuracy of the pressure-measurement technique was validated with single-phase, laminar and turbulent, fully developed data. Two-phase experiments were conducted for eight different inlet conditions and various mass splits at the junction. Comparisons were conducted between the present data and former correlations for the fully developed two-phase pressure drop in rectangular channels with similar sizes. Wide deviations were found among these correlations, and the correlations that agreed best with the present data were identified.
Design and testing of an annular array for very-high-frequency imaging
NASA Astrophysics Data System (ADS)
Ketterling, Jeffrey A.; Ramachandran, Sarayu; Lizzi, Frederic L.; Aristizábal, Orlando; Turnbull, Daniel H.
2004-05-01
Very-high-frequency ultrasound (VHFU) transducer technology is currently experiencing a great deal of interest. Traditionally, researchers have used single-element transducers which achieve exceptional lateral image resolution although at a very limited depth of field. A 5-ring focused annular array, a transducer geometry that permits an increased depth of field via electronic focusing, has been constructed. The transducer is fabricated with a PVDF membrane and a copper-clad Kapton film with an annular array pattern. The PVDF is bonded to the Kapton film and pressed into a spherically curved shape. The back side of the transducer is then filled with epoxy. One side of the PVDF is metallized with gold, forming the ground plane of the transducer. The array elements are accessed electrically via copper traces formed on the Kapton film. The annular array consists of 5 equal-area rings with an outer diameter of 1 cm and a radius of curvature of 9 mm. A wire reflector target was used to test the imaging capability of the transducer by acquiring B-scan data for each transmit/receive pair. A synthetic aperture approach was then used to reconstruct the image and demonstrate the enhanced depth of field capabilities of the transducer.
Liu, Changgeng; Djuth, Frank T.; Zhou, Qifa; Shung, K. Kirk
2014-01-01
Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm2 with a 16-μm kerf between elements. The active piezoelectric material is (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-PT)/epoxy 1–3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse–echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the −6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about −33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027
Compact, low profile antennas for MSAT and mini-M and Std-M land mobile satellite communications
NASA Technical Reports Server (NTRS)
Strickland, P. C.
1995-01-01
CAL Corporation has developed a new class of low profile radiating elements for use in planar phased array antennas. These new elements have been used in the design of a low cost, compact, low profile antenna unit for MSAT and INMARSAT Mini-M land mobile satellite communications. The antenna unit which measures roughly 32 cm in diameter by 5 cm deep incorporates a compact LNA and diplexer unit as well as a complete, low cost, beam steering system. CAL has also developed a low profile antenna unit for INMARSAT-M land mobile satellite communications. A number of these units, which utilize a microstrip patch array design, were put into service in 1994.
High-Frequency Ultrasonic Imaging of the Anterior Segment Using an Annular Array Transducer
Silverman, Ronald H.; Ketterling, Jeffrey A.; Coleman, D. Jackson
2006-01-01
Objective Very-high-frequency (>35 MHz) ultrasound (VHFU) allows imaging of anterior segment structures of the eye with a resolution of less than 40-μm. The low focal ratio of VHFU transducers, however, results in a depth-of-field (DOF) of less than 1-mm. Our aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity and resolution compared to conventional transducers. Design Experimental Study Participants Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. Methods A spherically curved annular array ultrasound transducer was fabricated. The array consisted of five concentric rings of equal area, had an overall aperture of 6 mm and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit/receive annuli combinations. The echo data were then synthetically focused and composite images produced. Transducer operation was tested by scanning a test object consisting of a series of 25-μm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit and human cadaver eyes. Main Outcome Measures Depth of field, resolution and sensitivity. Results The wire scans verified the operation of the array and demonstrated a 6.0 mm DOF compared to the 1.0 mm DOF of a conventional single-element transducer of comparable frequency, aperture and focal length. B-mode images of ex vivo bovine, in vivo rabbit and cadaver eyes showed that while the single-element transducer had high sensitivity and resolution within 1–2 mm of its focus, the array with synthetic focusing maintained this quality over a 6 mm DOF. Conclusion An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved depth-of-field, sensitivity and lateral resolution compared to single-element fixed focus transducers currently used for VHFU imaging of the eye. PMID:17141314
High-frequency ultrasonic imaging of the anterior segment using an annular array transducer.
Silverman, Ronald H; Ketterling, Jeffrey A; Coleman, D Jackson
2007-04-01
Very high-frequency ultrasound (VHFU; >35 megahertz [MHz]) allows imaging of anterior segment structures of the eye with a resolution of less than 40 microm. The low focal ratio of VHFU transducers, however, results in a depth of field (DOF) of less than 1 mm. The aim was to develop a high-frequency annular array transducer for ocular imaging with improved DOF, sensitivity, and resolution compared with conventional transducers. Experimental study. Cadaver eyes, ex vivo cow eyes, in vivo rabbit eyes. A spherically curved annular array ultrasound transducer was fabricated. The array consisted of 5 concentric rings of equal area, had an overall aperture of 6 mm, and a geometric focus of 12 mm. The nominal center frequency of all array elements was 40 MHz. An experimental system was designed in which a single array element was pulsed and echo data were recorded from all elements. By sequentially pulsing each element, echo data were acquired for all 25 transmit-and-receive annuli combinations. The echo data then were focused synthetically and composite images were produced. Transducer operation was tested by scanning a test object consisting of a series of 25-microm diameter wires spaced at increasing range from the transducer. Imaging capabilities of the annular array were demonstrated in ex vivo bovine, in vivo rabbit, and human cadaver eyes. Depth of field, resolution, and sensitivity. The wire scans verified the operation of the array and demonstrated a 6.0-mm DOF, compared with the 1.0-mm DOF of a conventional single-element transducer of comparable frequency, aperture, and focal length. B-mode images of ex vivo bovine, in vivo rabbit, and cadaver eyes showed that although the single-element transducer had high sensitivity and resolution within 1 to 2 mm of its focus, the array with synthetic focusing maintained this quality over a 6-mm DOF. An annular array for high-resolution ocular imaging has been demonstrated. This technology offers improved DOF, sensitivity, and lateral resolution compared with single-element fixed focus transducers currently used for VHFU imaging of the eye.
Pulse-encoded ultrasound imaging of the vitreous with an annular array.
Silverman, Ronald H; Ketterling, Jeffrey A; Mamou, Jonathan; Lloyd, Harriet O; Filoux, Erwan; Coleman, D Jackson
2012-01-01
The vitreous body is nearly transparent both optically and ultrasonically. Conventional 10- to 12-MHz diagnostic ultrasound can detect vitreous inhomogeneities at high gain settings, but has limited resolution and sensitivity, especially outside the fixed focal zone near the retina. To improve visualization of faint intravitreal fluid/gel interfaces, the authors fabricated a spherically curved 20-MHz five-element annular array ultrasound transducer, implemented a synthetic-focusing algorithm to extend the depth-of-field, and used a pulse-encoding strategy to increase sensitivity. The authors evaluated a human subject with a recent posterior vitreous detachment and compared the annular array with conventional 10-MHz ultrasound and spectral-domain optical coherence tomography. With synthetic focusing and chirp pulse-encoding, the array allowed visualization of the formed and fluid components of the vitreous with improved sensitivity and resolution compared with the conventional B-scan. Although optical coherence tomography allowed assessment of the posterior vitreoretinal interface, the ultrasound array allowed evaluation of the entire vitreous body. Copyright 2012, SLACK Incorporated.
Solar Eclipses Observed from Antarctica
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.
2013-01-01
Aspects of the solar corona are still best observed during totality of solar eclipses, and other high-resolution observations of coronal active regions can be observed with radio telescopes by differentiation of occultation observations, as we did with the Jansky Very Large Array for the annular solar eclipse of 2012 May 20 in the US. Totality crossing Antarctica included the eclipse of 2003 November 23, and will next occur on 2021 December 4; annularity crossing Antarctica included the eclipse of 2008 February 7, and will next occur on 2014 April 29. Partial phases as high as 87% coverage were visible and were imaged in Antarctica on 2011 November 25, and in addition to partial phases of the total and annular eclipses listed above, partial phases were visible in Antarctica on 2001 July 2011, 2002 December 4, 2004 April 19, 2006 September 22, 2007 September 11, and 2009 January 26, and will be visible on 2015 September 13, 2016 September 1, 2017 February 26, 2018 February 15, and 2020 December 14. On behalf of the Working Group on Solar Eclipses of the IAU, the poster showed the solar eclipses visible from Antarctica and this article shows a subset (see www.eclipses.info for the full set). A variety of investigations of the Sun and of the response of the terrestrial atmosphere and ionosphere to the abrupt solar cutoff can be carried out at the future eclipses, making the Antarctic observations scientifically useful.
A novel HTS magnetic levitation dining table
NASA Astrophysics Data System (ADS)
Lu, Yiyun; Huang, Huiying
2018-05-01
High temperature superconducting (HTS) bulk can levitate above or suspend below a permanent magnet stably. Many magnificent potential applications of HTS bulk are proposed by researchers. Until now, few reports have been found for real applications of HTS bulk. A complete set of small-scale HTS magnetic levitation table is proposed in the paper. The HTS magnetic levitation table includes an annular HTS magnetic levitation system which is composed of an annular HTS bulk array and an annular permanent magnet guideway (PMG). The annular PMG and the annular cryogenics vessel which used to maintain low temperature environment of the HTS bulk array are designed. 62 YBCO bulks are used to locate at the bottom of the annular vessel. A 3D-model finite element numerical method is used to design the HTS bulk magnetic levitation system. Equivalent magnetic levitation and guidance forces calculation rules are proposed aimed at the annular HTS magnetic levitation system stability. Based on the proposed method, levitation and guidance forces curves of the one YBCO bulk magnetic above PMG could be obtained. This method also can use to assist PMG design to check whether the designed PMG could reach the basic demand of the HTS magnetic levitation table.
Gibbs, F A
1981-06-01
The technical aspects of an experience with clinical hyperthermia utilizing the BSD-1000 and BDS annular phased array applicator are reviewed. The design and operation of the basic console functions of the BSD apparatus relating to temperature data presentation and recording and computer control leave little need for significant improvement. Such improvements as may eventually be desired can probably be made as software changes in the computer programs. The 100 W generator capacity is occasionally inadequate to drive even a single applicator and certainly inadequate to supply multiple applicator arrays or larger low frequency applicators. Amplifiers will eventually be added for the frequency ranges of greatest interest. The temperature probes and utilization routines have been excellent but their diameter is undesirably large. However, the design of the basic instrument is such that improved smaller probes and systems for dynamic temperature sampling matrices can be interfaced readily. Due to the limited superficial volumes that can be presently heated with this device, most important potentially curable tumors cannot be treated. Possible important exceptions to this are a number of sites in the upper respiratory tract. The depth and superficial extent of heatable volumes may be moderately extended with increased power, appropriate study of applicator arrays and new applicator designs. Provisions for surface temperature control are important and will need to be incorporated. The annular phased array applicator, though still a prototype design, has demonstrated encouraging results regarding its possible use for regional heating of central abdominal and thoracic tumors. Improvements in "human engineering" and study of the effects and implications of departures from basic cylindrical anatomy are required and are in progress. The improved sophistication in temperature sampling techniques described is considered important for adequate monitoring of temperature gradients in the abdomen and chest.
Turbofan aft duct suppressor study. Contractor's data report of mode probe signal data
NASA Technical Reports Server (NTRS)
Fiske, G. H.; Motsinger, R. E.; Syed, A. A.; Joshi, M. C.; Kraft, R. E.
1983-01-01
Acoustic modal distributions were measured in a fan test model having an annular exhaust duct for comparison with theoretically predicted acoustic suppression values. This report contains the amplitude and phase data of the acoustic signals sensed by the transducers of the two mode probes employed in the measurement. Each mode probe consisted of an array of 12 transducers sensing the acoustic field at three axial positions and four radial positions.
NASA Astrophysics Data System (ADS)
Tanci, Claudio; Tosti, Gino; Conforti, Vito; Schwarz, Joseph; Antolini, Elisa; Antonelli, L. A.; Bulgarelli, Andrea; Bigongiari, Ciro; Bruno, Pietro; Canestrari, Rodolfo; Capalbi, Milvia; Cascone, Enrico; Catalano, Osvaldo; Di Paola, Andrea; Di Pierro, Federico; Fioretti, Valentina; Gallozzi, Stefano; Gardiol, Daniele; Gianotti, Fulvio; Giro, Enrico; Grillo, Alessandro; La Palombara, Nicola; Leto, Giuseppe; Lombardi, Saverio; Maccarone, Maria C.; Pareschi, Giovanni; Russo, Federico; Sangiorgi, Pierluca; Scuderi, Salvo; Stringhetti, Luca; Testa, Vincenzo; Trifoglio, Massimo; Vercellone, Stefano; Zoli, Andrea
2016-08-01
The ASTRI mini-array, composed of nine small-size dual mirror (SST-2M) telescopes, has been proposed to be installed at the southern site of the Cherenkov Telescope Array (CTA), as a set of preproduction units of the CTA observatory. The ASTRI mini-array is a collaborative and international effort carried out by Italy, Brazil and South Africa and led by the Italian National Institute of Astrophysics, INAF. We present the main features of the current implementation of the Mini-Array Software System (MASS) now in use for the activities of the ASTRI SST-2M telescope prototype located at the INAF observing station on Mt. Etna, Italy and the characteristics that make it a prototype for the CTA control software system. CTA Data Management (CTADATA) and CTA Array Control and Data Acquisition (CTA-ACTL) requirements and guidelines as well as the ASTRI use cases were considered in the MASS design, most of its features are derived from the Atacama Large Millimeter/sub-millimeter Array Control software. The MASS will provide a set of tools to manage all onsite operations of the ASTRI mini-array in order to perform the observations specified in the short term schedule (including monitoring and controlling all the hardware components of each telescope and calibration device), to analyze the acquired data online and to store/retrieve all the data products to/from the onsite repository.
High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications
Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan
2014-01-01
Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222
Volumetric Real-Time Imaging Using a CMUT Ring Array
Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N.; O’Donnell, Matthew; Sahn, David J.; Khuri-Yakub, Butrus T.
2012-01-01
A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods—flash, classic phased array (CPA), and synthetic phased array (SPA)—were used in the study. For SPA imaging, two techniques to improve the image quality—Hadamard coding and aperture weighting—were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming. PMID:22718870
Volumetric real-time imaging using a CMUT ring array.
Choe, Jung Woo; Oralkan, Ömer; Nikoozadeh, Amin; Gencel, Mustafa; Stephens, Douglas N; O'Donnell, Matthew; Sahn, David J; Khuri-Yakub, Butrus T
2012-06-01
A ring array provides a very suitable geometry for forward-looking volumetric intracardiac and intravascular ultrasound imaging. We fabricated an annular 64-element capacitive micromachined ultrasonic transducer (CMUT) array featuring a 10-MHz operating frequency and a 1.27-mm outer radius. A custom software suite was developed to run on a PC-based imaging system for real-time imaging using this device. This paper presents simulated and experimental imaging results for the described CMUT ring array. Three different imaging methods--flash, classic phased array (CPA), and synthetic phased array (SPA)--were used in the study. For SPA imaging, two techniques to improve the image quality--Hadamard coding and aperture weighting--were also applied. The results show that SPA with Hadamard coding and aperture weighting is a good option for ring-array imaging. Compared with CPA, it achieves better image resolution and comparable signal-to-noise ratio at a much faster image acquisition rate. Using this method, a fast frame rate of up to 463 volumes per second is achievable if limited only by the ultrasound time of flight; with the described system we reconstructed three cross-sectional images in real-time at 10 frames per second, which was limited by the computation time in synthetic beamforming.
Locating and Quantifying Broadband Fan Sources Using In-Duct Microphones
NASA Technical Reports Server (NTRS)
Dougherty, Robert P.; Walker, Bruce E.; Sutliff, Daniel L.
2010-01-01
In-duct beamforming techniques have been developed for locating broadband noise sources on a low-speed fan and quantifying the acoustic power in the inlet and aft fan ducts. The NASA Glenn Research Center's Advanced Noise Control Fan was used as a test bed. Several of the blades were modified to provide a broadband source to evaluate the efficacy of the in-duct beamforming technique. Phased arrays consisting of rings and line arrays of microphones were employed. For the imaging, the data were mathematically resampled in the frame of reference of the rotating fan. For both the imaging and power measurement steps, array steering vectors were computed using annular duct modal expansions, selected subsets of the cross spectral matrix elements were used, and the DAMAS and CLEAN-SC deconvolution algorithms were applied.
High-Throughput Fabrication of Ultradense Annular Nanogap Arrays for Plasmon-Enhanced Spectroscopy.
Cai, Hongbing; Meng, Qiushi; Zhao, Hui; Li, Mingling; Dai, Yanmeng; Lin, Yue; Ding, Huaiyi; Pan, Nan; Tian, Yangchao; Luo, Yi; Wang, Xiaoping
2018-06-13
The confinement of light into nanometer-sized metallic nanogaps can lead to an extremely high field enhancement, resulting in dramatically enhanced absorption, emission, and surface-enhanced Raman scattering (SERS) of molecules embedded in nanogaps. However, low-cost, high-throughput, and reliable fabrication of ultra-high-dense nanogap arrays with precise control of the gap size still remains a challenge. Here, by combining colloidal lithography and atomic layer deposition technique, a reproducible method for fabricating ultra-high-dense arrays of hexagonal close-packed annular nanogaps over large areas is demonstrated. The annular nanogap arrays with a minimum diameter smaller than 100 nm and sub-1 nm gap width have been produced, showing excellent SERS performance with a typical enhancement factor up to 3.1 × 10 6 and a detection limit of 10 -11 M. Moreover, it can also work as a high-quality field enhancement substrate for studying two-dimensional materials, such as MoSe 2 . Our method provides an attractive approach to produce controllable nanogaps for enhanced light-matter interaction at the nanoscale.
Annular beam with segmented phase gradients
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheng, Shubo; Wu, Liang; Tao, Shaohua, E-mail: eshtao@csu.edu.cn
2016-08-15
An annular beam with a single uniform-intensity ring and multiple segments of phase gradients is proposed in this paper. Different from the conventional superposed vortices, such as the modulated optical vortices and the collinear superposition of multiple orbital angular momentum modes, the designed annular beam has a doughnut intensity distribution whose radius is independent of the phase distribution of the beam in the imaging plane. The phase distribution along the circumference of the doughnut beam can be segmented with different phase gradients. Similar to a vortex beam, the annular beam can also exert torques and rotate a trapped particle owingmore » to the orbital angular momentum of the beam. As the beam possesses different phase gradients, the rotation velocity of the trapped particle can be varied along the circumference. The simulation and experimental results show that an annular beam with three segments of different phase gradients can rotate particles with controlled velocities. The beam has potential applications in optical trapping and optical information processing.« less
Fabrication of amorphous micro-ring arrays in crystalline silicon using ultrashort laser pulses
NASA Astrophysics Data System (ADS)
Fuentes-Edfuf, Yasser; Garcia-Lechuga, Mario; Puerto, Daniel; Florian, Camilo; Garcia-Leis, Adianez; Sanchez-Cortes, Santiago; Solis, Javier; Siegel, Jan
2017-05-01
We demonstrate a simple way to fabricate amorphous micro-rings in crystalline silicon using direct laser writing. This method is based on the fact that the phase of a thin surface layer can be changed into the amorphous phase by irradiation with a few ultrashort laser pulses (800 nm wavelength and 100 fs duration). Surface-depressed amorphous rings with a central crystalline disk can be fabricated without the need for beam shaping, featuring attractive optical, topographical, and electrical properties. The underlying formation mechanism and phase change pathway have been investigated by means of fs-resolved microscopy, identifying fluence-dependent melting and solidification dynamics of the material as the responsible mechanism. We demonstrate that the lateral dimensions of the rings can be scaled and that the rings can be stitched together, forming extended arrays of structures not limited to annular shapes. This technique and the resulting structures may find applications in a variety of fields such as optics, nanoelectronics, and mechatronics.
NASA Astrophysics Data System (ADS)
Zhou, Yiheng; Kou, Baoquan; Liu, Peng; Zhang, He; Xing, Feng; Yang, Xiaobao
2018-05-01
Magnetic levitation positioning system (MLPS) is considered to be the state of the art in inspection and manufacturing systems in vacuum. In this paper, a magnetic gravity compensator with annular magnet array (AMA-MGC) for MLPS is proposed. Benefiting from the double-layer annular Halbach magnet array on the stator, the proposed AMA-MGC possesses the advantages of symmetrical force, high force density and small force fluctuation. Firstly, the basic structure and operation principle of the AMA-MGC are introduced. Secondly, the basic characteristics of the AMA-MGC such as magnetic field distribution, levitation force, parasitic force and parasitic torque are analyzed by the three-dimensional finite element analysis (3-D FEA). Thirdly, the influence of structural parameters on force density and force fluctuation is investigated, which is conductive to the design and optimization of the AMA-MGC. Finally, a prototype of the AMA-MGC is constructed, and the experiment shows good agreement with the 3-D FEA results.
Fuel assembly for the production of tritium in light water reactors
Cawley, W.E.; Trapp, T.J.
1983-06-10
A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.
Fuel assembly for the production of tritium in light water reactors
Cawley, William E.; Trapp, Turner J.
1985-01-01
A nuclear fuel assembly is described for producing tritium in a light water moderated reactor. The assembly consists of two intermeshing arrays of subassemblies. The first subassemblies comprise concentric annular elements of an outer containment tube, an annular target element, an annular fuel element, and an inner neutron spectrums shifting rod. The second subassemblies comprise an outer containment tube and an inner rod of either fuel, target, or neutron spectrum shifting neutral.
Micromachined High Frequency PMN-PT/Epoxy 1-3 Composite Ultrasonic Annular Array
Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk
2013-01-01
This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 μm × 9 μm. The width of the kerf among pillars was ~ 5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers e.g. 1D and 2D arrays. PMID:22119324
Flaperon Modification Effect on Jet-Flap Interaction Noise Reduction for Chevron Nozzles
NASA Technical Reports Server (NTRS)
Thomas, Russell H.; Mengle, Vinod G.; Stoker, Robert W.; Brusniak, Leon; Elkoby, Ronen
2007-01-01
Jet-flap interaction (JFI) noise can become an important component of far field noise when a flap is immersed in the engine propulsive stream or is in its entrained region, as in approach conditions for under-the-wing engine configurations. We experimentally study the effect of modifying the flaperon, which is a high speed aileron between the inboard and outboard flaps, at both approach and take-off conditions using scaled models in a free jet. The flaperon modifications were of two types: sawtooth trailing edge and mini vortex generators (vg s). Parametric variations of these two concepts were tested with a round coaxial nozzle and an advanced chevron nozzle, with azimuthally varying fan chevrons, using both far field microphone arrays and phased microphone arrays for source diagnostics purposes. In general, the phased array results corroborated the far field results in the upstream quadrant pointing to JFI near the flaperon trailing edge as the origin of the far field noise changes. Specific sawtooth trailing edges in conjunction with the round nozzle gave marginal reduction in JFI noise at approach, and parallel co-rotating mini-vg s were somewhat more beneficial over a wider range of angles, but both concepts were noisier at take-off conditions. These two concepts had generally an adverse JFI effect when used in conjunction with the advanced chevron nozzle at both approach and take-off conditions.
Phase-locking of annular-combination CO2 laser
NASA Astrophysics Data System (ADS)
Qi, Tingxiang; Chen, Mei; Zhang, Rongzhu; Xiao, Qianyi
2015-07-01
A new annular-combination resonator structure adopting the external-injection phase-locking technology is presented theoretically for that the beam quality of stable annular resonator is not satisfying. The phase-locking principle and feasibility are characterized by energy density of injection beam and coupling coefficient. Based on the diffraction theory, output mode of the resonator with phase-locking is deduced and simulated. Results also confirm that injection beam have a good control effect on output mode. The intensity distributions of output beam are studied briefly and indicate that this new resonator which is adaptable to annular gain media can produce high-power laser beam with high quality.
Enhanced optical transmission through double-overlapped annular aperture array
NASA Astrophysics Data System (ADS)
Wang, Chaonan; Bai, Ming; Jin, Ming
2012-07-01
In this paper, transmission properties through an array of concentric or eccentric double-overlapped annular apertures (CDOAAs or EDOAAs) are investigated. It is demonstrated that local surface plasmon-assisted TE11-like modes in CDOAAs exhibit a blue shift with the increasing overlapped factor. For EDOAAs with asymmetric annular apertures in both directions, a new resonant peak can be excited at a larger wavelength using linearly polarised light, which corresponds to extreme field localisation around the narrowest gap attributed to the gap plasmons' excitation and is quite sensitive to the offset of the eccentric centre island. These properties provide a possible method to achieve multiplexed and tunable wavelength selection using different local surface plasmon resonances and are of significant potential applicable value to the designing of tunable optical devices.
Experimental investigation of aerodynamics and combustion properties of a multiple-swirler array
NASA Astrophysics Data System (ADS)
Kao, Yi-Huan
An annular combustor is one of the popular configurations of a modern gas turbine combustor. Since the swirlers are arranged as side-by-side in an annular combustor, the swirling flow interaction should be considered for the design of an annular gas turbine combustor. The focus of this dissertation is to investigate the aerodynamics and the combustion of a multiple-swirler array which features the swirling flow interaction. A coaxial counter-rotating radial-radial swirler was used in this work. The effects of confinement and dome recession on the flow field of a single swirler were conducted for understanding the aerodynamic characteristic of this swirler. The flow pattern generated by single swirler, 3-swirler array, and 5-swirler array were evaluated. As a result, the 5-swirler array was utilized in the remaining of this work. The effects of inter-swirler spacing, alignment of swirler, end wall distance, and the presence of confinement on the flow field generated by a 5-swirler array were investigated. A benchmark of aerodynamics performance was established. A phenomenological description was proposed to explain the periodically non-uniform flow pattern of a 5-swirler array. The non-reacting spray distribution measurements were following for understanding the effect of swirling flow interaction on the spray distribution issued out by a 5-swirler array. The spray distribution from a single swirler/ fuel nozzle was measured and treated as a reference. The spray distribution from a 5-swriler array was periodically non-uniform and somehow similar to what observed in the aerodynamic result. The inter-swirler spacing altered not only the topology of aerodynamics but also the flame shape of a 5-swirler array. As a result, the distribution of flame shape strongly depends on the inter-swirler spacing.
The High-Level Interface Definitions in the ASTRI/CTA Mini Array Software System (MASS)
NASA Astrophysics Data System (ADS)
Conforti, V.; Tosti, G.; Schwarz, J.; Bruno, P.; Cefal‘A, M.; Paola, A. D.; Gianotti, F.; Grillo, A.; Russo, F.; Tanci, C.; Testa, V.; Antonelli, L. A.; Canestrari, R.; Catalano, O.; Fiorini, M.; Gallozzi, S.; Giro, E.; Palombara, N. L.; Leto, G.; Maccarone, M. C.; Pareschi, G.; Stringhetti, L.; Trifoglio, M.; Vercellone, S.; Astri Collaboration; Cta Consortium
2015-09-01
ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project funded by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Within this framework, INAF is currently developing an end-to-end prototype, named ASTRI SST-2M, of a Small Size Dual-Mirror Telescope for the Cherenkov Telescope Array, CTA. A second goal of the project is the realization of the ASTRI/CTA mini-array, which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The ASTRI Mini Array Software System (MASS) is designed to support the ASTRI/CTA mini-array operations. MASS is being built on top of the ALMA Common Software (ACS) framework, which provides support for the implementation of distributed data acquisition and control systems, and functionality for log and alarm management, message driven communication and hardware devices management. The first version of the MASS system, which will comply with the CTA requirements and guidelines, will be tested on the ASTRI SST-2M prototype. In this contribution we present the interface definitions of the MASS high level components in charge of the ASTRI SST-2M observation scheduling, telescope control and monitoring, and data taking. Particular emphasis is given to their potential reuse for the ASTRI/CTA mini-array.
Photoacoustic Imaging of Animals with an Annular Transducer Array
NASA Astrophysics Data System (ADS)
Yang, Di-Wu; Zhou, Zhi-Bin; Zeng, Lv-Ming; Zhou, Xin; Chen, Xing-Hui
2014-07-01
A photoacoustic system with an annular transducer array is presented for rapid, high-resolution photoacoustic tomography of animals. An eight-channel data acquisition system is applied to capture the photoacoustic signals by using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experiments are performed on a mouse head and a rabbit head and clear photoacoustic images are obtained. The experimental results demonstrate that this imaging system holds the potential for imaging the human brain.
Advances in diagnostic ultrasonography.
Reef, V B
1991-08-01
A wide variety of ultrasonographic equipment currently is available for use in equine practice, but no one machine is optimal for every type of imaging. Image quality is the most important factor in equipment selection once the needs of the practitioner are ascertained. The transducer frequencies available, transducer footprints, depth of field displayed, frame rate, gray scale, simultaneous electrocardiography, Doppler, and functions to modify the image are all important considerations. The ability to make measurements off of videocassette recorder playback and future upgradability should be evaluated. Linear array and sector technology are the backbone of equine ultrasonography today. Linear array technology is most useful for a high-volume broodmare practice, whereas sector technology is ideal for a more general equine practice. The curved or convex linear scanner has more applications than the standard linear array and is equipped with the linear array rectal probe, which provides the equine practitioner with a more versatile unit for equine ultrasonographic evaluations. The annular array and phased array systems have improved image quality, but each has its own limitations. The new sector scanners still provide the most versatile affordable equipment for equine general practice.
NASA Astrophysics Data System (ADS)
Burtovoi, A.; Zampieri, L.; Giuliani, A.; Bigongiari, C.; Di Pierro, F.; Stamerra, A.
2017-01-01
The development and construction of the Cherenkov Telescope Array (CTA) opens up new opportunities for the study of very high energy (VHE, E > 100 GeV) sources. As a part of CTA, the ASTRI project, led by INAF, has one of the main goals to develop one of the mini-arrays of CTA pre-production telescopes, proposed to be installed at the CTA southern site. Thanks to the innovative dual-mirror optical design of its small-sized telescopes, the ASTRI mini-array will be characterized by a large field of view, an excellent angular resolution and a good sensitivity up to energies of several tens of TeV. Pulsar wind nebulae, along with Supernova Remnants, are among the most abundant sources that will be identified and investigated, with the ultimate goal to move significantly closer to an understanding of the origin of cosmic rays (CR). As part of the ongoing effort to investigate the scientific capabilities for both CTA as a whole and the ASTRI mini-array, we performed simulations of the Vela X region. We simulated its extended VHE γ-ray emission using the results of the detailed H.E.S.S. analysis of this source. We estimated the resolving capabilities of the diffuse emission and the detection significance of the pulsar with both CTA as a whole and the ASTRI mini-array. Moreover with these instruments it will be possible to observe the high-energy end of SNRs spectrum, searching for particles with energies near the cosmic-rays "knee" (E ˜ 1015 eV). We simulated a set of ASTRI mini-array observations for one young and an evolved SNRs in order to test the capabilities of this instrument to discover and study PeVatrons on the Galactic plane.
The ASTRI/CTA mini-array software system
NASA Astrophysics Data System (ADS)
Tosti, Gino; Schwarz, Joseph; Antonelli, Lucio Angelo; Trifoglio, Massimo; Catalano, Osvaldo; Maccarone, Maria Concetta; Leto, Giuseppe; Gianotti, Fulvio; Canestrari, Rodolfo; Giro, Enrico; Fiorini, Mauro; La Palombara, Nicola; Pareschi, Giovanni; Stringhetti, Luca; Vercellone, Stefano; Conforti, Vito; Tanci, Claudio; Bruno, Pietro; Grillo, Alessandro; Testa, Vincenzo; di Paola, Andrea; Gallozzi, Stefano
2014-07-01
ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. The main goals of the ASTRI project are the realization of an end-to-end prototype of a Small Size Telescope (SST) for the Cherenkov Telescope Array (CTA) in a dual- mirror configuration (SST-2M) and, subsequently, of a mini-array comprising seven SST-2M telescopes. The mini-array will be placed at the final CTA Southern Site, which will be part of the CTA seed array, around which the whole CTA observatory will be developed. The Mini-Array Software System (MASS) will provide a comprehensive set of tools to prepare an observing proposal, to perform the observations specified therein (monitoring and controlling all the hardware components of each telescope), to analyze the acquired data online and to store/retrieve all the data products to/from the archive. Here we present the main features of the MASS and its first version, to be tested on the ASTRI SST-2M prototype that will be installed at the INAF observing station located at Serra La Nave on Mount Etna in Sicily.
A Flexible Annular-Array Imaging Platform for Micro-Ultrasound
Qiu, Weibao; Yu, Yanyan; Chabok, Hamid Reza; Liu, Cheng; Tsang, Fu Keung; Zhou, Qifa; Shung, K. Kirk; Zheng, Hairong; Sun, Lei
2013-01-01
Micro-ultrasound is an invaluable imaging tool for many clinical and preclinical applications requiring high resolution (approximately several tens of micrometers). Imaging systems for micro-ultrasound, including single-element imaging systems and linear-array imaging systems, have been developed extensively in recent years. Single-element systems are cheaper, but linear-array systems give much better image quality at a higher expense. Annular-array-based systems provide a third alternative, striking a balance between image quality and expense. This paper presents the development of a novel programmable and real-time annular-array imaging platform for micro-ultrasound. It supports multi-channel dynamic beamforming techniques for large-depth-of-field imaging. The major image processing algorithms were achieved by a novel field-programmable gate array technology for high speed and flexibility. Real-time imaging was achieved by fast processing algorithms and high-speed data transfer interface. The platform utilizes a printed circuit board scheme incorporating state-of-the-art electronics for compactness and cost effectiveness. Extensive tests including hardware, algorithms, wire phantom, and tissue mimicking phantom measurements were conducted to demonstrate good performance of the platform. The calculated contrast-to-noise ratio (CNR) of the tissue phantom measurements were higher than 1.2 in the range of 3.8 to 8.7 mm imaging depth. The platform supported more than 25 images per second for real-time image acquisition. The depth-of-field had about 2.5-fold improvement compared to single-element transducer imaging. PMID:23287923
A polyphonic acoustic vortex and its complementary chords
NASA Astrophysics Data System (ADS)
Wilson, C.; Padgett, M. J.
2010-02-01
Using an annular phased array of eight loudspeakers, we generate sound beams that simultaneously contain phase singularities at a number of different frequencies. These frequencies correspond to different musical notes and the singularities can be set to overlap along the beam axis, creating a polyphonic acoustic vortex. Perturbing the drive amplitudes of the speakers means that the singularities no longer overlap, each note being nulled at a slightly different lateral position, where the volume of the other notes is now nonzero. The remaining notes form a tri-note chord. We contrast this acoustic phenomenon to the optical case where the perturbation of a white light vortex leads to a spectral spatial distribution.
Mini-dome Fresnel lens photovoltaic concentrator development
NASA Technical Reports Server (NTRS)
Oneill, Mark J.; Piszczor, Michael F., Jr.
1991-01-01
Since 1986 work on a new high-performance, light-weight space photovoltaic concentration array has been conducted. An update on the mini-dome lens concentrator array development program is provided. Recent prototype cell and lens test results indicate that near-term array performance goals of 300 w/sq m and 100 w/kg are feasible, and that a longer-term goal of 200 w/kg is reasonable.
Integrated field emission array for ion desorption
Resnick, Paul J; Hertz, Kristin L.; Holland, Christopher; Chichester, David
2016-08-23
An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.
Integrated field emission array for ion desorption
Resnick, Paul J; Hertz, Kristin L; Holland, Christopher; Chichester, David; Schwoebel, Paul
2013-09-17
An integrated field emission array for ion desorption includes an electrically conductive substrate; a dielectric layer lying over the electrically conductive substrate comprising a plurality of laterally separated cavities extending through the dielectric layer; a like plurality of conically-shaped emitter tips on posts, each emitter tip/post disposed concentrically within a laterally separated cavity and electrically contacting the substrate; and a gate electrode structure lying over the dielectric layer, including a like plurality of circular gate apertures, each gate aperture disposed concentrically above an emitter tip/post to provide a like plurality of annular gate electrodes and wherein the lower edge of each annular gate electrode proximate the like emitter tip/post is rounded. Also disclosed herein are methods for fabricating an integrated field emission array.
Characterization of annular two-phase gas-liquid flows in microgravity
NASA Technical Reports Server (NTRS)
Bousman, W. Scott; Mcquillen, John B.
1994-01-01
A series of two-phase gas-liquid flow experiments were developed to study annular flows in microgravity using the NASA Lewis Learjet. A test section was built to measure the liquid film thickness around the perimeter of the tube permitting the three dimensional nature of the gas-liquid interface to be observed. A second test section was used to measure the film thickness, pressure drop and wall shear stress in annular microgravity two-phase flows. Three liquids were studied to determine the effects of liquid viscosity and surface tension. The result of this study provide insight into the wave characteristics, pressure drop and droplet entrainment in microgravity annular flows.
Mechanically expandable annular seal
Gilmore, R.F.
1983-07-19
A mechanically expandable annular reusable seal assembly to form an annular hermetic barrier between two stationary, parallel, and planar containment surfaces is described. A rotatable ring, attached to the first surface, has ring wedges resembling the saw-tooth array of a hole saw. Matching seal wedges are slidably attached to the ring wedges and have their motion restricted to be perpendicular to the second surface. Each seal wedge has a face parallel to the second surface. An annular elastomer seal has a central annular region attached to the seal wedges' parallel faces and has its inner and outer circumferences attached to the first surface. A rotation of the ring extends the elastomer seal's central region perpendicularly towards the second surface to create the fluid tight barrier. A counter rotation removes the barrier. 6 figs.
High-frequency ultrasound annular array imaging. Part II: digital beamformer design and imaging.
Hu, Chang-Hong; Snook, Kevin A; Cao, Pei-Jie; Shung, K Kirk
2006-02-01
This is the second part of a two-paper series reporting a recent effort in the development of a high-frequency annular array ultrasound imaging system. In this paper an imaging system composed of a six-element, 43 MHz annular array transducer, a six-channel analog front-end, a field programmable gate array (FPGA)-based beamformer, and a digital signal processor (DSP) microprocessor-based scan converter will be described. A computer is used as the interface for image display. The beamformer that applies delays to the echoes for each channel is implemented with the strategy of combining the coarse and fine delays. The coarse delays that are integer multiples of the clock periods are achieved by using a first-in-first-out (FIFO) structure, and the fine delays are obtained with a fractional delay (FD) filter. Using this principle, dynamic receiving focusing is achieved. The image from a wire phantom obtained with the imaging system was compared to that from a prototype ultrasonic backscatter microscope with a 45 MHz single-element transducer. The improved lateral resolution and depth of field from the wire phantom image were observed. Images from an excised rabbit eye sample also were obtained, and fine anatomical structures were discerned.
Optical transmission through silver film with compound periodic array of annular apertures
NASA Astrophysics Data System (ADS)
Zhang, Yue; Yao, Wen-jie; Yu, Hong
2015-03-01
Recently, some kinds of structures have been found to show the property of extraordinary optical transmission (EOT). In this paper, we present a novel composite structure based on array of annular apertures (AAA) with compound lattice. The lattice includes two kinds of annular apertures with the same outer radius and different inner radii. The transmission spectrum of this compound periodic AAA can be achieved by adding up the spectra of two corresponding simple periodic AAAs, and the transmission shows EOT property. The transmission peaks of this kind of structure can be adjusted to desire wavelengths by changing the inner radius of aperture or the index of the dielectric material in the aperture. This structure can be used as a filter with dual pass bands when the difference between inner radii or indices of dielectric inside is large enough for two kinds of apertures.
Solar Photovoltaic Array With Mini-Dome Fresnel Lenses
NASA Technical Reports Server (NTRS)
Piszczor, Michael F., Jr.; O'Neill, Mark J.
1994-01-01
Mini-dome Fresnel lenses concentrate sunlight onto individual photovoltaic cells. Facets of Fresnel lens designed to refract incident light at angle of minimum deviation to minimize reflective losses. Prismatic cover on surface of each cell reduces losses by redirecting incident light away from metal contacts toward bulk of semiconductor, where it is usefully absorbed. Simple design of mini-dome concentrator array easily adaptable to automated manufacturing techniques currently used by semiconductor industry. Attractive option for variety of future space missions.
Annular array and method of manufacturing same
Day, Robert A.
1989-01-01
A method for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90.degree.. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings, hold the transducer together until it can be mounted on a lens.
Means of manufacturing annular arrays
Day, R.A.
1985-10-10
A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.
Design of wavefront coding optical system with annular aperture
NASA Astrophysics Data System (ADS)
Chen, Xinhua; Zhou, Jiankang; Shen, Weimin
2016-10-01
Wavefront coding can extend the depth of field of traditional optical system by inserting a phase mask into the pupil plane. In this paper, the point spread function (PSF) of wavefront coding system with annular aperture are analyzed. Stationary phase method and fast Fourier transform (FFT) method are used to compute the diffraction integral respectively. The OTF invariance is analyzed for the annular aperture with cubic phase mask under different obscuration ratio. With these analysis results, a wavefront coding system using Maksutov-Cassegrain configuration is designed finally. It is an F/8.21 catadioptric system with annular aperture, and its focal length is 821mm. The strength of the cubic phase mask is optimized with user-defined operand in Zemax. The Wiener filtering algorithm is used to restore the images and the numerical simulation proves the validity of the design.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.
2012-09-24
Non-destructive and destructive testing methods were employed to evaluate a documented boric acid leakage path through an Alloy 600 control rod drive mechanism (CRDM) penetration from the North Anna Unit 2 reactor pressure vessel head that was removed from service in 2002. A previous ultrasonic in-service-inspection (ISI) conducted by industry prior to the head removal, identified a probable leakage path in Nozzle 63 located in the interference fit between the penetration tube and the vessel head. In this current examination, Nozzle 63 was examined using phased array (PA) ultrasonic testing with a 5.0-MHz, eight-element annular array; immersion data were acquiredmore » from the nozzle inner diameter (ID) surface. A variety of focal laws were employed to evaluate the signal responses from the interference fit region. These responses were compared to responses obtained from a mockup specimen that was used to determine detection limits and characterization capabilities for wastage and boric acid presence in the interference fit region. Nozzle 63 was destructively examined after the completion of the ultrasonic nondestructive evaluation (NDE) to visually assess the leak paths. These destructive and nondestructive results compared favorably« less
NASA Astrophysics Data System (ADS)
Fullekrug, M.; Liu, Z.; Koh, K.; Mezentsev, A.; Pedeboy, S.; Soula, S.; Sugier, J.; Enno, S. E.; Rycroft, M. J.
2016-12-01
Transient Luminous Events (TLEs) can generate electromagnetic radiation at frequencies 100 kHz (Qin et al., 2012, Fullekrug et al., 2013) and <1 kHz (Pasko et al., GRL, 1998, Cummer et al., GRL, 1998)as a result of the splitting and exponential growth of streamer discharges (Pasko, JGR, 2010, McHarg, JGR, 2010). The electromagnetic radiation results from the coherent superposition of the very weak signalsfrom thousands of small scale streamer discharges at 40 km height for frequencies 100 kHz and at 80 km height for frequencies <1 kHz. It seems therefore plausible that TLEs can also generate electromagnetic waves at intermediate heights, e.g. 60 km with frequencies between 1-100 kHz, e.g., 10 kHz. However, this frequency range is dominated by the powerful electromagnetic radiation from return strokes and it is hence commonly thought that this radiation can not easily be detectedwith single radio receivers. This study proposes to search for electromagnetic radiation from TLEsabove thunderclouds by use of a mini array that has the ability to determine the elevation angle toward the radiation source. Mini arrays with small apertures are used for infrasonic and seismic studies to determine source mechanisms and properties of the medium through which the waves propagate. For the detection of electromagneticradiation, the array processing is adapted for the fast propagationat the speed of light. Here we report for the first time the detection and mapping of distant lightning strokes in the sky with a mini array located near Bath in the UK. The array has a baseline to wavelength ratio 4.2 10^{-2} to record electromagnetic waves from 2-18 kHz. It is found that the mini array detects 69 lightning strokes per second from cloud-to-ground and in-cloud discharges, even though the parent thunderstorms are 900-1,100 km away and a rigorous selection criterion based on the spatial coherency of the electromagnetic source field across the array is used. About 14% of the lightning strokes appear at larger elevation angles in the sky than the remaining 86% of lightning strokes as the result of birefringent subionospheric wave propagation attributed to ordinary and extra-ordinary waves. These results imply that mini arrays can be used to detect electromagnetic radiation from TLEs above thunderclouds in different frequency ranges.
Noninvasive photoacoustic detecting intraocular foreign bodies with an annular transducer array.
Yang, Diwu; Zeng, Lvming; Pan, Changning; Zhao, Xuehui; Ji, Xuanrong
2013-01-14
We present a fast photoacoustic imaging system based on an annular transducer array for detection of intraocular foreign bodies. An eight-channel data acquisition system is applied to capture the photoacoustic signals using multiplexing and the total time of data acquisition and transferring is within 3 s. A limited-view filtered back projection algorithm is used to reconstruct the photoacoustic images. Experimental models of intraocular metal and glass foreign bodies were constructed on ex vivo pig's eyes and clear photoacoustic images of intraocular foreign bodies were obtained. Experimental results demonstrate the photoacoustic imaging system holds the potential for in clinic detecting the intraocular foreign bodies.
Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch
NASA Astrophysics Data System (ADS)
Weber, T. E.; Intrator, T. P.; Smith, R. J.
2015-04-01
Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ˜350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.
Methods for roof-top mini-arrays
NASA Astrophysics Data System (ADS)
Hazen, W. E.; Hazen, E. S.
1985-08-01
To test the idea of the Linsley effect mini array for the study of giant air showers, it is desirable to have a trigger that exploits the effect itself. In addition to the trigger, it is necessary to have a method for measuring the relative arrival times of the particle swarm selected by the trigger. Since the idea of mini arrays is likely to appeal to small research groups, it is desirable to try to design relatively simple and inexpensive methods, and methods that utilize existing detectors. Clusters of small detectors have been designed for operation in the local particle density realm where the probability of or = 2 particles per detector is small. Consequently, this method can discriminate pulses from each detector and thenceforth deal mainly with logic pulses.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-06
... shots; this means that one vessel discharges airguns when the other vessel is recharging. Outside the... and one mini source vessel) would be used during the proposed survey. The sources would be arrays of... [mu]Pa (rms). The mini source vessel would contain one array with eight 40 in\\3\\ airguns for a total...
Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings
Zheng, Shuang; Wang, Jian
2017-01-01
Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams. PMID:28094325
Measuring Orbital Angular Momentum (OAM) States of Vortex Beams with Annular Gratings.
Zheng, Shuang; Wang, Jian
2017-01-17
Measuring orbital angular momentum (OAM) states of vortex beams is of great importance in diverse applications employing OAM-carrying vortex beams. We present a simple and efficient scheme to measure OAM states (i.e. topological charge values) of vortex beams with annular gratings. The magnitude of the topological charge value is determined by the number of dark fringes after diffraction, and the sign of the topological charge value is distinguished by the orientation of the diffraction pattern. We first theoretically study the diffraction patterns using both annular amplitude and phase gratings. The annular phase grating shows almost 10-dB better diffraction efficiency compared to the annular amplitude grating. We then experimentally demonstrate the OAM states measurement of vortex beams using annular phase grating. The scheme works well even for high-order vortex beams with topological charge value as high as ± 25. We also experimentally show the evolution of diffraction patterns when slightly changing the fractional topological charge value of vortex beam from 0.1 to 1.0. In addition, the proposed scheme shows potential large tolerance of beam alignment during the OAM states measurement of vortex beams.
High power transcranial beam steering for ultrasonic brain therapy
Pernot, Mathieu; Aubry, Jean-François; Tanter, Mickaël; Thomas, Jean-Louis; Fink, Mathias
2003-01-01
A sparse phased array is specially designed for non-invasive ultrasound transskull brain therapy. The array is made of 200 single-elements corresponding to a new generation of high power transducers developed in collaboration with Imasonic (Besançon, France). Each element has a surface of 0.5cm2 and works at 0.9 MHz central frequency with a maximum 20W.cm−2 intensity on the transducer surface. In order to optimize the steering capabilities of the array, several transducers distributions on a spherical surface are simulated: hexagonal, annular, and quasi-random distributions. Using a quasi-random distribution significantly reduces the grating lobes. Furthermore, the simulations show the capability of the quasi-random array to electronically move the focal spot in the vicinity of the geometrical focus (up to +/− 15 mm). Based on the simulation study, the array is constructed and tested. The skull aberrations are corrected by using a time reversal mirror with amplitude correction achieved thanks to an implantable hydrophone, and a sharp focus is obtained through a human skull. Several lesions are induced in fresh liver and brain samples through human skulls, demonstrating the accuracy and the steering capabilities of the system. PMID:12974575
High power transcranial beam steering for ultrasonic brain therapy
NASA Astrophysics Data System (ADS)
Pernot, M.; Aubry, J.-F.; Tanter, M.; Thomas, J.-L.; Fink, M.
2003-08-01
A sparse phased array is specially designed for non-invasive ultrasound transskull brain therapy. The array is made of 200 single elements corresponding to a new generation of high power transducers developed in collaboration with Imasonic (Besançon, France). Each element has a surface of 0.5 cm2 and works at 0.9 MHz central frequency with a maximum 20 W cm-2 intensity on the transducer surface. In order to optimize the steering capabilities of the array, several transducer distributions on a spherical surface are simulated: hexagonal, annular and quasi-random distributions. Using a quasi-random distribution significantly reduces the grating lobes. Furthermore, the simulations show the capability of the quasi-random array to electronically move the focal spot in the vicinity of the geometrical focus (up to +/-15 mm). Based on the simulation study, the array is constructed and tested. The skull aberrations are corrected by using a time reversal mirror with amplitude correction achieved thanks to an implantable hydrophone, and a sharp focus is obtained through a human skull. Several lesions are induced in fresh liver and brain samples through human skulls, demonstrating the accuracy and the steering capabilities of the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinson, Anthony D.; Crawford, Susan L.; MacFarlan, Paul J.
2011-07-31
Ultrasonic phased array data were collected on a removed-from-service CRDM nozzle specimen to assess a previously reported leak path. First a mock-up CRDM specimen was evaluated that contained two 0.076-mm (3.0-mil) interference fit regions formed from an actual Inconel CRDM tube and two 152.4-mm (6.0-in.) thick carbon steel blocks. One interference fit region has a series of precision crafted electric discharge machining (EDM) notches at various lengths, widths, depths, and spatial separations for establishing probe sensitivity, resolution and calibration. The other interference fit has zones of boric acid (crystal form) spaced periodically between the tube and block to represent anmore » actively leaking CRDM nozzle assembly in the field. Ultrasonic phased-array evaluations were conducted using an immersion 8-element annular 5.0-MHz probe from the tube inner diameter (ID). A variety of focal laws were employed to evaluate the interference fit regions and J grove weld, where applicable. Responses from the mock-up specimen were evaluated to determine detection limits and characterization ability as well as contrast the ultrasonic response differences with the presence of boric acid in the fit region. Nozzle 63, from the North Anna Unit-2 nuclear power plant, was evaluated to assess leakage path(s) and was destructively dismantled to allow a visual verification of the leak path(s).« less
Wire-number effects on high-power annular z-pinches and some characteristics at high wire number
DOE Office of Scientific and Technical Information (OSTI.GOV)
SANFORD,THOMAS W. L.
2000-05-23
Characteristics of annular wire-array z-pinches as a function of wire number and at high wire number are reviewed. The data, taken primarily using aluminum wires on Saturn are comprehensive. The experiments have provided important insights into the features of wire-array dynamics critical for high x-ray power generation, and have initiated a renaissance in z-pinches when high numbers of wires are used. In this regime, for example, radiation environments characteristic of those encountered during the early pulses required for indirect-drive ICF ignition on the NIF have been produced in hohlraums driven by x-rays from a z-pinch, and are commented on here.
Theoretical characterization of annular array as a volumetric optoacoustic ultrasound handheld probe
NASA Astrophysics Data System (ADS)
Kalkhoran, Mohammad Azizian; Vray, Didier
2018-02-01
Optoacoustic ultrasound (OPUS) is a promising hybridized technique for simultaneous acquisition of functional and morphological data. The optical specificity of optoacoustic leverages the diagnostic aptitude of ultrasonography beyond anatomy. However, this integration has been rarely practiced for volumetric imaging. The challenge lies in the effective imaging probes that preserve the functionality of both modalities. The potentials of a sparse annular array for volumetric OPUS imaging are theoretically investigated. In order to evaluate and optimize the performance characteristics of the probe, series of analysis in the framework of system model matrix was carried out. The two criteria of voxel crosstalk and eigenanalysis have been employed to unveil information about the spatial sensitivity, aliasing, and number of definable spatial frequency components. Based on these benchmarks, the optimal parameters for volumetric handheld probe are determined. In particular, the number, size, and the arrangement of the elements and overall aperture dimension were investigated. The result of the numerical simulation suggests that the segmented-annular array of 128 negatively focused elements with 1λ × 20λ size, operating at 5-MHz central frequency showcases a good agreement with the physical requirement of both imaging systems. We hypothesize that these features enable a high-throughput volumetric passive/active ultrasonic imaging system with great potential for clinical applications.
NASA Astrophysics Data System (ADS)
Zeng, Lvming; Liu, Guodong; Yang, Diwu; Ren, Zhong; Huang, Zhen
2008-12-01
A near-infrared photoacoustic glucose monitoring system, which is integrated dual-wavelength pulsed laser diode excitation with eight-element planar annular array detection technique, is designed and fabricated during this study. It has the characteristics of nonivasive, inexpensive, portable, accurate location, and high signal-to-noise ratio. In the system, the exciting source is based on two laser diodes with wavelengths of 905 nm and 1550 nm, respectively, with optical pulse energy of 20 μJ and 6 μJ. The laser beam is optically focused and jointly projected to a confocal point with a diameter of 0.7 mm approximately. A 7.5 MHz 8-element annular array transducer with a hollow structure is machined to capture photoacoustic signal in backward mode. The captured signals excitated from blood glucose are processed with a synthetic focusing algorithm to obtain high signal-to-noise ratio and accurate location over a range of axial detection depth. The custom-made transducer with equal area elements is coaxially collimated with the laser source to improve the photoacoustic excite/receive efficiency. In the paper, we introduce the photoacoustic theory, receive/process technique, and design method of the portable noninvasive photoacoustic glucose monitoring system, which can potentially be developed as a powerful diagnosis and treatment tool for diabetes mellitus.
Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch
Weber, T. E.; Intrator, T. P.; Smith, R. J.
2015-04-29
We show through injection of plasma via an annular array of coaxial plasma guns, during the pre-ionization phase of field-reversed configuration (FRC) formation how to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. Our approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ~350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densitiesmore » and higher temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.« less
Plasma-gun-assisted field-reversed configuration formation in a conical θ-pinch
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, T. E., E-mail: tweber@lanl.gov; Intrator, T. P.; Smith, R. J.
2015-04-15
Injection of plasma via an annular array of coaxial plasma guns during the pre-ionization phase of field-reversed configuration (FRC) formation is shown to catalyze the bulk ionization of a neutral gas prefill in the presence of a strong axial magnetic field and change the character of outward flux flow during field-reversal from a convective process to a much slower resistive diffusion process. This approach has been found to significantly improve FRC formation in a conical θ-pinch, resulting in a ∼350% increase in trapped flux at typical operating conditions, an expansion of accessible formation parameter space to lower densities and highermore » temperatures, and a reduction or elimination of several deleterious effects associated with the pre-ionization phase.« less
Real-time MRI-guided hyperthermia treatment using a fast adaptive algorithm
NASA Astrophysics Data System (ADS)
Stakhursky, Vadim L.; Arabe, Omar; Cheng, Kung-Shan; MacFall, James; Maccarini, Paolo; Craciunescu, Oana; Dewhirst, Mark; Stauffer, Paul; Das, Shiva K.
2009-04-01
Magnetic resonance (MR) imaging is promising for monitoring and guiding hyperthermia treatments. The goal of this work is to investigate the stability of an algorithm for online MR thermal image guided steering and focusing of heat into the target volume. The control platform comprised a four-antenna mini-annular phased array (MAPA) applicator operating at 140 MHz (used for extremity sarcoma heating) and a GE Signa Excite 1.5 T MR system, both of which were driven by a control workstation. MR proton resonance frequency shift images acquired during heating were used to iteratively update a model of the heated object, starting with an initial finite element computed model estimate. At each iterative step, the current model was used to compute a focusing vector, which was then used to drive the next iteration, until convergence. Perturbation of the driving vector was used to prevent the process from stalling away from the desired focus. Experimental validation of the performance of the automatic treatment platform was conducted with two cylindrical phantom studies, one homogeneous and one muscle equivalent with tumor tissue (conductivity 50% higher) inserted, with initial focal spots being intentionally rotated 90° and 50° away from the desired focus, mimicking initial setup errors in applicator rotation. The integrated MR-HT treatment platform steered the focus of heating into the desired target volume in two quite different phantom tissue loads which model expected patient treatment configurations. For the homogeneous phantom test where the target was intentionally offset by 90° rotation of the applicator, convergence to the proper phase focus in the target occurred after 16 iterations of the algorithm. For the more realistic test with a muscle equivalent phantom with tumor inserted with 50° applicator displacement, only two iterations were necessary to steer the focus into the tumor target. Convergence improved the heating efficacy (the ratio of integral temperature in the tumor to integral temperature in normal tissue) by up to six-fold, compared to the first iteration. The integrated MR-HT treatment algorithm successfully steered the focus of heating into the desired target volume for both the simple homogeneous and the more challenging muscle equivalent phantom with tumor insert models of human extremity sarcomas after 16 and 2 iterations, correspondingly. The adaptive method for MR thermal image guided focal steering shows promise when tested in phantom experiments on a four-antenna phased array applicator.
Integrating Low-Cost Mems Accelerometer Mini-Arrays (mama) in Earthquake Early Warning Systems
NASA Astrophysics Data System (ADS)
Nof, R. N.; Chung, A. I.; Rademacher, H.; Allen, R. M.
2016-12-01
Current operational Earthquake Early Warning Systems (EEWS) acquire data with networks of single seismic stations, and compute source parameters assuming earthquakes to be point sources. For large events, the point-source assumption leads to an underestimation of magnitude, and the use of single stations leads to large uncertainties in the locations of events outside the network. We propose the use of mini-arrays to improve EEWS. Mini-arrays have the potential to: (a) estimate reliable hypocentral locations by beam forming (FK-analysis) techniques; (b) characterize the rupture dimensions and account for finite-source effects, leading to more reliable estimates for large magnitudes. Previously, the high price of multiple seismometers has made creating arrays cost-prohibitive. However, we propose setting up mini-arrays of a new seismometer based on low-cost (<$150), high-performance MEMS accelerometer around conventional seismic stations. The expected benefits of such an approach include decreasing alert-times, improving real-time shaking predictions and mitigating false alarms. We use low-resolution 14-bit Quake Catcher Network (QCN) data collected during Rapid Aftershock Mobilization Program (RAMP) in Christchurch, NZ following the M7.1 Darfield earthquake in September 2010. As the QCN network was so dense, we were able to use small sub-array of up to ten sensors spread along a maximum area of 1.7x2.2 km2 to demonstrate our approach and to solve for the BAZ of two events (Mw4.7 and Mw5.1) with less than ±10° error. We will also present the new 24-bit device details, benchmarks, and real-time measurements.
Operational verification of a 40-MHz annular array transducer
Ketterling, Jeffrey A.; Ramachandran, Sarayu; Aristizäbal, Orlando
2006-01-01
An experimental system to take advantage of the imaging capabilities of a 5-ring polyvinylidene fluoride (PVDF) based annular array is presented. The array has a 6 mm total aperture and a 12 mm geometric focus. The experimental system is designed to pulse a single element of the array and then digitize the received data of all array channels simultaneously. All transmit/receive pairs are digitized and then the data are post-processed with a synthetic focusing technique to achieve an enhanced depth of field (DOF). The performance of the array is experimentally tested with a wire phantom consisting of 25-μm diameter wires diagonally spaced at 1 mm by 1 mm intervals. The phantom permitted the efficacy of the synthetic focusing algorithm to be tested and was also used for two-way beam characterization. Experimental results are compared to a spatial impulse response method beam simulation. After synthetic focusing, the two-way echo amplitude was enhanced over the range of 8 to 19 mm and the 6-dB DOF spanned from 9 to 15 mm. For a wire at a fixed axial depth, the relative time delays between transmit/receive ring pairs agreed with theoretical predictions to within ± 2 ns. To further test the system, B-mode images of an excised bovine eye are rendered. PMID:16555771
Levitation pressure and friction losses in superconducting bearings
Hull, John R.
2001-01-01
A superconducting bearing having at least one permanent magnet magnetized with a vertical polarization. The lower or stator portion of the bearing includes an array of high-temperature superconducting elements which are comprised of a plurality of annular rings. An annular ring is located below each permanent magnet and an annular ring is offset horizontally from at least one of the permanent magnets. The rings are composed of individual high-temperature superconducting elements located circumferentially along the ring. By constructing the horizontally-offset high-temperature superconducting ring so that the c-axis is oriented in a radial direction, a higher levitation force can be achieved. Such an orientation will also provide substantially lower rotational drag losses in the bearing.
Telescope Array Control System Based on Wireless Touch Screen Platform
NASA Astrophysics Data System (ADS)
Fu, X. N.; Huang, L.; Wei, J. Y.
2016-07-01
GWAC (Ground-based Wide Angle Cameras) are the ground-based observational instruments of the Sino-French cooperation SVOM (Space Variable Objects Monitor) astronomical satellite, and Mini-GWAC is a pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system, which is based on wireless serial interface module to communicate. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test. The system uses the touch-control PC which is based on the Windows CE system as the upper-computer, the wireless transceiver module and PLC (Programmable Logic Controller) as the core. It has the advantages of low cost, reliable data transmission, and simple operation. So far, the control system has been applied to Mini-GWAC successfully.
Telescope Array Control System Based on Wireless Touch Screen Platform
NASA Astrophysics Data System (ADS)
Fu, Xia-nan; Huang, Lei; Wei, Jian-yan
2017-10-01
Ground-based Wide Angle Cameras (GMAC) are the ground-based observational facility for the SVOM (Space Variable Object Monitor) astronomical satellite of Sino-French cooperation, and Mini-GWAC is the pathfinder and supplement of GWAC. In the context of the Mini-GWAC telescope array, this paper introduces the design and implementation of a kind of telescope array control system based on the wireless touch screen platform. We describe the development and implementation of the system in detail in terms of control system principle, system hardware structure, software design, experiment, and test etc. The system uses a touch-control PC which is based on the Windows CE system as the upper computer, while the wireless transceiver module and PLC (Programmable Logic Controller) are taken as the system kernel. It has the advantages of low cost, reliable data transmission, and simple operation. And the control system has been applied to the Mini-GWAC successfully.
Synthetic-Focusing Strategies for Real-Time Annular-Array Imaging
Ketterling, Jeffrey A.; Filoux, Erwan
2012-01-01
Annular arrays provide a means to achieve enhanced image quality with a limited number of elements. Synthetic-focusing (SF) strategies that rely on beamforming data from individual transmit-to-receive (TR) element pairs provide a means to improve image quality without specialized TR delay electronics. Here, SF strategies are examined in the context of high-frequency ultrasound (>15 MHz) annular arrays composed of five elements, operating at 18 and 38 MHz. Acoustic field simulations are compared with experimental data acquired from wire and anechoic-sphere phantoms, and the values of lateral beamwidth, SNR, contrast-to-noise ratio (CNR), and depth of field (DOF) are compared as a function of depth. In each case, data were acquired for all TR combinations (25 in total) and processed with SF using all 25 TR pairs and SF with the outer receive channels removed one by one. The results show that removing the outer receive channels led to an overall degradation of lateral resolution, an overall decrease in SNR, and did not reduce the DOF, although the DOF profile decreased in amplitude. The CNR was >1 and remained fairly constant as a function of depth, with a slight decrease in CNR for the case with just the central element receiving. The relative changes between the calculated and measured quantities were nearly identical for the 18- and 38-MHz arrays. B-mode images of the anechoic phantom and an in vivo mouse embryo using full SF with 25 TR pairs or reduced TR-pair approaches showed minimal qualitative difference. PMID:22899130
Chirp-coded excitation imaging with a high-frequency ultrasound annular array.
Mamou, Jonathan; Ketterling, Jeffrey A; Silverman, Ronald H
2008-02-01
High-frequency ultrasound (HFU, > 15 MHz) is an effective means of obtaining fine-resolution images of biological tissues for applications such as opthalmologic, dermatologic, and small animal imaging. HFU has two inherent drawbacks. First, HFU images have a limited depth of field (DOF) because of the short wavelength and the low fixed F-number of conventional HFU transducers. Second, HFU can be used to image only a few millimeters deep into a tissue because attenuation increases with frequency. In this study, a five-element annular array was used in conjunction with a synthetic-focusing algorithm to extend the DOF. The annular array had an aperture of 10 mm, a focal length of 31 mm, and a center frequency of 17 MHz. To increase penetration depth, 8-micros, chirp-coded signals were designed, input into an arbitrary waveform generator, and used to excite each array element. After data acquisition, the received signals were linearly filtered to restore axial resolution and increase the SNR. To compare the chirpcoded imaging method with conventional impulse imaging in terms of resolution, a 25-microm diameter wire was scanned and the -6-dB axial and lateral resolutions were computed at depths ranging from 20.5 to 40.5 mm. The results demonstrated that chirp-coded excitation did not degrade axial or lateral resolution. A tissue-mimicking phantom containing 10-microm glass beads was scanned, and backscattered signals were analyzed to evaluate SNR and penetration depth. Finally, ex vivo ophthalmic images were formed and chirpcoded images showed features that were not visible in conventional impulse images.
Detonation propagation in annular arcs of condensed phase explosives
NASA Astrophysics Data System (ADS)
Ioannou, Eleftherios; Schoch, Stefan; Nikiforakis, Nikolaos; Michael, Louisa
2017-11-01
We present a numerical study of detonation propagation in unconfined explosive charges shaped as an annular arc (rib). Steady detonation in a straight charge propagates at constant speed, but when it enters an annular section, it goes through a transition phase and eventually reaches a new steady state of constant angular velocity. This study examines the speed of the detonation wave along the annular charge during the transition phase and at steady state, as well as its dependence on the dimensions of the annulus. The system is modeled using a recently proposed diffuse-interface formulation which allows for the representation of a two-phase explosive and of an additional inert material. The explosive considered is the polymer-bonded TATB-based LX-17 and is modeled using two Jones-Wilkins-Lee (JWL) equations of state and the ignition and growth reaction rate law. Results show that steady state speeds are in good agreement with experiment. In the transition phase, the evolution of outer detonation speed deviates from the exponential bounded growth function suggested by previous studies. We propose a new description of the transition phase which consists of two regimes. The first regime is caused by local effects at the outer edge of the annulus and leads to a dependence of the outer detonation speed on the angular position along the arc. The second regime is induced by effects originating from the inner edge of the annular charge and leads to the deceleration of the outer detonation until steady state is reached. The study concludes with a parametric study where the dependence of the steady state and the transition phase on the dimensions of the annulus is investigated.
Teng, Chaoyi; Demers, Hendrix; Brodusch, Nicolas; Waters, Kristian; Gauvin, Raynald
2018-06-04
A number of techniques for the characterization of rare earth minerals (REM) have been developed and are widely applied in the mining industry. However, most of them are limited to a global analysis due to their low spatial resolution. In this work, phase map analyses were performed on REM with an annular silicon drift detector (aSDD) attached to a field emission scanning electron microscope. The optimal conditions for the aSDD were explored, and the high-resolution phase maps generated at a low accelerating voltage identify phases at the micron scale. In comparisons between an annular and a conventional SDD, the aSDD performed at optimized conditions, making the phase map a practical solution for choosing an appropriate grinding size, judging the efficiency of different separation processes, and optimizing a REM beneficiation flowsheet.
ERIC Educational Resources Information Center
Riddle, Bob
2005-01-01
Eclipses typically occur in pairs twice each year, and the second pair for this year will be this month, starting with an annular solar eclipse on October 3, and two weeks later a partial lunar eclipse on October 17. The path of annularity will travel from the North Atlantic Ocean to Spain, where the annular phase will last for more than four…
Two-Phase Annular Flow in Helical Coil Flow Channels in a Reduced Gravity Environment
NASA Technical Reports Server (NTRS)
Keshock, Edward G.; Lin, Chin S.
1996-01-01
A brief review of both single- and two-phase flow studies in curved and coiled flow geometries is first presented. Some of the complexities of two-phase liquid-vapor flow in curved and coiled geometries are discussed, and serve as an introduction to the advantages of observing such flows under a low-gravity environment. The studies proposed -- annular two-phase air-water flow in helical coil flow channels are described. Objectives of the studies are summarized.
Heat exchanger with ceramic elements
Corey, John A.
1986-01-01
An annular heat exchanger assembly includes a plurality of low thermal growth ceramic heat exchange members with inlet and exit flow ports on distinct faces. A mounting member locates each ceramic member in a near-annular array and seals the flow ports on the distinct faces into the separate flow paths of the heat exchanger. The mounting member adjusts for the temperature gradient in the assembly and the different coefficients of thermal expansion of the members of the assembly during all operating temperatures.
Phase-locking of combination-cylinder discharge CO2 laser
NASA Astrophysics Data System (ADS)
Xu, Yonggen
2014-05-01
A new type of laser resonator is presented to obtained good coherent beam and the parameters of the laser beam are calculated. The principle of phase-locking is described based on the injection-locking, the properties of the injected beam in the resonator are studied in detail. The output beam from output mirror is an annular laser beam with zero central intensity. An analytical expression for the annular laser beam through the ABCD optical system is derived. Typical numerical examples are calculated to confirm our analytical results. It is shown that the good coherent beam can be obtained through phase-locking, and the central intensity of annular beam through ABCD optical system will become maximum when the parameters of laser beam are selected reasonably.
Hardware Overview of the Microwave Imaging Reflectometry (MIR) on DIII-D
NASA Astrophysics Data System (ADS)
Hu, Xing; Muscatello, Chirstopher; Domier, Calvin; Luhmann, Neville; Ren, Xiaoxin; Spear, Alexander; Tobias, Benjamin; Yu, Liubing; University of California Davis Collaboration; Princeton Plasma Physics Laboratory Collaboration
2013-10-01
UC Davis in collaboration with PPPL has developed and installed a 12 by 4 (48) channel MIR system on DIII-D to measure 2-D structure of density fluctuations. In the transmitter path, a four-frequency probing beam is generated by mixing the 65 GHz Gunn oscillator signal with two different 0.5 ~ 9 GHz signals. Carefully designed imaging optics shape the beam to ensure the probing beam wavefront matches the cutoff surfaces. In the receiver path, large aperture imaging optics collect the reflected beam and focus it onto the mini lens antenna array, which provides improved LO coupling and antenna performance over earlier imaging systems. The reflected signal is down-converted for the first time on the array and goes into the innovative electronics for a second down-conversion. Low frequency LOs for the IQ mixer are generated by mixing two reference signals from phase-locked circuits. The double down-converted signal is mixed with the low frequency LOs yielding in-phase and quadrature components of the phase and thus density fluctuation information.
Analysis of thermal energy storage material with change-of-phase volumetric effects
NASA Technical Reports Server (NTRS)
Kerslake, Thomas W.; Ibrahim, Mounir B.
1990-01-01
NASA's Space Station Freedom proposed hybrid power system includes photovoltaic arrays with nickel hydrogen batteries for energy storage and solar dynamic collectors driving Brayton heat engines with change-of-phase Thermal Energy Storage (TES) devices. A TES device is comprised of multiple metallic, annular canisters which contain a eutectic composition LiF-CaF2 Phase Change Material (PCM) that melts at 1040 K. A moderately sophisticated LiF-CaF2 PCM computer model is being developed in three stages considering 1-D, 2-D, and 3-D canister geometries, respectively. The 1-D model results indicate that the void has a marked effect on the phase change process due to PCM displacement and dynamic void heat transfer resistance. Equally influential are the effects of different boundary conditions and liquid PCM natural convection. For the second stage, successful numerical techniques used in the 1-D phase change model are extended to a 2-D (r,z) PCM containment canister model. A prototypical PCM containment canister is analyzed and the results are discussed.
A High-Frequency Annular-Array Transducer Using an Interdigital Bonded 1-3 Composite
Chabok, Hamid Reza; Cannata, Jonathan M.; Kim, Hyung Ham; Williams, Jay A.; Park, Jinhyoung; Shung, K. Kirk
2011-01-01
This paper reports the design, fabrication, and characterization of a 1–3 composite annular-array transducer. An interdigital bonded (IB) 1–3 composite was prepared using two IB operations on a fine-grain piezoelectric ceramic. The final composite had 19-μm-wide posts separated by 6-μm-wide polymer kerfs. A novel method to remove metal electrodes from polymer portions of the 1–3 composite was established to eliminate the need for patterning and aligning the electrode on the composite to the electrodes on a flexible circuit. Unloaded epoxy was used for both the matching and backing layers and a flexible circuit was used for interconnect. A prototype array was successfully fabricated and tested. The results were in reasonable agreement with those predicted by a circuit-analogous model. The average center frequency estimated from the measured pulse-echo responses of array elements was 33.5 MHz and the −6-dB fractional bandwidth was 57%. The average insertion loss recorded was 14.3 dB, and the maximum crosstalk between the nearest-neighbor elements was less than −37 dB. Images of a wire phantom and excised porcine eye were obtained to show the capabilities of the array for high-frequency ultrasound imaging. PMID:21244988
A high-frequency annular-array transducer using an interdigital bonded 1-3 composite.
Chabok, Hamid Reza; Cannata, Jonathan M; Kim, Hyung Ham; Williams, Jay A; Park, Jinhyoung; Shung, K Kirk
2011-01-01
This paper reports the design, fabrication, and characterization of a 1-3 composite annular-array transducer. An interdigital bonded (IB) 1-3 composite was prepared using two IB operations on a fine-grain piezoelectric ceramic. The final composite had 19-μm-wide posts separated by 6-μm-wide polymer kerfs. A novel method to remove metal electrodes from polymer portions of the 1-3 composite was established to eliminate the need for patterning and aligning the electrode on the composite to the electrodes on a flexible circuit. Unloaded epoxy was used for both the matching and backing layers and a flexible circuit was used for interconnect. A prototype array was successfully fabricated and tested. The results were in reasonable agreement with those predicted by a circuit-analogous model. The average center frequency estimated from the measured pulse-echo responses of array elements was 33.5 MHz and the -6-dB fractional bandwidth was 57%. The average insertion loss recorded was 14.3 dB, and the maximum crosstalk between the nearest-neighbor elements was less than -37 dB. Images of a wire phantom and excised porcine eye were obtained to show the capabilities of the array for high-frequency ultrasound imaging.
Testing the kibble-zurek scenario with annular josephson tunnel junctions
Kavoussanaki; Monaco; Rivers
2000-10-16
In parallel with Kibble's description of the onset of phase transitions in the early Universe, Zurek has provided a simple picture for the onset of phase transitions in condensed matter systems, supported by agreement with experiments in 3He and superconductors. We show how experiments with annular Josephson tunnel junctions can, and do, provide further support for this scenario.
Studies on Normal and Microgravity Annular Two Phase Flows
NASA Technical Reports Server (NTRS)
Balakotaiah, V.; Jayawardena, S. S.; Nguyen, L. T.
1999-01-01
Two-phase gas-liquid flows occur in a wide variety of situations. In addition to normal gravity applications, such flows may occur in space operations such as active thermal control systems, power cycles, and storage and transfer of cryogenic fluids. Various flow patterns exhibiting characteristic spatial and temporal distribution of the two phases are observed in two-phase flows. The magnitude and orientation of gravity with respect to the flow has a strong impact on the flow patterns observed and on their boundaries. The identification of the flow pattern of a flow is somewhat subjective. The same two-phase flow (especially near a flow pattern transition boundary) may be categorized differently by different researchers. Two-phase flow patterns are somewhat simplified in microgravity, where only three flow patterns (bubble, slug and annular) have been observed. Annular flow is obtained for a wide range of gas and liquid flow rates, and it is expected to occur in many situations under microgravity conditions. Slug flow needs to be avoided, because vibrations caused by slugs result in unwanted accelerations. Therefore, it is important to be able to accurately predict the flow pattern which exists under given operating conditions. It is known that the wavy liquid film in annular flow has a profound influence on the transfer of momentum and heat between the phases. Thus, an understanding of the characteristics of the wavy film is essential for developing accurate correlations. In this work, we review our recent results on flow pattern transitions and wavy films in microgravity.
Horehledova, Barbora; Mihl, Casper; Hendriks, Babs M F; Eijsvoogel, Nienke G; Vainer, Jindrich; Veenstra, Leo F; Wildberger, Joachim E; Das, Marco
2018-06-16
Incorrect prosthesis size has direct impact on patient outcome after transcatheter aortic valve implantation (TAVI) procedure. Currently, annular diameter, area or perimeter may be used for prosthesis size selection. The aim was to evaluate whether the use different annular dimensions would result in the selection of different prosthesis sizes, when assessed in the same TAVI-candidate during the same phase of a cardiac cycle. Fifty consecutive TAVI-candidates underwent retrospectively ECG-gated computed tomography angiography (CTA). Aortic root dimensions were assessed in the 20% phase of the R-R interval. Annular short diameter, perimeter and area were used to select the prosthesis size, based on the industry recommendations for a self-expandable (Medtronic CoreValve; MCV) and balloon-expandable (Edwards Sapien XT Valve; ESV) valve. Complete agreement on selected prosthesis size amongst all three annular dimensions was observed in 62% (31/50; ESV) and 30% (15/50; MCV). Short aortic annulus measurement resulted in a smaller prosthesis size in 20% (10/50; ESV) and in 60% of cases (30/50; MCV) compared to the size suggested by both annular perimeter and area. In 18% (9/50; ESV) and 10% of cases (5/50; MCV) a larger prosthesis would have been selected based on annular perimeter compared to annular diameter and area. Prosthesis size derived from area was always in agreement with at least one other parameter in all cases. Aortic annulus area appears to be the most robust parameter for TAVI-prosthesis size selection, regardless of the specific prosthesis size. Short aortic annulus diameter may underestimate the prosthesis size, while use of annular perimeter may lead to size overestimation in some cases.
NASA Astrophysics Data System (ADS)
Thongdaeng, S.; Bubphachot, B.; Rittidech, S.
2016-11-01
This research is aimed at studying the two-phase flow pattern of a top heat mode closed loop oscillating heat pipe with check valves. The working fluids used are ethanol and R141b and R11 coolants with a filling ratio of 50% of the total volume. It is found that the maximum heat flux occurs for the R11 coolant used as the working fluid in the case with the inner diameter of 1.8 mm, inclination angle of -90°, evaporator temperature of 125°C, and evaporator length of 50 mm. The internal flow patterns are found to be slug flow/disperse bubble flow/annular flow, slug flow/disperse bubble flow/churn flow, slug flow/bubble flow/annular flow, slug flow/disperse bubble flow, bubble flow/annular flow, and slug flow/annular flow.
NASA Astrophysics Data System (ADS)
Conforti, Vito; Trifoglio, Massimo; Bulgarelli, Andrea; Gianotti, Fulvio; Fioretti, Valentina; Tacchini, Alessandro; Zoli, Andrea; Malaguti, Giuseppe; Capalbi, Milvia; Catalano, Osvaldo
2014-07-01
ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is a Flagship Project financed by the Italian Ministry of Education, University and Research, and led by INAF, the Italian National Institute of Astrophysics. Within this framework, INAF is currently developing an end-to-end prototype of a Small Size dual-mirror Telescope. In a second phase the ASTRI project foresees the installation of the first elements of the array at CTA southern site, a mini-array of 7 telescopes. The ASTRI Camera DAQ Software is aimed at the Camera data acquisition, storage and display during Camera development as well as during commissioning and operations on the ASTRI SST-2M telescope prototype that will operate at the INAF observing station located at Serra La Nave on the Mount Etna (Sicily). The Camera DAQ configuration and operations will be sequenced either through local operator commands or through remote commands received from the Instrument Controller System that commands and controls the Camera. The Camera DAQ software will acquire data packets through a direct one-way socket connection with the Camera Back End Electronics. In near real time, the data will be stored in both raw and FITS format. The DAQ Quick Look component will allow the operator to display in near real time the Camera data packets. We are developing the DAQ software adopting the iterative and incremental model in order to maximize the software reuse and to implement a system which is easily adaptable to changes. This contribution presents the Camera DAQ Software architecture with particular emphasis on its potential reuse for the ASTRI/CTA mini-array.
High-intensity focused ultrasound (HIFU) array system for image-guided ablative therapy (IGAT)
NASA Astrophysics Data System (ADS)
Kaczkowski, Peter J.; Keilman, George W.; Cunitz, Bryan W.; Martin, Roy W.; Vaezy, Shahram; Crum, Lawrence A.
2003-06-01
Recent interest in using High Intensity Focused Ultrasound (HIFU) for surgical applications such as hemostasis and tissue necrosis has stimulated the development of image-guided systems for non-invasive HIFU therapy. Seeking an all-ultrasound therapeutic modality, we have developed a clinical HIFU system comprising an integrated applicator that permits precisely registered HIFU therapy delivery and high quality ultrasound imaging using two separate arrays, a multi-channel signal generator and RF amplifier system, and a software program that provides the clinician with a graphical overlay of the ultrasound image and therapeutic protocol controls. Electronic phasing of a 32 element 2 MHz HIFU annular array allows adjusting the focus within the range of about 4 to 12 cm from the face. A central opening in the HIFU transducer permits mounting a commercial medical imaging scanhead (ATL P7-4) that is held in place within a special housing. This mechanical fixture ensures precise coaxial registration between the HIFU transducer and the image plane of the imaging probe. Recent enhancements include development of an acoustic lens using numerical simulations for use with a 5-element array. Our image-guided therapy system is very flexible and enables exploration of a variety of new HIFU therapy delivery and monitoring approaches in the search for safe, effective, and efficient treatment protocols.
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Dougherty, Robert P.; Walker, Bruce E.
2010-01-01
An in-duct beamforming technique for imaging rotating broadband fan sources has been used to evaluate the acoustic characteristics of a Foam-Metal Liner installed over-the-rotor of a low-speed fan. The NASA Glenn Research Center s Advanced Noise Control Fan was used as a test bed. A duct wall-mounted phased array consisting of several rings of microphones was employed. The data are mathematically resampled in the fan rotating reference frame and subsequently used in a conventional beamforming technique. The steering vectors for the beamforming technique are derived from annular duct modes, so that effects of reflections from the duct walls are reduced.
Xin, Long; Xu, Weixing; Yu, Leijun; Fan, Shunwu; Wang, Wei; Yu, Fang; Wang, Zhenbin
2017-05-12
Growth of nerve fibers has been shown to occur in a rabbit model of intravertebral disc degeneration (IVD) induced by needle puncture. As nerve growth may underlie the process of chronic pain in humans affected by disc degeneration, we sought to investigate the factors underlying nerve ingrowth in a minimally invasive annulotomy rabbit model of IVD by comparing the effects of empty disc defects with those of defects filled with poly(lactic-co-glycolic acid)/fibrin gel (PLGA) plugs. New Zealand white rabbits (n = 24) received annular injuries at three lumbar levels (L3/4, L4/5, and L5/6). The discs were randomly assigned to four groups: (a) annular defect (1.8-mm diameter; 4-mm depth) by mini-trephine, (b) annular defect implanted with a PLGA scaffold containing a fibrin gel, (c) annular puncture by a 16G needle (5-mm depth), and (d) uninjured L2/3 disc (control). Disc degeneration was evaluated by radiography, MRI, histology, real-time PCR, and analysis of proteoglycan (PG) content. Nerve ingrowth into the discs was assessed by immunostaining with the nerve marker protein gene product 9.5. Injured discs showed a progressive disc space narrowing with significant disc degeneration and proteoglycan loss, as confirmed by imaging results, molecular and compositional analysis, and histological examinations. In 16G punctured discs, nerve ingrowth was observed on the surface of scar tissue. In annular defects, nerve fibers were found to be distributed along small fissures within the fibrocartilaginous-like tissue that filled the AF. In discs filled with PLGA/ fibrin gel, more nerve fibers were observed growing deeper into the inner AF along the open annular track. In addition, innervations scores showed significantly higher than those of punctured discs and empty defects. A limited vascular proliferation was found in the injured sites and regenerated tissues. Nerve ingrowth was significantly higher in PLGA/fibrin-filled discs than in empty defects. Possible explanations include (i) annular fissures along the defect and early loss of proteoglycan may facilitate the ingrowth process and (ii) biodegradable PLGA/fibrin gel may promote adverse growth of nerves and blood vessels into deeper parts of injured disc. The rabbit annular defect model of disc degeneration appears suitable to investigate the effects of nerve ingrowth in relation to pain generation.
Mamou, Jonathan; Aristizábal, Orlando; Silverman, Ronald H.; Ketterling, Jeffrey A.; Turnbull, Daniel H.
2009-01-01
High-frequency ultrasound (HFU, > 20 MHz) is an attractive means of obtaining fine-resolution images of biological tissues for ophthalmologic, dermatological, and small-animal imaging applications. Even with current improvements in circuit designs and high-frequency equipment, HFU suffers from two inherent limitations. First, HFU images have a limited depth of field (DOF) because of the short wavelength and the low fixed F-number of conventional HFU transducers. Second, HFU is usually limited to shallow imaging because of the significant attenuation in most tissues. In a previous study, a five-element annular array with a 17-MHz center frequency was excited using chirp-coded signals, and a synthetic-focusing algorithm was used to extend the DOF and increase penetration depth. In the present study, a similar approach with two different five-element annular arrays operating near a center frequency of 35-MHz is implemented and validated. Following validation studies, the chirp-imaging methods were applied to imaging vitreous-hemorrhage mimicking phantoms and mouse embryos. Images of the vitreous phantom showed increased sensitivity using the chirp method compared to a standard monocycle imaging method, and blood droplets could be visualized 4 mm deeper into the phantom. Three-dimensional datasets of 12.5-day-old, mouse-embryo heads were acquired in utero using chirp and conventional excitations. Images were formed and brains ventricles were segmented and reconstructed in three dimensions. The brain-ventricle volumes for the monocycle excitation exhibited artifacts that were not apparent on the chirp-based dataset reconstruction. PMID:19394754
Expected rates with mini-arrays for air showers
NASA Technical Reports Server (NTRS)
Hazen, W. E.
1985-01-01
As a guide in the design of mini-arrays used to exploit the Linsley effect in the study of air showers, it is useful to calculate the expected rates. The results can aid in the choice of detectors and their placement or in predicting the utility of existing detector systems. Furthermore, the potential of the method can be appraised for the study of large showers. Specifically, we treat the case of a mini-array of dimensions small enough compared to the distance of axes of showers of interest so that it can be considered a point detector. The input information is taken from the many previous studies of air showers by other groups. The calculations will give: (1) the expected integral rate, F(sigma, rho), for disk thickness, sigma, or rise time, t sub 1/2, with local particle density, rho, as a parameter; (2) the effective detection area A(N) with sigma (min) and rho (min) and rho (min) as parameters; (3) the expected rate of collection of data F sub L (N) versus shower size, N.
An ANSERLIN array for mobile satellite applications
NASA Technical Reports Server (NTRS)
Colomb, F. Y.; Kunkee, D. B.; Mayes, P. E.; Smith, D. W.; Jamnejad, V.
1990-01-01
Design, analysis, construction, and test of linear arrays of ANSERLIN (annular sector, radiating line) elements are reported and discussed. Due to feeding simplicity and easy construction as well as good CP performance, a planar array composed of a number of such linear arrays each producing a shaped beam tilted in elevation, is a good candidate as a vehicle-mounted mechanically steered antenna for mobile satellite applications. A single level construction technique was developed that makes this type of array very cost competitive with other low-profile arrays. An asymmetric 19.5 inch long four-element array was fabricated and tested with reasonable performance. A smaller five-element symmetric array (16 inch long) was also designed and tested capable of operating in either sense of circular polarization. Efforts were made to successfully reduce this effect.
Kim, C.K.
1974-02-26
This invention relates in general to thermoelectric units and more particularly to a tubular thermoelectric unit which includes an array of tandemly arranged radially tapered annular thermoelectric pellets having insulation material of a lower density than the thermoelectric pellets positioned between each pellet. (Official Gazette)
Solar eclipses as a vehicle for international astronomy education.
NASA Astrophysics Data System (ADS)
Pasachoff, J. M.
The public's attention is drawn to astronomy whenever solar eclipse - partial, annular, or total - is visible, and we must take advantage of the opportunity to teach about the nature of science, the ability of astronomers to predict and analyze distant bodies and events, and the value of scientific research. We must also instruct people how to watch the partial and annular phases safely and that the total phase is not harmful.
NASA Technical Reports Server (NTRS)
Plumblee, H. E., Jr.; Dean, P. D.; Wynne, G. A.; Burrin, R. H.
1973-01-01
The results of an experimental and theoretical study of many of the fundamental details of sound propagation in hard wall and soft wall annular flow ducts are reported. The theory of sound propagation along such ducts and the theory for determining the complex radiation impedance of higher order modes of an annulus are outlined, and methods for generating acoustic duct modes are developed. The results of a detailed measurement program on propagation in rigid wall annular ducts with and without airflow through the duct are presented. Techniques are described for measuring cut-on frequencies, modal phase speed, and radial and annular mode shapes. The effects of flow velocity on cut-on frequencies and phase speed are measured. Comparisons are made with theoretical predictions for all of the effects studies. The two microphone method of impedance is used to measure the effects of flow on acoustic liners. A numerical study of sound propagation in annular ducts with one or both walls acoustically lined is presented.
Experimental investigation of two-phase flow patterns in minichannels at horizontal orientation
NASA Astrophysics Data System (ADS)
Saljoshi, P. S.; Autee, A. T.
2017-09-01
Two-phase flow is the simplest case of multiphase flow in which two phases are present for a pure component. The mini channel is considered as diameter below 3.0-0.2 mm and conventional channel is considered diameter above 3.0 mm. An experiment was conducted to study the adiabatic two-phase flow patterns in the circular test section with inner diameter of 1.1, 1.63, 2.0, 2.43 and 3.0 mm for horizontal orientation using air and water as a fluid. Different types of flow patterns found in the experiment. The parameters that affect most of these patterns and their transitions are channel size, phase superficial velocities (air and liquid) and surface tension. The superficial velocity of liquid and gas ranges from 0.01 to 66.70 and 0.01 to 3 m/s respectively. Two-phase flow pattern photos were recorded using a high speed CMOS camera. In this experiment different flow patterns were identified for different tube diameters that confirm the diameter effect on flow patterns in two-phase flows. Stratified flow was not observed for tube diameters less than 3.0 mm. Similarly, wavy-annular flow pattern was not observed in 1.6 and 1.0 mm diameter tubes due to the surface-tension effect and decrease in tube diameter. Buoyancy effects were clearly visible in 2.43 and 3.0 mm diameter tubes flow pattern. It has also observed that as the test-section diameter decreases the transition lines shift towards the higher gas and liquid velocity. However, the result of flow pattern lines in the present study has good agreement with the some of the existing flow patterns maps.
NASA Astrophysics Data System (ADS)
Wang, Chunhong; Sun, Fujun; Fu, Zhongyuan; Ding, Zhaoxiang; Wang, Chao; Zhou, Jian; Wang, Jiawen; Tian, Huiping
2017-08-01
In this paper, a photonic crystal (PhC) butt-coupled mini-hexagonal-H1 defect (MHHD) microcavity sensor is proposed. The MHHD microcavity is designed by introducing six mini-holes into the initial H1 defect region. Further, based on a well-designed 1 ×3 PhC Beam Splitter and three optimal MHHD microcavity sensors with different lattice constants (a), a 3-channel parallel-connected PhC sensor array on monolithic silicon on insulator (SOI) is proposed. Finite-difference time-domain (FDTD) simulations method is performed to demonstrate the high performance of our structures. As statistics show, the quality factor (Q) of our optimal MHHD microcavity attains higher than 7×104, while the sensitivity (S) reaches up to 233 nm/RIU(RIU = refractive index unit). Thus, the figure of merit (FOM) >104 of the sensor is obtained, which is enhanced by two orders of magnitude compared to the previous butt-coupled sensors [1-4]. As for the 3-channel parallel-connected PhC MHHD microcavity sensor array, the FOMs of three independent MHHD microcavity sensors are 8071, 8250 and 8250, respectively. In addition, the total footprint of the proposed 3-channel parallel-connected PhC sensor array is ultra-compactness of 12.5 μm ×31 μm (width × length). Therefore, the proposed high FOM sensor array is an ideal platform for realizing ultra-compact highly parallel refractive index (RI) sensing.
Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong
In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less
Mini Compton Camera Based on an Array of Virtual Frisch-Grid CdZnTe Detectors
Lee, Wonho; Bolotnikov, Aleksey; Lee, Taewoong; ...
2016-02-15
In this study, we constructed a mini Compton camera based on an array of CdZnTe detectors and assessed its spectral and imaging properties. The entire array consisted of 6×6 Frisch-grid CdZnTe detectors, each with a size of 6×6 ×15 mm 3. Since it is easier and more practical to grow small CdZnTe crystals rather than large monolithic ones, constructing a mosaic array of parallelepiped crystals can be an effective way to build a more efficient, large-volume detector. With the fully operational CdZnTe array, we measured the energy spectra for 133Ba -, 137Cs -, 60Co-radiation sources; we also located these sourcesmore » using a Compton imaging approach. Although the Compton camera was small enough to hand-carry, its intrinsic efficiency was several orders higher than those generated in previous researches using spatially separated arrays, because our camera measured the interactions inside the CZT detector array, wherein the detector elements were positioned very close to each other. Lastly, the performance of our camera was compared with that based on a pixelated detector.« less
NASA Astrophysics Data System (ADS)
Hongqi, Jing; Li, Zhong; Yuxi, Ni; Junjie, Zhang; Suping, Liu; Xiaoyu, Ma
2015-10-01
A novel high-efficiency cooling mini-channel heat-sink structure has been designed to meet the package technology demands of high power density laser diode array stacks. Thermal and water flowing characteristics have been simulated using the Ansys-Fluent software. Owing to the increased effective cooling area, this mini-channel heat-sink structure has a better cooling effect when compared with the traditional macro-channel heat-sinks. Owing to the lower flow velocity in this novel high efficient cooling structure, the chillers' water-pressure requirement is reduced. Meanwhile, the machining process of this high-efficiency cooling mini-channel heat-sink structure is simple and the cost is relatively low, it also has advantages in terms of high durability and long lifetime. This heat-sink is an ideal choice for the package of high power density laser diode array stacks. Project supported by the Defense Industrial Technology Development Program (No. B1320133033).
All optical detection of picosecond spin-wave dynamics in 2D annular antidot lattice
NASA Astrophysics Data System (ADS)
Porwal, Nikita; Mondal, Sucheta; Choudhury, Samiran; De, Anulekha; Sinha, Jaivardhan; Barman, Anjan; Datta, Prasanta Kumar
2018-02-01
Novel magnetic structures with precisely controlled dimensions and shapes at the nanoscale have potential applications in spin logic, spintronics and other spin-based communication devices. We report the fabrication of 2D bi-structure magnonic crystal in the form of embedded nanodots in a periodic Ni80Fe20 antidot lattice structure (annular antidot) by focused ion-beam lithography. The spin-wave spectra of the annular antidot sample, studied for the first time by a time-resolved magneto-optic Kerr effect microscopy show a remarkable variation with bias field, which is important for the above device applications. The optically induced spin-wave spectra show multiple modes in the frequency range 14.7 GHz-3.5 GHz due to collective interactions between the dots and antidots as well as the annular elements within the whole array. Numerical simulations qualitatively reproduce the experimental results, and simulated mode profiles reveal the spatial distribution of the spin-wave modes and internal magnetic fields responsible for these observations. It is observed that the internal field strength increases by about 200 Oe inside each dot embedded within the hole of annular antidot lattice as compared to pure antidot lattice and pure dot lattice. The stray field for the annular antidot lattice is found to be significant (0.8 kOe) as opposed to the negligible values of the same for the pure dot lattice and pure antidot lattice. Our findings open up new possibilities for development of novel artificial crystals.
An investigation of two phase flow pressure drops in a reduced acceleration environment
NASA Astrophysics Data System (ADS)
Wheeler, Montgomery W.; Best, Frederick R.; Reinarts, Thomas R.
1993-01-01
Thermal systems for space applications based on two phase flow have several advantages over single phase systems. Two phase thermal energy management and dynamic power conversion system advantages include the capability of achieving high specific power levels. Before two phase systems for space applications can be designed effectively, knowledge of the flow behavior in a reduced acceleration environment is necessary. To meet these needs, two phase flow experiments were conducted aboard the National Aeronautic and Space Administration's KC-135 using R12 as the working fluid. Annular flow two phase pressure drops were measured through 10.41-mm ID 1.251-m long glass tubing during periods with acceleration levels in the range ±0.05 G. The experiments were conducted with emphasis on achieving data with a high level of accuracy. The reduced acceleration annular flow pressure drops were compred with pressure drops measured in a 1-G environment for similar flow conditions. The reduced acceleration pressure drops were found to be 45% greater than the 1-G pressure drops. In addition, the reduced acceleration annular flow interfacial friction factors were compared with models for vertical up-flow in a 1-G environment. The reduced acceleration interfacial friction factor data was not predicted by the 1-G models.
Unique X-ray emission characteristics from volumetrically heated nanowire array plasmas
NASA Astrophysics Data System (ADS)
Rocca, J. J.; Bargsten, C.; Hollinger, R.; Shlyaptsev, V.; Pukhov, A.; Kaymak, V.; Capeluto, G.; Keiss, D.; Townsend, A.; Rockwood, A.; Wang, Y.; Wang, S.
2015-11-01
Highly anisotropic emission of hard X-ray radiation (h ν >10 keV) is observed when arrays of ordered nanowires (50 nm diameter wires of Au or Ni) are volumetrically heated by normal incidence irradiation with high contrast 50-60 fs laser pulses of relativistic intensity. The annular emission is in contrast with angular distribution of softer X-rays (h ν >1 KeV) from these targets and with the X-ray radiation emitted by polished flat targets, both of which are nearly isotropic. Model computations that make use the electron energy distribution computed by particle-in-cell simulations show that the unexpected annular distribution of the hard x-rays is the result of bremsstrahlung from fast electrons. Volumetric heating of Au nanowire arrays irradiated with an intensity of 2 x 10 19 W cm-2 is measured to convert laser energy into h ν>1KeV photons with a record efficiency of >8 percent into 2 π, creating a bright picosecond X-ray source for applications. Work supported by the Office of Fusion Energy Science of the U.S Department of Energy, and the Defense Threat Reduction Agency. A.P was supported by DFG project TR18.
High-frequency Pulse-compression Ultrasound Imaging with an Annular Array
NASA Astrophysics Data System (ADS)
Mamou, J.; Ketterling, J. A.; Silverman, R. H.
High-frequency ultrasound (HFU) allows fine-resolution imaging at the expense of limited depth-of-field (DOF) and shallow acoustic penetration depth. Coded-excitation imaging permits a significant increase in the signal-to-noise ratio (SNR) and therefore, the acoustic penetration depth. A 17-MHz, five-element annular array with a focal length of 31 mm and a total aperture of 10 mm was fabricated using a 25-μm thick piezopolymer membrane. An optimized 8-μs linear chirp spanning 6.5-32 MHz was used to excite the transducer. After data acquisition, the received signals were linearly filtered by a compression filter and synthetically focused. To compare the chirp-array imaging method with conventional impulse imaging in terms of resolution, a 25-μm wire was scanned and the -6-dB axial and lateral resolutions were computed at depths ranging from 20.5 to 40.5 mm. A tissue-mimicking phantom containing 10-μm glass beads was scanned, and backscattered signals were analyzed to evaluate SNR and penetration depth. Finally, ex-vivo ophthalmic images were formed and chirp-coded images showed features that were not visible in conventional impulse images.
NASA Astrophysics Data System (ADS)
Sudarja, Indarto, Deendarlianto, Haq, Aqli
2016-06-01
Void fraction is an important parameter in two-phase flow. In the present work, the adiabatic two-phase air-water flow void fraction in a horizontal minichannel has been studied experimentally. A transparent circular channel with 1.6 mm inner diameter was employed as the test section. Superficial gas and liquid velocities were varied in the range of 1.25 - 66.3 m/s and 0.033 - 4.935 m/s, respectively. Void fraction data were obtained by analyzing the flow images being captured by using a high-speed camera. Here, the homogeneous (β) and the measured void fractions (ɛ), respectively, were compared to the existing correlations. It was found that: (1) for the bubbly and slug flows, the void fractions increases with the increase of JG, (2) for churn, slug-annular, and annular flow patterns, there is no specific correlation between JG and void fraction was observed due to effect of the slip between gas and liquid, and (3) whilst for bubbly and slug flows the void fractions are close to homogeneous line, for churn, annular, and slug-annular flows are far below the homogeneous line. It indicates that the slip ratios for the second group of flow patterns are higher than unity.
Lei, Chengxin; Chen, Leyi; Tang, Zhixiong; Li, Daoyong; Cheng, Zhenzhi; Tang, Shaolong; Du, Youwei
2016-02-15
The properties of optics and magneto-optical Faraday effects in a metal-dielectric tri-layer structure with subwavelength rectangular annular arrays are investigated. It is noteworthy that we obtained the strongly enhanced Faraday rotation of the desired sign along with high transmittance by optimizing the parameters of the nanostructure in the visible spectral ranges. In this system, we obtained two extraordinary optical transmission (EOT) resonant peaks with enhanced Faraday rotations, whose signs are opposite, which may provide the possibility of designing multi-channel magneto-optical devices. Study results show that the maximum of the figure of merit (FOM) of the structure can be obtained between two EOT resonant peaks accompanied by an enhanced Faraday rotation. The positions of the maximum value of the FOM and resonant peaks of transmission along with a large Faraday rotation can be tailored by simply adjusting the geometric parameters of our models. These research findings are of great importance for future applications of magneto-optical devices.
Mir Cooperative Solar Array Project Accelerated Life Thermal Cycling Test
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Scheiman, David A.
1996-01-01
The Mir Cooperative Solar Array (MCSA) project was a joint U.S./Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA will be used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station. The MCSA was brought to Mir by space shuttle Atlantis in November 1995. This report describes an accelerated thermal life cycle test which was performed on two samples of the MCSA. In eight months time, two MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles. There was no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early and removed from consideration. The nature of the performance degradation caused by this one cell is briefly discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the U.S. solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit). This was considered a successful development test.
A multi-element high intensity focused ultrasound transducer: Design, fabrication, and testing
NASA Astrophysics Data System (ADS)
Vaezy, Shahram; Held, Robert; Miller, Blake; Fleury, Gerard
2004-05-01
The goal of this project is to develop an intra-cavity image-guided high intensity focused ultrasound (HIFU) device using piezocomposite technology and commercially available ultrasound imaging. The HIFU array, manufactured by Imasonic Corporation, is an 11-element annular phased array, with a focal length range of 30-60 mm, and operating frequency of 3 MHz (bandwidth of 1 MHz). The imaging probe (C9-5, Philips) is configured such that the focal axis of the HIFU beam was within the image plane. The array includes six complete central rings and five side-truncated peripheral rings, all with the natural radius of curvature of 50 mm. Impedance of all elements is approximately 50 ohms (10% accuracy for real and imaginary parts). Cross coupling between adjacent elements is less than, -40 dB. High power measurements showed more than 75% efficiency, at surface intensity of 2.66 W/cm2. Schlieren imaging showed effective focusing at all focal lengths (30-60 mm). The image-guided HIFU device requires water or hydrogel coupling, and possibly water cooling. The results of the full characterization for lesion formation in tissue-mimicking phantoms and biological tissues will be presented. Possible applications include uterine fibroids, abnormal uterine bleeding, and intraoperative hemostasis of occult hemorrhage.
NASA Astrophysics Data System (ADS)
Gianotti, Fulvio; Fioretti, Valentina; Tanci, Claudio; Conforti, Vito; Tacchini, Alessandro; Leto, Giuseppe; Gallozzi, Stefano; Bulgarelli, Andrea; Trifoglio, Massimo; Malaguti, Giuseppe; Zoli, Andrea
2014-07-01
ASTRI is an Italian flagship project whose first goal is the realization of an end-to-end telescope prototype, named ASTRI SST-2M, for the Cherenkov Telescope Array (CTA). The prototype will be installed in Italy during Fall 2014. A second goal will be the realization of the ASTRI/CTA mini-array which will be composed of seven SST-2M telescopes placed at the CTA Southern Site. The Information and Communication Technology (ICT) equipment necessary to drive the infrastructure for the ASTRI SST-2M prototype is being designed as a complete and stand-alone computer center. The design goal is to obtain basic ICT equipment that might be scaled, with a low level of redundancy, for the ASTRI/CTA mini-array, taking into account the necessary control, monitor and alarm system requirements. The ICT equipment envisaged at the Serra La Nave observing station in Italy, where the ASTRI SST-2M telescope prototype will operate, includes computers, servers and workstations, network devices, an uninterruptable power supply system, and air conditioning systems. Suitable hardware and software tools will allow the parameters related to the behavior and health of each item of equipment to be controlled and monitored. This paper presents the proposed architecture and technical solutions that integrate the ICT equipment in the framework of the Observatory Control System package of the ASTRI/CTA Mini- Array Software System, MASS, to allow their local and remote control and monitoring. An end-toend test case using an Internet Protocol thermometer is reported in detail.
USDA-ARS?s Scientific Manuscript database
This study demonstrated the application of an automated high-throughput mini-cartridge solid-phase extraction (mini-SPE) cleanup for the rapid low-pressure gas chromatography – tandem mass spectrometry (LPGC-MS/MS) analysis of pesticides and environmental contaminants in QuEChERS extracts of foods. ...
NASA Technical Reports Server (NTRS)
Dodds, W. J.; Ekstedt, E. E.; Bahr, D. W.; Fear, J. S.
1982-01-01
A program is being conducted to develop the technology required to utilize fuels with broadened properties in aircraft gas turbine engines. The first phase of this program consisted of the experimental evaluation of three different combustor concepts to determine their potential for meeting several specific emissions and performance goals, when operated on broadened property fuels. The three concepts were a single annular combustor; a double annular combustor; and a short single annular combustor with variable geometry. All of these concepts were sized for the General Electric CF6-80 engine. A total of 24 different configurations of these concepts were evaluated in a high pressure test facility, using four test fuels having hydrogen contents between 11.8 and 14%. Fuel effects on combustor performance, durability and emissions, and combustor design features to offset these effects were demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crawford, Susan L.; Cinson, Anthony D.; MacFarlan, Paul J.
2012-08-01
The objective of this investigation was to evaluate the efficacy of ultrasonic testing (UT) for primary water leak path assessments of reactor pressure vessel (RPV) upper head penetrations. Operating reactors have experienced leakage when stress corrosion cracking of nickel-based alloy penetrations allowed primary water into the annulus of the interference fit between the penetration and the low-alloy steel RPV head. In this investigation, UT leak path data were acquired for an Alloy 600 control rod drive mechanism nozzle penetration, referred to as Nozzle 63, which was removed from the North Anna Unit 2 reactor when the RPV head was replacedmore » in 2002. In-service inspection prior to the head replacement indicated that Nozzle 63 had a probable leakage path through the interference fit region. Nozzle 63 was examined using a phased-array UT probe with a 5.0-MHz, eight-element annular array. Immersion data were acquired from the nozzle inner diameter surface. The UT data were interpreted by comparing to responses measured on a mockup penetration with known features. Following acquisition of the UT data, Nozzle 63 was destructively examined to determine if the features identified in the UT examination, including leakage paths and crystalline boric acid deposits, could be visually confirmed. Additional measurements of boric acid deposit thickness and low-alloy steel wastage were made to assess how these factors affect the UT response. The implications of these findings for interpreting UT leak path data are described.« less
Slow Earthquakes in the Alaska-Aleutian Subduction Zone Detected by Multiple Mini Seismic Arrays
NASA Astrophysics Data System (ADS)
LI, B.; Ghosh, A.; Thurber, C. H.; Lanza, F.
2017-12-01
The Alaska-Aleutian subduction zone is one of the most seismically and volcanically active plate boundaries on earth. Compared to other subduction zones, the slow earthquakes, such as tectonic tremors (TTs) and low frequency earthquakes (LFEs), are relatively poorly studied due to the limited data availability and difficult logistics. The analysis of two-months of continuous data from a mini array deployed in 2012 shows abundant tremor and LFE activities under Unalaska Island that is heterogeneously distributed [Li & Ghosh, 2017]. To better study slow earthquakes and understand their physical characteristics in the study region, we deployed a hybrid array of arrays, consisting of three well-designed mini seismic arrays and five stand alone stations, in the Unalaska Island in 2014. They were operational for between one and two years. Using the beam back-projection method [Ghosh et al., 2009, 2012], we detect continuous tremor activities for over a year when all three arrays are running. The sources of tremors are located south of the Unalaska and Akutan Islands, at the eastern and down-dip edge of the rupture zone of the 1957 Mw 8.6 earthquake, and they are clustered in several patches, with a gap between the two major clusters. Tremors show multiple migration patterns with propagation in both along-strike and dip directions and a wide range of velocities. We also identify tens of LFE families and use them as templates to search for repeating LFE events with the matched-filter method. Hundreds to thousands of LFEs for each family are detected and their activities are spatiotemporally consistent with tremor activities. The array techniques are revealing a near-continuous tremor activity in this area with remarkable spatiotemporal details. It helps us to better recognize the physical properties of the transition zone, provides new insights into the slow earthquake activities in this area, and explores their relation with the local earthquakes and the potential slow slip events.
Generation of Olympic logo with freeform lens array
NASA Astrophysics Data System (ADS)
Liu, Chengkun; Huang, Qilu; Qiu, Yishen; Chen, Weijuan; Liao, Tingdi
2017-10-01
In this paper, the Olympic rings pattern is generated by using freeform lens array and illumination light source array. Based on nonimaging optics, the freeform lens array is designed for point light source, which can generate the focused pattern of annular light spot. In order to obtain the Olympic logo pattern of five rings, the array with five freeform lenses is used. By adjusting the emission angle of each light source, the annular spot is obtained at different positions of the target plane and the Olympic rings logo is formed. We used the shading plate on the surface of the freeform lens to reduce the local light intensity so that the light spot overall irradiance distribution is more uniform. We designed a freeform lens with aperture of 26.2mm, focal length of 2000mm and the diameter of a single annual spot is 400mm. We modeled freeform lens and simulated by optical software TracePro. The ray tracing results show that the Olympic rings with uniform illumination can be obtained on the target plane with the optical efficiency up to 85.7%. At the same time, this paper also studies the effects of the target plane defocusing on the spot pattern. Simulations show that when the distance of the receiving surface to the focal plane varies within 300mm, a reasonable uniform and small distorted light spot pattern can be obtained. Compared with the traditional projection method, our method of design has the advantages of high optical efficiency, low cost and the pattern is clear and uniform.
Dynamics of face and annular seals with two-phase flow
NASA Technical Reports Server (NTRS)
Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen
1989-01-01
A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. High pressure, water pumps, industrial chemical pumps, and cryogenic pumps are mentioned as a few of many applications. The initial motivation was the LOX-GOX seals for the space shuttle main engine, but the study was expanded to include any face or annular seal where boiling occurs. Some of the distinctive behavior characteristics of two-phase seals were discussed, particularly their axial stability. While two-phase seals probably exhibit instability to disturbances of other degrees of freedom such as wobble, etc., under certain conditions, such analyses are too complex to be treated at present. Since an all liquid seal (with parallel faces) has a neutral axial stiffness curve, and is stabilized axially by convergent coning, other degrees of freedom stability analyses are necessary. However, the axial stability behavior of the two-phase seal is always a consideration no matter how well the seal is aligned and regardless of the speed. Hence, axial stability is thought of as the primary design consideration for two-phase seals and indeed the stability behavior under sub-cooling variations probably overshadows other concerns. The main thrust was the dynamic analysis of axial motion of two-phase face seals, principally the determination of axial stiffness, and the steady behavior of two-phase annular seals. The main conclusions are that seals with two-phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two-phase seal is described and documented. The analyses, results, and computer codes are summarized.
Ordered arrays of multiferroic epitaxial nanostructures.
Vrejoiu, Ionela; Morelli, Alessio; Biggemann, Daniel; Pippel, Eckhard
2011-01-01
Epitaxial heterostructures combining ferroelectric (FE) and ferromagnetic (FiM) oxides are a possible route to explore coupling mechanisms between the two independent order parameters, polarization and magnetization of the component phases. We report on the fabrication and properties of arrays of hybrid epitaxial nanostructures of FiM NiFe(2)O(4) (NFO) and FE PbZr(0.52)Ti(0.48)O(3) or PbZr(0.2)Ti(0.8)O(3), with large range order and lateral dimensions from 200 nm to 1 micron. The structures were fabricated by pulsed-laser deposition. High resolution transmission electron microscopy and high angle annular dark-field scanning transmission electron microscopy were employed to investigate the microstructure and the epitaxial growth of the structures. Room temperature ferroelectric and ferrimagnetic domains of the heterostructures were imaged by piezoresponse force microscopy (PFM) and magnetic force microscopy (MFM), respectively. PFM and MFM investigations proved that the hybrid epitaxial nanostructures show ferroelectric and magnetic order at room temperature. Dielectric effects occurring after repeated switching of the polarization in large planar capacitors, comprising ferrimagnetic NiFe2O4 dots embedded in ferroelectric PbZr0.52Ti0.48O3 matrix, were studied. These hybrid multiferroic structures with clean and well defined epitaxial interfaces hold promise for reliable investigations of magnetoelectric coupling between the ferrimagnetic / magnetostrictive and ferroelectric / piezoelectric phases.
Experimental clean combustor program, phase 2
NASA Technical Reports Server (NTRS)
Gleason, C. C.; Rogers, D. W.; Bahr, D. W.
1976-01-01
The primary objectives of this three-phase program are to develop technology for the design of advanced combustors with significantly lower pollutant emission levels than those of current combustors, and to demonstrate these pollutant emission reductions in CF6-50C engine tests. The purpose of the Phase 2 Program was to further develop the two most promising concepts identified in the Phase 1 Program, the double annular combustor and the radial/axial staged combustor, and to design a combustor and breadboard fuel splitter control for CF6-50 engine demonstration testing in the Phase 3 Program. Noise measurement and alternate fuels addendums to the basic program were conducted to obtain additional experimental data. Twenty-one full annular and fifty-two sector combustor configurations were evaluated. Both combustor types demonstrated the capability for significantly reducing pollutant emission levels. The most promising results were obtained with the double annular combustor. Rig test results corrected to CF-50C engine conditions produced EPA emission parameters for CO, HC, and NOX of 3.4, 0.4, and 4.5 respectively. These levels represent CO, HC, and NOX reductions of 69, 90, and 42 percent respectively from current combustor emission levels. The combustor also met smoke emission level requirements and development engine performance and installation requirements.
Design and fabrication of a 40-MHz annular array transducer
Ketterling, Jeffrey A.; Lizzi, Frederic L.; Aristizábal, Orlando; Turnbull, Daniel H.
2006-01-01
This paper investigates the feasibility of fabricating a 5-ring, focused annular array transducer operating at 40 MHz. The active piezoelectric material of the transducer was a 9-μm thick polyvinylidene fluoride (PVDF) film. One side of the PVDF was metallized with gold and forms the ground plane of the transducer. The array pattern of the transducer and electrical traces to each annulus were formed on a copper-clad polyimide film. The PVDF and polyimide were bonded with a thin layer of epoxy, pressed into a spherically curved shape, and then back filled with epoxy. A 5-ring transducer with equal area elements and 100 μm kerfs between annuli was fabricated and tested. The transducer had a total aperture of 6 mm and a geometric focus of 12 mm. The pulse/echo response from a quartz plate located at the geometric focus, two-way insertion loss (IL), complex impedance, electrical cross-talk, and lateral beamwidth were all measured for each annulus. The complex impedance data from each element were used to perform electrical matching and the measurements were repeated. After impedance matching, fc ≈ 36 MHz and BWs ranged from 31 to 39%. The ILs for the matched annuli ranged from −28 to −38 dB. PMID:16060516
Research on Plasma Synthetic Jet Actuator
NASA Astrophysics Data System (ADS)
Che, X. K.; Nie, W. S.; Hou, Z. Y.
2011-09-01
Circular dielectric barrier surface discharge (DBDs) actuator is a new concept of zero mass synthetic jet actuator. The characteristic of discharge and flow control effect of annular-circular plasma synthetic jet actuator has been studied by means of of numerical simulation and experiment. The discharge current density, electron density, electrostatic body force density and flowfield have been obtained. The results show annular-circular actuator can produce normal jet whose velocity will be greater than 2.0 m/s. The jet will excite circumfluence. In order to insure the discharge is generated in the exposed electrode annular and produce centripetal and normal electrostatic body force, the width and annular diameter of exposed electrode must be big enough, or an opposite phase drove voltage potential should be applied between the two electrodes.
NASA Astrophysics Data System (ADS)
Tanci, Claudio; Tosti, Gino; Antolini, Elisa; Gambini, Giorgio F.; Bruno, Pietro; Canestrari, Rodolfo; Conforti, Vito; Lombardi, Saverio; Russo, Federico; Sangiorgi, Pierluca; Scuderi, Salvatore
2016-08-01
ASTRI is an on-going project developed in the framework of the Cherenkov Telescope Array (CTA). An end- to-end prototype of a dual-mirror small-size telescope (SST-2M) has been installed at the INAF observing station on Mt. Etna, Italy. The next step is the development of the ASTRI mini-array composed of nine ASTRI SST-2M telescopes proposed to be installed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort carried on by Italy, Brazil and South-Africa and led by the Italian National Institute of Astrophysics, INAF. To control the ASTRI telescopes, a specific ASTRI Mini-Array Software System (MASS) was designed using a scalable and distributed architecture to monitor all the hardware devices for the telescopes. Using code generation we built automatically from the ASTRI Interface Control Documents a set of communication libraries and extensive Graphical User Interfaces that provide full access to the capabilities offered by the telescope hardware subsystems for testing and maintenance. Leveraging these generated libraries and components we then implemented a human designed, integrated, Engineering GUI for MASS to perform the verification of the whole prototype and test shared services such as the alarms, configurations, control systems, and scientific on-line outcomes. In our experience the use of code generation dramatically reduced the amount of effort in development, integration and testing of the more basic software components and resulted in a fast software release life cycle. This approach could be valuable for the whole CTA project, characterized by a large diversity of hardware components.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kino, Motoki; Ito, Hirotaka; Kawakatu, Nozomu
We explore non-thermal emission from a shocked interstellar medium, which is identified as an expanding shell, driven by a relativistic jet in active galactic nuclei (AGNs). In this work, we particularly focus on parsec-scale size mini shells surrounding mini radio lobes. From the radio to X-ray band, the mini radio lobe emission dominates the faint emission from the mini shell. On the other hand, we find that inverse-Compton (IC) emission from the shell can overwhelm the associated lobe emission at the very high energy (VHE; E > 100 GeV) {gamma}-ray range, because energy densities of synchrotron photons from the lobemore » and/or soft photons from the AGN nucleus are large and IC scattering works effectively. The predicted IC emission from nearby mini shells can be detected with the Cherenkov Telescope Array and they are potentially a new class of VHE {gamma}-ray emitters.« less
Miniature Heat Transport System for Nanosatellite Technology
NASA Technical Reports Server (NTRS)
Douglas, Donya M,
1999-01-01
The scientific understanding of key physical processes between the Sun and the Earth require simultaneous measurements from many vantage points in space. Nano-satellite technologies will enable a class of constellation missions for the NASA Space Science Sun-Earth Connections. This recent emphasis on the implementation of smaller satellites leads to a requirement for development of smaller subsystems in several areas. Key technologies under development include: advanced miniaturized chemical propulsion; miniaturized sensors; highly integrated, compact electronics; autonomous onboard and ground operations; miniatures low power tracking techniques for orbit determination; onboard RF communications capable of transmitting data to the ground from far distances; lightweight efficient solar array panels; lightweight, high output battery cells; lightweight yet strong composite materials for the nano-spacecraft and deployer-ship structures. These newer smaller systems may have higher power densities and higher thermal transport requirements than seen on previous small satellites. Furthermore, the small satellites may also have a requirement to maintain thermal control through extended earth shadows, possibly up to 8 hours long. Older thermal control technology, such as heaters, thermostats, and heat pipes, may not be sufficient to meet the requirements of these new systems. Conversely, a miniature two-phase heat transport system (Mini-HTS) such as a Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP) is a viable alternative. A Mini-HTS can provide fine temperature control, thermal diode action, and a highly efficient means of heat transfer. The Mini-HTS would have power capabilities in the range of tens of watts or less and provide thermal control over typical spacecraft ranges. The Mini-HTS would allow the internal portion of the spacecraft to be thermally isolated from the external radiator, thus protecting the internal components from extreme cold temperatures during an eclipse. The Mini-HTS would transport the beat from these components to a radiator during their operational modes, and it would be shutdown during non-operational or eclipse modes. Shutdown of the Mini-HTS would be accomplished with small heaters and has been successfully demonstrated on numerous occasions, both in the lab and on flight experiments. Efforts are now underway to miniaturize two-phase heat transport systems for the Nanosatellite project, with potential application to other small satellite programs. 'ne goal of this project is to design, build, and test miniature heat transport systems (MHTS) that would demonstrate the feasibility of a small Capillary Pumped Loop (CPL) or Loop Heat Pipe (LBP).
NASA Technical Reports Server (NTRS)
2002-01-01
Glenn Research Center sponsored an SBIR contract with ENTECH, in which the company worked to mold its successful terrestrial concentrator technology into applications that would generate solar power for space missions. ENTECH's first application made use of small, dome-shaped Fresnel lenses to direct sunlight onto high- efficiency photovoltaic cells. After some key adjustments, the mini- dome lens array was flown as part of the U.S. Air Force/NASA Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) flight experiment in 1994. Due to their three-dimensional shape, the mini- dome lenses entailed construction by a batch molding process, which is naturally more costly than a continuous process. To overcome this disadvantage and meet the requirement for precise solar pointing in two axes, ENTECH started developing solar concentrator arrays for space using a line-focus lens that can be mass-produced by a continuous process. This new technology, named Solar Concentrator Array with Refractive Linear Element Technology (SCARLET), was created with support from Glenn and the Ballistic Missile Defense Organization, and was used to power the NASA/Jet Propulsion Laboratory Deep Space 1 spacecraft.
Effect of beam types on the scintillations: a review
NASA Astrophysics Data System (ADS)
Baykal, Yahya; Eyyuboglu, Halil T.; Cai, Yangjian
2009-02-01
When different incidences are launched in atmospheric turbulence, it is known that the intensity fluctuations exhibit different characteristics. In this paper we review our work done in the evaluations of the scintillation index of general beam types when such optical beams propagate in horizontal atmospheric links in the weak fluctuations regime. Variation of scintillation indices versus the source and medium parameters are examined for flat-topped-Gaussian, cosh- Gaussian, cos-Gaussian, annular, elliptical Gaussian, circular (i.e., stigmatic) and elliptical (i.e., astigmatic) dark hollow, lowest order Bessel-Gaussian and laser array beams. For flat-topped-Gaussian beam, scintillation is larger than the single Gaussian beam scintillation, when the source sizes are much less than the Fresnel zone but becomes smaller for source sizes much larger than the Fresnel zone. Cosh-Gaussian beam has lower on-axis scintillations at smaller source sizes and longer propagation distances as compared to Gaussian beams where focusing imposes more reduction on the cosh- Gaussian beam scintillations than that of the Gaussian beam. Intensity fluctuations of a cos-Gaussian beam show favorable behaviour against a Gaussian beam at lower propagation lengths. At longer propagation lengths, annular beam becomes advantageous. In focused cases, the scintillation index of annular beam is lower than the scintillation index of Gaussian and cos-Gaussian beams starting at earlier propagation distances. Cos-Gaussian beams are advantages at relatively large source sizes while the reverse is valid for annular beams. Scintillations of a stigmatic or astigmatic dark hollow beam can be smaller when compared to stigmatic or astigmatic Gaussian, annular and flat-topped beams under conditions that are closely related to the beam parameters. Intensity fluctuation of an elliptical Gaussian beam can also be smaller than a circular Gaussian beam depending on the propagation length and the ratio of the beam waist size along the long axis to that along the short axis (i.e., astigmatism). Comparing against the fundamental Gaussian beam on equal source size and equal power basis, it is observed that the scintillation index of the lowest order Bessel-Gaussian beam is lower at large source sizes and large width parameters. However, for excessively large width parameters and beyond certain propagation lengths, the advantage of the lowest order Bessel-Gaussian beam seems to be lost. Compared to Gaussian beam, laser array beam exhibits less scintillations at long propagation ranges and at some midrange radial displacement parameters. When compared among themselves, laser array beams tend to have reduced scintillations for larger number of beamlets, longer wavelengths, midrange radial displacement parameters, intermediate Gaussian source sizes, larger inner scales and smaller outer scales of turbulence. The number of beamlets used does not seem to be so effective in this improvement of the scintillations.
An analog integrated circuit beamformer for high-frequency medical ultrasound imaging.
Gurun, Gokce; Zahorian, Jaime S; Sisman, Alper; Karaman, Mustafa; Hasler, Paul E; Degertekin, F Levent
2012-10-01
We designed and fabricated a dynamic receive beamformer integrated circuit (IC) in 0.35-μm CMOS technology. This beamformer IC is suitable for integration with an annular array transducer for high-frequency (30-50 MHz) intravascular ultrasound (IVUS) imaging. The beamformer IC consists of receive preamplifiers, an analog dynamic delay-and-sum beamformer, and buffers for 8 receive channels. To form an analog dynamic delay line we designed an analog delay cell based on the current-mode first-order all-pass filter topology, as the basic building block. To increase the bandwidth of the delay cell, we explored an enhancement technique on the current mirrors. This technique improved the overall bandwidth of the delay line by a factor of 6. Each delay cell consumes 2.1-mW of power and is capable of generating a tunable time delay between 1.75 ns to 2.5 ns. We successfully integrated the fabricated beamformer IC with an 8-element annular array. Experimental test results demonstrated the desired buffering, preamplification and delaying capabilities of the beamformer.
Use of Orthodontic Mini-Implants for Maxillomandibular Fixation in Mandibular Fracture
Pires, Mario Sergio Medeiros; Reinhardt, Leandro Calcagno; Antonello, Guilherme de Marco; Torres do Couto, Ricardo
2011-01-01
Orthodontic appliances for skeletal anchorage are becoming increasingly more common in clinical practice. Similarly, different terms such as mini-implants, microimplants, and miniscrews have been used. There is a wide array of appliances currently on the market, in different designs and sizes, diameters, degree of titanium purity, and surface treatment. These appliances have been used for a variety of indications, including tooth retraction, intrusion, and traction. This study aimed to report the clinical case of a 19-year-old patient with a fractured mandible and to propose a novel use of mini-implants: the perioperative placement of mini-implants as anchors for maxillomandibular fixation steel wire ligatures. We concluded that this appliance provides an effective maxillomandibular fixation in patients with mandibular fracture, with little increase in the cost of surgery. PMID:23205173
NASA Astrophysics Data System (ADS)
Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Hong, Hyeryung; Yuen Song, Hi; Oh, Inn-yeal; Park, Chul Soon; Choi, Hongsoo
2015-11-01
We design and fabricate segmented annular arrays (SAAs) using piezoelectric micromachined ultrasonic transducers (pMUTs) to demonstrate the feasibility of acoustic focusing of ultrasound. The fabricated SAAs have 25 concentric top-electrode signal lines and eight bottom-electrodes for grounding to enable electronic steering of selectively grouped ultrasonic transducers from 2393 pMUT elements. Each element in the array is connected by top-crossover-to-bottom metal bridges, which reduce the parasitic capacitance. Circular-shaped pMUT elements, 120 μm in diameter, are fabricated using 1 μm-thick sol-gel lead zirconate titanate on a silicon wafer. To utilize the high-density pMUT array, a deep reactive ion etching process is used for anisotropic silicon etching to realize the transducer membranes. The resonant frequency and effective coupling coefficient of the elements, measured with an impedance analyzer, yields 1.517 MHz and 1.29%, respectively, in air. The SAAs using pMUTs are packaged on a printed circuit board and coated with parylene C for acoustic intensity measurements in water. The ultrasound generated by each segmented array is focused on a selected point in space. When a 5 Vpp, 1.5 MHz square wave is applied, the maximum spatial peak temporal average intensity ({{I}\\text{spta}} ) is found to be 79 mW cm-2 5 mm from the SAAs’ surface without beamforming. The beam widths (-3 dB) of ultrasonic radiation patterns in the elevation and azimuth directions are recorded as 3 and 3.4 mm, respectively. The results successfully show the feasibility of focusing ultrasound on a small area with SAAs using pMUTs.
Moored rainfall measurements during COARE
NASA Technical Reports Server (NTRS)
Mcphaden, Michael J.
1994-01-01
This presentation discusses mini-ORG rainfall estimates collected from an array of six moornings in the western equatorial Pacific during the TOGA-COARE experiment. The moorings were clustered in the vicinity of the COARE intensive flux array (IFA) centered near 2 deg S, 156 deg E. The basic data set consisted of hourly means computed from 5-second samples.
Quintián, Fernando Perez; Calarco, Nicolás; Lutenberg, Ariel; Lipovetzky, José
2015-09-01
In this paper, we study the incremental signal produced by an optical encoder based on a nondiffractive beam (NDB). The NDB is generated by means of a diffractive optical element (DOE). The detection system is composed by an application specific integrated circuit (ASIC) sensor. The sensor consists of an array of eight concentric annular photodiodes, each one provided with a programmable gain amplifier. In this way, the system is able to synthesize a nonuniform detectivity. The contrast, amplitude, and harmonic content of the sinusoidal output signal are analyzed. The influence of the cross talk among the annular photodiodes is placed in evidence through the dependence of the signal contrast on the wavelength.
Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor.
Wu, Chensheng; Ko, Jonathan; Davis, Christopher C
2015-05-01
We have designed a plenoptic sensor to retrieve phase and amplitude changes resulting from a laser beam's propagation through atmospheric turbulence. Compared with the commonly restricted domain of (-π,π) in phase reconstruction by interferometers, the reconstructed phase obtained by the plenoptic sensors can be continuous up to a multiple of 2π. When compared with conventional Shack-Hartmann sensors, ambiguities caused by interference or low intensity, such as branch points and branch cuts, are less likely to happen and can be adaptively avoided by our reconstruction algorithm. In the design of our plenoptic sensor, we modified the fundamental structure of a light field camera into a mini Keplerian telescope array by accurately cascading the back focal plane of its object lens with a microlens array's front focal plane and matching the numerical aperture of both components. Unlike light field cameras designed for incoherent imaging purposes, our plenoptic sensor operates on the complex amplitude of the incident beam and distributes it into a matrix of images that are simpler and less subject to interference than a global image of the beam. Then, with the proposed reconstruction algorithms, the plenoptic sensor is able to reconstruct the wavefront and a phase screen at an appropriate depth in the field that causes the equivalent distortion on the beam. The reconstructed results can be used to guide adaptive optics systems in directing beam propagation through atmospheric turbulence. In this paper, we will show the theoretical analysis and experimental results obtained with the plenoptic sensor and its reconstruction algorithms.
Determining the phase and amplitude distortion of a wavefront using a plenoptic sensor
NASA Astrophysics Data System (ADS)
Wu, Chensheng; Ko, Jonathan; Davis, Christopher C.
2015-05-01
We have designed a plenoptic sensor to retrieve phase and amplitude changes resulting from a laser beam's propagation through atmospheric turbulence. Compared with the commonly restricted domain of (-pi, pi) in phase reconstruction by interferometers, the reconstructed phase obtained by the plenoptic sensors can be continuous up to a multiple of 2pi. When compared with conventional Shack-Hartmann sensors, ambiguities caused by interference or low intensity, such as branch points and branch cuts, are less likely to happen and can be adaptively avoided by our reconstruction algorithm. In the design of our plenoptic sensor, we modified the fundamental structure of a light field camera into a mini Keplerian telescope array by accurately cascading the back focal plane of its object lens with a microlens array's front focal plane and matching the numerical aperture of both components. Unlike light field cameras designed for incoherent imaging purposes, our plenoptic sensor operates on the complex amplitude of the incident beam and distributes it into a matrix of images that are simpler and less subject to interference than a global image of the beam. Then, with the proposed reconstruction algorithms, the plenoptic sensor is able to reconstruct the wavefront and a phase screen at an appropriate depth in the field that causes the equivalent distortion on the beam. The reconstructed results can be used to guide adaptive optics systems in directing beam propagation through atmospheric turbulence. In this paper we will show the theoretical analysis and experimental results obtained with the plenoptic sensor and its reconstruction algorithms.
NASA Astrophysics Data System (ADS)
Hollinger, R. C.; Bargsten, C.; Shlyaptsev, V. N.; Pukhov, A.; Purvis, M. A.; Townsend, A.; Keiss, D.; Wang, Y.; Wang, S.; Prieto, A.; Rocca, J. J.
2014-10-01
Irradiation of ordered nanowire arrays with high contrast femtosecond laser pulses of relativistic intensity creates volumetrically heated near solid density plasmas characterized by multi-KeV temperatures and extreme degrees of ionization. The large hydrodynamic-to-radiative lifetime ratio of these plasmas results in very efficient X-ray generation. Au nanowire array plasmas irradiated at I 5×1018 Wcm-2 are measured to convert ~ 5 percent of the laser energy into h ν > 0.9 KeV X-rays, and >1 × 10-4 into h ν > 9 KeV photons, creating bright picosecond X-ray sources. The angular distribution of the higher energy photons is measured to change from isotropic into annular as the intensity increases, while softer X-ray emission (h ν >1 KeV) remains isotropic and nearly unchanged. Model simulations suggest the unexpected annular distribution of the hard X-rays might result from bremsstrahlung of fast electrons confined in a high aspect ratio near solid density plasma in which the electron-ion collision mean free-path is of the order of the plasma thickness. Work supported by the U.S Department of Energy, Fusion Energy Sciences and the Defense Threat Reduction Agency Grant HDTRA-1-10-1-0079. A.P was supported by of DFG-funded project TR18.
Diagnosis of the influence of the solar cycle in the annular character of the NAM using RAM.
NASA Astrophysics Data System (ADS)
de La Torre, L.; Gimeno, L.; Tesouro, M.; Nieto, R.; Añel, J. A.; Ribera, P.; García, R.; Hernández, E.
2003-04-01
It has been suggested that the North Atlantic Oscillation is a regional expression of the so called Northern Hemisphere Annular Mode (NAM), although some evidences have been found against this hypothesis. However, recent studies conect the spatial structure of the NAM with the phase of solar cycle, being annular-like only for the periods of high solar activity. With this work we try to make a contribution to the debate by using atmospheric relative angular momentum (RAM) to diagnose the annular character of the mode. Correlations of RAM vs. temperature and geopotential height at different levels for high activity years show a more zonally extended pattern than those for low activity years. Moreover, the Atlantic pattern is always shown, even when using RAM computed by 60º longitude sectors. On the other hand, the Pacific pattern almost dissapear.
The critical pressure drop for the purge process in the anode of a fuel cell
NASA Astrophysics Data System (ADS)
Yu, Xiao; Pingwen, Ming; Ming, Hou; Baolian, Yi; Shao, Zhi-Gang
Purge operation is an effective way to remove the accumulated liquid water in the anode of proton exchange membrane fuel cells (PEMFCs). This paper studies the phenomenon of the two-phase flow as well as the pressure drop fluctuation inside the flow field of a single cell during the purge process. The flow patterns are identified as intermittent purge and annular purge, and the two purge processes are contrastively analyzed and discussed. The intermittent purge greatly affects the fuel cell performance and thus it is not suitable for the in situ application. The annular purge process requires a higher pressure drop, and the critical pressure drop is calculated from the annular purge model. Furthermore, this value is quantitatively analyzed and validated by experiments. The results show that the annular purge is appropriate for removing liquid water out of the anode in the fuel cell.
Condensation of Forced Convection Two-Phase Flow in a Miniature Tube
NASA Technical Reports Server (NTRS)
Begg, E.; Faghri, A.; Krustalev, D.
1999-01-01
A physical/mathematical model of annular film condensation at the inlet of a miniature tube has been developed. In the model, the liquid flow is coupled with the vapor flow along the liquid-vapor interface through the interfacial temperature, heat flux, shear stress, and pressure jump conditions due to surface tension effects. The model predicts the shape of the liquid-vapor interface along the condenser and leads to the conclusion that there is complete condensation at a certain distance from the condenser inlet. The numerical results show that complete condensation of the incoming vapor is possible at comparatively low heat loads and that this is a special case of a more general condensation regime with two-phase bubbly flow downstream of the initial annular film condensation region. Observations from the flow visualization experiment confirm the existence and qualitative features of annular film condensation leading to the complete condensation phenomenon in a small diameter (3.25 mm) circular tube condenser.
Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.
Laskowski, René; Bart, Hans-Jörg
2015-09-01
An openFOAM "computational fluid dynamic" simulation model was developed for the description of local interaction of hydrodynamics and Joule heating in annular electrochromatography. A local decline of electrical conductivity of the background eluent is caused by an electrokinetic migration of ions resulting in higher Joule heat generation. The model equations consider the Navier-Stokes equation for incompressible fluids, the energy equation for stationary temperature fields, and the mass transfer equation for the electrokinetic flow. The simulations were embedded in commercial ANSYS Fluent software and in open-source environment openFOAM. The annular gap (1 mm width) contained an inorganic C8 reverse-phase monolith as stationary phase prepared by an in situ sol-gel process. The process temperature generated by Joule heating was determined by thermal camera system. The local hydrodynamics in the prototype was detected by a gravimetric contact-free measurement method and experimental and simulated values matched quite well. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Software use cases to elicit the software requirements analysis within the ASTRI project
NASA Astrophysics Data System (ADS)
Conforti, Vito; Antolini, Elisa; Bonnoli, Giacomo; Bruno, Pietro; Bulgarelli, Andrea; Capalbi, Milvia; Fioretti, Valentina; Fugazza, Dino; Gardiol, Daniele; Grillo, Alessandro; Leto, Giuseppe; Lombardi, Saverio; Lucarelli, Fabrizio; Maccarone, Maria Concetta; Malaguti, Giuseppe; Pareschi, Giovanni; Russo, Federico; Sangiorgi, Pierluca; Schwarz, Joseph; Scuderi, Salvatore; Tanci, Claudio; Tosti, Gino; Trifoglio, Massimo; Vercellone, Stefano; Zanmar Sanchez, Ricardo
2016-07-01
The Italian National Institute for Astrophysics (INAF) is leading the Astrofisica con Specchi a Tecnologia Replicante Italiana (ASTRI) project whose main purpose is the realization of small size telescopes (SST) for the Cherenkov Telescope Array (CTA). The first goal of the ASTRI project has been the development and operation of an innovative end-to-end telescope prototype using a dual-mirror optical configuration (SST-2M) equipped with a camera based on silicon photo-multipliers and very fast read-out electronics. The ASTRI SST-2M prototype has been installed in Italy at the INAF "M.G. Fracastoro" Astronomical Station located at Serra La Nave, on Mount Etna, Sicily. This prototype will be used to test several mechanical, optical, control hardware and software solutions which will be used in the ASTRI mini-array, comprising nine telescopes proposed to be placed at the CTA southern site. The ASTRI mini-array is a collaborative and international effort led by INAF and carried out by Italy, Brazil and South-Africa. We present here the use cases, through UML (Unified Modeling Language) diagrams and text details, that describe the functional requirements of the software that will manage the ASTRI SST-2M prototype, and the lessons learned thanks to these activities. We intend to adopt the same approach for the Mini Array Software System that will manage the ASTRI miniarray operations. Use cases are of importance for the whole software life cycle; in particular they provide valuable support to the validation and verification activities. Following the iterative development approach, which breaks down the software development into smaller chunks, we have analysed the requirements, developed, and then tested the code in repeated cycles. The use case technique allowed us to formalize the problem through user stories that describe how the user procedurally interacts with the software system. Through the use cases we improved the communication among team members, fostered common agreement about system requirements, defined the normal and alternative course of events, understood better the business process, and defined the system test to ensure that the delivered software works properly. We present a summary of the ASTRI SST-2M prototype use cases, and how the lessons learned can be exploited for the ASTRI mini-array proposed for the CTA Observatory.
On the nonlinear interfacial instability of rotating core-annular flow
NASA Technical Reports Server (NTRS)
Coward, Aidrian V.; Hall, Philip
1993-01-01
The interfacial stability of rotating core-annular flows is investigated. The linear and nonlinear effects are considered for the case when the annular region is very thin. Both asymptotic and numerical methods are used to solve the flow in the core and film regions which are coupled by a difference in viscosity and density. The long-term behavior of the fluid-fluid interface is determined by deriving its nonlinear evolution in the form of a modified Kuramoto-Sivashinsky equation. We obtain a generalization of this equation to three dimensions. The flows considered are applicable to a wide array of physical problems where liquid films are used to lubricate higher or lower viscosity core fluids, for which a concentric arrangement is desired. Linearized solutions show that the effects of density and viscosity stratification are crucial to the stability of the interface. Rotation generally destabilizes non-axisymmetric disturbances to the interface, whereas the centripetal forces tend to stabilize flows in which the film contains the heavier fluid. Nonlinear affects allow finite amplitude helically travelling waves to exist when the fluids have different viscosities.
Research on Annular Frictional Pressure Loss of Hydraulic-Fracturing in Buckling Coiled Tubing
NASA Astrophysics Data System (ADS)
Liu, Bin; Cai, Meng; Li, Junliang; Xu, Yongquan; Wang, Peng
2018-01-01
Compared with conventional hydraulic fracturing, coiled tubing (CT) annular delivery sand fracturing technology is a new method to enhance the recovery ratio of low permeability reservoir. Friction pressure loss through CT has been a concern in fracturing. The small diameter of CT limits the cross-sectional area open to flow, therefore, to meet large discharge capacity, annular delivery sand technology has been gradually developed in oilfield. Friction pressure is useful for determining the required pump horsepower and fracturing construction design programs. Coiled tubing can buckle when the axial compressive load acting on the tubing is greater than critical buckling load, then the geometry shape of annular will change. Annular friction pressure loss elevates dramatically with increasing of discharge capacity, especially eccentricity and CT buckling. Despite the frequency occurrence of CT buckling in oilfield operations, traditionally annular flow frictional pressure loss considered concentric and eccentric annuli, not discussing the effects of for discharge capacity and sand ratio varying degree of CT buckling. The measured data shows that the factors mentioned above cannot be ignored in the prediction of annular pressure loss. It is necessary to carry out analysis of annulus flow pressure drop loss in coiled tubing annular with the methods of theoretical analysis and numerical simulation. Coiled tubing buckling has great influence on pressure loss of fracturing fluid. Therefore, the correlations have been developed for turbulent flow of Newtonian fluids and Two-phase flow (sand-liquid), and that improve the friction pressure loss estimation in coiled tubing operations involving a considerable level of buckling. Quartz sand evidently increases pressure loss in buckling annular, rising as high as 40%-60% more than fresh water. Meanwhile, annulus flow wetted perimeter increases with decreasing helical buckling pitch of coiled tubing, therefore, the annulus flow frictional pressure loss rapidly increases with decreasing helical buckling pitch. The research achievement provides theoretical guidance for coiled tubing annular delivery sand fracturing operation and design.
Jones, K P; Mullee, M A
1990-01-01
OBJECTIVE--To compare measurements of the peak expiratory flow rate taken by the mini Wright peak flow meter and the turbine spirometer. DESIGN--Pragmatic study with randomised order of use of recording instruments. Phase 1 compared a peak expiratory flow type expiration recorded by the mini Wright peak flow meter with an expiration to forced vital capacity recorded by the turbine spirometer. Phase 2 compared peak expiratory flow type expirations recorded by both meters. Reproducibility was assessed separately. SETTING--Routine surgeries at Aldermoor Health Centre, Southampton. SUBJECTS--212 Patients aged 4 to 78 presenting with asthma or obstructive airways disease. Each patient contributed only once to each phase (105 in phase 1, 107 in phase 2), but some entered both phases on separate occasions. Reproducibility was tested on a further 31 patients. MAIN OUTCOME MEASURE--95% Limits of agreement between measurements on the two meters. RESULTS--208 (98%) Of the readings taken by the mini Wright meter were higher than the corresponding readings taken by the turbine spirometer, but the 95% limits of agreement (mean difference (2 SD] were wide (1 to 173 l/min). Differences due to errors in reproducibility were not sufficient to predict this level of disagreement. Analysis by age, sex, order of use, and the type of expiration did not detect any significant differences. CONCLUSIONS--The two methods of measuring peak expiratory flow rate were not comparable. The mini Wright meter is likely to remain the preferred instrument in general practice. PMID:2142611
Science with the ASTRI mini-array for the Cherenkov Telescope Array: blazars and fundamental physics
NASA Astrophysics Data System (ADS)
Bonnoli, Giacomo; Tavecchio, Fabrizio; Giuliani, Andrea; Bigongiari, Ciro; Di Pierro, Federico; Stamerra, Antonio; Pareschi, Giovanni; Vercellone, Stefano; ASTRI Collaboration; CTA Consortium
2016-05-01
ASTRI (“Astronomia a Specchi con Tecnologia Replicante Italiana”) is a flagship project of the Italian Ministry of Research (MIUR), devoted to the realization, operation and scientific validation of an end-to-end prototype for the Small Size Telescope (SST) envisaged to become part of the Cherenkov Telescope Array (CTA). The ASTRI SST-2M telescope prototype is characterized by a dual mirror, Schwarzschild-Couder optical design and a compact camera based on silicon photo-multipliers. It will be sensitive to multi-TeV very high energy (VHE) gamma rays up to 100 TeV, with a PSF ~ 6’ and a wide (9.6°) unaberrated optical field of view. Right after validation of the design in single-dish observations at the Serra La Nave site (Sicily, Italy) during 2015, the ASTRI collaboration will be able to start deployment, at the final CTA southern site, of the ASTRI mini-array, proposed to constitute the very first CTA precursor. Counting 9 ASTRI SST-2M telescopes, the ASTRI mini-array will overtake current IACT systems in differential sensitivity above 5 TeV, thus allowing unprecedented observations of known and predicted bright TeV emitters in this band, including some extragalactic sources such as extreme high-peaked BL Lacs with hard spectra. We exploited the ASTRI scientific simulator ASTRIsim in order to understand the feasibility of observations tackling blazar and cosmic ray physics, including discrimination of hadronic and leptonic scenarios for the VHE emission from BL Lac relativistic jets and indirect measurements of the intergalactic magnetic field and of the extragalactic background light. We selected favorable targets, outlining observation modes, exposure times, multi-wavelength coverage needed and the results expected. Moreover, the perspectives for observation of effects due to the existence of axion-like particles or to Lorentz invariance violations have been investigated.
Dynamics of face and annular seals with two-phase flow
NASA Technical Reports Server (NTRS)
Hughes, William F.; Basu, Prithwish; Beatty, Paul A.; Beeler, Richard M.; Lau, Stephen
1988-01-01
A detailed study was made of face and annular seals under conditions where boiling, i.e., phase change of the leaking fluid, occurs within the seal. Many seals operate in this mode because of flashing due to pressure drop and/or heat input from frictional heating. Some of the distinctive behavior characteristics of two phase seals are discussed, particularly their axial stability. The main conclusions are that seals with two phase flow may be unstable if improperly balanced. Detailed theoretical analyses of low (laminar) and high (turbulent) leakage seals are presented along with computer codes, parametric studies, and in particular a simplified PC based code that allows for rapid performance prediction: calculations of stiffness coefficients, temperature and pressure distributions, and leakage rates for parallel and coned face seals. A simplified combined computer code for the performance prediction over the laminar and turbulent ranges of a two phase flow is described and documented. The analyses, results, and computer codes are summarized.
Design and grayscale fabrication of beamfanners in a silicon substrate
NASA Astrophysics Data System (ADS)
Ellis, Arthur Cecil
2001-11-01
This dissertation addresses important first steps in the development of a grayscale fabrication process for multiple phase diffractive optical elements (DOS's) in silicon. Specifically, this process was developed through the design, fabrication, and testing of 1-2 and 1-4 beamfanner arrays for 5-micron illumination. The 1-2 beamfanner arrays serve as a test-of- concept and basic developmental step toward the construction of the 1-4 beamfanners. The beamfanners are 50 microns wide, and have features with dimensions of between 2 and 10 microns. The Iterative Annular Spectrum Approach (IASA) method, developed by Steve Mellin of UAH, and the Boundary Element Method (BEM) are the design and testing tools used to create the beamfanner profiles and predict their performance. Fabrication of the beamfanners required the techniques of grayscale photolithography and reactive ion etching (RIE). A 2-3micron feature size 1-4 silicon beamfanner array was fabricated, but the small features and contact photolithographic techniques available prevented its construction to specifications. A second and more successful attempt was made in which both 1-4 and 1-2 beamfanner arrays were fabricated with a 5-micron minimum feature size. Photolithography for the UAH array was contracted to MEMS-Optical of Huntsville, Alabama. A repeatability study was performed, using statistical techniques, of 14 photoresist arrays and the subsequent RIE process used to etch the arrays in silicon. The variance in selectivity between the 14 processes was far greater than the variance between the individual etched features within each process. Specifically, the ratio of the variance of the selectivities averaged over each of the 14 etch processes to the variance of individual feature selectivities within the processes yielded a significance level below 0.1% by F-test, indicating that good etch-to-etch process repeatability was not attained. One of the 14 arrays had feature etch-depths close enough to design specifications for optical testing, but 5- micron IR illumination of the 1-4 and 1-2 beamfanners yielded no convincing results of beam splitting in the detector plane 340 microns from the surface of the beamfanner array.
Christensen, Douglas; Jovic, Marko
2006-05-01
This report describes a molecular biotechnology-based laboratory curriculum developed to accompany an undergraduate genetics course. During the course of a semester, students researched the pathogen, developed a research question, designed experiments, and performed transcriptional analysis of a set of genes that confer virulence to the food-borne pathogen, Listeria monocytogenes. Gene fragments were amplified via PCR and utilized in "mini-arrays," a dot-blot-based format suitable for the simultaneous transcriptional analysis of multiple genes. The project provides exposure to a wide range of molecular techniques and can be easily modified for variations in class size. Data are generated at various steps of the process, allowing for student interpretation, troubleshooting, and assessment opportunities. Copyright © 2006 International Union of Biochemistry and Molecular Biology, Inc.
Hergueta, Thierry; Weiller, Emmanuelle
2013-01-01
The Diagnostic and Statistical Manual of Mental Disorders, fifth edition (DSM-5), includes a new 'With Mixed Features' specifier for mood episodes. In (hypo-)manic episodes, the specifier is given if three or more depressive symptoms are present nearly every day during the episode. A new module of the Mini International Neuropsychiatric Interview (M.I.N.I.) has been developed as a patient-completed questionnaire to evaluate the DSM-5 specifier for (hypo-)manic episodes. The objective of this study was to validate this new module. In Phase I, patients with a manic episode in the past 6 months completed the module and were asked whether the wording was clear, understandable, relevant and specific. Based on their feedback, the module was refined and finalised. In Phase II, psychiatrists each invited five patients to complete the module. The psychiatrists completed record forms for these five patients, which included their diagnoses, made according to DSM-5 criteria during clinical interviewing. The module was validated by comparing depressive symptoms reported by the patients themselves using the M.I.N.I. module with those evaluated by their psychiatrist using DSM-5 criteria during clinical interviewing. In Phase I, a few changes were made to the M.I.N.I. module based on feedback from 20 patients (60% of whom had mixed features). In Phase II, 23 psychiatrists completed record forms for 115 patients, 99 (86.1%) of whom completed the M.I.N.I. module. Agreement between psychiatrists' DSM-5 diagnoses and patients' M.I.N.I. responses was substantial (Cohen's kappa coefficient, 0.60). The overall sensitivity of the M.I.N.I. was 0.91 and its specificity was 0.70. Sensitivity ranged from 0.63 for psychomotor retardation to 0.90 for suicidal thoughts. Specificity ranged from 0.63 for diminished interest/pleasure to 0.90 for suicidal thoughts. The module's positive and negative predictive values were 0.72 and 0.90, respectively. In summary, the M.I.N.I. module demonstrated good concurrent validity with psychiatrists' evaluation of DSM-5 mixed features in manic patients, accurately detecting mixed features with limited risk of over-diagnosis. Due to its simplicity, the M.I.N.I. module could be incorporated into routine psychiatric evaluation of patients with manic episodes. It could also provide a valuable standardised tool for clinical and epidemiological research.
Producing superfluid circulation states using phase imprinting
NASA Astrophysics Data System (ADS)
Kumar, Avinash; Dubessy, Romain; Badr, Thomas; De Rossi, Camilla; de Goër de Herve, Mathieu; Longchambon, Laurent; Perrin, Hélène
2018-04-01
We propose a method to prepare states of given quantized circulation in annular Bose-Einstein condensates (BEC) confined in a ring trap using the method of phase imprinting without relying on a two-photon angular momentum transfer. The desired phase profile is imprinted on the atomic wave function using a short light pulse with a tailored intensity pattern generated with a spatial light modulator. We demonstrate the realization of "helicoidal" intensity profiles suitable for this purpose. Due to the diffraction limit, the theoretical steplike intensity profile is not achievable in practice. We investigate the effect of imprinting an intensity profile smoothed by a finite optical resolution onto the annular BEC with a numerical simulation of the time-dependent Gross-Pitaevskii equation. This allows us to optimize the intensity pattern for a given target circulation to compensate for the limited resolution.
NASA Technical Reports Server (NTRS)
Oneill, Mark J.; Piszczor, Michael F.; Fraas, Lewis M.
1991-01-01
Since 1986, ENTECH and the NASA Lewis Research Center have been developing a new photovoltaic concentrator system for space power applications. The unique refractive system uses small, dome shaped Fresnel lenses to focus sunlight onto high efficiency photovoltaic concentrator cells which use prismatic cell covers to further increase their performance. Highlights of the five-year development include near Air Mass Zero (AM0) Lear Jet flight testing of mini-dome lenses (90 pct. net optical efficiency achieved); tests verifying sun-pointing error tolerance with negligible power loss; simulator testing of prism-covered GaAs concentrator cells (24 pct. AM0 efficiency); testing of prism-covered Boeing GaAs/GaSb tandem cells (31 pct. AM0 efficiency); and fabrication and outdoor testing of a 36-lens/cell element panel. These test results have confirmed previous analytical predictions which indicate substantial performance improvements for this technology over current array systems. Based on program results to date, it appears than an array power density of 300 watts/sq m and a specific power of 100 watts/kg can be achieved in the near term. All components of the array appear to be readily manufacturable from space-durable materials at reasonable cost. A concise review is presented of the key results leading to the current array, and further development plans for the future are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matsutani, Takaomi; Taya, Masaki; Ikuta, Takashi
A parallel image detection system using an annular pupil for electron optics were developed to realize an increase in the depth of focus, aberration-free imaging and separation of amplitude and phase images under scanning transmission electron microscopy (STEM). Apertures for annular pupils able to suppress high-energy electron scattering were developed using a focused ion beam (FIB) technique. The annular apertures were designed with outer diameter of oe 40 {mu}m and inner diameter of oe32 {mu}m. A taper angle varying from 20 deg. to 1 deg. was applied to the slits of the annular apertures to suppress the influence of high-energymore » electron scattering. Each azimuth angle image on scintillator was detected by a multi-anode photomultiplier tube assembly through 40 optical fibers bundled in a ring shape. To focus the image appearing on the scintillator on optical fibers, an optical lens relay system attached with CCD camera was developed. The system enables the taking of 40 images simultaneously from different scattered directions.« less
Preliminary study on the potential usefulness of array processor techniques for structural synthesis
NASA Technical Reports Server (NTRS)
Feeser, L. J.
1980-01-01
The effects of the use of array processor techniques within the structural analyzer program, SPAR, are simulated in order to evaluate the potential analysis speedups which may result. In particular the connection of a Floating Point System AP120 processor to the PRIME computer is discussed. Measurements of execution, input/output, and data transfer times are given. Using these data estimates are made as to the relative speedups that can be executed in a more complete implementation on an array processor maxi-mini computer system.
NASA Astrophysics Data System (ADS)
Ndao, A.; Salvi, J.; Salut, R.; Bernal, M.-P.; Alaridhee, T.; Belkhir, A.; Baida, F. I.
2014-12-01
We demonstrate enhanced transmission through annular aperture arrays (AAA) by the excitation of the transverse electromagnetic (TEM) guided mode. A complete numerical study is performed to correctly design the structure before it is experimentally characterized. Actually, the challenge was to get efficient TEM-based transmission in the visible range. It turned out to be a hard task because of the strong absorption associated with this guided mode. Nevertheless, we have succeeded to experimentally prove its excitation thanks to the enhanced transmission measured in the far-field. This is the first time we demonstrate experimental evidence of this phenomenon with such AAA structure illuminated at oblique incidence in the visible range. This increases the potential applications of such structures as well, single molecule spectroscopy, photovoltaic, spectral filtering, optical trapping, etc...
Optical switch using Risley prisms
Sweatt, William C.; Christenson, Todd R.
2003-04-15
An optical switch using Risley prisms and rotary microactuators to independently rotate the wedge prisms of each Risley prism pair is disclosed. The optical switch comprises an array of input Risley prism pairs that selectively redirect light beams from a plurality of input ports to an array of output Risley prism pairs that similarly direct the light beams to a plurality of output ports. Each wedge prism of each Risley prism pair can be independently rotated by a variable-reluctance stepping rotary microactuator that is fabricated by a multi-layer LIGA process. Each wedge prism can be formed integral to the annular rotor of the rotary microactuator by a DXRL process.
Optical Switch Using Risley Prisms
Sweatt, William C.; Christenson, Todd R.
2005-02-22
An optical switch using Risley prisms and rotary microactuators to independently rotate the wedge prisms of each Risley prism pair is disclosed. The optical switch comprises an array of input Risley prism pairs that selectively redirect light beams from a plurality of input ports to an array of output Risley prism pairs that similarly direct the light beams to a plurality of output ports. Each wedge prism of each Risley prism pair can be independently rotated by a variable-reluctance stepping rotary microactuator that is fabricated by a multi-layer LIGA process. Each wedge prism can be formed integral to the annular rotor of the rotary microactuator by a DXRL process.
Permanent Magnet Ecr Plasma Source With Magnetic Field Optimization
Doughty, Frank C.; Spencer, John E.
2000-12-19
In a plasma-producing device, an optimized magnet field for electron cyclotron resonance plasma generation is provided by a shaped pole piece. The shaped pole piece adjusts spacing between the magnet and the resonance zone, creates a convex or concave resonance zone, and decreases stray fields between the resonance zone and the workpiece. For a cylindrical permanent magnet, the pole piece includes a disk adjacent the magnet together with an annular cylindrical sidewall structure axially aligned with the magnet and extending from the base around the permanent magnet. The pole piece directs magnetic field lines into the resonance zone, moving the resonance zone further from the face of the magnet. Additional permanent magnets or magnet arrays may be utilized to control field contours on a local scale. Rather than a permeable material, the sidewall structure may be composed of an annular cylindrical magnetic material having a polarity opposite that of the permanent magnet, creating convex regions in the resonance zone. An annular disk-shaped recurve section at the end of the sidewall structure forms magnetic mirrors keeping the plasma off the pole piece. A recurve section composed of magnetic material having a radial polarity forms convex regions and/or magnetic mirrors within the resonance zone.
NASA Astrophysics Data System (ADS)
Luo, Yajun; Zhang, Zhifeng; Li, Bao; Gao, Mingwei; Qiu, Yang; He, Min
2017-12-01
To obtain a large-sized, high-quality aluminum alloy billet, an advanced uniform direct chill (UDC) casting method was developed by combining annular electromagnetic stirring (A-EMS) with intercooling in the sump. The 7005 alloy was chosen to investigate the effect of UDC on grain refinement and homogeneity during normal direct chill (NDC) casting. It was concluded that the microstructure consisting of both primary α-Al phase and secondary phases becomes finer and more homogeneous for the billets prepared with UDC casting compared to those prepared with NDC casting, and the forced cooling from both the inner and outer melt under A-EMS has a measurable effect on grain refinement and homogeneity.
Comparison of fecal egg counting methods in four livestock species.
Paras, Kelsey L; George, Melissa M; Vidyashankar, Anand N; Kaplan, Ray M
2018-06-15
Gastrointestinal nematode parasites are important pathogens of all domesticated livestock species. Fecal egg counts (FEC) are routinely used for evaluating anthelmintic efficacy and for making targeted anthelmintic treatment decisions. Numerous FEC techniques exist and vary in precision and accuracy. These performance characteristics are especially important when performing fecal egg count reduction tests (FECRT). The objective of this study was to compare the accuracy and precision of three commonly used FEC methods and determine if differences existed among livestock species. In this study, we evaluated the modified-Wisconsin, 3-chamber (high-sensitivity) McMaster, and Mini-FLOTAC methods in cattle, sheep, horses, and llamas in three phases. In the first phase, we performed an egg-spiking study to assess the egg recovery rate and accuracy of the different FEC methods. In the second phase, we examined clinical samples from four different livestock species and completed multiple replicate FEC using each method. In the last phase, we assessed the cheesecloth straining step as a potential source of egg loss. In the egg-spiking study, the Mini-FLOTAC recovered 70.9% of the eggs, which was significantly higher than either the McMaster (P = 0.002) or Wisconsin (P = 0.002). In the clinical samples from ruminants, Mini-FLOTAC consistently yielded the highest EPG, revealing a significantly higher level of egg recovery (P < 0.0001). For horses and llamas, both McMaster and Mini-FLOTAC yielded significantly higher EPG than Wisconsin (P < 0.0001, P < 0.0001, P < 0.001, and P = 0.024). Mini-FLOTAC was the most accurate method and was the most precise test for both species of ruminants. The Wisconsin method was the most precise for horses and McMaster was more precise for llama samples. We compared the Wisconsin and Mini-FLOTAC methods using a modified technique where both methods were performed using either the Mini-FLOTAC sieve or cheesecloth. The differences in the estimated mean EPG on log scale between the Wisconsin and mini-FLOTAC methods when cheesecloth was used (P < 0.0001) and when cheesecloth was excluded (P < 0.0001) were significant, providing strong evidence that the straining step is an important source of error. The high accuracy and precision demonstrated in this study for the Mini-FLOTAC, suggest that this method can be recommended for routine use in all host species. The benefits of Mini-FLOTAC will be especially relevant when high accuracy is important, such as when performing FECRT. Copyright © 2018 Elsevier B.V. All rights reserved.
Ion ejection from a permanent-magnet mini-helicon thruster
NASA Astrophysics Data System (ADS)
Chen, Francis F.
2014-09-01
A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant values by applying to the endplate of the discharge a small voltage relative to spacecraft ground.
Ion ejection from a permanent-magnet mini-helicon thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Francis F.
2014-09-15
A small helicon source, 5 cm in diameter and 5 cm long, using a permanent magnet (PM) to create the DC magnetic field B, is investigated for its possible use as an ion spacecraft thruster. Such ambipolar thrusters do not require a separate electron source for neutralization. The discharge is placed in the far-field of the annular PM, where B is fairly uniform. The plasma is ejected into a large chamber, where the ion energy distribution is measured with a retarding-field energy analyzer. The resulting specific impulse is lower than that of Hall thrusters but can easily be increased to relevant valuesmore » by applying to the endplate of the discharge a small voltage relative to spacecraft ground.« less
Traeholt, Chresten; Willen, Dag; Roden, Mark; Tolbert, Jerry C.; Lindsay, David; Fisher, Paul W.; Nielsen, Carsten Thidemann
2016-05-03
Cable end section comprises end-parts of N electrical phases/neutral, and a thermally-insulation envelope comprising cooling fluid. The end-parts each comprises a conductor and are arranged with phase 1 innermost, N outermost surrounded by the neutral, electrical insulation being between phases and N and neutral. The end-parts comprise contacting surfaces located sequentially along the longitudinal extension of the end-section. A termination unit has an insulating envelope connected to a cryostat, special parts at both ends comprising an adapter piece at the cable interface and a closing end-piece terminating the envelope in the end-section. The special parts houses an inlet and/or outlet for cooling fluid. The space between an inner wall of the envelope and a central opening of the cable is filled with cooling fluid. The special part at the end connecting to the cryostat houses an inlet or outlet, splitting cooling flow into cable annular flow and termination annular flow.
Vacuum-insulated catalytic converter
Benson, David K.
2001-01-01
A catalytic converter has an inner canister that contains catalyst-coated substrates and an outer canister that encloses an annular, variable vacuum insulation chamber surrounding the inner canister. An annular tank containing phase-change material for heat storage and release is positioned in the variable vacuum insulation chamber a distance spaced part from the inner canister. A reversible hydrogen getter in the variable vacuum insulation chamber, preferably on a surface of the heat storage tank, releases hydrogen into the variable vacuum insulation chamber to conduct heat when the phase-change material is hot and absorbs the hydrogen to limit heat transfer to radiation when the phase-change material is cool. A porous zeolite trap in the inner canister absorbs and retains hydrocarbons from the exhaust gases when the catalyst-coated substrates and zeolite trap are cold and releases the hydrocarbons for reaction on the catalyst-coated substrate when the zeolite trap and catalyst-coated substrate get hot.
Micro-Fresnel Zone Plate Optical Devices Using Densely Accumulated Ray Points
NASA Technical Reports Server (NTRS)
Choi, Sang H. (Inventor); Park, Yeonjoon (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)
2011-01-01
An embodiment generally relates to an optical device suitable for use with an optical medium for the storage and retrieval of data. The optical device includes an illumination means for providing a beam of optical radiation of wavelength .lamda. and an optical path that the beam of optical radiation follows. The optical device also includes a diffractive optical element defined by a plurality of annular sections. The plurality of annular sections having a first material alternately disposed with a plurality of annular sections comprising a second material. The diffractive optical element generates a plurality of focal points and densely accumulated ray points with phase contrast phenomena and the optical medium is positioned at a selected focal point or ray point of the diffractive optical element.
NASA Technical Reports Server (NTRS)
Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.
1991-01-01
A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.
NASA Astrophysics Data System (ADS)
Piszczor, M. F.; Brinker, D. J.; Flood, D. J.; Avery, J. E.; Fraas, L. M.; Fairbanks, E. S.; Yerkes, J. W.; O'Neill, M. J.
A high-efficiency, lightweight space photovoltaic concentrator array is described. Previous work on the minidome Fresnel lens concentrator concept is being integrated with Boeing's 30 percent efficient tandem GaAs/GaSb concentrator cells into a high-performance photovoltaic array. Calculations indicate that, in the near term, such an array can achieve 300 W/sq m at a specific power of 100 W/kg. Emphasis of the program has now shifted to integrating the concentrator lens, tandem cell, and supporting panel structure into a space-qualifiable array. A description is presented of the current status of component and prototype panel testing and the development of a flight panel for the Photovoltaic Array Space Power Plus Diagnostics (PASP PLUS) flight experiment.
High-voltage space-plasma interactions measured on the PASP Plus test arrays
NASA Astrophysics Data System (ADS)
Guidice, Donald A.
1995-10-01
The Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment was developed by the Air Force's Phillips Laboratory with support from NASA's Lewis Research Center. It was launched on the Advanced Photovoltaic and Electronics EXperiments (APEX) satellite on August 3, 1994 into a 70 degree inclination, 363 km by 2550 km elliptical orbit. This orbit allows the investigation of space plasma effects on high-voltage operation (leakage current at positive voltages and arcing at negative voltages) in the perigee region. PASP Plus is testing twelve solar arrays. There are four planar Si arrays: an old standard type (used as a reference), the large-cell Space Station Freedom (SSF) array, a thin 'APSA' array, and an amorphous Si array. Next are three GaAs on Ge planar arrays and three new material planar arrays, including InP and two multijunction types. Finally, there are two concentrator arrays: a reflective-focusing Mini-Cassegrainian and a Fresnel-lens focusing Mini-Dome. PASP Plus's diagnostic sensors include: Langmuir probe to measure plasma density, an electrostatic analyzer (ESA) to measure the 30 eV to 30 KeV electron/ion spectra and determine vehicle negative potential during positive biasing, and a transient pulse monitor (TPM) to characterize the arcs that occur during the negative biasing. Through positive biasing of its test arrays, PASP Plus investigated the snapover phenomenon, which took place over the range of +100 to +300 V. It was found that array configurations where the interconnects are shielded from the space plasma (i.e., the concentrators or arrays with 'wrap-through' connectors) have lower leakage current. The concentrators exhibited negligible leakage current over the whole range up to +500 V. In the case of two similar GaAs on Ge arrays, the one with 'wrap-through' connectors had lower leakage current than the one with conventional interconnects. Through negative biasing, PASP Plus investigated the arcing rates of its test arrays. The standard Si array, with its old construction (exposed rough-surface interconnects), arced significantly over a wide voltage and plasma-density range. The other arrays arced at very low rates, mostly at voltages greater than -350 V and plasma densities near or greater than 10(exp 5)/cm(exp -3). AS expected according to theory, arcing was more prevalent when array temperatures were cold (based on biasing in eclipse).
High-voltage space-plasma interactions measured on the PASP Plus test arrays
NASA Technical Reports Server (NTRS)
Guidice, Donald A.
1995-01-01
The Photovoltaic Array Space Power Plus Diagnostics (PASP Plus) experiment was developed by the Air Force's Phillips Laboratory with support from NASA's Lewis Research Center. It was launched on the Advanced Photovoltaic and Electronics EXperiments (APEX) satellite on August 3, 1994 into a 70 degree inclination, 363 km by 2550 km elliptical orbit. This orbit allows the investigation of space plasma effects on high-voltage operation (leakage current at positive voltages and arcing at negative voltages) in the perigee region. PASP Plus is testing twelve solar arrays. There are four planar Si arrays: an old standard type (used as a reference), the large-cell Space Station Freedom (SSF) array, a thin 'APSA' array, and an amorphous Si array. Next are three GaAs on Ge planar arrays and three new material planar arrays, including InP and two multijunction types. Finally, there are two concentrator arrays: a reflective-focusing Mini-Cassegrainian and a Fresnel-lens focusing Mini-Dome. PASP Plus's diagnostic sensors include: Langmuir probe to measure plasma density, an electrostatic analyzer (ESA) to measure the 30 eV to 30 KeV electron/ion spectra and determine vehicle negative potential during positive biasing, and a transient pulse monitor (TPM) to characterize the arcs that occur during the negative biasing. Through positive biasing of its test arrays, PASP Plus investigated the snapover phenomenon, which took place over the range of +100 to +300 V. It was found that array configurations where the interconnects are shielded from the space plasma (i.e., the concentrators or arrays with 'wrap-through' connectors) have lower leakage current. The concentrators exhibited negligible leakage current over the whole range up to +500 V. In the case of two similar GaAs on Ge arrays, the one with 'wrap-through' connectors had lower leakage current than the one with conventional interconnects. Through negative biasing, PASP Plus investigated the arcing rates of its test arrays. The standard Si array, with its old construction (exposed rough-surface interconnects), arced significantly over a wide voltage and plasma-density range. The other arrays arced at very low rates, mostly at voltages greater than -350 V and plasma densities near or greater than 10(exp 5)/cm(exp -3). AS expected according to theory, arcing was more prevalent when array temperatures were cold (based on biasing in eclipse).
Wang, Yao; Stephens, Douglas N; O'Donnell, Matthew
2002-12-01
Intravascular ultrasound (IVUS) imaging systems using circumferential arrays mounted on cardiac catheter tips fire beams orthogonal to the principal axis of the catheter. The system produces high resolution cross-sectional images but must be guided by conventional angioscopy. A real-time forward-viewing array, integrated into the same catheter, could greatly reduce radiation exposure by decreasing angiographic guidance. Unfortunately, the mounting requirement of a catheter guide wire prohibits a full-disk imaging aperture. Given only an annulus of array elements, prior theoretical investigations have only considered a circular ring of point transceivers and focusing strategies using all elements in the highly dense array, both impractical assumptions. In this paper, we consider a practical array geometry and signal processing architecture for a forward-viewing IVUS system. Our specific design uses a total of 210 transceiver firings with synthetic reconstruction for a given 3-D image frame. Simulation results demonstrate this design can achieve side-lobes under -40 dB for on-axis situations and under -30 dB for steering to the edge of a 80 degrees cone.
Features of two-phase flow in a microchannel of 0.05×20 mm
NASA Astrophysics Data System (ADS)
Ronshin, Fedor
2017-10-01
We have studied the two-phase flow in a microchannel with cross-section of 0.05×20 mm2. The following two-phase flow regimes have been registered: jet, bubble, stratified, annular, and churn ones. The main features of flow regimes in this channel such as formation of liquid droplets in all two-phase flows have been distinguished.
NASA Astrophysics Data System (ADS)
Zhang, Qian; Wang, Yizhe; Zhou, Wenzheng; Zhang, Ji; Jian, Xiqi
2017-03-01
To provide a reference for the HIFU clinical therapeutic planning, the temperature distribution and lesion volume are analyzed by the numerical simulation. The adopted numerical simulation is based on a transcranial ultrasound therapy model, including an 8 annular-element curved phased array transducer. The acoustic pressure and temperature elevation are calculated by using the approximation of Westervelt Formula and the Pennes Heat Transfer Equation. In addition, the Time Reversal theory and eliminating hot spot technique are combined to optimize the temperature distribution. With different input powers and exposure times, the lesion volume is evaluated based on temperature threshold theory. The lesion region could be restored at the expected location by the time reversal theory. Although the lesion volume reduces after eliminating the peak temperature in the skull and more input power and exposure time is required, the injury of normal tissue around skull could be reduced during the HIFU therapy. The prediction of thermal deposition in the skull and the lesion region could provide a reference for clinical therapeutic dose.
Oliveira, Rui; Botelho, Francisco; Silva, Pedro; Resende, Alexandre; Silva, Carlos; Dinis, Paulo; Cruz, Francisco
2011-06-01
Contemporary surgical treatment of female stress urinary incontinence (SUI) includes retropubic and transobturator (TO) midurethral slings (MUS). Case series of single-incision slings (SIS) have shown similar outcomes with lower morbidity. Our aim was to assess the cure rates, complications, and quality-of-life impact of one standard TO MUS and two SIS. Ninety consecutive patients with clinically and urodynamically proven SUI were enrolled in an exploratory randomised phase 2 trial. Patients with previous SUI surgery, major pelvic organ prolapse, mixed incontinence, or detrusor overactivity were excluded. Patients were treated randomly with TVT-O, TVT-Secur, or Mini-Arc. Postoperative visits were scheduled at 6 and 12 mo. The King's Health Questionnaire (KHQ) was repeated at 6 mo. Cure was defined as the absence of urine leakage, no pad use, and a negative cough test at 12 mo. Pain and other complications were also investigated. Cure rate was 83% after TVT-O, 67% after TVT-Secur, and 87% after Mini-Arc. Improvement was found in 10%, 13%, and 7% of the patients, respectively. Failures were 7% after TVT-O and Mini-Arc and 20% after TVT-Secur. TVT-O and Mini-Arc improved at least 15 points in >80% of the patients in six KHQ domains, whereas TVT-Secur could only achieve improvement in three of the nine domains. The pain score was lower in the Mini-Arc group. Complications were more numerous after TVT-O. This study has the limitations inherent in a phase 2 trial with a follow-up limited to 12 mo. Mini-Arc offers cure and improvement rates similar to TVT-O, whereas TVT-Secur may yield an inferior outcome. These findings recommend the urgent launch of large randomised phase 3 studies comparing conventional MUS with SIS, with Mini-Arc the advised option. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.
Pool boiling on surfaces with mini-fins and micro-cavities
NASA Astrophysics Data System (ADS)
Pastuszko, Robert; Piasecka, Magdalena
2012-11-01
The experimental studies presented here focused on pool boiling heat transfer on mini-fin arrays, mini-fins with perforated covering and surfaces with micro-cavities. The experiments were carried out for water and fluorinert FC-72 at atmospheric pressure. Mini-fins of 0.5 and 1 mm in height were uniformly spaced on the base surface. The copper foil with holes of 0.1 mm in diameter (pitch 0.2/0.4 mm), sintered with the fin tips, formed a system of connected perpendicular and horizontal tunnels. The micro-cavities were obtained through spark erosion. The maximal depth of the craters of these cavities was 15 - 30 μm and depended on the parameters of the branding-pen settings. At medium and small heat fluxes, structures with mini-fins showed the best boiling heat transfer performance both for water and FC-72. At medium and high heat fluxes (above 70 kW/m2 for water and 25 kW/m2 for FC-72), surfaces with mini-fins without porous covering and micro-cavities produced the highest heat transfer coefficients. The surfaces obtained with spark erosion require a proper selection of geometrical parameters for particular liquids - smaller diameters of cavities are suitable for liquids with lower surface tension (FC-72).
Portable thermo-photovoltaic power source
Zuppero, Anthony C.; Krawetz, Barton; Barklund, C. Rodger; Seifert, Gary D.
1997-01-14
A miniature thermo-photovoltaic (TPV) device for generation of electrical power for use in portable electronic devices. A TPV power source is constructed to provide a heat source chemical reactor capable of using various fuels, such as liquid hydrocarbons, including but not limited to propane, LPG, butane, alcohols, oils and diesel fuels to generate a source of photons. A reflector dish guides misdirected photon energy from the photon source toward a photovoltaic array. A thin transparent protector sheet is disposed between the photon source and the array to reflect back thermal energy that cannot be converted to electricity, and protect the array from thermal damage. A microlens disposed between the protector sheet and the array further focuses the tailored band of photon energy from the photon source onto an array of photovoltaic cells, whereby the photon energy is converted to electrical power. A heat recuperator removes thermal energy from reactor chamber exhaust gases, preferably using mini- or micro-bellows to force air and fuel past the exhaust gases, and uses the energy to preheat the fuel and oxidant before it reaches the reactor, increasing system efficiency. Mini- or micro-bellows force ambient air through the system both to supply oxidant and to provide cooling. Finally, an insulator, which is preferably a super insulator, is disposed around the TPV power source to reduce fuel consumption, and to keep the TPV power source cool to the touch so it can be used in hand-held devices.
An analytical theory for a three-dimensional thick-disc thin-plate vibratory gyroscope
NASA Astrophysics Data System (ADS)
Sedebo, G. T.; Joubert, S. V.; Shatalov, M. Y.
2018-04-01
We consider a cylindrical vibratory gyroscope comprising a not necessarliy thin-shelled annular disc with small-plate thickness, vibrating in the m -th vibration mode in-plane and in the (m + 1)st vibration mode out-of-plane. We derive the equations of motion for this contrivance in the “force-to-rebalance regime” and show how a slow (three-dimensional) inertial rotation rate of the gyroscope can be calculated in terms of amplitudes of vibration and other constants, all of which can be measured experimentally or calculated when the eigenfunctions and eigenvalues of the system are known. By means of a concrete example, a numerical experiment demonstrates how varying the inner radius of the annulus as well as the thickness of the plate allows us to “tune” the vibration frequencies of the in-plane and out-of-plane vibrations so that they coincide (for all practical purposes), eliminating any frequency split. Conventionally, an array of at least three thin-shelled hemispherical (or thin-ring) vibratory (resonator) gyroscopes is used to measure any three-dimensional rotation of the craft to which the gyroscopes are fixed. With the design proposed here, the array can be reduced to a solitary, tuned, annular thick-disc thin-plate vibratory gyroscope, reducing both size and cost.
Effect of nonlinearity on lesion formation for high-intensity focused ultrasound (HIFU) exposures
NASA Astrophysics Data System (ADS)
Lee, Paul; Lizzi, Frederic L.; Ketterling, Jeffrey A.; Vecchio, Christopher J.
2004-05-01
This study examined the effects of nonlinear propagation phenomena on two types of HIFU transducers (5 MHz) being used for thermal treatments of disease. The first transducer is a 5-element annular array. The second is a transducer with a 5-strip electrode; its multilobed focused beam is designed to efficiently produce broad, paddle-shaped lesions. The beam patterns of these transducers were computed using a variety of excitation patterns for electronic focusing of the annular array and variation of lesion size for the strip-electrode transducer. A range of intensities was studied to determine how nonlinear propagation affects the beam shape, constituent frequency content, grating lobes, etc. These 3D computations used a finite-amplitude beam propagation model that combined the angular spectrum method and Burger's equation to compute the diffraction and nonlinear effects, respectively. Computed beam patterns were compared with hydrophone measurements for each transducer. The linear and nonlinear beam patterns were used to compute the absorbed thermal dose, and the bioheat equation was evaluated to calculate 3D temperature rises and geometry of induced lesions. Computed lesion sizes and shapes were compared to in vitro lesions created by each HIFU transducer. [Work supported by NCI and NHLBI Grant 5R01 CA84588.
Simulated gamma-ray pulse profile of the Crab pulsar with the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Burtovoi, A.; Zampieri, L.
2016-07-01
We present simulations of the very high energy (VHE) gamma-ray light curve of the Crab pulsar as observed by the Cherenkov Telescope Array (CTA). The CTA pulse profile of the Crab pulsar is simulated with the specific goal of determining the accuracy of the position of the interpulse. We fit the pulse shape obtained by the Major Atmospheric Gamma-Ray Imaging Cherenkov (MAGIC) telescope with a three-Gaussian template and rescale it to account for the different CTA instrumental and observational configurations. Simulations are performed for different configurations of CTA and for the ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) mini-array. The northern CTA configuration will provide an improvement of a factor of ˜3 in accuracy with an observing time comparable to that of MAGIC (73 h). Unless the VHE spectrum above 1 TeV behaves differently from what we presently know, unreasonably long observing times are required for a significant detection of the pulsations of the Crab pulsar with the high-energy-range sub-arrays. We also found that an independent VHE timing analysis is feasible with Large Size Telescopes. CTA will provide a significant improvement in determining the VHE pulse shape parameters necessary to constrain theoretical models of the gamma-ray emission of the Crab pulsar. One of such parameters is the shift in phase between peaks in the pulse profile at VHE and in other energy bands that, if detected, may point to different locations of the emission regions.
NASA Astrophysics Data System (ADS)
Pang, Guofeng
The objective of this work has been to design and develop a micromolding technique useful for batch fabrication to microfabricate 3D ceramic structures for device purposes using a sol gel composite processing technique and deep photolithography (UV LIGA). These structures may be the elements of ultrasound transducers, the structures associated with electronic packaging, or microstructures for microfluidic applications. To demonstrate the technique, the project has focused on the design and fabrication of annular and linear arrays for high frequency (>20 MHz) ultrasound imaging applications, particularly where an electronically steered imaging modality is employed. Other typical micromolded structures have been demonstrated to show the potential for micromolding. The transferability of the technique for industrial purposes is proposed. Using a sol gel composite process, the critical components in this technique are mold making, mold filling, material-processing, demolding, top electrode and essential material characterization. Two types of molds have been created using UV LIGA and/or electroplating. A purely organic mold made of Su-8 epoxy based photo-resist has shown tremendous performance for micromolding. The transducer packaging process has also been designed and evaluated at the laboratory level. A Su-8 micro bridge and bond pad has been used for wire bonding purposes. A 5-element annular array transducer has been fabricated by this technique and fully packaged. The micromolded piezoceramic structures have been characterized. The pulse echo performance of each element and the focusing performance of 5 elements of a packaged transducer array have been evaluated using a coaxial cable and a cable delay system.
Atmospheric mercury is predominantly present in the gaseous elemental form (Hg0). However, anthropogenic emissions (e.g. incineration, fossil fuel combustion) emit and natural processes create particulate-phase mercury (Hg(p)) and divalent reactive gas-phase mercury (RGM). RG...
Lens fiber organization in four avian species: a scanning electron microscopic study.
Willekens, B; Vrensen, G
1985-01-01
The three-dimensional organization of the eye lenses of the chicken, the canary, the song-thrush and the kestrel was studied using light and scanning electron microscopy. The lenses of birds are characterized by the presence of two distinct compartments: the annular pad and the main lens body, separated by a cavum lenticuli. The annular pad fibers had a hexagonal circumference all contained a round nucleus and except for the canary were smooth-surfaced and lacking anchoring devices. In the canary, however, the annular pad fibers were studded with edge protrusions and ball-and-socket junctions. The semicircular main lens body fibers of all four species were studded with ball-and-socket junctions and edge protrusions. In contrast with mammals these anchoring devices were present throughout the lens up to the embryonal nucleus. Superficially the main lens body fibers were extremely flat. Additionally membrane elevations and depressions and globular elements were found on these central fibers in three species, the kestrel being the exception. At the transition between annular pad and main lens body the fibers turned their course and the nuclei became oval and disappeared in the deeper aspect of the main lens body. The cavum lenticuli was filled with globules tied off from the annular pad fibers. It seems attractive to assume that the presence of a separated annular pad, a cavum lenticuli filled with globular elements, the extreme flatness of the superficial central fibers and the studding of these central fibers with anchoring devices up to the embryonal nucleus are morphological expressions of the mouldability of the bird's eye lenses and consequently would explain their efficient accommodative mechanism including formation of a lenticonus. The presence of nuclei in the annular pad fibers and their typical change at the transitional zone between annular pad and main lens body are suggestive for a two-phased differentiation in bird's lens fibers: differentiation of the germinative epithelial cells to annular pad fibers which migrate to the main lens body after which they differentiate further to main lens body fibers.
Thermal Cycling of Mir Cooperative Solar Array (MCSA) Test Panels
NASA Technical Reports Server (NTRS)
Hoffman, David J.; Scheiman, David A.
1997-01-01
The Mir Cooperative Solar Array (MCSA) project was a joint US/Russian effort to build a photovoltaic (PV) solar array and deliver it to the Russian space station Mir. The MCSA is currently being used to increase the electrical power on Mir and provide PV array performance data in support of Phase 1 of the International Space Station (ISS), which will use arrays based on the same solar cells used in the MCSA. The US supplied the photovoltaic power modules (PPMs) and provided technical and programmatic oversight while Russia provided the array support structures and deployment mechanism and built and tested the array. In order to ensure that there would be no problems with the interface between US and Russian hardware, an accelerated thermal life cycle test was performed at NASA Lewis Research Center on two representative samples of the MCSA. Over an eight-month period (August 1994 - March 1995), two 15-cell MCSA solar array 'mini' panel test articles were simultaneously put through 24,000 thermal cycles (+80 C to -100 C), equivalent to four years on-orbit. The test objectives, facility, procedure and results are described in this paper. Post-test inspection and evaluation revealed no significant degradation in the structural integrity of the test articles and no electrical degradation, not including one cell damaged early as an artifact of the test and removed from consideration. The interesting nature of the performance degradation caused by this one cell, which only occurred at elevated temperatures, is discussed. As a result of this test, changes were made to improve some aspects of the solar cell coupon-to-support frame interface on the flight unit. It was concluded from the results that the integration of the US solar cell modules with the Russian support structure would be able to withstand at least 24,000 thermal cycles (4 years on-orbit).
Resource Letter OSE-1: Observing Solar Eclipses
NASA Astrophysics Data System (ADS)
Pasachoff, Jay M.; Fraknoi, Andrew
2017-07-01
This Resource Letter provides a guide to the available literature, listing selected books, articles, and online resources about scientific, cultural, and practical issues related to observing solar eclipses. It is timely, given that a total solar eclipse will cross the continental United States on August 21, 2017. The next total solar eclipse path crossing the U.S. and Canada will be on April 8, 2024. In 2023, the path of annularity of an annular eclipse will cross Mexico, the United States, and Canada, with partial phases visible throughout those countries.
Management of portal annular pancreas during laparoscopic pancreaticoduodenectomy.
Zimmitti, Giuseppe; Manzoni, Alberto; Ramera, Marco; Villanacci, Alberta; Sega, Valentina; Treppiedi, Elio; Guerini, Francesca; Garatti, Marco; Codignola, Claudio; Rosso, Edoardo
2018-03-23
Portal annular pancreas (PAP) is a pancreatic congenital anomaly consisting of pancreatic parenchyma encircling the portal vein and/or the superior mesenteric vein. It has been reported that the risk of developing a post-operative pancreatic fistula is higher following pancreaticoduodenectomy in patients with PAP, probably because of the possibility of leaving undrained a portion of pancreatic parenchyma during the reconstructive phase. Few manuscripts have reported a surgical technique of pancreaticoduodenectomy in case of PAP, herein we report the first case of a patient with PAP undergoing laparoscopic pancreaticoduodenectomy.
Hydrodynamic characteristics of a novel annular spouted bed with multiple air nozzles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, X.W.; Hu, G.X.; Li, Y.H.
A novel spouted bed, namely, an annular spouted bed with multiple air nozzles, has been proposed for drying, pyrolysis, and gasification of coal particulates. It consists of two homocentric upright cylinders with some annularly located spouting air nozzles between inner and outer cylinders. Experiments have been performed to study hydrodynamic characteristics of this device. The test materials studied are ash particle, soy bean, and black bean. Three distinct spouting stages have been examined and outlined with the hold-ups increase. In the fully developed spouting stage, three flow behaviors of particles have been observed and delimited. The effects of nozzle modemore » and spouting velocity on the maximum spouting height of the dense-phase region, spoutable static bed height, and spouting pressure drop in the bed have been investigated experimentally.« less
NASA Astrophysics Data System (ADS)
Wang, Ning; Zhou, Jin; Pan, Yu; Wang, Hui
2014-02-01
Active cooling with endothermic hydrocarbon fuel is proved to be one of the most promising approaches to solve the thermal problem for hypersonic aircraft such as scramjet. The flow patterns of two-phase flow inside the cooling channels have a great influence on the heat transfer characteristics. In this study, phase transition processes of RP-3 kerosene flowing inside a square quartz-glass tube were experimentally investigated. Three distinct phase transition phenomena (liquid-gas two phase flow under sub-critical pressures, critical opalescence under critical pressure, and corrugation under supercritical pressures) were identified. The conventional flow patterns of liquid-gas two phase flow, namely bubble flow, slug flow, churn flow and annular flow are observed under sub-critical pressures. Dense bubble flow and dispersed flow are recognized when pressure is increased towards the critical pressure whilst slug flow, churn flow and annular flow disappear. Under critical pressure, the opalescence phenomenon is observed. Under supercritical pressures, no conventional phase transition characteristics, such as bubbles are observed. But some kind of corrugation appears when RP-3 transfers from liquid to supercritical. The refraction index variation caused by sharp density gradient near the critical temperature is thought to be responsible for this corrugation.
NASA Astrophysics Data System (ADS)
Wang, Chun; Brunton, Emma; Haghgooie, Saman; Cassells, Kahli; Lowery, Arthur; Rajan, Ramesh
2013-08-01
Objective. Cortical neural prostheses with implanted electrode arrays have been used to restore compromised brain functions but concerns remain regarding their long-term stability and functional performance. Approach. Here we report changes in electrode impedance and stimulation thresholds for a custom-designed electrode array implanted in rat motor cortex for up to three months. Main Results. The array comprises four 2000 µm long electrodes with a large annular stimulating surface (7860-15700 µm2) displaced from the penetrating insulated tip. Compared to pre-implantation in vitro values there were three phases of impedance change: (1) an immediate large increase of impedance by an average of two-fold on implantation; (2) a period of continued impedance increase, albeit with considerable variability, which reached a peak at approximately four weeks post-implantation and remained high over the next two weeks; (3) finally, a period of 5-6 weeks when impedance stabilized at levels close to those seen immediately post-implantation. Impedance could often be temporarily decreased by applying brief trains of current stimulation, used to evoke motor output. The stimulation threshold to induce observable motor behaviour was generally between 75-100 µA, with charge density varying from 48-128 µC cm-2, consistent with the lower current density generated by electrodes with larger stimulating surface area. No systematic change in thresholds occurred over time, suggesting that device functionality was not compromised by the factors that caused changes in electrode impedance. Significance. The present results provide support for the use of annulus electrodes in future applications in cortical neural prostheses.
Modeling two-phase flow in PEM fuel cell channels
NASA Astrophysics Data System (ADS)
Wang, Yun; Basu, Suman; Wang, Chao-Yang
2008-05-01
This paper is concerned with the simultaneous flow of liquid water and gaseous reactants in mini-channels of a proton exchange membrane (PEM) fuel cell. Envisaging the mini-channels as structured and ordered porous media, we develop a continuum model of two-phase channel flow based on two-phase Darcy's law and the M2 formalism, which allow estimate of the parameters key to fuel cell operation such as overall pressure drop and liquid saturation profiles along the axial flow direction. Analytical solutions of liquid water saturation and species concentrations along the channel are derived to explore the dependences of these physical variables vital to cell performance on operating parameters such as flow stoichiometric ratio and relative humility. The two-phase channel model is further implemented for three-dimensional numerical simulations of two-phase, multi-component transport in a single fuel-cell channel. Three issues critical to optimizing channel design and mitigating channel flooding in PEM fuel cells are fully discussed: liquid water buildup towards the fuel cell outlet, saturation spike in the vicinity of flow cross-sectional heterogeneity, and two-phase pressure drop. Both the two-phase model and analytical solutions presented in this paper may be applicable to more general two-phase flow phenomena through mini- and micro-channels.
Bipolar battery with array of sealed cells
Kaun, Thomas D.; Smaga, John A.
1987-01-01
A lithium alloy/metal sulfide battery as a dipolar battery is disclosed with an array of stacked cells with the anode and cathode electrode materials in each cell sealed in a confining structure and separated from one another except across separator material interposed therebetween. The separator material is contained in a module having separate perforated metallic sheets that sandwich opposite sides of the separator material for the cell and an annular insulating spacer that surrounds the separator material beyond the perforations and is also sandwiched between and sealed to the sheets. The peripheral edges of the sheets project outwardly beyond the spacer, traverse the side edges of the adjacent electrode material to form cup-like electrode holders, and are fused to the adjacent current collector or end face members of the array. Electrolyte is infused into the electrolyte cavity through the perforations of one of the metallic sheets with the perforations also functioning to allow ionic conductance across the separator material between the adjacent electrodes. A gas-tight housing provides an enclosure of the array.
SELECTIVE OXIDATION OF ALCOHOLS IN GAS PHASE USING LIGHT-ACTIVATED TITANIUM DIOXIDE
Selective oxidations of various primary and secondary alcohols were studied in a gas phase photochemical reactor using immobilized TiO2 catalyst. An annular photoreactor was used at 463K with an average contact time of 32sec. The system was found to be specifically suited for the...
Azimuthally spinning wave modes and heat release in an annular combustor
NASA Astrophysics Data System (ADS)
Nygard, Hakon; Mazur, Marek; Dawson, James R.; Worth, Nicholas A.
2017-11-01
In order to reduce NOx emissions from aeroengines and stationary gas turbines the fuel-air mixture can be made leaner, at the risk of introducing potentially damaging thermo-acoustic instabilities. At present this phenomenon is not understood well enough to eliminate these instabilities at the design stage. Recently, the presence of different azimuthal modes in annular combustors has been demonstrated both experimentally and numerically. These naturally occurring instabilities in annular geometry have been observed to constantly switch between spinning and standing modes, making it more difficult to analyse the flame structure and dynamics. Very recently this issue was partially addressed using novel acoustic forcing to generate a standing mode. In the present study this concept has been developed further by creating an azimuthal array of loud speakers, which for the first time permits predominantly spinning modes to be set up inside the combustion chamber. The use of pressure and high speed OH* measurements enables the study of the flame dynamics and heat release rate oscillations of the combustor, which will be reported in the current paper. The ability to precisely control the azimuthal mode of oscillation greatly enhances our further understanding of the phenomenon. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant Agreement No 677931 TAIAC).
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-01
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works. PMID:26828488
A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.
Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua
2016-01-27
Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.
NASA Astrophysics Data System (ADS)
Agishev, B. Y.; Boltenko, E. A.; Varava, A. N.; Dedov, A. V.; Zakharenkov, A. V.; Komov, A. T.; Smorchova, Y. V.
2018-03-01
The effectiveness of the heat exchange intensifier “rib-twisted wire” is considered in this paper. The main goal is to study the influence of the wire coiling step t on heat transfer and hydraulic resistance for different values Ḣ of the dimensionless height of the edge Ḣ, as well as some results on heat exchange during bubbly boiling in an annular channel. Show: • a brief description and an image of the heat exchange intensifier “rib-twisted wire” • generalized results of studies of heat exchange and hydraulic resistance in the annular channel in the single-phase convection with different geometric characteristics of the intensifier; • empirical correlations of the generalized experimental results that allow to calculating the coefficient of hydraulic resistance and heat transfer in the range of regime parameters in the single-phase convection that is being studied. • some results of experiments in bubbly boiling regimes and near-critical thermal loads.
Optical coating design for the annular mirrors of the Alpha I HF laser
NASA Astrophysics Data System (ADS)
Shellan, Jeffrey B.
The dielectric-coating design for the annular mirrors of the Alpha I HF laser is described along with the numerous other designs that were considered. The coatings were required to produce a 0-deg phase shift after one round trip, which involved reflections from six surfaces. Although novel high-reflectivity multilayer dielectric coatings satisfied this requirement, single-layer phase control coatings were preferred because the use of these greatly reduced coating layer-thickness control and thus resulted in significant program savings. Among the single-layer designs investigated, a coating consisting of a 0.06-micron-thick SiO layer was found to be sufficient for all surfaces except those of the rear cone, for which a 0.515-micron thick SiO layer was recommended. The metallic substrate selected was Au. These coatings were found to have a high damage threshold, provide the necessary polarization phase control, and to be quite forgiving to thickness deposition errors that were anticipated using existing chambers.
Cruickshank, Susanne; Steel, Emma; Fenlon, Deborah; Armes, Jo; Scanlon, Karen; Banks, Elspeth; Humphris, Gerald
2018-01-01
Fear of recurrence (FoR) is a major concern for patients following treatment for primary breast cancer, affecting 60-99% of breast cancer survivors. Mini-AFTER is a brief intervention developed to address this fear, that breast care nurses are ideally placed to deliver. However, their interest in delivering such an intervention is unknown and crucial to its introduction. This study aims to assess the perceived feasibility of the Mini-AFTER telephone intervention for implementation by breast care nurses to manage moderate levels of fear of recurrence among breast cancer survivors. A sequential explanatory mixed-methods design will be used, informed by normalisation process theory (NPT). The design will be guided by the stages of NPT. Specifically, understanding and evaluating the process (implementation) that would enable an intervention, such as the Mini-AFTER, not only to be operationalised and normalised into everyday work (embedded) but also sustained in practice (integration). Phase 1: all members on the UK Breast Cancer Care Nursing Network database ( n = 905) will be emailed a link to a web-based survey, designed to investigate how breast cancer survivors' FoR is identified and managed within current services and their willingness to deliver the Mini-AFTER. Phase 2: a purposive sample of respondents ( n = 20) will be interviewed to build upon the responses in phase 1 and explore breast care nurses' individual views on the importance of addressing fear of recurrence in their clinical consultations, interest in the Mini-AFTER intervention, the content, skills required and challenges to deliver the intervention. This study will provide information about the willingness of breast care nurses (BCNs) to provide a structured intervention to manage fear of recurrence. It will identify barriers and facilitators for effective delivery and inform the future design of a larger trial of the Mini-AFTER intervention.
Auxiliary reactor for a hydrocarbon reforming system
Clawson, Lawrence G.; Dorson, Matthew H.; Mitchell, William L.; Nowicki, Brian J.; Bentley, Jeffrey M.; Davis, Robert; Rumsey, Jennifer W.
2006-01-17
An auxiliary reactor for use with a reformer reactor having at least one reaction zone, and including a burner for burning fuel and creating a heated auxiliary reactor gas stream, and heat exchanger for transferring heat from auxiliary reactor gas stream and heat transfer medium, preferably two-phase water, to reformer reaction zone. Auxiliary reactor may include first cylindrical wall defining a chamber for burning fuel and creating a heated auxiliary reactor gas stream, the chamber having an inlet end, an outlet end, a second cylindrical wall surrounding first wall and a second annular chamber there between. The reactor being configured so heated auxiliary reactor gas flows out the outlet end and into and through second annular chamber and conduit which is disposed in second annular chamber, the conduit adapted to carry heat transfer medium and being connectable to reformer reaction zone for additional heat exchange.
NASA Astrophysics Data System (ADS)
Huang, Lihao; Li, Gang; Tao, Leren
2016-07-01
Experimental investigation for the flow boiling of water in a vertical rectangular channel was conducted to reveal the boiling heat transfer mechanism and flow patterns map aspects. The onset of nucleate boiling went upward with the increasing of the working fluid mass flow rate or the decreasing of the inlet working fluid temperature. As the vapour quality was increased, the local heat transfer coefficient increased first, then decreased, followed by various flow patterns. The test data from other researchers had a similar pattern transition for the bubble-slug flow and the slug-annular flow. Flow pattern transition model analysis was performed to make the comparison with current test data. The slug-annular and churn-annular transition models showed a close trend with current data except that the vapor phase superficial velocity of flow pattern transition was much higher than that of experimental data.
NASA Astrophysics Data System (ADS)
Kuo, Ching Yi; Pan, Chin
2010-09-01
This study experimentally investigates steam condensation in rectangular microchannels with uniform and converging cross-sections and a mean hydraulic diameter of 135 µm. The steam flow in the microchannels was cooled by water cross-flowing along its bottom surface, which is different from other methods reported in the literature. The flow patterns, two-phase flow pressure drop and condensation heat transfer coefficient are determined. The microchannels with the uniform cross-section design have a higher heat transfer coefficient than those with the converging cross-section under condensation in the mist/annular flow regimes, although the latter work best for draining two-phase fluids composed of uncondensed steam and liquid water, which is consistent with the result of our previous study. From the experimental results, dimensionless correlations of condensation heat transfer for the mist and annular flow regions and a two-phase frictional multiplier are developed for the microchannels with both types of cross-section designs. The experimental data agree well with the obtained correlations, with the maximum mean absolute errors of 6.4% for the two-phase frictional multiplier and 6.0% for the condensation heat transfer.
Method for observing phase objects without halos and directional shadows
NASA Astrophysics Data System (ADS)
Suzuki, Yoshimasa; Kajitani, Kazuo; Ohde, Hisashi
2015-03-01
A new microscopy method for observing phase objects without halos and directional shadows is proposed. The key optical element is an annular aperture at the front focal plane of a condenser with a larger diameter than those used in standard phase contrast microscopy. The light flux passing through the annular aperture is changed by the specimen's surface profile and then passes through an objective and contributes to image formation. This paper presents essential conditions for realizing the method. In this paper, images of colonies formed by induced pluripotent stem (iPS) cells using this method are compared with the conventional phase contrast method and the bright-field method when the NA of the illumination is small to identify differences among these techniques. The outlines of the iPS cells are clearly visible with this method, whereas they are not clearly visible due to halos when using the phase contrast method or due to weak contrast when using the bright-field method. Other images using this method are also presented to demonstrate a capacity of this method: a mouse ovum and superimposition of several different images of mouse iPS cells.
Hydraulic and Clean-in-Place Evaluations for a 12.5-cm Annular Centrifugal Contactor at INL
DOE Office of Scientific and Technical Information (OSTI.GOV)
Troy G. Garn; David H. Meikrantz; Nick R. Mann
2008-09-01
Hydraulic and Clean-in-Place Evaluations for a 12.5 cm Annular Centrifugal Contactor at the INL Troy G. Garn, Dave H. Meikrantz, Nick R. Mann, Jack D. Law, Terry A. Todd Idaho National Laboratory Commercially available, Annular Centrifugal Contactors (ACC) are currently being evaluated for processing dissolved nuclear fuel solutions to selectively partition integrated elements using solvent extraction technologies. These evaluations include hydraulic and clean-in-place (CIP) testing of a commercially available 12.5 cm unit. Data from these evaluations is used to support design of future nuclear fuel reprocessing facilities. Hydraulic testing provides contactor throughput performance data on two-phase systems for a widemore » range of operating conditions. Hydraulic testing results on a simple two-phase oil and water system followed by a 30 % Tributyl phosphate in N-dodecane / nitric acid pair are reported. Maximum total throughputs for this size contactor ranged from 20 to 32 liters per minute without significant other phase carryover. A relatively new contactor design enhancement providing Clean-in-Place capability for ACCs was also investigated. Spray nozzles installed into the central rotor shaft allow the rotor internals to be cleaned, offline. Testing of the solids capture of a diatomaceous earth/water slurry feed followed by CIP testing was performed. Solids capture efficiencies of >95% were observed for all tests and short cold water cleaning pulses proved successful at removing solids from the rotor.« less
Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger
NASA Astrophysics Data System (ADS)
Bowen, Dennis B.; Mewes, Vassilios; Campanelli, Manuela; Noble, Scott C.; Krolik, Julian H.; Zilhão, Miguel
2018-01-01
We present the first magnetohydrodynamic simulation in which a circumbinary disk around a relativistic binary black hole feeds mass to individual accretion disks (“mini-disks”) around each black hole. Mass flow through the accretion streams linking the circumbinary disk to the mini-disks is modulated quasi-periodically by the streams’ interaction with a nonlinear m = 1 density feature, or “lump,” at the inner edge of the circumbinary disk: the stream supplying each mini-disk comes into phase with the lump at a frequency 0.74 times the binary orbital frequency. Because the binary is relativistic, the tidal truncation radii of the mini-disks are not much larger than their innermost stable circular orbits; consequently, the mini-disks’ inflow times are shorter than the conventional estimate and are comparable to the stream modulation period. As a result, the mini-disks are always in inflow disequilibrium, with their masses and spiral density wave structures responding to the stream’s quasi-periodic modulation. The fluctuations in each mini-disk’s mass are so large that as much as 75% of the total mini-disk mass can be contained within a single mini-disk. Such quasi-periodic modulation of the mini-disk structure may introduce distinctive time-dependent features in the binary’s electromagnetic emission.
NASA Astrophysics Data System (ADS)
Cheng, Jiqi; Lu, Jian-Yu
2002-05-01
Angular spectrum is one of the most powerful tools for field calculation. It is based on linear system theory and the Fourier transform and is used for the calculation of propagating sound fields at different distances. In this report, the generalization and interpretation of the angular spectrum and its intrinsic relationship with limited diffraction beams are studied. With an angular spectrum, the field at the surface of a transducer is decomposed into limited diffractions beams. For an array transducer, a linear relationship between the quantized fields at the surface of elements of the array and the propagating field at any point in space can be established. For an annular array, the field is decomposed into limited diffraction Bessel beams [P. D. Fox and S. Holm, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 85-93 (2002)], while for a two-dimensional (2-D) array the field is decomposed into limited diffraction array beams [J-y. Lu and J. Cheng, J. Acoust. Soc. Am. 109, 2397-2398 (2001)]. The angular spectrum reveals the intrinsic link between these decompositions. [Work supported in part by Grant 5RO1 HL60301 from NIH.
Angle-dependent photodegradation over ZnO nanowire arrays on flexible paper substrates
2014-01-01
In this study, we grew zinc oxide (ZnO) nanowire arrays on paper substrates using a two-step growth strategy. In the first step, we formed single-crystalline ZnO nanoparticles of uniform size distribution (ca. 4 nm) as seeds for the hydrothermal growth of the ZnO nanowire arrays. After spin-coating of these seeds onto paper, we grew ZnO nanowire arrays conformally on these substrates. The crystal structure of a ZnO nanowire revealed that the nanowires were single-crystalline and had grown along the c axis. Further visualization through annular bright field scanning transmission electron microscopy revealed that the hydrothermally grown ZnO nanowires possessed Zn polarity. From photocatalytic activity measurements of the ZnO nanowire (NW) arrays on paper substrate, we extracted rate constants of 0.415, 0.244, 0.195, and 0.08 s-1 for the degradation of methylene blue at incident angles of 0°, 30°, 60°, and 75°, respectively; that is, the photocatalytic activity of these ZnO nanowire arrays was related to the cosine of the incident angle of the UV light. Accordingly, these materials have promising applications in the design of sterilization systems and light-harvesting devices. PMID:25593556
Integrated strain array for cellular mechanobiology studies
NASA Astrophysics Data System (ADS)
Simmons, C. S.; Sim, J. Y.; Baechtold, P.; Gonzalez, A.; Chung, C.; Borghi, N.; Pruitt, B. L.
2011-05-01
We have developed an integrated strain array for cell culture enabling high-throughput mechano-transduction studies. Biocompatible cell culture chambers were integrated with an acrylic pneumatic compartment and microprocessor-based control system. Each element of the array consists of a deformable membrane supported by a cylindrical pillar within a well. For user-prescribed waveforms, the annular region of the deformable membrane is pulled into the well around the pillar under vacuum, causing the pillar-supported region with cultured cells to be stretched biaxially. The optically clear device and pillar-based mechanism of operation enables imaging on standard laboratory microscopes. Straightforward fabrication utilizes off-the-shelf components, soft lithography techniques in polydimethylsiloxane and laser ablation of acrylic sheets. Proof of compatibility with basic biological assays and standard imaging equipment were accomplished by straining C2C12 skeletal myoblasts on the device for 6 h. At higher strains, cells and actin stress fibers realign with a circumferential preference.
HIGH CURRENT COAXIAL PHOTOMULTIPLIER TUBE
Glass, N.W.
1960-01-19
A medium-gain photomultiplier tube having high current output, fast rise- time, and matched output impedance was developed. The photomultiplier tube comprises an elongated cylindrical envelope, a cylindrical anode supported at the axis of the envelope, a plurality of elongated spaced opaque areas on the envelope, and a plurality of light admitting windows. A photo-cathode is supported adjacent to each of the windows, and a plurality of secondary emissive dynodes are arranged in two types of radial arrays which are alternately positioned to fill the annular space between the anode and the envelope. The dynodes are in an array being radially staggered with respect to the dynodes in the adjacent array, the dynodes each having a portion arranged at an angle with respect to the electron path, such that electrons emitted by each cathode undergo multiplication upon impingement on a dynode and redirected flight to the next adjacent dynode.
NASA Astrophysics Data System (ADS)
Sanford, T. W. L.; Mock, R. C.; Marder, B. M.; Nash, T. J.; Spielman, R. B.; Peterson, D. L.; Roderick, N. F.; Hammer, J. H.; De Groot, J. S.; Mosher, D.; Whitney, K. G.; Apruzese, J. P.
1997-05-01
A systematic study of annular aluminum-wire z-pinches on the Saturn accelerator shows that the quality of the implosion, (as measured by the radial convergence, the radiated energy, pulse width, and power), increases with wire number. Radiation magnetohydrodynamic (RMHC) xy simulations suggest that the implosion transitions from that of individual wire plasmas to that of a continuous plasma shell when the interwire spacing is reduced below ˜1.4 mm. In this "plasma-shell regime," many of the global radiation and plasma characteristics are in agreement with those simulated by 2D-RMHC rz simulations. In this regime, measured changes in the radiation pulse width with variations in load mass and array radius are consistent with the simulations and are explained by the development of 2D fluid motion in the rz plane. Associated variations in the K-shell yield are qualitatively explained by simple radiation-scaling models.
NASA Technical Reports Server (NTRS)
Fisher, Edward M., Jr.
1991-01-01
Additional power is required to support Space Station Freedom (SSF) evolution. Boeing Defense and Space Group, LeRC, and Entech Corporation have participated in the development of efficiency gallium arsenide and gallium antimonide solar cells make up the solar array tandem cell stacks. Entech's Mini-Dome Fresnel Lens Concentrators focus solar energy onto the active area of the solar cells at 50 times one solar energy flux. Development testing for a flight array, to be launched in Nov. 1992 is under way with support from LeRC. The tandem cells, interconnect wiring, concentrator lenses, and structure were integrated into arrays subjected to environmental testing. A tandem concentrator array can provide high mass and area specific power and can provide equal power with significantly less array area and weight than the baseline array design. Alternatively, for SSF growth, an array of twice the baseline power can be designed which still has a smaller drag area than the baseline.
Szokol, Miklos; Priksz, Daniel; Bombicz, Mariann; Varga, Balazs; Kovacs, Arpad; Fulop, Gabor Aron; Csipo, Tamas; Posa, Aniko; Toth, Attila; Papp, Zoltan; Szilvassy, Zoltan; Juhasz, Bela
2017-10-12
The present investigation evaluates the cardiovascular effects of the anorexigenic mediator alpha-melanocyte stimulating hormone (MSH), in a rat model of type 2 diabetes. Osmotic mini pumps delivering MSH or vehicle, for 6 weeks, were surgically implanted in Zucker Diabetic Fatty (ZDF) rats. Serum parameters, blood pressure, and weight gain were monitored along with oral glucose tolerance (OGTT). Echocardiography was conducted and, following sacrifice, the effects of treatment on ischemia/reperfusion cardiac injury were assessed using the isolated working heart method. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was measured to evaluate levels of oxidative stress, and force measurements were performed on isolated cardiomyocytes to determine calcium sensitivity, active tension and myofilament co-operation. Vascular status was also evaluated on isolated arterioles using a contractile force measurement setup. The echocardiographic parameters ejection fraction (EF), fractional shortening (FS), isovolumetric relaxation time (IVRT), mitral annular plane systolic excursion (MAPSE), and Tei-index were significantly better in the MSH-treated group compared to ZDF controls. Isolated working heart aortic and coronary flow was increased in treated rats, and higher Hill coefficient indicated better myofilament co-operation in the MSH-treated group. We conclude that MSH improves global heart functions in ZDF rats, but these effects are not related to the vascular status.
Siauve, N; Nicolas, L; Vollaire, C; Marchal, C
2004-12-01
This article describes an optimization process specially designed for local and regional hyperthermia in order to achieve the desired specific absorption rate in the patient. It is based on a genetic algorithm coupled to a finite element formulation. The optimization method is applied to real human organs meshes assembled from computerized tomography scans. A 3D finite element formulation is used to calculate the electromagnetic field in the patient, achieved by radiofrequency or microwave sources. Space discretization is performed using incomplete first order edge elements. The sparse complex symmetric matrix equation is solved using a conjugate gradient solver with potential projection pre-conditionning. The formulation is validated by comparison of calculated specific absorption rate distributions in a phantom to temperature measurements. A genetic algorithm is used to optimize the specific absorption rate distribution to predict the phases and amplitudes of the sources leading to the best focalization. The objective function is defined as the specific absorption rate ratio in the tumour and healthy tissues. Several constraints, regarding the specific absorption rate in tumour and the total power in the patient, may be prescribed. Results obtained with two types of applicators (waveguides and annular phased array) are presented and show the faculties of the developed optimization process.
Results of the randomized phase IIB ARCTIC trial of low-dose rituximab in previously untreated CLL.
Howard, D R; Munir, T; McParland, L; Rawstron, A C; Milligan, D; Schuh, A; Hockaday, A; Allsup, D J; Marshall, S; Duncombe, A S; O'Dwyer, J L; Smith, A F; Longo, R; Varghese, A; Hillmen, P
2017-11-01
ARCTIC was a multicenter, randomized-controlled, open, phase IIB non-inferiority trial in previously untreated chronic lymphocytic leukemia (CLL). Conventional frontline therapy in fit patients is fludarabine, cyclophosphamide and rituximab (FCR). The trial hypothesized that including mitoxantrone with low-dose rituximab (FCM-miniR) would be non-inferior to FCR. A total of 200 patients were recruited to assess the primary end point of complete remission (CR) rates according to IWCLL criteria. Secondary end points were progression-free survival (PFS), overall survival (OS), overall response rate, minimal residual disease (MRD) negativity, safety and cost-effectiveness. The trial closed following a pre-planned interim analysis. At final analysis, CR rates were 76 FCR vs 55% FCM-miniR (adjusted odds ratio: 0.37; 95% confidence interval: 0.19-0.73). MRD-negativity rates were 54 FCR vs 44% FCM-miniR. More participants experienced serious adverse reactions with FCM-miniR (49%) compared to FCR (41%). There are no significant differences between the treatment groups for PFS and OS. FCM-miniR is not expected to be cost-effective over a lifetime horizon. In summary, FCM-miniR is less well tolerated than FCR with an inferior response and MRD-negativity rate and increased toxicity, and will not be taken forward into a confirmatory trial. The trial demonstrated that oral FCR yields high response rates compared to historical series with intravenous chemotherapy.
Operation PLUMBBOB. Summary Report, Test Group 57, Nevada Test Site. Extracted Version
1982-06-04
numnber) Operation PI*;UMBDOo lest Group 57 conducted a one- point detonation for the purpose of studying hazards from acci- dents. The objectives were...I ! i - 5-6 ABSTRACT On April 24, 1957, Operation Plumbbob Test Group 57 conducted a one- point detonation Ifor the purpose of studying...Plot of Air Sampler Array. 54 4.5 Staplex Air Sampler With Adapter Head . 55 4. 6 Staplex Air Sampler With Annular Impactor 56 13 ILLUSTRATIONS
Torque sensor having a spoked sensor element support structure
NASA Technical Reports Server (NTRS)
Lurie, Boris J. (Inventor); Schier, J. Alan (Inventor)
1990-01-01
Piezoelectric sensor devices are attached across pairs of circularly arranged spokes arrayed on the periphery of an annular ring. The sensor devices each include a preloaded steel ball mounting arrangement for mounting a piezoelectric sensor element. A first circular interface plate on one side of the sensor structure attaches to alternate one of the spokes, and a circular interface plate on the opposite side of the same diameter as the first interface plate attaches to the remaining spokes.
Rational Design of Mini-Cas9 for Transcriptional Activation.
Ma, Dacheng; Peng, Shuguang; Huang, Weiren; Cai, Zhiming; Xie, Zhen
2018-04-20
Nuclease dead Cas9 (dCas9) has been widely used for modulating gene expression by fusing with different activation or repression domains. However, delivery of the CRISPR/Cas system fused with various effector domains in a single adeno-associated virus (AAV) remains challenging due to the payload limit. Here, we engineered a set of downsized variants of Cas9 including Staphylococcus aureus Cas9 (SaCas9) that retained DNA binding activity by deleting conserved functional domains. We demonstrated that fusing FokI nuclease domain to the N-terminal of the minimal SaCas9 (mini-SaCas9) or to the middle of the split mini-SaCas9 can trigger efficient DNA cleavage. In addition, we constructed a set of compact transactivation domains based on the tripartite VPR activation domain and self-assembled arrays of split SpyTag:SpyCatch peptides, which are suitable for fusing to the mini-SaCas9. Lastly, we produced a single AAV containing the mini-SaCas9 fused with a downsized transactivation domain along with an optimized gRNA expression cassette, which showed efficient transactivation activity. Our results highlighted a practical approach to generate down-sized CRISPR/Cas9 and gene activation systems for in vivo applications.
Apparatus for leaching core material from clad nuclear fuel pin segments
Yarbro, Orlan O.
1980-01-01
This invention relates to improved apparatus for counter-currently contacting liquids and solids to dissolve, or leach, a selected component of the solids while minimizing back-mixing of the liquid phase. The apparatus includes an elongated drum which is rotatable about its longitudinal axis in either direction and is partitioned radially into a solids-inlet/liquid-outlet compartment at one end, a solids-outlet/liquid-inlet compartment at its other end, and leaching compartments therebetween. The drum is designed to operate with its acid-inlet end elevated and with the longitudinal axis of the drum at an angle in the range of from about 3.degree. to 14.degree. to the horizontal. Each leaching compartment contains a chute assembly for advancing solids into the next compartment in the direction of solids flow when the drum is rotated in a selected direction. The chute assembly includes a solids-transfer baffle and a chute in the form of a slotted, skewed, conical frustum portion. When the drum is rotated in the direction opposite to that effecting solids transfer, the solids-transfer baffles continually separate and re-mix the solids and liquids in their respective compartments. The partitions defining the leaching compartments are formed with corresponding outer, annular, imperforate regions, each region extending inwardly from the partition rim to an annular array of perforations concentric with the rim. In each leaching compartment, the spacing between the rim and the perforations determines the depth of liquid at the liquid-outlet end of the compartment. The liquid input to the drum assembly flows continuously through the compartments, preventing back-mixing due to density differences, whereas backflow due to waves generated by the solids-transfer baffles is virtually eliminated because of the tilted orientation of the drum assembly.
Liquid Crystal Spatial Light Modulators for Simulating Zonal Multifocal Lenses.
Li, Yiyu; Bradley, Arthur; Xu, Renfeng; Kollbaum, Pete S
2017-09-01
To maximize efficiency of the normally lengthy and costly multizone lens design and testing process, it is advantageous to evaluate the potential efficacy of a design as thoroughly as possible prior to lens fabrication and on-eye testing. The current work describes an ex vivo approach of optical design testing. The aim of this study was to describe a system capable of examining the optical characteristics of multizone bifocal and multifocal optics by subaperture stitching using liquid crystal technologies. A liquid crystal spatial light modulator (SLM) was incorporated in each of two channels to generate complementary subapertures by amplitude modulation. Additional trial lenses and phase plates were placed in pupil conjugate planes of either channel to integrate the desired bifocal and multifocal optics once the two optical paths were recombined. A high-resolution Shack-Hartmann aberrometer was integrated to measure the optics of the dual-channel system. Power and wavefront error maps as well as point spread functions were measured and computed for each of three multizone multifocal designs. High transmission modulation was achieved by introducing half-wavelength optical path differences to create two- and five-zone bifocal apertures. Dual-channel stitching revealed classic annular rings in the point spread functions generated from two-zone designs when the outer annular optic was defocused. However, low efficiency of the SLM prevented us from simultaneously measuring the eye + simulator aberrations, and the higher-order diffraction patterns generated by the cellular structure of the liquid crystal arrays limited the visual field to ±0.45 degrees. The system successfully simulated bifocal and multifocal simultaneous lenses allowing for future evaluation of both objective and subjective evaluation of complex optical designs. However, low efficiency and diffraction phenomena of the SLM limit the utility of this technology for simulating multizone and multifocal optics.
NASA Astrophysics Data System (ADS)
Gianotti, F.; Tacchini, A.; Leto, G.; Martinetti, E.; Bruno, P.; Bellassai, G.; Conforti, V.; Gallozzi, S.; Mastropietro, M.; Tanci, C.; Malaguti, G.; Trifoglio, M.
2016-08-01
The Cherenkov Telescope Array (CTA) represents the next generation of ground-based observatories for very high energy gamma-ray astronomy. The CTA will consist of two arrays at two different sites, one in the northern and one in the southern hemisphere. The current CTA design foresees, in the southern site, the installation of many tens of imaging atmospheric Cherenkov telescopes of three different classes, namely large, medium and small, so defined in relation to their mirror area; the northern hemisphere array would consist of few tens of the two larger telescope types. The Italian National Institute for Astrophysics (INAF) is developing the Cherenkov Small Size Telescope ASTRI SST- 2M end-to-end prototype telescope within the framework of the International Cherenkov Telescope Array (CTA) project. The ASTRI prototype has been installed at the INAF observing station located in Serra La Nave on Mt. Etna, Italy. Furthermore a mini-array, composed of nine of ASTRI telescopes, has been proposed to be installed at the Southern CTA site. Among the several different infrastructures belonging the ASTRI project, the Information and Communication Technology (ICT) equipment is dedicated to operations of computing and data storage, as well as the control of the entire telescope, and it is designed to achieve the maximum efficiency for all performance requirements. Thus a complete and stand-alone computer centre has been designed and implemented. The goal is to obtain optimal ICT equipment, with an adequate level of redundancy, that might be scaled up for the ASTRI mini-array, taking into account the necessary control, monitor and alarm system requirements. In this contribution we present the ICT equipment currently installed at the Serra La Nave observing station where the ASTRI SST-2M prototype will be operated. The computer centre and the control room are described with particular emphasis on the Local Area Network scheme, the computing and data storage system, and the telescope control and monitoring.
NASA Astrophysics Data System (ADS)
Oyama, Yukio; Konno, Chikara; Ikeda, Yujiro; Maekawa, Fujio; Kosako, Kazuaki; Nakamura, Tomoo; Maekawa, Hiroshi; Youssef, Mahmoud Z.; Kumar, Anil; Abdou, Mohamed A.
1994-02-01
A pseudo-line source has been realized by using an accelerator based D-T point neutron source. The pseudo-line source is obtained by time averaging of continuously moving point source or by superposition of finely distributed point sources. The line source is utilized for fusion blanket neutronics experiments with an annular geometry so as to simulate a part of a tokamak reactor. The source neutron characteristics were measured for two operational modes for the line source, continuous and step-wide modes, with the activation foil and the NE213 detectors, respectively. In order to give a source condition for a successive calculational analysis on the annular blanket experiment, the neutron source characteristics was calculated by a Monte Carlo code. The reliability of the Monte Carlo calculation was confirmed by comparison with the measured source characteristics. The shape of the annular blanket system was a rectangular with an inner cavity. The annular blanket was consist of 15 mm-thick first wall (SS304) and 406 mm-thick breeder zone with Li2O at inside and Li2CO3 at outside. The line source was produced at the center of the inner cavity by moving the annular blanket system in the span of 2 m. Three annular blanket configurations were examined; the reference blanket, the blanket covered with 25 mm thick graphite armor and the armor-blanket with a large opening. The neutronics parameters of tritium production rate, neutron spectrum and activation reaction rate were measured with specially developed techniques such as multi-detector data acquisition system, spectrum weighting function method and ramp controlled high voltage system. The present experiment provides unique data for a higher step of benchmark to test a reliability of neutronics design calculation for a realistic tokamak reactor.
From Vision to Reality: 50 Years of Phased Array Development
2016-09-30
This paper cites the most prominent U.S.-deployed phased array radars as viewed by one phased-array radar advocate. Key words: radar, antenna array...phased array, phased array radar, radar antennas , array I. INTRODUCTION I welcome the opportunity to talk with today’s phased array engineers and...their test site in Fullerton, CA in the mid-1960s and was impressed by the size of the antennas . Eight apertures were deployed on each ship to
Generation of a spiral wave using amplitude masks
NASA Astrophysics Data System (ADS)
Anguiano-Morales, Marcelino; Salas-Peimbert, Didia P.; Trujillo-Schiaffino, Gerardo
2011-09-01
Optical beams of Bessel-type whose transverse intensity profile remains unchanged under free-space propagation are called nondiffracting beams. Experimentally, Durnin used an annular slit on the focal plane of a convergent lens to generate a Bessel beam. However, this configuration is only one of many that can be used to generate nondiffracting beams. The method can be modified in order to generate a required phase distribution in the beam. In this work, we propose a simple and effective method to generate spiral beams whose intensity remains invariant during propagation using amplitude masks. Laser beams with spiral phase, i.e., vortex beams have attracted great interest because of their possible use in different applications for areas ranging from laser technologies, medicine, and microbiology to the production of light tweezers and optical traps. We present a study of spiral structures generated by the interference between two incomplete annular beams.
NASA Astrophysics Data System (ADS)
Maezawa, Saburo; Tsuchida, Akira; Takuma, Masao
1988-08-01
Visual observation of flow patterns in the condenser and heat transfer measurements were conducted for heat transfer rate ranges of 18-800 W using a vertical annular device with various quantities of R113 as a working fluid. As a result of visual observations, it was shown that ripples (interfacial waves) were generated on the condensate film surface when the condensate film Reynolds number exceeded approximately 20, and the condensation heat transfer was prompted. A simple theoretical analysis was presented in which the effects of interfacial waves and vapor drag were both considered. This analysis agreed very well with experimental results when the working fluid quantity was small enough so that the two-phase mixture generated by boiling the working fluid did not reach the condenser. The effects of interfacial waves and vapor drag on condensation heat transfer were also investigated theoretically.
Stability of Wavy Films in Gas-Liquid Two-Phase Flows at Normal and Microgravity Conditions
NASA Technical Reports Server (NTRS)
Balakotaiah, V.; Jayawardena, S. S.
1996-01-01
For flow rates of technological interest, most gas-liquid flows in pipes are in the annular flow regime, in which, the liquid moves along the pipe wall in a thin, wavy film and the gas flows in the core region. The waves appearing on the liquid film have a profound influence on the transfer rates, and hence on the design of these systems. We have recently proposed and analyzed two boundary layer models that describe the characteristics of laminar wavy films at high Reynolds numbers (300-1200). Comparison of model predictions to 1-g experimental data showed good agreement. The goal of our present work is to understand through a combined program of experimental and modeling studies the characteristics of wavy films in annular two-phase gas-liquid flows under normal as well as microgravity conditions in the developed and entry regions.
SiPM detectors for the ASTRI project in the framework of the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Billotta, Sergio; Marano, Davide; Bonanno, Giovanni; Belluso, Massimiliano; Grillo, Alessandro; Garozzo, Salvatore; Romeo, Giuseppe; Timpanaro, Maria Cristina; Maccarone, Maria Concetta C.; Catalano, Osvaldo; La Rosa, Giovanni; Sottile, Giuseppe; Impiombato, Domenico; Gargano, Carmelo; Giarrusso, Salavtore
2014-07-01
The Cherenkov Telescope Array (CTA) is a worldwide new generation project aimed at realizing an array of a hundred ground based gamma-ray telescopes. ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) is the Italian project whose primary target is the development of an end-to-end prototype, named ASTRI SST-2M, of the CTA small size class of telescopes devoted to investigation of the highest energy region, from 1 to 100 TeV. Next target is the implementation of an ASTRI/CTA mini-array based on seven identical telescopes. Silicon Photo-Multipliers (SiPMs) are the semiconductor photosensor devices designated to constitute the camera detection system at the focal plane of the ASTRI telescopes. SiPM photosensors are suitable for the detection of the Cherenkov flashes, since they are very fast and sensitive to the light in the 300-700nm wavelength spectrum. Their drawbacks compared to the traditional photomultiplier tubes are high dark count rates, after-pulsing and optical cross-talk contributions, and intrinsic gains strongly dependent on temperature. Nonetheless, for a single pixel, the dark count rate is well below the Night Sky Background, the effects of cross-talk and afterpulses are typically lower than 20%, and the gain can be kept stable against temperature variations by means of adequate bias voltage compensation strategies. This work presents and discusses some experimental results from a large set of measurements performed on the SiPM sensors to be used for the ASTRI SST-2M prototype camera and on recently developed detectors demonstrating outstanding performance for the future evolution of the project in the ASTRI/CTA mini-array.
Earth Observations taken during an Annular Solar Eclipse
2012-05-20
ISS031-E-41594 (20 May 2012) --- This is one of a series of photos taken by Expedition 31 Flight Engineer Don Pettit aboard the International Space Station, showing a shadow of the moon created by the May 20 solar eclipse, as the shadow spreads across cloud cover on Earth. Pettit used a 28-mm lens on a digital still camera to record the image at 23:35:17 GMT. One of the space station’s solar array panels appears at the top of the frame.
Whole blood analysis rotor assembly having removable cellular sedimentation bowl
Burtis, C.A.; Johnson, W.F.
1975-08-26
A rotor assembly for performing photometric analyses using whole blood samples is described. Following static loading of a gross blood sample within a centrally located, removable, cell sedimentation bowl, the red blood cells in the gross sample are centrifugally separated from the plasma, the plasm displaced from the sedimentation bowl, and measured subvolumes of plasma distributed to respective sample analysis cuvettes positioned in an annular array about the rotor periphery. Means for adding reagents to the respective cuvettes are also described. (auth)
CATALYTIC RECOMBINER FOR A NUCLEAR REACTOR
King, L.D.P.
1960-07-01
A hydrogen-oxygen recombiner is described for use with water-boiler type reactors. The catalyst used is the wellknown platinized alumina, and the novelty lies in the structural arrangement used to prevent flashback through the gas input system. The recombiner is cylindrical, the gases at the input end being deflected by a baffle plate through a first flashback shield of steel shot into an annular passage adjacent to and extending the full length of the housing. Below the baffle plate the gases flow first through an outer annular array of alumina pellets which serve as a second flashback shield, a means of distributing the flowing gases evenly and as a means of reducing radiation losses to the walls. Thereafter the gases flow inio the centrally disposed catalyst bed where recombination is effected. The steam and uncombined gases flow into a centrally disposed cylindrical passage inside the catalyst bod and thereafter out through the exit port. A high rate of recombination is effected.
NASA Technical Reports Server (NTRS)
Karimi, Amir
1991-01-01
NASA's effort for the thermal environmental control of the Space Station Freedom is directed towards the design, analysis, and development of an Active Thermal Control System (ATCS). A two phase, flow through condenser/radiator concept was baselined, as a part of the ATCS, for the radiation of space station thermal load into space. The proposed condenser rejects heat through direct condensation of ATCS working fluid (ammonia) in the small diameter radiator tubes. Analysis of the condensation process and design of condenser tubes are based on the available two phase flow models for the prediction of flow regimes, heat transfer, and pressure drops. The prediction formulas use the existing empirical relationships of friction factor at gas-liquid interface. An attempt is made to study the stability of interfacial waves in two phase annular flow. The formulation is presented of a stability problem in cylindrical coordinates. The contribution of fluid viscosity, surface tension, and transverse radius of curvature to the interfacial surface is included. A solution is obtained for Kelvin-Helmholtz instability problem which can be used to determine the critical and most dangerous wavelengths for interfacial waves.
The thickness of the shower disc as observed in showers produced by primaries above 10 (19)eV
NASA Technical Reports Server (NTRS)
Lawrence, M. A.; Watson, A. A.; West, A. A.
1985-01-01
The thickness of the shower disk has been measured in showers initiated by primaries of energy to 10 the 19th power eV using the large area water Cerenkov detectors of the Haverah Park array. Results are presented which (1) provide supporting evidence for the accuracy of analysis procedures in giant showers, (2) offer an evaluation of the mini-array technique for the detection of giant showers and (3) extend earlier work on developmental fluctuations above 10 to the 19th power eV.
Stacked, Filtered Multi-Channel X-Ray Diode Array
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacNeil, Lawrence P.; Dutra, Eric C.; Raphaelian, Mark
2015-08-01
This system meets the need for a low-cost, robust X-ray diode array to use for experiments in hostile environments on multiple platforms, and for experiments utilizing forces that may destroy the diode(s). Since these uses require a small size with a minimal single line-of-sight, a parallel array often cannot be used. So a stacked, filtered multi-channel X-ray diode array was developed that was called the MiniXRD. The design was modeled, built, and tested at National Security Technologies, LLC (NSTec) Livermore Operations (LO) to determine fundamental characteristics. Then, several different systems were fielded as ancillary “ridealong” diagnostics at several national facilitiesmore » to allow us to iteratively improve the design and usability. Presented here are design considerations and experimental results. This filtered diode array is currently at Technical Readiness Level (TRL) 6.« less
Du, Li-Jing; Yi, Ling; Ye, Li-Hong; Chen, Yu-Bo; Cao, Jun; Peng, Li-Qing; Shi, Yu-Ting; Wang, Qiu-Yan; Hu, Yu-Han
2018-02-16
A simple and effective method of miniaturized solid-phase extraction (mini-SPE) was developed for the simultaneous purification and enrichment of macrolide antibiotics (MACs) (i.e. azithromycin, clarithromycin, erythromycin, lincomycin and roxithromycin) from honey and skim milk. Mesoporous MCM-41 silica was synthesized and used as sorbent in mini-SPE. Several key parameters affecting the performance of mini-SPE procedure were thoroughly investigated, including sorbent materials, amount of sorbent and elution solvents. Under the optimized condition, satisfactory linearity (r 2 > 0.99), acceptable precision (RSDs, 0.3-7.1%), high sensitivity (limit of detection in the range of 0.01-0.76 μg/kg), and good recoveries (83.21-105.34%) were obtained. With distinct advantages of simplicity, reliability and minimal sample requirement, the proposed mini-SPE procedure coupled with ultrahigh performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry could become an alternative tool to analyze the residues of MACs in complex food matrixes. Copyright © 2018 Elsevier B.V. All rights reserved.
Focused ultrasound in ophthalmology
Silverman, Ronald H
2016-01-01
The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities. PMID:27757007
Focused ultrasound in ophthalmology.
Silverman, Ronald H
2016-01-01
The use of focused ultrasound to obtain diagnostically significant information about the eye goes back to the 1950s. This review describes the historical and technological development of ophthalmic ultrasound and its clinical application and impact. Ultrasound, like light, can be focused, which is crucial for formation of high-resolution, diagnostically useful images. Focused, single-element, mechanically scanned transducers are most common in ophthalmology. Specially designed transducers have been used to generate focused, high-intensity ultrasound that through thermal effects has been used to treat glaucoma (via ciliodestruction), tumors, and other pathologies. Linear and annular transducer arrays offer synthetic focusing in which precise timing of the excitation of independently addressable array elements allows formation of a converging wavefront to create a focus at one or more programmable depths. Most recently, linear array-based plane-wave ultrasound, in which the array emits an unfocused wavefront and focusing is performed solely on received data, has been demonstrated for imaging ocular anatomy and blood flow. While the history of ophthalmic ultrasound extends back over half-a-century, new and powerful technologic advances continue to be made, offering the prospect of novel diagnostic capabilities.
How useful are the "other" semipermeable membrane devices (SPMDs); the mini-unit (15.2 cm long)?
Goodbred, Steven L.; Bryant, Wade L.; Rosen, Michael R.; Alvarez, David; Spencer, Terri
2009-01-01
Mini (15.2 cm) semipermeable membrane devices (SPMDs) were used successfully in 169 streams from six metropolitan areas of the US to sequester hydrophobic organic compounds (HOCs) that are indicative of urbanization. A microscale assay the P450RGS, which responds to compounds that bind to the aryl hydrocarbon receptor (AhR), and the Fluoroscan, a chemical screen for polycyclic aromatic hydrocarbons (PAHs), were performed on each mini SPMD extract. Results show both tests were sensitive enough to respond in streams with low urbanization and responded exponentially in a predictable way to a gradient of urbanization. Mini SPMDs had sufficient sampling rates to detect HOCs using gas chromatography with mass spectrometric detection (GC/MS) in streams with low levels of urbanization. The total number of HOCs in streams had a linear response to a gradient of urbanization, where 73 of 140 targeted compounds were detected. A diverse group of compounds was found in urban streams including, PAHs, insecticides, herbicides, musk fragrances, waste water treatment compounds and flame retardants. Pentachloroanisole (PCA), a breakdown product of pentachlorophenol (wood preservative), was the most ubiquitous HOC, and was detected in 71% of streams. An evaluation of mini SPMD performance showed they can detect concentrations in water below toxicity benchmarks for many HOCs with the exception of 2,3,7,8 tetrachlorodibenzo-p-dioxin. A comparison of mini SPMDs with full sized (91.4 cm) SPMDs showed they have several distinct advantages. The most notable advantages are their low cost, small size, and reduced chance of vandalism. The greatest limitation is the inability to detect compounds at low concentrations (pg/L). Mini SPMDs perform quite well in a wide array of environmental settings and applications and should be considered as an option in environmental studies.
Moreno, Patricio I; Vilanova, I; Villa-Martínez, R; Garreaud, R D; Rojas, M; De Pol-Holz, R
2014-07-10
Late twentieth-century instrumental records reveal a persistent southward shift of the Southern Westerly Winds during austral summer and autumn associated with a positive trend of the Southern Annular Mode (SAM) and contemporaneous with glacial recession, steady increases in atmospheric temperatures and CO2 concentrations at a global scale. However, despite the clear importance of the SAM in the modern/future climate, very little is known regarding its behaviour during pre-Industrial times. Here we present a stratigraphic record from Lago Cipreses (51°S), southwestern Patagonia, that reveals recurrent ~200-year long dry/warm phases over the last three millennia, which we interpret as positive SAM-like states. These correspond in timing with the Industrial revolution, the Mediaeval Climate Anomaly, the Roman and Late Bronze Age Warm Periods and alternate with cold/wet multi-centennial phases in European palaeoclimate records. We conclude that SAM-like changes at centennial timescales in southwestern Patagonia represent in-phase interhemispheric coupling of palaeoclimate over the last 3,000 years through atmospheric teleconnections.
Hydrodynamic stability and Ti-tracer distribution in low-adiabat OMEGA direct-drive implosions
NASA Astrophysics Data System (ADS)
Joshi, Tirtha R.
We discuss the hydrodynamic stability of low-adiabat OMEGA direct-drive implosions based on results obtained from simultaneous emission and absorption spectroscopy of a titanium tracer added to the target. The targets were deuterium filled, warm plastic shells of varying thicknesses and filling gas pressures with a submicron Ti-doped tracer layer initially located on the inner surface of the shell. The spectral features from the titanium tracer are observed during the deceleration and stagnation phases of the implosion, and recorded with a time integrated spectrometer (XRS1), streaked crystal spectrometer (SSCA) and three gated, multi-monochromatic X-ray imager (MMI) instruments fielded along quasi-orthogonal lines-of-sight. The time-integrated, streaked and gated data show simultaneous emission and absorption spectral features associated with titanium K-shell line transitions but only the MMI data provides spatially resolved information. The arrays of gated spectrally resolved images recorded with MMI were processed to obtain spatially resolved spectra characteristic of annular contour regions on the image. A multi-zone spectroscopic analysis of the annular spatially resolved spectra permits the extraction of plasma conditions in the core as well as the spatial distribution of tracer atoms. In turn, the titanium atom distribution provides direct evidence of tracer penetration into the core and thus of the hydrodynamic stability of the shell. The observations, timing and analysis indicate that during fuel burning the titanium atoms have migrated deep into the core and thus shell material mixing is likely to impact the rate of nuclear fusion reactions, i.e. burning rate, and the neutron yield of the implosion. We have found that the Ti atom number density decreases towards the center in early deceleration phase, but later in time the trend is just opposite, i.e., it increases towards the center of the implosion core. This is in part a consequence of the convergent effect of spherical geometry. The spatial profiles of Ti areal densities in the implosion core are extracted from space-resolved spectra and also evaluated using 1D spherical scaling. The trends are similar to the Ti number density spatial profiles. The areal densities extracted from data and 1D spherical scaling are very comparable in the outer spherical zones of the implosion core but significantly deviate in the innermost zone. We have observed that approximately 85% of the Ti atoms migrate into the hot core, while 15% of the atoms are still on the shell-fuel interface and contributing to the absorption. In addition, a method to extract the hot spot size based on the formation of the absorption feature in a sequence of annular spectra will be discussed. Results and trends are discussed as a function of target shell thickness and filling pressure, and laser pulse shape.
Qi, Liming; Xia, Yong; Qi, Wenjing; Gao, Wenyue; Wu, Fengxia; Xu, Guobao
2016-01-19
Both a wireless electrochemiluminescence (ECL) electrode microarray chip and the dramatic increase in ECL by embedding a diode in an electromagnetic receiver coil have been first reported. The newly designed device consists of a chip and a transmitter. The chip has an electromagnetic receiver coil, a mini-diode, and a gold electrode array. The mini-diode can rectify alternating current into direct current and thus enhance ECL intensities by 18 thousand times, enabling a sensitive visual detection using common cameras or smart phones as low cost detectors. The detection limit of hydrogen peroxide using a digital camera is comparable to that using photomultiplier tube (PMT)-based detectors. Coupled with a PMT-based detector, the device can detect luminol with higher sensitivity with linear ranges from 10 nM to 1 mM. Because of the advantages including high sensitivity, high throughput, low cost, high portability, and simplicity, it is promising in point of care testing, drug screening, and high throughput analysis.
NEW LENSLET BASED IFS WITH HIGH DETECTOR PIXEL EFFICIENCY
NASA Astrophysics Data System (ADS)
Gong, Qian
2018-01-01
Three IFS types currently used for optical design are: lenslet array, imager slicer, and lenslet array and fiber combined. Lenslet array based Integral Field Spectroscopy (IFS) is very popular for many astrophysics applications due to its compactness, simplicity, as well as cost and mass savings. The disadvantage of lenslet based IFS is its low detector pixel efficiency. Enough spacing is needed between adjacent spectral traces in cross dispersion direction to avoid wavelength cross-talk, because the same wavelength is not aligned to the same column on detector. Such as on a recent exoplanet coronagraph instrument study to support the coming astrophysics decadal survey (LUVOIR), to cover a 45 λ/D Field of View (FOV) with a spectral resolving power of 200 at shortest wavelength, a 4k x 4k detector array is needed. This large format EMCCD pushes the detector into technology development area with a low TRL. Besides the future mission, it will help WFIRST coronagraph IFS by packing all spectra into a smaller area on detector, which will reduce the chance for electrons to be trapped in pixels, and slow the detector degradation during the mission.The innovation we propose here is to increase the detector packing efficiency by grouping a number of lenslets together to form many mini slits. In other words, a number of spots (Point Spread Function at lenslet focus) are aligned into a line to resemble a mini slit. Therefore, wavelength cross-talk is no longer a concern anymore. This combines the advantage of lenslet array and imager slicer together. The isolation rows between spectral traces in cross dispersion direction can be reduced or removed. So the packing efficiency is greatly increased. Furthermore, the today’s microlithography and etching technique is capable of making such a lenslet array, which will relax the detector demand significantly. It will finally contribute to the habitable exoplanets study to analyzing their spectra from direct images. Detailed theory, design, analysis, and fabrication status will be presented.
The limit of the film extraction technique for annular two-phase flow in a small tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helm, D.E.; Lopez de Bertodano, M.; Beus, S.G.
1999-07-01
The limit of the liquid film extraction technique was identified in air-water and Freon-113 annular two-phase flow loops. The purpose of this research is to find the limit of the entrainment rate correlation obtained by Lopez de Bertodano et. al. (1998). The film extraction technique involves the suction of the liquid film through a porous tube and has been widely used to obtain annular flow entrainment and entrainment rate data. In these experiments there are two extraction probes. After the first extraction the entrained droplets in the gas core deposit on the tube wall. A new liquid film develops entirelymore » from liquid deposition and a second liquid film extraction is performed. While it is assumed that the entire liquid film is removed after the first extraction unit, this is not true for high liquid flow. At high liquid film flows the interfacial structure of the film becomes frothy. Then the entire liquid film cannot be removed at the first extraction unit, but continues on and is extracted at the second extraction unit. A simple model to characterize the limit of the extraction technique was obtained based on the hypothesis that the transition occurs due to a change in the wave structure. The resulting dimensionless correlation agrees with the data.« less
The limit of the film extraction technique for annular two-phase flow in a small tube
DOE Office of Scientific and Technical Information (OSTI.GOV)
Helm, D.E.; Lopez de Bertodano, M.; Beus, S.G.
1999-07-01
The limit of the liquid film extraction technique was identified in air-water and Freon-113 annular two-phase flow loops. The purpose of this research is to find the limit of the entrainment rate correlation obtained by Lopez de Bertodano et al. (1998). The film extraction technique involves the suction of the liquid film through a porous tube and has been widely used to obtain annular flow entrainment and entrainment rate data. In the experiments there are two extraction probes. After the first extraction the entrained droplets in the gas core deposit on the tube wall. A new liquid film develops entirelymore » from liquid deposition and a second liquid film extraction is performed. While it is assumed that the entire liquid film is removed after the first extraction unit, this is not true for high liquid flow. At high liquid film flows the interfacial structure of the film becomes frothy. Then the entire liquid film cannot be removed at the first extraction unit, but continues on and is extracted at the second extraction unit. A simple model to characterize the limit of the extraction technique was obtained based on the hypothesis that the transition occurs due to a change in the wave structure. The resulting dimensionless correlation agrees with the data.« less
Atmospheric Science Data Center
2013-04-19
... June 10, 2002 the Moon obscured the central portion of the solar disk in a phenomenon known as an annular solar eclipse. Partial phases of ... to obscure about 75 percent of the solar disk. The two scenes are geolocated to adjacent paths within World Reference System-2. ...
Effect of central obscuration on the LDR point spread function
NASA Technical Reports Server (NTRS)
Vanzyl, Jakob J.
1988-01-01
It is well known that Gaussian apodization of an aperture reduces the sidelobe levels of its point spread function (PSF). In the limit where the standard deviation of the Gaussian function is much smaller than the diameter of the aperture, the sidelobes completely disappear. However, when Gaussian apodization is applied to the Large Deployable Reflector (LDR) array consisting of 84 hexagonal panels, it is found that the sidelobe level only decreases by about 2.5 dB. The reason for this is explained. The PSF is shown for an array consisting of 91 uniformly illuminated hexagonal apertures; this array is identical to the LDR array, except that the central hole in the LDR array is filled with seven additional panels. For comparison, the PSF of the uniformly illuminated LDR array is shown. Notice that it is already evident that the sidelobe structure of the LDR array is different from that of the full array of 91 panels. The PSF's of the same two arrays are shown, but with the illumination apodized with a Gaussian function to have 20 dB tapering at the edges of the arrays. While the sidelobes of the full array have decreased dramatically, those of the LDR array changed in structure, but stayed at almost the same level. This result is not completely surprising, since the Gaussian apodization tends to emphasize the contributions from the central portion of the array; exactly where the hole in the LDR array is located. The two most important conclusions are: the size of the central hole should be minimized, and a simple Gaussian apodization scheme to suppress the sidelobes in the PSF should not be used. A more suitable apodization scheme would be a Gaussian annular ring.
Stacked, filtered multi-channel X-ray diode array
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacNeil, Lawrence; Dutra, Eric; Raphaelian, Mark
2015-08-01
There are many types of X-ray diodes used for X-ray flux or spectroscopic measurements and for estimating the spectral shape of the VUV to soft X-ray spectrum. However, a need exists for a low-cost, robust X-ray diode to use for experiments in hostile environments on multiple platforms, and for experiments that utilize forces that may destroy the diode(s). Since the typical proposed use required a small size with a minimal single line-of-sight, a parallel array could not be used. So, a stacked, filtered multi-channel X-ray diode array was developed, called the MiniXRD. To achieve significant cost savings while maintaining robustnessmore » and ease of field setup, repair, and replacement, we designed the system to be modular. The filters were manufactured in-house and cover the range from 450 eV to 5000 eV. To achieve the line-of-sight accuracy needed, we developed mounts and laser alignment techniques. We modeled and tested elements of the diode design at NSTec Livermore Operations (NSTec / LO) to determine temporal response and dynamic range, leading to diode shape and circuitry changes to optimize impedance and charge storage. The authors fielded individual and stacked systems at several national facilities as ancillary "ride-along" diagnostics to test and improve the design usability. This paper presents the MiniXRD system performance, which supports consideration as a viable low-costalternative for multiple-channel low-energy X-ray measurements. This diode array is currently at Technical Readiness Level (TRL) 6.« less
In-phased second harmonic wave array generation with intra-Talbot-cavity frequency-doubling.
Hirosawa, Kenichi; Shohda, Fumio; Yanagisawa, Takayuki; Kannari, Fumihiko
2015-03-23
The Talbot cavity is one promising method to synchronize the phase of a laser array. However, it does not achieve the lowest array mode with the same phase but the highest array mode with the anti-phase between every two adjacent lasers, which is called out-phase locking. Consequently, their far-field images exhibit 2-peak profiles. We propose intra-Talbot-cavity frequency-doubling. By placing a nonlinear crystal in a Talbot cavity, the Talbot cavity generates an out-phased fundamental wave array, which is converted into an in-phase-locked second harmonic wave array at the nonlinear crystal. We demonstrate numerical calculations and experiments on intra-Talbot-cavity frequency-doubling and obtain an in-phase-locked second harmonic wave array for a Nd:YVO₄ array laser.
A Study of Phased Array Antennas for NASA's Deep Space Network
NASA Technical Reports Server (NTRS)
Jamnejad, Vahraz; Huang, John; Cesarone, Robert J.
2001-01-01
In this paper we briefly discuss various options but focus on the feasibility of the phased arrays as a viable option for this application. Of particular concern and consideration will be the cost, reliability, and performance compared to the present 70-meter antenna system, particularly the gain/noise temperature levels in the receive mode. Many alternative phased arrays including planar horizontal arrays, hybrid mechanically/electronically steered arrays, phased array of mechanically steered reflectors, multi-faceted planar arrays, phased array-fed lens antennas, and planar reflect-arrays are compared and their viability is assessed. Although they have many advantages including higher reliability, near-instantaneous beam switching or steering capability, the cost of such arrays is presently prohibitive and it is concluded that the only viable array options at the present are the arrays of a few or many small reflectors. The active planar phased arrays, however, may become feasible options in the next decade and can be considered for deployment in smaller configurations as supplementary options.
NASA Technical Reports Server (NTRS)
Zimmerman, W. F.; Duderstadt, E. C.; Wein, D.; Titran, R. H.
1978-01-01
A Mini Brayton space power generation system required the development of a Columbium alloy heat exchanger to transfer heat from a radioisotope heat source to a He/Xe working fluid. A light-weight design featured the simultaneous diffusion welding of 148 longitudinal fins in an annular heat exchanger about 9-1/2 in. in diameter, 13-1/2 in. in length and 1/4 in. in radial thickness. To complete the heat exchanger, additional gas ducting elements and attachment supports were added by GTA welding in a vacuum-purged inert atmosphere welding chamber. The development required the modification of an existing large size hot isostatic press to achieve HIP capabilities of 2800 F and 10,000 psi for at least 3 hr. Excellent diffusion welds were achieved in a high-quality component which met all system requirements.
NASA Astrophysics Data System (ADS)
Diodato, A.; Cafarelli, A.; Schiappacasse, A.; Tognarelli, S.; Ciuti, G.; Menciassi, A.
2018-02-01
High intensity focused ultrasound (HIFU) is an emerging therapeutic solution that enables non-invasive treatment of several pathologies, mainly in oncology. On the other hand, accurate targeting of moving abdominal organs (e.g. liver, kidney, pancreas) is still an open challenge. This paper proposes a novel method to compensate the physiological respiratory motion of organs during HIFU procedures, by exploiting a robotic platform for ultrasound-guided HIFU surgery provided with a therapeutic annular phased array transducer. The proposed method enables us to keep the same contact point between the transducer and the patient’s skin during the whole procedure, thus minimizing the modification of the acoustic window during the breathing phases. The motion of the target point is compensated through the rotation of the transducer around a virtual pivot point, while the focal depth is continuously adjusted thanks to the axial electronically steering capabilities of the HIFU transducer. The feasibility of the angular motion compensation strategy has been demonstrated in a simulated respiratory-induced organ motion environment. Based on the experimental results, the proposed method appears to be significantly accurate (i.e. the maximum compensation error is always under 1 mm), thus paving the way for the potential use of this technique for in vivo treatment of moving organs, and therefore enabling a wide use of HIFU in clinics.
Symmetric aluminum-wire arrays generate high-quality Z pinches at large array radii
NASA Astrophysics Data System (ADS)
Sanford, T. W. L.; Mock, R. C.; Spielman, R. B.; Peterson, D. L.; Mosher, D.; Roderick, N. F.
1998-10-01
A Saturn-accelerator study of annular, aluminum-wire array, Z-pinch implosions, in the calculated high-wire-number plasma-shell regime [Phys. Rev. Lett. 77, 5063 (1996)], shows that the radiated x-ray pulse width increases from about 4 nsec to about 7 nsec, when the radius of the array is increased from 8.75 to 20 mm at a fixed array mass of 0.6 mg. Eulerian radiation- magnetohydrodynamic code (E-RMHC) simulations in the r-z plane suggest that this pulse-width increase with radius is due to the faster growth of the shell thickness (that arises from a two-stage development in the magnetic Rayleigh-Taylor instability) relative to the increase in the shell implosion velocity. Over the array radii explored, the measured peak total x-ray power of ˜40 TW and energy of ˜325 kJ show little change outside of a ±15% shot-to-shot fluctuation and are consistent with the E-RMHC simulations. Similarly, the measured peak K-shell (lines plus continuum) power of ˜8 TW and energy of ˜70 kJ show little change with radius. The minimal change in K-shell yield is in agreement with simple K-shell radiation scaling models that assume a fixed radial compression for all initial array radii. These results suggest that the improved uniformity provided by the large number of wires in the initial array reduces the disruptive effects of the Rayleigh-Taylor instability observed in small-wire-number imploding loads.
Nagatani, Kosuke; Shihata, Yoshinori; Matsushita, Takahiro; Tsukagoshi, Kazuhiko
2016-01-01
Ionic liquid aqueous two-phase systems were delivered into a capillary tube to achieve tube radial distribution flow (TRDF) or annular flow in a microspace. The phase diagram, viscosity of the phases, and TRDF image of the 1-butyl-3-methylimidazolium chloride and NaOH system were examined. The TRDF was formed with inner ionic liquid-rich and outer ionic liquid-poor phases in the capillary tube. The phase configuration was explained using the viscous dissipation principle. We also examined the distribution of rhodamine B in a three-branched microchannel on a microchip with ionic liquid aqueous two-phase systems for the first time.
Study of gas-water flow in horizontal rectangular channels
NASA Astrophysics Data System (ADS)
Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.
2015-09-01
The two-phase flow in the narrow short horizontal rectangular channels 1 millimeter in height was studied experimentally. The features of formation of the two-phase flow were studied in detail. It is shown that with an increase in the channel width, the region of the churn and bubble regimes increases, compressing the area of the jet flow. The areas of the annular and stratified flow patterns vary insignificantly.
Microfluidic step-emulsification in a cylindrical geometry
NASA Astrophysics Data System (ADS)
Chakraborty, Indrajit; Leshansky, Alexander M.
2016-11-01
The model microfluidic device for high-throughput droplet generation in a confined cylindrical geometry is investigated numerically. The device comprises of core-annular pressure-driven flow of two immiscible viscous liquids through a cylindrical capillary connected co-axially to a tube of a larger diameter through a sudden expansion, mimicking the microfluidic step-emulsifier (1). To study this problem, the numerical simulations of axisymmetric Navier-Stokes equations have been carried out using an interface capturing procedure based on coupled level set and volume-of-fluid (CLSVOF) methods. The accuracy of the numerical method was favorably tested vs. the predictions of the linear stability analysis of core-annular two-phase flow in a cylindrical capillary. Three distinct flow regimes can be identified: the dripping (D) instability near the entrance to the capillary, the step- (S) and the balloon- (B) emulsification at the step-like expansion. Based on the simulation results we present the phase diagram quantifying transitions between various regimes in plane of the capillary number and the flow-rate ratio. MICROFLUSA EU H2020 project.
Wang, Guojian; Cai, Wenju
2013-01-01
The positive phase of the El Niño-Southern Oscillation (ENSO) increases global mean temperature, and contributes to a negative phase of the Southern Annular Mode (SAM), the dominant mode of climate variability in the Southern Hemisphere. This interannual relationship of a high global mean temperature associated with a negative SAM, however, is opposite to the relationship between their trends under greenhouse warming. We show that over much of the 20th century this relationship undergoes multidecadal fluctuations depending on the intensity of ENSO. During the period 1925–1955, subdued ENSO activities weakened the relationship. However, a similar weakening has occurred since the late 1970s despite the strong ENSO. We demonstrate that this recent weakening is induced by climate change in the Southern Hemisphere. Our result highlights a rare situation in which climate change signals emerge against an opposing property of interannual variability, underscoring the robustness of the recent climate change. PMID:23784087
1979-12-01
AD-AOBS 567 ITT GILFILLAN VAN NUYS CA F/6 17/9 CONF4UTATING FEED ASSEMBLY. 1W DEC 79 R WOL.FSON F19628-79-C-OOSS UNCLASSIFIED RADC -TR79303 NI. 1i.ll...INTRODUCTION 9 2 COMMUTATING FEED ASSEMBLY REQUIREMENTS 10 . 3 TECHNICAL PROBLEMS 11 1: 3.1 System Design 12 3.1.1 Radius of Circular Array 12 3.1.2 Design...Support Structure 16 3.3 Annular Rotary Coupler 16 3.4 Stripline Feed Network 17 w V.3.4.1 Range of Coupling Values vs. Percent Power into Load 17 3.4.2
Sub-barrier fusion cross section measurements with STELLA
NASA Astrophysics Data System (ADS)
Heine, M.; Courtin, S.; Fruet, G.; Jenkins, D. G.; Montanari, D.; Adsley, P.; Beck, C.; Della Negra, S.; Dené, P.; Haas, F.; Hammache, F.; Heitz, G.; Kirsebom, O. S.; Krauth, M.; Lesrel, J.; Meyer, A.; Morris, L.; Regan, P. H.; Richer, M.; Rudigier, M.; de Séréville, N.; Stodel, C.
2018-01-01
The experimental setup STELLA (STELlar LAboratory) is designed for the measurement of deep sub-barrier light heavy ion fusion cross sections. For background suppression the γ-particle coincidence technique is used. In this project, LaBr3 detectors from the UK FATIMA (FAst TIMing Array) collaboration are combined with annular silicon strip detectors customized at IPHC-CNRS, Strasbourg, and the setup is located at Andromède, IPN, Orsay. The commissioning of the experimental approach as well as a sub-barrier 12C +12C → 24Mg∗ cross section measurement campaign are carried out.
Earth Observations taken during an Annular Solar Eclipse
2012-05-20
ISS031-E-41622 (20 May 2012) --- This is one of a series of photos taken by Expedition 31 Flight Engineer Don Pettit aboard the International Space Station, at the time located over the Western Pacific, showing a shadow of the moon created by the May 20 solar eclipse, as the shadow spreads across cloud cover on Earth. Pettit used a 28-mm lens on a digital still camera to record the image at 23:36:45 GMT. One of the space station’s solar array panels appears at the top of the frame.
Earth Observations taken during an Annular Solar Eclipse
2012-05-20
ISS031-E-41595 (20 May 2012) --- This is one of a series of photos taken by Expedition 31 Flight Engineer Don Pettit aboard the International Space Station, at the time located over the Western Pacific, showing a shadow of the moon created by the May 20 solar eclipse, as the shadow spreads across cloud cover on Earth. Pettit used a 28-mm lens on a digital still camera to record the image at 23:35:36 GMT. One of the space station’s solar array panels appears at the top of the frame.
Hou, Shulian; Xie, Huantong; Chen, Wei; Wang, Guangxin; Zhao, Qiang; Li, Shiyu
2014-10-01
In the development of radio frequency (RF) coils for better quality of the mini-type permanent magnetic resonance imager for using in the small animal imaging, the solenoid RF coil has a special advantage for permanent magnetic system based on analyses of various types.of RF coils. However, it is not satisfied for imaging if the RF coils are directly used. By theoretical analyses of the magnetic field properties produced from the solenoid coil, the research direction was determined by careful studies to raise further the uniformity of the magnetic field coil, receiving coil sensitivity for signals and signal-to-noise ratio (SNR). The method had certain advantages and avoided some shortcomings of the other different coil types, such as, birdcage coil, saddle shaped coil and phased array coil by using the alloy materials (from our own patent). The RF coils were designed, developed and made for keeled applicable to permanent magnet-type magnetic resonance imager, multi-coil combination-type, single-channel overall RF receiving coil, and applied for a patent. Mounted on three instruments (25 mm aperture, with main magnetic field strength of 0.5 T or 1.5 T, and 50 mm aperture, with main magnetic field strength of 0.48 T), we performed experiments with mice, rats, and nude mice bearing tumors. The experimental results indicated that the RF receiving coil was fully applicable to the permanent magnet-type imaging system.
NASA Johnson Space Center: Mini AERCam Testing with GSS6560
NASA Technical Reports Server (NTRS)
Cryant, Scott P.
2004-01-01
This slide presentation reviews the testing of the Miniature Autonomous Extravehicular Robotic Camera (Mini AERCam) with the GPS/SBAS simulation system, GSS6560. There is a listing of several GPS based programs at NASA Johnson, including the testing of Shuttle testing of the GPS system. Including information about Space Integrated GPS/INS (SIGI) testing. There is also information about the standalone ISS SIGI test,and testing of the SIGI for the Crew Return Vehicle. The Mini AERCam is a small, free-flying camera for remote inspections of the ISS, it uses precise relative navigation with differential carrier phase GPS to provide situational awareness to operators. The closed loop orbital testing with and without the use of the GSS6550 system of the Mini AERCam system is reviewed.
Method of constructing dished ion thruster grids to provide hole array spacing compensation
NASA Technical Reports Server (NTRS)
Banks, B. A. (Inventor)
1976-01-01
The center-to-center spacings of a photoresist pattern for an array of holes applied to a thin metal sheet are increased by uniformly stretching the thin metal sheet in all directions along the plane of the sheet. The uniform stretching is provided by securely clamping the periphery of the sheet and applying an annular force against the face of the sheet, within the periphery of the sheet and around the photoresist pattern. The technique is used in the construction of ion thruster grid units where the outer or downstream grid is subjected to uniform stretching prior to convex molding. The technique provides alignment of the holes of grid pairs so as to direct the ion beamlets in a direction parallel to the axis of the grid unit and thereby provide optimization of the available thrust.
NASA Astrophysics Data System (ADS)
Zubov, N. O.; Kaban'kov, O. N.; Yagov, V. V.; Sukomel, L. A.
2017-12-01
Wide use of natural circulation loops operating at low redused pressures generates the real need to develop reliable methods for predicting flow regimes and friction pressure drop for two-phase flows in this region of parameters. Although water-air flows at close-to-atmospheric pressures are the most widely studied subject in the field of two-phase hydrodynamics, the problem of reliably calculating friction pressure drop can hardly be regarded to have been fully solved. The specific volumes of liquid differ very much from those of steam (gas) under such conditions, due to which even a small change in flow quality may cause the flow pattern to alter very significantly. Frequently made attempts to use some or another universal approach to calculating friction pressure drop in a wide range of steam quality values do not seem to be justified and yield predicted values that are poorly consistent with experimentally measured data. The article analyzes the existing methods used to calculate friction pressure drop for two-phase flows at low pressures by comparing their results with the experimentally obtained data. The advisability of elaborating calculation procedures for determining the friction pressure drop and void fraction for two-phase flows taking their pattern (flow regime) into account is demonstrated. It is shown that, for flows characterized by low reduced pressures, satisfactory results are obtained from using a homogeneous model for quasi-homogeneous flows, whereas satisfactory results are obtained from using an annular flow model for flows characterized by high values of void fraction. Recommendations for making a shift from one model to another in carrying out engineering calculations are formulated and tested. By using the modified annular flow model, it is possible to obtain reliable predictions for not only the pressure gradient but also for the liquid film thickness; the consideration of droplet entrainment and deposition phenomena allows reasonable corrections to be introduced into calculations. To the best of the authors' knowledge, it is for the first time that the entrainment of droplets from the film surface is taken into consideration in the dispersed-annular flow model.
FLUID MECHANICS AND TANKAGE DESIGN FOR LOW GRAVITY ENVIRONMENT
tankage delivers only single-phase propellants. The requirements for feed systems of electric engines are described briefly. Also, the 1.85-second drop...direction of mass transfer in tapered tubes and liquid-vapor interface shapes in an annular space between concentric cylinders. Possible feed systems
The Galactic Centre Mini-Spiral in the MM-Regime
NASA Technical Reports Server (NTRS)
Kunneriath, D.; Eckart, A.; Vogel, S. N.; Teuben, P.; Muzic, I.; Schoedel, R.; Garcia-Marin, M.; Moultaka, J.; Staguhn, J.; Straubmeier, C.;
2012-01-01
Context: The mini-spiral is a feature of the interstellar medium in the central approx.2 pc of the Galactic center. It is composed of several streamers of dust and ionised and atomic gas with temperatures between a few 100 K to 10(exp 4) K. There is evidence that these streamers are related to the so-called circumnuclear disk of molecular gas and are ionized by photons from massive, hot stars in the central parsec. Aims: We attempt to constrain the emission mechanisms and physical properties of the ionized gas and dust of the mini-spiral region with the help of our multiwavelength data sets. Methods: Our observations were carried out at 1.3 mm and 3 mm with the mm interferometric array CARMA in California in March and April 2009, with the MIR instrument VISIR at ESO's VLT in June 2006, and the NIR Bry with VLT NACO in August 2009. Results: We present high resolution maps of the mini-spiral, and obtain a spectral index of 0.5 +/- 0.25 for Sgr A *, indicating an inverted synchrotron spectrum. We find electron densities within the range 0.8-1.5 x 10(exp 4)/cu cm for the mini-spiral from the radio continuum maps, along with a dust mass contribution of approx. 0.25 Mo from the MIR dust continuum. and extinctions ranging from 1.8-3 at 2.16 microns in the Bry line. Conclusions: We observe a mixture of negative and positive spectral indices in our 1.3 mm and 3 mm observations of the extended emission of the mini-spiral, which we interpret as evidence that there are a range of contributions to the thermal free-free emission by the ionized gas emission and by dust at 1.3 mm.
Lehotay, Steven J; Han, Lijun; Sapozhnikova, Yelena
2016-01-01
This study demonstrated the application of an automated high-throughput mini-cartridge solid-phase extraction (mini-SPE) cleanup for the rapid low-pressure gas chromatography-tandem mass spectrometry (LPGC-MS/MS) analysis of pesticides and environmental contaminants in QuEChERS extracts of foods. Cleanup efficiencies and breakthrough volumes using different mini-SPE sorbents were compared using avocado, salmon, pork loin, and kale as representative matrices. Optimum extract load volume was 300 µL for the 45 mg mini-cartridges containing 20/12/12/1 (w/w/w/w) anh. MgSO 4 /PSA (primary secondary amine)/C 18 /CarbonX sorbents used in the final method. In method validation to demonstrate high-throughput capabilities and performance results, 230 spiked extracts of 10 different foods (apple, kiwi, carrot, kale, orange, black olive, wheat grain, dried basil, pork, and salmon) underwent automated mini-SPE cleanup and analysis over the course of 5 days. In all, 325 analyses for 54 pesticides and 43 environmental contaminants (3 analyzed together) were conducted using the 10 min LPGC-MS/MS method without changing the liner or retuning the instrument. Merely, 1 mg equivalent sample injected achieved <5 ng g -1 limits of quantification. With the use of internal standards, method validation results showed that 91 of the 94 analytes including pairs achieved satisfactory results (70-120 % recovery and RSD ≤ 25 %) in the 10 tested food matrices ( n = 160). Matrix effects were typically less than ±20 %, mainly due to the use of analyte protectants, and minimal human review of software data processing was needed due to summation function integration of analyte peaks. This study demonstrated that the automated mini-SPE + LPGC-MS/MS method yielded accurate results in rugged, high-throughput operations with minimal labor and data review.
LeRC NATR Free-Jet Development
NASA Technical Reports Server (NTRS)
Long-Davis, M.; Cooper, B. A.
1999-01-01
The Nozzle Acoustic Test Rig (NATR) was developed to provide additional test capabilities at Lewis needed to meet HSR program goals. The NATR is a large f ree-jet facility (free-jet diameter = 53 in.) with a design Mach number of 0.3. It is located inside a geodesic dome, adjacent to the existing Powered Lift Facility (PLF). The NATR allows nozzle concepts to be acoustically assessed for far-field (approximately 50 feet) noise characteristics under conditions simulating forward flight. An ejector concept was identified as a means of supplying the required airflow for this free-jet facility. The primary stream is supplied through a circular array of choked nozzles and the resulting low pressure in the constant, annular- area mixing section causes a "pumping" action that entrains the secondary stream. The mixed flow expands through an annular diffuser and into a plenum chamber. Once inside the plenum, the flow passes over a honeycomb/screen combination intended to remove large disturbances and provide uniform flow. The flow accelerates through an elliptical contraction section where it achieves a free-jet Mach number of up to 0.3.
Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays
2010-02-28
Final Project Report Contract/Grant Title: Development of High-Fill-Factor Large-Aperture Micromirrors for Agile Optical Phased Arrays...factor (HFF) micromirror array (MMA) has been proposed, fabricated and tested. Optical-phased-array (OPA) beam steering based on the HFF MMA has also...electrically tuned to multiple 2. 1. Background High-fill-factor (HFF) micromirror arrays (MMAs) can form optical phased arrays (OPAs) for laser beam
Optimizing Satellite Communications With Adaptive and Phased Array Antennas
NASA Technical Reports Server (NTRS)
Ingram, Mary Ann; Romanofsky, Robert; Lee, Richard Q.; Miranda, Felix; Popovic, Zoya; Langley, John; Barott, William C.; Ahmed, M. Usman; Mandl, Dan
2004-01-01
A new adaptive antenna array architecture for low-earth-orbiting satellite ground stations is being investigated. These ground stations are intended to have no moving parts and could potentially be operated in populated areas, where terrestrial interference is likely. The architecture includes multiple, moderately directive phased arrays. The phased arrays, each steered in the approximate direction of the satellite, are adaptively combined to enhance the Signal-to-Noise and Interference-Ratio (SNIR) of the desired satellite. The size of each phased array is to be traded-off with the number of phased arrays, to optimize cost, while meeting a bit-error-rate threshold. Also, two phased array architectures are being prototyped: a spacefed lens array and a reflect-array. If two co-channel satellites are in the field of view of the phased arrays, then multi-user detection techniques may enable simultaneous demodulation of the satellite signals, also known as Space Division Multiple Access (SDMA). We report on Phase I of the project, in which fixed directional elements are adaptively combined in a prototype to demodulate the S-band downlink of the EO-1 satellite, which is part of the New Millennium Program at NASA.
Split ring floating air riding seal for a turbine
Mills, Jacob A
2015-11-03
A floating air riding seal for a gas turbine engine with a rotor and a stator, an annular piston chamber with an axial moveable annular piston assembly within the annular piston chamber, an annular cavity formed on the annular piston assembly that faces a seal surface on the rotor, and a central passage connecting the annular cavity to the annular piston chamber to supply compressed air to the seal face, where the annular piston assembly is a split piston assembly to maintain a tight seal as coning of the rotor disk occurs.
The ICT monitoring system of the ASTRI SST-2M prototype proposed for the Cherenkov Telescope Array
NASA Astrophysics Data System (ADS)
Gianotti, F.; Bruno, P.; Tacchini, A.; Conforti, V.; Fioretti, V.; Tanci, C.; Grillo, A.; Leto, G.; Malaguti, G.; Trifoglio, M.
2016-08-01
In the framework of the international Cherenkov Telescope Array (CTA) observatory, the Italian National Institute for Astrophysics (INAF) has developed a dual mirror, small sized, telescope prototype (ASTRI SST-2M), installed in Italy at the INAF observing station located at Serra La Nave, Mt. Etna. The ASTRI SST-2M prototype is the basis of the ASTRI telescopes that will form the mini-array proposed to be installed at the CTA southern site during its preproduction phase. This contribution presents the solutions implemented to realize the monitoring system for the Information and Communication Technology (ICT) infrastructure of the ASTRI SST-2M prototype. The ASTRI ICT monitoring system has been implemented by integrating traditional tools used in computer centers, with specific custom tools which interface via Open Platform Communication Unified Architecture (OPC UA) to the Alma Common Software (ACS) that is used to operate the ASTRI SST-2M prototype. The traditional monitoring tools are based on Simple Network Management Protocol (SNMP) and commercial solutions and features embedded in the devices themselves. They generate alerts by email and SMS. The specific custom tools convert the SNMP protocol into the OPC UA protocol and implement an OPC UA server. The server interacts with an OPC UA client implemented in an ACS component that, through the ACS Notification Channel, sends monitor data and alerts to the central console of the ASTRI SST-2M prototype. The same approach has been proposed also for the monitoring of the CTA onsite ICT infrastructures.
ERIC Educational Resources Information Center
Christensen, Douglas; Jovic, Marko
2006-01-01
This report describes a molecular biotechnology-based laboratory curriculum developed to accompany an undergraduate genetics course. During the course of a semester, students researched the pathogen, developed a research question, designed experiments, and performed transcriptional analysis of a set of genes that confer virulence to the food-borne…
Update on the MiniCLEAN dark matter experiment
Rielage, K.; Akashi-Ronquest, M.; Bodmer, M.; ...
2015-03-24
The direct search for dark matter is entering a period of increased sensitivity to the hypothetical Weakly Interacting Massive Particle (WIMP). One such technology that is being examined is a scintillation only noble liquid experiment, MiniCLEAN. MiniCLEAN utilizes over 500 kg of liquid cryogen to detect nuclear recoils from WIMP dark matter and serves as a demonstration for a future detector of order 50 to 100 tonnes. The liquid cryogen is interchangeable between argon and neon to study the A² dependence of the potential signal and examine backgrounds. MiniCLEAN utilizes a unique modular design with spherical geometry to maximize themore » light yield using cold photomultiplier tubes in a single-phase detector. Pulse shape discrimination techniques are used to separate nuclear recoil signals from electron recoil backgrounds. MiniCLEAN will be spiked with additional ³⁹Ar to demonstrate the effective reach of the pulse shape discrimination capability. Assembly of the experiment is underway at SNOLAB and an update on the project is given.« less
Annular flow in rod-bundle: Effect of spacer on disturbance waves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pham, Son H.; Kunugi, Tomoaki
2016-08-01
A high-speed camera technique is used to study the effect of spacers on the disturbance waves present in annular two-phase flow within a rod-bundle geometry. Images obtained using a backlight configuration to visualize the spacer-wave interactions at the micro-scale resolution (in time and space) are discussed. This paper also presents additional images obtained using a reflected light configuration which provides new observations of the disturbance waves. These images show the separation effect caused by the spacer on the liquid film in which the size of generated liquid droplets can be controlled by the gas superficial velocity. Furthermore, the data confirmmore » that the spacer breaks the circumferential coherent structures of the waves.« less
Large angle magnetic suspension test fixture
NASA Technical Reports Server (NTRS)
Britcher, Colin P.
1993-01-01
Progress made under the subject grant in the period from 1 Nov. 1992 to 31 May 1993 is presented. The research involves the continued development of the Large Angle Magnetic Suspension Test Fixture (LAMSTF) and also the recommissioning of an additional piece of exisiting hardware. During the period in question, the initial configuration of LAMSTF was completed and made routinely and reliably operational. A digital phase advance controller was completed and documented. The goal of a controlled 360 deg rotation was achieved. Work started on the recommissioning of the Annular Suspension and Pointing System (ASPS). Work completed during the report period included: modeling; position sensing; controller; support of the Second International Symposium on Magnetic Suspension Technology; and recommissioning of the Annular Suspension and Pointing System.
NASA Astrophysics Data System (ADS)
Filoux, Erwan; Sampathkumar, Ashwin; Chitnis, Parag V.; Aristizábal, Orlando; Ketterling, Jeffrey A.
2013-05-01
This paper presents a combined ultrasound and photoacoustic (PA) imaging (PAI) system used to obtain high-quality, co-registered images of mouse-embryo anatomy and vasculature. High-frequency ultrasound (HFU, >20 MHz) is utilized to obtain high-resolution anatomical images of small animals while PAI provides high-contrast images of the vascular network. The imaging system is based on a 40 MHz, 5-element, 6 mm aperture annular-array transducer with a 800 μm diameter hole through its central element. The transducer was integrated in a cage-plate assembly allowing for a collimated laser beam to pass through the hole so that the optical and acoustic beams were collinear. The assembly was mounted on a two-axis, motorized stage to enable the simultaneous acquisition of co-registered HFU and PA volumetric data. Data were collected from all five elements in receive and a synthetic-focusing algorithm was applied in post-processing to beamform the data and increase the spatial resolution and depth-of-field (DOF) of the HFU and PA images. Phantom measurements showed that the system could achieve high-resolution images (down to 90 μm for HFU and 150 μm for PAI) and a large DOF of >8 mm. Volume renderings of a mouse embryo showed that the scanner allowed for visualizing morphologically precise anatomy of the entire embryo along with corresponding co-registered vasculature. Major head vessels, such as the superior sagittal sinus or rostral vein, were clearly identified as well as limb bud vasculature.
Gibbs, B F; Alli, I; Mulligan, C N
1996-02-23
A method for the determination of aspartame (N-L-alpha-aspartyl-L-phenylalanine methyl ester) and its metabolites, applicable on a routine quality assurance basis, is described. Liquid samples (diet Coke, 7-Up, Pepsi, etc.) were injected directly onto a mini-cartridge reversed-phase column on a high-performance liquid chromatographic system, whereas solid samples (Equal, hot chocolate powder, pudding, etc.) were extracted with water. Optimising chromatographic conditions resulted in resolved components of interest within 12 min. The by-products were confirmed by mass spectrometry. Although the method was developed on a two-pump HPLC system fitted with a diode-array detector, it is straightforward and can be transformed to the simplest HPLC configuration. Using a single-piston pump (with damper), a fixed-wavelength detector and a recorder/integrator, the degradation of products can be monitored as they decompose. The results obtained were in harmony with previously reported tedious methods. The method is simple, rapid, quantitative and does not involve complex, hazardous or toxic chemistry.
Phased Antenna Array for Global Navigation Satellite System Signals
NASA Technical Reports Server (NTRS)
Turbiner, Dmitry (Inventor)
2015-01-01
Systems and methods for phased array antennas are described. Supports for phased array antennas can be constructed by 3D printing. The array elements and combiner network can be constructed by conducting wire. Different parameters of the antenna, like the gain and directivity, can be controlled by selection of the appropriate design, and by electrical steering. Phased array antennas may be used for radio occultation measurements.
Two-phase flow in short horizontal rectangular microchannels with a height of 300 μm
NASA Astrophysics Data System (ADS)
Chinnov, E. A.; Ron'shin, F. V.; Kabov, O. A.
2015-09-01
The two-phase flow in a narrow short horizontal channel with a rectangular cross section is studied experimentally. The channel has a width of 10, 20, or 30 mm and a height of 300 μm. The specifics of formation of such two-phase flows are investigated. It is demonstrated that the regions of bubble and churn flow regimes grow and constrain the region of jet flow as the channel gets wider. The boundaries of the regions of annular and stratified flow regimes remain almost unaltered.
Shi, Jun; Green, Kevin E.
2014-07-22
An example gas turbine engine shroud includes a first annular ceramic wall having an inner side for resisting high temperature turbine engine gasses and an outer side with a plurality of radial slots. A second annular metallic wall is positioned radially outwardly of and enclosing the first annular ceramic wall and has a plurality of tabs in communication with the slot of the first annular ceramic wall. The tabs of the second annular metallic wall and slots of the first annular ceramic wall are in communication such that the first annular ceramic wall and second annular metallic wall are affixed.
Floating air riding seal for a turbine
Ebert, Todd A
2016-08-16
A floating air riding seal for a gas turbine engine with a rotor and a stator, an annular piston chamber with an axial moveable annular piston assembly within the annular piston chamber formed in the stator, an annular cavity formed on the annular piston assembly that faces a seal surface on the rotor, where the axial moveable annular piston includes an inlet scoop on a side opposite to the annular cavity that scoops up the swirling cooling air and directs the cooling air to the annular cavity to form an air cushion with the seal surface of the rotor.
Clusters of Galaxies and the Cosmic Web with Square Kilometre Array
NASA Astrophysics Data System (ADS)
Kale, Ruta; Dwarakanath, K. S.; Vir Lal, Dharam; Bagchi, Joydeep; Paul, Surajit; Malu, Siddharth; Datta, Abhirup; Parekh, Viral; Sharma, Prateek; Pandey-Pommier, Mamta
2016-12-01
The intra-cluster and inter-galactic media that pervade the large scale structure of the Universe are known to be magnetized at sub-micro Gauss to micro Gauss levels and to contain cosmic rays. The acceleration of cosmic rays and their evolution along with that of magnetic fields in these media is still not well understood. Diffuse radio sources of synchrotron origin associated with the Intra-Cluster Medium (ICM) such as radio halos, relics and mini-halos are direct probes of the underlying mechanisms of cosmic ray acceleration. Observations with radio telescopes such as the Giant Metrewave Radio Telescope, the Very Large Array and the Westerbork Synthesis Radio Telescope have led to the discoveries of about 80 such sources and allowed detailed studies in the frequency range 0.15-1.4 GHz of a few. These studies have revealed scaling relations between the thermal and non-thermal properties of clusters and favour the role of shocks in the formation of radio relics and of turbulent re-acceleration in the formation of radio halos and mini-halos. The radio halos are known to occur in merging clusters and mini-halos are detected in about half of the cool-core clusters. Due to the limitations of current radio telescopes, low mass galaxy clusters and galaxy groups remain unexplored as they are expected to contain much weaker radio sources. Distinguishing between the primary and the secondary models of cosmic ray acceleration mechanisms requires spectral measurements over a wide range of radio frequencies and with high sensitivity. Simulations have also predicted weak diffuse radio sources associated with filaments connecting galaxy clusters. The Square Kilometre Array (SKA) is a next generation radio telescope that will operate in the frequency range of 0.05-20 GHz with unprecedented sensitivities and resolutions. The expected detection limits of SKA will reveal a few hundred to thousand new radio halos, relics and mini-halos providing the first large and comprehensive samples for their study. The wide frequency coverage along with sensitivity to extended structures will be able to constrain the cosmic ray acceleration mechanisms. The higher frequency (>5 GHz) observations will be able to use the Sunyaev-Zel'dovich effect to probe the ICM pressure in addition to tracers such as lobes of head-tail radio sources. The SKA also opens prospects to detect the `off-state' or the lowest level of radio emission from the ICM predicted by the hadronic models and the turbulent re-acceleration models.
Phased Arrays of Ground and Airborne Mobile Terminals for Satellite Communications
NASA Technical Reports Server (NTRS)
Huang, John
1996-01-01
Phased array antenna is beginning to play an important in the arena of mobile/satellite communications. Two examples of mobile terminal phased arrays will be shown. Their technical background, challenges, and cost drivers will be discussed. A possible solution to combat some of the deficiencies of the conventional phased array by exploiting the phased reflectarray technology will be briefly presented.
Miniature flowing atmospheric-pressure afterglow ion source for facile interfacing of CE with MS.
Jecklin, Matthias C; Schmid, Stefan; Urban, Pawel L; Amantonico, Andrea; Zenobi, Renato
2010-10-01
Here, we present a miniaturized version of the flowing atmospheric-pressure afterglow (miniFAPA) ion source and use it for sheathless coupling of CE with MS. The simple design of the CE-miniFAPA-MS interface makes it easy to separate the electric potentials used for CE and for ionization. A pneumatically assisted nebulization of the CE effluent transfers the analytes from the liquid phase into the gas phase before they are ionized by interacting with reactive species produced by the FAPA. An important advantage of this interface is its high stability during operation: optimization of five different parameters indicated that the interface is not sensitive to minor deviations from the optimum values. Other advantages include ease of construction and maintenance, as well as relatively low cost. Samples with complex matrices, such as yeast extract, soil extract and urine, spiked with the test compounds, were successfully analyzed using the CE-miniFAPA-MS setup.
Phased Array Beamforming and Imaging in Composite Laminates Using Guided Waves
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Leckey, Cara A. C.; Yu, Lingyu
2016-01-01
This paper presents the phased array beamforming and imaging using guided waves in anisotropic composite laminates. A generic phased array beamforming formula is presented, based on the classic delay-and-sum principle. The generic formula considers direction-dependent guided wave properties induced by the anisotropic material properties of composites. Moreover, the array beamforming and imaging are performed in frequency domain where the guided wave dispersion effect has been considered. The presented phased array method is implemented with a non-contact scanning laser Doppler vibrometer (SLDV) to detect multiple defects at different locations in an anisotropic composite plate. The array is constructed of scan points in a small area rapidly scanned by the SLDV. Using the phased array method, multiple defects at different locations are successfully detected. Our study shows that the guided wave phased array method is a potential effective method for rapid inspection of large composite structures.
Delamination Detection Using Guided Wave Phased Arrays
NASA Technical Reports Server (NTRS)
Tian, Zhenhua; Yu, Lingyu; Leckey, Cara
2016-01-01
This paper presents a method for detecting multiple delaminations in composite laminates using non-contact phased arrays. The phased arrays are implemented with a non-contact scanning laser Doppler vibrometer (SLDV). The array imaging algorithm is performed in the frequency domain where both the guided wave dispersion effect and direction dependent wave properties are considered. By using the non-contact SLDV array with a frequency domain imaging algorithm, an intensity image of the composite plate can be generated for delamination detection. For the proof of concept, a laboratory test is performed using a non-contact phased array to detect two delaminations (created through quasi-static impact test) at different locations in a composite plate. Using the non-contact phased array and frequency domain imaging, the two impact-induced delaminations are successfully detected. This study shows that the non-contact phased array method is a potentially effective method for rapid delamination inspection in large composite structures.
SAPHIRA detector for infrared wavefront sensing
NASA Astrophysics Data System (ADS)
Finger, Gert; Baker, Ian; Alvarez, Domingo; Ives, Derek; Mehrgan, Leander; Meyer, Manfred; Stegmeier, Jörg; Weller, Harald J.
2014-08-01
The only way to overcome the CMOS noise barrier of near infrared sensors used for wavefront sensing and fringe tracking is the amplification of the photoelectron signal inside the infrared pixel by means of the avalanche gain. In 2007 ESO started a program at Selex to develop near infrared electron avalanche photodiode arrays (eAPD) for wavefront sensing and fringe tracking. In a first step the cutoff wavelength was reduced from 4.5 micron to 2.5 micron in order to verify that the dark current scales with the bandgap and can be reduced to less than one electron/ms, the value required for wavefront sensing. The growth technology was liquid phase epitaxy (LPE) with annular diodes based on the loophole interconnect technology. The arrays required deep cooling to 40K to achieve acceptable cosmetic performance at high APD gain. The second step was to develop a multiplexer tailored to the specific application of the GRAVITY instrument wavefront sensors and the fringe tracker. The pixel format is 320x256 pixels. The array has 32 parallel video outputs which are arranged in such a way that the full multiplex advantage is available also for small subwindows. Nondestructive readout schemes with subpixel sampling are possible. This reduces the readout noise at high APD gain well below the subelectron level at frame rates of 1 KHz. The third step was the change of the growth technology from liquid phase epitaxy to metal organic vapour phase epitaxy (MOVPE). This growth technology allows the band structure and doping to be controlled on a 0.1μm scale and provides more flexibility for the design of diode structures. The bandgap can be varied for different layers of Hg(1-x)CdxTe. It is possible to make heterojunctions and apply solid state engineering techniques. The change to MOVPE resulted in a dramatic improvement in the cosmetic quality with 99.97 % operable pixels at an operating temperature of 85K. Currently this sensor is deployed in the 4 wavefront sensors and in the fringe tracker of the VLT instrument GRAVITY. Initial results will be presented. An outlook will be given on the potential of APD technology to be employed in large format near infrared science detectors. Several of the results presented here have also been shown to a different audience at the Scientific Detector Workshop in October 2013 in Florence but this paper has been updated with new results [1].
Pouch, Alison M; Vergnat, Mathieu; McGarvey, Jeremy R; Ferrari, Giovanni; Jackson, Benjamin M; Sehgal, Chandra M; Yushkevich, Paul A; Gorman, Robert C; Gorman, Joseph H
2014-01-01
The basis of mitral annuloplasty ring design has progressed from qualitative surgical intuition to experimental and theoretical analysis of annular geometry with quantitative imaging techniques. In this work, we present an automated three-dimensional (3D) echocardiographic image analysis method that can be used to statistically assess variability in normal mitral annular geometry to support advancement in annuloplasty ring design. Three-dimensional patient-specific models of the mitral annulus were automatically generated from 3D echocardiographic images acquired from subjects with normal mitral valve structure and function. Geometric annular measurements including annular circumference, annular height, septolateral diameter, intercommissural width, and the annular height to intercommissural width ratio were automatically calculated. A mean 3D annular contour was computed, and principal component analysis was used to evaluate variability in normal annular shape. The following mean ± standard deviations were obtained from 3D echocardiographic image analysis: annular circumference, 107.0 ± 14.6 mm; annular height, 7.6 ± 2.8 mm; septolateral diameter, 28.5 ± 3.7 mm; intercommissural width, 33.0 ± 5.3 mm; and annular height to intercommissural width ratio, 22.7% ± 6.9%. Principal component analysis indicated that shape variability was primarily related to overall annular size, with more subtle variation in the skewness and height of the anterior annular peak, independent of annular diameter. Patient-specific 3D echocardiographic-based modeling of the human mitral valve enables statistical analysis of physiologically normal mitral annular geometry. The tool can potentially lead to the development of a new generation of annuloplasty rings that restore the diseased mitral valve annulus back to a truly normal geometry. Copyright © 2014 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.
Signal detectability in diffusive media using phased arrays in conjunction with detector arrays.
Kang, Dongyel; Kupinski, Matthew A
2011-06-20
We investigate Hotelling observer performance (i.e., signal detectability) of a phased array system for tasks of detecting small inhomogeneities and distinguishing adjacent abnormalities in uniform diffusive media. Unlike conventional phased array systems where a single detector is located on the interface between two sources, we consider a detector array, such as a CCD, on a phantom exit surface for calculating the Hotelling observer detectability. The signal detectability for adjacent small abnormalities (2 mm displacement) for the CCD-based phased array is related to the resolution of reconstructed images. Simulations show that acquiring high-dimensional data from a detector array in a phased array system dramatically improves the detectability for both tasks when compared to conventional single detector measurements, especially at low modulation frequencies. It is also observed in all studied cases that there exists the modulation frequency optimizing CCD-based phased array systems, where detectability for both tasks is consistently high. These results imply that the CCD-based phased array has the potential to achieve high resolution and signal detectability in tomographic diffusive imaging while operating at a very low modulation frequency. The effect of other configuration parameters, such as a detector pixel size, on the observer performance is also discussed.
Haze production in the atmospheres of super-Earths and mini-Neptunes: Insight from PHAZER lab
NASA Astrophysics Data System (ADS)
Horst, Sarah; He, Chao; Kempton, Eliza; Moses, Julianne I.; Vuitton, Veronique; Lewis, Nikole
2017-10-01
Super-Earths and mini-Neptunes (~1.2-3 Earth radii) comprise a large fraction of planets in the universe and TESS (Transiting Exoplanet Survey Satellite) will increase the number that are amenable to atmospheric characterization with observatories like JWST (James Webb Space Telescope). These atmospheres should span a large range of temperature and atmospheric composition phase space, with no solar system analogues. Interpretation of current and future atmospheric observations of super-Earths and mini-Neptunes requires additional knowledge about atmospheric chemistry and photochemical haze production. We have experimentally investigated haze formation for H2, H2O, and CO2 dominated atmospheres (100x, 1000x, and 10000x solar metallicity) for a range of temperatures (300 K, 400 K, and 600 K) using the PHAZER (Planetary Haze Research) experiment at Johns Hopkins University. This is a necessary step in understanding which, if any, super-Earths and mini-Neptunes possess the conditions required for efficient production of photochemical haze in their atmospheres. We find that the production rates vary over a few orders of magnitudes with some higher than our nominal Titan experiments. We therefore expect that planets in this temperature and atmospheric composition phase space will exhibit a range of particle concentrations and some may be as hazy as Titan.
Monolithic optical phased-array transceiver in a standard SOI CMOS process.
Abediasl, Hooman; Hashemi, Hossein
2015-03-09
Monolithic microwave phased arrays are turning mainstream in automotive radars and high-speed wireless communications fulfilling Gordon Moores 1965 prophecy to this effect. Optical phased arrays enable imaging, lidar, display, sensing, and holography. Advancements in fabrication technology has led to monolithic nanophotonic phased arrays, albeit without independent phase and amplitude control ability, integration with electronic circuitry, or including receive and transmit functions. We report the first monolithic optical phased array transceiver with independent control of amplitude and phase for each element using electronic circuitry that is tightly integrated with the nanophotonic components on one substrate using a commercial foundry CMOS SOI process. The 8 × 8 phased array chip includes thermo-optical tunable phase shifters and attenuators, nano-photonic antennas, and dedicated control electronics realized using CMOS transistors. The complex chip includes over 300 distinct optical components and over 74,000 distinct electrical components achieving the highest level of integration for any electronic-photonic system.
Phased-array-fed antenna configuration study. Volume 1: Technology assessment
NASA Technical Reports Server (NTRS)
Sorbello, R. M.; Zaghloul, A. I.; Lee, B. S.; Siddiqi, S.; Geller, B. D.; Gerson, H. I.; Srinivas, D. N.
1983-01-01
The status of the technologies for phased-array-fed dual reflector systems is reviewed. The different aspects of these technologies, including optical performances, phased array systems, problems encountered in phased array design, beamforming networks, MMIC design and its incorporation into waveguide systems, reflector antenna structures, and reflector deployment mechanisms are addressed.
Roshani, G H; Karami, A; Khazaei, A; Olfateh, A; Nazemi, E; Omidi, M
2018-05-17
Gamma ray source has very important role in precision of multi-phase flow metering. In this study, different combination of gamma ray sources (( 133 Ba- 137 Cs), ( 133 Ba- 60 Co), ( 241 Am- 137 Cs), ( 241 Am- 60 Co), ( 133 Ba- 241 Am) and ( 60 Co- 137 Cs)) were investigated in order to optimize the three-phase flow meter. Three phases were water, oil and gas and the regime was considered annular. The required data was numerically generated using MCNP-X code which is a Monte-Carlo code. Indeed, the present study devotes to forecast the volume fractions in the annular three-phase flow, based on a multi energy metering system including various radiation sources and also one NaI detector, using a hybrid model of artificial neural network and Jaya Optimization algorithm. Since the summation of volume fractions is constant, a constraint modeling problem exists, meaning that the hybrid model must forecast only two volume fractions. Six hybrid models associated with the number of used radiation sources are designed. The models are employed to forecast the gas and water volume fractions. The next step is to train the hybrid models based on numerically obtained data. The results show that, the best forecast results are obtained for the gas and water volume fractions of the system including the ( 241 Am- 137 Cs) as the radiation source. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Wojciechowski, Bogdan V. (Inventor); Pegg, Robert J. (Inventor)
2003-01-01
A fast-acting valve includes an annular valve seat that defines an annular valve orifice between the edges of the annular valve seat, an annular valve plug sized to cover the valve orifice when the valve is closed, and a valve-plug holder for moving the annular valve plug on and off the annular valve seat. The use of an annular orifice reduces the characteristic distance between the edges of the valve seat. Rather than this distance being equal to the diameter of the orifice, as it is for a conventional circular orifice, the characteristic distance equals the distance between the inner and outer radii (for a circular annulus). The reduced characteristic distance greatly reduces the gap required between the annular valve plug and the annular valve seat for the valve to be fully open, thereby greatly reducing the required stroke and corresponding speed and acceleration of the annular valve plug. The use of a valve-plug holder that is under independent control to move the annular valve plug between its open and closed positions is important for achieving controllable fast operation of the valve.
Transvaginal 3D Image-Guided High Intensity Focused Ultrasound Array
NASA Astrophysics Data System (ADS)
Held, Robert; Nguyen, Thuc Nghi; Vaezy, Shahram
2005-03-01
The goal of this project is to develop a transvaginal image-guided High Intensity Focused Ultrasound (HIFU) device using piezocomposite HIFU array technology, and commercially-available ultrasound imaging. Potential applications include treatment of uterine fibroids and abnormal uterine bleeding. The HIFU transducer was an annular phased array, with a focal length range of 30-60 mm, an elliptically-shaped aperture of 35×60 mm, and an operating frequency of 3 MHz. A pillow-shaped bag with water circulation will be used for coupling the HIFU energy into the tissue. An intra-cavity imaging probe (C9-5, Philips) was integrated with the HIFU array such that the focal axis of the HIFU transducer was within the image plane. The entire device will be covered by a gel-filled condom when inserted in the vaginal cavity. To control it, software packages were developed in the LabView programming environment. An imaging algorithm processed the ultrasound image to remove noise patterns due to the HIFU signal. The device will be equipped with a three-dimensional tracking system, using a six-degrees-of-freedom articulating arm. Necrotic lesions were produced in a tissue-mimicking phantom and a turkey breast sample for all focal lengths. Various HIFU doses allow various necrotic lesion shapes, including thin ellipsoidal, spherical, wide cylindrical, and teardrop-shaped. Software control of the device allows multiple foci to be activated sequentially for desired lesion patterns. Ultrasound imaging synchronization can be achieved using hardware signals obtained from the imaging system, or software signals determined empirically for various imaging probes. The image-guided HIFU device will provide a valuable tool in visualization of uterine fibroid tumors for the purposes of planning and subsequent HIFU treatment of the tumor, all in a 3D environment. The control system allows for various lesions of different shapes to be optimally positioned in the tumor to cover the entire tumor volume. Real-time ultrasound imaging for guidance and monitoring of HIFU treatment provides an effective method for outpatient-based procedures.
External Survey from Windows in Mini-Research Modules and Pirs Docking Compartment
2013-04-03
ISS035-E-013901 (3 April 2013) --- This close-up picture of a Zvezda Service Module array, reflecting bright rays of the sun, thus creating an artistic scene, was photographed on April 3 by one of the Expedition 35 crew members as part of an External Survey from International Space Station windows that was recently added to the crew's task list.
NASA Technical Reports Server (NTRS)
Taylor, Lawrence W., Jr.; Rajiyah, H.
1991-01-01
Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.
A 2x2 W-Band Reference Time-Shifted Phase-Locked Transmitter Array in 65nm CMOS Technology
NASA Technical Reports Server (NTRS)
Tang, Adrian; Virbila, Gabriel; Hsiao, Frank; Wu, Hao; Murphy, David; Mehdi, Imran; Siegel, P. H.; Chang, M-C. Frank
2013-01-01
This paper presents a complete 2x2 phased array transmitter system operating at W-band (90-95 GHz) which employs a PLL reference time-shifting approach instead of using traditional mm-wave phase shifters. PLL reference shifting enables a phased array to be distributed over multiple chips without the need for coherent mm-wave signal distribution between chips. The proposed phased array transmitter system consumes 248 mW per array element when implemented in a 65 nm CMOS technology.
Low-Cost Phased Array Antenna for Sounding Rockets, Missiles, and Expendable Launch Vehicles
NASA Technical Reports Server (NTRS)
Mullinix, Daniel; Hall, Kenneth; Smith, Bruce; Corbin, Brian
2012-01-01
A low-cost beamformer phased array antenna has been developed for expendable launch vehicles, rockets, and missiles. It utilizes a conformal array antenna of ring or individual radiators (design varies depending on application) that is designed to be fed by the recently developed hybrid electrical/mechanical (vendor-supplied) phased array beamformer. The combination of these new array antennas and the hybrid beamformer results in a conformal phased array antenna that has significantly higher gain than traditional omni antennas, and costs an order of magnitude or more less than traditional phased array designs. Existing omnidirectional antennas for sounding rockets, missiles, and expendable launch vehicles (ELVs) do not have sufficient gain to support the required communication data rates via the space network. Missiles and smaller ELVs are often stabilized in flight by a fast (i.e. 4 Hz) roll rate. This fast roll rate, combined with vehicle attitude changes, greatly increases the complexity of the high-gain antenna beam-tracking problem. Phased arrays for larger ELVs with roll control are prohibitively expensive. Prior techniques involved a traditional fully electronic phased array solution, combined with highly complex and very fast inertial measurement unit phased array beamformers. The functional operation of this phased array is substantially different from traditional phased arrays in that it uses a hybrid electrical/mechanical beamformer that creates the relative time delays for steering the antenna beam via a small physical movement of variable delay lines. This movement is controlled via an innovative antenna control unit that accesses an internal measurement unit for vehicle attitude information, computes a beam-pointing angle to the target, then points the beam via a stepper motor controller. The stepper motor on the beamformer controls the beamformer variable delay lines that apply the appropriate time delays to the individual array elements to properly steer the beam. The array of phased ring radiators is unique in that it provides improved gain for a small rocket or missile that uses spin stabilization for stability. The antenna pattern created is symmetric about the roll axis (like an omnidirectional wraparound), and is thus capable of providing continuous coverage that is compatible with very fast spinning rockets. For larger ELVs with roll control, a linear array of elements can be used for the 1D scanned beamformer and phased array, or a 2D scanned beamformer can be used with an NxN element array.
NASA Astrophysics Data System (ADS)
Greene, Amy
2013-04-01
MicroBooNE is a neutrino experiment at Fermilab designed to investigate the 3σ low-energy electron candidate events measured by the MiniBooNE experiment. Neutrinos from the Booster Neutrino Beam are detected by a 89-ton liquid argon time projection chamber, which is expected to start taking data in 2014. MicroBooNE measures both the ionization electrons and scintillation light produced by neutrino interactions in the liquid argon. The scintillation light is collected by an array of 30 PMTs located at one side of the detector. This array can be calibrated using Michel electrons from stopping cosmic ray muons, by fitting the measured PMT response with the theoretical expectation. I will report on the progress of the PMT calibration software that has been developed using the MicroBooNE Monte Carlo.
A model of annular linear induction pumps
DOE Office of Scientific and Technical Information (OSTI.GOV)
Momozaki, Yoichi
2016-10-27
The present work explains how the magnetic field and the induced current are obtained when the distributed coils are powered by a 3 phase power supply. From the magnetic field and the induced current, the thrust and the induction losses in the pump can be calculated to estimate the pump performance.
On the (Frequency) Modulation of Coupled Oscillator Arrays in Phased Array Beam Control
NASA Technical Reports Server (NTRS)
Pogorzelski, R.; Acorn, J.; Zawadzki, M.
2000-01-01
It has been shown that arrays of voltage controlled oscillators coupled to nearest neighbors can be used to produce useful aperture phase distributions for phased array antennas. However, placing information of the transmitted signal requires that the oscillations be modulated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, William F.
1979-12-01
The major activities at OOSI's Logan Wash site during the quarter were: driving the access drifts towards the underground locations for Retorts 7 and 8; manway raise boring; constructing the change house; rubbling the first lift of Mini-Retort (MR)1; preparing the Mini-Retorts for tracer testing; coring of Retort 3E; and beginning the DOE instrumentation program.
Congenital hypogonadotropic hypogonadism: implications of absent mini-puberty.
Dwyer, Andrew A; Jayasena, Channa N; Quinton, Richard
2016-06-01
The phenomenon known as "mini-puberty" refers to activation of the neonatal hypothalamo-pituitary axis causing serum concentrations of gonadotrophins and testosterone (T) to approach adult male levels. This early neonatal period is a key proliferative window for testicular germ cells and immature Sertoli cells. Although failure to spontaneously initiate (adolescent) puberty is the most evident consequence of a defective gonadotropin-releasing hormone (GnRH) neurosecretory network, absent mini-puberty is also likely to have a major impact on the reproductive phenotype of men with congenital hypogonadotrophic hypogonadism (CHH). Furthermore, the phase of male mini-puberty represents a key window-of-opportunity to identify congenital GnRH deficiency (either isolated CHH, or as part of combined pituitary hormone deficiency) in childhood. Among male neonates exhibiting "red flag" indicators for CHH (i.e. maldescended testes with or without cryptorchidism) a single serum sample (between 4-8 weeks of life) can pinpoint congenital GnRH deficiency far more rapidly and with much greater accuracy than dynamic tests performed in later childhood or adolescence. Potential consequences for missing absent mini-puberty in a male neonate include the lack of monitoring of pubertal progression/lack of progression, and the missed opportunity for early therapeutic intervention. This article will review our current understanding of the mechanisms and clinical consequences of mini-puberty. Furthermore, evidence for the optimal clinical management of patients with absent mini-puberty will be discussed.
Five Millennium Canon of Solar Eclipses: -1999 to +3000 (2000 BCE to 3000 CE)
NASA Technical Reports Server (NTRS)
Espenak, Fred; Meeus, Jean
2006-01-01
During 5,000-year period from -1999 to +3000 (2000BCE to 3000CE), Earth will experience 11,898 eclipses of the Sun. The statistical distribution of eclipse types for this interval is as follows: 4,200 partial eclipses, 3956 annular eclipses, 3173 total eclipses,and 569 hybrid eclipses. Detailed global maps for each of the 11,898 eclipses delineate the geographic regions of visibility for both the penumbral (partial) and umbral or antumbral (total, annular, or hybrid) phases of every event. Modern political borders are plotted to assist in the determination of eclipse visibility. The uncertainty in Earth's rotational period expressed in the parameter (delta)T and its impact on the geographic visibility of eclipses in the past and future is discussed.
NASA Technical Reports Server (NTRS)
Dudgeon, J. E.
1972-01-01
A computerized simulation of a planar phased array of circular waveguide elements is reported using mutual coupling and wide angle impedance matching in phased arrays. Special emphasis is given to circular polarization. The aforementioned computer program has as variable inputs: frequency, polarization, grid geometry, element size, dielectric waveguide fill, dielectric plugs in the waveguide for impedance matching, and dielectric sheets covering the array surface for the purpose of wide angle impedance matching. Parameter combinations are found which produce reflection peaks interior to grating lobes, while dielectric cover sheets are successfully employed to extend the usable scan range of a phased array. The most exciting results came from the application of computer aided optimization techniques to the design of this type of array.
Ebert, Todd A [West Palm Beach, FL; Carella, John A [Jupiter, FL
2012-03-13
A triple acting radial seal used as an interstage seal assembly in a gas turbine engine, where the seal assembly includes an interstage seal support extending from a stationary inner shroud of a vane ring, the interstage seal support includes a larger annular radial inward facing groove in which an outer annular floating seal assembly is secured for radial displacement, and the outer annular floating seal assembly includes a smaller annular radial inward facing groove in which an inner annular floating seal assembly is secured also for radial displacement. A compliant seal is secured to the inner annular floating seal assembly. The outer annular floating seal assembly encapsulates the inner annular floating seal assembly which is made from a very low alpha material in order to reduce thermal stress.
Improved Electrical Contact For Dowhhole Drilling Networks
Hall, David R.; Hall, Jr., H. Tracy; Pixton, David S.; Dahlgren, Scott; Fox, Joe; Sneddon, Cameron
2005-08-16
An electrical contact system for transmitting information across tool joints while minimizing signal reflections that occur at the tool joints includes a first electrical contact comprising an annular resilient material. An annular conductor is embedded within the annular resilient material and has a surface exposed from the annular resilient material. A second electrical contact is provided that is substantially equal to the first electrical contact. Likewise, the second electrical contact has an annular resilient material and an annular conductor. The two electrical contacts configured to contact one another such that the annular conductors of each come into physical contact. The annular resilient materials of each electrical contact each have dielectric characteristics and dimensions that are adjusted to provide desired impedance to the electrical contacts.
Progress and prospects of silicon-based design for optical phased array
NASA Astrophysics Data System (ADS)
Hu, Weiwei; Peng, Chao; Chang-Hasnain, Connie
2016-03-01
The high-speed, high-efficient, compact phase modulator array is indispensable in the Optical-phased array (OPA) which has been considered as a promising technology for realizing flexible and efficient beam steering. In our research, two methods are presented to utilize high-contrast grating (HCG) as high-efficient phase modulator. One is that HCG possesses high-Q resonances that origins from the cancellation of leaky waves. As a result, sharp resonance peaks appear on the reflection spectrum thus HCGs can be utilized as efficient phase shifters. Another is that low-Q mode HCG is utilized as ultra-lightweight mirror. With MEMS technology, small HCG displacement (~50 nm) leads to large phase change (~1.7π). Effective beam steering is achieved in Connie Chang-Hasnian's group. On the other hand, we theoretically and experimentally investigate the system design for silicon-based optical phased array, including the star coupler, phased array, emission elements and far-field patterns. Further, the non-uniform optical phased array is presented.
Can the Southern annular mode influence the Korean summer monsoon rainfall?
NASA Astrophysics Data System (ADS)
Prabhu, Amita; Kripalani, Ramesh; Oh, Jaiho; Preethi, Bhaskar
2017-05-01
We demonstrate that a large-scale longitudinally symmetric global phenomenon in the Southern Hemisphere sub-polar region can transmit its influence over a remote local region of the Northern Hemisphere traveling more than 100° of latitudes (from 70°S to 40°N). This is illustrated by examining the relationship between the Southern Annular Mode (SAM) and the Korean Monsoon Rainfall (KMR) based on the data period 1983-2013. Results reveal that the May-June SAM (MJSAM) has a significant in-phase relationship with the subsequent KMR. A positive MJSAM is favorable for the summer monsoon rainfall over the Korean peninsula. The impact is relayed through the central Pacific Ocean. When a negative phase of MJSAM occurs, it gives rise to an anomalous meridional circulation in a longitudinally locked air-sea coupled system over the central Pacific that propagates from sub-polar to equatorial latitudes and is associated with the central Pacific warming. The ascending motion over the central Pacific descends over the Korean peninsula during peak-boreal summer resulting in weakening of monsoon rainfall. The opposite features prevail during a positive phase of SAM. Thus, the extreme modes of MJSAM could possibly serve as a predictor for ensuing Korean summer monsoon rainfall.
Southern Annular Mode drives multicentury wildfire activity in southern South America.
Holz, Andrés; Paritsis, Juan; Mundo, Ignacio A; Veblen, Thomas T; Kitzberger, Thomas; Williamson, Grant J; Aráoz, Ezequiel; Bustos-Schindler, Carlos; González, Mauro E; Grau, H Ricardo; Quezada, Juan M
2017-09-05
The Southern Annular Mode (SAM) is the main driver of climate variability at mid to high latitudes in the Southern Hemisphere, affecting wildfire activity, which in turn pollutes the air and contributes to human health problems and mortality, and potentially provides strong feedback to the climate system through emissions and land cover changes. Here we report the largest Southern Hemisphere network of annually resolved tree ring fire histories, consisting of 1,767 fire-scarred trees from 97 sites (from 22 °S to 54 °S) in southern South America (SAS), to quantify the coupling of SAM and regional wildfire variability using recently created multicentury proxy indices of SAM for the years 1531-2010 AD. We show that at interannual time scales, as well as at multidecadal time scales across 37-54 °S, latitudinal gradient elevated wildfire activity is synchronous with positive phases of the SAM over the years 1665-1995. Positive phases of the SAM are associated primarily with warm conditions in these biomass-rich forests, in which widespread fire activity depends on fuel desiccation. Climate modeling studies indicate that greenhouse gases will force SAM into its positive phase even if stratospheric ozone returns to normal levels, so that climate conditions conducive to widespread fire activity in SAS will continue throughout the 21st century.
Asteroid Deflection: How, Where and When?
NASA Astrophysics Data System (ADS)
Fargion, D.
2008-10-01
To deflect impact-trajectory of massive and spinning km^3 asteroid by a few terrestrial radiuses one need a large momentum exchange. The dragging of huge spinning bodies in space by external engine seems difficult or impossible. Our solution is based on the landing of multi screw-rockets, powered by mini-nuclear engines, on the body, that dig a small fraction of the soil surface to use as an exhaust propeller, ejecting it vertically in phase among themselves. Such a mass ejection increases the momentum exchange, their number redundancy guarantees the stability of the system. The slow landing (below ≃ 40 cm s^{-1}) of each engine-unity at those very low gravity field, may be achieved by safe rolling and bouncing along the surface. The engine array tuned activity, overcomes the asteroid angular velocity. Coherent turning of the jet heads increases the deflection efficiency. A procession along its surface may compensate at best the asteroid spin. A small skin-mass (about 2×10^4 tons) may be ejected by mini-nuclear engines. Such prototypes may also build first safe galleries for humans on the Moon. Conclusive deflecting tests might be performed on remote asteroids. The incoming asteroid 99942 Apophis (just 2% of km^3) may be deflected safely a few Earth radiuses. Its encounter maybe not just a hazard but an opportunity, learning how to land, to dig, to build and also to nest safe human station inside. Asteroids amplified deflections by gravity swing may be driven into longest planetary journeys, beginning i.e. with the preliminary landing of future missions on Mars' moon-asteroid Phobos or Deimos.
S-band antenna phased array communications system
NASA Technical Reports Server (NTRS)
Delzer, D. R.; Chapman, J. E.; Griffin, R. A.
1975-01-01
The development of an S-band antenna phased array for spacecraft to spacecraft communication is discussed. The system requirements, antenna array subsystem design, and hardware implementation are examined. It is stated that the phased array approach offers the greatest simplicity and lowest cost. The objectives of the development contract are defined as: (1) design of a medium gain active phased array S-band communications antenna, (2) development and test of a model of a seven element planar array of radiating elements mounted in the appropriate cavity matrix, and (3) development and test of a breadboard transmit/receive microelectronics module.
Ultrasonic phased array controller for hyperthermia applications.
Benkeser, P J; Pao, T L; Yoon, Y J
1991-01-01
Multiple and mechanically scanned ultrasound transducer systems have demonstrated the efficacy of using ultrasound to produce deep localized hyperthermia. The use of ultrasonic phased arrays has been proposed as an alternative to these systems. A phased array offers a more flexible approach to heating tumours in that the size, shape, and position of its focal region can be altered during the course of treatment in order to achieve the desired temperature distribution. This added flexibility comes at the cost of increased complexity of the hardware necessary to drive the transducer because each element requires its own amplifer with both phase and amplitude control. In order for phased arrays with large numbers of elements to be feasible for hyperthermia applications, the complexity of this circuitry must be minimized. This paper describes a circuit design which simplifies the electronics required to control a phased array transducer system for hyperthermia applications. The design is capable of controlling virtually any type of phased array transducer operating at frequencies less than 2 MHz. The system performance was verified through beam profile measurements using a 48-element tapered phased array transducer.
NASA Technical Reports Server (NTRS)
Coward, Adrian V.; Papageorgiou, Demetrios T.; Smyrlis, Yiorgos S.
1994-01-01
In this paper the nonlinear stability of two-phase core-annular flow in a pipe is examined when the acting pressure gradient is modulated by time harmonic oscillations and viscosity stratification and interfacial tension is present. An exact solution of the Navier-Stokes equations is used as the background state to develop an asymptotic theory valid for thin annular layers, which leads to a novel nonlinear evolution describing the spatio-temporal evolution of the interface. The evolution equation is an extension of the equation found for constant pressure gradients and generalizes the Kuramoto-Sivashinsky equation with dispersive effects found by Papageorgiou, Maldarelli & Rumschitzki, Phys. Fluids A 2(3), 1990, pp. 340-352, to a similar system with time periodic coefficients. The distinct regimes of slow and moderate flow are considered and the corresponding evolution is derived. Certain solutions are described analytically in the neighborhood of the first bifurcation point by use of multiple scales asymptotics. Extensive numerical experiments, using dynamical systems ideas, are carried out in order to evaluate the effect of the oscillatory pressure gradient on the solutions in the presence of a constant pressure gradient.
Compositional Constraints on Hematite-Rich Spherule (Blueberry) Formation at Meridiani Planum, Mars
NASA Technical Reports Server (NTRS)
Schneider, A. L.; Mittlefehldt, D. W.; Gellert, R.; Jolliff, B.
2007-01-01
Meridiani Planum was chosen as the landing site for the Mars Exploration Rover Opportunity partially based on Mars Global Surveyor Thermal Emission Spectrometer data indicating an abundance of hematite. Hematite often forms through processes that involve water, so the site was a promising one to determine whether conditions on Mars were ever suitable for life. Opportunity struck pay dirt; it s Miniature Thermal Emission Spectrometer (Mini-TES) and Mossbauer Spectrometer (MB) confirmed the presence of hematite in sulfate-rich sedimentary beds and in lag deposits. Meridiani Planum rocks contain three main components: silicate phases, sulfate and possibly chloride salts, and ferric oxide phases such as hematite. Primary igneous phases are at low abundance despite the basaltic origin of the protoliths. Jarosite, an alkali ferric sulfate, was identified by Mossbauer. Some of the hematite is contained in the spherules, and some resides in finer grains in outcrops. Mossbauer and Mini-TES data indicate that hematite is a dominant constituent of the spherules. Panoramic Camera (Pancam) and Microscopic Imager (MI) images of spherule interiors show that hematite is present throughout. The exact composition of the spherules is unknown. Mini-TES only identifies a hematite signature in the spherules; any other constituents have an upper limit of 5-10% .The MB data are consistent with the spherules being composed of only hematite.
NASA Astrophysics Data System (ADS)
Rau, J.-Y.; Jhan, J.-P.; Huang, C.-Y.
2015-08-01
Miniature Multiple Camera Array (MiniMCA-12) is a frame-based multilens/multispectral sensor composed of 12 lenses with narrow band filters. Due to its small size and light weight, it is suitable to mount on an Unmanned Aerial System (UAS) for acquiring high spectral, spatial and temporal resolution imagery used in various remote sensing applications. However, due to its wavelength range is only 10 nm that results in low image resolution and signal-to-noise ratio which are not suitable for image matching and digital surface model (DSM) generation. In the meantime, the spectral correlation among all 12 bands of MiniMCA images are low, it is difficult to perform tie-point matching and aerial triangulation at the same time. In this study, we thus propose the use of a DSLR camera to assist automatic aerial triangulation of MiniMCA-12 imagery and to produce higher spatial resolution DSM for MiniMCA12 ortho-image generation. Depending on the maximum payload weight of the used UAS, these two kinds of sensors could be collected at the same time or individually. In this study, we adopt a fixed-wing UAS to carry a Canon EOS 5D Mark2 DSLR camera and a MiniMCA-12 multi-spectral camera. For the purpose to perform automatic aerial triangulation between a DSLR camera and the MiniMCA-12, we choose one master band from MiniMCA-12 whose spectral range has overlap with the DSLR camera. However, all lenses of MiniMCA-12 have different perspective centers and viewing angles, the original 12 channels have significant band misregistration effect. Thus, the first issue encountered is to reduce the band misregistration effect. Due to all 12 MiniMCA lenses being frame-based, their spatial offsets are smaller than 15 cm and all images are almost 98% overlapped, we thus propose a modified projective transformation (MPT) method together with two systematic error correction procedures to register all 12 bands of imagery on the same image space. It means that those 12 bands of images acquired at the same exposure time will have same interior orientation parameters (IOPs) and exterior orientation parameters (EOPs) after band-to-band registration (BBR). Thus, in the aerial triangulation stage, the master band of MiniMCA-12 was treated as a reference channel to link with DSLR RGB images. It means, all reference images from the master band of MiniMCA-12 and all RGB images were triangulated at the same time with same coordinate system of ground control points (GCP). Due to the spatial resolution of RGB images is higher than the MiniMCA-12, the GCP can be marked on the RGB images only even they cannot be recognized on the MiniMCA images. Furthermore, a one meter gridded digital surface model (DSM) is created by the RGB images and applied to the MiniMCA imagery for ortho-rectification. Quantitative error analyses show that the proposed BBR scheme can achieve 0.33 pixels of average misregistration residuals length and the co-registration errors among 12 MiniMCA ortho-images and between MiniMCA and Canon RGB ortho-images are all less than 0.6 pixels. The experimental results demonstrate that the proposed method is robust, reliable and accurate for future remote sensing applications.
Vapordynamic thermosyphon - heat transfer two-phase device for wide applications
NASA Astrophysics Data System (ADS)
Vasiliev, Leonard; Vasiliev, Leonid; Zhuravlyov, Alexander; Shapovalov, Aleksander; Rodin, Aleksei
2015-12-01
Vapordynamic thermosyphon (VDT) is an efficient heat transfer device. The two-phase flow generation and dynamic interaction between the liquid slugs and vapor bubbles in the annular minichannel of the VDT condenser are the main features of such thermosyphon, which allowed to increase its thermodynamic efficiency. VDT can transfer heat in horizontal position over a long distance. The condenser is nearly isothermal with the length of tens of meters. The VDT evaporators may have different forms. Some practical applications of VDT are considered.
Chow, Lorac S.; Leonard, Ralph A.
1993-01-01
A method for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor.
Chow, L.S.; Leonard, R.A.
1993-10-19
A method is described for mixing and separating immiscible liquid salts and liquid metals in a centrifugal contractor. The method includes introducing the liquids into an annular mixing zone and intensely mixing the liquids using vertical vanes attached to a rotor cooperating with vertical baffles, a horizontal baffle, and bottom vanes attached to the contactor housing. The liquids enter the contactor in the range of 700-800 degrees Celsius. The liquids are separated in the rotor into a dense phase and a light phase which are discharged from the contactor. 6 figures.
Integrated optical phased arrays for quasi-Bessel-beam generation.
Notaros, Jelena; Poulton, Christopher V; Byrd, Matthew J; Raval, Manan; Watts, Michael R
2017-09-01
Integrated optical phased arrays for generating quasi-Bessel beams are proposed and experimentally demonstrated in a CMOS-compatible platform. Owing to their elongated central beams, Bessel beams have applications in a range of fields, including multiparticle trapping and laser lithography. In this Letter, continuous Bessel theory is manipulated to formulate the phase and amplitude conditions necessary for generating free-space-propagating Bessel-Gauss beams using on-chip optical phased arrays. Discussion of the effects of select phased array parameters on the generated beam's figures of merit is included. A one-dimensional splitter-tree-based phased array architecture is modified to enable arbitrary passive control of the array's element phase and amplitude distributions. This architecture is used to experimentally demonstrate on-chip quasi-Bessel-beam generation with a ∼14 mm Bessel length and ∼30 μm power full width at half maximum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysocki, Aaron J.; Salko, Robert K.
This report summarizes the work done to validate the droplet entrainment and de-entrainment models as well as two-phase closure models in the CTF code by comparison with experimental data obtained at Riso National Laboratory. The Riso data included a series of over 250 steam/water experiments that were performed in both tube and annulus geometries over a range of various pressures and outlet qualities. Experimental conditions were set so that the majority of cases were in the annular/mist ow regime. Measurements included liquid lm ow rate, droplet ow rate, lm thickness, and two-phase pressure drop. CTF was used to model 180more » of the tubular geometry cases, matching experimental geometry, outlet pressure, and outlet ow quality to experimental values. CTF results were compared to the experimental data at the outlet of the test section in terms of vapor and entrained liquid ow fractions, pressure drop per unit length, and liquid lm thickness. The entire process of generating CTF input decks, running cases, extracting data, and generating comparison plots was scripted using Python and Matplotlib for a completely automated validation process. All test cases and scripting tools have been committed to the COBRA-TF master repository and selected cases have been added to the continuous testing system to serve as regression tests. The dierences between the CTF- and experimentally-calculated ow fraction values were con- sistent with previous calculations by Wurtz, who applied the same entrainment correlation to the same data. It has been found that CTF's entrainment/de-entrainment predictive capability in the annular/mist ow regime for this particular facility is comparable to the licensed industry code, COBRAG. While lm and droplet predictions are generally good, it has been found that accuracy is diminished at lower ow qualities. This nding is consistent with the noted deciencies in the Wurtz entrainment model employed by CTF. The CTF predicted two-phase pressure drop in the annular/mist ow regime has been found to be highly inaccurate, exhibiting a clear bias with respect to the experimental data. This inaccuracy led to an investigation that revealed deciencies in the implementation of the annular/mist interfacial friction model, which should be investigated further in the future. Looking to published COBRAG results for this same facility reveal it exhibits no bias with regard to experimental pressure drop results. In addition to the problems with pressure drop prediction, the lm thickness was also signicantly under-predicted by CTF compared to both experimental data and Wurtz's analytical calculations. Film thickness is calculated using a simple geometric relationship and lm void fraction in CTF, which is dependent on slip ratio and interfacial friction. It is possible that the issues aecting the pressure drop and lm void prediction are related.« less
Reconfigurable Wave Velocity Transmission Lines for Phased Arrays
NASA Technical Reports Server (NTRS)
Host, Nick; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix
2013-01-01
Phased array antennas showcase many advantages over mechanically steered systems. However, they are also more complex, heavy and most importantly costly. This presentation paper presents a concept which overcomes these detrimental attributes by eliminating all of the phase array backend (including phase shifters). Instead, a wave velocity reconfigurable transmission line is used in a series fed array arrangement to allow phase shifting with one small (100mil) mechanical motion. Different configurations of the reconfigurable wave velocity transmission line are discussed and simulated and experimental results are presented.
[A micro-silicon multi-slit spectrophotometer based on MEMS technology].
Hao, Peng; Wu, Yi-Hui; Zhang, Ping; Liu, Yong-Shun; Zhang, Ke; Li, Hai-Wen
2009-06-01
A new mini-spectrophotometer was developed by adopting micro-silicon slit and pixel segmentation technology, and this spectrophotometer used photoelectron diode array as the detector by the back-dividing-light way. At first, the effect of the spectral bandwidth on the tested absorbance linear correlation was analyzed. A theory for the design of spectrophotometer's slit was brought forward after discussing the relationships between spectrophotometer spectrum band width and pre-and post-slits width. Then, the integrative micro-silicon-slit, which features small volume, high precision, and thin thickness, was manufactured based on the MEMS technology. Finally, a test was carried on linear absorbance solution by this spectrophotometer. The final result showed that the correlation coefficients were larger than 0.999, which means that the new mini-spectrophotometer with micro-silicon slit pixel segmentation has an obvious linear correlation.
2012-10-10
IrwIn D. OlIn Flat-Top Sector Beams Using Only Array Element Phase Weighting: A Metaheuristic Optimization Approach Sotera Defense Solutions, Inc...2012 Formal Report Flat-Top Sector Beams Using Only Array Element Phase Weighting: A Metaheuristic Optimization Approach Irwin D. Olin* Naval...Manuscript approved June 30, 2012. 1 FLAT-TOP SECTOR BEAMS USING ONLY ARRAY ELEMENT PHASE WEIGHTING: A METAHEURISTIC
Upward and downward heat and mass transfer with miniature periodically operating loop thermosyphons
NASA Astrophysics Data System (ADS)
Fantozzi, Fabio; Filippeschi, Sauro; Latrofa, Enrico Maria
2004-03-01
Upward and downward two-phase heat and mass transfer has been considered in the present paper. The heat and mass transfer with the condenser located below the evaporator has been obtained by inserting an accumulator tank in the liquid line of a loop thermosyphon and enforcing a pressure pulsation. In previous papers these heat transfer devices have been called pulsated two phase thermosyphons (PTPT). A mini PTPT has been experimentally investigated. It has shown a stable periodic heat transfer regime weakly influenced by the position of the condenser with respect to the evaporator. In contrast a classical loop mini thermosyphon (diameter of connecting pipes 4 mm) did not achieve a stable functioning for the investigated level differences between evaporator and condenser lower than 0.37 m. The present study shows that the functioning of a PTPT device does not directly depend on the level difference or the presence of noncondensable gas. In order to obtain a natural circulation in mini or micro loops, a periodically operating heat transfer regime should therefore be considered.
Phased-array radar for airborne systems
NASA Astrophysics Data System (ADS)
Tahim, Raghbir S.; Foshee, James J.; Chang, Kai
2003-09-01
Phased array antenna systems, which support high pulse rates and high transmit power, are well suited for radar and large-scale surveillance. Sensors and communication systems can function as the eyes and ears for ballistic missile defense applications, providing early warning of attack, target detection and identification, target tracking, and countermeasure decision. In such applications, active array radar systems that contain solid-state transmitter sources and low-noise preamplifiers for transmission and reception are preferred over the conventional radar antennas, because the phased array radar offers the advantages of power management and efficiency, reliability, signal reception, beam steering target detection. The current phased array radar designs are very large, complex and expensive and less efficient because of high RF losses in the phase control circuits used for beam scan. Several thousands of phase shifters and drivers may be required for a single system thus making the system very complex and expensive. This paper describes the phased array radar system based on high power T/R modules, wide-band radiating planar antenna elements and very low loss wide-band phase control circuits (requiring reduced power levels) for beam scan. The phase shifter design is based on micro-strip feed lines perturbed by the proximity of voltage controlled piezoelectric transducer (PET). Measured results have shown an added insertion loss of less than 1 dB for a phase shift of 450 degrees from 2 to 20 GHz. The new wideband phased array radar design provides significant reduction in size cost and weight. Compared to the conventional phased array systems, the cost saving is more than 15 to 1.
First experimental demonstration of self-synchronous phase locking of an optical array
NASA Astrophysics Data System (ADS)
Shay, T. M.; Benham, Vincent; Baker, J. T.; Ward, Benjamin; Sanchez, Anthony D.; Culpepper, Mark A.; Pilkington, D.; Spring, Justin; Nelson, Douglas J.; Lu, Chunte A.
2006-12-01
A novel, highly accurate, all electronic technique for phase locking arrays of optical fibers is demonstrated. We report the first demonstration of the only electronic phase locking technique that doesn’t require a reference beam. The measured phase error is λ/20. Excellent phase locking has been demonstrated for fiber amplifier arrays.
Mills, Jacob A; Brown, Wesley D; Sexton, Thomas D; Jones, Russell B
2016-07-19
An air riding seal between a rotor and a stator in a turbine of a gas turbine engine, where an annular piston is movable in an axial direction within a housing that extends from the stator, and a bellows is secured to the annular piston to form a flexible air passageway from a compressed air inlet through the annular piston and into a cushion cavity that forms an air riding seal between the annular piston and the rotor sealing surface. In another embodiment, a flexible seal secured to and extending from the annular piston forms a sealing surface between the annular piston chamber and the annular piston to provide a seal and allow for axial movement.
Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays
NASA Technical Reports Server (NTRS)
Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.
1985-01-01
Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.
NASA Technical Reports Server (NTRS)
Schuman, H. K.
1992-01-01
An assessment of the potential and limitations of phased array antennas in space-based geophysical precision radiometry is described. Mathematical models exhibiting the dependence of system and scene temperatures and system sensitivity on phased array antenna parameters and components such as phase shifters and low noise amplifiers (LNA) are developed. Emphasis is given to minimum noise temperature designs wherein the LNA's are located at the array level, one per element or subarray. Two types of combiners are considered: array lenses (space feeds) and corporate networks. The result of a survey of suitable components and devices is described. The data obtained from that survey are used in conjunction with the mathematical models to yield an assessment of effective array antenna noise temperature for representative geostationary and low Earth orbit systems. Practical methods of calibrating a space-based, phased array radiometer are briefly addressed as well.
NASA Astrophysics Data System (ADS)
Rountree, S. Derek
2013-04-01
The Low-Energy Neutrino Spectrometer (LENS) prototyping program is broken into two phases. The first of these is μLENS, a small prototype to study the light transmission in the as built LENS scintillation lattice--- a novel detector method of high segmentation in a large liquid scintillation detector. The μLENS prototype is currently deployed and taking data at the Kimballton Underground Research Facility (KURF) near Virginia Tech. I will discuss the Scintillation Lattice construction methods and schemes of the μLENS program for running with minimal channels instrumented to date ˜41 compared to full coverage 216). The second phase of prototyping is the miniLENS detector for which construction is under way. I will discuss the overall design from the miniLENS Scintillation Lattice to the shielding.
NectarCAM, a camera for the medium sized telescopes of the Cherenkov telescope array
NASA Astrophysics Data System (ADS)
Glicenstein, J.-F.; Shayduk, M.
2017-01-01
NectarCAM is a camera proposed for the medium-sized telescopes of the Cherenkov Telescope Array (CTA) which covers the core energy range of 100 GeV to 30 TeV. It has a modular design and is based on the NECTAr chip, at the heart of which is a GHz sampling Switched Capacitor Array and 12-bit Analog to Digital converter. The camera will be equipped with 265 7-photomultiplier modules, covering a field of view of 8 degrees. Each module includes photomultiplier bases, high voltage supply, pre-amplifier, trigger, readout and Ethernet transceiver. The recorded events last between a few nanoseconds and tens of nanoseconds. The expected performance of the camera are discussed. Prototypes of NectarCAM components have been built to validate the design. Preliminary results of a 19-module mini-camera are presented, as well as future plans for building and testing a full size camera.
Inflatable lenses for space photovoltaic concentrator arrays
DOE Office of Scientific and Technical Information (OSTI.GOV)
O`Neill, M.J.; Piszczor, M.F.
1997-12-31
For 12 years, ENTECH and NASA Lewis have been developing Fresnel lens concentrator technology for space power applications. ENTECH provided the point-focus mini-dome lenses for the PASP+ array, launched in 1994. These silicone lenses performed well on orbit, with only about 3% optical performance loss after 1 year in elliptical orbit, with high radiation, atomic oxygen, and ultraviolet exposure. The only protection for these silicone lenses was a thin-film coating provided by OCLI. ENTECH also provided the line-focus lenses for the SCARLET 1 and SCARLET 2 arrays in 1995 and 1997, respectively. These lenses are laminated assemblies, with protective ceriamore » glass superstrates over the silicone lens. In March 1997, ENTECH and NASA Lewis began development of inflatable Fresnel lenses, to achieve lower weight, smaller launch volume, reduced cost, less fragility, and other advantages. This paper summarizes the new concentrator approach, including key program results to date.« less
Lee, R F; Giaquinto, R; Constantinides, C; Souza, S; Weiss, R G; Bottomley, P A
2000-02-01
Despite their proven gains in signal-to-noise ratio and field-of-view for routine clinical MRI, phased-array detection systems are currently unavailable for nuclei other than protons (1H). A broadband phased-array system was designed and built to convert the 1H transmitter signal to the non-1H frequency for excitation and to convert non-1H phased-array MRI signals to the 1H frequency for presentation to the narrowband 1H receivers of a clinical whole-body 1.5 T MRI system. With this system, the scanner operates at the 1H frequency, whereas phased-array MRI occurs at the frequency of the other nucleus. Pulse sequences were developed for direct phased-array sodium (23Na) and phosphorus (31P) MRI of high-energy phosphates using chemical selective imaging, thereby avoiding the complex processing and reconstruction required for phased-array magnetic resonance spectroscopy data. Flexible 4-channel 31P and 23Na phased-arrays were built and the entire system tested in phantom and human studies. The array produced a signal-to-noise ratio improvement of 20% relative to the best-positioned single coil, but gains of 300-400% were realized in many voxels located outside the effective field-of-view of the single coil. Cardiac phosphorus and sodium MRI were obtained in 6-13 min with 16 and 0.5 mL resolution, respectively. Lower resolution human cardiac 23Na MRI were obtained in as little as 4 sec. The system provides a practical approach to realizing the advantages of phased-arrays for nuclei other than 1H, and imaging metabolites directly.
Four-Channel PC/104 MIL-STD-1553 Circuit Board
NASA Technical Reports Server (NTRS)
Cox, Gary L.
2004-01-01
The mini bus interface card (miniBIC) is the first four-channel electronic circuit board that conforms to MIL-STD-1553 and to the electrical-footprint portion of PC/104. [MIL-STD-1553 is a military standard that encompasses a method of communication and electrical- interface requirements for digital electronic subsystems connected to a data bus. PC/104 is an industry standard for compact, stackable modules that are fully compatible (in architecture, hardware, and software) with personal-computer data- and power-bus circuitry.] Prior to the development of the miniBIC, only one- and two-channel PC/104 MIL-STD-1553 boards were available. To obtain four channels, it was necessary to include at least two boards in a PC/104 stack. In comparison with such a two-board stack, the miniBIC takes up less space, consumes less power, and is more reliable. In addition, the miniBIC includes 32 digital input/output channels. The miniBIC (see figure) contains four MIL-STD-1553B hybrid integrated circuits (ICs), four transformers, a field-programmable gate array (FPGA), and an Industry Standard Architecture (ISA) interface. Each hybrid IC includes a MILSTD-1553 dual transceiver, memory-management circuitry, processor interface logic circuitry, and 64Kx16 bits of shared static random access memory. The memory is used to configure message and data blocks. In addition, 23 16-bit registers are available for (1) configuring the hybrid IC for, and starting it in, various modes of operation; (2) reading the status of the functionality of the hybrid IC; and (3) resetting the hybrid IC to a known state. The miniBIC can operate as a remote terminal, bus controller, or bus monitor. The FPGA provides the chip-select and data-strobe signals needed for operation of the hybrid ICs. The FPGA also receives interruption signals and forwards them to the ISA bus. The ISA interface connects the address, data, and control interfaces of the hybrid ICs to the ISA backplane. Each channel is, in effect, a MIL-STD-1553 interface that can operate either independently of the others or else as a redundant version of one of the others. The transformer in each channel provides electrical isolation between the rest of the miniBIC circuitry and the bus to which that channel is connected.
Minato, N; Itoh, T
1992-12-01
Applying the technology of direct imaging by fiberoptic cardioscopy, physiologic and pathophysiologic motions of the tricuspid valve anulus were studied in 10 anesthetized normal dogs (control group) and in 9 dogs that had chronic tricuspid regurgitation (TR group). The heart was perfused with transparent modified Tyrode's solution by working heart method, and the anuli, outlined by sutured beads, were observed and recorded on a high-speed video system in real time. Tricuspid valve annular area was calculated at 14 points during the cardiac cycle. The control group was studied in the normal condition, and the tricuspid regurgitation group was studied during four interventions: nontricuspid annuloplasty group and three tricuspid annuloplasty groups with reducing tricuspid valve annular area to 80%, 65%, and 50% of that of the non-tricuspid annuloplasty group by De Vega's procedure. Tricuspid valve annular area in the control group increased by 7% during atrial systole and was reduced by 34% mainly during ventricular systole, in which the free wall annular area and the septal annular area narrowed by an equal 34%. Chronic tricuspid regurgitation lessened tricuspid valve annular area narrowing to 20% in percent reduction (p < 0.01). In the TR group the decrease in tricuspid valve annular area narrowing was attributed mainly to lessened narrowing of the free wall anulus (percent reduction of tricuspid valve annular area, 19%; p < 0.01). The amplitudes in tricuspid valve annular area narrowing were unchanged in the tricuspid annuloplasty groups even when tricuspid valve annular area, was reduced to 50% by De Vega's tricuspid annuloplasty (percent reduction of tricuspid valve annular area, 16%; not significant). These findings suggest that De Vega's tricuspid annuloplasty is a reasonable method that does preserve the physiologic annular motions in the opening and closing mechanism of the tricuspid valve.
NASA Technical Reports Server (NTRS)
Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III
1996-01-01
The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.
Four-to-one power combiner for 20 GHz phased array antenna using RADC MMIC phase shifters
NASA Technical Reports Server (NTRS)
1991-01-01
The design and microwave simulation of two-to-one microstrip power combiners is described. The power combiners were designed for use in a four element phase array receive antenna subarray at 20 GHz. Four test circuits are described which were designed to enable testing of the power combiner and the four element phased array antenna. Test Circuit 1 enables measurement of the two-to-one power combiner. Test Circuit 2 enables measurement of the four-to-one power combiner. Test Circuit 3 enables measurement of a four element antenna array without phase shifting MMIC's in order to characterize the power combiner with the antenna patch-to-microstrip coaxial feedthroughs. Test circuit 4 is the four element phased array antenna including the RADC MMIC phase shifters and appropriate interconnects to provide bias voltages and control phase bits.
Roemer, P B; Edelstein, W A; Hayes, C E; Souza, S P; Mueller, O M
1990-11-01
We describe methods for simultaneously acquiring and subsequently combining data from a multitude of closely positioned NMR receiving coils. The approach is conceptually similar to phased array radar and ultrasound and hence we call our techniques the "NMR phased array." The NMR phased array offers the signal-to-noise ratio (SNR) and resolution of a small surface coil over fields-of-view (FOV) normally associated with body imaging with no increase in imaging time. The NMR phased array can be applied to both imaging and spectroscopy for all pulse sequences. The problematic interactions among nearby surface coils is eliminated (a) by overlapping adjacent coils to give zero mutual inductance, hence zero interaction, and (b) by attaching low input impedance preamplifiers to all coils, thus eliminating interference among next nearest and more distant neighbors. We derive an algorithm for combining the data from the phased array elements to yield an image with optimum SNR. Other techniques which are easier to implement at the cost of lower SNR are explored. Phased array imaging is demonstrated with high resolution (512 x 512, 48-cm FOV, and 32-cm FOV) spin-echo images of the thoracic and lumbar spine. Data were acquired from four-element linear spine arrays, the first made of 12-cm square coils and the second made of 8-cm square coils. When compared with images from a single 15 x 30-cm rectangular coil and identical imaging parameters, the phased array yields a 2X and 3X higher SNR at the depth of the spine (approximately 7 cm).
2007-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS Approved for public release; distribution is unlimited WIRELESSLY NETWORKED...DIGITAL PHASED ARRAY: ANALYSIS AND DEVELOPMENT OF A PHASE SYNCHRONIZATION CONCEPT by Micael Grahn September 2007 Thesis Advisor...September 2007 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Wirelessly Networked Digital Phased Array: Analysis and
NASA Astrophysics Data System (ADS)
Liu, Ling
The primary goal of this research is the analysis, development, and experimental demonstration of an adaptive phase-locked fiber array system for free-space optical communications and laser beam projection applications. To our knowledge, the developed adaptive phase-locked system composed of three fiber collimators (subapertures) with tip-tilt wavefront phase control at each subaperture represents the first reported fiber array system that implements both phase-locking control and adaptive wavefront tip-tilt control capabilities. This research has also resulted in the following innovations: (a) The first experimental demonstration of a phase-locked fiber array with tip-tilt wave-front aberration compensation at each fiber collimator; (b) Development and demonstration of the fastest currently reported stochastic parallel gradient descent (SPGD) system capable of operation at 180,000 iterations per second; (c) The first experimental demonstration of a laser communication link based on a phase-locked fiber array; (d) The first successful experimental demonstration of turbulence and jitter-induced phase distortion compensation in a phase-locked fiber array optical system; (e) The first demonstration of laser beam projection onto an extended target with a randomly rough surface using a conformal adaptive fiber array system. Fiber array optical systems, the subject of this study, can overcome some of the draw-backs of conventional monolithic large-aperture transmitter/receiver optical systems that are usually heavy, bulky, and expensive. The primary experimental challenges in the development of the adaptive phased-locked fiber-array included precise (<5 microrad) alignment of the fiber collimators and development of fast (100kHz-class) phase-locking and wavefront tip-tilt control systems. The precise alignment of the fiber collimator array is achieved through a specially developed initial coarse alignment tool based on high precision piezoelectric picomotors and a dynamic fine alignment mechanism implemented with specially designed and manufactured piezoelectric fiber positioners. Phase-locking of the fiber collimators is performed by controlling the phases of the output beams (beamlets) using integrated polarization-maintaining (PM) fiber-coupled LiNbO3 phase shifters. The developed phase-locking controllers are based on either the SPGD algorithm or the multi-dithering technique. Subaperture wavefront phase tip-tilt control is realized using piezoelectric fiber positioners that are controlled using a computer-based SPGD controller. Both coherent (phase-locked) and incoherent beam combining in the fiber array system are analyzed theoretically and experimentally. Two special fiber-based beam-combining testbeds have been built to demonstrate the technical feasibility of phase-locking compensation prior to free-space operation. In addition, the reciprocity of counter-propagating beams in a phase-locked fiber array system has been investigated. Coherent beam combining in a phase-locking system with wavefront phase tip-tilt compensation at each subaperture is successfully demonstrated when laboratory-simulated turbulence and wavefront jitters are present in the propagation path of the beamlets. In addition, coherent beam combining with a non-cooperative extended target in the control loop is successfully demonstrated.
Study on Fins' Effect of Boiling Flow in Millimeter Channel Heat Exchanger
NASA Astrophysics Data System (ADS)
Watanabe, Satoshi
2005-11-01
Recently, a lot of researches about compact heat exchangers with mini-channels have been carried out with the hope of obtaining a high-efficiency heat transfer, due to the higher ratio of surface area than existing heat exchangers. However, there are many uncertain phenomena in fields such as boiling flow in mini-channels. Thus, in order to understand the boiling flow in mini-channels to design high-efficiency heat exchangers, this work focused on the visualization measurement of boiling flow in a millimeter channel. A transparent acrylic channel (heat exchanger form), high-speed camera (2000 fps at 1024 x 1024 pixels), and halogen lamp (backup light) were used as the visualization system. The channel's depth is 2 mm, width is 30 mm, and length is 400 mm. In preparation for commercial use, two types of channels were experimented on: a fins type and a normal slit type (without fins). The fins are circular cylindrical obstacles (diameter is 5 mm) to promote heat transfer, set in a triangular array (distance between each center point is 10 mm). Especially in this work, boiling flow and heat transfer promotion in the millimeter channel heat exchanger with fins was evaluated using a high-speed camera.
NASA Technical Reports Server (NTRS)
Gleason, C. C.; Bahr, D. W.
1979-01-01
A double annular advanced technology combustor with low pollutant emission levels was evaluated in a series of CF6-50 engine tests. Engine lightoff was readily obtained and no difficulties were encountered with combustor staging. Engine acceleration and deceleration were smooth, responsive and essentially the same as those obtainable with the CF6-50 combustor. The emission reductions obtained in carbon monoxide, hydrocarbons, and nitrogen oxide levels were 55, 95, and 30 percent, respectively, at an idle power setting of 3.3 percent of takeoff power on an EPA parameter basis. Acceptable smoke levels were also obtained. The exit temperature distribution of the combustor was found to be its major performance deficiency. In all other important combustion system performance aspects, the combustor was found to be generally satisfactory.
Investigation of a low NOx full-scale annular combustor
NASA Technical Reports Server (NTRS)
1982-01-01
An atmospheric test program was conducted to evaluate a low NOx annular combustor concept suitable for a supersonic, high-altitude aircraft application. The lean premixed combustor, known as the vortex air blast (VAB) concept, was tested as a 22.0-cm diameter model in the early development phases to arrive at basic design and performance criteria. Final demonstration testing was carried out on a full scale combustor of 0.66-m diameter. Variable geometry dilution ports were incorporated to allow operation of the combustor across the range of conditions between idle (T(in) = 422 K, T(out) = 917 K) and cruise (T(in) = 833 K, T(out) - 1778 K). Test results show that the design could meet the program NOx goal of 1.0 g NO2/kg fuel at a one-atmospheric simulated cruise condition.
NASA Technical Reports Server (NTRS)
Kilbane, J.; Polzin, K. A.
2014-01-01
An annular linear induction pump (ALIP) that could be used for circulating liquid-metal coolant in a fission surface power reactor system is modeled in the present work using the computational COMSOL Multiphysics package. The pump is modeled using a two-dimensional, axisymmetric geometry and solved under conditions similar to those used during experimental pump testing. Real, nonlinear, temperature-dependent material properties can be incorporated into the model for both the electrically-conducting working fluid in the pump (NaK-78) and structural components of the pump. The intricate three-phase coil configuration of the pump is implemented in the model to produce an axially-traveling magnetic wave that is qualitatively similar to the measured magnetic wave. The model qualitatively captures the expected feature of a peak in efficiency as a function of flow rate.
Experimental clean combustor program; noise measurement addendum, Phase 2
NASA Technical Reports Server (NTRS)
Emmerling, J. J.; Bekofske, K. L.
1976-01-01
Combustor noise measurements were performed using wave guide probes. Test results from two full scale annular combustor configurations in a combustor test rig are presented. A CF6-50 combustor represented a current design, and a double annular combustor represented the advanced clean combustor configuration. The overall acoustic power levels were found to correlate with the steady state heat release rate and inlet temperature. A theoretical analysis for the attenuation of combustor noise propagating through a turbine was extended from a subsonic relative flow condition to include the case of supersonic flow at the discharge side. The predicted attenuation from this analysis was compared to both engine data and extrapolated component combustor data. The attenuation of combustor noise through the CF6-50 turbine was found to be greater than 14 dB by both the analysis and the data.
A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array
NASA Technical Reports Server (NTRS)
Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto
1987-01-01
A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.
Phased Array Antenna Testbed Development at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Lambert, Kevin M.; Kubat, Gregory; Johnson, Sandra K.; Anzic, Godfrey
2003-01-01
Ideal phased array antennas offer advantages for communication systems, such as wide-angle scanning and multibeam operation, which can be utilized in certain NASA applications. However, physically realizable, electronically steered, phased array antennas introduce additional system performance parameters, which must be included in the evaluation of the system. The NASA Glenn Research Center (GRC) is currently conducting research to identify these parameters and to develop the tools necessary to measure them. One of these tools is a testbed where phased array antennas may be operated in an environment that simulates their use. This paper describes the development of the testbed and its use in characterizing a particular K-Band, phased array antenna.
NASA Astrophysics Data System (ADS)
Paulsen, Lee; Hoffmann, Ted; Fulton, Caleb; Yeary, Mark; Saunders, Austin; Thompson, Dan; Chen, Bill; Guo, Alex; Murmann, Boris
2015-05-01
Phased array systems offer numerous advantages to the modern warfighter in multiple application spaces, including Radar, Electronic Warfare, Signals Intelligence, and Communications. However, a lack of commonality in the underlying technology base for DoD Phased Arrays has led to static systems with long development cycles, slow technology refreshes in response to emerging threats, and expensive, application-specific sub-components. The IMPACT module (Integrated Multi-use Phased Array Common Tile) is a multi-channel, reconfigurable, cost-effective beamformer that provides a common building block for multiple, disparate array applications.
Changes in the D region associated with three recent solar eclipses in the South Pacific region
NASA Astrophysics Data System (ADS)
Kumar, Sushil; Kumar, Abhikesh; Maurya, Ajeet K.; Singh, Rajesh
2016-06-01
We estimate D region changes due to 22 July 2009 total solar eclipse (SE), 13-14 November 2012 total SE, and 9-10 May 2013 annular SE, using VLF navigational transmitters signal observations at Suva, Fiji. The North West Cape (NWC) signal (19.8 kHz) showed an amplitude and phase decrease of 0.70 dB and 23° during November SE and 2.0 dB and 90° during May SE. The modeling using Long Wave Propagation Capability code for NWC-Suva path during November and May SEs showed an increase in average D region reflection height (H') and sharpness factor (β) by 0.6 and 0.5 km and 0.012 and 0.015 km-1, respectively. The July total SE for JJI-Suva path showed an increase in H' of 1.5 km and a decrease in β of 0.055 km-1. The decrease in the electron density calculated using SE time H' and β is maximum for July total SE and minimum for May annular SE. The effective recombination coefficient estimated from the decay and recovery of signal phase associated with May annular SE was higher (27%) than normal daytime value 5.0 × 10-7 cm-3 s-1 and varied between 1.47 × 10-6 and 1.15 × 10-7 cm-3 s-1 in the altitude 70 to 80 km. Morlet wavelet analysis of signals amplitude shows strong wave-like signatures (WLS) associated with three SEs with period ranging 24-66 min, but the intensity and duration of WLS show no clear dependence on SE magnitude and type. Apart from the cooling spot, the eclipse shadow can also generate WLS associated with atmospheric gravity waves.
NASA Astrophysics Data System (ADS)
Roy, Sayan
This research presents a real-time adaptive phase correction technique for flexible phased array antennas on conformal surfaces of variable shapes. Previously reported pattern correctional methods for flexible phased array antennas require prior knowledge on the possible non-planar shapes in which the array may adapt for conformal applications. For the first time, this initial requirement of shape curvature knowledge is no longer needed and the instantaneous information on the relative location of array elements is used here for developing a geometrical model based on a set of Bezier curves. Specifically, by using an array of inclinometer sensors and an adaptive phase-correctional algorithm, it has been shown that the proposed geometrical model can successfully predict different conformal orientations of a 1-by-4 antenna array in real-time without the requirement of knowing the shape-changing characteristics of the surface the array is attached upon. Moreover, the phase correction technique is validated by determining the field patterns and broadside gain of the 1-by-4 antenna array on four different conformal surfaces with multiple points of curvatures. Throughout this work, measurements are shown to agree with the analytical solutions and full-wave simulations.
A Phased Array Coil for Human Cardiac Imaging
Constantinides, Chris D.; Westgate, Charles R.; O'Dell, Walter G.; Zerhouni, Elias A.; McVeigh, Elliot R.
2007-01-01
A prototype cardiac phased array receiver coil was constructed that comprised a cylindrical array and a separate planar array. Both arrays had two coil loops with the same coil dimensions. Data acquisition with the cylindrical array placed on the human chest, and the planar array placed under the back, yielded an overall enhancement of the signal-to-noise ratio (SNR) over the entire heart by a factor of 1.1–2.85 over a commercially available flexible coil and a commercially available four-loop planar phased array coil. This improvement in SNR can be exploited in cardiac imaging to increase the spatial resolution and reduce the image acquisition time. PMID:7674903
Microwave scanning beam approach and landing system phased array antenna volume I
DOT National Transportation Integrated Search
1973-02-01
The use of phased arrays for the proposed landing system (MLS) is discussed. Studies relating to ground reflections, near field focusing, and phased-array errors are presented. Two experimental antennas which were fabricated and tested are described....
Microwave scanning beam approach and landing system phased array antenna : volume II
DOT National Transportation Integrated Search
1973-02-01
The use of phased arrays for the proposed landing system (MLS) is discussed. Studies relating to ground reflections, near field focusing, and phased-array errors are presented. Two experimental antennas which were fabricated and tested are described....
NASA Astrophysics Data System (ADS)
Sigler, Chris; Gibson, Ricky; Boyle, Colin; Kirch, Jeremy D.; Lindberg, Donald; Earles, Thomas; Botez, Dan; Mawst, Luke J.; Bedford, Robert
2018-01-01
The modal characteristics of nonresonant five-element phase-locked arrays of 4.7-μm emitting quantum cascade lasers (QCLs) have been studied using spectrally resolved near- and far-field measurements and correlated with results of device simulation. Devices are fabricated by a two-step metal-organic chemical vapor deposition process and operate predominantly in an in-phase array mode near threshold, although become multimode at higher drive levels. The wide spectral bandwidth of the QCL's core region is found to be a factor in promoting multispatial-mode operation at high drive levels above threshold. An optimized resonant-array design is identified to allow sole in-phase array-mode operation to high drive levels above threshold, and indicates that for phase-locked laser arrays full spatial coherence to high output powers does not require full temporal coherence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rielage, K.; Akashi-Ronquest, M.; Bodmer, M.
The direct search for dark matter is entering a period of increased sensitivity to the hypothetical Weakly Interacting Massive Particle (WIMP). One such technology that is being examined is a scintillation only noble liquid experiment, MiniCLEAN. MiniCLEAN utilizes over 500 kg of liquid cryogen to detect nuclear recoils from WIMP dark matter and serves as a demonstration for a future detector of order 50 to 100 tonnes. The liquid cryogen is interchangeable between argon and neon to study the A² dependence of the potential signal and examine backgrounds. MiniCLEAN utilizes a unique modular design with spherical geometry to maximize themore » light yield using cold photomultiplier tubes in a single-phase detector. Pulse shape discrimination techniques are used to separate nuclear recoil signals from electron recoil backgrounds. MiniCLEAN will be spiked with additional ³⁹Ar to demonstrate the effective reach of the pulse shape discrimination capability. Assembly of the experiment is underway at SNOLAB and an update on the project is given.« less
Beer, Katharina; Steffan-Dewenter, Ingolf; Härtel, Stephan; Helfrich-Förster, Charlotte
2016-08-01
Chronobiological studies of individual activity rhythms in social insects can be constrained by the artificial isolation of individuals from their social context. We present a new experimental set-up that simultaneously measures the temperature rhythm in a queen-less but brood raising mini colony and the walking activity rhythms of singly kept honey bees that have indirect social contact with it. Our approach enables monitoring of individual bees in the social context of a mini colony under controlled laboratory conditions. In a pilot experiment, we show that social contact with the mini colony improves the survival of monitored young individuals and affects locomotor activity patterns of young and old bees. When exposed to conflicting Zeitgebers consisting of a light-dark (LD) cycle that is phase-delayed with respect to the mini colony rhythm, rhythms of young and old bees are socially synchronized with the mini colony rhythm, whereas isolated bees synchronize to the LD cycle. We conclude that the social environment is a stronger Zeitgeber than the LD cycle and that our new experimental set-up is well suited for studying the mechanisms of social entrainment in honey bees.
Robust and adaptive band-to-band image transform of UAS miniature multi-lens multispectral camera
NASA Astrophysics Data System (ADS)
Jhan, Jyun-Ping; Rau, Jiann-Yeou; Haala, Norbert
2018-03-01
Utilizing miniature multispectral (MS) or hyperspectral (HS) cameras by mounting them on an Unmanned Aerial System (UAS) has the benefits of convenience and flexibility to collect remote sensing imagery for precision agriculture, vegetation monitoring, and environment investigation applications. Most miniature MS cameras adopt a multi-lens structure to record discrete MS bands of visible and invisible information. The differences in lens distortion, mounting positions, and viewing angles among lenses mean that the acquired original MS images have significant band misregistration errors. We have developed a Robust and Adaptive Band-to-Band Image Transform (RABBIT) method for dealing with the band co-registration of various types of miniature multi-lens multispectral cameras (Mini-MSCs) to obtain band co-registered MS imagery for remote sensing applications. The RABBIT utilizes modified projective transformation (MPT) to transfer the multiple image geometry of a multi-lens imaging system to one sensor geometry, and combines this with a robust and adaptive correction (RAC) procedure to correct several systematic errors and to obtain sub-pixel accuracy. This study applies three state-of-the-art Mini-MSCs to evaluate the RABBIT method's performance, specifically the Tetracam Miniature Multiple Camera Array (MiniMCA), Micasense RedEdge, and Parrot Sequoia. Six MS datasets acquired at different target distances and dates, and locations are also applied to prove its reliability and applicability. Results prove that RABBIT is feasible for different types of Mini-MSCs with accurate, robust, and rapid image processing efficiency.
Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun; Yoo, Eun Sang
2012-05-01
Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI.
A stainless steel bracket for orthodontic application.
Oh, Keun-Taek; Choo, Sung-Uk; Kim, Kwang-Mahn; Kim, Kyoung-Nam
2005-06-01
Aesthetics has become an essential element when choosing orthodontic fixed appliances. Most metallic brackets used in orthodontic therapy are made from stainless steel (SS) with the appropriate physical properties and good corrosion resistance, and are available as types 304, 316 and 17-4 PH SS. However, localized corrosion of these materials can frequently occur in the oral environment. This study was undertaken to evaluate the accuracy of sizing, microstructure, hardness, corrosion resistance, frictional resistance and cytotoxicity of commercially available Mini-diamond (S17400), Archist (S30403) and experimentally manufactured SR-50A (S32050) brackets. The size accuracy of Mini-diamond was the highest at all locations except for the external horizontal width of the tie wing (P < 0.05). Micrographs of the Mini-diamond and Archist showed precipitates in the grains and around their boundaries. SR-50A showed the only austenitic phase and the highest polarization resistance of the tested samples. SR-50A also had the highest corrosion resistance [SR-50A, Mini-diamond and Archist were 0.9 x 10(-3), 3.7 x 10(-3), and 7.4 x 10(-3) mm per year (mpy), respectively], in the artificial saliva. The frictional force of SR-50A decreased over time, but that of Mini-diamond and Archist increased. Therefore, SR-50A is believed to have better frictional properties to orthodontic wire than Mini-diamond and Archist. Cytotoxic results showed that the response index of SR-50A was 0/1 (mild), Mini-diamond 1/1 (mild+), and Archist 1/2 (mild+). SR-50A showed greater biocompatibility than either Mini-diamond or Archist. It is concluded that the SR-50A bracket has good frictional property, corrosion resistance and biocompatibility with a lower probability of allergic reaction, compared with conventionally used SS brackets.
Phase-locked laser array having a non-uniform spacing between lasing regions
NASA Technical Reports Server (NTRS)
Ackley, Donald E. (Inventor)
1986-01-01
A phase-locked semiconductor array wherein the lasing regions of the array are spaced an effective distance apart such that the modes of oscillation of the different lasing regions are phase-locked to one another. The center-to-center spacing between the lasing regions is non-uniform. This variation in spacing perturbs the preferred 180.degree. phase difference between adjacent lasing regions thereby providing an increased yield of arrays exhibiting a single-lobed, far-field radiation pattern.
Phase and Frequency Control of Laser Arrays for Pulse Synthesis
2015-01-02
with the laser array to understand the phase noise of elements on a common heat sink, and the relationship between linewidth and feedback speed...spatial brightness operation of a phase-locked stripe -array diode laser,” Laser Phys. 22, 160 (2012). [2] J. R. Leger, “Lateral mode control of an AlGaAs...Jechow, D. Skoczowsky, and R. Menzel, “Multi-wavelength, high spatial brightness operation of a phase-locked stripe -array diode laser,” Laser Phys. 22
Schneider, William R.
1989-01-01
Methods and apparatus for removing a pollutant such as dust (33) from a fluid stream (34). A nested array of fibers (35) is provided in a substantially annular container (36) having openings in its inner (32) and outer (31) cylindrical sides of such size as to retain the fibers (35) within the container while permitting fluid (34) to pass through easily, and the pollutant-containing fluid stream (34) is passed through at least a substantial portion of the container (36) from a region (37) outside the outer side (31) to a region (38) inside the inner side (32). Thus a substantial fraction of the pollutant (33) is separated from the fluid stream (34) in a portion of the nested array (35) generally nearer to the outer side (31) of the container (36) than to the inner side (31). From time to time the container (36) is rotated about its axis to remove a substantial fraction of the separated pollutant (33) from the nested array (35), by tumbling action and by the force of gravity, through the openings in the outer side (31) of the container (36). To assist in this removal, purging fluid (41) may be directed back through the container (36) from the inner side (32) during the tumbling.
An Update on Phased Array Results Obtained on the GE Counter-Rotating Open Rotor Model
NASA Technical Reports Server (NTRS)
Podboy, Gary; Horvath, Csaba; Envia, Edmane
2013-01-01
Beamform maps have been generated from 1) simulated data generated by the LINPROP code and 2) actual experimental phased array data obtained on the GE Counter-rotating open rotor model. The beamform maps show that many of the tones in the experimental data come from their corresponding Mach radius. If the phased array points to the Mach radius associated with a tone then it is likely that the tone is a result of the loading and thickness noise on the blades. In this case, the phased array correctly points to where the noise is coming from and indicates the axial location of the loudest source in the image but not necessarily the correct vertical location. If the phased array does not point to the Mach radius associated with a tone then some mechanism other than loading and thickness noise may control the amplitude of the tone. In this case, the phased array may or may not point to the actual source. If the source is not rotating it is likely that the phased array points to the source. If the source is rotating it is likely that the phased array indicates the axial location of the loudest source but not necessarily the correct vertical location. These results indicate that you have to be careful in how you interpret phased array data obtained on an open rotor since they may show the tones coming from a location other than the source location. With a subsonic tip speed open rotor the tones can come form locations outboard of the blade tips. This has implications regarding noise shielding.
NASA Technical Reports Server (NTRS)
Butler, J. K.; Ettenberg, M.; Ackley, D. E.
1985-01-01
The lasing wavelengths and gain characteristics of the modes of phase-locked arrays of channel-substrate-planar (CSP) lasers are presented. The gain values for the array modes are determined from complex coupling coefficients calculated using the fields of neighboring elements of the array. The computations show that, for index guided lasers which have nearly planar phase fronts, the highest order array mode will be preferred. The 'in-phase' or fundamental mode, which produces only one major lobe in the far-field radiation pattern, has the lowest modal gain of all array modes. The modal gain differential between the highest order and fundamental modes is less than 10/cm for weak coupling between the elements.
Methods for calculating conjugate problems of heat transfer
NASA Astrophysics Data System (ADS)
Kalinin, E. K.; Dreitser, G. A.; Kostiuk, V. V.; Berlin, I. I.
Methods are examined for calculating various conjugate problems of heat transfer in channels and closed vessels in cases of single-phase and two-phase flow in steady and unsteady conditions. The single-phase-flow studies involve the investigation of gaseous and liquid heat-carriers in pipes, annular and plane channels, and pipe bundles in cases of cooling and heating. General relationships are presented for heat transfer in cases of film, transition, and nucleate boiling, as well as for boiling crises. Attention is given to methods for analyzing the filling and cooling of conduits and tanks by cryogenic liquids; and ways to intensify heat transfer in these conditions are examined.
Southern Annular Mode drives multicentury wildfire activity in southern South America
Paritsis, Juan; Mundo, Ignacio A.; Veblen, Thomas T.; Kitzberger, Thomas; Williamson, Grant J.; Aráoz, Ezequiel; Bustos-Schindler, Carlos; González, Mauro E.; Grau, H. Ricardo; Quezada, Juan M.
2017-01-01
The Southern Annular Mode (SAM) is the main driver of climate variability at mid to high latitudes in the Southern Hemisphere, affecting wildfire activity, which in turn pollutes the air and contributes to human health problems and mortality, and potentially provides strong feedback to the climate system through emissions and land cover changes. Here we report the largest Southern Hemisphere network of annually resolved tree ring fire histories, consisting of 1,767 fire-scarred trees from 97 sites (from 22 °S to 54 °S) in southern South America (SAS), to quantify the coupling of SAM and regional wildfire variability using recently created multicentury proxy indices of SAM for the years 1531–2010 AD. We show that at interannual time scales, as well as at multidecadal time scales across 37–54 °S, latitudinal gradient elevated wildfire activity is synchronous with positive phases of the SAM over the years 1665–1995. Positive phases of the SAM are associated primarily with warm conditions in these biomass-rich forests, in which widespread fire activity depends on fuel desiccation. Climate modeling studies indicate that greenhouse gases will force SAM into its positive phase even if stratospheric ozone returns to normal levels, so that climate conditions conducive to widespread fire activity in SAS will continue throughout the 21st century. PMID:28827329
NASA Astrophysics Data System (ADS)
Akashi-Ronquest, M.; Amaudruz, P.-A.; Batygov, M.; Beltran, B.; Bodmer, M.; Boulay, M. G.; Broerman, B.; Buck, B.; Butcher, A.; Cai, B.; Caldwell, T.; Chen, M.; Chen, Y.; Cleveland, B.; Coakley, K.; Dering, K.; Duncan, F. A.; Formaggio, J. A.; Gagnon, R.; Gastler, D.; Giuliani, F.; Gold, M.; Golovko, V. V.; Gorel, P.; Graham, K.; Grace, E.; Guerrero, N.; Guiseppe, V.; Hallin, A. L.; Harvey, P.; Hearns, C.; Henning, R.; Hime, A.; Hofgartner, J.; Jaditz, S.; Jillings, C. J.; Kachulis, C.; Kearns, E.; Kelsey, J.; Klein, J. R.; Kuźniak, M.; LaTorre, A.; Lawson, I.; Li, O.; Lidgard, J. J.; Liimatainen, P.; Linden, S.; McFarlane, K.; McKinsey, D. N.; MacMullin, S.; Mastbaum, A.; Mathew, R.; McDonald, A. B.; Mei, D.-M.; Monroe, J.; Muir, A.; Nantais, C.; Nicolics, K.; Nikkel, J. A.; Noble, T.; O'Dwyer, E.; Olsen, K.; Orebi Gann, G. D.; Ouellet, C.; Palladino, K.; Pasuthip, P.; Perumpilly, G.; Pollmann, T.; Rau, P.; Retière, F.; Rielage, K.; Schnee, R.; Seibert, S.; Skensved, P.; Sonley, T.; Vázquez-Jáuregui, E.; Veloce, L.; Walding, J.; Wang, B.; Wang, J.; Ward, M.; Zhang, C.
2015-05-01
Many current and future dark matter and neutrino detectors are designed to measure scintillation light with a large array of photomultiplier tubes (PMTs). The energy resolution and particle identification capabilities of these detectors depend in part on the ability to accurately identify individual photoelectrons in PMT waveforms despite large variability in pulse amplitudes and pulse pileup. We describe a Bayesian technique that can identify the times of individual photoelectrons in a sampled PMT waveform without deconvolution, even when pileup is present. To demonstrate the technique, we apply it to the general problem of particle identification in single-phase liquid argon dark matter detectors. Using the output of the Bayesian photoelectron counting algorithm described in this paper, we construct several test statistics for rejection of backgrounds for dark matter searches in argon. Compared to simpler methods based on either observed charge or peak finding, the photoelectron counting technique improves both energy resolution and particle identification of low energy events in calibration data from the DEAP-1 detector and simulation of the larger MiniCLEAN dark matter detector.
Pennycook, Timothy J; Jones, Lewys; Pettersson, Henrik; Coelho, João; Canavan, Megan; Mendoza-Sanchez, Beatriz; Nicolosi, Valeria; Nellist, Peter D
2014-12-22
Dynamic processes, such as solid-state chemical reactions and phase changes, are ubiquitous in materials science, and developing a capability to observe the mechanisms of such processes on the atomic scale can offer new insights across a wide range of materials systems. Aberration correction in scanning transmission electron microscopy (STEM) has enabled atomic resolution imaging at significantly reduced beam energies and electron doses. It has also made possible the quantitative determination of the composition and occupancy of atomic columns using the atomic number (Z)-contrast annular dark-field (ADF) imaging available in STEM. Here we combine these benefits to record the motions and quantitative changes in the occupancy of individual atomic columns during a solid-state chemical reaction in manganese oxides. These oxides are of great interest for energy-storage applications such as for electrode materials in pseudocapacitors. We employ rapid scanning in STEM to both drive and directly observe the atomic scale dynamics behind the transformation of Mn3O4 into MnO. The results demonstrate we now have the experimental capability to understand the complex atomic mechanisms involved in phase changes and solid state chemical reactions.
Numerical Modeling of the Transient Chilldown Process of a Cryogenic Propellant Transfer Line
NASA Technical Reports Server (NTRS)
Hartwig, Jason; Vera, Jerry
2015-01-01
Before cryogenic fuel depots can be fully realized, efficient methods with which to chill down the spacecraft transfer line and receiver tank are required. This paper presents numerical modeling of the chilldown of a liquid hydrogen tank-to-tank propellant transfer line using the Generalized Fluid System Simulation Program (GFSSP). To compare with data from recently concluded turbulent LH2 chill down experiments, seven different cases were run across a range of inlet liquid temperatures and mass flow rates. Both trickle and pulse chill down methods were simulated. The GFSSP model qualitatively matches external skin mounted temperature readings, but large differences are shown between measured and predicted internal stream temperatures. Discrepancies are attributed to the simplified model correlation used to compute two-phase flow boiling heat transfer. Flow visualization from testing shows that the initial bottoming out of skin mounted sensors corresponds to annular flow, but that considerable time is required for the stream sensor to achieve steady state as the system moves through annular, churn, and bubbly flow. The GFSSP model does adequately well in tracking trends in the data but further work is needed to refine the two-phase flow modeling to better match observed test data.
Advanced Microstrip Antenna Developments : Volume I. Technology Studies for Aircraft Phased Arrays
DOT National Transportation Integrated Search
1981-06-01
Work has continued on improvement of microstrip phased-array antenna technology since the first microstrip phased-array was flight-tested during the FAA 1974-1975 ATS-6 test program. The present development has extended this earlier work in three are...
NASA Astrophysics Data System (ADS)
Chen, Jinzhong; He, Renyang; Kang, Xiaowei; Yang, Xuyun
2015-10-01
The non-destructive testing of small-sized (M12-M20) stainless steel bolts in servicing is always a technical problem. This article focuses on the simulation and experimental research of stainless steel bolts with an artificial defect reflector using ultrasonic phased array inspection. Based on the observation of the sound field distribution of stainless steel bolts in ultrasonic phased array as well as simulation modelling and analysis of the phased array probes' detection effects with various defect sizes, different artificial defect reflectors of M16 stainless steel bolts are machined in reference to the simulation results. Next, those bolts are tested using a 10-wafer phased array probe with 5 MHz. The test results finally prove that ultrasonic phased array can detect 1-mm cracks in diameter with different depths of M16 stainless steel bolts and a metal loss of Φ1 mm of through-hole bolts, which provides technical support for future non-destructive testing of stainless steel bolts in servicing.
Phase-locked, high power, mid-infrared quantum cascade laser arrays
NASA Astrophysics Data System (ADS)
Zhou, W.; Slivken, S.; Razeghi, M.
2018-04-01
We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array.
Flat dielectric metasurface lens array for three dimensional integral imaging
NASA Astrophysics Data System (ADS)
Zhang, Jianlei; Wang, Xiaorui; Yang, Yi; Yuan, Ying; Wu, Xiongxiong
2018-05-01
In conventional integral imaging, the singlet refractive lens array limits the imaging performance due to its prominent aberrations. Different from the refractive lens array relying on phase modulation via phase change accumulated along the optical paths, metasurfaces composed of nano-scatters can produce phase abrupt over the scale of wavelength. In this letter, we propose a novel lens array consisting of two neighboring flat dielectric metasurfaces for integral imaging system. The aspherical phase profiles of the metasurfaces are optimized to improve imaging performance. The simulation results show that our designed 5 × 5 metasurface-based lens array exhibits high image quality at designed wavelength 865 nm.
Laser illuminator and optical system for disk patterning
Hackel, Lloyd A.; Dane, C. Brent; Dixit, Shamasundar N.; Everett, Mathew; Honig, John
2000-01-01
Magnetic recording media are textured over areas designated for contact in order to minimize friction with data transducing heads. In fabricating a hard disk, an aluminum nickel-phosphorous substrate is polished to a specular finish. A mechanical means is then used to roughen an annular area intended to be the head contact band. An optical and mechanical system allows thousands of spots to be generated with each laser pulse, allowing the textured pattern to be rapidly generated with a low repetition rate laser and an uncomplicated mechanical system. The system uses a low power laser, a beam expander, a specially designed phase plate, a prism to deflect the beam, a lens to transmit the diffraction pattern to the far field, a mechanical means to rotate the pattern and a trigger system to fire the laser when sections of the pattern are precisely aligned. The system generates an annular segment of the desired pattern with which the total pattern is generated by rotating the optical system about its optic axis, sensing the rotational position and firing the laser as the annular segment rotates into the next appropriate position. This marking system can be integrated into a disk sputtering system for manufacturing magnetic disks, allowing for a very streamlined manufacturing process.
Process for radioisotope recovery and system for implementing same
Meikrantz, David H [Idaho Falls, ID; Todd, Terry A [Aberdeen, ID; Tranter, Troy J [Idaho Falls, ID; Horwitz, E Philip [Naperville, IL
2009-10-06
A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.
Process for radioisotope recovery and system for implementing same
Meikrantz, David H.; Todd, Terry A.; Tranter, Troy J.; Horwitz, E. Philip
2007-01-02
A method of recovering daughter isotopes from a radioisotope mixture. The method comprises providing a radioisotope mixture solution comprising at least one parent isotope. The at least one parent isotope is extracted into an organic phase, which comprises an extractant and a solvent. The organic phase is substantially continuously contacted with an aqueous phase to extract at least one daughter isotope into the aqueous phase. The aqueous phase is separated from the organic phase, such as by using an annular centrifugal contactor. The at least one daughter isotope is purified from the aqueous phase, such as by ion exchange chromatography or extraction chromatography. The at least one daughter isotope may include actinium-225, radium-225, bismuth-213, or mixtures thereof. A liquid-liquid extraction system for recovering at least one daughter isotope from a source material is also disclosed.
NASA Astrophysics Data System (ADS)
Yuan, Yu; Wyatt, Cory; Maccarini, Paolo; Stauffer, Paul; Craciunescu, Oana; MacFall, James; Dewhirst, Mark; Das, Shiva K.
2012-04-01
This paper describes a heterogeneous phantom that mimics a human thigh with a deep-seated tumor, for the purpose of studying the performance of radiofrequency (RF) heating equipment and non-invasive temperature monitoring with magnetic resonance imaging (MRI). The heterogeneous cylindrical phantom was constructed with an outer fat layer surrounding an inner core of phantom material mimicking muscle, tumor and marrow-filled bone. The component materials were formulated to have dielectric and thermal properties similar to human tissues. The dielectric properties of the tissue mimicking phantom materials were measured with a microwave vector network analyzer and impedance probe over the frequency range of 80-500 MHz and at temperatures of 24, 37 and 45 °C. The specific heat values of the component materials were measured using a differential scanning calorimeter over the temperature range of 15-55 °C. The thermal conductivity value was obtained from fitting the curves obtained from one-dimensional heat transfer measurement. The phantom was used to verify the operation of a cylindrical four-antenna annular phased array extremity applicator (140 MHz) by examining the proton resonance frequency shift (PRFS) thermal imaging patterns for various magnitude/phase settings (including settings to focus heating in tumors). For muscle and tumor materials, MRI was also used to measure T1/T2* values (1.5 T) and to obtain the slope of the PRFS phase change versus temperature change curve. The dielectric and thermal properties of the phantom materials were in close agreement to well-accepted published results for human tissues. The phantom was able to successfully demonstrate satisfactory operation of the tested heating equipment. The MRI-measured thermal distributions matched the expected patterns for various magnitude/phase settings of the applicator, allowing the phantom to be used as a quality assurance tool. Importantly, the material formulations for the various tissue types may be used to construct customized phantoms that are tailored for different anatomical sites.
Target tracking and pointing for arrays of phase-locked lasers
NASA Astrophysics Data System (ADS)
Macasaet, Van P.; Hughes, Gary B.; Lubin, Philip; Madajian, Jonathan; Zhang, Qicheng; Griswold, Janelle; Kulkarni, Neeraj; Cohen, Alexander; Brashears, Travis
2016-09-01
Arrays of phase-locked lasers are envisioned for planetary defense and exploration systems. High-energy beams focused on a threatening asteroid evaporate surface material, creating a reactionary thrust that alters the asteroid's orbit. The same system could be used to probe an asteroid's composition, to search for unknown asteroids, and to propel interplanetary and interstellar spacecraft. Phased-array designs are capable of producing high beam intensity, and allow beam steering and beam profile manipulation. Modular designs allow ongoing addition of emitter elements to a growing array. This paper discusses pointing control for extensible laser arrays. Rough pointing is determined by spacecraft attitude control. Lateral movement of the laser emitter tips behind the optical elements provides intermediate pointing adjustment for individual array elements and beam steering. Precision beam steering and beam formation is accomplished by coordinated phase modulation across the array. Added cells are incorporated into the phase control scheme by precise alignment to local mechanical datums using fast, optical relative position sensors. Infrared target sensors are also positioned within the datum scheme, and provide information about the target vector relative to datum coordinates at each emitter. Multiple target sensors allow refined determination of the target normal plane, providing information to the phase controller for each emitter. As emitters and sensors are added, local position data allows accurate prediction of the relative global position of emitters across the array, providing additional constraints to the phase controllers. Mechanical design and associated phase control that is scalable for target distance and number of emitters is presented.
1974-06-01
retrans- minied modulation signals. A phase-lock loop was used to provide correlation detection, allowing automatic acquisition and phase tracking at...steel strips, 0.5-inch-wide by 0.009-inch-thick, and formed to a 0.75-inch radius. Each antenne -was plated with silver to imprive con- dutivity...Telemetry Requirements k. Phase Detector Output Requirements 1. Primary Power Requirements m. AM Suppression Requirements n. Data Feedback Loop Gain
High-Efficiency Nested Hall Thrusters for Robotic Solar System Exploration
NASA Technical Reports Server (NTRS)
Hofer, Richard R.
2013-01-01
This work describes the scaling and design attributes of Nested Hall Thrusters (NHT) with extremely large operational envelopes, including a wide range of throttleability in power and specific impulse at high efficiency (>50%). NHTs have the potential to provide the game changing performance, powerprocessing capabilities, and cost effectiveness required to enable missions that cannot otherwise be accomplished. NHTs were first identified in the electric propulsion community as a path to 100- kW class thrusters for human missions. This study aimed to identify the performance capabilities NHTs can provide for NASA robotic and human missions, with an emphasis on 10-kW class thrusters well-suited for robotic exploration. A key outcome of this work has been the identification of NHTs as nearly constant-efficiency devices over large power throttling ratios, especially in direct-drive power systems. NHT systems sized for robotic solar system exploration are predicted to be capable of high-efficiency operation over nearly their entire power throttling range. A traditional Annular Hall Thruster (AHT) consists of a single annular discharge chamber where the propellant is ionized and accelerated. In an NHT, multiple annular channels are concentrically stacked. The channels can be operated in unison or individually depending on the available power or required performance. When throttling an AHT, performance must be sacrificed since a single channel cannot satisfy the diverse design attributes needed to maintain high thrust efficiency. NHTs can satisfy these requirements by varying which channels are operated and thereby offer significant benefits in terms of thruster performance, especially under deep power throttling conditions where the efficiency of an AHT suffers since a single channel can only operate efficiently (>50%) over a narrow power throttling ratio (3:1). Designs for 10-kW class NHTs were developed and compared with AHT systems. Power processing systems were considered using either traditional Power Processing Units (PPU) or Direct Drive Units (DDU). In a PPU-based system, power from the solar arrays is transformed from the low voltage of the arrays to the high voltage needed by the thruster. In a DDU-based system, power from the solar arrays is fed to the thruster without conversion. DDU-based systems are attractive for their simplicity since they eliminate the most complex and expensive part of the propulsion system. The results point to the strong potential of NHTs operating with either PPUs or DDUs to benefit robotic and human missions through their unprecedented power and specific impulse throttling capabilities. NHTs coupled to traditional PPUs are predicted to offer high-efficiency (>50%) power throttling ratios 320% greater than present capabilities, while NHTs with direct-drive power systems (DDU) could exceed existing capabilities by 340%. Because the NHT-DDU approach is implicitly low-cost, NHT-DDU technology has the potential to radically reduce the cost of SEP-enabled NASA missions while simultaneously enabling unprecedented performance capability.
Coal desulfurization by low temperature chlorinolysis, phase 1
NASA Technical Reports Server (NTRS)
Kalvinskas, J. J.; Hsu, G. C.; Ernest, J. B.; Andress, D. F.; Feller, D. R.
1977-01-01
The reported activity covers laboratory scale experiments on twelve bituminous, sub-bituminous and lignite coals, and preliminary design and specifications for bench-scale and mini-pilot plant equipment.
Air riding seal with purge cavity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sexton, Thomas D; Mills, Jacob A
An air riding seal for a turbine in a gas turbine engine, where an annular piston is axial moveable within an annular piston chamber formed in a stator of the turbine and forms a seal with a surface on the rotor using pressurized air that forms a cushion in a pocket of the annular piston. A purge cavity is formed on the annular piston and is connected to a purge hole that extends through the annular piston to a lower pressure region around the annular piston or through the rotor to an opposite side. The annular piston is sealed alsomore » with inner and outer seals that can be a labyrinth seal to form an additional seal than the cushion of air in the pocket to prevent the face of the air riding seal from overheating.« less
Kang, Xiaojun; Li, Wei; Zhou, Yun; Ni, Min
2013-01-01
Seed development in Arabidopsis and in many dicots involves an early proliferation of the endosperm to form a large embryo sac or seed cavity close to the size of the mature seed, followed by a second phase during which the embryo grows and replaces the endosperm. Short hypocotyl under BLUE1 (SHB1) is a member of the SYG1 protein family in fungi, Caenorhabditis elegans, flies, and mammals. SHB1 gain-of-function enhances endosperm proliferation, increases seed size, and up-regulates the expression of the WRKY transcription factor gene MINISEED3 (MINI3) and the LRR receptor kinase gene HAIKU2 (IKU2). Mutations in either IKU2 or MINI3 retard endosperm proliferation and reduce seed size. However, the molecular mechanisms underlying the establishment of the seed cavity and hence the seed size remain largely unknown. Here, we show that the expression of MINI3 and IKU2 is repressed before fertilization and after 4 days after pollination (DAP), but is activated by SHB1 from 2 to 4 DAP prior to the formation of the seed cavity. SHB1 associates with their promoters but without a recognizable DNA binding motif, and this association is abolished in mini3 mutant. MINI3 binds to W-boxes in, and recruits SHB1 to, its own and IKU2 promoters. Interestingly, SHB1, but not MINI3, activates transcription of pMINI3::GUS or pIKU2::GUS. We reveal a critical developmental switch through the activation of MINI3 expression by SHB1. The recruitment of SHB1 by MINI3 to its own and IKU2 promoters represents a novel two-step amplification to counter the low expression level of IKU2, which is a trigger for endosperm proliferation and seed cavity enlargement.
C-2W Magnetic Measurement Suite
NASA Astrophysics Data System (ADS)
Roche, T.; Thompson, M. C.; Griswold, M.; Knapp, K.; Koop, B.; Ottaviano, A.; Tobin, M.; TAE, Tri Alpha Energy, Inc. Team
2017-10-01
Commissioning and early operations are underway on C-2W, Tri Alpha Energy's new FRC experiment. The increased complexity level of this machine requires an equally enhanced diagnostic capability. A fundamental component of any magnetically confined fusion experiment is a firm understanding of the magnetic field itself. C-2W is outfitted with over 700 magnetic field probes, 550 internal and 150 external. Innovative in-vacuum annular flux loop / B-dot combination probes will provide information about plasma shape, size, pressure, energy, total temperature, and trapped flux when coupled with establish theoretical interpretations. The massive Mirnov array, consisting of eight rings of eight 3D probes, will provide detailed information about plasma motion, stability, and MHD modal content with the aid of singular value decomposition (SVD) analysis. Internal Rogowski probes will detect the presence of axial currents flowing in the plasma jet in multiple axial locations. Initial data from this array of diagnostics will be presented along with some interpretation and discussion of the analysis techniques used.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Qiang; Peer, Akshit; Cho, In Ho
Replica molding often induces tribocharge on elastomers. To date, this phenomenon has been studied only on untextured elastomer surfaces even though replica molding is an effective method for their nanotexturing. Here we show that on elastomer surfaces nanotextured through replica molding the induced tribocharge also becomes patterned at nanoscale in close correlation with the nanotexture. Here, by applying Kelvin probe microscopy, electrohydrodynamic lithography, and electrostatic analysis to our model nanostructure, poly(dimethylsiloxane) nanocup arrays replicated from a polycarbonate nanocone array, we reveal that the induced tribocharge is highly localized within the nanocup, especially around its rim. Through finite element analysis, wemore » also find that the rim sustains the strongest friction during the demolding process. From these findings, we identify the demolding-induced friction as the main factor governing the tribocharge’s nanoscale distribution pattern. Finally, by incorporating the resulting annular tribocharge into electrohydrodynamic lithography, we also accomplish facile realization of nanovolcanos with 10 nm-scale craters.« less
Square array photonic crystal fiber-based surface plasmon resonance refractive index sensor
NASA Astrophysics Data System (ADS)
Liu, Min; Yang, Xu; Zhao, Bingyue; Hou, Jingyun; Shum, Ping
2017-12-01
Based on surface plasmon resonance (SPR), a novel refractive index (RI) sensor comprising a square photonic crystal fiber (PCF) is proposed to realize the detection of the annular analyte. Instead of hexagon structure, four large air-holes in a square array are introduced to enhance the sensitivity by allowing two polarization directions of the core mode to be more sensitive. The gold is used as the only plasmonic material. The design purpose is to reduce the difficulty in gold deposition and enhance the RI sensitivity. The guiding properties and the effects of the parameters on the performance of the sensor are numerically investigated by the Finite Element Method (FEM). By optimizing the structure, the sensor can exhibit remarkable sensitivity up to 7250 nm/RIU and resolution of 1.0638 × 10-5 RIU with only one plasmonic material, which is very competitive compared with the other reported externally coated and single-layer coated PCF-based SPR (PCF-SPR) sensors, to our best knowledge.
Li, Qiang; Peer, Akshit; Cho, In Ho; ...
2018-03-02
Replica molding often induces tribocharge on elastomers. To date, this phenomenon has been studied only on untextured elastomer surfaces even though replica molding is an effective method for their nanotexturing. Here we show that on elastomer surfaces nanotextured through replica molding the induced tribocharge also becomes patterned at nanoscale in close correlation with the nanotexture. Here, by applying Kelvin probe microscopy, electrohydrodynamic lithography, and electrostatic analysis to our model nanostructure, poly(dimethylsiloxane) nanocup arrays replicated from a polycarbonate nanocone array, we reveal that the induced tribocharge is highly localized within the nanocup, especially around its rim. Through finite element analysis, wemore » also find that the rim sustains the strongest friction during the demolding process. From these findings, we identify the demolding-induced friction as the main factor governing the tribocharge’s nanoscale distribution pattern. Finally, by incorporating the resulting annular tribocharge into electrohydrodynamic lithography, we also accomplish facile realization of nanovolcanos with 10 nm-scale craters.« less
NASA Astrophysics Data System (ADS)
Labak, P.; Arndt, R.; Villagran, M.
2009-04-01
One of the sub-goals of the Integrated Field Experiment in 2008 (IFE08) in Kazakhstan was testing the prototype elements of the Seismic aftershock monitoring system (SAMS) for on-site inspection purposes. The task of the SAMS is to collect the facts, which should help to clarify nature of the triggering event. Therefore the SAMS has to be capable to detect and identify events as small as magnitude -2 in the inspection area size up to 1000 km2. Equipment for 30 mini-arrays and 10 3-component stations represented the field equipment of the SAMS. Each mini-array consisted of a central 3-component seismometer and 3 vertical seismometers at the distance about 100 m from the central seismometer. The mini-arrays covered approximately 80% of surrogate inspection area (IA) on the territory of former Semipalatinsk test site. Most of the stations were installed during the first four days of field operations by the seismic sub-team, which consisted of 10 seismologists. SAMS data center comprised 2 IBM Blade centers and 8 working places for data archiving, detection list production and event analysis. A prototype of SAMS software was tested. Average daily amount of collected raw data was 15-30 GB and increased according to the amount of stations entering operation. Routine manual data screening and data analyses were performed by 2-6 subteam members. Automatic screening was used for selected time intervals. Screening was performed using the Sonoview program in frequency domain and using the Geotool and Hypolines programs for screening in time domain. The screening results were merged into the master event list. The master event list served as a basis of detailed analysis of unclear events and events identified to be potentially in the IA. Detailed analysis of events to be potentially in the IA was performed by the Hypoline and Geotool programs. In addition, the Hyposimplex and Hypocenter programs were also used for localization of events. The results of analysis were integrated in the visual form using the Seistrain/geosearch program. Data were fully screened for the period 5.-13.9.2008. 360 teleseismic, regional and local events were identified. Results of the detection and analysis will be presented and consequences for further SAMS development will be discussed.
Ka-Band Multibeam Aperture Phased Array Being Developed
NASA Technical Reports Server (NTRS)
Reinhart, Richard C.; Kacpura, Thomas J.
2004-01-01
Phased-array antenna systems offer many advantages to low-Earth-orbiting satellite systems. Their large scan angles and multibeam capabilities allow for vibration-free, rapid beam scanning and graceful degradation operation for high rate downlink of data to users on the ground. Technology advancements continue to reduce the power, weight, and cost of these systems to make phased arrays a competitive alternative in comparison to the gimbled reflector system commonly used in science missions. One effort to reduce the cost of phased arrays is the development of a Ka-band multibeam aperture (MBA) phased array by Boeing Corporation under a contract jointly by the NASA Glenn Research Center and the Office of Naval Research. The objective is to develop and demonstrate a space-qualifiable dual-beam Ka-band (26.5-GHz) phased-array antenna. The goals are to advance the state of the art in Ka-band active phased-array antennas and to develop and demonstrate multibeam transmission technology compatible with spacecraft in low Earth orbit to reduce the cost of future missions by retiring certain development risks. The frequency chosen is suitable for space-to-space and space-to-ground communication links. The phased-array antenna has a radiation pattern designed by combining a set of individual radiating elements, optimized with the type of radiating elements used, their positions in space, and the amplitude and phase of the currents feeding the elements. This arrangement produces a directional radiation pattern that is proportional to the number of individual radiating elements. The arrays of interest here can scan the main beam electronically with a computerized algorithm. The antenna is constructed using electronic components with no mechanical parts, and the steering is performed electronically, without any resulting vibration. The speed of the scanning is limited primarily by the control electronics. The radiation performance degrades gracefully if a portion of the elements fail. The arrays can be constructed to conform to a mounting surface, and multibeam capability is integral to the design. However, there are challenges for mission designers using monolithic-microwave-integrated-circuit- (MMIC-) based arrays because of reduced power efficiency, higher costs, and certain system effects that result in link degradations. The multibeam aperture phased-array antenna development is attempting to address some of these issues, particularly manufacturing, costs, and system performance.
Employment of Adaptive Learning Techniques for the Discrimination of Acoustic Emissions.
1983-11-01
Dereverberation Simulations ... ............ .. 96 Ŗ 4. ARRAY OPTIMIZATION ......... ...................... . 115 * 4.1 Phased Array Fundamentals... 115 4.2 Phased Array Diffraction Suboptimization ......... ... 121 , .i Page s 4.3 Diffraction Pattern Simulations of Phased Arrays...by differentiating (2.13.14) with respect to z and • -- equating equal powers of z , giving n-i c n bn + I/n kckbn-k (2.13.15)nk= This is very
Ultrabroadband Phased-Array Receivers Based on Optical Techniques
2016-02-26
AFRL-AFOSR-VA-TR-2016-0121 Ultrabroadband Phased- array Receivers Based on Optical Techniques Christopher Schuetz UNIVERSITY OF DELAWARE Final Report...Jul 15 4. TITLE AND SUBTITLE Ultrabroadband Phased- Array Receivers Based on Optical Techniques 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1...receiver that enables us to capture and convert signals across an array using photonic modulators, routing these signals to a central location using
Taylor, Cliff D.; Marsh, Erin; Anderson, Eric D.
2015-01-01
PRISM-I summary documents mention the presence of mafic-ultramafic igneous intrusive rocks in several areas of Mauritania and a number of chromium (Cr) and copper-nickel (Cu-Ni (±Co, Au)) occurrences associated with them. Permissive geologic settings generally include greenstone belts of any age, layered mafic-ultramafic and unlayered gabbro-anorthosite intrusive complexes in cratonic settings, ophiolite complexes, flood basalt provinces, and fluid-rich shear zones cutting accumulations of mafic-ultramafic rocks. Regions of Mauritania having these characteristics that are discussed in PRISM-I texts include the Mesoarchean greenstone belts of the TasiastTijirit terrane in the southwestern Rgueïbat Shield, two separate layered ultramafic complexes in the Amsaga Complex west of Atar, serpentinized metadunites in Mesoarchean rocks of the Rgueïbat Shield in the Zednes map sheet, several lateritized annular mafic-ultramafic complexes in the Paleoproterozoic northwestern portion of the Rgueïbat Shield, and the serpentinized ophiolitic segments of the Gorgol Noir Complex in the axial portion of the southern Mauritanides. Bureau de Recherches Géologiques et Minières (BRGM) work in the “Extreme Sud” zone also suggests that small copper occurrences associated with the extensive Jurassic microgabbroic intrusive rocks in the Taoudeni Basin of southeastern Mauritania could have potential for magmatic Cu-Ni (PGE, Co, Au) sulfide mineralization. Similarly, Jurassic mafic intrusive rocks in the northeastern Taoudeni Basin may be permissive. Known magmatic Cu-Ni deposits of these types in Mauritania are few in number and some uncertainty exists as to the nature of several of the more important ones.
Multi-functional annular fairing for coupling launch abort motor to space vehicle
NASA Technical Reports Server (NTRS)
Camarda, Charles J. (Inventor); Scotti, Stephen J. (Inventor); Buning, Pieter G. (Inventor); Bauer, Steven X. S. (Inventor); Engelund, Walter C. (Inventor); Schuster, David M. (Inventor)
2011-01-01
An annular fairing having aerodynamic, thermal, structural and acoustic attributes couples a launch abort motor to a space vehicle having a payload of concern mounted on top of a rocket propulsion system. A first end of the annular fairing is fixedly attached to the launch abort motor while a second end of the annular fairing is attached in a releasable fashion to an aft region of the payload. The annular fairing increases in diameter between its first and second ends.
A Methodology for Phased Array Radar Threshold Modeling Using the Advanced Propagation Model (APM)
2017-10-01
TECHNICAL REPORT 3079 October 2017 A Methodology for Phased Array Radar Threshold Modeling Using the Advanced Propagation Model (APM...Head 55190 Networks Division iii EXECUTIVE SUMMARY This report summarizes the methodology developed to improve the radar threshold modeling...PHASED ARRAY RADAR CONFIGURATION ..................................................................... 1 3. METHODOLOGY
A phased array bread board for future remote sensing applications
NASA Astrophysics Data System (ADS)
Zahn, R. W.; Schmidt, E.
The next generation of SAR antennas will be of the active phased-array type. The ongoing development of a phased-array breadboard for remote sensing is described. Starting from a detailed system design, a functional representative breadboard was developed. The design and the performance of the breadboard are discussed.
Development of components for an S-band phased array antenna subsystem
NASA Technical Reports Server (NTRS)
1975-01-01
The system requirements, module test data, and S-band phased array subsystem test data are discussed. Of the two approaches to achieving antenna gain (mechanically steered reflector or electronically steered phased array), the phased array approach offers the greatest simplicity and lowest cost (size, weight, power, and dollars) for this medium gain. A competitive system design is described as well as hardware evaluation which will lead to timely availability of this technology for implementing such a system. The objectives of the study were: to fabricate and test six engineering model transmit/receive microelectronics modules; to design, fabricate, and test one dc and logic multilayer manifold; and to integrate and test an S-band phased array antenna subsystem composed of antenna elements, seven T/R modules, RF manifolds and dc manifold.
Kim, Bum Soo; Kim, Tae-Hwan; Kwon, Tae Gyun
2012-01-01
Purpose Several studies have demonstrated the superiority of endorectal coil magnetic resonance imaging (MRI) over pelvic phased-array coil MRI at 1.5 Tesla for local staging of prostate cancer. However, few have studied which evaluation is more accurate at 3 Tesla MRI. In this study, we compared the accuracy of local staging of prostate cancer using pelvic phased-array coil or endorectal coil MRI at 3 Tesla. Materials and Methods Between January 2005 and May 2010, 151 patients underwent radical prostatectomy. All patients were evaluated with either pelvic phased-array coil or endorectal coil prostate MRI prior to surgery (63 endorectal coils and 88 pelvic phased-array coils). Tumor stage based on MRI was compared with pathologic stage. We calculated the specificity, sensitivity and accuracy of each group in the evaluation of extracapsular extension and seminal vesicle invasion. Results Both endorectal coil and pelvic phased-array coil MRI achieved high specificity, low sensitivity and moderate accuracy for the detection of extracapsular extension and seminal vesicle invasion. There were statistically no differences in specificity, sensitivity and accuracy between the two groups. Conclusion Overall staging accuracy, sensitivity and specificity were not significantly different between endorectal coil and pelvic phased-array coil MRI. PMID:22476999
Linear and nonlinear evolution of azimuthal clumping instabilities in a Z-pinch wire array
Tang, Wilkin; Strickler, T. S.; Lau, Y. Y.; ...
2007-01-31
This study presents an analytic theory on the linear and nonlinear evolution of the most unstable azimuthal clumping mode, known as the pi-mode, in a discrete wire array. In the pi-mode, neighboring wires of the array pair-up as a result of the mutual attraction of the wires which carry current in the same direction. The analytic solution displays two regimes, where the collective interactions of all wires dominate, versus where the interaction of the neighboring, single wire dominates. This solution was corroborated by two vastly different numerical codes which were used to simulate arrays with both high wire numbers (upmore » to 600) and low wire number (8). All solutions show that azimuthal clumping of discrete wires occurs before appreciable radial motion of the wires. Thus, absence of azimuthal clumping of wires in comparison with the wires’ radial motion may imply substantial lack of wire currents. Finally, while the present theory and simulations have ignored the plasma corona and axial variations, it is argued that their effects, and the complete account of the three-dimensional feature of the pi-mode, together with a scaling study of the wire number, may be expediently simulated by using only one single wire in an annular wedge with a reflection condition imposed on the wedge’s boundary.« less
Two-Dimensional Array Beam Scanning Via Externally and Mutually Injection Locked Coupled Oscillators
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald J.
2000-01-01
Some years ago, Stephan proposed an approach to one dimensional (linear) phased array beam steering which requires only a single phase shifter. This involves the use of a linear array of voltage-controlled electronic oscillators coupled to nearest neighbors. The oscillators are mutually injection locked by controlling their coupling and tuning appropriately. Stephan's approach consists of deriving two signals from a master oscillator, one signal phase shifted with respect to the other by means of a single phase shifter. These two signals are injected into the end oscillators of the array. The result is a linear phase progression across the oscillator array. Thus, if radiating elements are connected to each oscillator and spaced uniformly along a line, they will radiate a beam at an angle to that line determined by the phase gradient which is, in turn, determined by the phase difference between the injection signals.The beam direction is therefore controlled by adjusting this phase difference. Recently, Pogorzelski and York presented a formulation which facilitates theoretical analysis of the above beam steering technique. This was subsequently applied by Pogorzelski in analysis of two dimensional beam steering using perimeter detuning of a coupled oscillator array. The formulation is based on a continuum model in which the oscillator phases are represented by a continuous function satisfying a partial differential equation of diffusion type. This equation can be solved via the Laplace transform and the resulting solution exhibits the dynamic behavior of the array as the beam is steered. Stephan's beam steering technique can be similarly generalized to two-dimensional arrays in which the beam control signals are applied to the oscillators on the perimeter of the array. In this paper the continuum model for this two-dimensional case is developed and the dynamic solution for the corresponding aperture phase function is obtained. The corresponding behavior of the resulting far-zone radiation pattern is displayed as well.
Yan, Hongyuan; Wang, Mingyu; Han, Yehong; Qiao, Fengxia; Row, Kyung Ho
2014-06-13
The miniaturized molecularly imprinted solid-phase extraction (mini-MISPE) coupled with high-performance liquid chromatography was proposed for the determination of acyclovir in urine. 1.5-mL tapered plastic centrifuge tube filled with hybrid molecularly imprinted polymers (HMIPs) was used as the cartridge of mini-MISPE, and the HMIPs synthesized with 3-aminopropyltriethoxy silane-methacrylic acid as monomer exhibited good recognition and selectivity for acyclovir. Under the optimized condition, good linear calibration was obtained in a range of 0.5-15μgmL(-1) with the correlation coefficient of 0.9994, and the recoveries at three spiked levels were 91.6-103.3% in urine with the relative standard deviation (RSD) of ≤3.5%. Excellent intra-day and inter-day repeatability were achieved with RSD of ≤2.6% and 4.0% in three different concentrations. This method combined the advantages of HMIPs and mini-MISPE, and it could become an alternative tool for analyzing the residues of acyclovir in complex urine matrices. Copyright © 2014 Elsevier B.V. All rights reserved.
Experimental clean combustor program, alternate fuels addendum, phase 2
NASA Technical Reports Server (NTRS)
Gleason, C. C.; Bahr, D. W.
1976-01-01
The characteristics of current and advanced low-emissions combustors when operated with special test fuels simulating broader range combustion properties of petroleum or coal derived fuels were studied. Five fuels were evaluated; conventional JP-5, conventional No. 2 Diesel, two different blends of Jet A and commercial aromatic mixtures - zylene bottoms and haphthalene charge stock, and a fuel derived from shale oil crude which was refined to Jet A specifications. Three CF6-50 engine size combustor types were evaluated; the standard production combustor, a radial/axial staged combustor, and a double annular combustor. Performance and pollutant emissons characteristics at idle and simulated takeoff conditions were evaluated in a full annular combustor rig. Altitude relight characteristics were evaluated in a 60 degree sector combustor rig. Carboning and flashback characteristics at simulated takeoff conditions were evaluated in a 12 degree sector combustor rig. For the five fuels tested, effects were moderate, but well defined.
Sourty, Erwan; van Bavel, Svetlana; Lu, Kangbo; Guerra, Ralph; Bar, Georg; Loos, Joachim
2009-06-01
Two purely carbon-based functional polymer systems were investigated by bright-field conventional transmission electron microscopy (CTEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). For a carbon black (CB) filled polymer system, HAADF-STEM provides high contrast between the CB agglomerates and the polymer matrix so that details of the interface organization easily can be revealed and assignment of the CB phase is straightforward. For a second system, the functional polymer blend representing the photoactive layer of a polymer solar cell, details of its nanoscale organization could be observed that were not accessible with CTEM. By varying the camera length in HAADF-STEM imaging, the contrast can be enhanced between crystalline and amorphous compounds due to diffraction contrast so that nanoscale interconnections between domains are identified. In general, due to its incoherent imaging characteristics HAADF-STEM allows for reliable interpretation of the data obtained.
Stable switching among high-order modes in polariton condensates
NASA Astrophysics Data System (ADS)
Sun, Yongbao; Yoon, Yoseob; Khan, Saeed; Ge, Li; Steger, Mark; Pfeiffer, Loren N.; West, Ken; Türeci, Hakan E.; Snoke, David W.; Nelson, Keith A.
2018-01-01
We report multistate optical switching among high-order bouncing-ball modes ("ripples") and whispering-gallery modes ("petals") of exciton-polariton condensates in a laser-generated annular trap. By tailoring the diameter and power of the annular trap, the polariton condensate can be switched among different trapped modes, accompanied by redistribution of spatial densities and superlinear increase in the emission intensities, implying that polariton condensates in this geometry could be exploited for an all-optical multistate switch. A model based on non-Hermitian modes of the generalized Gross-Pitaevskii equation reveals that this mode switching arises from competition between pump-induced gain and in-plane polariton loss. The parameters for reproducible switching among trapped modes have been measured experimentally, giving us a phase diagram for mode switching. Taken together, the experimental result and theoretical modeling advance our fundamental understanding of the spontaneous emergence of coherence and move us toward its practical exploitation.
NASA Astrophysics Data System (ADS)
Simpson, Isla R.; Polvani, Lorenzo M.
2016-03-01
Climate models exhibit a wide range in latitudinal position of the Southern Hemisphere westerly jet. Previous work has demonstrated, in the annual mean, that models with lower latitude jets, exhibit greater poleward jet shifts under climate forcings. It has been argued that this behavior is due to stronger eddy/mean flow feedbacks in models with lower latitude jets, as inferred from the timescale of the Southern Annular Mode (SAM). Here we revisit this question with a focus on seasonality. Using a larger set of models and forcing scenarios from the Coupled Model Intercomparison Project, phase 5, we find that the jet position/jet shift relationship is strong in winter but insignificant in summer, whereas the model spread in SAM timescales arises primarily in summer, with winter timescales similar across models. The results, therefore, question previous interpretations and motivate an improved understanding of the spread in model behavior.
Experimental clean combustor program, phase 1
NASA Technical Reports Server (NTRS)
Bahr, D. W.; Gleason, C. C.
1975-01-01
Full annular versions of advanced combustor designs, sized to fit within the CF6-50 engine, were defined, manufactured, and tested at high pressure conditions. Configurations were screened, and significant reductions in CO, HC, and NOx emissions levels were achieved with two of these advanced combustor design concepts. Emissions and performance data at a typical AST cruise condition were also obtained along with combustor noise data as a part of an addendum to the basic program. The two promising combustor design approaches evolved in these efforts were the Double Annular Combustor and the Radial/Axial Combustor. With versions of these two basic combustor designs, CO and HC emissions levels at or near the target levels were obtained. Although the low target NOx emissions level was not obtained with these two advanced combustor designs, significant reductions were relative to the NOx levels of current technology combustors. Smoke emission levels below the target value were obtained.
Polished Downhole Transducer Having Improved Signal Coupling
Hall, David R.; Fox, Joe
2006-03-28
Apparatus and methods to improve signal coupling in downhole inductive transmission elements to reduce the dispersion of magnetic energy at the tool joints and to provide consistent impedance and contact between transmission elements located along the drill string. A transmission element for transmitting information between downhole tools is disclosed in one embodiment of the invention as including an annular core constructed of a magnetically conductive material. The annular core forms an open channel around its circumference and is configured to form a closed channel by mating with a corresponding annular core along an annular mating surface. The mating surface is polished to provide improved magnetic coupling with the corresponding annular core. An annular conductor is disposed within the open channel.
Phased-array sources based on nonlinear metamaterial nanocavities
Wolf, Omri; Campione, Salvatore; Benz, Alexander; Ravikumar, Arvind P.; Liu, Sheng; Luk, Ting S.; Kadlec, Emil A.; Shaner, Eric A.; Klem, John F.; Sinclair, Michael B.; Brener, Igal
2015-01-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization. As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (∼5 μm): a beam splitter and a polarizing beam splitter. Proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum. PMID:26126879
First light from a kilometer-baseline Scintillation Auroral GPS Array.
Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G
2015-05-28
We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100-1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed.
First light from a kilometer-baseline Scintillation Auroral GPS Array
Datta-Barua, S; Su, Y; Deshpande, K; Miladinovich, D; Bust, G S; Hampton, D; Crowley, G
2015-01-01
We introduce and analyze the first data from an array of closely spaced Global Positioning System (GPS) scintillation receivers established in the auroral zone in late 2013 to measure spatial and temporal variations in L band signals at 100–1000 m and subsecond scales. The seven receivers of the Scintillation Auroral GPS Array (SAGA) are sited at Poker Flat Research Range, Alaska. The receivers produce 100 s scintillation indices and 100 Hz carrier phase and raw in-phase and quadrature-phase samples. SAGA is the largest existing array with baseline lengths of the ionospheric diffractive Fresnel scale at L band. With an initial array of five receivers, we identify a period of simultaneous amplitude and phase scintillation. We compare SAGA power and phase data with collocated 630.0 nm all-sky images of an auroral arc and incoherent scatter radar electron precipitation measurements, to illustrate how SAGA can be used in multi-instrument observations for subkilometer-scale studies. Key Points A seven-receiver Scintillation Auroral GPS Array (SAGA) is now at Poker Flat, Alaska SAGA is the largest subkilometer array to enable phase/irregularities studies Simultaneous scintillation, auroral arc, and electron precipitation are observed PMID:26709318
Recent developments in refractive concentrators for space photovoltaic power systems
NASA Technical Reports Server (NTRS)
Piszczor, Michael F.; Oneill, Mark J.
1993-01-01
Since SPRAT 11, significant progress has been made in the development of refractive concentrator elements and components designed specifically for space applications. The status of the mini-dome Fresnel lens concentrator array is discussed and then the results of work recently completed in the area of prismatic cell covers for concentrator systems are summarized. This is followed by a brief discussion of some work just starting in the area of line-focus refractive concentrators for space.
Axial Flow Conditioning Device for Mitigating Instabilities
NASA Technical Reports Server (NTRS)
Ahuja, Vineet (Inventor); Birkbeck, Roger M. (Inventor); Hosangadi, Ashvin (Inventor)
2017-01-01
A flow conditioning device for incrementally stepping down pressure within a piping system is presented. The invention includes an outer annular housing, a center element, and at least one intermediate annular element. The outer annular housing includes an inlet end attachable to an inlet pipe and an outlet end attachable to an outlet pipe. The outer annular housing and the intermediate annular element(s) are concentrically disposed about the center element. The intermediate annular element(s) separates an axial flow within the outer annular housing into at least two axial flow paths. Each axial flow path includes at least two annular extensions that alternately and locally direct the axial flow radially outward and inward or radially inward and outward thereby inducing a pressure loss or a pressure gradient within the axial flow. The pressure within the axial flow paths is lower than the pressure at the inlet end and greater than the vapor pressure for the axial flow. The invention minimizes fluidic instabilities, pressure pulses, vortex formation and shedding, and/or cavitation during pressure step down to yield a stabilized flow within a piping system.
Toepfer, Nicholas J; Wessner, Scott R; Elston, Dirk M; Simmons, Jennifer; Sumfest, Joel M
2011-09-01
To describe three patients who presented to a single institution within four years of each other with isolated granuloma annulare of the penis. Granuloma annulare is an inflammatory disease of the dermis that can affect men of any age including childhood. Granuloma annulare of the penis is a remarkably uncommon presentation with only 12 cases previously reported. A retrospective review of pathologic records was conducted confirming three cases of penile granuloma annulare diagnosed at our institution. The three cases are described in detail including the history, presentation, histological findings and treatment of each patient. The clinical variants, characteristic histology, classic clinical presentation, differential diagnosis and recurrence following surgery of granuloma annulare are reviewed. We describe three individuals from a single institution with isolated granuloma annulare of the penis suggesting this condition is more common than previously thought. Patients with penile granuloma annulare may present to practicing urologists and it is important to be familiar with this idiopathic subcutaneous disorder in order to avoid unnecessary aggressive surgery. Copyright © 2011 Elsevier Inc. All rights reserved.
Phase conjugation of Nd:YAG laser radiation
NASA Astrophysics Data System (ADS)
Chen, Jun
1988-06-01
The phase conjugation of Nd:YAG laser radiation by four-wave mixing in silicon and by stimulated Brillouin scattering in acetone and other organic liquids was experimentally and theoretically investigated. Due to nonlinear absorption in Si a saturation of the reflection of the phase conjugator was theoretically predicted, and experimentally observed. It is theoretically and experimentally shown that the radiation profile behind the Si-sample is annular due to defocusing. The experiments show that CS2 and acetone have the lowest thresholds for stimulated Brillouin scattering. A laser resonator was built using a Brillouin cell and two normal mirrors; the emitted laser beam is insensitive to phase perturbations in the resonator, and has a pulse duration of 5 ns and a pulse energy of 220 m.
NASA Astrophysics Data System (ADS)
Woo, S. Y.; Hosseini Vajargah, S.; Ghanad-Tavakoli, S.; Kleiman, R. N.; Botton, G. A.
2012-10-01
Unambiguous identification of anti-phase boundaries (APBs) in heteroepitaxial films of GaSb grown on Si has been so far elusive. In this work, we present conventional transmission electron microscopy (TEM) diffraction contrast imaging using superlattice reflections, in conjunction with convergent beam electron diffraction analysis, to determine a change in polarity across APBs in order to confirm the presence of anti-phase disorder. In-depth analysis of anti-phase disorder is further supported with atomic resolution high-angle annular dark-field scanning transmission electron microscopy. The nature of APBs in GaSb is further elucidated by a comparison to previous results for GaAs epilayers grown on Si.
Concept of an interlaced phased array for beam switching
NASA Astrophysics Data System (ADS)
Reddy, C. A.; Janardhanan, K. V.; Mukundan, K. K.; Shenoy, K. S. V.
1990-04-01
A novel concept is described for feeding and phasing a large linear array of N antenna elements using only three or five feed points and phase shifters and still achieving beam switching. The idea consists of drastically reducing the number of input points by interlacing a small number of serially fed subarrays which are suitably phased. This so-called interlaced phased array (IPA) concept was tested using an array of 15 four-element Yagi antennas with a spacing equal to 0.8 wavelengths and found feasible. Some of the distinct advantages of the IPA in comparison with a conventional system of beam switching are reduced power loss, reduced phasing errors, reduced cost, increased reliability resulting from greatly reduced number of phase shifters, and better symmetry of off-zenith beams.
NASA Technical Reports Server (NTRS)
1973-01-01
The Life Sciences Payload Definition and Integration Study was composed of four major tasks. Tasks A and B, the laboratory definition phase, were the subject of prior NASA study. The laboratory definition phase included the establishment of research functions, equipment definitions, and conceptual baseline laboratory designs. These baseline laboratories were designated as Maxi-Nom, Mini-30, and Mini-7. The outputs of Tasks A and B were used by the NASA Life Sciences Payload Integration Team to establish guidelines for Tasks C and D, the laboratory integration phase of the study. A brief review of Tasks A and B is presented provide background continuity. The tasks C and D effort is the subject of this report. The Task C effort stressed the integration of the NASA selected laboratory designs with the shuttle sortie module. The Task D effort updated and developed costs that could be used by NASA for preliminary program planning.
Mini-columns for Conducting Breakthrough Experiments. Design and Construction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dittrich, Timothy M.; Reimus, Paul William; Ware, Stuart Douglas
Experiments with moderately and strongly sorbing radionuclides (i.e., U, Cs, Am) have shown that sorption between experimental solutions and traditional column materials must be accounted for to accurately determine stationary phase or porous media sorption properties (i.e., sorption site density, sorption site reaction rate coefficients, and partition coefficients or K d values). This report details the materials and construction of mini-columns for use in breakthrough columns to allow for accurate measurement and modeling of sorption parameters. Material selection, construction techniques, wet packing of columns, tubing connections, and lessons learned are addressed.
Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions
NASA Technical Reports Server (NTRS)
Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.
1999-01-01
This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.
A 24-GHz portable FMCW radar with continuous beam steering phased array (Conference Presentation)
NASA Astrophysics Data System (ADS)
Peng, Zhengyu; Li, Changzhi
2017-05-01
A portable 24-GHz frequency-modulated continuous-wave (FMCW) radar with continuous beam steering phased array is presented. This board-level integrated radar system consists of a phased array antenna, a radar transceiver and a baseband. The phased array used by the receiver is a 4-element linear array. The beam of the phased array can be continuously steered with a range of ±30° on the H-plane through an array of vector controllers. The vector controller is based on the concept of vector sum with binary-phase-shift attenuators. Each vector controller is capable of independently controlling the phase and the amplitude of each element of the linear array. The radar transceiver is based on the six-port technique. A free-running voltage controlled oscillator (VCO) is controlled by an analog "sawtooth" voltage generator to produce frequency-modulated chirp signal. This chirp signal is used as the transmitter signal, as well as the local oscillator (LO) signal to drive the six-port circuit. The transmitter antenna is a single patch antenna. In the baseband, the beat signal of the FMCW radar is detected by the six-port circuit and then processed by a laptop in real time. Experiments have been performed to reveal the capabilities of the proposed radar system for applications including indoor inverse synthetic aperture radar (ISAR) imaging, vital sign detection, and short-range navigation, etc. (This abstract is for the profiles session.)
Designing of a small wearable conformal phased array antenna for wireless communications
NASA Astrophysics Data System (ADS)
Roy, Sayan
In this thesis, a unique design of a self-adapting conformal phased-array antenna system for wireless communications is presented. The antenna system is comprised of one microstrip antenna array and a sensor circuit. A 1x4 printed microstrip patch antenna array was designed on a flexible substrate with a resonant frequency of 2.47 GHz. However, the performance of the antenna starts to degrade as the curvature of the surface of the substrate changes. To recover the performance of the system, a flexible sensor circuitry was designed. This sensor circuitry uses analog phase shifters, a flexible resistor and operational-amplifier circuitry to compensate the phase of each array element of the antenna. The proposed analytical method for phase compensation has been first verified by designing an RF test platform consisting of a microstrip antenna array, commercially available analog phase shifters, analog voltage attenuators, 4-port power dividers and amplifiers. The platform can be operated through a LabVIEW GUI interface using a 12-bit digital-to-analog converter. This test board was used to design and calibrate the sensor circuitry by observing the behavior of the antenna array system on surfaces with different curvatures. In particular, this phased array antenna system was designed to be used on the surface of a spacesuit or any other flexible prototype. This work was supported in part by the Defense Miroelectronics Activity (DMEA), NASA ND EPSCoR and DARPA/MTO.
Brazilian Decimetric Array (BDA) project - Phase II
NASA Astrophysics Data System (ADS)
Faria, C.; Stephany, S.; Sawant, H. S.; Cecatto, J. R.; Fernandes, F. C. R.
2010-02-01
The configuration of the second phase of the Brazilian Decimetric Array (BDA), installed at Cachoeira Paulista, Brazil (Longitude 45° 0‧ 20″ W and Latitude 22° 41‧ 19″ S), is a T-shaped array where 21 antennas are being added to existing 5 antennas of the first phase. In the third phase, in each arm of the T array, four more antennas will be added and baselines will be increased to 2.5 × 1.25 km in east-west and south directions, respectively. The antennas will be equally spaced at the distances of 250 meters from the central antenna of the T-array. Also, the frequency range will be increased to 1.2-1.7, 2.8 and 5.6 GHz. The Second phase of the BDA should be operational by the middle of 2010 and will operate in the frequency range of (1.2-1.7) GHz for solar and non solar observations. Here, we present the characteristics of the second phase of the BDA project, details of the array configuration, the u-v coverage, the synthesized beam obtained for the proposed configuration.
Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.
Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa
2017-01-01
In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d 33 >1000pC/N) and electromechanical coupling (k 33 >0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies. Copyright © 2016 Elsevier B.V. All rights reserved.
Intracavitary ultrasound phased arrays for thermal therapies
NASA Astrophysics Data System (ADS)
Hutchinson, Erin
Currently, the success of hyperthermia and thermal surgery treatments is limited by the technology used in the design and fabrication of clinical heating devices and the completeness of the thermometry systems used for guidance. For both hyperthermia and thermal surgery, electrically focused ultrasound generated by phased arrays provides a means of controlling localized energy deposition in body tissues. Intracavitary applicators can be used to bring the energy source close to a target volume, such as the prostate, thereby minimizing normal tissue damage. The work performed in this study was aimed at improving noninvasive prostate thermal therapies and utilized three research approaches: (1) Acoustic, thermal and optimization simulations, (2) Design and fabrication of multiple phased arrays, (3) Ex vivo and in vivo experimental testing of the heating capabilities of the phased arrays. As part of this study, a novel aperiodic phased array design was developed which resulted in a 30- 45% reduction in grating lobe levels when compared to conventional phased arrays. Measured acoustic fields generated by the constructed aperiodic arrays agreed closely with the fields predicted by the theoretical simulations and covered anatomically appropriate ranges. The power capabilities of these arrays were demonstrated to be sufficient for the purposes of hyperthermia and thermal surgery. The advantage of using phased arrays in place of fixed focus transducers was shown by demonstrating the ability of electronic scanning to increase the size of the necrosed tissue volume while providing a more uniform thermal dose, which can ultimately reduce patient treatment times. A theoretical study on the feasibility of MRI (magnetic resonance imaging) thermometry for noninvasive temperature feedback control was investigated as a means to improve transient and steady state temperature distributions achieved in hyperthermia treatments. MRI guided ex vivo and in vivo experiments demonstrated that the heating capabilities of the constructed phased arrays were adequate for hyperthermia and thermal surgery treatments. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253- 1690.)
2014-03-21
Sheppard and A. Choudhury, “Annular pupils, radial polarization, and superresolution ,” Appl. Opt. 43(22), 4322–4327 (2004). 7. S. F. Pereira and A. S...van de Nes, “ Superresolution by means of polarisation, phase and amplitude pupil masks,” Opt. Commun. 234(1-6), 119–124 (2004). 8. R. Chen, K
Two-dimensional beam steering using a thermo-optic silicon photonic optical phased array
NASA Astrophysics Data System (ADS)
Rabinovich, William S.; Goetz, Peter G.; Pruessner, Marcel W.; Mahon, Rita; Ferraro, Mike S.; Park, Doe; Fleet, Erin; DePrenger, Michael J.
2016-11-01
Many components for free-space optical (FSO) communication systems have shrunken in size over the last decade. However, the steering systems have remained large and power hungry. Nonmechanical beam steering offers a path to reducing the size of these systems. Optical phased arrays can allow integrated beam steering elements. One of the most important aspects of an optical phased array technology is its scalability to a large number of elements. Silicon photonics can potentially offer this scalability using CMOS foundry techniques. A phased array that can steer in two dimensions using the thermo-optic effect is demonstrated. No wavelength tuning of the input laser is needed and the design allows a simple control system with only two inputs. A benchtop FSO link with the phased array in both transmit and receive mode is demonstrated.
An Agile Beam Transmit Array Using Coupled Oscillator Phase Control
NASA Technical Reports Server (NTRS)
Pogorzelski, Ronald S.; Scaramastra, Rocco P.; Huang, John; Beckon, Robert J.; Petree, Steve M.; Chavez, Cosme
1993-01-01
A few years ago York and colleagues suggested that injection locking of voltage controlled oscillators could be used to implement beam steering in a phased array [I]. The scheme makes use of the fact that when an oscillator is injection locked to an external signal, the phase difference between the output of the oscillator and the injection signal is governed by the difference between the injection frequency and the free running frequency of the oscillator (the frequency to which the oscillator is tuned). Thus, if voltage controlled oscillators (VCOs) are used, this phase difference is controlled by an applied voltage. Now, if a set of such oscillators are coupled to nearest neighbors, they can be made to mutually injection lock and oscillate as an ensemble. If they are all tuned to the same frequency, they will all oscillate in phase. Thus, if the outputs are connected to radiating elements forming a linear array, the antenna will radiate normal to the line of elements. Scanning is accomplished by antisymmetrically detuning the end oscillators in the array by application of a pair of appropriate voltages to their tuning ports. This results in a linear phase progression across the array which is just the phasing required to scan the beam. The scan angle is determined by the degree of detuning. We have constructed a seven element one dimensional agile beam array at S-band based on the above principle. Although, a few such arrays have been built in the past, this array possesses two unique features. First, the VCO MMICs have buffer amplifiers which isolate the output from the tuning circuit, and second, the oscillators are weakly coupled to each other at their resonant circuits rather than their outputs. This results in a convenient isolation between the oscillator array design and the radiating aperture design. An important parameter in the design is the so called coupling phase which determines the phase shift of the signals passing from one oscillator to its neighbors. Using this array, we have been able to verify the theoretical predictions concerning the effect of this phase on both the locking range and ensemble frequency of the array. However, the scan range achieved fell somewhat short of the theoretical value because of the amplitude variation of the oscillator outputs with tuning.
NASA Astrophysics Data System (ADS)
Carpenter, P. W.; Smith, C.
1997-12-01
The paper describes two studies of the effects of flow control devices on the aerodynamics and aeroacoustics of a high-speed Coanda flow that is formed when a supersonic jet issues from a radial nozzle and adheres to a tulip-shaped body of revolution. Shadowgraphy and other flow-visualization techniques are used to reveal the various features of the complex flow fields. The acoustic characteristics are obtained from far- and near-field measurements with an array of microphones in an anechoic chamber. First the effects of incorporating a step between the annular exit slot and the Coanda surface are investigated. The step is incorporated to ensure that the breakaway pressure is raised to a level well above the maximum operating pressure. It substantially increases the complexity of the flow field and acoustic characteristics. In particular, it promotes the generation of two groups of discrete tones. A theoretical model based on a self-generated feedback loop is proposed to explain how these tones are generated. The second study investigates the effects of replacing the annular exit slot with a saw-toothed one with the aim of eliminating the discrete tones and thereby substantially reducing the level of noise generated.
A contoured gap coaxial plasma gun with injected plasma armature.
Witherspoon, F Douglas; Case, Andrew; Messer, Sarah J; Bomgardner, Richard; Phillips, Michael W; Brockington, Samuel; Elton, Raymond
2009-08-01
A new coaxial plasma gun is described. The long term objective is to accelerate 100-200 microg of plasma with density above 10(17) cm(-3) to greater than 200 km/s with a Mach number above 10. Such high velocity dense plasma jets have a number of potential fusion applications, including plasma refueling, magnetized target fusion, injection of angular momentum into centrifugally confined mirrors, high energy density plasmas, and others. The approach uses symmetric injection of high density plasma into a coaxial electromagnetic accelerator having an annular gap geometry tailored to prevent formation of the blow-by instability. The injected plasma is generated by numerous (currently 32) radially oriented capillary discharges arranged uniformly around the circumference of the angled annular injection region of the accelerator. Magnetohydrodynamic modeling identified electrode profiles that can achieve the desired plasma jet parameters. The experimental hardware is described along with initial experimental results in which approximately 200 microg has been accelerated to 100 km/s in a half-scale prototype gun. Initial observations of 64 merging injector jets in a planar cylindrical testing array are presented. Density and velocity are presently limited by available peak current and injection sources. Steps to increase both the drive current and the injected plasma mass are described for next generation experiments.
Coupling of Low Speed Fan Stator Vane Unsteady Pressures to Duct Modes: Measured versus Predicted
NASA Technical Reports Server (NTRS)
Sutliff, Daniel L.; Heidelberg, Laurence J.; Envia, Edmane
1999-01-01
Uniform-flow annular-duct Green's functions are the essential elements of the classical acoustic analogy approach to the problem of computing the noise generated by rotor-stator interaction inside the fan duct. This paper investigates the accuracy of this class of Green's functions for predicting the duct noise levels when measured stator vane unsteady surface pressures are used as input to the theoretical formulation. The accuracy of the method is evaluated by comparing the predicted and measured acoustic power levels for the NASA 48 inch low speed Active Noise Control Fan. The unsteady surface pressures are measured,by an array of microphones imbedded in the suction and pressure sides of a single vane, while the duct mode levels are measured using a rotating rake system installed in the inlet and exhaust sections of the fan duct. The predicted levels are computed using properly weighted integrals of measured surface pressure distribution. The data-theory comparisons are generally quite good particularly when the mode cut-off criterion is carefully interpreted. This suggests that, at least for low speed fans, the uniform-flow annular-duct Green's function theory can be reliably used for prediction of duct mode levels if the cascade surface pressure distribution is accurately known.
Electrowetting lenses for compensating phase and curvature distortion in arrayed laser systems.
Niederriter, Robert D; Watson, Alexander M; Zahreddine, Ramzi N; Cogswell, Carol J; Cormack, Robert H; Bright, Victor M; Gopinath, Juliet T
2013-05-10
We have demonstrated a one-dimensional array of individually addressable electrowetting tunable liquid lenses that compensate for more than one wave of phase distortion across a wavefront. We report a scheme for piston control using tunable liquid lens arrays in volume-bound cavities that alter the optical path length without affecting the wavefront curvature. Liquid lens arrays with separately tunable focus or phase control hold promise for laser communication systems and adaptive optics.
NASA Technical Reports Server (NTRS)
Johnston, Pat H.
2010-01-01
A PRSEUS test article was subjected to controlled impact on the skin face followed by static and cyclic axial compressions. Phased array ultrasonic inspection was conducted before impact, and after each of the test conditions. A linear phased array probe with a manual X-Y scanner was used for interrogation. Ultrasound showed a delamination between the skin and stringer flange adjacent to the impact. As designed, the stitching in the flange arrested the lateral flaw formation. Subsequent ultrasonic data showed no delamination growth due to continued loading. Keywords: Phased Array, Ultrasonics, Composites, Out-of-Autoclave
Cryopreservation of boar semen in mini- and maxi-straws.
Bwanga, C O; de Braganca, M M; Einarsson, S; Rodriguez-Martinez, H
1990-10-01
Split ejaculates from four boars were frozen with a programmable freezing machine, in mini- (0.25 ml) and maxi- (5 ml) plastic straws with an extender at either acidic (6.3) or alkaline (7.4) pH. Glycerol (3%) was used as cryoprotectant. The freezing of the semen was monitored by way of thermocouples placed in the straws. Post-thaw motility and acrosome integrity were evaluated; the latter using phase contrast microscopy, eosin-nigrosin stain and electron microscopy. Post-thaw sperm motility was significantly higher when semen was frozen in mini-straws than in maxi-straws. For the mini-straws, the motility was better when semen was exposed to an acidic environment during freezing, but this beneficial effect of the low extracellular pH was not evident when maxi-straws were thawed. The motility of the spermatozoa diminished significantly during the thermoresistance test (0 h and 2 h time) at 37 degrees C in a similar way for both straws and extracellular pH's. The freezing procedure, no matter the extracellular pH, did not cause major acrosomal damages, but significantly more normal apical ridges were present in the mini-straws than in the maxi-straws. This in vitro evaluation indicated that the freezing method employed was better for mini- than for maxi-straws since the freezing of the 5 ml volumes was not homogeneous, due to the large section area between the surface and the core of the straw.
Status of the MiniCLEAN dark matter experiment
NASA Astrophysics Data System (ADS)
Rielage, Keith
2009-10-01
MiniCLEAN utilizes over 400 kg of liquid cryogen to detect nuclear recoils from WIMP dark matter with a projected sensitivity of 2x10-45 cm^2 for a mass of 100 GeV. The liquid cryogen is interchangeable between argon and neon to study the A^2 dependence of the potential signal and examine backgrounds. MiniCLEAN utilizes a unique modular design with spherical geometry to maximize the light yield using cold photomultiplier tubes in a single-phase detector. Pulse shape discrimination techniques are used to separate nuclear recoil signals from electron recoil backgrounds. Particular attention is being paid to mitigating the backgrounds from contamination of surfaces by radon daughters during assembly. The design and assembly status of the experiment will be discussed. The projected timeline and future plans for staging the experiment at SNOLAB in Sudbury, Canada will be presented.
The MiniCLEAN Dark Matter Experiment
NASA Astrophysics Data System (ADS)
Schnee, Richard; Deap/Clean Collaboration
2011-10-01
The MiniCLEAN dark matter experiment exploits a single-phase liquid argon (LAr) detector, instrumented with photomultiplier tubes submerged in the cryogen with nearly 4 π coverage of a 500 kg target (150 kg fiducial) mass. The high light yield and large difference in singlet/triplet scintillation time-profiles in LAr provide effective defense against radioactive backgrounds through pulse-shape discrimination and event position reconstruction. The detector is also designed for a liquid neon target which, in the event of a positive signal in LAr, will enable an independent verification of backgrounds and provide a unique test of the expected A2 dependence of the WIMP interaction rate. The conceptually simple design can be scaled to target masses in excess of 10 tons in a relatively straightforward and economic manner. The experimental technique and current status of MiniCLEAN will be summarized.
... page: //medlineplus.gov/ency/article/001142.htm Annular pancreas To use the sharing features on this page, please enable JavaScript. An annular pancreas is a ring of pancreatic tissue that encircles ...
A Tikhonov Regularization Scheme for Focus Rotations with Focused Ultrasound Phased Arrays
Hughes, Alec; Hynynen, Kullervo
2016-01-01
Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually-driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations. PMID:27913323
A Tikhonov Regularization Scheme for Focus Rotations With Focused Ultrasound-Phased Arrays.
Hughes, Alec; Hynynen, Kullervo
2016-12-01
Phased arrays have a wide range of applications in focused ultrasound therapy. By using an array of individually driven transducer elements, it is possible to steer a focus through space electronically and compensate for acoustically heterogeneous media with phase delays. In this paper, the concept of focusing an ultrasound-phased array is expanded to include a method to control the orientation of the focus using a Tikhonov regularization scheme. It is then shown that the Tikhonov regularization parameter used to solve the ill-posed focus rotation problem plays an important role in the balance between quality focusing and array efficiency. Finally, the technique is applied to the synthesis of multiple foci, showing that this method allows for multiple independent spatial rotations.
Large Phased Array Radar Using Networked Small Parabolic Reflectors
NASA Technical Reports Server (NTRS)
Amoozegar, Farid
2006-01-01
Multifunction phased array systems with radar, telecom, and imaging applications have already been established for flat plate phased arrays of dipoles, or waveguides. In this paper the design trades and candidate options for combining the radar and telecom functions of the Deep Space Network (DSN) into a single large transmit array of small parabolic reflectors will be discussed. In particular the effect of combing the radar and telecom functions on the sizes of individual antenna apertures and the corresponding spacing between the antenna elements of the array will be analyzed. A heterogeneous architecture for the DSN large transmit array is proposed to meet the radar and telecom requirements while considering the budget, scheduling, and strategic planning constrains.
Interface ring for gas turbine fuel nozzle assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fox, Timothy A.; Schilp, Reinhard
A gas turbine combustor assembly including a combustor liner and a plurality of fuel nozzle assemblies arranged in an annular array extending within the combustor liner. The fuel nozzle assemblies each include fuel nozzle body integral with a swirler assembly, and the swirler assemblies each include a bellmouth structure to turn air radially inwardly for passage into the swirler assemblies. A radially outer removed portion of each of the bellmouth structures defines a periphery diameter spaced from an inner surface of the combustor liner, and an interface ring is provided extending between the combustor liner and the removed portions ofmore » the bellmouth structures at the periphery diameter.« less
The Potential of Phased Arrays for Planetary Exploration
NASA Astrophysics Data System (ADS)
Pogorzelski, Ronald J.
2000-01-01
Phased array antennas provide a set of operational capabilities which are very attractive for certain mission applications and not very attractive for others. Such antennas are by no means a panacea for telecommunications. In this paper the features of phased arrays are reviewed and their implications for space missions are considered in terms of benefits and costs. The primary capability provided by a phased array is electronic beam agility. The beam direction may be controlled at electronic speeds (vs. mechanical actuation) permitting time division multiplexing of multiple "users." Moreover, the beam direction can be varied over a full hemisphere (for a planar array). On the other hand, such antennas are typically much more complicated than the more commonly used reflectors and horns and this implies higher cost. In some applications, this increased cost must be accepted if the mission is to be carried out at all. The SIR-C radar is an example of such a case albeit not for deep space. Assuming for the sake of argument that the complexity and cost of a phased array can be significantly reduced, where can such antennas be of value in the future of planetary exploration? Potential applications to be discussed are planetary rovers, landers, and orbiters including both the areosynchronous and low orbit varieties. In addition, consideration is given to links from deep space to earth. As may be fairly obvious, the deep space link to earth would not benefit from the wide angle steering capability provided by a phase array whereas a rover could gain advantage from the capability to steer a beam anywhere in the sky. In the rover case, however, physical size of the aperture becomes a significant factor which, of course, has implications regarding the choice of frequency band. Recent research work concerning phased arrays has suggested that future phased arrays might be made less complex and, therefore, less costly. Successful realization of such phased arrays would enable many of the planetary missions discussed in this paper and significantly broaden the telecommunications capabilities available to the mission designers of the future.
PMN-PT Single-Crystal High-Frequency Kerfless Phased Array
Chen, Ruimin; Cabrera-Munoz, Nestor E.; Lam, Kwok Ho; Hsu, Hsiu-sheng; Zheng, Fan; Zhou, Qifa; Shung, K. Kirk
2015-01-01
This paper reports the design, fabrication, and characterization of a miniature high-frequency kerfless phased array prepared from a PMN-PT single crystal for forward-looking intravascular or endoscopic imaging applications. After lapping down to around 40 μm, the PMN-PT material was utilized to fabricate 32-element kerfless phased arrays using micromachining techniques. The aperture size of the active area was only 1.0 × 1.0 mm. The measured results showed that the array had a center frequency of 40 MHz, a bandwidth of 34% at −6 dB with a polymer matching layer, and an insertion loss of 20 dB at the center frequency. Phantom images were acquired and compared with simulated images. The results suggest that the feasibility of developing a phased array mounted at the tip of a forward-looking intravascular catheter or endoscope. The fabricated array exhibits much higher sensitivity than PZT ceramic-based arrays and demonstrates that PMN-PT is well suited for this application. PMID:24859667
High Rate User Ka-Band Phased Array Antenna Test Results
NASA Technical Reports Server (NTRS)
Caroglanian, Armen; Perko, Kenneth; Seufert, Steve; Dod, Tom; Warshowsky, Jay; Day, John H. (Technical Monitor)
2001-01-01
The High Rate User Phased Array Antenna (HRUPAA) is a Ka-Band planar phased array designed by the Harris Corporation for the NASA Goddard Space Flight Center. The HRUPAA permits a satellite to downlink data either to a ground station or through the Tracking and Data Relay Satellite System (TDRSS). The HRUPAA is scanned electronically by ground station / user satellite command over a 120 degree cone angle. The phased array has the advantage of not imparting attitude disturbances to the user spacecraft. The 288-element transmit-only array has distributed RF amplifiers integrated behind each of the printed patch antenna elements. The array has 33 dBW EIRP and is left-hand circularly polarized. An engineering model of a partially populated array has been developed and delivered to NASA Goddard Space Flight Center. This report deals with the testing of the engineering model at the Goddard Antenna Range near-field and compact range facilities. The antenna specifications are described first, followed by the test plan and test results.
Polarimetry With Phased Array Antennas: Theoretical Framework and Definitions
NASA Astrophysics Data System (ADS)
Warnick, Karl F.; Ivashina, Marianna V.; Wijnholds, Stefan J.; Maaskant, Rob
2012-01-01
For phased array receivers, the accuracy with which the polarization state of a received signal can be measured depends on the antenna configuration, array calibration process, and beamforming algorithms. A signal and noise model for a dual-polarized array is developed and related to standard polarimetric antenna figures of merit, and the ideal polarimetrically calibrated, maximum-sensitivity beamforming solution for a dual-polarized phased array feed is derived. A practical polarimetric beamformer solution that does not require exact knowledge of the array polarimetric response is shown to be equivalent to the optimal solution in the sense that when the practical beamformers are calibrated, the optimal solution is obtained. To provide a rough initial polarimetric calibration for the practical beamformer solution, an approximate single-source polarimetric calibration method is developed. The modeled instrumental polarization error for a dipole phased array feed with the practical beamformer solution and single-source polarimetric calibration was -10 dB or lower over the array field of view for elements with alignments perturbed by random rotations with 5 degree standard deviation.
Miniature Optical Wide-Angle-Lens Startracker (Mini-OWLS)
NASA Technical Reports Server (NTRS)
Miller, Rick; Coulter, Joe E.; Levine, Seymour
1993-01-01
This paper provides a brief overview of the design considerations and the current status of the Miniature Optical Wide-Angle Lens Startracker Program. Mini-OWLS offers a revolutionary alternative to the conventional startracker. It is a small, lightweight, low cost, high performance startracker that can be used in a variety of applications including calibration and alignment of Inertial Measurement Units (IMU's) Mini-OWLS makes use of a strap down design incorporating Holographic Optical Elements (HOES) in place of conventional optics. HOES can be multiplexed so that the same aperture can be used for multiple separate optical paths looking in several directions simultaneously without startracker rotation. Additionally, separate Schmidt corrector plates are not required to compensate for spherical aberration. The optical assembly, or what would normally be considered as the telescope, is less than 20 cc in volume, weighs less than 55 grams, and contains the equivalent of three individual telescopes. Each one has a 4 deg Field of View (FOV) with a field of regard of 48 square degrees. Mini-OWLS has a bandwidth of approximately 300 nm in or near the visible wavelength. The projected resolution of the startracker is 5 to 10 arcseconds, depending on the centroiding algorithm used. The Mini-OWLS program was initiated last year and represents a miniaturized version of a similar design for aeronautical applications. The contract is managed by Wright Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio, with funding from the Strategic Defense Initiative Organization through Eglin AFB. The initial phase of the program is to build and test a development unit. The second phase is to integrate the startracker with the Charles Stark Draper Laboratory Micromechanical Inertial Guidance System (MIGS) and the Signal Processing Packaging Design (SPPD) being developed by Texas Instruments. The preliminary design review was conducted in November 1991. Three-axes prototype telescope assemblies have been built and design evaluation tests initiated.
Miniature Optical Wide-Angle-Lens Startracker (Mini-OWLS)
NASA Astrophysics Data System (ADS)
Miller, Rick; Coulter, Joe E.; Levine, Seymour
1993-02-01
This paper provides a brief overview of the design considerations and the current status of the Miniature Optical Wide-Angle Lens Startracker Program. Mini-OWLS offers a revolutionary alternative to the conventional startracker. It is a small, lightweight, low cost, high performance startracker that can be used in a variety of applications including calibration and alignment of Inertial Measurement Units (IMU's) Mini-OWLS makes use of a strap down design incorporating Holographic Optical Elements (HOES) in place of conventional optics. HOES can be multiplexed so that the same aperture can be used for multiple separate optical paths looking in several directions simultaneously without startracker rotation. Additionally, separate Schmidt corrector plates are not required to compensate for spherical aberration. The optical assembly, or what would normally be considered as the telescope, is less than 20 cc in volume, weighs less than 55 grams, and contains the equivalent of three individual telescopes. Each one has a 4 deg Field of View (FOV) with a field of regard of 48 square degrees. Mini-OWLS has a bandwidth of approximately 300 nm in or near the visible wavelength. The projected resolution of the startracker is 5 to 10 arcseconds, depending on the centroiding algorithm used. The Mini-OWLS program was initiated last year and represents a miniaturized version of a similar design for aeronautical applications. The contract is managed by Wright Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio, with funding from the Strategic Defense Initiative Organization through Eglin AFB. The initial phase of the program is to build and test a development unit. The second phase is to integrate the startracker with the Charles Stark Draper Laboratory Micromechanical Inertial Guidance System (MIGS) and the Signal Processing Packaging Design (SPPD) being developed by Texas Instruments. The preliminary design review was conducted in November 1991. Three-axes prototype telescope assemblies have been built and design evaluation tests initiated.
The Finite Element Analysis for a Mini-Conductance Probe in Horizontal Oil-Water Two-Phase Flow.
Kong, Weihang; Kong, Lingfu; Li, Lei; Liu, Xingbin; Xie, Ronghua; Li, Jun; Tang, Haitao
2016-08-24
Oil-water two-phase flow is widespread in petroleum industry processes. The study of oil-water two-phase flow in horizontal pipes and the liquid holdup measurement of oil-water two-phase flow are of great importance for the optimization of the oil production process. This paper presents a novel sensor, i.e., a mini-conductance probe (MCP) for measuring pure-water phase conductivity of oil-water segregated flow in horizontal pipes. The MCP solves the difficult problem of obtaining the pure-water correction for water holdup measurements by using a ring-shaped conductivity water-cut meter (RSCWCM). Firstly, using the finite element method (FEM), the spatial sensitivity field of the MCP is investigated and the optimized MCP geometry structure is determined in terms of the characteristic parameters. Then, the responses of the MCP for the oil-water segregated flow are calculated, and it is found that the MCP has better stability and sensitivity to the variation of water-layer thickness in the condition of high water holdup and low flow velocity. Finally, the static experiments for the oil-water segregated flow were carried out and a novel calibration method for pure-water phase conductivity measurements was presented. The validity of the pure-water phase conductivity measurement with segregated flow in horizontal pipes was verified by experimental results.
Social Cognition Psychometric Evaluation: Results of the Final Validation Study.
Pinkham, Amy E; Harvey, Philip D; Penn, David L
2018-06-06
Social cognition is increasingly recognized as an important treatment target in schizophrenia; however, the dearth of well-validated measures that are suitable for use in clinical trials remains a significant limitation. The Social Cognition Psychometric Evaluation (SCOPE) study addresses this need by systematically evaluating the psychometric properties of promising measures. In this final phase of SCOPE, eight new or modified tasks were evaluated. Stable outpatients with schizophrenia (n = 218) and healthy controls (n = 154) completed the battery at baseline and 2-4 weeks later across three sites. Tasks included the Bell Lysaker Emotion Recognition Task (BLERT), Penn Emotion Recognition Task (ER-40), Reading the Mind in the Eyes Task (Eyes), The Awareness of Social Inferences Test (TASIT), Hinting Task, Mini Profile of Nonverbal Sensitivity (MiniPONS), Social Attribution Task-Multiple Choice (SAT-MC), and Intentionality Bias Task (IBT). BLERT and ER-40 modifications included response time and confidence ratings. The Eyes task was modified to include definitions of terms and TASIT to include response time. Hinting was scored with more stringent criteria. MiniPONS, SAT-MC, and IBT were new to this phase. Tasks were evaluated on (1) test-retest reliability, (2) utility as a repeated measure, (3) relationship to functional outcome, (4) practicality and tolerability, (5) sensitivity to group differences, and (6) internal consistency. Hinting, BLERT, and ER-40 showed the strongest psychometric properties and are recommended for use in clinical trials. Eyes, TASIT, and IBT showed somewhat weaker psychometric properties and require further study. MiniPONS and SAT-MC showed poorer psychometric properties that suggest caution for their use in clinical trials.
Reconfigurable Transmission Line for a Series-Fed Ku-Band Phased Array Using a Single Feed
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda. Felix, A.
2013-01-01
The paper presents a novel approach to realize a lowcost phased array using a simple feeding mechanism. Specifically, a single coplanar stripline (CPS) transmission line is used to feed the antenna array elements. By controlling the CPS's dielectric properties using a movable dielectric plunger, scanning is achieved. Due to its simplicity, single feed, and no phase shifters, this approach leads to a dramatic reduction in cost which does not scale for larger arrays.
Ku-Band Traveling Wave Slot Array Using Simple Scanning Control
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2015-01-01
This poster introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20-element array is designed at 13 gigaherz shown to give stable realized gain across the angular range of minus 25 degrees less than or equal to theta and less than or equal to 25 degrees. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.
Ku-Band Traveling Wave Slot Array Using Simple Scanning Control
NASA Technical Reports Server (NTRS)
Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranda, Felix A.
2015-01-01
This paper introduces a feeding concept aimed at simplifying the backend (phase shifters) of traditional phased arrays. As an alternative to traditional phased arrays, we employ a traveling wave array (TWA) using a single feedline whose propagation constant is controlled via a single, small mechanical movement without a need for phase shifters to enable scanning. Specifically, a dielectric plunger is positioned within a parallel plate waveguide (PPW) transmission line (TL) that feeds the TWA. By adjusting the position of the dielectric plunger within the PPW feeding the TWA, beam steering is achieved. A 20 element array is designed at 13GHz shown to give stable realized gain across the angular range of -25 deg. less than or equal to theta less than or equal to 25 deg. A proof of concept array is fabricated and measured to demonstrate and validate the concept's operation.
Song, Junho; Lucht, Benjamin; Hynynen, Kullervo
2012-07-01
With a change in phased-array configuration from one dimension to two, the electrical impedance of the array elements is substantially increased because of their decreased width (w)-to-thickness (t) ratio. The most common way to compensate for this impedance increase is to employ electrical matching circuits at a high cost of fabrication complexity and effort. In this paper, we introduce a multilayer lateral-mode coupling method for phased-array construction. The direct comparison showed that the electrical impedance of a single-layer transducer driven in thickness mode is 1/(n²(1/(w/t))²) times that of an n-layer lateral mode transducer. A large reduction of the electrical impedance showed the impact and benefit of the lateral-mode coupling method. A one-dimensional linear 32-element 770-kHz imaging array and a 42-element 1.45-MHz high-intensity focused ultrasound (HIFU) phased array were fabricated. The averaged electrical impedances of each element were measured to be 58 Ω at the maximum phase angle of -1.2° for the imaging array and 105 Ω at 0° for the HIFU array. The imaging array had a center frequency of 770 kHz with an averaged -6-dB bandwidth of approximately 52%. For the HIFU array, the averaged maximum surface acoustic intensity was measured to be 32.8 W/cm² before failure.
Phased-array sources based on nonlinear metamaterial nanocavities
Wolf, Omri; Campione, Salvatore; Benz, Alexander; ...
2015-07-01
Coherent superposition of light from subwavelength sources is an attractive prospect for the manipulation of the direction, shape and polarization of optical beams. This phenomenon constitutes the basis of phased arrays, commonly used at microwave and radio frequencies. Here we propose a new concept for phased-array sources at infrared frequencies based on metamaterial nanocavities coupled to a highly nonlinear semiconductor heterostructure. Optical pumping of the nanocavity induces a localized, phase-locked, nonlinear resonant polarization that acts as a source feed for a higher-order resonance of the nanocavity. Varying the nanocavity design enables the production of beams with arbitrary shape and polarization.more » As an example, we demonstrate two second harmonic phased-array sources that perform two optical functions at the second harmonic wavelength (~5 μm): a beam splitter and a polarizing beam splitter. As a result, proper design of the nanocavity and nonlinear heterostructure will enable such phased arrays to span most of the infrared spectrum.« less
Phase-locked laser array through global antenna mutual coupling
Kao, Tsung -Yu; Reno, John L.; Hu, Qing
2016-01-01
Here, phase locking of an array of lasers is a highly effective way in beam shaping, to increase the output power, and to reduce lasing threshold. In this work, we present a novel phase-locking mechanism based on "antenna mutual coupling" wherein laser elements interact through far-field radiations with definite phase relations. This allows long-range global coupling among array elements to achieve robust 2-dimensional phase-locked laser array. The new scheme is ideal for lasers with deep sub-wavelength confined cavity such as nanolasers, where the divergent beam pattern could be used to form strong coupling among elements in the array. We experimentallymore » demonstrated such a scheme using sub-wavelength short-cavity surface-emitting lasers at terahertz frequency. More than 37 laser elements are phase-locked to each other, delivering up to 6.5 mW single-mode radiations at ~3 terahertz, with maximum 450-mW/A slope efficiency and near diffraction limit beam divergence.« less
Creation of diffraction-limited non-Airy multifocal arrays using a spatially shifted vortex beam
NASA Astrophysics Data System (ADS)
Lin, Han; Gu, Min
2013-02-01
Diffraction-limited non-Airy multifocal arrays are created by focusing a phase-modulated vortex beam through a high numerical-aperture objective. The modulated phase at the back aperture of the objective resulting from the superposition of two concentric phase-modulated vortex beams allows for the generation of a multifocal array of cylindrically polarized non-Airy patterns. Furthermore, we shift the spatial positions of the phase vortices to manipulate the intensity distribution at each focal spot, leading to the creation of a multifocal array of split-ring patterns. Our method is experimentally validated by generating the predicted phase modulation through a spatial light modulator. Consequently, the spatially shifted circularly polarized vortex beam adopted in a dynamic laser direct writing system facilitates the fabrication of a split-ring microstructure array in a polymer material by a single exposure of a femtosecond laser beam.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dao, Gavin; Ginzel, Robert
2014-02-18
Phased array UT as an inspection technique in itself continues to gain wide acceptance. However, there is much room for improvement in terms of implementation of Phased Array (PA) technology for every unique NDT application across several industries (e.g. oil and petroleum, nuclear and power generation, steel manufacturing, etc.). Having full control of the phased array instrument and customizing a software solution is necessary for more seamless and efficient inspections, from setting the PA parameters, collecting data and reporting, to the final analysis. NDT researchers and academics also need a flexible and open platform to be able to control variousmore » aspects of the phased array process. A high performance instrument with advanced PA features, faster data rates, a smaller form factor, and capability to adapt to specific applications, will be discussed.« less
Vaughan, Alicia F.; Johnson, Jeffrey R.; Herkenhoff, Kenneth E.; Sullivan, Robert; Landis, Geoffrey A.; Goetz, Walter; Madsen, Morten B.
2010-01-01
This work describes dust deposits on the Spirit Rover over 2000 sols through examination of Pancam and Microscopic Imager observations of specific locations on the rover body, including portions of the solar array, Pancam and Mini-TES calibration targets, and the magnets. This data set reveals the three "cleaning events" experienced by Spirit to date, the spectral properties of dust, and the tendency of dust particles to form aggregates 100 um and larger.
Microscopic study of thermoelectric In-doped SnTe
NASA Astrophysics Data System (ADS)
Nan, Pengfei; Liu, Ruibin; Chang, Yunjie; Wu, Hongbo; Wang, Yumei; Yu, Richeng; Shen, Jun; Guo, Wei; Ge, Binghui
2018-06-01
SnTe is a p-type thermoelectric material that is isostructural with PbTe, for which it is a potential environmentally friendly replacement. By doping the SnTe lattice with In, the thermal conductivity of SnTe can be significantly reduced and the thermoelectric conversion efficiency improved. A large number of precipitates were present in the In-doped SnTe samples; based on atomic-resolution high-angle annular dark-field images and electron energy loss spectra, these precipitates were identified as the zinc-blende phase of In2Te3. Through geometry phase analysis, a new phonon scattering mechanism is discussed.
The Applicability of Incoherent Array Processing to IMS Seismic Array Stations
NASA Astrophysics Data System (ADS)
Gibbons, S. J.
2012-04-01
The seismic arrays of the International Monitoring System for the CTBT differ greatly in size and geometry, with apertures ranging from below 1 km to over 60 km. Large and medium aperture arrays with large inter-site spacings complicate the detection and estimation of high frequency phases since signals are often incoherent between sensors. Many such phases, typically from events at regional distances, remain undetected since pipeline algorithms often consider only frequencies low enough to allow coherent array processing. High frequency phases that are detected are frequently attributed qualitatively incorrect backazimuth and slowness estimates and are consequently not associated with the correct event hypotheses. This can lead to missed events both due to a lack of contributing phase detections and by corruption of event hypotheses by spurious detections. Continuous spectral estimation can be used for phase detection and parameter estimation on the largest aperture arrays, with phase arrivals identified as local maxima on beams of transformed spectrograms. The estimation procedure in effect measures group velocity rather than phase velocity and the ability to estimate backazimuth and slowness requires that the spatial extent of the array is large enough to resolve time-delays between envelopes with a period of approximately 4 or 5 seconds. The NOA, AKASG, YKA, WRA, and KURK arrays have apertures in excess of 20 km and spectrogram beamforming on these stations provides high quality slowness estimates for regional phases without additional post-processing. Seven arrays with aperture between 10 and 20 km (MJAR, ESDC, ILAR, KSRS, CMAR, ASAR, and EKA) can provide robust parameter estimates subject to a smoothing of the resulting slowness grids, most effectively achieved by convolving the measured slowness grids with the array response function for a 4 or 5 second period signal. The MJAR array in Japan recorded high SNR Pn signals for both the 2006 and 2009 North Korea nuclear tests but, due to signal incoherence, failed to contribute to the automatic event detections. It is demonstrated that the smoothed incoherent slowness estimates for the MJAR Pn phases for both tests indicate unambiguously the correct type of phase and a backazimuth estimate within 5 degrees of the great-circle backazimuth. The detection part of the algorithm is applicable to all IMS arrays, and spectrogram-based processing may offer a reduction in the false alarm rate for high frequency signals. Significantly, the local maxima of the scalar functions derived from the transformed spectrogram beams provide good estimates of the signal onset time. High frequency energy is of greater significance for lower event magnitudes and in, for example, the cavity decoupling detection evasion scenario. There is a need to characterize propagation paths with low attenuation of high frequency energy and situations in which parameter estimation on array stations fails.
Rusiniak, Michael E.; Kunnev, Dimiter; Freeland, Amy; Cady, Gillian K.; Pruitt, Steven C.
2011-01-01
Mini-chromosome maintenance (Mcm) proteins are part of the replication licensing complex that is loaded onto chromatin during the G1-phase of the cell cycle and required for initiation of DNA replication in the subsequent S-phase. Mcm proteins are typically loaded in excess of the number of locations that are utilized during S-phase. Nonetheless, partial depletion of Mcm proteins leads to cancers and stem cell deficiencies. Mcm2 deficient mice, on a 129Sv genetic background, display a high rate of thymic lymphoblastic lymphoma. Here array comparative genomic hybridization (aCGH) is utilized to characterize the genetic damage accruing in these tumors. The predominant events are deletions averaging less than 0.5 Mb, considerably shorter than observed in prior studies using alternative mouse lymphoma models or human tumors. Such deletions facilitate identification of specific genes and pathways responsible for the tumors. Mutations in many genes that have been implicated in human lymphomas are recapitulated in this mouse model. These features, and the fact that the mutation underlying the accelerated genetic damage does not target a specific gene or pathway a priori, are valuable features of this mouse model for identification of tumor suppressor genes. Genes affected in all tumors include Pten, Tcfe2a, Mbd3 and Setd1b. Notch1 and additional genes are affected in subsets of tumors. The high frequency of relatively short deletions is consistent with elevated recombination between nearby stalled replication forks in Mcm2 deficient mice. PMID:22158038
NASA Astrophysics Data System (ADS)
Yoo, Byungseok
2011-12-01
In almost all industries of mechanical, aerospace, and civil engineering fields, structural health monitoring (SHM) technology is essentially required for providing the reliable information of structural integrity of safety-critical structures, which can help reduce the risk of unexpected and sometimes catastrophic failures, and also offer cost-effective inspection and maintenance of the structures. State of the art SHM research on structural damage diagnosis is focused on developing global and real-time technologies to identify the existence, location, extent, and type of damage. In order to detect and monitor the structural damage in plate-like structures, SHM technology based on guided Lamb wave (GLW) interrogation is becoming more attractive due to its potential benefits such as large inspection area coverage in short time, simple inspection mechanism, and sensitivity to small damage. However, the GLW method has a few critical issues such as dispersion nature, mode conversion and separation, and multiple-mode existence. Phased array technique widely used in all aspects of civil, military, science, and medical industry fields may be employed to resolve the drawbacks of the GLW method. The GLW-based phased array approach is able to effectively examine and analyze complicated structural vibration responses in thin plate structures. Because the phased sensor array operates as a spatial filter for the GLW signals, the array signal processing method can enhance a desired signal component at a specific direction while eliminating other signal components from other directions. This dissertation presents the development, the experimental validation, and the damage detection applications of an innovative signal processing algorithm based on two-dimensional (2-D) spiral phased array in conjunction with the GLW interrogation technique. It starts with general backgrounds of SHM and the associated technology including the GLW interrogation method. Then, it is focused on the fundamentals of the GLW-based phased array approach and the development of an innovative signal processing algorithm associated with the 2-D spiral phased sensor array. The SHM approach based on array responses determined by the proposed phased array algorithm implementation is addressed. The experimental validation of the GLW-based 2-D spiral phased array technology and the associated damage detection applications to thin isotropic plate and anisotropic composite plate structures are presented.
Physical understanding of gas-liquid annular flow and its transition to dispersed droplets
NASA Astrophysics Data System (ADS)
Kumar, Parmod; Das, Arup Kumar; Mitra, Sushanta K.
2016-07-01
Transformation from annular to droplet flow is investigated for co-current, upward gas-liquid flow through a cylindrical tube using grid based volume of fluid framework. Three transitional routes, namely, orificing, rolling, and undercutting are observed for flow transformation at different range of relative velocities between the fluids. Physics behind these three exclusive phenomena is described using circulation patterns of gaseous phase in the vicinity of a liquid film which subsequently sheds drop leading towards transition. Orifice amplitude is found to grow exponentially towards the core whereas it propagates in axial direction in a parabolic path. Efforts have been made to fit the sinusoidal profile of wave structure with the numerical interface contour at early stages of orificing. Domination of gas inertia over liquid flow has been studied in detail at the later stages to understand the asymmetric shape of orifice, leading towards lamella formation and droplet generation. Away from comparative velocities, circulations in the dominant phase dislodge the drop by forming either a ligament (rolling) or a bag (undercut) like protrusion in liquid. Study of velocity patterns in the plane of droplet dislodge reveals the underlying physics behind the disintegration and its dynamics at the later stages. Using numerical phase distributions, rejoining of dislodged droplet with liquid film as post-rolling consequences has been also proposed. A flow pattern map showing the transitional boundaries based on the physical mechanism is constructed for air-water combination.
NASA Technical Reports Server (NTRS)
Kraft, R. E.
1996-01-01
The objective of this effort is to develop an analytical model for the coupling of active noise control (ANC) piston-type actuators that are mounted flush to the inner and outer walls of an annular duct to the modes in the duct generated by the actuator motion. The analysis will be used to couple the ANC actuators to the modal analysis propagation computer program for the annular duct, to predict the effects of active suppression of fan-generated engine noise sources. This combined program will then be available to assist in the design or evaluation of ANC systems in fan engine annular exhaust ducts. An analysis has been developed to predict the modes generated in an annular duct due to the coupling of flush-mounted ring actuators on the inner and outer walls of the duct. The analysis has been combined with a previous analysis for the coupling of modes to a cylindrical duct in a FORTRAN computer program to perform the computations. The method includes the effects of uniform mean flow in the duct. The program can be used for design or evaluation purposes for active noise control hardware for turbofan engines. Predictions for some sample cases modeled after the geometry of the NASA Lewis ANC Fan indicate very efficient coupling in both the inlet and exhaust ducts for the m = 6 spinning mode at frequencies where only a single radial mode is cut-on. Radial mode content in higher order cut-off modes at the source plane and the required actuator displacement amplitude to achieve 110 dB SPL levels in the desired mode were predicted. Equivalent cases with and without flow were examined for the cylindrical and annular geometry, and little difference was found for a duct flow Mach number of 0.1. The actuator ring coupling program will be adapted as a subroutine to the cylindrical duct modal analysis and the exhaust duct modal analysis. This will allow the fan source to be defined in terms of characteristic modes at the fan source plane and predict the propagation to the arbitrarily-located ANC source plane. The actuator velocities can then be determined to generate the anti-phase mode. The resulting combined fan source/ANC pressure can then be calculated at any desired wall sensor position. The actuator velocities can be determined manually or using a simulation of a control system feedback loop. This will provide a very useful ANC system design and evaluation tool.
Means for phase locking the outputs of a surface emitting laser diode array
NASA Technical Reports Server (NTRS)
Lesh, James R. (Inventor)
1987-01-01
An array of diode lasers, either a two-dimensional array of surface emitting lasers, or a linear array of stripe lasers, is phase locked by a diode laser through a hologram which focuses the output of the diode laser into a set of distinct, spatially separated beams, each one focused onto the back facet of a separate diode laser of the array. The outputs of the diode lasers thus form an emitted coherent beam out of the front of the array.
NASA Astrophysics Data System (ADS)
Solera García, M. A.; Timmis, R. J.; Van Dijk, N.; Whyatt, J. D.; Leith, I. D.; Leeson, S. R.; Braban, C. F.; Sheppard, L. J.; Sutton, M. A.; Tang, Y. S.
2017-10-01
Atmospheric ammonia is a precursor for secondary particulate matter formation, which harms human health and contributes to acidification and eutrophication. Under the 2012 Gothenburg Protocol, 2005 emissions must be cut by 6% by 2020. In the UK, 83% of total emissions originate from agricultural practices such as fertilizer use and rearing of livestock, with emissions that are spatially extensive and variable in nature. Such fugitive emissions make resolving and tracking of individual site performance challenging. The Directional Passive Air quality Sampler (DPAS) was trialled at Whim Bog, an experimental site with a wind-controlled artificial release of ammonia, in combination with CEH-developed ammonia samplers. Whilst saturation issues were identified, two DPAS-MANDE (Mini Annular Denuder) systems, when deployed in parallel, displayed an average relative deviation of 15% (2-54%) across all 12 directions, with the directions exposed to the ammonia source showing ∼5% difference. The DPAS-MANDE has shown great potential for directional discrimination and can contribute to the understanding and management of fugitive ammonia sources from intensive agriculture sites.
NASA Technical Reports Server (NTRS)
Lin, Michael; Petrick, David; Geist, Alessandro; Flatley, Thomas
2012-01-01
This version of the SpaceCube will be a full-fledged, onboard space processing system capable of 2500+ MIPS, and featuring a number of plug-andplay gigabit and standard interfaces, all in a condensed 3x3x3 form factor [less than 10 watts and less than 3 lb (approximately equal to 1.4 kg)]. The main processing engine is the Xilinx SIRF radiation- hardened-by-design Virtex-5 FX-130T field-programmable gate array (FPGA). Even as the SpaceCube 2.0 version (currently under test) is being targeted as the platform of choice for a number of the upcoming Earth Science Decadal Survey missions, GSFC has been contacted by customers who wish to see a system that incorporates key features of the version 2.0 architecture in an even smaller form factor. In order to fulfill that need, the SpaceCube Mini is being designed, and will be a very compact and low-power system. A similar flight system with this combination of small size, low power, low cost, adaptability, and extremely high processing power does not otherwise exist, and the SpaceCube Mini will be of tremendous benefit to GSFC and its partners. The SpaceCube Mini will utilize space-grade components. The primary processing engine of the Mini is the Xilinx Virtex-5 SIRF FX-130T radiation-hardened-by-design FPGA for critical flight applications in high-radiation environments. The Mini can also be equipped with a commercial Xilinx Virtex-5 FPGA with integrated PowerPCs for a low-cost, high-power computing platform for use in the relatively radiation- benign LEOs (low-Earth orbits). In either case, this version of the Space-Cube will weigh less than 3 pounds (.1.4 kg), conform to the CubeSat form-factor (10x10x10 cm), and will be low power (less than 10 watts for typical applications). The SpaceCube Mini will have a radiation-hardened Aeroflex FPGA for configuring and scrubbing the Xilinx FPGA by utilizing the onboard FLASH memory to store the configuration files. The FLASH memory will also be used for storing algorithm and application code for the PowerPCs and the Xilinx FPGA. In addition, it will feature highspeed DDR SDRAM (double data rate synchronous dynamic random-access memory) to store the instructions and data of active applications. This version will also feature SATA-II and Gigabit Ethernet interfaces. Furthermore, there will also be general-purpose, multi-gigabit interfaces. In addition, the system will have dozens of transceivers that can support LVDS (low-voltage differential signaling), RS-422, or SpaceWire. The SpaceCube Mini includes an I/O card that can be customized to meet the needs of each mission. This version of the SpaceCube will be designed so that multiple Minis can be networked together using SpaceWire, Ethernet, or even a custom protocol. Scalability can be provided by networking multiple SpaceCube Minis together. Rigid-Flex technology is being targeted for the construction of the SpaceCube Mini, which will make the extremely compact and low-weight design feasible. The SpaceCube Mini is designed to fit in the compact CubeSat form factor, thus allowing deployment in a new class of missions that the previous SpaceCube versions were not suited for. At the time of this reporting, engineering units should be available in the summer 2012.
Phased Arrays 1985 Symposium - Proceedings
1985-08-01
have served the logic industry well, and appropriate versions can do the same for micruwdve drid millimeter * wave technology, An aspect of phased...continuing revolutions of the logic industry and the microwave monolithic integrated circuit community are bringing relevant technology closer to the array...monolithic phased array antennas, and discuss their relative advantages and disadvantages . Considerations such as bandwidth, maxianiru scan range, feed
Two-phase interdigitated microelectrode arrays for electrokinetic transport of microparticles
NASA Astrophysics Data System (ADS)
Bligh, Mathew; Stanley, Kevin G.; Hubbard, Ted; Kujath, Marek
2008-05-01
In this paper, we demonstrate long-range particle transport using linear two-phase interdigitated arrays with electrodes of equal size but with asymmetric spacing between them. We report net motion of 6 µm polystyrene spheres in an aqueous electrolyte and characterize the dependence of particle velocity on frequency, potential and phase, and show consistency with previous experiments that involved four-phase arrays producing AC electroosmotic and dielectrophoretic forces. We explore the effect of increasing the asymmetry of the electrode spacing and show that this decreases the performance of the array. We also examine the effect of increasing the overall scale of the array while maintaining geometric proportions and particle size and report that this also decreases the performance. We compare our results to previous analytical theoretical predictions and find general agreement.
New results in gravity dependent two-phase flow regime mapping
NASA Astrophysics Data System (ADS)
Kurwitz, Cable; Best, Frederick
2002-01-01
Accurate prediction of thermal-hydraulic parameters, such as the spatial gas/liquid orientation or flow regime, is required for implementation of two-phase systems. Although many flow regime transition models exist, accurate determination of both annular and slug regime boundaries is not well defined especially at lower flow rates. Furthermore, models typically indicate the regime as a sharp transition where data may indicate a transition space. Texas A&M has flown in excess of 35 flights aboard the NASA KC-135 aircraft with a unique two-phase package. These flights have produced a significant database of gravity dependent two-phase data including visual observations for flow regime identification. Two-phase flow tests conducted during recent zero-g flights have added to the flow regime database and are shown in this paper with comparisons to selected transition models. .
Influence of the burner swirl on the azimuthal instabilities in an annular combustor
NASA Astrophysics Data System (ADS)
Mazur, Marek; Nygård, Håkon; Worth, Nicholas; Dawson, James
2017-11-01
Improving our fundamental understanding of thermoacoustic instabilities will aid the development of new low emission gas turbine combustors. In the present investigation the effects of swirl on the self-excited azimuthal combustion instabilities in a multi-burner annular annular combustor are investigated experimentally. Each of the burners features a bluff body and a swirler to stabilize the flame. The combustor is operated with an ethylene-air premixture at powers up to 100 kW. The swirl number of the burners is varied in these tests. For each case, dynamic pressure measurements at different azimuthal positions, as well as overhead imaging of OH* of the entire combustor are conducted simultaneously and at a high sampling frequency. The measurements are then used to determine the azimuthal acoustic and heat release rate modes in the chamber and to determine whether these modes are standing, spinning or mixed. Furthermore, the phase shift between the heat release rate and pressure and the shape of these two signals are analysed at different azimuthal positions. Based on the Rayleigh criterion, these investigations allow to obtain an insight about the effects of the swirl on the instability margins of the combustor. This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (Grant agreement n° 677931 TAIAC).
Distributed phased array architecture study
NASA Technical Reports Server (NTRS)
Bourgeois, Brian
1987-01-01
Variations in amplifiers and phase shifters can cause degraded antenna performance, depending also on the environmental conditions and antenna array architecture. The implementation of distributed phased array hardware was studied with the aid of the DISTAR computer program as a simulation tool. This simulation provides guidance in hardware simulation. Both hard and soft failures of the amplifiers in the T/R modules are modeled. Hard failures are catastrophic: no power is transmitted to the antenna elements. Noncatastrophic or soft failures are modeled as a modified Gaussian distribution. The resulting amplitude characteristics then determine the array excitation coefficients. The phase characteristics take on a uniform distribution. Pattern characteristics such as antenna gain, half power beamwidth, mainbeam phase errors, sidelobe levels, and beam pointing errors were studied as functions of amplifier and phase shifter variations. General specifications for amplifier and phase shifter tolerances in various architecture configurations for C band and S band were determined.
Configuration study for a 30 GHz monolithic receive array: Technical assessment
NASA Technical Reports Server (NTRS)
Nester, W. H.; Cleaveland, B.; Edward, B.; Gotkis, S.; Hesserbacker, G.; Loh, J.; Mitchell, B.
1984-01-01
The current status of monolithic microwave integrated circuits (MMICs) in phased array feeds is discussed from the point of view of cost performance, reliability, and design considerations. Transitions to MMICs, compatible antenna radiating elements and reliability considerations are addressed. Hybrid antennas, feed array antenna technology, and offset reflectors versus phased arrays are examined.
Coherent optical monolithic phased-array antenna steering system
Hietala, Vincent M.; Kravitz, Stanley H.; Vawter, Gregory A.
1994-01-01
An optical-based RF beam steering system for phased-array antennas comprising a photonic integrated circuit (PIC). The system is based on optical heterodyning employed to produce microwave phase shifting by a monolithic PIC constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, permitting physical separation of the PIC and its control functions from the antenna. The system reduces size, weight, complexity, and cost of phased-array antenna systems.
Testing large aspheric surfaces with complementary annular subaperture interferometric method
NASA Astrophysics Data System (ADS)
Hou, Xi; Wu, Fan; Lei, Baiping; Fan, Bin; Chen, Qiang
2008-07-01
Annular subaperture interferometric method has provided an alternative solution to testing rotationally symmetric aspheric surfaces with low cost and flexibility. However, some new challenges, particularly in the motion and algorithm components, appear when applied to large aspheric surfaces with large departure in the practical engineering. Based on our previously reported annular subaperture reconstruction algorithm with Zernike annular polynomials and matrix method, and the experimental results for an approximate 130-mm diameter and f/2 parabolic mirror, an experimental investigation by testing an approximate 302-mm diameter and f/1.7 parabolic mirror with the complementary annular subaperture interferometric method is presented. We have focused on full-aperture reconstruction accuracy, and discuss some error effects and limitations of testing larger aspheric surfaces with the annular subaperture method. Some considerations about testing sector segment with complementary sector subapertures are provided.
Annular vortex merging processes in non-neutral electron plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaga, Chikato, E-mail: d146073@hiroshima-u.ac.jp; Ito, Kiyokazu; Higaki, Hiroyuki
2015-06-29
Non-neutral electron plasmas in a uniform magnetic field are investigated experimentally as a two dimensional (2D) fluid. Previously, it was reported that 2D phase space volume increases during a vortex merging process with viscosity. However, the measurement was restricted to a plasma with a high density. Here, an alternative method is introduced to evaluate a similar process for a plasma with a low density.
Definition of two-phase flow behaviors for spacecraft design
NASA Technical Reports Server (NTRS)
Reinarts, Thomas R.; Best, Frederick R.; Miller, Katherine M.; Hill, Wayne S.
1991-01-01
Data for complete models of two-phase flow in microgravity are taken from in-flight experiments and applied to an adiabatic flow-regime analysis to study the feasibility of two-phase systems for spacecraft. The data are taken from five in-flight experiments by Hill et al. (1990) in which a two-phase pump circulates a freon mixture and vapor and liquid flow streams are measured. Adiabatic flow regimes are analyzed based on the experimental superficial velocities of liquid and vapor, and comparisons are made with the results of two-phase flow regimes at 1 g. A motion analyzer records the flow characteristics at a rate of 1000 frames/sec, and stratified flow regimes are reported at 1 g. The flow regimes observed under microgravitational conditions are primarily annular and include slug and bubbly-slug regimes. The present data are of interest to the design and analysis of two-phase thermal-management systems for use in space missions.
Capillary hydrodynamics and transport processes during phase change in microscale systems
NASA Astrophysics Data System (ADS)
Kuznetsov, V. V.
2017-09-01
The characteristics of two-phase gas-liquid flow and heat transfer during flow boiling and condensing in micro-scale heat exchangers are discussed in this paper. The results of numerical simulation of the evaporating liquid film flowing downward in rectangular minichannel of the two-phase compact heat exchanger are presented and the peculiarities of microscale heat transport in annular flow with phase changes are discussed. Presented model accounts the capillarity induced transverse flow of liquid and predicts the microscale heat transport processes when the nucleate boiling becomes suppressed. The simultaneous influence of the forced convection, nucleate boiling and liquid film evaporation during flow boiling in plate-fin heat exchangers is considered. The equation for prediction of the flow boiling heat transfer at low flux conditions is presented and verified using experimental data.
Extraction of phenol in wastewater with annular centrifugal contactors.
Xu, Jin-Quan; Duan, Wu-Hua; Zhou, Xiu-Zhu; Zhou, Jia-Zhen
2006-04-17
Solvent extraction is an effective way to treat and recover the phenolic compounds from the high content phenolic wastewater at present. The experimental study on treating the wastewater containing phenol has been carried out with QH-1extractant (the amine mixture) and annular centrifugal contactors. The distribution ratio of phenol was 108.6 for QH-1-phenol system. The mass-transfer process of phenol for the system was mainly controlled by diffusion. When the flow ratio (aqueous/organic) was changed from 1/1 to 4/1, the rotor speed was changed from 2500 to 4000 r/min, and the total flow of two phases was changed from 20 to 70 mL/min, the mass-transfer efficiency E of the single-stage centrifugal contactor was more than 95%. When the flow ratio was changed from 4.4/1 to 4.9/1, the rotor speed was 3000 r/min, and the total flow of two phases was changed from 43.0 to 47.0 mL/min, the extraction rate rho of the three-stage cascade was more than 99%. When 15% NaOH was used for stripping of phenol in QH-1, the stripping efficiency of the three-stage cascade was also more than 99% under the experimental conditions.
A cycloidal wobble motor driven by shape memory alloy wires
NASA Astrophysics Data System (ADS)
Hwang, Donghyun; Higuchi, Toshiro
2014-05-01
A cycloidal wobble motor driven by shape memory alloy (SMA) wires is proposed. In realizing a motor driving mechanism well known as a type of reduction system, a cycloidal gear mechanism is utilized. It facilitates the achievement of bidirectional continuous rotation with high-torque capability, based on its high efficiency and high reduction ratio. The applied driving mechanism consists of a pin/roller based annular gear as a wobbler, a cycloidal disc as a rotor, and crankshafts to guide the eccentric wobbling motion. The wobbling motion of the annular gear is generated by sequential activation of radially phase-symmetrically placed SMA wires. Consequently the cycloidal disc is rotated by rolling contact based cycloidal gearing between the wobbler and the rotor. In designing the proposed motor, thermomechanical characterization of an SMA wire biased by extension springs is experimentally performed. Then, a simplified geometric model for the motor is devised to conduct theoretical assessment of design parametric effects on structural features and working performance. With consideration of the results from parametric analysis, a functional prototype three-phase motor is fabricated to carry out experimental verification of working performance. The observed experimental results including output torque, rotational speed, bidirectional positioning characteristic, etc obviously demonstrate the practical applicability and potentiality of the wobble motor.
Hua, Zhishan; Pal, Rohit; Srivannavit, Onnop; Burns, Mark A; Gulari, Erdogan
2008-03-01
This paper presents a novel optically addressed microactuator array (microfluidic "flash memory") with latched operation. Analogous to the address-data bus mediated memory address protocol in electronics, the microactuator array consists of individual phase-change based actuators addressed by localized heating through focused light patterns (address bus), which can be provided by a modified projector or high power laser pointer. A common pressure manifold (data bus) for the entire array is used to generate large deflections of the phase change actuators in the molten phase. The use of phase change material as the working media enables latched operation of the actuator array. After the initial light "writing" during which the phase is temporarily changed to molten, the actuated status is self-maintained by the solid phase of the actuator without power and pressure inputs. The microfluidic flash memory can be re-configured by a new light illumination pattern and common pressure signal. The proposed approach can achieve actuation of arbitrary units in a large-scale array without the need for complex external equipment such as solenoid valves and electrical modules, which leads to significantly simplified system implementation and compact system size. The proposed work therefore provides a flexible, energy-efficient, and low cost multiplexing solution for microfluidic applications based on physical displacements. As an example, the use of the latched microactuator array as "normally closed" or "normally open" microvalves is demonstrated. The phase-change wax is fully encapsulated and thus immune from contamination issues in fluidic environments.
NASA Astrophysics Data System (ADS)
McCreery, Glenn Ernest
An experimental and analytical investigation of dispersed and dispersed-annular (rivulet or thin film) flow phase separation in tees has been successfully completed. The research was directed at, but is not specific to, determining flow conditions, following a loss of coolant accident, in the large rectangular passageways leading to vacuum buildings in the containment envelope of some CANDU nuclear reactors. The primary objectives of the research were to: (1) obtain experimental data to help formulate and test mechanistic analytical models of phase separation, and (2) develop the analytical models in computer programs which predict phase separation from upstream flow and pressure conditions and downstream and side branch pressure boundary conditions. To meet these objectives an air-water experimental apparatus was constructed, and consists of large air blowers attached to a long rectangular duct leading to a tee in the horizontal plane. A variety of phenomena was investigated including, for comparison with computer predictions, air streamlines and eddy boundary geometry, drop size spectra, macroscopic mass balances, liquid rivulet pathlines, and trajectories of drops of known size and velocity. Four separate computer programs were developed to analyze phase separation. Three of the programs are used sequentially to calculate dispersed mist phase separation in a tee. The fourth is used to calculate rivulet or thin film pathlines. Macroscopic mass balances are calculated from a summation of mass balances for drops with representative sizes (and masses) spaced across the drop size spectrum. The programs are tested against experimental data, and accurately predict gas flow fields, drop trajectories, rivulet pathlines and macroscopic mass balances. In addition to development of the computer programs, analysis was performed to specify the scaling of dispersed mist and rivulet or thin film flow, to investigate pressure losses in tees, and the inter-relationship of loss coefficients, contraction coefficients, and eddy geometry. The important transient effects of liquid storage in eddies were also analyzed.
Optical phased arrays with evanescently-coupled antennas
Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman
2015-03-24
An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).
Laser-phased-array beam steering based on crystal fiber
NASA Astrophysics Data System (ADS)
Yang, Deng-cai; Zhao, Si-si; Wang, Da-yong; Wang, Zhi-yong; Zhang, Xiao-fei
2011-06-01
Laser-phased-array system provides an elegant means for achieving the inertial-free, high-resolution, rapid and random beam steering. In laser-phased-array system, phase controlling is the most important factor that impacts the system performance. A novel scheme is provided in this paper, the beam steering is accomplished by using crystal fiber array, the difference length between adjacent fiber is fixed. The phase difference between adjacent fiber decides the direction of the output beam. When the wavelength of the input fiber laser is tuned, the phase difference between the adjacent elements has changed. Therefore, the laser beam direction has changed and the beam steering has been accomplished. In this article, based on the proposed scheme, the steering angle of the laser beam is calculated and analyzed theoretically. Moreover, the far-field steering beam quality is discussed.
Electron beam diagnostic system using computed tomography and an annular sensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmer, John W.; Teruya, Alan T.
2015-08-11
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by themore » annular sensor structure.« less
Electron beam diagnostic system using computed tomography and an annular sensor
Elmer, John W.; Teruya, Alan T.
2014-07-29
A system for analyzing an electron beam including a circular electron beam diagnostic sensor adapted to receive the electron beam, the circular electron beam diagnostic sensor having a central axis; an annular sensor structure operatively connected to the circular electron beam diagnostic sensor, wherein the sensor structure receives the electron beam; a system for sweeping the electron beam radially outward from the central axis of the circular electron beam diagnostic sensor to the annular sensor structure wherein the electron beam is intercepted by the annular sensor structure; and a device for measuring the electron beam that is intercepted by the annular sensor structure.
Thermalization of mini-jets in a quark-gluon plasma
NASA Astrophysics Data System (ADS)
Iancu, Edmond; Wu, Bin
2015-10-01
We complete the physical picture for the evolution of a high-energy jet propagating through a weakly-coupled quark-gluon plasma by investigating the thermalization of the soft components of the jet. We argue that the following scenario should hold: the leading particle emits a significant number of mini-jets which promptly evolve via quasi-democratic branchings and thus degrade into a myriad of soft gluons, with energies of the order of the medium temperature T. Via elastic collisions with the medium constituents, these soft gluons relax to local thermal equilibrium with the plasma over a time scale which is considerably shorter than the typical lifetime of the mini-jet. The thermalized gluons form a tail which lags behind the hard components of the jet. We support this scenario, first, via parametric arguments and, next, by studying a simplified kinetic equation, which describes the jet dynamics in longitudinal phase-space. We solve the kinetic equation using both (semi-)analytical and numerical methods. In particular, we obtain the first exact, analytic, solutions to the ultrarelativistic Fokker-Planck equation in one-dimensional phase-space. Our results confirm the physical picture aforementioned and demonstrate the quenching of the jet via multiple branching followed by the thermalization of the soft gluons in the cascades.