Science.gov

Sample records for minimal discrete symmetry

  1. Nearest-neighbor-interactions from a minimal discrete flavor symmetry within SU(5) grand unification

    NASA Astrophysics Data System (ADS)

    Emmanuel-Costa, D.; Simões, C.

    2012-01-01

    A flavor symmetry based on Z4 is analyzed in the context of SU(5) Grand Unification with the standard fermionic content plus three right-handed neutrinos. The role of Z4 is to forbid some Yukawa couplings of up- and down-quarks to Higgs scalars such that the quark mass matrices Mu, Md have Nearest-Neighbor-Interaction (NNI) structure, once they are generated through the electroweak symmetry breaking. It turns out in this framework that Z4 is indeed the minimal discrete symmetry and its implementation requires the introduction of at least two Higgs quintets, which leads to a two Higgs doublet model at low energy scale. Because of the SU(5) unification, it is shown that the charged lepton mass matrix develops also NNI form. However, the effective neutrino mass matrix exhibits a nonparallel pattern, in the framework of the type-I seesaw mechanism. Analyzing all possible zero textures allowed by gauge-horizontal symmetry SU(5)×Z4, it is seen that only two patterns are in agreement with the leptonic experimental data and they could be further distinguished by the light neutrino mass spectrum hierarchy. It is also demonstrated that Z4 freezes out the possibility of proton decay through exchange of color Higgs triplets at tree-level.

  2. Deformed discrete symmetries

    NASA Astrophysics Data System (ADS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  3. Discrete Minimal Surface Algebras

    NASA Astrophysics Data System (ADS)

    Arnlind, Joakim; Hoppe, Jens

    2010-05-01

    We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.

  4. Anomalies and Discrete Chiral Symmetries

    SciTech Connect

    Creutz, M.

    2009-09-07

    The quantum anomaly that breaks the U(1) axial symmetry of massless multi-flavored QCD leaves behind a discrete flavor-singlet chiral invariance. With massive quarks, this residual symmetry has a close connection with the strong CP-violating parameter theta. One result is that if the lightest quarks are degenerate, then a first order transition will occur when theta passes through pi. The resulting framework helps clarify when the rooting prescription for extrapolating in the number of flavors is valid.

  5. Lepton mixing and discrete symmetries

    NASA Astrophysics Data System (ADS)

    Hernandez, D.; Smirnov, A. Yu.

    2012-09-01

    The pattern of lepton mixing can emerge from breaking a flavor symmetry in different ways in the neutrino and charged lepton Yukawa sectors. In this framework, we derive the model-independent conditions imposed on the mixing matrix by the structure of discrete groups of the von Dyck type which include A4, S4, and A5. We show that, in general, these conditions lead to at least two equations for the mixing parameters (angles and CP phase δ). These constraints, which correspond to unbroken residual symmetries, are consistent with nonzero 13 mixing and deviations from maximal 2-3 mixing. For the simplest case, which leads to an S4 model and reproduces the allowed values of the mixing angles, we predict δ=(90°-120°).

  6. Local discrete symmetries from superstring derived models

    NASA Astrophysics Data System (ADS)

    Faraggi, Alon E.

    1997-02-01

    Discrete and global symmetries play an essential role in many extensions of the Standard Model, for example, to preserve the proton lifetime, to prevent flavor changing neutral currents, etc. An important question is how can such symmetries survive in a theory of quantum gravity, like superstring theory. In a specific string model I illustrate how local discrete symmetries may arise in string models and play an important role in preventing fast proton decay and flavor changing neutral currents. The local discrete symmetry arises due to the breaking of the non-Abelian gauge symmetries by Wilson lines in the superstring models and forbids, for example dimension five operators which mediate rapid proton decay, to all orders of nonrenormalizable terms. In the context of models of unification of the gauge and gravitational interactions, it is precisely this type of local discrete symmetries that must be found in order to insure that a given model is not in conflict with experimental observations.

  7. Discrete symmetries and de Sitter spacetime

    SciTech Connect

    Cotăescu, Ion I. Pascu, Gabriel

    2014-11-24

    Aspects of the ambiguity in defining quantum modes on de Sitter spacetime using a commuting system composed only of differential operators are discussed. Discrete symmetries and their actions on the wavefunction in commonly used coordinate charts are reviewed. It is argued that the system of commuting operators can be supplemented by requiring the invariance of the wavefunction to combined discrete symmetries- a criterion which selects a single state out of the α-vacuum family. Two such members of this family are singled out by particular combined discrete symmetries- states between which exists a well-known thermality relation.

  8. Discrete flavour symmetries from the Heisenberg group

    NASA Astrophysics Data System (ADS)

    Floratos, E. G.; Leontaris, G. K.

    2016-04-01

    Non-abelian discrete symmetries are of particular importance in model building. They are mainly invoked to explain the various fermion mass hierarchies and forbid dangerous superpotential terms. In string models they are usually associated to the geometry of the compactification manifold and more particularly to the magnetised branes in toroidal compactifications. Motivated by these facts, in this note we propose a unified framework to construct representations of finite discrete family groups based on the automorphisms of the discrete and finite Heisenberg group. We focus in particular, on the PSL2 (p) groups which contain the phenomenologically interesting cases.

  9. Models for neutrino mass with discrete symmetries

    NASA Astrophysics Data System (ADS)

    Morisi, S.

    2011-08-01

    Discrete non-abelian flavor symmetries give in a natural way tri-bimaximal (TBM) mixing as showed in a prototype model. However neutrino mass matrix pattern may be very different from the tri-bimaximal one if small deviations of TBM will be observed. We give the result of a model independent analysis for TBM neutrino mass pattern.

  10. Discrete Abelian gauge symmetries and axions

    NASA Astrophysics Data System (ADS)

    Honecker, Gabriele; Staessens, Wieland

    2015-07-01

    We combine two popular extensions of beyond the Standard Model physics within the framework of intersecting D6-brane models: discrete ℤn symmetries and Peccei-Quinn axions. The underlying natural connection between both extensions is formed by the presence of massive U(1) gauge symmetries in D-brane model building. Global intersecting D6-brane models on toroidal orbifolds of the type T6/ℤ2N and T6/ℤ2 × ℤ2M with discrete torsion offer excellent playgrounds for realizing these extensions. A generation-dependent ℤ2 symmetry is identified in a global Pati-Salam model, while global left-right symmetric models give rise to supersymmetric realizations of the DFSZ axion model. In one class of the latter models, the axion as well as Standard Model particles carry a non-trivial ℤ3 charge.

  11. Neutrino mass, mixing and discrete symmetries

    NASA Astrophysics Data System (ADS)

    Smirnov, Alexei Y.

    2013-07-01

    Status of the discrete symmetry approach to explanation of the lepton masses and mixing is summarized in view of recent experimental results, in particular, establishing relatively large 1-3 mixing. The lepton mixing can originate from breaking of discrete flavor symmetry Gf to different residual symmetries Gl and Gv in the charged lepton and neutrino sectors. In this framework the symmetry group condition has been derived which allows to get relations between the lepton mixing elements immediately without explicit model building. The condition has been applied to different residual neutrino symmetries Gv. For generic (mass independent) Gv = Z2 the condition leads to two relations between the mixing parameters and fixes one column of the mixing matrix. In the case of Gv = Z2 × Z2 the condition fixes the mixing matrix completely. The non-generic (mass spectrum dependent) Gv lead to relations which include mixing angles, neutrino masses and Majorana phases. The symmetries Gl, Gv, Gf are identified which lead to the experimentally observed values of the mixing angles and allow to predict the CP phase.

  12. Discrete gauge symmetries in discrete MSSM-like orientifolds

    NASA Astrophysics Data System (ADS)

    Ibáñez, L. E.; Schellekens, A. N.; Uranga, A. M.

    2012-12-01

    Motivated by the necessity of discrete ZN symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)'s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)'s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5) GUT models. We find examples of models with Z2 (R-parity) and Z3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.

  13. Breaking and Restoring of Diffeomorphism Symmetry in Discrete Gravity

    SciTech Connect

    Bahr, B.; Dittrich, B.

    2009-12-15

    We discuss the fate of diffeomorphism symmetry in discrete gravity. Diffeomorphism symmetry is typically broken by the discretization. This has repercussions for the observable content and the canonical formulation of the theory. It might however be possible to construct discrete actions, so-called perfect actions, with exact symmetries and we will review first steps towards this end.

  14. Cosmology of biased discrete symmetry breaking

    NASA Technical Reports Server (NTRS)

    Gelmini, Graciela B.; Gleiser, Marcelo; Kolb, Edward W.

    1988-01-01

    The cosmological consequences of spontaneous breaking of an approximate discrete symmetry are studied. The breaking leads to formation of proto-domains of false and true vacuum separated by domain walls of thickness determined by the mass scale of the model. The cosmological evolution of the walls is extremely sensitive to the magnitude of the biasing; several scenarios are possible, depending on the interplay between the surface tension on the walls and the volume pressure from the biasing. Walls may disappear almost immediately after they form, or may live long enough to dominate the energy density of the Universe and cause power-law inflation. Limits are obtained on the biasing that characterizes each possible scenario.

  15. Minimal but non-minimal inflation and electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Marzola, Luca; Racioppi, Antonio

    2016-10-01

    We consider the most minimal scale invariant extension of the standard model that allows for successful radiative electroweak symmetry breaking and inflation. The framework involves an extra scalar singlet, that plays the rôle of the inflaton, and is compatibile with current experimental bounds owing to the non-minimal coupling of the latter to gravity. This inflationary scenario predicts a very low tensor-to-scalar ratio r ≈ 10‑3, typical of Higgs-inflation models, but in contrast yields a scalar spectral index ns simeq 0.97 which departs from the Starobinsky limit. We briefly discuss the collider phenomenology of the framework.

  16. Discrete rotational symmetry and quantum-key-distribution protocols

    SciTech Connect

    Shirokoff, David; Fung, Chi-Hang Fred; Lo, Hoi-Kwong

    2007-03-15

    We study the role of discrete rotational symmetry in the quantum key distribution by generalizing the well-known Bennett-Brassard 1984 and Scarani-Acin-Ribordy-Gisin 2004 protocols. We observe that discrete rotational symmetry results in the protocol's invariance to continuous rotations, thus leading to a simplified relation between bit and phase error rates and consequently a straightforward security proof.

  17. Gravity cutoff in theories with large discrete symmetries.

    PubMed

    Dvali, Gia; Redi, Michele; Sibiryakov, Sergey; Vainshtein, Arkady

    2008-10-10

    We set an upper bound on the gravitational cutoff in theories with exact quantum numbers of large N periodicity, such as Z(N) discrete symmetries. The bound stems from black hole physics. It is similar to the bound appearing in theories with N particle species, though a priori, a large discrete symmetry does not imply a large number of species. Thus, there emerges a potentially wide class of new theories that address the hierarchy problem by lowering the gravitational cutoff due to the existence of large Z(10(32))-type symmetries. PMID:18999587

  18. On discrete symmetries for a whole Abelian model

    NASA Astrophysics Data System (ADS)

    Chauca, J.; Doria, R.

    2012-10-01

    Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {Dμ,Xiμ} and the physical basis {GμI}. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws driven for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {GμI} manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.

  19. On discrete symmetries for a whole Abelian model

    SciTech Connect

    Chauca, J.; Doria, R.

    2012-09-24

    Considering the whole concept applied to gauge theory a nonlinear abelian model is derived. A next step is to understand on the model properties. At this work, it will be devoted to discrete symmetries. For this, we will work based in two fields reference systems. This whole gauge symmetry allows to be analyzed through different sets which are the constructor basis {l_brace}D{sub {mu}},X{sup i}{sub {mu}}{r_brace} and the physical basis {l_brace}G{sub {mu}I}{r_brace}. Taking as fields reference system the diagonalized spin-1 sector, P, C, T and PCT symmetries are analyzed. They show that under this systemic model there are conservation laws driven for the parts and for the whole. It develops the meaning of whole-parity, field-parity and so on. However it is the whole symmetry that rules. This means that usually forbidden particles as pseudovector photons can be introduced through such whole abelian system. As result, one notices that the fields whole {l_brace}G{sub {mu}I}{r_brace} manifest a quanta diversity. It involves particles with different spins, masses and discrete quantum numbers under a same gauge symmetry. It says that without violating PCT symmetry different possibilities on discrete symmetries can be accommodated.

  20. PREFACE: 4th Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE2014)

    NASA Astrophysics Data System (ADS)

    Di Domenico, Antonio; Mavromatos, Nick E.; Mitsou, Vasiliki A.; Skliros, Dimitri P.

    2015-07-01

    The DISCRETE 2014: Fourth Symposium in the Physics of Discrete Symmetries took place at King's College London, Strand Campus, London WC2R 2LS, from Tuesday, December 2 2014 till Saturday, December 6 2014. This is the fourth Edition of the DISCRETE conference series, which is a biannual event, having been held previously in Valencia (Discrete'08), Rome (Discrete2010) and Lisbon (Discrete2012). The topics covered at the DISCRETE series of conferences are: T, C, P, CP symmetries; accidental symmetries (B, L conservation); CPT symmetry, decoherence and entangled states, Lorentz symmetry breaking (phenomenology and current bounds); neutrino mass and mixing; implications for cosmology and astroparticle physics, dark matter searches; experimental prospects at LHC, new facilities. In DISCRETE 2014 we have also introduced two new topics: cosmological aspects of non-commutative space-times as well as PT symmetric Hamiltonians (non-Hermitian but with real eigenvalues), a topic that has wide applications in particle physics and beyond. The conference was opened by the King's College London Vice Principal on Research and Innovation, Mr Chris Mottershead, followed by a welcome address by the Chair of DISCRETE 2014 (Professor Nick E. Mavromatos). After these introductory talks, the scientific programme of the DISCRETE 2014 symposium started. Following the tradition of DISCRETE series of conferences, the talks (138 in total) were divided into plenary-review talks (25), invited research talks (50) and shorter presentations (63) — selected by the conveners of each session in consultation with the organisers — from the submitted abstracts. We have been fortunate to have very high-quality, thought stimulating and interesting talks at all levels, which, together with the discussions among the participants, made the conference quite enjoyable. There were 152 registered participants for the event.

  1. Spontaneous breaking of a discrete symmetry and holography

    NASA Astrophysics Data System (ADS)

    Bajc, Borut; Lugo, Adrián R.; Sturla, Mauricio B.

    2012-04-01

    We present an exactly solvable model of a scalar field in an AdSd+1 like background interpolating between a Z2 preserving and a Z2 breaking minima of the potential. We define its holographic dual through the AdS/CFT dictionary and argue that at zero temperature the d - dimensional strongly coupled system on the boundary of AdSd+1 exhibits a phase with a spontaneously broken discrete symmetry. In the presence of a black hole in the bulk ( T≠0) we find that, although the metastable phase is present, the discrete symmetry gets restored. We compute exactly the lowest order boundary correlation functions in the spontaneously broken phase at T = 0, finding out a pole of the propagator for zero momenta that signals the presence of a massless mode and argue that it should not be present at ( T≠0).

  2. Discrete symmetries in the heterotic-string landscape

    NASA Astrophysics Data System (ADS)

    Athanasopoulos, P.

    2015-07-01

    We describe a new type of discrete symmetry that relates heterotic-string models. It is based on the spectral flow operator which normally acts within a general N = (2, 2) model and we use this operator to construct a map between N = (2, 0) models. The landscape of N = (2, 0) models is of particular interest among all heterotic-string models for two important reasons: Firstly, N =1 spacetime SUSY requires (2, 0) superconformal invariance and secondly, models with the well motivated by the Standard Model SO(10) unification structure are of this type. This idea was inspired by a new discrete symmetry in the space of fermionic ℤ2 × ℤ2 heterotic-string models that exchanges the spinors and vectors of the SO(10) GUT group, dubbed spinor-vector duality. We will describe how to generalize this to arbitrary internal rational Conformal Field Theories.

  3. Self-assembled fibre optoelectronics with discrete translational symmetry

    NASA Astrophysics Data System (ADS)

    Rein, Michael; Levy, Etgar; Gumennik, Alexander; Abouraddy, Ayman F.; Joannopoulos, John; Fink, Yoel

    2016-10-01

    Fibres with electronic and photonic properties are essential building blocks for functional fabrics with system level attributes. The scalability of thermal fibre drawing approach offers access to large device quantities, while constraining the devices to be translational symmetric. Lifting this symmetry to create discrete devices in fibres will increase their utility. Here, we draw, from a macroscopic preform, fibres that have three parallel internal non-contacting continuous domains; a semiconducting glass between two conductors. We then heat the fibre and generate a capillary fluid instability, resulting in the selective transformation of the cylindrical semiconducting domain into discrete spheres while keeping the conductive domains unchanged. The cylindrical-to-spherical expansion bridges the continuous conducting domains to create ~104 self-assembled, electrically contacted and entirely packaged discrete spherical devices per metre of fibre. The photodetection and Mie resonance dependent response are measured by illuminating the fibre while connecting its ends to an electrical readout.

  4. Self-assembled fibre optoelectronics with discrete translational symmetry

    PubMed Central

    Rein, Michael; Levy, Etgar; Gumennik, Alexander; Abouraddy, Ayman F.; Joannopoulos, John; Fink, Yoel

    2016-01-01

    Fibres with electronic and photonic properties are essential building blocks for functional fabrics with system level attributes. The scalability of thermal fibre drawing approach offers access to large device quantities, while constraining the devices to be translational symmetric. Lifting this symmetry to create discrete devices in fibres will increase their utility. Here, we draw, from a macroscopic preform, fibres that have three parallel internal non-contacting continuous domains; a semiconducting glass between two conductors. We then heat the fibre and generate a capillary fluid instability, resulting in the selective transformation of the cylindrical semiconducting domain into discrete spheres while keeping the conductive domains unchanged. The cylindrical-to-spherical expansion bridges the continuous conducting domains to create ∼104 self-assembled, electrically contacted and entirely packaged discrete spherical devices per metre of fibre. The photodetection and Mie resonance dependent response are measured by illuminating the fibre while connecting its ends to an electrical readout. PMID:27698454

  5. Breaking discrete symmetries in the effective field theory of inflation

    SciTech Connect

    Cannone, Dario; Gong, Jinn-Ouk; Tasinato, Gianmassimo

    2015-08-03

    We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.

  6. Breaking discrete symmetries in the effective field theory of inflation

    SciTech Connect

    Cannone, Dario; Gong, Jinn-Ouk; Tasinato, Gianmassimo E-mail: jinn-ouk.gong@apctp.org

    2015-08-01

    We study the phenomenon of discrete symmetry breaking during the inflationary epoch, using a model-independent approach based on the effective field theory of inflation. We work in a context where both time reparameterization symmetry and spatial diffeomorphism invariance can be broken during inflation. We determine the leading derivative operators in the quadratic action for fluctuations that break parity and time-reversal. Within suitable approximations, we study their consequences for the dynamics of linearized fluctuations. Both in the scalar and tensor sectors, we show that such operators can lead to new direction-dependent phases for the modes involved. They do not affect the power spectra, but can have consequences for higher correlation functions. Moreover, a small quadrupole contribution to the sound speed can be generated.

  7. Discrete symmetries and model-independent patterns of lepton mixing

    NASA Astrophysics Data System (ADS)

    Hernandez, D.; Smirnov, A. Yu.

    2013-03-01

    In the context of discrete flavor symmetries, we elaborate a method that allows one to obtain relations between the mixing parameters in a model-independent way. Under very general conditions, we show that flavor groups of the von Dyck type, that are not necessarily finite, determine the absolute values of the entries of one column of the mixing matrix. We apply our formalism to finite subgroups of the infinite von Dyck groups, such as the modular groups, and find cases that yield an excellent agreement with the best fit values for the mixing angles. We explore the Klein group as the residual symmetry of the neutrino sector and explain the permutation property that appears between the elements of the mixing matrix in this case.

  8. Smooth surfaces from bilinear patches: Discrete affine minimal surfaces.

    PubMed

    Käferböck, Florian; Pottmann, Helmut

    2013-06-01

    Motivated by applications in freeform architecture, we study surfaces which are composed of smoothly joined bilinear patches. These surfaces turn out to be discrete versions of negatively curved affine minimal surfaces and share many properties with their classical smooth counterparts. We present computational design approaches and study special cases which should be interesting for the architectural application.

  9. PREFACE: DISCRETE '08: Symposium on Prospects in the Physics of Discrete Symmetries

    NASA Astrophysics Data System (ADS)

    Bernabéu, José; Botella, Francisco J.; Mavromatos, Nick E.; Mitsou, Vasiliki A.

    2009-07-01

    The Symposium DISCRETE'08 on Prospects in the Physics of Discrete Symmetries was held at the Instituto de Física Corpuscular (IFIC) in Valencia, Spain from 11 to 16 December 2008. IFIC is a joint centre of the Consejo Superior de Investigaciones Científicas (CSIC) and the Universitat de València (UVEG). The aim of the Symposium was to bring together experts on the field of Discrete Symmetries in order to discuss its prospects on the eve of the LHC era. The general state of the art for CP, T and CPT symmetries was reviewed and their interplay with Baryogenesis, Early Cosmology, Quantum Gravity, String Theory and the Dark Sector of the Universe was emphasised. Connections with physics beyond the Standard Model, in particular Supersymmetry, were investigated. Experimental implications in current and proposed facilities received particular attention. The scientific programme consisted of 24 invited Plenary Talks and 93 contributions selected among the submitted papers. Young researchers, in particular, were encouraged to submit an abstract. The Special Lecture on ''CERN and the Future of Particle Physics'', given by the CERN Director General Rolf-Dieter Heuer to close the Symposium, was of particular relevance. On the last day of the Symposium, an open meeting took place between Professor Heuer and the Spanish community of particle physics. The Symposium covered recent developments on the subject of Discrete Symmetries in the following topics: Quantum Vacuum Entanglement, Symmetrisation Principle CPT in Quantum Gravity and String Theory, Decoherence, Lorentz Violation Ultra-high-energy Messengers Time Reversal CP violation in the SM and beyond Neutrino Mass, Mixing and CP Baryogenesis, Leptogenesis Family Symmetries Supersymmetry and other searches Experimental Prospects: LHC, Super-B Factories, DAΦNE-2, Neutrino Beams The excellence of most of the presentations during the Symposium was pointed out by many participants. The broad spectrum of topics under the

  10. PREFACE: DISCRETE 2012 - Third Symposium on Prospects in the Physics of Discrete Symmetries

    NASA Astrophysics Data System (ADS)

    Branco, G. C.; Emmanuel-Costa, D.; González Felipe, R.; Joaquim, F. R.; Lavoura, L.; Palomares-Ruiz, S.; Rebelo, M. N.; Romão, J. C.; Silva, J. P.

    2013-07-01

    The Third Symposium on Prospects in the Physics of Discrete Symmetries (DISCRETE 2012) was held at Instituto Superior Técnico, Portugal, from 3-7 December 2012 and was organised by Centro de Física Teórica de Partículas (CFTP) of Instituto Superior Técnico, Universidade Técnica de Lisboa. This is the sequel to the Symposia that was successfully organised in Valéncia in 2008 and in Rome in 2010. The topics covered included: T, C, P, CP symmetries CPT symmetry, decoherence, Lorentz symmetry breaking Discrete symmetries and models of flavour mixing Baryogenesis, leptogenesis Neutrino physics Electroweak symmetry breaking and physics beyond the Standard Model Accidental symmetries (B, L conservation) Experimental prospects at LHC Dark matter searches Super flavour factories, and other new experimental facilities The Symposium was organised in plenary sessions with a total of 24 invited talks, and parallel sessions with a total of 70 talks, including both invited and selected contributions from the submitted abstracts. The speakers of the plenary sessions were: Ignatios Antoniadis, Abdelhak Djouadi, Rabindra Mohapatra, André Rubbia, Alexei Yu Smirnov, José Bernabéu, Marco Cirelli, Apostolos Pilaftsis, Antonio Di Domenico, Robertus Potting, João Varela, Frank Rathmann, Michele Gallinaro, Dumitru Ghilencea, Neville Harnew, John Walsh, Patrícia Conde Muíño, Juan Aguilar-Saavedra, Nick Mavromatos, Ulrich Nierste, Ferruccio Feruglio, Vasiliki Mitsou, Masanori Yamauchi, and Marcello Giorgi. The Symposium was attended by about 140 participants. Among the social events, there was a social dinner in the historical Associação Comercial de Lisboa, which included a musical performance of 'Fado', the traditional music from Lisbon. The next symposium of the series will be organised by King's College, London University, UK, from 1-5 December 2014. Guest Editors G C Branco, D Emmanuel-Costa, R González Felipe, F R Joaquim, L Lavoura, S Palomares-Ruiz, M N Rebelo, J C

  11. Non-Abelian discrete gauge symmetries in F-theory

    NASA Astrophysics Data System (ADS)

    Grimm, Thomas W.; Pugh, Tom G.; Regalado, Diego

    2016-02-01

    The presence of non-Abelian discrete gauge symmetries in four-dimensional F-theory compactifications is investigated. Such symmetries are shown to arise from seven-brane configurations in genuine F-theory settings without a weak string coupling description. Gauge fields on mutually non-local seven-branes are argued to gauge both R-R and NS-NS two-form bulk axions. The gauging is completed into a generalisation of the Heisenberg group with either additional seven-brane gauge fields or R-R bulk gauge fields. The former case relies on having seven-brane fluxes, while the latter case requires torsion cohomology and is analysed in detail through the M-theory dual. Remarkably, the M-theory reduction yields an Abelian theory that becomes non-Abelian when translated into the correct duality frame to perform the F-theory limit. The reduction shows that the gauge coupling function depends on the gauged scalars and transforms non-trivially as required for the groups encountered. This field dependence agrees with the expectations for the kinetic mixing of seven-branes and is unchanged if the gaugings are absent.

  12. Discrete-time minimal control synthesis adaptive algorithm

    NASA Astrophysics Data System (ADS)

    di Bernardo, M.; di Gennaro, F.; Olm, J. M.; Santini, S.

    2010-12-01

    This article proposes a discrete-time Minimal Control Synthesis (MCS) algorithm for a class of single-input single-output discrete-time systems written in controllable canonical form. As it happens with the continuous-time MCS strategy, the algorithm arises from the family of hyperstability-based discrete-time model reference adaptive controllers introduced in (Landau, Y. (1979), Adaptive Control: The Model Reference Approach, New York: Marcel Dekker, Inc.) and is able to ensure tracking of the states of a given reference model with minimal knowledge about the plant. The control design shows robustness to parameter uncertainties, slow parameter variation and matched disturbances. Furthermore, it is proved that the proposed discrete-time MCS algorithm can be used to control discretised continuous-time plants with the same performance features. Contrary to previous discrete-time implementations of the continuous-time MCS algorithm, here a formal proof of asymptotic stability is given for generic n-dimensional plants in controllable canonical form. The theoretical approach is validated by means of simulation results.

  13. Flocking with discrete symmetry: The two-dimensional active Ising model

    NASA Astrophysics Data System (ADS)

    Solon, A. P.; Tailleur, J.

    2015-10-01

    We study in detail the active Ising model, a stochastic lattice gas where collective motion emerges from the spontaneous breaking of a discrete symmetry. On a two-dimensional lattice, active particles undergo a diffusion biased in one of two possible directions (left and right) and align ferromagnetically their direction of motion, hence yielding a minimal flocking model with discrete rotational symmetry. We show that the transition to collective motion amounts in this model to a bona fide liquid-gas phase transition in the canonical ensemble. The phase diagram in the density-velocity parameter plane has a critical point at zero velocity which belongs to the Ising universality class. In the density-temperature "canonical" ensemble, the usual critical point of the equilibrium liquid-gas transition is sent to infinite density because the different symmetries between liquid and gas phases preclude a supercritical region. We build a continuum theory which reproduces qualitatively the behavior of the microscopic model. In particular, we predict analytically the shapes of the phase diagrams in the vicinity of the critical points, the binodal and spinodal densities at coexistence, and the speeds and shapes of the phase-separated profiles.

  14. PREFACE: DISCRETE 2010: Symposium on Prospects in the Physics of Discrete Symmetries

    NASA Astrophysics Data System (ADS)

    Di Domenico, Antonio; Bini, Cesare; Bloise, Caterina; Bossi, Fabio; Faccini, Riccardo; Gauzzi, Paolo; Isidori, Gino; Lipari, Paolo; Ludovici, Lucio; Silvestrini, Luca

    2011-12-01

    The Symposium DISCRETE2010 on Prospects in the Physics of Discrete Symmetries was held at the Sapienza Universitàa di Roma, Italy from 6-11 December 2010. This second edition, after the successful one in Valencia in 2008, covered all theoretical and experimental progress in the field, and aimed at a thorough discussion on the latest developments. The topics covered included: T, C, P, CP symmetries; accidental symmetries (B, L conservation); CPT symmetry, decoherence, Lorentz symmetry breaking; neutrino mass and mixing; cosmology and astroparticles, dark matter searches; experimental prospects at LHC, Super flavor factories, and new facilities. The Symposium was organized in plenary sessions with a total of 23 invited talks, and parallel sessions with a total of 80 talks including both invited and selected contributions from the submitted abstracts. The speakers of the plenary sessions were: Achille Stocchi, Andreas Weiler, Kevin Pitts, Tim Gershon, Marco Sozzi, Neal Weiner, Vasiliki Mitsou, Bernard Sadoulet, Gianfranco Bertone, J. Eric Grove, Mauro Mezzetto, Alexei Yu Smirnov, Oliviero Cremonesi, Antonio Riotto, Reno Mandolesi, Brett Altschul, Jose Bernabeu, Lawrence Hall, Marco Grassi, Yannis K. Semertzidis, Riccardo Barbieri, Gigi Rolandi, Luciano Maiani. The Symposium venue was the CNR (Consiglio Nazionale delle Ricerche) headquarter building, close to the Sapienza University. At the end of the Symposium a special open session, devoted to a wider audience, was held at the Pontifical University of the Holy Cross, in the historical center of Rome. The symposium was attended by about 140 participants, about half coming from Italy, and the rest mainly from other European countries and United States. Among the social events was a concert at the Aula Magna of the Sapienza University, and a social dinner in the historical Palazzo Pallavicini-Rospigliosi on the Quirinale Hill. The next symposium of the series will be organised by IST, Universidade Tàecnica de Lisboa

  15. Leptons and quarks from a discrete flavor symmetry

    NASA Astrophysics Data System (ADS)

    Ahn, Y. H.

    2013-06-01

    We propose a new model of leptons and quarks based on the discrete flavor symmetry T', the double covering of A4, in which the hierarchies of charged fermion masses and the mildness of neutrino masses are responsible for Higgs scalars. After spontaneous breaking of flavor symmetry, with the constraint of renormalizability in the Lagrangian, the leptons have me=0 and the quarks have the Cabibbo-Kobayashi-Maskawa mixing angles θ12q=13°, θ23q=0° and θ13q=0°. Thus, certain effective dimension-5 operators are introduced, which induce me≠0 and lead the quark mixing matrix to the Cabibbo-Kobayashi-Maskawa one in the form. On the other hand, the neutrino Lagrangian still keeps renormalizability. For completeness, we show a numerical analysis: in the lepton sector, only normal mass hierarchy is permitted within 3σ experimental bounds with the prediction of both large deviations from maximality in the atmospheric mixing angle θ23 and the measured values of the reactor angle. So, future precise measurements of θ23, whether θ23→45° or |θ23-45°|→5°, will either exclude or favor our model. Together with it, our model makes predictions for the Dirac CP phase, which is almost compatible with the global analysis in 1σ experimental bounds. Moreover, we show the effective mass |mee| measurable in neutrinoless double beta decay to be in the range 0.04≲|mee|[eV]<0.11, which can be tested in near future neutrino experiments.

  16. On abelian and discrete symmetries in F-theory

    NASA Astrophysics Data System (ADS)

    Piragua, Hernan Augusto

    In this dissertation, we systematically construct and study global F-theory compactifications with abelian and discrete gauge groups. These constructions are of fundamental relevance for both conceptual and phenomenological reasons. In the case of abelian symmetries, we systematically engineer compactifications that support U(1)xU(1) and U(1)xU(1)xU(1) gauge groups. The engineered geometries are elliptic fibrations with Mordell-Weil group rank two and three respectively. The bases of the fibrations are arbitrary, but as proofs of concept, we explicit create examples with bases P 2 and P3. We study the low energy physics of these compactifications, we calculate the matter spectrum and confirm that it is anomaly free. In 4D compactifications, the G4 flux is designed and the existence of Yukawa couplings is verified. We consider F-theory compactifications on genus-one fibered Calabi-Yau manifolds with their fibers realized as hypersurfaces in the toric varieties associated to the 16 reflexive 2D polyhedra. We present a base-independent analysis of the codimension one, two and three singularities of these fibrations. We explore the network of Higgsings relating these theories. Such Higgsings geometrically correspond to extremal transitions induced by blow-ups in the 2D toric varieties. The discrete gauge groups Z3 and U(1) x Z2 are naturally found when P2 and P1 x P1 are used as fiber ambient spaces. We also find the first realization of matter with U(1) charge three. Finally, we study the discrete gauge group Z 3 in detail. We find the three elements of the Tate-Shafarevich (TS) group. We make use of the Higgs mechanism with the charge three hypermultiplets and the Kaluza-Klein reduction from 6D to 5D. The results are interpreted from the F- M- theory duality perspective. In F-theory, compactifications over any of the three elements of the TS groups yield the same low energy physics, however, M-theory compactifications over the same elements give rise to different

  17. Symmetry breaking of localized discrete matter waves induced by spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Salerno, M.; Abdullaev, F. Kh.

    2015-10-01

    We study localized nonlinear excitations of a dilute Bose-Einstein condensate (BEC) with spin-orbit coupling in a deep optical lattice (OL). For this we introduce a tight-binding model that includes the spin-orbit coupling (SOC) at the discrete level in the form of a generalized discrete nonlinear Schrödinger equation. Existence and stability of discrete solitons of different symmetry types is demonstrated. Quite interestingly, we find three distinctive regions in which discrete solitons undergo spontaneously symmetry breaking, passing from on-site to inter-site and to asymmetric, simply by varying the interatomic interactions. Existence ranges of discrete solitons with inter-site symmetry depend on SOC and shrink to zero as the SOC parameter is increased. Asymmetric discrete solitons appear as novel excitations specific of the SOC. Possible experimental implementation of these results is briefly discussed.

  18. Multi-Target Tracking by Discrete-Continuous Energy Minimization.

    PubMed

    Milan, Anton; Schindler, Konrad; Roth, Stefan

    2016-10-01

    The task of tracking multiple targets is often addressed with the so-called tracking-by-detection paradigm, where the first step is to obtain a set of target hypotheses for each frame independently. Tracking can then be regarded as solving two separate, but tightly coupled problems. The first is to carry out data association, i.e., to determine the origin of each of the available observations. The second problem is to reconstruct the actual trajectories that describe the spatio-temporal motion pattern of each individual target. The former is inherently a discrete problem, while the latter should intuitively be modeled in continuous space. Having to deal with an unknown number of targets, complex dependencies, and physical constraints, both are challenging tasks on their own and thus most previous work focuses on one of these subproblems. Here, we present a multi-target tracking approach that explicitly models both tasks as minimization of a unified discrete-continuous energy function. Trajectory properties are captured through global label costs, a recent concept from multi-model fitting, which we introduce to tracking. Specifically, label costs describe physical properties of individual tracks, e.g., linear and angular dynamics, or entry and exit points. We further introduce pairwise label costs to describe mutual interactions between targets in order to avoid collisions. By choosing appropriate forms for the individual energy components, powerful discrete optimization techniques can be leveraged to address data association, while the shapes of individual trajectories are updated by gradient-based continuous energy minimization. The proposed method achieves state-of-the-art results on diverse benchmark sequences.

  19. Constitutive modelling of magnetic shape memory alloys with discrete and continuous symmetries

    PubMed Central

    Haldar, K.; Lagoudas, D. C.

    2014-01-01

    A free energy-based constitutive formulation is considered for magnetic shape memory alloys. Internal state variables are introduced whose evolution describes the transition from reference state to the deformed and transformed one. We impose material symmetry restrictions on the Gibbs free energy and on the evolution equations of the internal state variables. Discrete symmetry is considered for single crystals, whereas continuous symmetry is considered for polycrystalline materials. PMID:25197247

  20. Discretized energy minimization in a wave guide with point sources

    NASA Technical Reports Server (NTRS)

    Propst, G.

    1994-01-01

    An anti-noise problem on a finite time interval is solved by minimization of a quadratic functional on the Hilbert space of square integrable controls. To this end, the one-dimensional wave equation with point sources and pointwise reflecting boundary conditions is decomposed into a system for the two propagating components of waves. Wellposedness of this system is proved for a class of data that includes piecewise linear initial conditions and piecewise constant forcing functions. It is shown that for such data the optimal piecewise constant control is the solution of a sparse linear system. Methods for its computational treatment are presented as well as examples of their applicability. The convergence of discrete approximations to the general optimization problem is demonstrated by finite element methods.

  1. Yukawas and discrete symmetries in F-theory compactifications without section

    NASA Astrophysics Data System (ADS)

    García-Etxebarria, Iñaki; Grimm, Thomas W.; Keitel, Jan

    2014-11-01

    In the case of F-theory compactifications on genus-one fibrations without section there are naturally appearing discrete symmetries, which we argue to be associated to geometrically massive U(1) gauge symmetries. These discrete symmetries are shown to induce non-trivial selection rules for the allowed Yukawa couplings in SU( N) gauge theories. The general discussion is exemplified using a concrete Calabi-Yau fourfold realizing an SU(5) GUT model. We observe that M2 instanton effects appear to play a key role in the generation of new superpotential terms and in the dynamics close to phase transition loci.

  2. Discrete gauge symmetries by Higgsing in four-dimensional F-theory compactifications

    NASA Astrophysics Data System (ADS)

    Mayrhofer, Christoph; Palti, Eran; Till, Oskar; Weigand, Timo

    2014-12-01

    We study F-theory compactifications to four dimensions that exhibit discrete gauge symmetries. Geometrically these arise by deforming elliptic fibrations with two sections to a genus-one fibration with a bi-section. From a four-dimensional field theory perspective they are remnant symmetries from a Higgsed U(1) gauge symmetry. We implement such symmetries in the presence of an additional SU(5) symmetry and associated matter fields, giving a geometric prescription for calculating the induced discrete charge for the matter curves and showing the absence of Yukawa couplings that are forbidden by this charge. We present a detailed map between the field theory and the geometry, including an identification of the Higgs field and the massless states before and after the Higgsing. Finally we show that the Higgsing of the U(1) induces a G-flux which precisely accounts for the change in the Calabi-Yau Euler number so as to leave the D3 tadpole invariant.

  3. BOOK REVIEW: Discrete Symmetries and CP Violation: From Experiment to Theory (Oxford Graduate Texts)

    NASA Astrophysics Data System (ADS)

    Fösel, A.

    2009-03-01

    Discrete Symmetries and CP Violation: From Experiment to Theory by Marco Sozzi discusses C(harge conjugation), P(arity) and T(ime reversal) discrete symmetries and of course CP symmetry in microscopic (atomic, nuclear and particle) physics. It includes a detailed description of key or representative experiments, and major achievements and recent developments are also mentioned. Though lots of excellent textbooks already exist which cover the basics of discrete symmetries and CP violation in theory and experiment, Sozzi has fully achieved the goal of presenting a book that describes the basics of this subject in detail, from an experimental point of view as well as from theory. He also succeeds in finding links between experiments and theory, leading to a better understanding of the subject. Besides, as an experimentalist, discrete symmetries and CP violation appear to the author as ideal subjects to convey the depth and excitement of experimental `beautiful' physics, which Marco S Sozzi - in my opinion - has managed to do brilliantly. Though mainly addressed to graduate students, the book may also be useful to undergraduates (by skipping some of the more advanced sections and utilizing the brief introduction to some topics in the appendices) and to young researchers looking for a wider modern overview of the issues related to CP symmetry. At the end of each chapter, further reading sections are conveniently provided for the reader to find relevant literature for further studies. Problems to solve at the end of each chapter act as 'little tests'. Unfortunately, their solutions are currently absent: perhaps a publication that includes them is planned in the near future. To conclude, the book succeeds in being a complete and self-consistent text describing in up-to-date detail the investigation of discrete symmetries in sub-atomic physics. It also emphasizes the concepts and ingenuity behind many delicate, careful, and by all means 'beautiful' experiments.

  4. Discrete-time quantum walks: Continuous limit and symmetries

    SciTech Connect

    Molfetta, G. di; Debbasch, F.

    2012-12-15

    The continuous limit of one-dimensional discrete-time quantum walks with time-and space-dependent coefficients is investigated. A given quantum walk does not generally admit a continuous limit but some families (1-jets) of quantum walks do. All families (1-jets) admitting a continuous limit are identified. The continuous limit is described by a Dirac-like equation or, alternately, a couple of Klein-Gordon equations. Variational principles leading to these equations are also discussed, together with local invariance properties.

  5. Integral group actions on symmetric spaces and discrete duality symmetries of supergravity theories

    SciTech Connect

    Carbone, Lisa; Murray, Scott H.; Sati, Hisham

    2015-10-15

    For G = G(ℝ), a split, simply connected, semisimple Lie group of rank n and K the maximal compact subgroup of G, we give a method for computing Iwasawa coordinates of K∖G using the Chevalley generators and the Steinberg presentation. When K∖G is a scalar coset for a supergravity theory in dimensions ≥3, we determine the action of the integral form G(ℤ) on K∖G. We give explicit results for the action of the discrete U-duality groups SL{sub 2}(ℤ) and E{sub 7}(ℤ) on the scalar cosets SO(2)∖SL{sub 2}(ℝ) and [SU(8)/( ± Id)]∖E{sub 7(+7)}(ℝ) for type IIB supergravity in ten dimensions and 11-dimensional supergravity reduced to D = 4 dimensions, respectively. For the former, we use this to determine the discrete U-duality transformations on the scalar sector in the Borel gauge and we describe the discrete symmetries of the dyonic charge lattice. We determine the spectrum-generating symmetry group for fundamental BPS solitons of type IIB supergravity in D = 10 dimensions at the classical level and we propose an analog of this symmetry at the quantum level. We indicate how our methods can be used to study the orbits of discrete U-duality groups in general.

  6. Symmetry preserving discretization of ordinary differential equations. Large symmetry groups and higher order equations

    NASA Astrophysics Data System (ADS)

    Campoamor-Stursberg, R.; Rodríguez, M. A.; Winternitz, P.

    2016-01-01

    Ordinary differential equations (ODEs) and ordinary difference systems (OΔSs) invariant under the actions of the Lie groups {{SL}}x(2),{{SL}}y(2) and {{SL}}x(2)× {{SL}}y(2) of projective transformations of the independent variables x and dependent variables y are constructed. The ODEs are continuous limits of the OΔSs, or conversely, the OΔSs are invariant discretizations of the ODEs. The invariant OΔSs are used to calculate numerical solutions of the invariant ODEs of order up to five. The solutions of the invariant numerical schemes are compared to numerical solutions obtained by standard Runge-Kutta methods and to exact solutions, when available. The invariant method performs at least as well as standard ones and much better in the vicinity of singularities of solutions.

  7. C P -odd invariants for multi-Higgs models: Applications with discrete symmetry

    NASA Astrophysics Data System (ADS)

    de Medeiros Varzielas, Ivo; King, Stephen F.; Luhn, Christoph; Neder, Thomas

    2016-09-01

    C P -odd invariants provide a basis independent way of studying the C P properties of Lagrangians. We propose powerful methods for constructing basis invariants and determining whether they are C P odd or C P even, then systematically construct all of the simplest C P -odd invariants up to a given order, finding many new ones. The C P -odd invariants are valid for general potentials when expressed in a standard form. We then apply our results to scalar potentials involving three (or six) Higgs fields which form irreducible triplets under a discrete symmetry, including invariants for both explicit as well as spontaneous C P violation. The considered cases include one triplet of Standard Model (SM) gauge singlet scalars, one triplet of SM Higgs doublets, two triplets of SM singlets, and two triplets of SM Higgs doublets. For each case, we study the potential symmetric under one of the simplest discrete symmetries with irreducible triplet representations, namely A4, S4, Δ (27 ) or Δ (54 ), as well as the infinite classes of discrete symmetries Δ (3 n2) or Δ (6 n2).

  8. Using a curvilinear grid to construct symmetry-preserving discretizations for Lagrangian gas dynamics

    SciTech Connect

    Margolin, L.; Shashkov, M.

    1999-03-01

    The goal of this paper is to construct discretizations for the equations of Lagrangian gas dynamics that preserve plane, cylindrical, and spherical symmetry in the solution of the original differential equations. The new method uses a curvilinear grid that is reconstructed from a given logically rectangular distribution of nodes. The sides of the cells of the reconstructed grid can be segments of straight lines or arcs of local circles. The procedure is exact for straight lines and circles; that is, it reproduces rectangular and polar grids exactly. The authors use the method of support operators to construct a conservative finite-difference method that they demonstrate will preserve spatial symmetries for certain choices of the initial grid. They also introduce a curvilinear version of artificial edge viscosity that also preserves symmetry. They present numerical examples to demonstrate their theoretical considerations and the robustness of the new method.

  9. Theory of the Lattice Boltzmann Equation: Symmetry properties of Discrete Velocity Sets

    NASA Technical Reports Server (NTRS)

    Rubinstein, Robert; Luo, Li-Shi

    2007-01-01

    In the lattice Boltzmann equation, continuous particle velocity space is replaced by a finite dimensional discrete set. The number of linearly independent velocity moments in a lattice Boltzmann model cannot exceed the number of discrete velocities. Thus, finite dimensionality introduces linear dependencies among the moments that do not exist in the exact continuous theory. Given a discrete velocity set, it is important to know to exactly what order moments are free of these dependencies. Elementary group theory is applied to the solution of this problem. It is found that by decomposing the velocity set into subsets that transform among themselves under an appropriate symmetry group, it becomes relatively straightforward to assess the behavior of moments in the theory. The construction of some standard two- and three-dimensional models is reviewed from this viewpoint, and procedures for constructing some new higher dimensional models are suggested.

  10. Radiative symmetry breaking of the minimal left-right symmetric model

    SciTech Connect

    Holthausen, Martin; Lindner, Manfred; Schmidt, Michael A.

    2010-09-01

    Under the assumption of classical conformal invariance, we study the Coleman-Weinberg symmetry breaking mechanism in the minimal left-right symmetric model. This model is attractive as it provides a natural framework for small neutrino masses and the restoration of parity as a good symmetry of nature. We find that, in a large fraction of the parameter space, the parity symmetry is maximally broken by quantum corrections in the Coleman-Weinberg potential, which are a consequence of the conformal anomaly. As the left-right symmetry breaking scale is connected to the Planck scale through the logarithmic running of the dimensionless couplings of the scalar potential, a large separation of the two scales can be dynamically generated. The symmetry breaking dynamics of the model was studied using a renormalization group analysis. Electroweak symmetry breaking is triggered by the breakdown of left-right symmetry, and the left-right breaking scale is therefore expected in the few-TeV range. The phenomenological implications of the symmetry breaking mechanism are discussed.

  11. On the vacuum Einstein equations along curves with a discrete local rotation and reflection symmetry

    SciTech Connect

    Korzyński, Mikołaj; Bentivegna, Eloisa E-mail: ian.hinder@aei.mpg.de

    2015-08-01

    We discuss the possibility of a dimensional reduction of the Einstein equations in S{sup 3} black-hole lattices. It was reported in previous literature that the evolution of spaces containing curves of local, discrete rotation and reflection symmetry (LDRRS) can be carried out via a system of ODEs along these curves. However, 3+1 Numerical Relativity computations demonstrate that this is not the case, and we show analytically that this is due to the presence of a tensorial quantity which is not suppressed by the symmetry. We calculate the term analytically, and verify numerically for an 8-black-hole lattice that it fully accounts for the anomalous results, and thus quantify its magnitude in this specific case. The presence of this term prevents the exact evolution of these spaces via previously-reported methods which do not involve a full 3+1 integration of Einstein's equation.

  12. Flavor Physics in SO(10) GUTs with Suppressed Proton decay Due to Gauged Discrete Symmetry

    NASA Astrophysics Data System (ADS)

    Azatov, Aleksandr

    2011-12-01

    Generic SO(10) GUT models suffer from the problem that Planck scale induced non-renormalizable proton decay operators require extreme suppression of their couplings to be compatible with present experimental upper limits. One way to resolve this problem is to supplement SO(10) by simple gauged discrete symmetries which can also simultaneously suppress the renormalizable R-parity violating interactions when they occur and make the theory "more natural". We then present an extended 16H model, with three 10 and three 45-Higgs, which is free of this problem. We propose this as a realistic and "natural" model for fermion unification and discuss the phenomenology of this model e.g. its predictions for neutrino mixings and lepton flavor violation.

  13. Minimizing the total service time of discrete dynamic berth allocation problem by an iterated greedy heuristic.

    PubMed

    Lin, Shih-Wei; Ying, Kuo-Ching; Wan, Shu-Yen

    2014-01-01

    Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set.

  14. Minimizing the Total Service Time of Discrete Dynamic Berth Allocation Problem by an Iterated Greedy Heuristic

    PubMed Central

    2014-01-01

    Berth allocation is the forefront operation performed when ships arrive at a port and is a critical task in container port optimization. Minimizing the time ships spend at berths constitutes an important objective of berth allocation problems. This study focuses on the discrete dynamic berth allocation problem (discrete DBAP), which aims to minimize total service time, and proposes an iterated greedy (IG) algorithm to solve it. The proposed IG algorithm is tested on three benchmark problem sets. Experimental results show that the proposed IG algorithm can obtain optimal solutions for all test instances of the first and second problem sets and outperforms the best-known solutions for 35 out of 90 test instances of the third problem set. PMID:25295295

  15. Non-minimal CW inflation, electroweak symmetry breaking and the 750 GeV anomaly

    NASA Astrophysics Data System (ADS)

    Marzola, L.; Racioppi, A.; Raidal, M.; Urban, F. R.; Veermäe, H.

    2016-03-01

    We study whether the hinted 750 GeV resonance at the LHC can be a Coleman-Weinberg inflaton which is non-minimally coupled to gravity. Since the inflaton must couple to new charged and coloured states to reproduce the LHC diphoton signature, the same interaction can generate its effective potential and trigger the electroweak symmetry breaking via the portal coupling to the Higgs boson. This inflationary scenario predicts a lower bound on the tensor-to-scalar ratio of r ≳ 0.006, where the minimal value corresponds to the measured spectral index n s ≃ 0.97. However, we find that the compatibility with the LHC diphoton signal requires exotic new physics at energy scales accessible at the LHC. We study and quantify the properties of the predicted exotic particles.

  16. Recent neutrino data and type III seesaw model with discrete symmetry

    NASA Astrophysics Data System (ADS)

    Ahn, Y. H.; Kim, C. S.; Oh, Sechul

    2012-07-01

    In light of the recent neutrino experiment results from the Daya Bay and RENO Collaborations, we study phenomenology of neutrino mixing angles in the type III seesaw model with a discrete A4×Z2 symmetry, whose spontaneously breaking scale is much higher than the electroweak scale. At tree level, the tri-bimaximal (TBM) form of the lepton mixing matrix can be obtained from leptonic Yukawa interactions in a natural way. We introduce all possible effective dimension-five operators, invariant under the standard model gauge group and A4×Z2, and explicitly show that they induce a deviation of the lepton mixing from the TBM mixing matrix, which can explain a large mixing angle θ13 together with small deviations of the solar and atmospheric mixing angles from the TBM. Two possible scenarios are investigated, by taking into account either negligible or sizable contributions from the light charged lepton sector to the lepton mixing matrix. Especially it is found in the latter scenario that all the neutrino experimental data, including the recent best-fit value of θ13=8.68°, can be accommodated. The leptonic CP violation characterized by the Jarlskog invariant JCP has a nonvanishing value, indicating a signal of maximal CP violation.

  17. A minimal coupled fluid-discrete element model for bedload transport

    NASA Astrophysics Data System (ADS)

    Maurin, R.; Chauchat, J.; Chareyre, B.; Frey, P.

    2015-11-01

    A minimal Lagrangian two-phase model to study turbulent bedload transport focusing on the granular phase is presented and validated with experiments. The model intends to describe bedload transport of massive particles in fully rough flows at relatively low Shields numbers, for which no suspension occurs. A discrete element method for the granular phase is coupled with a one dimensional volume-averaged two-phase momentum equation for the fluid phase. The coupling between the discrete granular phase and the continuous fluid phase is discussed, and a consistent averaging formulation adapted to bedload transport is introduced. An original simple discrete random walk model is proposed to account for the fluid velocity fluctuations. The model is compared with experiments considering both classical sediment transport rate as a function of the Shields number, and depth profiles of solid velocity, volume fraction, and transport rate density, from existing bedload transport experiments in inclined flume. The results successfully reproduce the classical 3/2 power law, and more importantly describe well the depth profiles of the granular phase, showing that the model is able to reproduce the particle scale mechanisms. From a sensitivity analysis, it is shown that the fluctuation model allows to reproduce a realistic critical Shields number, and that the influence of the granular parameters on the macroscopic results is weak. Nevertheless, the analysis of the corresponding depth profiles reveals an evolution of the depth structure of the granular phase with varying restitution and friction coefficients, which denotes the non-trivial underlying physical mechanisms.

  18. Discrete spin structures and commuting projector models for two-dimensional fermionic symmetry-protected topological phases

    NASA Astrophysics Data System (ADS)

    Tarantino, Nicolas; Fidkowski, Lukasz

    2016-09-01

    We construct exactly solved commuting projector Hamiltonian lattice models for all known (2+1)-dimensional (2+1D) fermionic symmetry protected topological phases (SPTs) with on-site unitary symmetry group Gf=G ×Z2f , where G is finite and Z2f is the fermion parity symmetry. In particular, our models transcend the class of group supercohomology models, which realize some, but not all, fermionic SPTs in 2+1D. A natural ingredient in our construction is a discrete form of the spin structure of the 2D spatial surface M on which our model is defined, namely a "Kasteleyn" orientation of a certain graph associated with the lattice. As a special case, our construction yields commuting projector models for all eight members of the Z8 classification of 2D fermionic SPTs with G =Z2 .

  19. Minimally allowed beta beata 0_nu rates from approximate flavor symmetries

    SciTech Connect

    Jenkins, James

    2008-01-01

    Neutrinoless double beta decay ({beta}{beta}0{nu}) is the only realistic probe of Majorana neutrinos. In the standard scenario, dominated by light neutrino exchange, the process amplitude is proportional to m{sub ee} , the e - e element of the Majorana mass matrix. This is expected to hold true for small {beta}{beta}{nu} rates ({Gamma}{sub {beta}{beta}0{nu}}), even in the presence of new physics. Naively, current data allows for vanishing m{sub ee} , but this should be protected by an appropriate flavor symmetry. All such symmetries lead to mass matrices inconsistent with oscillation phenomenology. Hence, Majorana neutrinos imply nonzero {Gamma}{sub {beta}{beta}0{nu}}. I perform a spurion analysis to break all possible abelian symmetries that guarantee {Gamma}{sub {beta}{beta}0{nu}} = 0 and search for minimally allowed m{sub ee} values. Specifically, I survey 259 broken structures to yield m{sub ee} values and current phenomenological constraints under a variety of scenarios. This analysis also extracts predictions for both neutrino oscillation parameters and kinematic quantities. Assuming reasonable tuning levels, I find that m{sub ee} > 4 x 10{sup -6} eV at 99% confidence. Bounds below this value would indicate the Dirac neutrino nature or the existence of new light (eV-MeV scale) degrees of freedom that can potentially be probed elsewhere. This limit can be raised by improvements in neutrino parameter measurements, particularly of the reactor mixing angle, depending on the best fit parameter values. Such improvements will also significantly constrain the available model space and aid in future constructions.

  20. From ordinary to discrete quantum mechanics: The Charlier oscillator and its coalgebra symmetry

    NASA Astrophysics Data System (ADS)

    Latini, D.; Riglioni, D.

    2016-10-01

    The coalgebraic structure of the harmonic oscillator is used to underline possible connections between continuous and discrete superintegrable models which can be described in terms of SUSY discrete quantum mechanics. A set of 1-parameter algebraic transformations is introduced in order to generate a discrete representation for the coalgebraic harmonic oscillator. This set of transformations is shown to play a role in the generalization of classical orthogonal polynomials to the realm of discrete orthogonal polynomials in the Askey scheme. As an explicit example the connection between Hermite and Charlier oscillators, that share the same coalgebraic structure, is presented and a two-dimensional maximally superintegrable version of the Charlier oscillator is constructed.

  1. (Small) Resonant non-Gaussianities: Signatures of a Discrete Shift Symmetry in the Effective Field Theory of Inflation

    SciTech Connect

    Behbahani, Siavosh R.; Dymarsky, Anatoly; Mirbabayi, Mehrdad; Senatore, Leonardo; /Stanford U., Phys. Dept. /KIPAC, Menlo Park

    2012-06-06

    We apply the Effective Field Theory of Inflation to study the case where the continuous shift symmetry of the Goldstone boson {pi} is softly broken to a discrete subgroup. This case includes and generalizes recently proposed String Theory inspired models of Inflation based on Axion Monodromy. The models we study have the property that the 2-point function oscillates as a function of the wavenumber, leading to oscillations in the CMB power spectrum. The non-linear realization of time diffeomorphisms induces some self-interactions for the Goldstone boson that lead to a peculiar non-Gaussianity whose shape oscillates as a function of the wavenumber. We find that in the regime of validity of the effective theory, the oscillatory signal contained in the n-point correlation functions, with n > 2, is smaller than the one contained in the 2-point function, implying that the signature of oscillations, if ever detected, will be easier to find first in the 2-point function, and only then in the higher order correlation functions. Still the signal contained in higher-order correlation functions, that we study here in generality, could be detected at a subleading level, providing a very compelling consistency check for an approximate discrete shift symmetry being realized during inflation.

  2. Predictivity of models with spontaneously broken non-Abelian discrete flavor symmetries

    NASA Astrophysics Data System (ADS)

    Chen, Mu-Chun; Fallbacher, Maximilian; Omura, Yuji; Ratz, Michael; Staudt, Christian

    2013-08-01

    In a class of supersymmetric flavor models predictions are based on residual symmetries of some subsectors of the theory such as those of the charged leptons and neutrinos. However, the vacuum expectation values of the so-called flavon fields generally modify the Kähler potential of the setting, thus changing the predictions. We derive simple analytic formulae that allow us to understand the impact of these corrections on the predictions for the masses and mixing parameters. Furthermore, we discuss the effects on the vacuum alignment and on flavor changing neutral currents. Our results can also be applied to non-supersymmetric flavor models.

  3. Optically isotropic responses induced by discrete rotational symmetry of nanoparticle clusters

    NASA Astrophysics Data System (ADS)

    Hopkins, Ben; Liu, Wei; Miroshnichenko, Andrey E.; Kivshar, Yuri S.

    2013-06-01

    Fostered by the recent progress of the fields of plasmonics and metamaterials, the seminal topic of light scattering by clusters of nanoparticles is attracting enormous renewed interest gaining more attention than ever before. Related studies have not only found various new applications in different branches of physics and chemistry, but also spread rapidly into other fields such as biology and medicine. Despite the significant achievements, there still exists unsolved but vitally important challenges of how to obtain robust polarisation-invariant responses of different types of scattering systems. In this paper, we demonstrate polarisation-independent responses of any scattering system with a rotational symmetry with respect to an axis parallel to the propagation direction of the incident wave. We demonstrate that the optical responses such as extinction, scattering, and absorption, can be made independent of the polarisation of the incident wave for all wavelengths. Such polarisation-independent responses are proven to be a robust and generic feature that is purely due to the rotational symmetry of the whole structure. We anticipate our finding will play a significant role in various applications involving light scattering such as sensing, nanoantennas, optical switches, and photovoltaic devices.

  4. Quark and leptonic mixing patterns from the breakdown of a common discrete flavor symmetry

    NASA Astrophysics Data System (ADS)

    Holthausen, Martin; Lim, Kher Sham

    2013-08-01

    Assuming the Majorana nature of neutrinos, we recently performed a scan of leptonic mixing patterns derived from finite discrete groups of order less than 1536. Here we show that the 3 groups identified there as giving predictions close to experiment also contain another class of Abelian subgroups that predict an interesting leading-order quark mixing pattern where only the Cabibbo angle is generated at leading order. We further broaden our study by assuming that neutrinos are Dirac particles and find 4 groups of order up to 200 that can predict acceptable quark and leptonic mixing angles. Since large flavor groups allow for a multitude of leading-order mixing patterns, we define a measure that is suitable to compare the predictivity of a given flavor group, taking this fact into account. We give the result of this measure for a wide range of discrete flavor groups and identify the group (Z18×Z6)⋊S3 as being most predictive in the sense of this measure. We further discuss alternative measures and their implications.

  5. Discrete-State and Continuous Models of Recognition Memory: Testing Core Properties under Minimal Assumptions

    ERIC Educational Resources Information Center

    Kellen, David; Klauer, Karl Christoph

    2014-01-01

    A classic discussion in the recognition-memory literature concerns the question of whether recognition judgments are better described by continuous or discrete processes. These two hypotheses are instantiated by the signal detection theory model (SDT) and the 2-high-threshold model, respectively. Their comparison has almost invariably relied on…

  6. Energy Minimization of Discrete Protein Titration State Models Using Graph Theory.

    PubMed

    Purvine, Emilie; Monson, Kyle; Jurrus, Elizabeth; Star, Keith; Baker, Nathan A

    2016-08-25

    There are several applications in computational biophysics that require the optimization of discrete interacting states, for example, amino acid titration states, ligand oxidation states, or discrete rotamer angles. Such optimization can be very time-consuming as it scales exponentially in the number of sites to be optimized. In this paper, we describe a new polynomial time algorithm for optimization of discrete states in macromolecular systems. This algorithm was adapted from image processing and uses techniques from discrete mathematics and graph theory to restate the optimization problem in terms of "maximum flow-minimum cut" graph analysis. The interaction energy graph, a graph in which vertices (amino acids) and edges (interactions) are weighted with their respective energies, is transformed into a flow network in which the value of the minimum cut in the network equals the minimum free energy of the protein and the cut itself encodes the state that achieves the minimum free energy. Because of its deterministic nature and polynomial time performance, this algorithm has the potential to allow for the ionization state of larger proteins to be discovered.

  7. Discrete artificial bee colony algorithm for lot-streaming flowshop with total flowtime minimization

    NASA Astrophysics Data System (ADS)

    Sang, Hongyan; Gao, Liang; Pan, Quanke

    2012-09-01

    Unlike a traditional flowshop problem where a job is assumed to be indivisible, in the lot-streaming flowshop problem, a job is allowed to overlap its operations between successive machines by splitting it into a number of smaller sub-lots and moving the completed portion of the sub-lots to downstream machine. In this way, the production is accelerated. This paper presents a discrete artificial bee colony (DABC) algorithm for a lot-streaming flowshop scheduling problem with total flowtime criterion. Unlike the basic ABC algorithm, the proposed DABC algorithm represents a solution as a discrete job permutation. An efficient initialization scheme based on the extended Nawaz-Enscore-Ham heuristic is utilized to produce an initial population with a certain level of quality and diversity. Employed and onlooker bees generate new solutions in their neighborhood, whereas scout bees generate new solutions by performing insert operator and swap operator to the best solution found so far. Moreover, a simple but effective local search is embedded in the algorithm to enhance local exploitation capability. A comparative experiment is carried out with the existing discrete particle swarm optimization, hybrid genetic algorithm, threshold accepting, simulated annealing and ant colony optimization algorithms based on a total of 160 randomly generated instances. The experimental results show that the proposed DABC algorithm is quite effective for the lot-streaming flowshop with total flowtime criterion in terms of searching quality, robustness and effectiveness. This research provides the references to the optimization research on lot-streaming flowshop.

  8. Near horizon symmetries of the non-extremal black hole solutions of Generalized Minimal Massive Gravity

    NASA Astrophysics Data System (ADS)

    Setare, M. R.; Adami, H.

    2016-09-01

    We consider the Generalized Minimal Massive Gravity (GMMG) model in the first order formalism. We show that all the solutions of the Einstein gravity with negative cosmological constants solve the equations of motion of considered model. Then we find an expression for the off-shell conserved charges of this model. By considering the near horizon geometry of a three dimensional black hole in the Gaussian null coordinates, we find near horizon conserved charges and their algebra. The obtained algebra is centrally extended. By writing the algebra of conserved charges in terms of Fourier modes and considering the BTZ black hole solution as an example, one can see that the charge associated with rotations along Y0 coincides exactly with the angular momentum, and the charge associated with time translations T0 is the product of the black hole entropy and its temperature. As we expect, in the limit when the GMMG tends to the Einstein gravity, all the results we obtain in this paper reduce to the results of the paper [1].

  9. Discrete symmetries and the propagator approach to coupled fermions in Quantum Field Theory. Generalities: The case of a single fermion-antifermion pair

    SciTech Connect

    Duret, Q.

    2010-10-15

    Starting from Wigner's symmetry representation theorem, we give a general account of discrete symmetries (parity P, charge conjugation C, time-reversal T), focusing on fermions in Quantum Field Theory. We provide the rules of transformation of Weyl spinors, both at the classical level (grassmanian wave functions) and quantum level (operators). Making use of Wightman's definition of invariance, we outline ambiguities linked to the notion of classical fermionic Lagrangian. We then present the general constraints cast by these transformations and their products on the propagator of the simplest among coupled fermionic system, the one made with one fermion and its antifermion. Last, we put in correspondence the propagation of C eigenstates (Majorana fermions) and the criteria cast on their propagator by C and CP invariance.

  10. A Parallel Discrete Surface Integral Equation Method For the Analysis of Three-Dimensional Microwave Circuit Devices with Planar Symmetry

    NASA Technical Reports Server (NTRS)

    Gedney, Stephen D.; Lansing, Faiza

    1994-01-01

    It has been found that the Discrete Integral Equation (DSI)technique is a highly effective technique for the analysis of microwave circuits and devices [1,2]. The DSI is much more robust than the traditional Finite Difference Time Domain (FDTD) method in a number of ways.

  11. Model for particle masses, flavor mixing, and {ital CP} violation, based on spontaneously broken discrete chiral symmetry as the origin of families

    SciTech Connect

    Adler, S.L.

    1999-01-01

    We construct extensions of the standard model based on the hypothesis that Higgs bosons also exhibit a family structure and that the flavor weak eigenstates in the three families are distinguished by a discrete Z{sub 6} chiral symmetry that is spontaneously broken by the Higgs sector. We study in detail at the tree level models with three Higgs doublets and with six Higgs doublets comprising two weakly coupled sets of three. In a leading approximation of S{sub 3} cyclic permutation symmetry the three-Higgs-doublet model gives a {open_quotes}democratic{close_quotes} mass matrix of rank 1, while the six-Higgs-doublet model gives either a rank-1 mass matrix or, in the case when it spontaneously violates {ital CP}, a rank-2 mass matrix corresponding to nonzero second family masses. In both models, the CKM matrix is exactly unity in the leading approximation. Allowing small explicit violations of cyclic permutation symmetry generates small first family masses in the six-Higgs-doublet model, and first and second family masses in the three-Higgs-doublet model, and gives a nontrivial CKM matrix in which the mixings of the first and second family quarks are naturally larger than mixings involving the third family. Complete numerical fits are given for both models, flavor-changing neutral current constraints are discussed in detail, and the issues of unification of couplings and neutrino masses are addressed. On a technical level, our analysis uses the theory of circulant and retrocirculant matrices, the relevant parts of which are reviewed. {copyright} {ital 1998} {ital The American Physical Society}

  12. Symmetry structure in discrete models of biochemical systems: natural subsystems and the weak control hierarchy in a new model of computation driven by interactions.

    PubMed

    Nehaniv, Chrystopher L; Rhodes, John; Egri-Nagy, Attila; Dini, Paolo; Morris, Eric Rothstein; Horváth, Gábor; Karimi, Fariba; Schreckling, Daniel; Schilstra, Maria J

    2015-07-28

    Interaction computing is inspired by the observation that cell metabolic/regulatory systems construct order dynamically, through constrained interactions between their components and based on a wide range of possible inputs and environmental conditions. The goals of this work are to (i) identify and understand mathematically the natural subsystems and hierarchical relations in natural systems enabling this and (ii) use the resulting insights to define a new model of computation based on interactions that is useful for both biology and computation. The dynamical characteristics of the cellular pathways studied in systems biology relate, mathematically, to the computational characteristics of automata derived from them, and their internal symmetry structures to computational power. Finite discrete automata models of biological systems such as the lac operon, the Krebs cycle and p53-mdm2 genetic regulation constructed from systems biology models have canonically associated algebraic structures (their transformation semigroups). These contain permutation groups (local substructures exhibiting symmetry) that correspond to 'pools of reversibility'. These natural subsystems are related to one another in a hierarchical manner by the notion of 'weak control'. We present natural subsystems arising from several biological examples and their weak control hierarchies in detail. Finite simple non-Abelian groups are found in biological examples and can be harnessed to realize finitary universal computation. This allows ensembles of cells to achieve any desired finitary computational transformation, depending on external inputs, via suitably constrained interactions. Based on this, interaction machines that grow and change their structure recursively are introduced and applied, providing a natural model of computation driven by interactions. PMID:26078349

  13. Neutrinos and flavor symmetries

    SciTech Connect

    Tanimoto, Morimitsu

    2015-07-15

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  14. Neutrinos and flavor symmetries

    NASA Astrophysics Data System (ADS)

    Tanimoto, Morimitsu

    2015-07-01

    We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ13 and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ13 is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.

  15. Reovirus-mediated induction of ADAR1 (p150) minimally alters RNA editing patterns in discrete brain regions

    PubMed Central

    Hood, Jennifer L.; Morabito, Michael V.; Martinez, Charles R.; Gilbert, James A.; Ferrick, Elizabeth A.; Ayers, Gregory D.; Chappell, James D.; Dermody, Terence S.; Emeson, Ronald B.

    2014-01-01

    Transcripts encoding ADAR1, a double-stranded, RNA-specific adenosine deaminase involved in the adenosine-to-inosine (A-to-I) editing of mammalian RNAs, can be alternatively spliced to produce an interferon-inducible protein isoform (p150) that is up-regulated in both cell culture and in vivo model systems in response to pathogen or interferon stimulation. In contrast to other tissues, p150 is expressed at extremely low levels in the brain and it is unclear what role, if any, this isoform may play in the innate immune response of the central nervous system (CNS) or whether the extent of editing for RNA substrates critical for CNS function is affected by its induction. To investigate the expression of ADAR1 isoforms in response to viral infection and subsequent alterations in A-to-I editing profiles for endogenous ADAR targets, we used a neuro-tropic strain of reovirus to infect neonatal mice and quantify A-to-I editing in discrete brain regions using a multiplexed, high-throughput sequencing strategy. While intracranial injection of reovirus resulted in a widespread increase in the expression of ADAR1 (p150) in multiple brain regions and peripheral organs, significant changes in site-specific A-to-I conversion were quite limited, suggesting that steady-state levels of p150 expression are not a primary determinant for modulating the extent of editing for numerous ADAR targets in vivo. PMID:24906008

  16. Classification of topological insulators and superconductors in the presence of reflection symmetry

    NASA Astrophysics Data System (ADS)

    Chiu, Ching-Kai; Yao, Hong; Ryu, Shinsei

    2013-08-01

    We discuss a topological classification of insulators and superconductors in the presence of both (nonspatial) discrete symmetries in the Altland-Zirnbauer classification and spatial reflection symmetry in any spatial dimensions. By using the structure of bulk Dirac Hamiltonians of minimal matrix dimensions and explicit constructions of topological invariants, we provide the complete classification, which still has the same dimensional periodicities with the original Altland-Zirnbauer classification. The classification of reflection-symmetry-protected topological insulators and superconductors depends crucially on the way reflection symmetry operation is realized. When a boundary is introduced, which is reflected into itself, these nontrivial topological insulators and superconductors support gapless modes localized at the boundary.

  17. Application of sliding-window discretization and minimization of stochastic complexity for the analysis of fAFLP genotyping fingerprint patterns of Vibrionaceae.

    PubMed

    Dawyndt, Peter; Thompson, Fabiano L; Austin, Brian; Swings, Jean; Koski, Timo; Gyllenberg, Mats

    2005-01-01

    Minimization of stochastic complexity (SC) was used as a method for classification of genotypic fingerprints. The method was applied to fluorescent amplified fragment length polymorphism (fAFLP) fingerprint patterns of 507 Vibrionaceae representatives. As the current BinClass implementation of the optimization algorithm for classification only works on binary vectors, the original fingerprints were discretized in a preliminary step using the sliding-window band-matching method, in order to maximally preserve the information content of the original band patterns. The novel classification generated using the BinClass software package was subjected to an in-depth comparison with a hierarchical classification of the same dataset, in order to acknowledge the applicability of the new classification method as a more objective algorithm for the classification of genotyping fingerprint patterns. Recent DNA-DNA hybridization and 16S rRNA gene sequence experiments proved that the classification based on SC-minimization forms separate clusters that contain the fAFLP patterns for all representatives of the species Enterovibrio norvegicus, Vibrio fortis, Vibrio diazotrophicus or Vibrio campbellii, while previous hierarchical cluster analysis had suggested more heterogeneity within the fAFLP patterns by splitting the representatives of the above-mentioned species into multiple distant clusters. As a result, the new classification methodology has highlighted some previously unseen relationships within the biodiversity of the family Vibrionaceae.

  18. Dynamical flavor origin of ZN symmetries

    NASA Astrophysics Data System (ADS)

    Sierra, D. Aristizabal; Dhen, Mikaël; Fong, Chee Sheng; Vicente, Avelino

    2015-05-01

    Discrete Abelian symmetries (ZN ) are a common "artifact" of beyond the standard model physics models. They provide different avenues for constructing consistent scenarios for lepton and quark mixing patterns, radiative neutrino mass generation as well as dark matter stabilization. We argue that these symmetries can arise from the spontaneous breaking of the Abelian U (1 ) factors contained in the global flavor symmetry transformations of the gauge-invariant kinetic Lagrangian. This will be the case provided the ultraviolet completion responsible for the Yukawa structure involves scalar fields carrying nontrivial U (1 ) charges. Guided by minimality criteria, we demonstrate the viability of this approach with two examples: first, we derive the "scotogenic" model Lagrangian, and second, we construct a setup where the spontaneous symmetry-breaking pattern leads to a Z3 symmetry which enables dark matter stability as well as neutrino mass generation at the two-loop order. This generic approach can be used to derive many other models, with residual ZN or ZN1×⋯×ZNk symmetries, establishing an intriguing link between flavor symmetries, neutrino masses and dark matter.

  19. SO(10) models with flavour symmetries: classification and examples

    NASA Astrophysics Data System (ADS)

    Ivanov, I. P.; Lavoura, L.

    2016-10-01

    Renormalizable SO(10) grand unified theory (GUT) models equipped with flavour symmetries are a popular framework for addressing the flavour puzzle. Usually, the flavour symmetry group has been an ad hoc choice, and no general arguments limiting this choice were known. In this paper, we establish the full list of flavour symmetry groups which may be enforced, without producing any further accidental symmetry, on the Yukawa-coupling matrices of an SO(10) GUT with arbitrary numbers of scalar multiplets in the {{10}}, \\bar{{{126}}}, and {{120}} representations of SO(10). For each of the possible discrete non-Abelian symmetry groups, we present examples of minimal models which do not run into obvious contradiction with the phenomenological fermion masses and mixings.

  20. Symmetries in Physics

    NASA Astrophysics Data System (ADS)

    Brading, Katherine; Castellani, Elena

    2003-12-01

    Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.

  1. Symmetries in Physics

    NASA Astrophysics Data System (ADS)

    Brading, Katherine; Castellani, Elena

    2010-01-01

    Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.

  2. Symmetries in Physics

    NASA Astrophysics Data System (ADS)

    Castaños, Octavio

    2010-09-01

    The purpose of this course is to study the evolution of the symmetry concept and establish its influence in the knowledge of the fundamental laws of nature. Physicist have been using the symmetry concept in two ways: to solve problems and to search for new understanding of the world around us. In quantum physics symmetry plays a key role in gaining an understanding of the physical laws governing the behavior of matter and field systems. It provides, generally, a shortcut based on geometry for discovering the secrets of the Universe. Because it is believed that the laws of physics are invariant under discrete and continuous transformation operations of the space and time, there are continuous symmetries, for example, energy and momentum together with discrete ones corresponding to charge, parity and time reversal operations.

  3. Gravitational waves from domain walls in the next-to-minimal supersymmetric standard model

    SciTech Connect

    Kadota, Kenji; Kawasaki, Masahiro; Saikawa, Ken’ichi

    2015-10-16

    The next-to-minimal supersymmetric standard model predicts the formation of domain walls due to the spontaneous breaking of the discrete Z{sub 3}-symmetry at the electroweak phase transition, and they collapse before the epoch of big bang nucleosynthesis if there exists a small bias term in the potential which explicitly breaks the discrete symmetry. Signatures of gravitational waves produced from these unstable domain walls are estimated and their parameter dependence is investigated. It is shown that the amplitude of gravitational waves becomes generically large in the decoupling limit, and that their frequency is low enough to be probed in future pulsar timing observations.

  4. Unification and Dark Matter in a Minimal Scalar Extension of the Standard Model

    SciTech Connect

    Lisanti, Mariangela; Wacker, Jay G.

    2007-04-25

    The six Higgs doublet model is a minimal extension of the Standard Model (SM) that addresses dark matter and gauge coupling unification. Another Higgs doublet in the 5 representation of a discrete symmetry group, such as S{sub 6}, is added to the SM. The lightest components of the 5-Higgs are neutral, stable and serve as dark matter so long as the discrete symmetry is not broken. Direct and indirect detection signals, as well as collider signatures are discussed. The five-fold multiplicity of the dark matter decreases its mass and typically helps make the dark matter more visible in upcoming experiments.

  5. A minimal model of neutrino flavor

    NASA Astrophysics Data System (ADS)

    Luhn, Christoph; Parattu, Krishna Mohan; Wingerter, Akın

    2012-12-01

    Models of neutrino mass which attempt to describe the observed lepton mixing pattern are typically based on discrete family symmetries with a non-Abelian and one or more Abelian factors. The latter so-called shaping symmetries are imposed in order to yield a realistic phenomenology by forbidding unwanted operators. Here we propose a supersymmetric model of neutrino flavor which is based on the group T 7 and does not require extra {Z} N or U(1) factors in the Yukawa sector, which makes it the smallest realistic family symmetry that has been considered so far. At leading order, the model predicts tribimaximal mixing which arises completely accidentally from a combination of the T 7 Clebsch-Gordan coefficients and suitable flavon alignments. Next-to-leading order (NLO) operators break the simple tribimaximal structure and render the model compatible with the recent results of the Daya Bay and Reno collaborations which have measured a reactor angle of around 9°. Problematic NLO deviations of the other two mixing angles can be controlled in an ultraviolet completion of the model. The vacuum alignment mechanism that we use necessitates the introduction of a hidden flavon sector that transforms under a {Z} 6 symmetry, thereby spoiling the minimality of our model whose flavor symmetry is then T 7 × {Z} 6.

  6. Integrable discrete PT symmetric model.

    PubMed

    Ablowitz, Mark J; Musslimani, Ziad H

    2014-09-01

    An exactly solvable discrete PT invariant nonlinear Schrödinger-like model is introduced. It is an integrable Hamiltonian system that exhibits a nontrivial nonlinear PT symmetry. A discrete one-soliton solution is constructed using a left-right Riemann-Hilbert formulation. It is shown that this pure soliton exhibits unique features such as power oscillations and singularity formation. The proposed model can be viewed as a discretization of a recently obtained integrable nonlocal nonlinear Schrödinger equation.

  7. Givental Graphs and Inversion Symmetry

    NASA Astrophysics Data System (ADS)

    Dunin-Barkowski, Petr; Shadrin, Sergey; Spitz, Loek

    2013-05-01

    Inversion symmetry is a very non-trivial discrete symmetry of Frobenius manifolds. It was obtained by Dubrovin from one of the elementary Schlesinger transformations of a special ODE associated to a Frobenius manifold. In this paper, we review the Givental group action on Frobenius manifolds in terms of Feynman graphs and obtain an interpretation of the inversion symmetry in terms of the action of the Givental group. We also consider the implication of this interpretation of the inversion symmetry for the Schlesinger transformations and for the Hamiltonians of the associated principle hierarchy.

  8. Leptogenesis and residual CP symmetry

    NASA Astrophysics Data System (ADS)

    Chen, Peng; Ding, Gui-Jun; King, Stephen F.

    2016-03-01

    We discuss flavour dependent leptogenesis in the framework of lepton flavour models based on discrete flavour and CP symmetries applied to the type-I seesaw model. Working in the flavour basis, we analyse the case of two general residual CP symmetries in the neutrino sector, which corresponds to all possible semi-direct models based on a preserved Z 2 in the neutrino sector, together with a CP symmetry, which constrains the PMNS matrix up to a single free parameter which may be fixed by the reactor angle. We systematically study and classify this case for all possible residual CP symmetries, and show that the R-matrix is tightly constrained up to a single free parameter, with only certain forms being consistent with successful leptogenesis, leading to possible connections between leptogenesis and PMNS parameters. The formalism is completely general in the sense that the two residual CP symmetries could result from any high energy discrete flavour theory which respects any CP symmetry. As a simple example, we apply the formalism to a high energy S 4 flavour symmetry with a generalized CP symmetry, broken to two residual CP symmetries in the neutrino sector, recovering familiar results for PMNS predictions, together with new results for flavour dependent leptogenesis.

  9. Flavor symmetry based MSSM: Theoretical models and phenomenological analysis

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; Gogoladze, Ilia; Raza, Shabbar; Shafi, Qaisar

    2014-09-01

    We present a class of supersymmetric models in which symmetry considerations alone dictate the form of the soft SUSY breaking Lagrangian. We develop a class of minimal models, denoted as sMSSM—for flavor symmetry-based minimal supersymmetric standard model—that respect a grand unified symmetry such as SO(10) and a non-Abelian flavor symmetry H which suppresses SUSY-induced flavor violation. Explicit examples are constructed with the flavor symmetry being gauged SU(2)H and SO(3)H with the three families transforming as 2+1 and 3 representations, respectively. A simple solution is found in the case of SU(2)H for suppressing the flavor violating D-terms based on an exchange symmetry. Explicit models based on SO(3)H without the D-term problem are developed. In addition, models based on discrete non-Abelian flavor groups are presented which are automatically free from D-term issues. The permutation group S3 with a 2+1 family assignment, as well as the tetrahedral group A4 with a 3 assignment are studied. In all cases, a simple solution to the SUSY CP problem is found, based on spontaneous CP violation leading to a complex quark mixing matrix. We develop the phenomenology of the resulting sMSSM, which is controlled by seven soft SUSY breaking parameters for both the 2+1 assignment and the 3 assignment of fermion families. These models are special cases of the phenomenological MSSM (pMSSM), but with symmetry restrictions. We discuss the parameter space of sMSSM compatible with LHC searches, B-physics constraints and dark matter relic abundance. Fine-tuning in these models is relatively mild, since all SUSY particles can have masses below about 3 TeV.

  10. A Twin Higgs Model from Left-Right Symmetry

    SciTech Connect

    Chacko, Z.; Goh, Hock-Seng; Harnik, Roni; /SLAC /Stanford U., Phys. Dept.

    2005-12-14

    We present twin Higgs models based on the extension of the Standard Model to left-right symmetry that protect the weak scale against radiative corrections up to scales of order 5 TeV. In the ultraviolet the Higgs sector of these theories respects an approximate global symmetry, in addition to the discrete parity symmetry characteristic of left-right symmetric models. The Standard Model Higgs field emerges as the pseudo-Goldstone boson associated with the breaking of the global symmetry. The parity symmetry tightly constrains the form of radiative corrections to the Higgs potential, allowing natural electroweak breaking. The minimal model predicts a rich spectrum of exotic particles that will be accessible to upcoming experiments, and which are necessary for the cancellation of one-loop quadratic divergences. These include right-handed gauge bosons with masses not to exceed a few TeV and a pair of vector-like quarks with masses of order several hundred GeV.

  11. Lectures on Yangian symmetry

    NASA Astrophysics Data System (ADS)

    Loebbert, Florian

    2016-08-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang–Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang–Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross–Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang–Mills theory in four dimensions.

  12. Lectures on Yangian symmetry

    NASA Astrophysics Data System (ADS)

    Loebbert, Florian

    2016-08-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang-Mills theory in four dimensions.

  13. Noether symmetries and duality transformations in cosmology

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos; Capozziello, Salvatore

    2016-09-01

    We discuss the relation between Noether (point) symmetries and discrete symmetries for a class of minisuperspace cosmological models. We show that when a Noether symmetry exists for the gravitational Lagrangian, then there exists a coordinate system in which a reversal symmetry exists. Moreover, as far as concerns, the scale-factor duality symmetry of the dilaton field, we show that it is related to the existence of a Noether symmetry for the field equations, and the reversal symmetry in the normal coordinates of the symmetry vector becomes scale-factor duality symmetry in the original coordinates. In particular, the same point symmetry as also the same reversal symmetry exists for the Brans-Dicke scalar field with linear potential while now the discrete symmetry in the original coordinates of the system depends on the Brans-Dicke parameter and it is a scale-factor duality when ωBD = 1. Furthermore, in the context of the O’Hanlon theory for f(R)-gravity, it is possible to show how a duality transformation in the minisuperspace can be used to relate different gravitational models.

  14. Symmetry matters.

    PubMed

    Moubayidin, Laila; Østergaard, Lars

    2015-09-01

    985 I. 985 II. 986 III. 987 IV. 988 V. 989 989 References 989 SUMMARY: The development of multicellular organisms depends on correct establishment of symmetry both at the whole-body scale and within individual tissues and organs. Setting up planes of symmetry must rely on communication between cells that are located at a distance from each other within the organism, presumably via mobile morphogenic signals. Although symmetry in nature has fascinated scientists for centuries, it is only now that molecular data to unravel mechanisms of symmetry establishment are beginning to emerge. As an example we describe the genetic and hormonal interactions leading to an unusual bilateral-to-radial symmetry transition of an organ in order to promote reproduction.

  15. S3 model for lepton mass matrices with nearly minimal texture

    NASA Astrophysics Data System (ADS)

    Dias, A. G.; Machado, A. C. B.; Nishi, C. C.

    2012-11-01

    We propose a simple extension of the electroweak standard model based on the discrete S3 symmetry that is capable of realizing a nearly minimal Fritzsch-type texture for the Dirac mass matrices of both charged leptons and neutrinos. This is achieved with the aid of additional Z5 and Z3 symmetries, one of which can be embedded in U(1)B-L. Five complex scalar singlet fields are introduced in addition to the standard model with right-handed neutrinos. Although more general, the modified texture of the model retains the successful features of the minimal texture without fine-tuning; namely, it accommodates the masses and mixing of the leptonic sector and relates the emergence of large leptonic mixing angles with the seesaw mechanism. For large deviations of the minimal texture, both quasidegenerate spectrum or inverted hierarchy are allowed for neutrino masses.

  16. Geometrical symmetries of nuclear systems: {{ D }}_{3h} and {{ T }}_{d} symmetries in light nuclei

    NASA Astrophysics Data System (ADS)

    Bijker, Roelof

    2016-07-01

    The role of discrete (or point-group) symmetries in α-cluster nuclei is discussed in the framework of the algebraic cluster model which describes the relative motion of the α-particles. Particular attention is paid to the discrete symmetry of the geometric arrangement of the α-particles, and the consequences for the structure of the corresponding rotational bands. The method is applied to study cluster states in the nuclei 12C and 16O. The observed level sequences can be understood in a simple way as a consequence of the underlying discrete symmetry that characterizes the geometrical configuration of the α-particles, i.e. an equilateral triangle with {{ D }}3h symmetry for 12C, and a tetrahedron with {{ T }}d symmetry for 16O. The structure of rotational bands provides a fingerprint of the underlying geometrical configuration of α-particles.

  17. Trace formula for broken symmetry

    SciTech Connect

    Creagh, S.C.

    1996-05-01

    We derive a trace formula for systems that exhibit an approximate continuous symmetry. It interpolates between the sum over continuous families of periodic orbits that holds in the case of exact continuous symmetry, and the discrete sum over isolated orbits that holds when the symmetry is completely broken. It is based on a simple perturbation expansion of the classical dynamics, centered around the case of exact symmetry, and gives an approximation to the usual Gutzwiller formula when the perturbation is large. We illustrate the computation with some 2-dimensional examples: the deformation of the circular billiard into an ellipse, and anisotropic and anharmonic perturbations of a harmonic oscillator. Copyright {copyright} 1996 Academic Press, Inc.

  18. Flavored dark matter beyond Minimal Flavor Violation

    DOE PAGES

    Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms asmore » triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator Φ with a coupling λ. We identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of λ turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.« less

  19. Flavored dark matter beyond Minimal Flavor Violation

    SciTech Connect

    Agrawal, Prateek; Blanke, Monika; Gemmler, Katrin

    2014-10-13

    We study the interplay of flavor and dark matter phenomenology for models of flavored dark matter interacting with quarks. We allow an arbitrary flavor structure in the coupling of dark matter with quarks. This coupling is assumed to be the only new source of violation of the Standard Model flavor symmetry extended by a U(3) χ associated with the dark matter. We call this ansatz Dark Minimal Flavor Violation (DMFV) and highlight its various implications, including an unbroken discrete symmetry that can stabilize the dark matter. As an illustration we study a Dirac fermionic dark matter χ which transforms as triplet under U(3) χ , and is a singlet under the Standard Model. The dark matter couples to right-handed down-type quarks via a colored scalar mediator Φ with a coupling λ. We identify a number of “flavor-safe” scenarios for the structure of λ which are beyond Minimal Flavor Violation. Also, for dark matter and collider phenomenology we focus on the well-motivated case of b-flavored dark matter. Furthermore, the combined flavor and dark matter constraints on the parameter space of λ turn out to be interesting intersections of the individual ones. LHC constraints on simplified models of squarks and sbottoms can be adapted to our case, and monojet searches can be relevant if the spectrum is compressed.

  20. A K3 sigma model with : symmetry

    NASA Astrophysics Data System (ADS)

    Gaberdiel, Matthias R.; Taormina, Anne; Volpato, Roberto; Wendland, Katrin

    2014-02-01

    The K3 sigma model based on the -orbifold of the D 4-torus theory is studied. It is shown that it has an equivalent description in terms of twelve free Majorana fermions, or as a rational conformal field theory based on the affine algebra . By combining these different viewpoints we show that the = (4 , 4) preserving symmetries of this theory are described by the discrete symmetry group : . This model therefore accounts for one of the largest maximal symmetry groups of K3 sigma models. The symmetry group involves also generators that, from the orbifold point of view, map untwisted and twisted sector states into one another.

  1. On the symmetries of integrability

    SciTech Connect

    Bellon, M.; Maillard, J.M.; Viallet, C. )

    1992-06-01

    In this paper the authors show that the Yang-Baxter equations for two-dimensional models admit as a group of symmetry the infinite discrete group A{sub 2}{sup (1)}. The existence of this symmetry explains the presence of a spectral parameter in the solutions of the equations. The authors show that similarly, for three-dimensional vertex models and the associated tetrahedron equations, there also exists an infinite discrete group of symmetry. Although generalizing naturally the previous one, it is a much bigger hyperbolic Coxeter group. The authors indicate how this symmetry can help to resolve the Yang-Baxter equations and their higher-dimensional generalizations and initiate the study of three-dimensional vertex models. These symmetries are naturally represented as birational projective transformations. They may preserve non-trivial algebraic varieties, and lead to proper parametrizations of the models, be they integrable or not. The authors mention the relation existing between spin models and the Bose-Messner algebras of algebraic combinatorics. The authors' results also yield the generalization of the condition q{sup n} = 1 so often mentioned in the theory of quantum groups, when no q parameter is available.

  2. Inherited Symmetry

    ERIC Educational Resources Information Center

    Attanucci, Frank J.; Losse, John

    2008-01-01

    In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…

  3. BOOK REVIEW: Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Ryder, L. H.

    2005-11-01

    One of the most fruitful and enduring advances in theoretical physics during the last half century has been the development of the role played by symmetries. One needs only to consider SU(3) and the classification of elementary particles, the Yang Mills enlargement of Maxwell's electrodynamics to the symmetry group SU(2), and indeed the tremendous activity surrounding the discovery of parity violation in the weak interactions in the late 1950s. This last example is one of a broken symmetry, though the symmetry in question is a discrete one. It was clear to Gell-Mann, who first clarified the role of SU(3) in particle physics, that this symmetry was not exact. If it had been, it would have been much easier to discover; for example, the proton, neutron, Σ, Λ and Ξ particles would all have had the same mass. For many years the SU(3) symmetry breaking was assigned a mathematical form, but the importance of this formulation fell away when the quark model began to be taken seriously; the reason the SU(3) symmetry was not exact was simply that the (three, in those days) quarks had different masses. At the same time, and in a different context, symmetry breaking of a different type was being investigated. This went by the name of `spontaneous symmetry breaking' and its characteristic was that the ground state of a given system was not invariant under the symmetry transformation, though the interactions (the Hamiltonian, in effect) was. A classic example is ferromagnetism. In a ferromagnet the atomic spins are aligned in one direction only—this is the ground state of the system. It is clearly not invariant under a rotation, for that would change the ground state into a (similar but) different one, with the spins aligned in a different direction; this is the phenomenon of a degenerate vacuum. The contribution of the spin interaction, s1.s2, to the Hamiltonian, however, is actually invariant under rotations. As Coleman remarked, a little man living in a ferromagnet would

  4. Time-reversal symmetry violation in several Lepton-Flavor-Violating processes

    NASA Astrophysics Data System (ADS)

    Vasquez, Juan Carlos

    2015-09-01

    We compute a T-odd triple vector correlation for the μ → eγ decay and the μ → e conversion process, finding simple results in terms of the CP violating phases of the effective Hamiltonians. Then we focus on the minimal Left-Right symmetric extension of the Standard Model, which can lead to an appreciable correlation. We show that under rather general assumptions, this correlation can be used to discriminate between Parity or Charge-conjugation as the discrete Left-Right symmetry.

  5. Broken Symmetry

    ScienceCinema

    None

    2016-07-12

    - Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not “renormalizable”. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged “vector” particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of

  6. Broken Symmetry

    SciTech Connect

    2011-02-24

    - Physics, as we know it, attempts to interpret the diverse natural phenomena as particular manifestations of general laws. This vision of a world ruled by general testable laws is relatively recent in the history of mankind. Basically it was initiated by the Galilean inertial principle. The subsequent rapid development of large-scale physics is certainly tributary to the fact that gravitational and electromagnetic forces are long-range and hence can be perceived directly without the mediation of highly sophisticated technical devices. - The discovery of subatomic structures and of the concomitant weak and strong short-range forces raised the question of how to cope with short-range forces in relativistic quantum field theory. The Fermi theory of weak interactions, formulated in terms of point-like current-current interaction, was well-defined in lowest order perturbation theory and accounted for existing experimental data.However, it was inconsistent in higher orders because of uncontrollable divergent quantum fluctuations. In technical terms, in contradistinction to quantum electrodynamics, the Fermi theorywas not “renormalizable”. This difficulty could not be solved by smoothing the point-like interaction by a massive, and therefore short-range, charged “vector” particle exchange: theories with massive charged vector bosons were not renormalizable either. In the early nineteen sixties, there seemed to be insuperable obstacles to formulating a consistent theory with short-range forces mediated by massive vectors. - The breakthrough came from the notion of spontaneous symmetry breaking which arose in the study of phase transitions and was introduced in field theory by Nambu in 1960. - Ferromagnets illustrate the notion in phase transitions. Although no direction is dynamically preferred, the magnetization selects a global orientation. This is a spontaneous broken symmetry(SBS)of rotational invariance. Such continuous SBS imply the existence of

  7. Continuous symmetry measures for complex symmetry group.

    PubMed

    Dryzun, Chaim

    2014-04-01

    Symmetry is a fundamental property of nature, used extensively in physics, chemistry, and biology. The Continuous symmetry measures (CSM) is a method for estimating the deviation of a given system from having a certain perfect symmetry, which enables us to formulate quantitative relation between symmetry and other physical properties. Analytical procedures for calculating the CSM of all simple cyclic point groups are available for several years. Here, we present a methodology for calculating the CSM of any complex point group, including the dihedral, tetrahedral, octahedral, and icosahedral symmetry groups. We present the method and analyze its performances and errors. We also introduce an analytical method for calculating the CSM of the linear symmetry groups. As an example, we apply these methods for examining the symmetry of water, the symmetry maps of AB4 complexes, and the symmetry of several Lennard-Jones clusters.

  8. Human Odometry Verifies the Symmetry Perspective on Bipedal Gaits

    ERIC Educational Resources Information Center

    Turvey, M. T.; Harrison, Steven J.; Frank, Till D.; Carello, Claudia

    2012-01-01

    Bipedal gaits have been classified on the basis of the group symmetry of the minimal network of identical differential equations (alias "cells") required to model them. Primary gaits are characterized by dihedral symmetry, whereas secondary gaits are characterized by a lower, cyclic symmetry. This fact was used in a test of human odometry. Results…

  9. The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation

    NASA Astrophysics Data System (ADS)

    Dong, Huanhe; Zhang, Yong; Zhang, Xiaoen

    2016-07-01

    A discrete matrix spectral problem is presented and the hierarchy of discrete integrable systems is derived. Their Hamiltonian structures are established. As to the discrete integrable system, nonlinearization of the spatial parts of the Lax pairs and the adjoint Lax pairs generate a new integrable symplectic map. Based on the theory, a new integrable symplectic map and a family of finite-dimension completely integrable systems are given. Especially, two explicit equations are obtained under the Bargmann constraint. Finally, the symmetry of the discrete equation is provided according to the recursion operator and the seed symmetry. Although the solutions of the discrete equations have been gained by many methods, there are few articles that solving the discrete equation via the symmetry. So the solution of the discrete lattice equation is obtained through the symmetry theory.

  10. A free N = 2 supersymmetric system: Novel symmetries

    NASA Astrophysics Data System (ADS)

    Krishna, S.; Malik, R. P.

    2015-02-01

    We discuss a set of novel discrete symmetries of a free N= 2 supersymmetric (SUSY) quantum-mechanical system which is the limiting case of a widely studied interacting SUSY model of a charged particle constrained to move on a sphere in the background of a Dirac magnetic monopole. The usual continuous symmetries of this model provide the physical realization of the de Rham cohomological operators of differential geometry. The interplay between the novel discrete symmetries and usual continuous symmetries leads to the physical realization of the relationship between the (co-)exterior derivatives of differential geometry. We have also exploited the supervariable approach to derive the nilpotent N=2 SUSY symmetries of the theory and provided the geometrical origin and interpretation for the nilpotency property. Ultimately, our present study (based on innate symmetries) proves that our free N = 2 SUSY example is a tractable model for the Hodge theory.

  11. Democracy of internal symmetries in supersymmetrical quantum field theory

    SciTech Connect

    Lopuszanski, J.T.

    1981-12-01

    The freedom of choice of some discrete and internal symmetries in the supersymmetric, massive, interacting quantum field theory is discussed. It is shown that the discrete symmetry consisting of changing the sign of some (not all) scalar fields is incompatible with the supersymmetric structure of the theory. It is further demonstrated that an internal symmetry which transforms only some of the fields of fixed spin leaving the other fields invariant and which acts nontrivially on the supercharges can not be admitted as a symmetry; although it can be a good internal symmetry in absence of supersymmetric covariance. Moreover, in case of a model consisting of scalar, spinor and vector fields even a symmetry which transforms all of the scalar (vector) fields leaving spinor and vector (scalar) fields unaffected is ruled out provided it acts nontrivially on some of the supercharges.

  12. Novel approach to data discretization

    NASA Astrophysics Data System (ADS)

    Borowik, Grzegorz; Kowalski, Karol; Jankowski, Cezary

    2015-09-01

    Discretization is an important preprocessing step in data mining. The data discretization method involves determining the ranges of values for numeric attributes, which ultimately represent discrete intervals for new attributes. The ranges for the proposed set of cuts are analyzed, in order to obtain a minimal set of ranges while retaining the possibility of classification. For this purpose, a special discernibility function can be constructed as a conjunction of alternative cuts set for each pair of different objects of different decisions- cuts discern these objects. However, the data mining methods based on discernibility matrix are insufficient for large databases. The purpose of this paper is the idea of implementation of a new data discretization algorithm that is based on statistics of attribute values and that avoids building the discernibility matrix explicitly. Evaluation of time complexity has shown that the proposed method is much more efficient than currently available solutions for large data sets.

  13. Symmetry properties of periodic orbits extracted from scattering data

    NASA Astrophysics Data System (ADS)

    Merlo, O.; Jung, C.; Seligman, T. H.

    2004-12-01

    Discrete symmetries of a system are reflected in the properties of the shortest periodic orbits. By applying a recent method to extract these from the scaling of the fractal structure in scattering functions, we show how the symmetries can be extracted from scattering data simultaneously with the periods and the Lyapunov exponents. We pay particular attention to the change of scattering data under a small symmetry breaking.

  14. Multigravity from a discrete extra dimension

    NASA Astrophysics Data System (ADS)

    Deffayet, C.; Mourad, J.

    2004-06-01

    Multigravity theories are constructed from the discretization of the extra dimension of five-dimensional gravity. Using an ADM decomposition, the discretization is performed while maintaining the four-dimensional diffeomorphism invariance on each site. We relate the Goldstone bosons used to realize nonlinearly general covariance in discretized gravity to the shift fields of the higher-dimensional metric. We investigate the scalar excitations of the resulting theory and show the absence of ghosts and massive modes; this is due to a local symmetry inherited from the reparametrization invariance along the fifth dimension.

  15. Hidden flavor symmetries of SO(10) GUT

    NASA Astrophysics Data System (ADS)

    Bajc, Borut; Smirnov, Alexei Yu.

    2016-08-01

    The Yukawa interactions of the SO(10) GUT with fermions in 16-plets (as well as with singlets) have certain intrinsic ("built-in") symmetries which do not depend on the model parameters. Thus, the symmetric Yukawa interactions of the 10 and 126 dimensional Higgses have intrinsic discrete Z2 ×Z2 symmetries, while the antisymmetric Yukawa interactions of the 120 dimensional Higgs have a continuous SU(2) symmetry. The couplings of SO(10) singlet fermions with fermionic 16-plets have U(1) 3 symmetry. We consider a possibility that some elements of these intrinsic symmetries are the residual symmetries, which originate from the (spontaneous) breaking of a larger symmetry group Gf. Such an embedding leads to the determination of certain elements of the relative mixing matrix U between the matrices of Yukawa couplings Y10, Y126, Y120, and consequently, to restrictions of masses and mixings of quarks and leptons. We explore the consequences of such embedding using the symmetry group conditions. We show how unitarity emerges from group properties and obtain the conditions it imposes on the parameters of embedding. We find that in some cases the predicted values of elements of U are compatible with the existing data fits. In the supersymmetric version of SO(10) such results are renormalization group invariant.

  16. Relativistic Pseudospin Symmetry

    SciTech Connect

    Ginocchio, Joseph N.

    2011-05-06

    We show that the pseudospin symmetry that Akito Arima discovered many years ago (with collaborators) is a symmetry of the the Dirac Hamiltonian for which the sum of the scalar and vector potentials are a constant. In this paper we discuss some of the implications of this relativistic symmetry and the experimental data that support these predictions. In his original paper Akito also discussed pseudo-U(3) symmetry. We show that pseudo-U(3) symmetry is a symmetry of the Dirac Hamiltonian for which the sum of harmonic oscillator vector and scalar potentials are equal to a constant, and we give the generators of pseudo-U(3) symmetry. Going beyond the mean field we summarize new results on non relativistic shell model Hamiltonians that have pseudospin symmetry and pseudo-orbital angular momentum symmetry as a dynamical symmetries.

  17. Anomalous Symmetry Fractionalization and Surface Topological Order

    NASA Astrophysics Data System (ADS)

    Chen, Xie; Burnell, F. J.; Vishwanath, Ashvin; Fidkowski, Lukasz

    2015-10-01

    In addition to possessing fractional statistics, anyon excitations of a 2D topologically ordered state can realize symmetry in distinct ways, leading to a variety of symmetry-enriched topological (SET) phases. While the symmetry fractionalization must be consistent with the fusion and braiding rules of the anyons, not all ostensibly consistent symmetry fractionalizations can be realized in 2D systems. Instead, certain "anomalous" SETs can only occur on the surface of a 3D symmetry-protected topological (SPT) phase. In this paper, we describe a procedure for determining whether a SET of a discrete, on-site, unitary symmetry group G is anomalous or not. The basic idea is to gauge the symmetry and expose the anomaly as an obstruction to a consistent topological theory combining both the original anyons and the gauge fluxes. Utilizing a result of Etingof, Nikshych, and Ostrik, we point out that a class of obstructions is captured by the fourth cohomology group H4(G ,U (1 )) , which also precisely labels the set of 3D SPT phases, with symmetry group G . An explicit procedure for calculating the cohomology data from a SET is given, with the corresponding physical intuition explained. We thus establish a general bulk-boundary correspondence between the anomalous SET and the 3D bulk SPT whose surface termination realizes it. We illustrate this idea using the chiral spin liquid [U (1 )2 ] topological order with a reduced symmetry Z2×Z2⊂SO (3 ) , which can act on the semion quasiparticle in an anomalous way. We construct exactly solved 3D SPT models realizing the anomalous surface terminations and demonstrate that they are nontrivial by computing three-loop braiding statistics. Possible extensions to antiunitary symmetries are also discussed.

  18. Symmetries in fluctuations far from equilibrium.

    PubMed

    Hurtado, Pablo I; Pérez-Espigares, Carlos; del Pozo, Jesús J; Garrido, Pedro L

    2011-05-10

    Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti-Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager's reciprocity relations and Green-Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields.

  19. Symmetries in fluctuations far from equilibrium

    PubMed Central

    Hurtado, Pablo I.; Pérez-Espigares, Carlos; del Pozo, Jesús J.; Garrido, Pedro L.

    2011-01-01

    Fluctuations arise universally in nature as a reflection of the discrete microscopic world at the macroscopic level. Despite their apparent noisy origin, fluctuations encode fundamental aspects of the physics of the system at hand, crucial to understand irreversibility and nonequilibrium behavior. To sustain a given fluctuation, a system traverses a precise optimal path in phase space. Here we show that by demanding invariance of optimal paths under symmetry transformations, new and general fluctuation relations valid arbitrarily far from equilibrium are unveiled. This opens an unexplored route toward a deeper understanding of nonequilibrium physics by bringing symmetry principles to the realm of fluctuations. We illustrate this concept studying symmetries of the current distribution out of equilibrium. In particular we derive an isometric fluctuation relation that links in a strikingly simple manner the probabilities of any pair of isometric current fluctuations. This relation, which results from the time-reversibility of the dynamics, includes as a particular instance the Gallavotti–Cohen fluctuation theorem in this context but adds a completely new perspective on the high level of symmetry imposed by time-reversibility on the statistics of nonequilibrium fluctuations. The new symmetry implies remarkable hierarchies of equations for the current cumulants and the nonlinear response coefficients, going far beyond Onsager’s reciprocity relations and Green–Kubo formulas. We confirm the validity of the new symmetry relation in extensive numerical simulations, and suggest that the idea of symmetry in fluctuations as invariance of optimal paths has far-reaching consequences in diverse fields. PMID:21493865

  20. Dark Matter from Binary Tetrahedral Flavor Symmetry

    NASA Astrophysics Data System (ADS)

    Eby, David; Frampton, Paul

    2012-03-01

    Binary Tetrahedral Flavor Symmetry, originally developed as a quark family symmetry and later adapted to leptons, has proved both resilient and versatile over the past decade. In 2008 a minimal T' model was developed to accommodate quark and lepton masses and mixings using a family symmetry of (T'xZ2). We examine an expansion of this earlier model using an additional Z2 group that facilitates predictions of WIMP dark matter, the Cabibbo angle, and deviations from Tribimaximal Mixing, while giving hints at the nature of leptogenesis.

  1. Exploring symmetry in near-vacuum hohlraums

    NASA Astrophysics Data System (ADS)

    Berzak Hopkins, L.; Le Pape, S.; Divol, L.; Meezan, N.; MacKinnon, A.; Ho, D. D.; Jones, O.; Khan, S.; Ma, T.; Milovich, J.; Pak, A.; Ross, J. S.; Thomas, C.; Turnbull, D.; Amendt, P.; Wilks, S.; Zylstra, A.; Rinderknecht, H.; Sio, H.; Petrasso, R.

    2015-11-01

    Recent experiments with near-vacuum hohlraums, which utilize a minimal but non-zero helium fill, have demonstrated performance improvements relative to conventional gas-filled (0.96 - 1.6 mg/cc helium) hohlraums: minimal backscatter, reduced capsule drive degradation, and minimal suprathermal electron generation. Because this is a low laser-plasma interaction platform, implosion symmetry is controlled via pulse-shaping adjustments to laser power balance. Extending this platform to high-yield designs with high-density carbon capsules requires achieving adequate symmetry control throughout the pulse. In simulations, laser propagation is degraded suddenly by hohlraum wall expansion interacting with ablated capsule material. Nominal radiation-hydrodynamics simulations have not yet proven predictive on symmetry of the final hotspot, and experiments show more prolate symmetry than preshot calculations. Recent efforts have focused on understanding the discrepancy between simulated and measured symmetry and on alternate designs for symmetry control through varying cone fraction, trade-offs between laser power and energy, and modifications to case-to-capsule ratio. Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  2. Symmetric Potential Lattice and Smooth Propagation of Tail-Free Discrete Breathers.

    PubMed

    Doi, Yusuke; Yoshimura, Kazuyuki

    2016-07-01

    We present a particular type of one-dimensional nonlinear lattice that supports smoothly propagating discrete breathers. The lattice is constructed by imposing a particular symmetry on its potential function. This symmetry crucially affects the profile and motion of a traveling discrete breather. We show that any traveling discrete breather is truly localized with no tail and can smoothly propagate with a constant velocity. Theoretical analysis using an average Lagrangian explains this numerical observation. PMID:27419571

  3. Symmetric Potential Lattice and Smooth Propagation of Tail-Free Discrete Breathers

    NASA Astrophysics Data System (ADS)

    Doi, Yusuke; Yoshimura, Kazuyuki

    2016-07-01

    We present a particular type of one-dimensional nonlinear lattice that supports smoothly propagating discrete breathers. The lattice is constructed by imposing a particular symmetry on its potential function. This symmetry crucially affects the profile and motion of a traveling discrete breather. We show that any traveling discrete breather is truly localized with no tail and can smoothly propagate with a constant velocity. Theoretical analysis using an average Lagrangian explains this numerical observation.

  4. Necessary Condition for Emergent Symmetry from the Conformal Bootstrap

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu; Ohtsuki, Tomoki

    2016-09-01

    We use the conformal bootstrap program to derive the necessary conditions for emergent symmetry enhancement from discrete symmetry (e.g., Zn ) to continuous symmetry [e.g., U (1 )] under the renormalization group flow. In three dimensions, in order for Z2 symmetry to be enhanced to U (1 ) symmetry, the conformal bootstrap program predicts that the scaling dimension of the order parameter field at the infrared conformal fixed point must satisfy Δ1>1.08 . We also obtain the similar necessary conditions for Z3 symmetry with Δ1>0.580 and Z4 symmetry with Δ1>0.504 from the simultaneous conformal bootstrap analysis of multiple four-point functions. As applications, we show that our necessary conditions impose severe constraints on the nature of the chiral phase transition in QCD, the deconfinement criticality in Néel valence bond solid transitions, and anisotropic deformations in critical O (n ) models. We prove that some fixed points proposed in the literature are unstable under the perturbation that cannot be forbidden by the discrete symmetry. In these situations, the second-order phase transition with enhanced symmetry cannot happen.

  5. A Few Continuous and Discrete Dynamical Systems

    NASA Astrophysics Data System (ADS)

    Zhang, Yufeng; Rui, Wenjuan

    2016-08-01

    Starting from a 2-unimodular group, we construct its new Lie algebras for which the positive-order Lax pairs and the negative-order Lax pairs are introduced, respectively. With the help of the resulting structure equation of the group we generate some partial differential equations including the well-known MKdV equation, the sine-Gordon equation, the hyperbolic sine-Gordon equation and other new nonlinear evolution equations. With the aid of the Tu scheme combined with the given Lax pairs, we obtain the isospectral and nonisospectral hierarchies of evolution equations, from which we generate two sets of symmetries of a generalized nonlinear Schrödinger (gNLS) equation. Finally, we discretize the Lax pairs to obtain a set of coupled semi-discrete equations. As their reduction, we produce the semi-discrete MKdV equation and semi-discrete NLS equation.

  6. Novel symmetries in N=2 supersymmetric quantum mechanical models

    SciTech Connect

    Malik, R.P.; Khare, Avinash

    2013-07-15

    We demonstrate the existence of a novel set of discrete symmetries in the context of the N=2 supersymmetric (SUSY) quantum mechanical model with a potential function f(x) that is a generalization of the potential of the 1D SUSY harmonic oscillator. We perform the same exercise for the motion of a charged particle in the X–Y plane under the influence of a magnetic field in the Z-direction. We derive the underlying algebra of the existing continuous symmetry transformations (and corresponding conserved charges) and establish its relevance to the algebraic structures of the de Rham cohomological operators of differential geometry. We show that the discrete symmetry transformations of our present general theories correspond to the Hodge duality operation. Ultimately, we conjecture that any arbitrary N=2 SUSY quantum mechanical system can be shown to be a tractable model for the Hodge theory. -- Highlights: •Discrete symmetries of two completely different kinds of N=2 supersymmetric quantum mechanical models have been discussed. •The discrete symmetries provide physical realizations of Hodge duality. •The continuous symmetries provide the physical realizations of de Rham cohomological operators. •Our work sheds a new light on the meaning of the above abstract operators.

  7. PT Symmetry, Conformal Symmetry, and the Metrication of Electromagnetism

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    2016-05-01

    We present some interesting connections between PT symmetry and conformal symmetry. We use them to develop a metricated theory of electromagnetism in which the electromagnetic field is present in the geometric connection. However, unlike Weyl who first advanced this possibility, we do not take the connection to be real but to instead be PT symmetric, with it being iA_{μ } rather than A_{μ } itself that then appears in the connection. With this modification the standard minimal coupling of electromagnetism to fermions is obtained. Through the use of torsion we obtain a metricated theory of electromagnetism that treats its electric and magnetic sectors symmetrically, with a conformal invariant theory of gravity being found to emerge. An extension to the non-Abelian case is provided.

  8. Approximate flavor symmetries

    SciTech Connect

    Rasin, A.

    1994-04-01

    We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.

  9. Geometric intrinsic symmetries

    SciTech Connect

    Gozdz, A. Szulerecka, A.; Pedrak, A.

    2013-08-15

    The problem of geometric symmetries in the intrinsic frame of a many-body system (nucleus) is considered. An importance of symmetrization group notion is discussed. Ageneral structure of the intrinsic symmetry group structure is determined.

  10. Periodic minimal surfaces

    NASA Astrophysics Data System (ADS)

    Mackay, Alan L.

    1985-04-01

    A minimal surface is one for which, like a soap film with the same pressure on each side, the mean curvature is zero and, thus, is one where the two principal curvatures are equal and opposite at every point. For every closed circuit in the surface, the area is a minimum. Schwarz1 and Neovius2 showed that elements of such surfaces could be put together to give surfaces periodic in three dimensions. These periodic minimal surfaces are geometrical invariants, as are the regular polyhedra, but the former are curved. Minimal surfaces are appropriate for the description of various structures where internal surfaces are prominent and seek to adopt a minimum area or a zero mean curvature subject to their topology; thus they merit more complete numerical characterization. There seem to be at least 18 such surfaces3, with various symmetries and topologies, related to the crystallographic space groups. Recently, glyceryl mono-oleate (GMO) was shown by Longley and McIntosh4 to take the shape of the F-surface. The structure postulated is shown here to be in good agreement with an analysis of the fundamental geometry of periodic minimal surfaces.

  11. Polynomial Graphs and Symmetry

    ERIC Educational Resources Information Center

    Goehle, Geoff; Kobayashi, Mitsuo

    2013-01-01

    Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…

  12. Chiral symmetry and chiral-symmetry breaking

    SciTech Connect

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  13. SUGRA new inflation with Heisenberg symmetry

    SciTech Connect

    Antusch, Stefan; Cefalà, Francesco E-mail: stefan.antusch@unibas.ch

    2013-10-01

    We propose a realisation of ''new inflation'' in supergravity (SUGRA), where the flatness of the inflaton potential is protected by a Heisenberg symmetry. Inflation can be associated with a particle physics phase transition, with the inflaton being a (D-flat) direction of Higgs fields which break some symmetry at high energies, e.g. of GUT Higgs fields or of Higgs fields for flavour symmetry breaking. This is possible since compared to a shift symmetry, which is usually used to protect a flat inflaton potential, the Heisenberg symmetry is compatible with a (gauge) non-singlet inflaton field. In contrast to conventional new inflation models in SUGRA, where the predictions depend on unknown parameters of the Kaehler potential, the model with Heisenberg symmetry makes discrete predictions for the primordial perturbation parameters which depend only on the order n at which the inflaton appears in the effective superpotential. The predictions for the spectral index n{sub s} can be close to the best-fit value of the latest Planck 2013 results.

  14. Novel Randall-Sundrum model with S3 flavor symmetry

    NASA Astrophysics Data System (ADS)

    Hernández, A. E. Cárcamo; Varzielas, I. de Medeiros; Neill, Nicolás A.

    2016-08-01

    We propose a simple and predictive model of fermion masses and mixing in a warped extra dimension, with the smallest discrete non-Abelian group S3 and the discrete symmetries Z2⊗Z4 . Standard Model fields propagate in the bulk, and the mass hierarchies and mixing angles are accounted for the fermion zero modes localization profiles, similar to the Randall-Sundrum model. To the best of our knowledge, this model is the first implementation of an S3 flavor symmetry in this type of warped extra dimension framework. Our model successfully describes the fermion masses and mixing pattern and is consistent with the current low energy fermion flavor data. The discrete flavor symmetry in our model leads to predictive mixing inspired textures, where the Cabibbo mixing arises from the down-type quark sector, whereas the up-type quark sector contributes to the remaining mixing angles.

  15. Symmetry and range limits in importance indices.

    PubMed

    Seifan, Tal; Seifan, Merav

    2015-10-01

    Recently, Mingo has analyzed the properties of I imp, an importance index, and demonstrated that its range is not symmetrical. While agreeing with this comment, we believe that more light needs to be shed on the issue of symmetry in relation to such indices. Importance indices are calculated using three values: performance of the organism in the absence and in the presence of neighbors and maximum performance of the organism in ideal conditions. Because of this structure, importance indices can hardly ever achieve symmetry along the whole range of potential performances. We discuss the limitation of the symmetry range for different symmetry types and for both additive and multiplicative indices. We conclude that importance indices, as other interactions indices, are practical tools for interpreting ecological outcomes, especially while comparing between studies. Nevertheless, the current structure of importance indices prevents symmetry along their whole range. While the lack of "perfect" symmetry may call for the development of more sophisticated importance metrics, the current indices are still helpful for the understanding of biological systems and should not be discarded before better alternatives are well established. To prevent potential confusion, we suggest that ecologists present the relevant index symmetry range in addition to their results, thus minimizing the probability of misinterpretation. PMID:26668718

  16. Symmetry and range limits in importance indices.

    PubMed

    Seifan, Tal; Seifan, Merav

    2015-10-01

    Recently, Mingo has analyzed the properties of I imp, an importance index, and demonstrated that its range is not symmetrical. While agreeing with this comment, we believe that more light needs to be shed on the issue of symmetry in relation to such indices. Importance indices are calculated using three values: performance of the organism in the absence and in the presence of neighbors and maximum performance of the organism in ideal conditions. Because of this structure, importance indices can hardly ever achieve symmetry along the whole range of potential performances. We discuss the limitation of the symmetry range for different symmetry types and for both additive and multiplicative indices. We conclude that importance indices, as other interactions indices, are practical tools for interpreting ecological outcomes, especially while comparing between studies. Nevertheless, the current structure of importance indices prevents symmetry along their whole range. While the lack of "perfect" symmetry may call for the development of more sophisticated importance metrics, the current indices are still helpful for the understanding of biological systems and should not be discarded before better alternatives are well established. To prevent potential confusion, we suggest that ecologists present the relevant index symmetry range in addition to their results, thus minimizing the probability of misinterpretation.

  17. Minimal Reduplication

    ERIC Educational Resources Information Center

    Kirchner, Jesse Saba

    2010-01-01

    This dissertation introduces Minimal Reduplication, a new theory and framework within generative grammar for analyzing reduplication in human language. I argue that reduplication is an emergent property in multiple components of the grammar. In particular, reduplication occurs independently in the phonology and syntax components, and in both cases…

  18. Symmetry protected topological superfluid (3)He-B.

    PubMed

    Mizushima, Takeshi; Tsutsumi, Yasumasa; Sato, Masatoshi; Machida, Kazushige

    2015-03-25

    Owing to the richness of symmetry and well-established knowledge of bulk superfluidity, the superfluid (3)He has offered a prototypical system to study intertwining of topology and symmetry. This article reviews recent progress in understanding the topological superfluidity of (3)He in a multifaceted manner, including symmetry considerations, the Jackiw-Rebbi's index theorem, and the quasiclassical theory. Special focus is placed on the symmetry protected topological superfuidity of the (3)He-B confined in a slab geometry. The (3)He-B under a magnetic field is separated to two different sub-phases: the symmetry protected topological phase and non-topological phase. The former phase is characterized by the existence of symmetry protected Majorana fermions. The topological phase transition between them is triggered by the spontaneous breaking of a hidden discrete symmetry. The critical field is quantitatively determined from the microscopic calculation that takes account of magnetic dipole interaction of the (3)He nucleus. It is also demonstrated that odd-frequency even-parity Cooper pair amplitudes are emergent in low-lying quasiparticles. The key ingredients, symmetry protected Majorana fermions and odd-frequency pairing, bring an important consequence that the coupling of the surface states to an applied field is prohibited by the hidden discrete symmetry, while the topological phase transition with the spontaneous symmetry breaking is accompanied by anomalous enhancement and anisotropic quantum criticality of surface spin susceptibility. We also illustrate common topological features between topological crystalline superconductors and symmetry protected topological superfluids, taking UPt3 and Rashba superconductors as examples.

  19. Flavor symmetry and a model of Σ(3N3)

    NASA Astrophysics Data System (ADS)

    Ishimori, Hajime

    2012-07-01

    We study the lepton flavor models with the flavor symmetry (ZN×ZN×ZN)⋊Z3. Our models predict nonvanishing discrete values of θ13 as well as θ12 and θ23 depending on N. For certain values, our models realize the tribimaximal mixing angles with θ13 = 0. For other values, our models provide with discrete deviation from the tri-bimaximal mixing angles.

  20. Baryogenesis from symmetry principle

    NASA Astrophysics Data System (ADS)

    Fong, Chee Sheng

    2016-01-01

    In this work, a formalism based on symmetry which allows one to express asymmetries of all the particles in terms of conserved charges is developed. The manifestation of symmetry allows one to easily determine the viability of a baryogenesis scenario and also to identify the different roles played by the symmetry. This formalism is then applied to the standard model and its supersymmetric extension, which constitute two important foundations for constructing models of baryogenesis.

  1. Natural discretization in noncommutative field theory

    SciTech Connect

    Acatrinei, Ciprian Sorin

    2015-12-07

    A discretization scheme for field theory is developed, in which the space time coordinates are assumed to be operators forming a noncommutative algebra. Generic waves without rotational symmetry are studied in (2+1) - dimensional scalar field theory with Heisenberg-type noncommutativity. In the representation chosen, the radial coordinate is naturally rendered discrete. Nonlocality along this coordinate, induced by noncommutativity, accounts for the angular dependence of the fields. A complete solution and the interpretation of its nonlocal features are given. The exact form of standing and propagating waves on such a discrete space is found in terms of finite series. A precise correspondence is established between the degree of nonlocality and the angular momentum of a field configuration. At small distance no classical singularities appear, even at the location of the sources. At large radius one recovers the usual commutative/continuum behaviour.

  2. Compatible Spatial Discretizations for Partial Differential Equations

    SciTech Connect

    Arnold, Douglas, N, ed.

    2004-11-25

    From May 11--15, 2004, the Institute for Mathematics and its Applications held a hot topics workshop on Compatible Spatial Discretizations for Partial Differential Equations. The numerical solution of partial differential equations (PDE) is a fundamental task in science and engineering. The goal of the workshop was to bring together a spectrum of scientists at the forefront of the research in the numerical solution of PDEs to discuss compatible spatial discretizations. We define compatible spatial discretizations as those that inherit or mimic fundamental properties of the PDE such as topology, conservation, symmetries, and positivity structures and maximum principles. A wide variety of discretization methods applied across a wide range of scientific and engineering applications have been designed to or found to inherit or mimic intrinsic spatial structure and reproduce fundamental properties of the solution of the continuous PDE model at the finite dimensional level. A profusion of such methods and concepts relevant to understanding them have been developed and explored: mixed finite element methods, mimetic finite differences, support operator methods, control volume methods, discrete differential forms, Whitney forms, conservative differencing, discrete Hodge operators, discrete Helmholtz decomposition, finite integration techniques, staggered grid and dual grid methods, etc. This workshop seeks to foster communication among the diverse groups of researchers designing, applying, and studying such methods as well as researchers involved in practical solution of large scale problems that may benefit from advancements in such discretizations; to help elucidate the relations between the different methods and concepts; and to generally advance our understanding in the area of compatible spatial discretization methods for PDE. Particular points of emphasis included: + Identification of intrinsic properties of PDE models that are critical for the fidelity of numerical

  3. Construction of Superconvergent Discretizations with Differential-Difference Invariants

    SciTech Connect

    R.A. Axford

    2005-08-12

    To incorporate symmetry properties of second-order differential equations into finite difference equations, the concept of differential-difference invariants is introduced. This concept is applied to discretizing homogeneous eigenvalue problems and inhomogeneous two-point boundary value problems with various combinations of Dirichlet, Neumann, and Robin boundary conditions. It is demonstrated that discretizations constructed with differential-difference invariants yield exact results for eigenvalue spectra and superconvergent results for numerical solutions of differential equations.

  4. Lepton flavor models with discrete values of θ13

    NASA Astrophysics Data System (ADS)

    Ishimori, Hajime; Kobayashi, Tatsuo

    2012-06-01

    We study the lepton flavor models with the flavor symmetry (ZN×ZN×ZN)⋊Z3. Our models lead nonvanishing discrete values of θ13 as well as θ12 and θ23 depending on N. For certain values, our models realize the tribimaximal mixing angles with θ13=0. For other values, our models provide discrete deviation from the tribimaximal mixing angles.

  5. On the flexibility and symmetry of overconstrained mechanisms

    PubMed Central

    Stachel, Hellmuth

    2014-01-01

    In kinematics, a framework is called overconstrained if its continuous flexibility is caused by particular dimensions; in the generic case, a framework of this type is rigid. Famous examples of overconstrained structures are the Bricard octahedra, the Bennett isogram, the Grünbaum framework, Bottema's 16-bar mechanism, Chasles’ body–bar framework, Burmester's focal mechanism or flexible quad meshes. The aim of this paper is to present some examples in detail and to focus on their symmetry properties. It turns out that only for a few is a global symmetry a necessary condition for flexibility. Sometimes, there is a hidden symmetry, and in some cases, for example, at the flexible type-3 octahedra or at discrete Voss surfaces, there is only a local symmetry. However, there remain overconstrained frameworks where the underlying algebraic conditions for flexibility have no relation to symmetry at all. PMID:24379430

  6. A left-right symmetric flavor symmetry model

    NASA Astrophysics Data System (ADS)

    Rodejohann, Werner; Xu, Xun-Jie

    2016-03-01

    We discuss flavor symmetries in left-right symmetric theories. We show that such frameworks are a different environment for flavor symmetry model building compared to the usually considered cases. This does not only concern the need to obey the enlarged gauge structure, but also more subtle issues with respect to residual symmetries. Furthermore, if the discrete left-right symmetry is charge conjugation, potential inconsistencies between the flavor and charge conjugation symmetries should be taken care of. In our predictive model based on A_4 we analyze the correlations between the smallest neutrino mass, the atmospheric mixing angle and the Dirac CP phase, the latter prefers to lie around maximal values. There is no lepton flavor violation from the Higgs bi-doublet.

  7. Symmetries in Physics: Guidelines for Theories and for Experiments

    NASA Astrophysics Data System (ADS)

    Dudek, Jerzy; Góźdź, Andrzej

    2011-01-01

    The works of Maria Sklodowska-Curie and Pierre Curie, of their few predecessors and of their many followers addressed over the years the studies of the atomic nuclei - the smallest objects in the Universe which are unique in that they are governed simultaneously by the strong, electromagnetic and weak interactions. In this article we focus on the concept and nature of symmetries, their omni-presence in physics and their impact on the behaviour of the physical systems. Beginning with a short historical overview covering quickly the birth of certain concepts in the ancient times and their evolution until the most modern ones we cover, on an introductory level, the question of space-time symmetries, the connection between the intrinsic degrees of freedom and the spatial behaviour of quantum particles as well as the question of symmetry-induced conservation-laws. We discuss shortly examples of continuous and discrete symmetry groups, the constraints imposed on the energy spectra (degeneracy of levels) by the symmetries of the underlying Hamiltonians, to end with the question of transitions and symmetry imposed selection rules. The article terminates with a short discussion of the symmetry breaking phenomena, spontaneous symmetry breaking and phase-transition induced symmetry-changes.

  8. Minimal nonsupersymmetric S O (10 ) model: Gauge coupling unification, proton decay, and fermion masses

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; Khan, S.

    2015-10-01

    We present a minimal renormalizable nonsupersymmetric S O (10 ) grand unified model with a symmetry breaking sector consisting of Higgs fields in the 5 4H+12 6H+1 0H representations. This model admits a single intermediate scale associated with Pati-Salam symmetry along with a discrete parity. Spontaneous symmetry breaking, the unification of gauge couplings, and proton lifetime estimates are studied in detail in this framework. Including threshold corrections self-consistently obtained from a full analysis of the Higgs potential, we show that the model is compatible with the current experimental bound on proton lifetime. The model generally predicts an upper bound of few times 1035 yr for proton lifetime, which is not too far from the present Super-Kamiokande limit of τp≳1.29 ×1034 yr . With the help of a Pecci-Quinn symmetry and the resulting axion, the model provides a suitable dark matter candidate while also solving the strong C P problem. The intermediate scale, MI≈(1013- 1014) GeV which is also the B -L scale, is of the right order for the right-handed neutrino mass which enables a successful description of light neutrino masses and oscillations. The Yukawa sector of the model consists of only two matrices in family space and leads to a predictive scenario for quark and lepton masses and mixings. The branching ratios for proton decay are calculable with the leading modes being p →e+π0 and p →ν ¯π+. Even though the model predicts no new physics within the reach of the LHC, the next-generation proton decay detectors and axion search experiments have the capability to reach a verdict on this minimal scenario.

  9. Symmetry in Mathematics Learning.

    ERIC Educational Resources Information Center

    Dreyfus, Tommy; Eisenberg, Theodore

    1989-01-01

    Discusses the creed in symmetry and the omnipresence of symmetrical relationships in mathematics and nature, discusses mathematicians' attraction toward looking for symmetrical relationships as an unstated problem-solving heuristic, and shows how symmetry can be used as a didactical tool. (Author/MKR)

  10. Symmetry and Interculturality

    ERIC Educational Resources Information Center

    Marchis, Iuliana

    2009-01-01

    Symmetry is one of the fundamental concepts in Geometry. It is a Mathematical concept, which can be very well connected with Art and Ethnography. The aim of the article is to show how to link the geometrical concept symmetry with interculturality. For this mosaics from different countries are used.

  11. Symmetries in Lagrangian Dynamics

    ERIC Educational Resources Information Center

    Ferrario, Carlo; Passerini, Arianna

    2007-01-01

    In the framework of Noether's theorem, a distinction between Lagrangian and dynamical symmetries is made, in order to clarify some aspects neglected by textbooks. An intuitive setting of the concept of invariance of differential equations is presented. The analysis is completed by deriving the symmetry properties in the motion of a charged…

  12. Broken flavor symmetries in high energy particle phenomenology

    SciTech Connect

    Antaramian, A.

    1995-02-22

    Over the past couple of decades, the Standard Model of high energy particle physics has clearly established itself as an invaluable tool in the analysis of high energy particle phenomenon. However, from a field theorists point of view, there are many dissatisfying aspects to the model. One of these, is the large number of free parameters in the theory arising from the Yukawa couplings of the Higgs doublet. In this thesis, we examine various issues relating to the Yukawa coupeng structure of high energy particle field theories. We begin by examining extensions to the Standard Model of particle physics which contain additional scalar fields. By appealing to the flavor structure observed in the fermion mass and Kobayashi-Maskawa matrices, we propose a reasonable phenomenological parameterization of the new Yukawa couplings based on the concept of approximate flavor symmetries. It is shown that such a parameterization eliminates the need for discrete symmetries which limit the allowed couplings of the new scalars. New scalar particles which can mediate exotic flavor changing reactions can have masses as low as the weak scale. Next, we turn to the issue of neutrino mass matrices, where we examine a particular texture which leads to matter independent neutrino oscillation results for solar neutrinos. We, then, examine the basis for extremely strict limits placed on flavor changing interactions which also break lepton- and/or baryon-number. These limits are derived from cosmological considerations. Finally, we embark on an extended analysis of proton decay in supersymmetric SO(10) grand unified theories. In such theories, the dominant decay diagrams involve the Yukawa couplings of a heavy triplet superfield. We argue that past calculations of proton decay which were based on the minimal supersymmetric SU(5) model require reexamination because the Yukawa couplings of that theory are known to be wrong.

  13. Symmetry Effects in Computation

    NASA Astrophysics Data System (ADS)

    Yao, Andrew Chi-Chih

    2008-12-01

    The concept of symmetry has played a key role in the development of modern physics. For example, using symmetry, C.N. Yang and other physicists have greatly advanced our understanding of the fundamental laws of physics. Meanwhile, computer scientists have been pondering why some computational problems seem intractable, while others are easy. Just as in physics, the laws of computation sometimes can only be inferred indirectly by considerations of general principles such as symmetry. The symmetry properties of a function can indeed have a profound effect on how fast the function can be computed. In this talk, we present several elegant and surprising discoveries along this line, made by computer scientists using symmetry as their primary tool. Note from Publisher: This article contains the abstract only.

  14. Principles of Discrete Time Mechanics

    NASA Astrophysics Data System (ADS)

    Jaroszkiewicz, George

    2014-04-01

    1. Introduction; 2. The physics of discreteness; 3. The road to calculus; 4. Temporal discretization; 5. Discrete time dynamics architecture; 6. Some models; 7. Classical cellular automata; 8. The action sum; 9. Worked examples; 10. Lee's approach to discrete time mechanics; 11. Elliptic billiards; 12. The construction of system functions; 13. The classical discrete time oscillator; 14. Type 2 temporal discretization; 15. Intermission; 16. Discrete time quantum mechanics; 17. The quantized discrete time oscillator; 18. Path integrals; 19. Quantum encoding; 20. Discrete time classical field equations; 21. The discrete time Schrodinger equation; 22. The discrete time Klein-Gordon equation; 23. The discrete time Dirac equation; 24. Discrete time Maxwell's equations; 25. The discrete time Skyrme model; 26. Discrete time quantum field theory; 27. Interacting discrete time scalar fields; 28. Space, time and gravitation; 29. Causality and observation; 30. Concluding remarks; Appendix A. Coherent states; Appendix B. The time-dependent oscillator; Appendix C. Quaternions; Appendix D. Quantum registers; References; Index.

  15. Noncommutative spaces, the quantum of time, and Lorentz symmetry

    SciTech Connect

    Romero, Juan M.; Vergara, J. D.; Santiago, J. A.

    2007-03-15

    We introduce three space-times that are discrete in time and compatible with the Lorentz symmetry. We show that these spaces are not commutative, with commutation relations similar to the relations of the Snyder and Yang spaces. Furthermore, using a reparametrized relativistic particle we obtain a realization of the Snyder type spaces and we construct an action for them.

  16. Symmetry Breaking and Optical Negative Index of Closed Nanorings

    NASA Astrophysics Data System (ADS)

    Kante, Boubacar; Park, Yong-Shik; O'Brien, Kevin; Shuldman, Daniel; Lanzillotti-Kimura, Norberto; Wong, Zi; Yin, Xiaobo; Zhang, Xiang; UC Berkeley Team

    2013-03-01

    We report the first experimental demonstration of broadband negative-index metamaterial made solely of closed metallic nanorings. Using symmetry breaking that negatively couples the discrete nanorings, we measured negative phase delay in our composite chess metamaterial. Our approach open avenues towards topological nanophotonics with on demand linear and non-linear responses.

  17. Constraint analysis for variational discrete systems

    SciTech Connect

    Dittrich, Bianca; Höhn, Philipp A.

    2013-09-15

    A canonical formalism and constraint analysis for discrete systems subject to a variational action principle are devised. The formalism is equivalent to the covariant formulation, encompasses global and local discrete time evolution moves and naturally incorporates both constant and evolving phase spaces, the latter of which is necessary for a time varying discretization. The different roles of constraints in the discrete and the conditions under which they are first or second class and/or symmetry generators are clarified. The (non-) preservation of constraints and the symplectic structure is discussed; on evolving phase spaces the number of constraints at a fixed time step depends on the initial and final time step of evolution. Moreover, the definition of observables and a reduced phase space is provided; again, on evolving phase spaces the notion of an observable as a propagating degree of freedom requires specification of an initial and final step and crucially depends on this choice, in contrast to the continuum. However, upon restriction to translation invariant systems, one regains the usual time step independence of canonical concepts. This analysis applies, e.g., to discrete mechanics, lattice field theory, quantum gravity models, and numerical analysis.

  18. Minimal cosmography

    NASA Astrophysics Data System (ADS)

    Piazza, Federico; Schücker, Thomas

    2016-04-01

    The minimal requirement for cosmography—a non-dynamical description of the universe—is a prescription for calculating null geodesics, and time-like geodesics as a function of their proper time. In this paper, we consider the most general linear connection compatible with homogeneity and isotropy, but not necessarily with a metric. A light-cone structure is assigned by choosing a set of geodesics representing light rays. This defines a "scale factor" and a local notion of distance, as that travelled by light in a given proper time interval. We find that the velocities and relativistic energies of free-falling bodies decrease in time as a consequence of cosmic expansion, but at a rate that can be different than that dictated by the usual metric framework. By extrapolating this behavior to photons' redshift, we find that the latter is in principle independent of the "scale factor". Interestingly, redshift-distance relations and other standard geometric observables are modified in this extended framework, in a way that could be experimentally tested. An extremely tight constraint on the model, however, is represented by the blackbody-ness of the cosmic microwave background. Finally, as a check, we also consider the effects of a non-metric connection in a different set-up, namely, that of a static, spherically symmetric spacetime.

  19. Arbitrary lattice symmetries via block copolymer nanomeshes

    PubMed Central

    Majewski, Pawel W.; Rahman, Atikur; Black, Charles T.; Yager, Kevin G.

    2015-01-01

    Self-assembly of block copolymers is a powerful motif for spontaneously forming well-defined nanostructures over macroscopic areas. Yet, the inherent energy minimization criteria of self-assembly give rise to a limited library of structures; diblock copolymers naturally form spheres on a cubic lattice, hexagonally packed cylinders and alternating lamellae. Here, we demonstrate multicomponent nanomeshes with any desired lattice symmetry. We exploit photothermal annealing to rapidly order and align block copolymer phases over macroscopic areas, combined with conversion of the self-assembled organic phase into inorganic replicas. Repeated photothermal processing independently aligns successive layers, providing full control of the size, symmetry and composition of the nanoscale unit cell. We construct a variety of symmetries, most of which are not natively formed by block copolymers, including squares, rhombuses, rectangles and triangles. In fact, we demonstrate all possible two-dimensional Bravais lattices. Finally, we elucidate the influence of nanostructure on the electrical and optical properties of nanomeshes. PMID:26100566

  20. New Algorithms For Automated Symmetry Recognition

    NASA Astrophysics Data System (ADS)

    Paul, Jody; Kilgore, Tammy Elaine; Klinger, Allen

    1988-02-01

    In this paper we present new methods for computer-based symmetry identification that combine elements of group theory and pattern recognition. Detection of symmetry has diverse applications including: the reduction of image data to a manageable subset with minimal information loss, the interpretation of sensor data,1 such as the x-ray diffraction patterns which sparked the recent discovery of a new "quasicrystal" phase of solid matter,2 and music analysis and composition.3,4,5 Our algorithms are expressed as parallel operations on the data using the matrix representation and manipulation features of the APL programming language. We demonstrate the operation of programs that characterize symmetric and nearly-symmetric patterns by determining the degree of invariance with respect to candidate symmetry transformations. The results are completely general; they may be applied to pattern data of arbitrary dimension and from any source.

  1. Sequential flavor symmetry breaking

    SciTech Connect

    Feldmann, Thorsten; Jung, Martin; Mannel, Thomas

    2009-08-01

    The gauge sector of the standard model exhibits a flavor symmetry that allows for independent unitary transformations of the fermion multiplets. In the standard model the flavor symmetry is broken by the Yukawa couplings to the Higgs boson, and the resulting fermion masses and mixing angles show a pronounced hierarchy. In this work we connect the observed hierarchy to a sequence of intermediate effective theories, where the flavor symmetries are broken in a stepwise fashion by vacuum expectation values of suitably constructed spurion fields. We identify the possible scenarios in the quark sector and discuss some implications of this approach.

  2. Topological classification of crystalline insulators with space group symmetry

    SciTech Connect

    Jadaun, Priyamvada; Xiao, Di; Niu, Q.; Banerjee, Sanjay K.

    2013-01-01

    We show that in crystalline insulators, space group symmetry alone gives rise to a topological classification based on the discretization of electric polarization. Using C3 rotational symmetry as an example, we first prove that the polarization is discretized into three distinct classes, i.e., it can only take three inequivalent values. We then prove that these classes are topologically distinct. Therefore, a Z3 topological classification exists, with polarization as a topological class index. A concrete tight-binding model is derived to demonstrate the Z3 topological phase transition. Using first-principles calculations, we identify graphene on a BN substrate as a possible candidate to realize these Z3 topological states. To complete our analysis, we extend the classification of band structures to all 17 two-dimensional space groups. This work will contribute to a complete theory of symmetry-conserved topological phases and also elucidate topological properties of graphenelike systems.

  3. A universal symmetry detection algorithm.

    PubMed

    Maurer, Peter M

    2015-01-01

    Research on symmetry detection focuses on identifying and detecting new types of symmetry. The paper presents an algorithm that is capable of detecting any type of permutation-based symmetry, including many types for which there are no existing algorithms. General symmetry detection is library-based, but symmetries that can be parameterized, (i.e. total, partial, rotational, and dihedral symmetry), can be detected without using libraries. In many cases it is faster than existing techniques. Furthermore, it is simpler than most existing techniques, and can easily be incorporated into existing software. The algorithm can also be used with virtually any type of matrix-based symmetry, including conjugate symmetry.

  4. Discrete Glimpses of the Physics Landscape after the Higgs Discovery

    NASA Astrophysics Data System (ADS)

    Ellis, John

    2015-07-01

    What is the Higgs boson telling us? What else is there? How do we find it? This talk discusses these current topics in particle physics in the wake of the Higgs discovery, with particular emphasis on the discrete symmetries CP and R-parity, not forgetting flavour physics and dark matter, and finishing with some remarks about possible future colliders.

  5. Origami Optimization: Role of Symmetry in Accelerating Design

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Durstock, Michael; Reich, Gregory; Joo, James; Vaia, Richard

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. Design optimization tools have recently been developed to predict optimal fold patterns with mechanics-based metrics, such as the maximal energy storage, auxetic response and actuation. Origami actuator design problems possess inherent symmetries associated with the grid, mechanical boundary conditions and the objective function, which are often exploited to reduce the design space and computational cost of optimization. However, enforcing symmetry eliminates the prediction of potentially better performing asymmetric designs, which are more likely to exist given the discrete nature of fold line optimization. To better understand this effect, actuator design problems with different combinations of rotation and reflection symmetries were optimized while varying the number of folds allowed in the final design. In each case, the optimal origami patterns transitioned between symmetric and asymmetric solutions depended on the number of folds available for the design, with fewer symmetries present with more fold lines allowed. This study investigates the interplay of symmetry and discrete vs continuous optimization in origami actuators and provides insight into how the symmetries of the reference grid regulate the performance landscape. This work was supported by the Air Force Office of Scientific Research.

  6. Animal Gaits and Symmetry

    NASA Astrophysics Data System (ADS)

    Golubitsky, Martin

    2012-04-01

    Many gaits of four-legged animals are described by symmetry. For example, when a horse paces it moves both left legs in unison and then both right legs and so on. The motion is described by two symmetries: Interchange front and back legs, and swap left and right legs with a half-period phase shift. Biologists postulate the existence of a central pattern generator (CPG) in the neuronal system that sends periodic signals to the legs. CPGs can be thought of as electrical circuits that produce periodic signals and can be modeled by systems with symmetry. In this lecture we discuss animal gaits; use gait symmetries to construct a simplest CPG architecture that naturally produces quadrupedal gait rhythms; and make several testable predictions about gaits.

  7. The Symmetries of QCD

    ScienceCinema

    Sekhar Chivukula

    2016-07-12

    The symmetries of a quantum field theory can be realized in a variety of ways. Symmetries can be realized explicitly, approximately, through spontaneous symmetry breaking or, via an anomaly, quantum effects can dynamically eliminate a symmetry of the theory that was present at the classical level.  Quantum Chromodynamics (QCD), the modern theory of the strong interactions, exemplify each of these possibilities. The interplay of these effects determine the spectrum of particles that we observe and, ultimately, account for 99% of the mass of ordinary matter. 

  8. Another Broken Symmetry

    ERIC Educational Resources Information Center

    Groetsch, C. W.

    2005-01-01

    Resistance destroys symmetry. In this note, a graphical exploration serves as a guide to a rigorous elementary proof of a specific asymmetry in the trajectory of a point projectile in a medium offering linear resistance.

  9. Dynamical spacetime symmetry

    NASA Astrophysics Data System (ADS)

    Lovelady, Benjamin C.; Wheeler, James T.

    2016-04-01

    According to the Coleman-Mandula theorem, any gauge theory of gravity combined with an internal symmetry based on a Lie group must take the form of a direct product in order to be consistent with basic assumptions of quantum field theory. However, we show that an alternative gauging of a simple group can lead dynamically to a spacetime with compact internal symmetry. The biconformal gauging of the conformal symmetry of n-dimensional Euclidean space doubles the dimension to give a symplectic manifold. Examining one of the Lagrangian submanifolds in the flat case, we find that in addition to the expected S O (n ) connection and curvature, the solder form necessarily becomes Lorentzian. General coordinate invariance gives rise to an S O (n -1 ,1 ) connection on the spacetime. The principal fiber bundle character of the original S O (n ) guarantees that the two symmetries enter as a direct product, in agreement with the Coleman-Mandula theorem.

  10. Dynamical symmetries for fermions

    SciTech Connect

    Guidry, M.

    1989-01-01

    An introduction is given to the Fermion Dynamical Symmetry Model (FDSM). The analytical symmetry limits of the model are then applied to the calculation of physical quantities such as ground-state masses and B(E{sub 2}) values in heavy nuclei. These comparisons with data provide strong support for a new principle of collective motion, the Dynamical Pauli Effect, and suggest that dynamical symmetries which properly account for the pauli principle are much more persistent in nuclear structure than the corresponding boson symmetries. Finally, we present an assessment of criticisms which have been voiced concerning the FDSM, and a discussion of new phenomena and exotic spectroscopy'' which may be suggested by the model. 14 refs., 8 figs., 4 tabs.

  11. Challenging the minimal supersymmetric SU(5) model

    SciTech Connect

    Bajc, Borut; Lavignac, Stéphane; Mede, Timon

    2014-06-24

    We review the main constraints on the parameter space of the minimal renormalizable supersymmetric SU(5) grand unified theory. They consist of the Higgs mass, proton decay, electroweak symmetry breaking and fermion masses. Superpartner masses are constrained both from below and from above, giving hope for confirming or definitely ruling out the theory in the future. This contribution is based on Ref. [1].

  12. Discrete Mathematics Re "Tooled."

    ERIC Educational Resources Information Center

    Grassl, Richard M.; Mingus, Tabitha T. Y.

    1999-01-01

    Indicates the importance of teaching discrete mathematics. Describes how the use of technology can enhance the teaching and learning of discrete mathematics. Explorations using Excel, Derive, and the TI-92 proved how preservice and inservice teachers experienced a new dimension in problem solving and discovery. (ASK)

  13. Holography and Mottness: A Discrete Marriage

    NASA Astrophysics Data System (ADS)

    Phillips, Philip

    2012-02-01

    Gauge-gravity duality has allowed us to solve the physics of certain strongly coupled quantum mechanical systems using gravity. I will show how a space-time consisting of a charged black hole and a bulk Pauli coupling corresponds to a boundary theory with a dynamically generated gap (with no obvious symmetry breaking) and a massive rearrangement of the spectral weight as in classic Mott systems such as VO2. In this holographic set-up, the gap opens only when discrete scale invariance is present. This raises the possibility that the elusive symmetry that might be broken in Mott insulators, in general, might pertain to scale invariance. The relevance of this claim to recent theories of Mott systems that possess massless charged bosons is explored.

  14. Discrete Element Modeling

    SciTech Connect

    Morris, J; Johnson, S

    2007-12-03

    The Distinct Element Method (also frequently referred to as the Discrete Element Method) (DEM) is a Lagrangian numerical technique where the computational domain consists of discrete solid elements which interact via compliant contacts. This can be contrasted with Finite Element Methods where the computational domain is assumed to represent a continuum (although many modern implementations of the FEM can accommodate some Distinct Element capabilities). Often the terms Discrete Element Method and Distinct Element Method are used interchangeably in the literature, although Cundall and Hart (1992) suggested that Discrete Element Methods should be a more inclusive term covering Distinct Element Methods, Displacement Discontinuity Analysis and Modal Methods. In this work, DEM specifically refers to the Distinct Element Method, where the discrete elements interact via compliant contacts, in contrast with Displacement Discontinuity Analysis where the contacts are rigid and all compliance is taken up by the adjacent intact material.

  15. Origin of constrained maximal CP violation in flavor symmetry

    NASA Astrophysics Data System (ADS)

    He, Hong-Jian; Rodejohann, Werner; Xu, Xun-Jie

    2015-12-01

    Current data from neutrino oscillation experiments are in good agreement with δ = -π/2 and θ23 =π/4 under the standard parametrization of the mixing matrix. We define the notion of "constrained maximal CP violation" (CMCPV) for predicting these features and study their origin in flavor symmetry. We derive the parametrization-independent solution of CMCPV and give a set of equivalent definitions for it. We further present a theorem on how the CMCPV can be realized. This theorem takes the advantage of residual symmetries in neutrino and charged lepton mass matrices, and states that, up to a few minor exceptions, (| δ | ,θ23) = (π/2 ,π/4) is generated when those symmetries are real. The often considered μ- τ reflection symmetry, as well as specific discrete subgroups of O(3), is a special case of our theorem.

  16. Synchronous Discrete Harmonic Oscillator

    SciTech Connect

    Antippa, Adel F.; Dubois, Daniel M.

    2008-10-17

    We introduce the synchronous discrete harmonic oscillator, and present an analytical, numerical and graphical study of its characteristics. The oscillator is synchronous when the time T for one revolution covering an angle of 2{pi} in phase space, is an integral multiple N of the discrete time step {delta}t. It is fully synchronous when N is even. It is pseudo-synchronous when T/{delta}t is rational. In the energy conserving hyperincursive representation, the phase space trajectories are perfectly stable at all time scales, and in both synchronous and pseudo-synchronous modes they cycle through a finite number of phase space points. Consequently, both the synchronous and the pseudo-synchronous hyperincursive modes of time-discretization provide a physically realistic and mathematically coherent, procedure for dynamic, background independent, discretization of spacetime. The procedure is applicable to any stable periodic dynamical system, and provokes an intrinsic correlation between space and time, whereby space-discretization is a direct consequence of background-independent time-discretization. Hence, synchronous discretization moves the formalism of classical mechanics towards that of special relativity. The frequency of the hyperincursive discrete harmonic oscillator is ''blue shifted'' relative to its continuum counterpart. The frequency shift has the precise value needed to make the speed of the system point in phase space independent of the discretizing time interval {delta}t. That is the speed of the system point is the same on the polygonal (in the discrete case) and the circular (in the continuum case) phase space trajectories.

  17. Symmetry of priapulids (Priapulida). 2. Symmetry of larvae.

    PubMed

    Adrianov, A V; Malakhov, V V

    2001-02-01

    Larvae of priapulids are characterized by radial symmetry evident from both external and internal characters of the introvert and lorica. The bilaterality appears as a result of a combination of several radial symmetries: pentaradial symmetry of the teeth, octaradial symmetry of the primary scalids, 25-radial symmetry of scalids, biradial symmetry of the neck, and biradial and decaradial symmetry of the trunk. Internal radiality is exhibited by musculature and the circumpharyngeal nerve ring. Internal bilaterality is evident from the position of the ventral nerve cord and excretory elements. Externally, the bilaterality is determined by the position of the anal tubulus and two shortened midventral rows of scalids bordering the ventral nerve cord. The lorical elements define the biradial symmetry that is missing in adult priapulids. The radial symmetry of larvae is a secondary appearance considered an evolutionary adaptation to a lifestyle within the three-dimensional environment of the benthic sediment. PMID:11223922

  18. Symmetry in context: salience of mirror symmetry in natural patterns.

    PubMed

    Cohen, Elias H; Zaidi, Qasim

    2013-05-31

    Symmetry is a biologically relevant, mathematically involving, and aesthetically compelling visual phenomenon. Mirror symmetry detection is considered particularly rapid and efficient, based on experiments with random noise. Symmetry detection in natural settings, however, is often accomplished against structured backgrounds. To measure salience of symmetry in diverse contexts, we assembled mirror symmetric patterns from 101 natural textures. Temporal thresholds for detecting the symmetry axis ranged from 28 to 568 ms indicating a wide range of salience (1/Threshold). We built a model for estimating symmetry-energy by connecting pairs of mirror-symmetric filters that simulated cortical receptive fields. The model easily identified the axis of symmetry for all patterns. However, symmetry-energy quantified at this axis correlated weakly with salience. To examine context effects on symmetry detection, we used the same model to estimate approximate symmetry resulting from the underlying texture throughout the image. Magnitudes of approximate symmetry at flanking and orthogonal axes showed strong negative correlations with salience, revealing context interference with symmetry detection. A regression model that included the context-based measures explained the salience results, and revealed why perceptual symmetry can differ from mathematical characterizations. Using natural patterns thus produces new insights into symmetry perception and its possible neural circuits.

  19. Symmetry in context: Salience of mirror symmetry in natural patterns

    PubMed Central

    Cohen, Elias H.; Zaidi, Qasim

    2013-01-01

    Symmetry is a biologically relevant, mathematically involving, and aesthetically compelling visual phenomenon. Mirror symmetry detection is considered particularly rapid and efficient, based on experiments with random noise. Symmetry detection in natural settings, however, is often accomplished against structured backgrounds. To measure salience of symmetry in diverse contexts, we assembled mirror symmetric patterns from 101 natural textures. Temporal thresholds for detecting the symmetry axis ranged from 28 to 568 ms indicating a wide range of salience (1/Threshold). We built a model for estimating symmetry-energy by connecting pairs of mirror-symmetric filters that simulated cortical receptive fields. The model easily identified the axis of symmetry for all patterns. However, symmetry-energy quantified at this axis correlated weakly with salience. To examine context effects on symmetry detection, we used the same model to estimate approximate symmetry resulting from the underlying texture throughout the image. Magnitudes of approximate symmetry at flanking and orthogonal axes showed strong negative correlations with salience, revealing context interference with symmetry detection. A regression model that included the context-based measures explained the salience results, and revealed why perceptual symmetry can differ from mathematical characterizations. Using natural patterns thus produces new insights into symmetry perception and its possible neural circuits. PMID:23729773

  20. Electroweak symmetry breaking

    SciTech Connect

    Chanowitz, M.S.

    1990-09-01

    The Higgs mechanism is reviewed in its most general form, requiring the existence of a new symmetry-breaking force and associated particles, which need not however be Higgs bosons. The first lecture reviews the essential elements of the Higgs mechanism, which suffice to establish low energy theorems for the scattering of longitudinally polarized W and Z gauge bosons. An upper bound on the scale of the symmetry-breaking physics then follows from the low energy theorems and partial wave unitarity. The second lecture reviews particular models, with and without Higgs bosons, paying special attention to how the general features discussed in lecture 1 are realized in each model. The third lecture focuses on the experimental signals of strong WW scattering that can be observed at the SSC above 1 TeV in the WW subenergy, which will allow direct measurement of the strength of the symmetry-breaking force. 52 refs., 10 figs.

  1. Discrete monotron oscillator

    SciTech Connect

    Carlsten, B.E.; Haynes, W.B.

    1996-08-01

    The authors theoretically and numerically investigate the operation and behavior of the discrete monotron oscillator, a novel high-power microwave source. The discrete monotron differs from conventional monotrons and transit time oscillators by shielding the electron beam from the monotron cavity`s RF fields except at two distinct locations. This makes the discrete monotron act more like a klystron than a distributed traveling wave device. As a result, the oscillator has higher efficiency and can operate with higher beam powers than other single cavity oscillators and has more stable operation without requiring a seed input signal than mildly relativistic, intense-beam klystron oscillators.

  2. Classically conformal radiative neutrino model with gauged B - L symmetry

    NASA Astrophysics Data System (ADS)

    Okada, Hiroshi; Orikasa, Yuta

    2016-09-01

    We propose a classically conformal model in a minimal radiative seesaw, in which we employ a gauged B - L symmetry in the standard model that is essential in order to work the Coleman-Weinberg mechanism well that induces the B - L symmetry breaking. As a result, nonzero Majorana mass term and electroweak symmetry breaking simultaneously occur. In this framework, we show a benchmark point to satisfy several theoretical and experimental constraints. Here theoretical constraints represent inert conditions and Coleman-Weinberg condition. Experimental bounds come from lepton flavor violations (especially μ → eγ), the current bound on the Z‧ mass at the CERN Large Hadron Collider, and neutrino oscillations.

  3. Weakly broken galileon symmetry

    SciTech Connect

    Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo

    2015-09-01

    Effective theories of a scalar ϕ invariant under the internal galileon symmetryϕ→ϕ+b{sub μ}x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon’s quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.

  4. Weakly broken galileon symmetry

    SciTech Connect

    Pirtskhalava, David; Santoni, Luca; Trincherini, Enrico; Vernizzi, Filippo E-mail: luca.santoni@sns.it E-mail: filippo.vernizzi@cea.fr

    2015-09-01

    Effective theories of a scalar φ invariant under the internal galileon symmetry φ→φ+b{sub μ} x{sup μ} have been extensively studied due to their special theoretical and phenomenological properties. In this paper, we introduce the notion of weakly broken galileon invariance, which characterizes the unique class of couplings of such theories to gravity that maximally retain their defining symmetry. The curved-space remnant of the galileon's quantum properties allows to construct (quasi) de Sitter backgrounds largely insensitive to loop corrections. We exploit this fact to build novel cosmological models with interesting phenomenology, relevant for both inflation and late-time acceleration of the universe.

  5. Symmetry constraint for foreground extraction.

    PubMed

    Fu, Huazhu; Cao, Xiaochun; Tu, Zhuowen; Lin, Dongdai

    2014-05-01

    Symmetry as an intrinsic shape property is often observed in natural objects. In this paper, we discuss how explicitly taking into account the symmetry constraint can enhance the quality of foreground object extraction. In our method, a symmetry foreground map is used to represent the symmetry structure of the image, which includes the symmetry matching magnitude and the foreground location prior. Then, the symmetry constraint model is built by introducing this symmetry structure into the graph-based segmentation function. Finally, the segmentation result is obtained via graph cuts. Our method encourages objects with symmetric parts to be consistently extracted. Moreover, our symmetry constraint model is applicable to weak symmetric objects under the part-based framework. Quantitative and qualitative experimental results on benchmark datasets demonstrate the advantages of our approach in extracting the foreground. Our method also shows improved results in segmenting objects with weak, complex symmetry properties.

  6. A minimal non-supersymmetric S O(10) model: Gauge coupling unification, proton decay and fermion masses

    NASA Astrophysics Data System (ADS)

    Khan, Saki

    2016-06-01

    We present a minimal renormalizable non-supersymmetric S O(10) grand unified model with a symmetry breaking sector consisting of Higgs fields in the 54H + 126H + 10H representations. This model admits a single intermediate scale associated with Pati-Salam symmetry along with a discrete parity. Spontaneous symmetry breaking, the unification of gauge couplings and proton lifetime estimates are studied in detail in this framework. Including threshold corrections self-consistently, obtained from a full analysis of the Higgs potential, we show that the model is compatible with the current experimental bound on proton lifetime. The model generally predicts an upper bound of few times 1035 yrs for proton lifetime, which is not too far from the present Super-Kamiokande limit of τp ≳ 1.29 × 1034 yrs. With the help of a Pecci-Quinn symmetry and the resulting axion, the model provides a suitable dark matter candidate while also solving the strong CP problem. The intermediate scale, MI ≈ (1013 - 1014) GeV which is also the B - L scale, is of the right order for the right-handed neutrino mass which enables a successful description of light neutrino masses and oscillations. The Yukawa sector of the model consists of only two matrices in family space and leads to a predictive scenario for quark and lepton masses and mixings. The branching ratios for proton decay are calculable with the leading modes being p → e+π0 and p →v ¯π+ . Even though the model predicts no new physics within the reach of LHC, the next generation proton decay detectors and axion search experiments have the capability to pass verdict on this minimal scenario.

  7. The Discrete Hanging Cable

    ERIC Educational Resources Information Center

    Peters, James V.

    2004-01-01

    Using the methods of finite difference equations the discrete analogue of the parabolic and catenary cable are analysed. The fibonacci numbers and the golden ratio arise in the treatment of the catenary.

  8. Minimal model for Brownian vortexes.

    PubMed

    Sun, Bo; Grier, David G; Grosberg, Alexander Y

    2010-08-01

    A Brownian vortex is a noise-driven machine that uses thermal fluctuations to extract a steady-state flow of work from a static force field. Its operation is characterized by loops in a probability current whose topology and direction can change with changes in temperature. We present discrete three- and four-state minimal models for Brownian vortexes that can be solved exactly with a master-equation formalism. These models elucidate conditions required for flux reversal in Brownian vortexes and provide insights into their thermodynamic efficiency through the rate of entropy production. PMID:20866791

  9. Symmetry-breaking boundary states for WZW models

    NASA Astrophysics Data System (ADS)

    Blakeley, Daniel; Recknagel, Andreas

    2009-01-01

    Starting with the SU(2 WZW model, we construct boundary states that generically preserve only a parafermion times Virasoro subalgebra of the full affine Lie algebra symmetry of the bulk model. The boundary states come in families: intervals for generic k, quotients of SU(2) by discrete groups if k is a square. In that case, special members of the families can be viewed as superpositions of rotated Cardy branes. Using embeddings of SU(2) into higher groups, the new boundary states can be lifted to symmetry-breaking branes for other WZW models.

  10. Horror Vacui Symmetry.

    ERIC Educational Resources Information Center

    Crumpecker, Cheryl

    2003-01-01

    Describes an art lesson used with children in the third grade to help them learn about symmetry, as well as encouraging them to draw larger than usual. Explains that students learn about the belief called "Horror Vacui" of the Northwest American Indian tribes and create their interpretation of this belief. (CMK)

  11. Introduction to chiral symmetry

    SciTech Connect

    Koch, V.

    1996-01-08

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented.

  12. Exploring Metric Symmetry

    SciTech Connect

    Zwart, P.H.; Grosse-Kunstleve, R.W.; Adams, P.D.

    2006-07-31

    Relatively minor perturbations to a crystal structure can in some cases result in apparently large changes in symmetry. Changes in space group or even lattice can be induced by heavy metal or halide soaking (Dauter et al, 2001), flash freezing (Skrzypczak-Jankun et al, 1996), and Se-Met substitution (Poulsen et al, 2001). Relations between various space groups and lattices can provide insight in the underlying structural causes for the symmetry or lattice transformations. Furthermore, these relations can be useful in understanding twinning and how to efficiently solve two different but related crystal structures. Although (pseudo) symmetric properties of a certain combination of unit cell parameters and a space group are immediately obvious (such as a pseudo four-fold axis if a is approximately equal to b in an orthorhombic space group), other relations (e.g. Lehtio, et al, 2005) that are less obvious might be crucial to the understanding and detection of certain idiosyncrasies of experimental data. We have developed a set of tools that allows straightforward exploration of possible metric symmetry relations given unit cell parameters and a space group. The new iotbx.explore{_}metric{_}symmetry command produces an overview of the various relations between several possible point groups for a given lattice. Methods for finding relations between a pair of unit cells are also available. The tools described in this newsletter are part of the CCTBX libraries, which are included in the latest (versions July 2006 and up) PHENIX and CCI Apps distributions.

  13. Symmetry, Equivalence and Self-Assembly

    NASA Astrophysics Data System (ADS)

    Douglas, Jack

    2006-03-01

    Molecular self-assembly at equilibrium is central to the formation of many biological structures and the emulation of this process through the creation of synthetic counterparts offers great promise for nanofabrication. The central problems in this field are an understanding of how the symmetry of the interacting particles encodes the geometrical structure of the organized structure and the nature of the thermodynamic transitions involved. Our approach is inspired by the self-assembly of actin, tubulin and icosahedral structures of plant and animal viruses. We observe chain, membrane,`nanotube' and hollow icosahedron structures using `equivalent' particles exhibiting an interplay between directional (dipolar and multi-polar) interactions and short-range (van der Waals) interactions. Specifically, a dipolar potential (continuous rotational symmetry) gives rise to chain formation, while potentials having discrete rotational symmetries (e.g., square quadrupole or triangular ring of dipoles) led to the self-organization of nanotube and icosahedral structures with some resemblance to tubulin and icosahedral viruses. The simulations are compared to theoretical models of molecular self-assembly, especially in the case of dipolar fluids where the corresponding analytic theory of equilibrium polymerization is well developed. These computations give insights into the design elements required for the development of synthetic systems exhibiting this type of organization.

  14. Depression: discrete or continuous?

    PubMed

    Bowins, Brad

    2015-01-01

    Elucidating the true structure of depression is necessary if we are to advance our understanding and treatment options. Central to the issue of structure is whether depression represents discrete types or occurs on a continuum. Nature almost universally operates on the basis of continuums, whereas human perception favors discrete categories. This reality might be formalized into a 'continuum principle': natural phenomena tend to occur on a continuum, and any instance of hypothesized discreteness requires unassailable proof. Research evidence for discrete types falls far short of this standard, with most evidence supporting a continuum. However, quantitative variation can yield qualitative differences as an emergent property, fostering the appearance of discreteness. Depression as a continuum is best characterized by duration and severity dimensions, with the latter understood in terms of depressive inhibition. In the absence of some degree of cognitive, emotional, social, and physical inhibition, depression should not be diagnosed. Combining the dimensions of duration and severity provides an optimal way to characterize the quantitative and related qualitative aspects of depression and to describe the overall degree of dysfunction. The presence of other symptom types occurs when anxiety, hypomanic/manic, psychotic, and personality continuums interface with the depression continuum. PMID:25531962

  15. Mechanochemical Symmetry Breaking in Hydra Aggregates

    PubMed Central

    Mercker, Moritz; Köthe, Alexandra; Marciniak-Czochra, Anna

    2015-01-01

    Tissue morphogenesis comprises the self-organized creation of various patterns and shapes. Although detailed underlying mechanisms are still elusive in many cases, an increasing amount of experimental data suggests that chemical morphogen and mechanical processes are strongly coupled. Here, we develop and test a minimal model of the axis-defining step (i.e., symmetry breaking) in aggregates of the Hydra polyp. Based on previous findings, we combine osmotically driven shape oscillations with tissue mechanics and morphogen dynamics. We show that the model incorporating a simple feedback loop between morphogen patterning and tissue stretch reproduces a wide range of experimental data. Finally, we compare different hypothetical morphogen patterning mechanisms (Turing, tissue-curvature, and self-organized criticality). Our results suggest the experimental investigation of bigger (i.e., multiple head) aggregates as a key step for a deeper understanding of mechanochemical symmetry breaking in Hydra. PMID:25954896

  16. Electroweak symmetry breaking: Higgs/whatever

    SciTech Connect

    Chanowitz, M.S.

    1989-10-16

    In the first of these two lectures the Higgs mechanism is reviewed in its most general form, which does not necessarily require the existence of Higgs bosons. The general consequences of the hypothesis that electroweak symmetry breaking is due to the Higgs mechanism are deduced just from gauge invariance and unitarity. In the second lecture the general properties are illustrated with three specific models: the Weinberg-Salam model, its minimal supersymmetric extension, and technicolor. The second lecture concludes with a discussion of the experiment signals for strong WW scattering, whose presence or absence will allow us to determine whether the symmetry breaking sector lies above or below 1 TeV. 57 refs.

  17. Reflections on Symmetry and Proof

    ERIC Educational Resources Information Center

    Merrotsy, Peter

    2008-01-01

    The concept of symmetry is fundamental to mathematics. Arguments and proofs based on symmetry are often aesthetically pleasing because they are subtle and succinct and non-standard. This article uses notions of symmetry to approach the solutions to a broad range of mathematical problems. It responds to Krutetskii's criteria for mathematical…

  18. Dynamical Symmetries in Classical Mechanics

    ERIC Educational Resources Information Center

    Boozer, A. D.

    2012-01-01

    We show how symmetries of a classical dynamical system can be described in terms of operators that act on the state space for the system. We illustrate our results by considering a number of possible symmetries that a classical dynamical system might have, and for each symmetry we give examples of dynamical systems that do and do not possess that…

  19. Symmetry breaking and optical negative index of closed nanorings

    NASA Astrophysics Data System (ADS)

    Kanté, Boubacar; Park, Yong-Shik; O'Brien, Kevin; Shuldman, Daniel; Lanzillotti-Kimura, Norberto D.; Jing Wong, Zi; Yin, Xiaobo; Zhang, Xiang

    2012-11-01

    Metamaterials have extraordinary abilities, such as imaging beyond the diffraction limit and invisibility. Many metamaterials are based on split-ring structures, however, like atomic orbital currents, it has long been believed that closed rings cannot produce negative refractive index. Here we report a low-loss and polarization-independent negative-index metamaterial made solely of closed metallic nanorings. Using symmetry breaking that negatively couples the discrete nanorings, we measured negative phase delay in our composite ‘chess metamaterial’. The formation of an ultra-broad Fano-resonance-induced optical negative-index band, spanning wavelengths from 1.3 to 2.3 μm, is experimentally observed in this structure. This discrete and mono-particle negative-index approach opens exciting avenues towards symmetry-controlled topological nanophotonics with on-demand linear and nonlinear responses.

  20. Hexagonal projected symmetries.

    PubMed

    Oliveira, Juliane F; Castro, Sofia B S D; Labouriau, Isabel S

    2015-09-01

    In the study of pattern formation in symmetric physical systems, a three-dimensional structure in thin domains is often modelled as a two-dimensional one. This paper is concerned with functions in {\\bb R}^{3} that are invariant under the action of a crystallographic group and the symmetries of their projections into a function defined on a plane. A list is obtained of the crystallographic groups for which the projected functions have a hexagonal lattice of periods. The proof is constructive and the result may be used in the study of observed patterns in thin domains, whose symmetries are not expected in two-dimensional models, like the black-eye pattern. PMID:26317198

  1. Bubble divergences and gauge symmetries in spin foams

    NASA Astrophysics Data System (ADS)

    Bonzom, Valentin; Dittrich, Bianca

    2013-12-01

    The divergence structure of spin foam models and its relation to diffeomorphism symmetry has attracted renewed interest. We will discuss in detail the (nonoccurrence of) divergencies in the Barrett-Crane spin foam model, which with our choice of weights can be understood as an integral of delta functions only. We will present furthermore a simple method to estimate the occurrence of so-called bubble divergencies for general spin foam models. We expect divergencies in spin foams related to the existence of (diffeomorphism) gauge symmetries. Thus we have to conclude that such gauge symmetries are not (fully) present in the model we consider. But we will identify a class of gauge symmetries that occur at special solutions of equations imposed by the delta function weights. This situation is surprisingly similar to the case of broken diffeomorphism symmetries in discrete gravity, which are present around flat solutions. We introduce a method to derive (Ward identity-like) equations for the vertex amplitudes of the model in the case of broken gauge symmetries.

  2. Binary-Symmetry Detection

    NASA Technical Reports Server (NTRS)

    Lopez, Hiram

    1987-01-01

    Transmission errors for zeros and ones tabulated separately. Binary-symmetry detector employs psuedo-random data pattern used as test message coming through channel. Message then modulo-2 added to locally generated and synchronized version of test data pattern in same manner found in manufactured test sets of today. Binary symmetrical channel shows nearly 50-percent ones to 50-percent zeroes correspondence. Degree of asymmetry represents imbalances due to either modulation, transmission, or demodulation processes of system when perturbed by noise.

  3. Chiral symmetry and pentaquarks

    SciTech Connect

    Dmitri Diakonov

    2004-07-01

    Spontaneous chiral symmetry breaking, mesons and baryons are illustrated in the language of the Dirac theory. Various forces acting between quarks inside baryons are discussed. I explain why the naive quark models typically overestimate pentaquark masses by some 500 MeV and why in the fully relativistic approach to baryons pentaquarks turn out to be light. I discuss briefly why it can be easier to produce pentaquarks at low than at high energies.

  4. PT symmetry in optics

    NASA Astrophysics Data System (ADS)

    Christodoulides, Demetrios

    2015-03-01

    Interest in complex Hamiltonians has been rekindled after the realization that a wide class of non-Hermitian Hamiltonians can have entirely real spectra as long as they simultaneously respect parity and time reversal operators. In non-relativistic quantum mechanics, governed by the Schrödinger equation, a necessary but not sufficient condition for PT symmetry to hold is that the complex potential should involve real and imaginary parts which are even and odd functions of position respectively. As recently indicated, optics provides a fertile ground to observe and utilize notions of PT symmetry. In optics, the refractive index and gain/loss profiles play the role of the real and imaginary parts of the aforementioned complex potentials. As it has been demonstrated in several studies, PT-symmetric optical structures can exhibit peculiar properties that are otherwise unattainable in traditional Hermitian (conservative) optical settings. Among them, is the possibility for breaking this symmetry through an abrupt phase transition, band merging effects and unidirectional invisibility. Here we review recent developments in the field of -symmetric optics.

  5. Minimal D = 7 supergravity and the supersymmetry of Arnold-Beltrami flux branes

    NASA Astrophysics Data System (ADS)

    Fré, P.; Grassi, P. A.; Ravera, L.; Trigiante, M.

    2016-06-01

    In this paper we study some properties of the newly found Arnold-Beltrami flux-brane solutions to the minimal D = 7 supergravity. To this end we first single out the appropriate Free Differential Algebra containing both a gauge 3-form B [3] and a gauge 2-form B [2]: then we present the complete rheonomic parametrization of all the generalized curvatures. This allows us to identify two-brane configurations with Arnold-Beltrami fluxes in the transverse space with exact solutions of supergravity and to analyze the Killing spinor equation in their background. We find that there is no preserved supersymmetry if there are no additional translational Killing vectors. Guided by this principle we explicitly construct Arnold-Beltrami flux two-branes that preserve 0, 1/8 and 1/4 of the original supersymmetry. Two-branes without fluxes are instead BPS states and preserve 1/2 supersymmetry. For each two-brane solution we carefully study its discrete symmetry that is always given by some appropriate crystallographic group Γ. Such symmetry groups Γ are transmitted to the D = 3 gauge theories on the brane world-volume that would occur in the gauge/gravity correspondence. Furthermore we illustrate the intriguing relation between gauge fluxes in two-brane solutions and hyperinstantons in D = 4 topological sigma-models.

  6. Discrete breathers in crystals

    NASA Astrophysics Data System (ADS)

    Dmitriev, S. V.; Korznikova, E. A.; Baimova, Yu A.; Velarde, M. G.

    2016-05-01

    It is well known that periodic discrete defect-containing systems, in addition to traveling waves, support vibrational defect-localized modes. It turned out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Since the nodes of the system are all on equal footing, it is only through the special choice of initial conditions that a group of nodes can be found on which such a mode, called a discrete breather (DB), will be excited. The DB frequency must be outside the frequency range of the small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically conserve its vibrational energy forever provided no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery in them of DBs was only a matter of time. It is well known that periodic discrete defect-containing systems support both traveling waves and vibrational defect-localized modes. It turns out that if a periodic discrete system is nonlinear, it can support spatially localized vibrational modes as exact solutions even in the absence of defects. Because the nodes of the system are all on equal footing, only a special choice of the initial conditions allows selecting a group of nodes on which such a mode, called a discrete breather (DB), can be excited. The DB frequency must be outside the frequency range of small-amplitude traveling waves. Not resonating with and expending no energy on the excitation of traveling waves, a DB can theoretically preserve its vibrational energy forever if no thermal vibrations or other perturbations are present. Crystals are nonlinear discrete systems, and the discovery of DBs in them was only a matter of time. Experimental studies of DBs encounter major technical difficulties, leaving atomistic computer simulations as the primary investigation tool. Despite

  7. Symmetries in laminated composite plates

    NASA Technical Reports Server (NTRS)

    Noor, A. K.

    1976-01-01

    The different types of symmetry exhibited by laminated anisotropic fibrous composite plates are identified and contrasted with the symmetries of isotropic and homogeneous orthotropic plates. The effects of variations in the fiber orientation and the stacking sequence of the layers on the symmetries exhibited by composite plates are discussed. Both the linear and geometrically nonlinear responses of the plates are considered. A simple procedure is presented for exploiting the symmetries in the finite element analysis. Examples are given of square, skew and polygonal plates where use of symmetry concepts can significantly reduce the scope and cost of analysis.

  8. Lepton mixing patterns from a scan of finite discrete groups

    NASA Astrophysics Data System (ADS)

    Holthausen, Martin; Lim, Kher Sham; Lindner, Manfred

    2013-04-01

    The recent discovery of a non-zero value of the mixing angle θ13 has ruled out tri-bimaximal mixing as the correct lepton mixing pattern generated by some discrete flavor symmetry (barring large next-to-leading order corrections in concrete models). In this work we assume that neutrinos are Majorana particles and perform a general scan of all finite discrete groups with order less than 1536 to obtain their predictions for lepton mixing angles. To our surprise, the scan of over one million groups only yields 3 interesting groups that give lepton mixing patterns which lie within 3-sigma of the current best global fit values. A systematic way to categorize such groups and the implications for flavor symmetry are discussed.

  9. The Minimal Supersymmetric Fat Higgs Model

    SciTech Connect

    Harnik, Roni; Kribs, Graham D.; Larson, Daniel T.; Murayama, Hitoshi

    2003-11-26

    We present a calculable supersymmetric theory of a composite"fat'" Higgs boson. Electroweak symmetry is broken dynamically through a new gauge interaction that becomes strong at an intermediate scale. The Higgs mass can easily be 200-450 GeV along with the superpartner masses, solving the supersymmetric little hierarchy problem. We explicitly verify that the model is consistent with precision electroweak data without fine-tuning. Gauge coupling unification can be maintained despite the inherently strong dynamics involved in electroweak symmetry breaking. Supersymmetrizing the Standard Model therefore does not imply a light Higgs mass, contrary to the lore in the literature. The Higgs sector of the minimal Fat Higgs model has a mass spectrum that is distinctly different from the Minimal Supersymmetric Standard Model.

  10. Symmetry in DIET phase transitions

    NASA Astrophysics Data System (ADS)

    Zhang, J. P.; Marks, L. D.

    1989-11-01

    Analysis of the route of the phase transitions in transition metal oxides driven by DIET of oxygen from the surfaces observed by high resolution electron microscopy indicates that there is a symmetry selection rule. The phase transitions are to a structure with a higher point group symmetry where the new phase with a lower oxygen content is either one with a supergroup symmetry with respect to the original phase, or is an amorphous intermediary. The final phase has the highest symmetry and is also a metallic conductor. If a possible lower oxygen content phase does not have the correct supergroup symmetry, it is not formed. It is also found that the point group is conserved during the phase transition if the oxide belongs to the highest groups O h or D 6h. This symmetry selection rule can therefore be used to predict the route of the phase transition. The symmetry rule operates when the phase transition is diffusional.

  11. Esophagectomy - minimally invasive

    MedlinePlus

    Minimally invasive esophagectomy; Robotic esophagectomy; Removal of the esophagus - minimally invasive; Achalasia - esophagectomy; Barrett esophagus - esophagectomy; Esophageal cancer - esophagectomy - laparoscopic; Cancer of the ...

  12. Clash of symmetries in a Randall-Sundrum-like spacetime

    NASA Astrophysics Data System (ADS)

    Dando, Gareth; Davidson, Aharon; George, Damien P.; Volkas, Raymond R.; Wali, K. C.

    2005-08-01

    We present a toy model that exhibits clash-of-symmetries style Higgs field kink configurations in a Randall-Sundrum-like spacetime. The model has two complex scalar fields Φ1,2, with a sextic potential obeying global U(1)⊗U(1) and discrete Φ1↔Φ2 interchange symmetries. The scalar fields are coupled to 4+1 dimensional gravity endowed with a bulk cosmological constant. We show that the coupled Einstein-Higgs field equations have an interesting analytic solution provided the sextic potential adopts a particular form. The 4+1 metric is shown to be that of a smoothed-out Randall-Sundrum type of spacetime. The thin-brane Randall-Sundrum limit, whereby the Higgs field kinks become step functions, is carefully defined in terms of the fundamental parameters in the action. The “clash-of-symmetries” feature, defined in previous papers, is manifested here through the fact that both of the U(1) symmetries are spontaneously broken at all nonasymptotic points in the extra dimension w. One of the U(1)’s is asymptotically restored as w→-∞, with the other U(1) restored as w→+∞. The spontaneously broken discrete symmetry ensures topological stability. In the gauged version of this model we find new flat-space solutions, but in the warped metric case we have been unable to find any solutions with nonzero gauge fields.

  13. Tracing symmetries and their breakdown through phases of heterotic (2,2) compactifications

    NASA Astrophysics Data System (ADS)

    Blaszczyk, Michael; Oehlmann, Paul-Konstantin

    2016-04-01

    We are considering the class of heterotic N=(2,2) Landau-Ginzburg orbifolds with 9 fields corresponding to A 1 9 Gepner models. We classify all of its Abelian discrete quotients and obtain 152 inequivalent models closed under mirror symmetry with N=1 , 2 and 4 supersymmetry in 4D. We compute the full massless matter spectrum at the Fermat locus and find a universal relation satisfied by all models. In addition we give prescriptions of how to compute all quantum numbers of the 4D states including their discrete R-symmetries. Using mirror symmetry of rigid geometries we describe orbifold and smooth Calabi-Yau phases as deformations away from the Landau-Ginzburg Fermat locus in two explicit examples. We match the non-Fermat deformations to the 4D Higgs mechanism and study the conservation of R-symmetries. The first example is a Z_3 orbifold on an E6 lattice where the R-symmetry is preserved. Due to a permutation symmetry of blow-up and torus Kähler parameters the R-symmetry stays conserved also in the smooth Calabi-Yau phase. In the second example the R-symmetry gets broken once we deform to the geometric Z_3× Z_{3,free} orbifold regime.

  14. Strongly broken Peccei-Quinn symmetry in the early Universe

    SciTech Connect

    Takahashi, Fuminobu; Yamada, Masaki

    2015-10-06

    We consider QCD axion models where the Peccei-Quinn symmetry is badly broken by a larger amount in the past than in the present, in order to avoid the axion isocurvature problem. Specifically we study supersymmetric axion models where the Peccei-Quinn symmetry is dynamically broken by either hidden gauge interactions or the SU(3){sub c} strong interactions whose dynamical scales are temporarily enhanced by the dynamics of flat directions. The former scenario predicts a large amount of self-interacting dark radiation as the hidden gauge symmetry is weakly coupled in the present Universe. We also show that the observed amount of baryon asymmetry can be generated by the QCD axion dynamics via spontaneous baryogenesis. We briefly comment on the case in which the PQ symmetry is broken by a non-minimal coupling to gravity.

  15. Strongly broken Peccei-Quinn symmetry in the early Universe

    SciTech Connect

    Takahashi, Fuminobu; Yamada, Masaki E-mail: yamadam@icrr.u-tokyo.ac.jp

    2015-10-01

    We consider QCD axion models where the Peccei-Quinn symmetry is badly broken by a larger amount in the past than in the present, in order to avoid the axion isocurvature problem. Specifically we study supersymmetric axion models where the Peccei-Quinn symmetry is dynamically broken by either hidden gauge interactions or the SU(3){sub c} strong interactions whose dynamical scales are temporarily enhanced by the dynamics of flat directions. The former scenario predicts a large amount of self-interacting dark radiation as the hidden gauge symmetry is weakly coupled in the present Universe. We also show that the observed amount of baryon asymmetry can be generated by the QCD axion dynamics via spontaneous baryogenesis. We briefly comment on the case in which the PQ symmetry is broken by a non-minimal coupling to gravity.

  16. Supersymmetry, grand unification and flavor symmetry

    NASA Astrophysics Data System (ADS)

    Enkhbat, Tsedenbaljir

    In this thesis I have presented the findings of my research pursued during my Ph.D. study. The purpose of this thesis was to study different theoretical ideas in high energy physics model building addressed primarily towards understanding the fermion mass problem and the gauge hierarchy problem. These include: Anomalous flavor U(1) symmetry and its experimental implications, finite GUT models with discrete family symmetry, and a product GUT model in a 2D deconstructed theory space. The second and third chapters of the thesis describe our study of lepton flavor violation (LFV) and electric dipole moments (EDM) induced by a flavor-dependent anomalous U(1) gauge symmetry of string origin. The models considered also address the fermion mass hierarchy problem successfully. We have shown that the U(1) sector induces significant LFV and EDMs through the SUSY breaking parameters. These effects arise via renormalization group evolution of the parameters in the momentum regime between the string and the anomalous U(1) breaking scale. The fourth chapter of the thesis contains our work on a concrete realization of SUSY breaking using interference between the anomalous U(1) flavor gauge symmetry and a strongly coupled SU(N c), leading to the so called Split SUSY spectrum where the sfermions and the gravitino acquire masses of order 105 ÷ 108 GeV while the gauginos and the Higgsinos have masses of order 102 ÷ 103 GeV. We have calculated the leading order supergravity corrections and have presented a class of explicit models of Split SUSY which are phenomenologically consistent. In the fifth chapter I have presented models for realistic quark masses and mixings in the context of finite SU(5) GUT wherein the beta functions for the gauge and the Yukawa couplings vanish to all orders in perturbation theory. The models presented are based on non-Abelian discrete symmetries. In the case of (Z4)3 x P and A4 symmetries we have found models finite to all order of perturbation theory

  17. What Is Discrete Mathematics?

    ERIC Educational Resources Information Center

    Sharp, Karen Tobey

    This paper cites information received from a number of sources, e.g., mathematics teachers in two-year colleges, publishers, and convention speakers, about the nature of discrete mathematics and about what topics a course in this subject should contain. Note is taken of the book edited by Ralston and Young which discusses the future of college…

  18. Discrete cavity solitons.

    PubMed

    Peschel, U; Egorov, O; Lederer, F

    2004-08-15

    We derive evolution equations describing light propagation in an array of coupled-waveguide resonators and predict the existence of discrete cavity solitons. We identify stable, unstable, and oscillating solitons by varying the coupling strength between the anticontinuous and the continuous limit. PMID:15357356

  19. Bilateral Symmetry in Morphogenesis of Embryos

    PubMed Central

    Jehle, Herbert

    1970-01-01

    It is suggested that differentiated embryonic cells have a high specificity of molecular constitution as regards the surface layers surrounding their cellular membranes. Correspondingly, specific interface energies may characterize the early contacts between different cell types. The question is raised whether the morphology of the developing embryo may be understood in terms of cellular arrangements which minimize the total interface energy. Bilateral symmetry prevalent in early embryonic development of higher animals might be understood on the basis of the adoption of such a minimum energy principle if, in addition, one assumes that embryonic development is uniquely determined for a particular species. PMID:5272310

  20. PREFACE: Symmetries and Integrability of Difference Equations

    NASA Astrophysics Data System (ADS)

    Doliwa, Adam; Korhonen, Risto; Lafortune, Stéphane

    2007-10-01

    The notion of integrability was first introduced in the 19th century in the context of classical mechanics with the definition of Liouville integrability for Hamiltonian flows. Since then, several notions of integrability have been introduced for partial and ordinary differential equations. Closely related to integrability theory is the symmetry analysis of nonlinear evolution equations. Symmetry analysis takes advantage of the Lie group structure of a given equation to study its properties. Together, integrability theory and symmetry analysis provide the main method by which nonlinear evolution equations can be solved explicitly. Difference equations (DE), like differential equations, are important in numerous fields of science and have a wide variety of applications in such areas as mathematical physics, computer visualization, numerical analysis, mathematical biology, economics, combinatorics, and quantum field theory. It is thus crucial to develop tools to study and solve DEs. While the theory of symmetry and integrability for differential equations is now largely well-established, this is not yet the case for discrete equations. Although over recent years there has been significant progress in the development of a complete analytic theory of difference equations, further tools are still needed to fully understand, for instance, the symmetries, asymptotics and the singularity structure of difference equations. The series of SIDE meetings on Symmetries and Integrability of Difference Equations started in 1994. Its goal is to provide a platform for an international and interdisciplinary communication for researchers working in areas associated with integrable discrete systems, such as classical and quantum physics, computer science and numerical analysis, mathematical biology and economics, discrete geometry and combinatorics, theory of special functions, etc. The previous SIDE meetings took place in Estérel near Montréal, Canada (1994), at the University of

  1. Quantum mechanical Hamiltonian models of discrete processes

    SciTech Connect

    Benioff, P.

    1981-03-01

    Here the results of other work on quantum mechanical Hamiltonian models of Turing machines are extended to include any discrete process T on a countably infinite set A. The models are constructed here by use of scattering phase shifts from successive scatterers to turn on successive step interactions. Also a locality requirement is imposed. The construction is done by first associating with each process T a model quantum system M with associated Hilbert space H/sub M/ and step operator U/sub T/. Since U/sub T/ is not unitary in general, M, H/sub M/, and U/sub T/ are extended into a (continuous time) Hamiltonian model on a larger space which satisfies the locality requirement. The construction is compared with the minimal unitary dilation of U/sub T/. It is seen that the model constructed here is larger than the minimal one. However, the minimal one does not satisfy the locality requirement.

  2. A Discrete Lagrangian Algorithm for Optimal Routing Problems

    SciTech Connect

    Kosmas, O. T.; Vlachos, D. S.; Simos, T. E.

    2008-11-06

    The ideas of discrete Lagrangian methods for conservative systems are exploited for the construction of algorithms applicable in optimal ship routing problems. The algorithm presented here is based on the discretisation of Hamilton's principle of stationary action Lagrangian and specifically on the direct discretization of the Lagrange-Hamilton principle for a conservative system. Since, in contrast to the differential equations, the discrete Euler-Lagrange equations serve as constrains for the optimization of a given cost functional, in the present work we utilize this feature in order to minimize the cost function for optimal ship routing.

  3. Spontaneous Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Strocchi, Franco

    One of the most powerful ideas of modern theoretical physics is the mechanism of spontaneous symmetry breaking. It is at the basis of most of the recent achievements in the description of phase transitions in Statistical Mechanics as well as of collective phenomena in solid state physics. It has also made possible the unification of weak, electromagnetic and strong interactions in elementary particle physics. Philosophically, the idea is very deep and subtle (this is probably why its exploitation is a rather recent achievement) and the popular accounts do not fully do justice to it.

  4. Little Conformal Symmetry

    NASA Astrophysics Data System (ADS)

    Houtz, Rachel; Colwell, Kitran; Terning, John

    2016-09-01

    We explore a new class of natural models which ensure the one-loop divergences in the Higgs mass are cancelled. The top-partners that cancel the top loop are new gauge bosons, and the symmetry relation that ensures the cancellation arises at an infrared fixed point. Such a cancellation mechanism can, a la Little Higgs models, push the scale of new physics that completely solves the hierarchy problem up to 5-10 TeV. When embedded in a supersymmetric model, the stop and gaugino masses provide the cutoffs for the loops, and the mechanism ensures a cancellation between the stop and gaugino mass dependence of the Higgs mass parameter.

  5. Surface defects and symmetries

    NASA Astrophysics Data System (ADS)

    Fuchs, Jürgen; Schweigert, Christoph

    2015-04-01

    In quantum field theory, defects of various codimensions are natural ingredients and carry a lot of interesting information. In this contribution we concentrate on topological quantum field theories in three dimensions, with a particular focus on Dijkgraaf-Witten theories with abelian gauge group. Surface defects in Dijkgraaf-Witten theories have applications in solid state physics, topological quantum computing and conformal field theory. We explain that symmetries in these topological field theories are naturally defined in terms of invertible topological surface defects and are thus Brauer-Picard groups.

  6. Continuous limit of discrete quantum walks

    NASA Astrophysics Data System (ADS)

    M N, Dheeraj; Brun, Todd A.

    2015-06-01

    Quantum walks can be defined in two quite distinct ways: discrete-time and continuous-time quantum walks (DTQWs and CTQWs). For classical random walks, there is a natural sense in which continuous-time walks are a limit of discrete-time walks. Quantum mechanically, in the discrete-time case, an additional "coin space" must be appended for the walk to have nontrivial time evolution. Continuous-time quantum walks, however, have no such constraints. This means that there is no completely straightforward way to treat a CTQW as a limit of a DTQW, as can be done in the classical case. Various approaches to this problem have been taken in the past. We give a construction for walks on d -regular, d -colorable graphs when the coin flip operator is Hermitian: from a standard DTQW we construct a family of discrete-time walks with a well-defined continuous-time limit on a related graph. One can think of this limit as a "coined" continuous-time walk. We show that these CTQWs share some properties with coined DTQWs. In particular, we look at a spatial search by a DTQW over the two-dimensional (2D) torus (a grid with periodic boundary conditions) of size √{N }×√{N } , where it was shown that a coined DTQW can search in time O (√{N }logN ) , but a standard CTQW takes Ω (N ) time to search for a marked element. The continuous limit of the DTQW search over the 2D torus exhibits the O (√{N }logN ) scaling, like the coined walk it is derived from. We also look at the effects of graph symmetry on the limiting walk, and show that the properties are similar to those of the DTQW as shown in Krovi and Brun, Phys. Rev. A 75, 062332 (2007), 10.1103/PhysRevA.75.062332.

  7. Galactic oscillator symmetry

    NASA Technical Reports Server (NTRS)

    Rosensteel, George

    1995-01-01

    Riemann ellipsoids model rotating galaxies when the galactic velocity field is a linear function of the Cartesian coordinates of the galactic masses. In nuclear physics, the kinetic energy in the linear velocity field approximation is known as the collective kinetic energy. But, the linear approximation neglects intrinsic degrees of freedom associated with nonlinear velocity fields. To remove this limitation, the theory of symplectic dynamical symmetry is developed for classical systems. A classical phase space for a self-gravitating symplectic system is a co-adjoint orbit of the noncompact group SP(3,R). The degenerate co-adjoint orbit is the 12 dimensional homogeneous space Sp(3,R)/U(3), where the maximal compact subgroup U(3) is the symmetry group of the harmonic oscillator. The Hamiltonian equations of motion on each orbit form a Lax system X = (X,F), where X and F are elements of the symplectic Lie algebra. The elements of the matrix X are the generators of the symplectic Lie algebra, viz., the one-body collective quadratic functions of the positions and momenta of the galactic masses. The matrix F is composed from the self-gravitating potential energy, the angular velocity, and the hydostatic pressure. Solutions to the hamiltonian dynamical system on Sp(3,R)/U(3) are given by symplectic isospectral deformations. The Casimirs of Sp(3,R), equal to the traces of powers of X, are conserved quantities.

  8. Squash operator and symmetry

    NASA Astrophysics Data System (ADS)

    Tsurumaru, Toyohiro

    2010-01-01

    This article begins with a simple proof of the existence of squash operators compatible with the Bennett-Brassard 1984 (BB84) protocol that suits single-mode as well as multimode threshold detectors. The proof shows that, when a given detector is symmetric under cyclic group C4, and a certain observable associated with it has rank two as a matrix, then there always exists a corresponding squash operator. Next, we go on to investigate whether the above restriction of “rank two” can be eliminated; i.e., is cyclic symmetry alone sufficient to guarantee the existence of a squash operator? The motivation behind this question is that, if this were true, it would imply that one could realize a device-independent and unconditionally secure quantum key distribution protocol. However, the answer turns out to be negative, and moreover, one can instead prove a no-go theorem that any symmetry is, by itself, insufficient to guarantee the existence of a squash operator.

  9. Squash operator and symmetry

    SciTech Connect

    Tsurumaru, Toyohiro

    2010-01-15

    This article begins with a simple proof of the existence of squash operators compatible with the Bennett-Brassard 1984 (BB84) protocol that suits single-mode as well as multimode threshold detectors. The proof shows that, when a given detector is symmetric under cyclic group C{sub 4}, and a certain observable associated with it has rank two as a matrix, then there always exists a corresponding squash operator. Next, we go on to investigate whether the above restriction of 'rank two' can be eliminated; i.e., is cyclic symmetry alone sufficient to guarantee the existence of a squash operator? The motivation behind this question is that, if this were true, it would imply that one could realize a device-independent and unconditionally secure quantum key distribution protocol. However, the answer turns out to be negative, and moreover, one can instead prove a no-go theorem that any symmetry is, by itself, insufficient to guarantee the existence of a squash operator.

  10. Discreteness induced extinction

    NASA Astrophysics Data System (ADS)

    dos Santos, Renato Vieira; da Silva, Linaena Méricy

    2015-11-01

    Two simple models based on ecological problems are discussed from the point of view of non-equilibrium statistical mechanics. It is shown how discrepant may be the results of the models that include spatial distribution with discrete interactions when compared with the continuous analogous models. In the continuous case we have, under certain circumstances, the population explosion. When we take into account the finiteness of the population, we get the opposite result, extinction. We will analyze how these results depend on the dimension d of the space and describe the phenomenon of the "Discreteness Inducing Extinction" (DIE). The results are interpreted in the context of the "paradox of sex", an old problem of evolutionary biology.

  11. PREFACE: Symmetries and integrability of difference equations Symmetries and integrability of difference equations

    NASA Astrophysics Data System (ADS)

    Levi, Decio; Olver, Peter; Thomova, Zora; Winternitz, Pavel

    2009-11-01

    The concept of integrability was introduced in classical mechanics in the 19th century for finite dimensional continuous Hamiltonian systems. It was extended to certain classes of nonlinear differential equations in the second half of the 20th century with the discovery of the inverse scattering transform and the birth of soliton theory. Also at the end of the 19th century Lie group theory was invented as a powerful tool for obtaining exact analytical solutions of large classes of differential equations. Together, Lie group theory and integrability theory in its most general sense provide the main tools for solving nonlinear differential equations. Like differential equations, difference equations play an important role in physics and other sciences. They occur very naturally in the description of phenomena that are genuinely discrete. Indeed, they may actually be more fundamental than differential equations if space-time is actually discrete at very short distances. On the other hand, even when treating continuous phenomena described by differential equations it is very often necessary to resort to numerical methods. This involves a discretization of the differential equation, i.e. a replacement of the differential equation by a difference one. Given the well developed and understood techniques of symmetry and integrability for differential equations a natural question to ask is whether it is possible to develop similar techniques for difference equations. The aim is, on one hand, to obtain powerful methods for solving `integrable' difference equations and to establish practical integrability criteria, telling us when the methods are applicable. On the other hand, Lie group methods can be adapted to solve difference equations analytically. Finally, integrability and symmetry methods can be combined with numerical methods to obtain improved numerical solutions of differential equations. The origin of the SIDE meetings goes back to the early 1990s and the first

  12. Dynamical Symmetries in atomic nuclei

    SciTech Connect

    Jolie, J.

    2010-04-26

    We review the use of dynamical symmetries and supersymmetries in nuclear physics using the interacting boson approximation. Special emphasis will be put on the experimental techniques used and the influence of symmetry on experimental observables. We illustrate this by a detailed study on mixed symmetry states in {sup 94}Mo. We present also experiments performed to test predictions of dynamical supersymmetries in the Pt-Au region.

  13. Next-to-minimal SOFTSUSY

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Athron, P.; Tunstall, Lewis C.; Voigt, A.; Williams, A. G.

    2014-09-01

    We describe an extension to the SOFTSUSY program that provides for the calculation of the sparticle spectrum in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), where a chiral superfield that is a singlet of the Standard Model gauge group is added to the Minimal Supersymmetric Standard Model (MSSM) fields. Often, a Z3 symmetry is imposed upon the model. SOFTSUSY can calculate the spectrum in this case as well as the case where general Z3 violating (denoted as =) terms are added to the soft supersymmetry breaking terms and the superpotential. The user provides a theoretical boundary condition for the couplings and mass terms of the singlet. Radiative electroweak symmetry breaking data along with electroweak and CKM matrix data are used as weak-scale boundary conditions. The renormalisation group equations are solved numerically between the weak scale and a high energy scale using a nested iterative algorithm. This paper serves as a manual to the NMSSM mode of the program, detailing the approximations and conventions used. Catalogue identifier: ADPM_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADPM_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 154886 No. of bytes in distributed program, including test data, etc.: 1870890 Distribution format: tar.gz Programming language: C++, fortran. Computer: Personal computer. Operating system: Tested on Linux 3.x. Word size: 64 bits Classification: 11.1, 11.6. Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADPM_v3_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 785 Nature of problem: Calculating supersymmetric particle spectrum and mixing parameters in the next-to-minimal supersymmetric standard model. The solution to the

  14. In search of symmetry lost.

    PubMed

    Wilczek, Frank

    2005-01-20

    Powerful symmetry principles have guided physicists in their quest for nature's fundamental laws. The successful gauge theory of electroweak interactions postulates a more extensive symmetry for its equations than are manifest in the world. The discrepancy is ascribed to a pervasive symmetry-breaking field, which fills all space uniformly, rendering the Universe a sort of exotic superconductor. So far, the evidence for these bold ideas is indirect. But soon the theory will undergo a critical test depending on whether the quanta of this symmetry-breaking field, the so-called Higgs particles, are produced at the Large Hadron Collider (due to begin operation in 2007).

  15. Parity symmetry in QED3

    SciTech Connect

    Lo, Pok Man; Swanson, Eric S.

    2011-03-15

    Schwinger-Dyson equations are used to study spontaneous chiral and parity symmetry breaking of three-dimensional quantum electrodynamics with two-component fermions. This theory admits a topological photon mass that explicitly breaks parity symmetry and generates a fermion mass. We show for the first time that it is possible to spontaneously break both parity and chiral symmetry. We also find that chiral symmetry is restored at a critical number of fermion flavors in our truncation scheme. Finally, the Coleman-Hill theorem is used to demonstrate that the results are reasonably accurate.

  16. Unified Symmetry of Hamilton Systems

    NASA Astrophysics Data System (ADS)

    Xu, Xue-Jun; Qin, Mao-Chang; Mei, Feng-Xiang

    2005-11-01

    The definition and the criterion of a unified symmetry for a Hamilton system are presented. The sufficient condition under which the Noether symmetry is a unified symmetry for the system is given. A new conserved quantity, as well as the Noether conserved quantity and the Hojman conserved quantity, deduced from the unified symmetry, is obtained. An example is finally given to illustrate the application of the results. The project supported by National Natural Science Foundation of China under Grant No. 10272021 and the Doctoral Program Foundation of Institution of Higher Education of China under Grant No. 20040007022

  17. 3D toroidal physics: Testing the boundaries of symmetry breaking

    SciTech Connect

    Spong, Donald A.

    2015-05-15

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.

  18. 3D toroidal physics: Testing the boundaries of symmetry breakinga)

    NASA Astrophysics Data System (ADS)

    Spong, Donald A.

    2015-05-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to provide the plasma control needed for a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D edge localized mode suppression fields to stellarators with more dominant 3D field structures. This motivates the development of physics models that are applicable across the full range of 3D devices. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with the requirements of future fusion reactors.

  19. A paradigm for discrete physics

    SciTech Connect

    Noyes, H.P.; McGoveran, D.; Etter, T.; Manthey, M.J.; Gefwert, C.

    1987-01-01

    An example is outlined for constructing a discrete physics using as a starting point the insight from quantum physics that events are discrete, indivisible and non-local. Initial postulates are finiteness, discreteness, finite computability, absolute nonuniqueness (i.e., homogeneity in the absence of specific cause) and additivity.

  20. Observable T{sub 7} Lepton Flavor Symmetry at the Large Hadron Collider

    SciTech Connect

    Cao Qinghong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-04-01

    More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T{sub 7} and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.

  1. Observable T7 lepton flavor symmetry at the Large Hadron Collider.

    PubMed

    Cao, Qing-Hong; Khalil, Shaaban; Ma, Ernest; Okada, Hiroshi

    2011-04-01

    More often than not, models of flavor symmetry rely on the use of nonrenormalizable operators (in the guise of flavons) to accomplish the phenomenologically successful tribimaximal mixing of neutrinos. We show instead how a simple renormalizable two-parameter neutrino mass model of tribimaximal mixing can be constructed with the non-Abelian discrete symmetry T(7) and the gauging of B-L. This is also achieved without the addition of auxiliary symmetries and particles present in almost all other proposals. Most importantly, it is verifiable at the Large Hadron Collider.

  2. Left-right symmetry at LHC

    SciTech Connect

    Maiezza, Alessio; Nemevsek, Miha; Nesti, Fabrizio; Senjanovic, Goran

    2010-09-01

    We revisit the issue of the limit on the scale of left-right symmetry breaking. We focus on the minimal SU(2){sub L}xSU(2){sub R}xU(1){sub B-L} gauge theory with the seesaw mechanism and discuss the two possibilities of defining left-right symmetry as parity or charge conjugation. In the commonly adopted case of parity, we perform a complete numerical study of the quark mass matrices and the associated left and right mixing matrices without any assumptions usually made in the literature about the ratio of vacuum expectation values. We find that the usual lower limit on the mass of the right-handed gauge boson from the K mass difference, M{sub W{sub R}}>2.5 TeV, is subject to a possible small reduction due to the difference between right and left Cabibbo angles. In the case of charge conjugation the limit on M{sub W{sub R}} is somewhat more robust. However, the more severe bounds from CP-violating observables are absent in this case. In fact, the free phases can also resolve the present mild discrepancy between the standard model and CP violation in the B sector. Thus, even in the minimal case, both charged and neutral gauge bosons may be accessible at the Large Hadron Collider with spectacular signatures of lepton number violation.

  3. discrete group as a source of the quark mass and mixing pattern in models

    NASA Astrophysics Data System (ADS)

    Cárcamo Hernández, A. E.; Martinez, R.; Nisperuza, Jorge

    2015-02-01

    We propose a model based on the gauge symmetry with an extra discrete group, which successfully accounts for the SM quark mass and mixing pattern. The observed hierarchy of the SM quark masses and quark mixing matrix elements arises from the and symmetries, which are broken at a very high scale by the scalar singlets (,) and , charged under these symmetries, respectively. The Cabbibo mixing arises from the down-type quark sector whereas the up quark sector generates the remaining quark mixing angles. The obtained magnitudes of the CKM matrix elements, the CP violating phase, and the Jarlskog invariant are in agreement with the experimental data.

  4. The discrete adjoint approach to aerodynamic shape optimization

    NASA Astrophysics Data System (ADS)

    Nadarajah, Siva Kumaran

    A viscous discrete adjoint approach to automatic aerodynamic shape optimization is developed, and the merits of the viscous discrete and continuous adjoint approaches are discussed. The viscous discrete and continuous adjoint gradients for inverse design and drag minimization cost functions are compared with finite-difference and complex-step gradients. The optimization of airfoils in two-dimensional flow for inverse design and drag minimization is illustrated. Both the discrete and continuous adjoint methods are used to formulate two new design problems. First, the time-dependent optimal design problem is established, and both the time accurate discrete and continuous adjoint equations are derived. An application to the reduction of the time-averaged drag coefficient while maintaining time-averaged lift and thickness distribution of a pitching airfoil in transonic flow is demonstrated. Second, the remote inverse design problem is formulated. The optimization of a three-dimensional biconvex wing in supersonic flow verifies the feasibility to reduce the near field pressure peak. Coupled drag minimization and remote inverse design cases produce wings with a lower drag and a reduced near field peak pressure signature.

  5. Applications of flavor symmetry to the phenomenology of elementary particles

    SciTech Connect

    Kaeding, T.A.

    1995-05-01

    Some applications of flavor symmetry are examined. Approximate flavor symmetries and their consequences in the MSSM (Minimal Supersymmetric Standard Model) are considered, and found to give natural values for the possible B- and L-violating couplings that are empirically acceptable, except for the case of proton decay. The coupling constants of SU(3) are calculated and used to parameterize the decays of the D mesons in broken flavor SU(3). The resulting couplings are used to estimate the long-distance contributions to D-meson mixing.

  6. Minimal change disease

    MedlinePlus

    ... seen under a very powerful microscope called an electron microscope. Minimal change disease is the most common ... biopsy and examination of the tissue with an electron microscope can show signs of minimal change disease.

  7. Symmetry in the Car Park

    ERIC Educational Resources Information Center

    Hancock, Karen

    2007-01-01

    In this article, the author presents a lesson on rotational symmetry which she developed for her students. The aim of the lesson was "to identify objects with rotational symmetry in the staff car park" and the success criteria were "pictures or sketches of at least six objects with different orders of rotation". After finding examples of…

  8. Symmetry in Sign Language Poetry

    ERIC Educational Resources Information Center

    Sutton-Spence, Rachel; Kaneko, Michiko

    2007-01-01

    This paper considers the range of ways that sign languages use geometric symmetry temporally and spatially to create poetic effect. Poets use this symmetry in sign language art to highlight duality and thematic contrast, and to create symbolic representations of beauty, order and harmony. (Contains 8 tables, 14 figures and 6 notes.)

  9. Crystallographic and Spectroscopic Symmetry Notations.

    ERIC Educational Resources Information Center

    Sharma, B. D.

    1982-01-01

    Compares Schoenflies and Hermann-Mauguin notations of symmetry. Although the former (used by spectroscopists) and latter (used by crystallographers) both describe the same symmetry, there are distinct differences in the manner of description which may lead to confusion in correlating the two notations. (Author/JN)

  10. Discrete Dynamics Lab

    NASA Astrophysics Data System (ADS)

    Wuensche, Andrew

    DDLab is interactive graphics software for creating, visualizing, and analyzing many aspects of Cellular Automata, Random Boolean Networks, and Discrete Dynamical Networks in general and studying their behavior, both from the time-series perspective — space-time patterns, and from the state-space perspective — attractor basins. DDLab is relevant to research, applications, and education in the fields of complexity, self-organization, emergent phenomena, chaos, collision-based computing, neural networks, content addressable memory, genetic regulatory networks, dynamical encryption, generative art and music, and the study of the abstract mathematical/physical/dynamical phenomena in their own right.

  11. Hyperbolic-symmetry vector fields.

    PubMed

    Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian

    2015-12-14

    We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.

  12. Asymptotic symmetries from finite boxes

    NASA Astrophysics Data System (ADS)

    Andrade, Tomás; Marolf, Donald

    2016-01-01

    It is natural to regulate an infinite-sized system by imposing a boundary condition at finite distance, placing the system in a 'box.' This breaks symmetries, though the breaking is small when the box is large. One should thus be able to obtain the asymptotic symmetries of the infinite system by studying regulated systems. We provide concrete examples in the context of Einstein-Hilbert gravity (with negative or zero cosmological constant) by showing in 4 or more dimensions how the anti-de Sitter and Poincaré asymptotic symmetries can be extracted from gravity in a spherical box with Dirichlet boundary conditions. In 2 + 1 dimensions we obtain the full double-Virasoro algebra of asymptotic symmetries for AdS3 and, correspondingly, the full Bondi-Metzner-Sachs (BMS) algebra for asymptotically flat space. In higher dimensions, a related approach may continue to be useful for constructing a good asymptotically flat phase space with BMS asymptotic symmetries.

  13. Symmetry inheritance of scalar fields

    NASA Astrophysics Data System (ADS)

    Smolić, Ivica

    2015-07-01

    Matter fields do not necessarily have to share the symmetries with the spacetime they live in. When this happens, we speak of the symmetry inheritance of fields. In this paper we classify the obstructions of symmetry inheritance by the scalar fields, both real and complex, and look more closely at the special cases of stationary and axially symmetric spacetimes. Since the symmetry noninheritance is present in the scalar fields of boson stars and may enable the existence of the black hole scalar hair, our results narrow the possible classes of such solutions. Finally, we define and analyse the symmetry noninheritance contributions to the Komar mass and angular momentum of the black hole scalar hair.

  14. Optimization of Operations Resources via Discrete Event Simulation Modeling

    NASA Technical Reports Server (NTRS)

    Joshi, B.; Morris, D.; White, N.; Unal, R.

    1996-01-01

    The resource levels required for operation and support of reusable launch vehicles are typically defined through discrete event simulation modeling. Minimizing these resources constitutes an optimization problem involving discrete variables and simulation. Conventional approaches to solve such optimization problems involving integer valued decision variables are the pattern search and statistical methods. However, in a simulation environment that is characterized by search spaces of unknown topology and stochastic measures, these optimization approaches often prove inadequate. In this paper, we have explored the applicability of genetic algorithms to the simulation domain. Genetic algorithms provide a robust search strategy that does not require continuity and differentiability of the problem domain. The genetic algorithm successfully minimized the operation and support activities for a space vehicle, through a discrete event simulation model. The practical issues associated with simulation optimization, such as stochastic variables and constraints, were also taken into consideration.

  15. Discrete-Time Goldfishing

    NASA Astrophysics Data System (ADS)

    Calogero, Francesco

    2011-08-01

    The original continuous-time ''goldfish'' dynamical system is characterized by two neat formulas, the first of which provides the N Newtonian equations of motion of this dynamical system, while the second provides the solution of the corresponding initial-value problem. Several other, more general, solvable dynamical systems ''of goldfish type'' have been identified over time, featuring, in the right-hand (''forces'') side of their Newtonian equations of motion, in addition to other contributions, a velocity-dependent term such as that appearing in the right-hand side of the first formula mentioned above. The solvable character of these models allows detailed analyses of their behavior, which in some cases is quite remarkable (for instance isochronous or asymptotically isochronous). In this paper we introduce and discuss various discrete-time dynamical systems, which are as well solvable, which also display interesting behaviors (including isochrony and asymptotic isochrony) and which reduce to dynamical systems of goldfish type in the limit when the discrete-time independent variable l=0,1,2,... becomes the standard continuous-time independent variable t, 0≤t<∞.

  16. Symmetries and vanishing couplings in string-derived low energy effective field theory

    SciTech Connect

    Kobayashi, Tatsuo

    2012-07-27

    We study 4D low-energy effective field theory, derived from heterotic string theory on the orbifolds. In particular, we study Abelian and non-Abelian discrete symmetries and their anomalies. Furthermore, stringy computations also provide with stringy coupling selection rules.

  17. Functional Symmetry of Endomembranes

    PubMed Central

    2007-01-01

    In higher eukaryotic cells pleiomorphic compartments composed of vacuoles, tubules and vesicles move from the endoplasmic reticulum (ER) and the plasma membrane to the cell center, operating in early biosynthetic trafficking and endocytosis, respectively. Besides transporting cargo to the Golgi apparatus and lysosomes, a major task of these compartments is to promote extensive membrane recycling. The endocytic membrane system is traditionally divided into early (sorting) endosomes, late endosomes and the endocytic recycling compartment (ERC). Recent studies on the intermediate compartment (IC) between the ER and the Golgi apparatus suggest that it also consists of peripheral (“early”) and centralized (“late”) structures, as well as a third component, designated here as the biosynthetic recycling compartment (BRC). We propose that the ERC and the BRC exist as long-lived “mirror compartments” at the cell center that also share the ability to expand and become mobilized during cell activation. These considerations emphasize the functional symmetry of endomembrane compartments, which provides a basis for the membrane rearrangements taking place during cell division, polarization, and differentiation. PMID:17267686

  18. Convergence of the Approximation Scheme to American Option Pricing via the Discrete Morse Semiflow

    SciTech Connect

    Ishii, Katsuyuki; Omata, Seiro

    2011-12-15

    We consider the approximation scheme to the American call option via the discrete Morse semiflow, which is a minimizing scheme of a time semi-discretized variational functional. In this paper we obtain a rate of convergence of approximate solutions and the convergence of approximate free boundaries. We mainly apply the theory of variational inequalities and that of viscosity solutions to prove our results.

  19. Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning

    NASA Technical Reports Server (NTRS)

    Fayyad, U.; Irani, K.

    1993-01-01

    Since most real-world applications of classification learning involve continuous-valued attributes, properly addressing the discretization process is an important problem. This paper addresses the use of the entropy minimization heuristic for discretizing the range of a continuous-valued attribute into multiple intervals.

  20. Weight-lattice discretization of Weyl-orbit functions

    NASA Astrophysics Data System (ADS)

    Hrivnák, Jiří; Walton, Mark A.

    2016-08-01

    Weyl-orbit functions have been defined for each simple Lie algebra, and permit Fourier-like analysis on the fundamental region of the corresponding affine Weyl group. They have also been discretized, using a refinement of the coweight lattice, so that digitized data on the fundamental region can be Fourier-analyzed. The discretized orbit function has arguments that are redundant if related by the affine Weyl group, while its labels, the Weyl-orbit representatives, invoke the dual affine Weyl group. Here we discretize the orbit functions in a novel way, by using the weight lattice. A cleaner theory results with symmetry between the arguments and labels of the discretized orbit functions. Orthogonality of the new discretized orbit functions is proved, and leads to the construction of unitary, symmetric matrices with Weyl-orbit-valued elements. For one type of orbit function, the matrix coincides with the Kac-Peterson modular S matrix, important for Wess-Zumino-Novikov-Witten conformal field theory.

  1. Spectral theorem and partial symmetries

    SciTech Connect

    Gozdz, A.; Gozdz, M.

    2012-10-15

    A novel method of the decompositon of a quantum system's Hamiltonian is presented. In this approach the criterion of the decomposition is determined by the symmetries possessed by the sub-Hamiltonians. This procedure is rather generic and independent of the actual global symmetry, or the lack of it, of the full Hamilton operator. A detailed investigation of the time evolution of the various sub-Hamiltonians, therefore the change in time of the symmetry of the physical object, is presented for the case of a vibrator-plus-rotor model. Analytical results are illustrated by direct numerical calculations.

  2. Geometrical spin symmetry and spin

    SciTech Connect

    Pestov, I. B.

    2011-07-15

    Unification of General Theory of Relativity and Quantum Mechanics leads to General Quantum Mechanics which includes into itself spindynamics as a theory of spin phenomena. The key concepts of spindynamics are geometrical spin symmetry and the spin field (space of defining representation of spin symmetry). The essence of spin is the bipolar structure of geometrical spin symmetry induced by the gravitational potential. The bipolar structure provides a natural derivation of the equations of spindynamics. Spindynamics involves all phenomena connected with spin and provides new understanding of the strong interaction.

  3. Symmetries in the Schwarzschild Problem

    NASA Astrophysics Data System (ADS)

    Mioc, V.

    The two-body problem associated to a force field described by a potential of the form U = A/r + B/r3 (r is a distance between particles, A and B are real parameters) is resumed from the only standpoint of symmetries. Such symmetries, expressed in Hamiltonian coordinates, or in standard polar coordinates, are recovered for McGehee-type coordinates of both collision-blow-up and infinity-blow-up kind. They form isomorphic commutative groups endowed with an idempotent structure. Expressed in Levi-Civita's coordinates, the problem exhibits a larger group of symmetries, also commutative and presenting an idempotent structure.

  4. Nonintegrable Schrodinger discrete breathers.

    PubMed

    Gómez-Gardeñes, J; Floría, L M; Peyrard, M; Bishop, A R

    2004-12-01

    In an extensive numerical investigation of nonintegrable translational motion of discrete breathers in nonlinear Schrödinger lattices, we have used a regularized Newton algorithm to continue these solutions from the limit of the integrable Ablowitz-Ladik lattice. These solutions are shown to be a superposition of a localized moving core and an excited extended state (background) to which the localized moving pulse is spatially asymptotic. The background is a linear combination of small amplitude nonlinear resonant plane waves and it plays an essential role in the energy balance governing the translational motion of the localized core. Perturbative collective variable theory predictions are critically analyzed in the light of the numerical results.

  5. Discrete bisoliton fiber laser

    PubMed Central

    Liu, X. M.; Han, X. X.; Yao, X. K.

    2016-01-01

    Dissipative solitons, which result from the intricate balance between dispersion and nonlinearity as well as gain and loss, are of the fundamental scientific interest and numerous important applications. Here, we report a fiber laser that generates bisoliton – two consecutive dissipative solitons that preserve a fixed separation between them. Deviations from this separation result in its restoration. It is also found that these bisolitons have multiple discrete equilibrium distances with the quantized separations, as is confirmed by the theoretical analysis and the experimental observations. The main feature of our laser is the anomalous dispersion that is increased by an order of magnitude in comparison to previous studies. Then the spectral filtering effect plays a significant role in pulse-shaping. The proposed laser has the potential applications in optical communications and high-resolution optics for coding and transmission of information in higher-level modulation formats. PMID:27767075

  6. Discrete Pearson distributions

    SciTech Connect

    Bowman, K.O. ); Shenton, L.R. ); Kastenbaum, M.A. , Basye, VA )

    1991-11-01

    These distributions are generated by a first order recursive scheme which equates the ratio of successive probabilities to the ratio of two corresponding quadratics. The use of a linearized form of this model will produce equations in the unknowns matched by an appropriate set of moments (assumed to exist). Given the moments we may find valid solutions. These are two cases; (1) distributions defined on the non-negative integers (finite or infinite) and (2) distributions defined on negative integers as well. For (1), given the first four moments, it is possible to set this up as equations of finite or infinite degree in the probability of a zero occurrence, the sth component being a product of s ratios of linear forms in this probability in general. For (2) the equation for the zero probability is purely linear but may involve slowly converging series; here a particular case is the discrete normal. Regions of validity are being studied. 11 refs.

  7. Discrete anti-gravity

    SciTech Connect

    Noyes, H.P. ); Starson, S. )

    1991-03-01

    Discrete physics, because it replaces time evolution generated by the energy operator with a global bit-string generator (program universe) and replaces fields'' with the relativistic Wheeler-Feynman action at a distance,'' allows the consistent formulation of the concept of signed gravitational charge for massive particles. The resulting prediction made by this version of the theory is that free anti-particles near the surface of the earth will fall'' up with the same acceleration that the corresponding particles fall down. So far as we can see, no current experimental information is in conflict with this prediction of our theory. The experiment crusis will be one of the anti-proton or anti-hydrogen experiments at CERN. Our prediction should be much easier to test than the small effects which those experiments are currently designed to detect or bound. 23 refs.

  8. Expediting model-based optoacoustic reconstructions with tomographic symmetries

    SciTech Connect

    Lutzweiler, Christian; Deán-Ben, Xosé Luís; Razansky, Daniel

    2014-01-15

    Purpose: Image quantification in optoacoustic tomography implies the use of accurate forward models of excitation, propagation, and detection of optoacoustic signals while inversions with high spatial resolution usually involve very large matrices, leading to unreasonably long computation times. The development of fast and memory efficient model-based approaches represents then an important challenge to advance on the quantitative and dynamic imaging capabilities of tomographic optoacoustic imaging. Methods: Herein, a method for simplification and acceleration of model-based inversions, relying on inherent symmetries present in common tomographic acquisition geometries, has been introduced. The method is showcased for the case of cylindrical symmetries by using polar image discretization of the time-domain optoacoustic forward model combined with efficient storage and inversion strategies. Results: The suggested methodology is shown to render fast and accurate model-based inversions in both numerical simulations andpost mortem small animal experiments. In case of a full-view detection scheme, the memory requirements are reduced by one order of magnitude while high-resolution reconstructions are achieved at video rate. Conclusions: By considering the rotational symmetry present in many tomographic optoacoustic imaging systems, the proposed methodology allows exploiting the advantages of model-based algorithms with feasible computational requirements and fast reconstruction times, so that its convenience and general applicability in optoacoustic imaging systems with tomographic symmetries is anticipated.

  9. Polarization properties of optical metasurfaces of different symmetries

    NASA Astrophysics Data System (ADS)

    Kruk, Sergey S.; Poddubny, Alexander N.; Powell, David A.; Helgert, Christian; Decker, Manuel; Pertsch, Thomas; Neshev, Dragomir N.; Kivshar, Yuri S.

    2015-05-01

    Optical metasurfaces have become a new paradigm for creating flat optical devices. While being typically an order of magnitude thinner than the wavelength of light, metasurfaces allow control of the phase of propagating light waves across the full 2 π range and therefore enable the realization of optical elements such as lenses, waveplates, and beam converters. Currently one of the limiting factors of functional metasurfaces is their small range of operational angles. Here we demonstrate both theoretically and experimentally that the angular range can be broadened by increasing the rotational symmetry of metasurfaces. We develop an analytical model based on the discrete dipole approximation that quantitatively describes the response of metasurfaces under oblique excitation. It shows that the effective optical symmetry is doubled for structures with odd rotational symmetry, increasing the angular range correspondingly. We apply and experimentally verify our model for metasurfaces consisting of identical meta-atoms, arranged into square lattices, hexagonal lattices, and on the vertices of a Penrose tiling. The results demonstrate the increasing angular performance with increasing rotational symmetry.

  10. Spontaneous CP violation in A4 flavor symmetry and leptogenesis

    NASA Astrophysics Data System (ADS)

    Ahn, Y. H.; Kang, Sin Kyu; Kim, C. S.

    2013-06-01

    We propose a simple renormalizable model for the spontaneous CP violation based on SU(2)L×U(1)Y×A4 symmetry in a radiative seesaw mechanism, which can be guaranteed by an extra Z2 symmetry. In our model CP is spontaneously broken at high energies, after the breaking of flavor symmetry, by a complex vacuum expectation value of the A4 triplet and gauge-singlet scalar field. We show that the spontaneously generated CP phase could become a natural source of leptogenesis, and also investigate CP violation at low energies in the lepton sector and show how the CP phases in the Pontecorvo-Maki-Nakagawa-Sakata formalism could arise through a spontaneous symmetry-breaking mechanism. As a numerical study, interestingly, we show that the normal mass hierarchy favors relatively large values of θ13, large deviations from maximality of θ23<π/4, and the Dirac-CP phase 0°≤δCP≤50° and 300°≤δCP≤360°. For the inverted hierarchy case, the experimentally measured values of θ13 favors θ23>π/4 and discrete values of δCP around 100°, 135°, 255°, and 300°. Finally, with a successful leptogenesis our numerical results give more predictive values on the Dirac CP phase: for the normal mass hierarchy 1°≲δCP≲10° and for inverted one δCP˜100°, 135°, 300°.

  11. PREFACE: Symmetries and integrability of difference equations Symmetries and integrability of difference equations

    NASA Astrophysics Data System (ADS)

    Levi, Decio; Olver, Peter; Thomova, Zora; Winternitz, Pavel

    2009-11-01

    The concept of integrability was introduced in classical mechanics in the 19th century for finite dimensional continuous Hamiltonian systems. It was extended to certain classes of nonlinear differential equations in the second half of the 20th century with the discovery of the inverse scattering transform and the birth of soliton theory. Also at the end of the 19th century Lie group theory was invented as a powerful tool for obtaining exact analytical solutions of large classes of differential equations. Together, Lie group theory and integrability theory in its most general sense provide the main tools for solving nonlinear differential equations. Like differential equations, difference equations play an important role in physics and other sciences. They occur very naturally in the description of phenomena that are genuinely discrete. Indeed, they may actually be more fundamental than differential equations if space-time is actually discrete at very short distances. On the other hand, even when treating continuous phenomena described by differential equations it is very often necessary to resort to numerical methods. This involves a discretization of the differential equation, i.e. a replacement of the differential equation by a difference one. Given the well developed and understood techniques of symmetry and integrability for differential equations a natural question to ask is whether it is possible to develop similar techniques for difference equations. The aim is, on one hand, to obtain powerful methods for solving `integrable' difference equations and to establish practical integrability criteria, telling us when the methods are applicable. On the other hand, Lie group methods can be adapted to solve difference equations analytically. Finally, integrability and symmetry methods can be combined with numerical methods to obtain improved numerical solutions of differential equations. The origin of the SIDE meetings goes back to the early 1990s and the first

  12. Symmetries from the solution manifold

    NASA Astrophysics Data System (ADS)

    Aldaya, Víctor; Guerrero, Julio; Lopez-Ruiz, Francisco F.; Cossío, Francisco

    2015-07-01

    We face a revision of the role of symmetries of a physical system aiming at characterizing the corresponding Solution Manifold (SM) by means of Noether invariants as a preliminary step towards a proper, non-canonical, quantization. To this end, "point symmetries" of the Lagrangian are generally not enough, and we must resort to the more general concept of contact symmetries. They are defined in terms of the Poincaré-Cartan form, which allows us, in turn, to find the symplectic structure on the SM, through some sort of Hamilton-Jacobi (HJ) transformation. These basic symmetries are realized as Hamiltonian vector fields, associated with (coordinate) functions on the SM, lifted back to the Evolution Manifold through the inverse of this HJ mapping, that constitutes an inverse of the Noether Theorem. The specific examples of a particle moving on S3, at the mechanical level, and nonlinear SU(2)-sigma model in field theory are sketched.

  13. Broken Symmetries and Magnetic Dynamos

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    2007-01-01

    Phase space symmetries inherent in the statistical theory of ideal magnetohydrodynamic (MHD) turbulence are known to be broken dynamically to produce large-scale coherent magnetic structure. Here, results of a numerical study of decaying MHD turbulence are presented that show large-scale coherent structure also arises and persists in the presence of dissipation. Dynamically broken symmetries in MHD turbulence may thus play a fundamental role in the dynamo process.

  14. Dynamical symmetries in nuclear structure

    SciTech Connect

    Casten, R.F.

    1986-01-01

    In recent years the concept of dynamical symmetries in nuclei has witnessed a renaissance of interest and activity. Much of this work has been developed in the context of the Interacting Boson Approximation (or IBA) model. The appearance and properties of dynamical symmetries in nuclei will be reviewed, with emphasis on their characteristic signatures and on the role of the proton-neutron interaction in their formation, systematics and evolution. 36 refs., 20 figs.

  15. Minimal resonant leptogenesis and lepton flavour violation

    SciTech Connect

    Deppisch, Frank F.; Pilaftsis, Apostolos

    2012-07-27

    We discuss minimal non-supersymmetric models of resonant leptogenesis, based on an approximate flavour symmetries. As an illustrative example, we consider a resonant {tau}-leptogenesis model, compatible with universal right-handed neutrino masses at the GUT scale, where the required heavy-neutrino mass splittings are generated radiatively. In particular, we explicitly demonstrate, how a minimum number of three heavy Majorana neutrinos is needed, in order to obtain successful leptogenesis and experimentally testable rates for processes of lepton flavour violation, such as {mu}{yields}e{gamma} and {mu}{yields}e conversion in nuclei.

  16. Evidence for a Phase with Broken Translational Symmetry

    SciTech Connect

    Emelyanov, S. A.; Ivanov, S. V.

    2011-12-23

    We report on the discovering of a quantum phase which possesses neither continuous nor discrete translational symmetry. The phase emerges from the Quantum Hall state of matter and is induced by a toroidal moment which is a cross product of 'built-in' transverse electric field and tilted quantizing magnetic field. The phase is detected by the method of terahertz photo-voltaic spectroscopy which is insensitive to the vast majority of electrons remaining in conventional Quantum Hall states. The electrons in the new phase are demonstrated to have spatially-separated macroscopic-scale orbitlike wavefunctions distributed over a macroscopic sample with no spatial periodicity.

  17. Supersymmetric parameter space of family symmetries

    SciTech Connect

    Velasco-Sevilla, L.

    2008-11-23

    In this talk I have emphasized the effects of considering departures from the minimal flavour violation conditions, in the context of CMSSM-like theories, introduced by boundary conditions at GUT scale from Family Symmetries. In [1] we have shown the results of running these conditions down to EW, where constraints from fermion masses and CKM matrix elements have been used. Only when the expansion parameter in the sdown-squark sector is relatively large it is possible to relax the lower limit from b{yields}s{gamma} on the universal gaugino mass. The expansion parameter associated with the slepton sector needs to be smaller than the analogous in the sdown-squark sector in order to satisfy the bound imposed by the decay of {tau}{yields}{mu}{mu}.

  18. Effect of a textured insole on balance and gait symmetry.

    PubMed

    Aruin, Alexander S; Kanekar, Neeta

    2013-11-01

    Asymmetry of standing balance and gait is common in individuals with neurological disorders, and achieving symmetrical stance and gait is an important goal of rehabilitation. The purpose of this study was to investigate the effect of a novel discomfort-induced approach (that is based on using a single textured insole) on the alteration in the symmetry of gait and balance. Eleven healthy subjects (6 females and 5 males, mean age of 28.0 ± 4.1 years) were tested using the Computerized Dynamic Posturography and GaitRite systems when standing or walking while wearing standard footwear with the textured insole positioned either in the left or in the right shoe, and without the insole. Significant immediate effect of the textured insole was seen in the outcome measures of static (weight bearing) and dynamic (weight symmetry index, strength symmetry) balance tests (p < 0.05) as well as in gait symmetry (single support and swing phases) (p < 0.05). The results of the study indicate that a textured insole can significantly modify the symmetry of stance and gait in healthy individuals. Pilot data from individuals with stroke also showed a reduction in the asymmetry of gait when walking with the single textured insole in the shoe on the unaffected side. This outcome provides support for future studies on the efficacy of the textured insole in minimizing asymmetry of gait and posture in individuals in need.

  19. Discrete Mathematics and Its Applications

    ERIC Educational Resources Information Center

    Oxley, Alan

    2010-01-01

    The article gives ideas that lecturers of undergraduate Discrete Mathematics courses can use in order to make the subject more interesting for students and encourage them to undertake further studies in the subject. It is possible to teach Discrete Mathematics with little or no reference to computing. However, students are more likely to be…

  20. Symmetry in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.

    1993-01-01

    Relationships among polarimetric backscattering coefficients are derived from the viewpoint of symmetry groups. For both reciprocal and non-reciprocal media, symmetry encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered. The derived properties are general and valid to all scattering mechanisms, including volume and surface scatterings and their interactions, in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is also discussed. Orientations of spheroidal scatterers described by spherical, uniform, planophile, plagiothile, erectophile, and extremophile distributions are considered to derive their polarimetric backscattering characteristics. These distributions can be identified from the observed scattering coefficients by comparison with theoretical symmetry calculations. A new parameter is then defined to study scattering structures in geophysical media. Observations from polarimetric data acquired by the Jet Propulsion Laboratory airborne synthetic aperture radar over forests, sea ice, and sea surface are presented. Experimental evidences of the symmetry relationships are shown and their use in polarimetric remote sensing is illustrated. For forests, the coniferous forest in Mt. Shasta area (California) and mixed forest near Presque Isle (Maine) exhibit characteristics of the centrical symmetry at C-band. For sea ice in the Beaufort Sea, multi-year sea ice has a cross-polarized ratio e close to e(sub 0), calculated from symmetry, due to the randomness in the scattering structure. First-year sea ice has e much smaller than e(sub 0) due to the preferential alignment of the columnar structure of the ice. From polarimetric data of a sea surface in the Bering Sea, it is

  1. Error minimizing algorithms for nearest eighbor classifiers

    SciTech Connect

    Porter, Reid B; Hush, Don; Zimmer, G. Beate

    2011-01-03

    Stack Filters define a large class of discrete nonlinear filter first introd uced in image and signal processing for noise removal. In recent years we have suggested their application to classification problems, and investigated their relationship to other types of discrete classifiers such as Decision Trees. In this paper we focus on a continuous domain version of Stack Filter Classifiers which we call Ordered Hypothesis Machines (OHM), and investigate their relationship to Nearest Neighbor classifiers. We show that OHM classifiers provide a novel framework in which to train Nearest Neighbor type classifiers by minimizing empirical error based loss functions. We use the framework to investigate a new cost sensitive loss function that allows us to train a Nearest Neighbor type classifier for low false alarm rate applications. We report results on both synthetic data and real-world image data.

  2. Linear functional minimization for inverse modeling

    SciTech Connect

    Barajas-Solano, David A.; Wohlberg, Brendt Egon; Vesselinov, Velimir Valentinov; Tartakovsky, Daniel M.

    2015-06-01

    In this paper, we present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatiotemporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulic head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation, and extent of the intrusion from the steady-state data only. Finally, addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations.

  3. Symmetry theorems on the forward and backward scattering Mueller matrices for light scattering from a nonspherical dielectric scatterer.

    PubMed

    Hu, C R; Kattawar, G W; Parkin, M E; Herb, P

    1987-10-01

    The symmetry theorems on the complete forward and backward scattering Mueller matrices for light scattering from a single dielectric scatterer (as opposed to an ensemble of scatterers) are systematically and thoroughly analyzed. Symmetry operations considered include discrete rotations about the incident direction and mirror planes not coinciding with the scattering plane. For forward scattering we find sixteen different symmetry shapes (not including the totally asymmetric one), which may be classified into five symmetry classes, with identical reductions in the forward scattering matrices for all symmetry shapes that fall into the same symmetry class. For backward scattering we find only four different symmetry shapes, which may be classified into only two symmetry classes. The forward scattering symmetry theorems also lead to a symmetry theorem on the total extinction cross section. Based on the conclusions of this work it should be possible to design quick and nondestructive methods for the identification of certain small objects, when suitable partial information about the objects to be identified is already available. A promising practical example is given.

  4. Discrete subaortic stenosis.

    PubMed Central

    Khan, M M; Varma, M P; Cleland, J; O'Kane, H O; Webb, S W; Mulholland, H C; Adgey, A A

    1981-01-01

    Data concerning 17 consecutive patients with discrete subaortic stenosis are recorded. Twelve patients underwent operative resection of the obstructing lesion. Of these all except one were symptomatic and all had electrocardiographic evidence of left ventricular hypertrophy or left ventricular hypertrophy with strain. They had a peak resting systolic left ventricular outflow tract gradient of greater than 50 mmHg as predicted from the combined cuff measurement of systolic blood pressure and the echocardiographically estimated left ventricular systolic pressure and/or as determined by cardiac catheterisation. The outflow tract gradient as predicted from M-mode echocardiography and peak systolic pressure showed close correlation with that measured at cardiac catheterisation or operation. During the postoperative follow-up from one month to 11 years, of 11 patients, one patient required a further operation for recurrence of the obstruction four years after the initial operation. All patients are now asymptomatic. Five patients have not had an operation. The left ventricular outflow tract gradient as assessed at the time of cardiac catheterisation was greater than 50 mmHg. One patient has been lost to follow-up. The remaining four have been followed from four to eight years and have remained asymptomatic and the electrocardiograms have remained unchanged. Careful follow-up of all patients is essential with continuing clinical assessment, electrocardiograms, M-mode and two-dimensional echocardiograms, and if necessary cardiac catheterisation. Prophylaxis against bacterial endocarditis is also essential. Images PMID:6457617

  5. Discreteness inducing coexistence

    NASA Astrophysics Data System (ADS)

    dos Santos, Renato Vieira

    2013-12-01

    Consider two species that diffuse through space. Consider further that they differ only in initial densities and, possibly, in diffusion constants. Otherwise they are identical. What happens if they compete with each other in the same environment? What is the influence of the discrete nature of the interactions on the final destination? And what are the influence of diffusion and additive fluctuations corresponding to random migration and immigration of individuals? This paper aims to answer these questions for a particular competition model that incorporates intra and interspecific competition between the species. Based on mean field theory, the model has a stationary state dependent on the initial density conditions. We investigate how this initial density dependence is affected by the presence of demographic multiplicative noise and additive noise in space and time. There are three main conclusions: (1) Additive noise favors denser populations at the expense of the less dense, ratifying the competitive exclusion principle. (2) Demographic noise, on the other hand, favors less dense populations at the expense of the denser ones, inducing equal densities at the quasi-stationary state, violating the aforementioned principle. (3) The slower species always suffers the more deleterious effects of statistical fluctuations in a homogeneous medium.

  6. Novel symmetries in Christ-Lee model

    NASA Astrophysics Data System (ADS)

    Kumar, R.; Shukla, A.

    2016-07-01

    We demonstrate that the gauge-fixed Lagrangian of the Christ-Lee model respects four fermionic symmetries, namely; (anti-)BRST symmetries, (anti-)co-BRST symmetries within the framework of BRST formalism. The appropriate anticommutators amongst the fermionic symmetries lead to a unique bosonic symmetry. It turns out that the algebra obeyed by the symmetry transformations (and their corresponding conserved charges) is reminiscent of the algebra satisfied by the de Rham cohomological operators of differential geometry. We also provide the physical realizations of the cohomological operators in terms of the symmetry properties. Thus, the present model provides a simple model for the Hodge theory.

  7. Separation of Discrete Variables in the 2-DIM Finite Oscillator

    NASA Astrophysics Data System (ADS)

    Atakishiyev, Natig M.; Pogosyan, George S.; Vicent, Luis Edgar; Wolf, Kurt Bernardo

    2002-06-01

    The finite oscillator in two dimensions is a system whose dynamical algebra is so(4); it has a discrete, finite configuration space whose points can be arranged following cartesian or polar coordinates. Its wavefunctions satisfy 'Schrödinger' difference equations; in the cartesian model they are Wigner d-functions involving Kravchuk polynomials, while in the radial model they are su(2) Clebsch-Gordan functions containing dual Hahn polynomials. An su(2) symmetry algebra and group can be imported from the ordinary oscillator; coherent states exist, and a covariant Wigner function on a compact phase space can be formulated.

  8. Minimal Left-Right Symmetric Dark Matter.

    PubMed

    Heeck, Julian; Patra, Sudhanwa

    2015-09-18

    We show that left-right symmetric models can easily accommodate stable TeV-scale dark matter particles without the need for an ad hoc stabilizing symmetry. The stability of a newly introduced multiplet either arises accidentally as in the minimal dark matter framework or comes courtesy of the remaining unbroken Z_{2} subgroup of B-L. Only one new parameter is introduced: the mass of the new multiplet. As minimal examples, we study left-right fermion triplets and quintuplets and show that they can form viable two-component dark matter. This approach is, in particular, valid for SU(2)×SU(2)×U(1) models that explain the recent diboson excess at ATLAS in terms of a new charged gauge boson of mass 2 TeV.

  9. Parity-time symmetry broken by point-group symmetry

    SciTech Connect

    Fernández, Francisco M. Garcia, Javier

    2014-04-15

    We discuss a parity-time (PT) symmetric Hamiltonian with complex eigenvalues. It is based on the dimensionless Schrödinger equation for a particle in a square box with the PT-symmetric potential V(x, y) = iaxy. Perturbation theory clearly shows that some of the eigenvalues are complex for sufficiently small values of |a|. Point-group symmetry proves useful to guess if some of the eigenvalues may already be complex for all values of the coupling constant. We confirm those conclusions by means of an accurate numerical calculation based on the diagonalization method. On the other hand, the Schrödinger equation with the potential V(x, y) = iaxy{sup 2} exhibits real eigenvalues for sufficiently small values of |a|. Point group symmetry suggests that PT-symmetry may be broken in the former case and unbroken in the latter one.

  10. Minimal flavor violation in the minimal U(1)B-L model and resonant leptogenesis

    NASA Astrophysics Data System (ADS)

    Okada, Nobuchika; Orikasa, Yuta; Yamada, Toshifumi

    2012-10-01

    We investigate the resonant leptogenesis scenario in the minimally U(1)B-L extended standard model with minimal flavor violation. In our model, the U(1)B-L gauge symmetry is broken at the TeV scale and standard model singlet neutrinos gain Majorana masses of order TeV. In addition, we introduce a flavor symmetry on the singlet neutrinos at a scale higher than TeV. The flavor symmetry is explicitly broken by the neutrino Dirac Yukawa coupling, which induces splittings in the singlet neutrino Majorana masses at lower scales through renormalization group evolutions. We call this setup minimal flavor violation. The mass splittings are proportional to the tiny Dirac Yukawa coupling, and hence they automatically enhance the CP asymmetry parameter necessary for the resonant leptogenesis mechanism. In this paper, we calculate the baryon number yield by solving the Boltzmann equations, including the effects of U(1)B-L gauge boson that also has TeV scale mass and causes washing-out of the singlet neutrinos in the course of thermal leptogenesis. The Dirac Yukawa coupling for neutrinos is fixed in terms of neutrino oscillation data and an arbitrary 3×3 complex-valued orthogonal matrix. We show that the right amount of baryon number asymmetry can be achieved through thermal leptogenesis in the context of the minimal flavor violation with singlet neutrinos and U(1)B-L gauge boson at the TeV scale. These particles can be discovered at the LHC in the near future.

  11. Minimally Invasive Valve Surgery

    PubMed Central

    Pope, Nicolas H.; Ailawadi, Gorav

    2014-01-01

    Cardiac valve surgery is life saving for many patients. The advent of minimally invasive surgical techniques has historically allowed for improvement in both post-operative convalescence and important clinical outcomes. The development of minimally invasive cardiac valve repair and replacement surgery over the past decade is poised to revolutionize the care of cardiac valve patients. Here, we present a review of the history and current trends in minimally invasive aortic and mitral valve repair and replacement, including the development of sutureless bioprosthetic valves. PMID:24797148

  12. Symmetry Guide to Ferroaxial Transitions.

    PubMed

    Hlinka, J; Privratska, J; Ondrejkovic, P; Janovec, V

    2016-04-29

    The 212 species of the structural phase transitions with a macroscopic symmetry breaking are inspected with respect to the occurrence of the ferroaxial order parameter, the electric toroidal moment. In total, 124 ferroaxial species are found, some of them being also fully ferroelectric (62) or fully ferroelastic ones (61). This ensures a possibility of electrical or mechanical switching of ferroaxial domains. Moreover, there are 12 ferroaxial species that are neither ferroelectric nor ferroelastic. For each species, we have also explicitly worked out a canonical form for a set of representative equilibrium property tensors of polar and axial nature in both high-symmetry and low-symmetry phases. This information was gathered into the set of 212 mutually different symbolic matrices, expressing graphically the presence of nonzero independent tensorial components and the symmetry-imposed links between them, for both phases simultaneously. Symmetry analysis reveals the ferroaxiality in several currently debated materials, such as VO_{2}, LuFe_{2}O_{4}, and URu_{2}Si_{2}.

  13. Symmetry Guide to Ferroaxial Transitions

    NASA Astrophysics Data System (ADS)

    Hlinka, J.; Privratska, J.; Ondrejkovic, P.; Janovec, V.

    2016-04-01

    The 212 species of the structural phase transitions with a macroscopic symmetry breaking are inspected with respect to the occurrence of the ferroaxial order parameter, the electric toroidal moment. In total, 124 ferroaxial species are found, some of them being also fully ferroelectric (62) or fully ferroelastic ones (61). This ensures a possibility of electrical or mechanical switching of ferroaxial domains. Moreover, there are 12 ferroaxial species that are neither ferroelectric nor ferroelastic. For each species, we have also explicitly worked out a canonical form for a set of representative equilibrium property tensors of polar and axial nature in both high-symmetry and low-symmetry phases. This information was gathered into the set of 212 mutually different symbolic matrices, expressing graphically the presence of nonzero independent tensorial components and the symmetry-imposed links between them, for both phases simultaneously. Symmetry analysis reveals the ferroaxiality in several currently debated materials, such as VO2 , LuFe2 O4 , and URu2 Si2 .

  14. Minimizing Input-to-Output Latency in Virtual Environment

    NASA Technical Reports Server (NTRS)

    Adelstein, Bernard D.; Ellis, Stephen R.; Hill, Michael I.

    2009-01-01

    A method and apparatus were developed to minimize latency (time delay ) in virtual environment (VE) and other discrete- time computer-base d systems that require real-time display in response to sensor input s. Latency in such systems is due to the sum of the finite time requi red for information processing and communication within and between sensors, software, and displays.

  15. Discrete Darboux transformation for discrete polynomials of hypergeometric type

    NASA Astrophysics Data System (ADS)

    Bangerezako, Gaspard

    1998-03-01

    The Darboux transformation, well known in second-order differential operator theory, is applied to the difference equations satisfied by the discrete hypergeometric polynomials (Charlier, Meixner-Kravchuk, Hahn).

  16. Discrete Dirac Structures and Implicit Discrete Lagrangian and Hamiltonian Systems

    NASA Astrophysics Data System (ADS)

    Leok, Melvin; Ohsawa, Tomoki

    2010-07-01

    We present discrete analogues of Dirac structures and the Tulczyjew's triple by considering the geometry of symplectic maps and their associated generating functions. We demonstrate that this framework provides a means of deriving discrete analogues of implicit Lagrangian and Hamiltonian systems. In particular, this yields implicit nonholonomic Lagrangian and Hamiltonian integrators. We also introduce discrete Lagrange-d'Alembert-Pontryagin and Hamilton-d'Alembert variational principles, which provide an alternative derivation of the same set of integration algorithms. In addition to providing a unified treatment of discrete Lagrangian and Hamiltonian mechanics in the more general setting of Dirac mechanics, it provides a generalization of symplectic and Poisson integrators to the broader category of Dirac integrators.

  17. On global minimizers of repulsive–attractive power-law interaction energies

    PubMed Central

    Carrillo, José Antonio; Chipot, Michel; Huang, Yanghong

    2014-01-01

    We consider the minimization of the repulsive–attractive power-law interaction energies that occur in many biological and physical situations. We show the existence of global minimizers in the discrete setting and obtain bounds for their supports independently of the number of Dirac deltas in a certain range of exponents. These global discrete minimizers correspond to the stable spatial profiles of flock patterns in swarming models. Global minimizers of the continuum problem are obtained by compactness. We also illustrate our results through numerical simulations. PMID:25288810

  18. What is integrability of discrete variational systems?

    PubMed Central

    Boll, Raphael; Petrera, Matteo; Suris, Yuri B.

    2014-01-01

    We propose a notion of a pluri-Lagrangian problem, which should be understood as an analogue of multi-dimensional consistency for variational systems. This is a development along the line of research of discrete integrable Lagrangian systems initiated in 2009 by Lobb and Nijhoff, however, having its more remote roots in the theory of pluriharmonic functions, in the Z-invariant models of statistical mechanics and their quasiclassical limit, as well as in the theory of variational symmetries going back to Noether. A d-dimensional pluri-Lagrangian problem can be described as follows: given a d-form on an m-dimensional space (called multi-time, m>d), whose coefficients depend on a sought-after function x of m independent variables (called field), find those fields x which deliver critical points to the action functionals for any d-dimensional manifold Σ in the multi-time. We derive the main building blocks of the multi-time Euler–Lagrange equations for a discrete pluri-Lagrangian problem with d=2, the so-called corner equations, and discuss the notion of consistency of the system of corner equations. We analyse the system of corner equations for a special class of three-point two-forms, corresponding to integrable quad-equations of the ABS list. This allows us to close a conceptual gap of the work by Lobb and Nijhoff by showing that the corresponding two-forms are closed not only on solutions of (non-variational) quad-equations, but also on general solutions of the corresponding corner equations. We also find an example of a pluri-Lagrangian system not coming from a multi-dimensionally consistent system of quad-equations. PMID:24511254

  19. Infinitesimal Legendre symmetry in the Geometrothermodynamics programme

    SciTech Connect

    García-Peláez, D.; López-Monsalvo, C. S.

    2014-08-15

    The work within the Geometrothermodynamics programme rests upon the metric structure for the thermodynamic phase-space. Such structure exhibits discrete Legendre symmetry. In this work, we study the class of metrics which are invariant along the infinitesimal generators of Legendre transformations. We solve the Legendre-Killing equation for a K-contact general metric. We consider the case with two thermodynamic degrees of freedom, i.e., when the dimension of the thermodynamic phase-space is five. For the generic form of contact metrics, the solution of the Legendre-Killing system is unique, with the sole restriction that the only independent metric function – Ω – should be dragged along the orbits of the Legendre generator. We revisit the ideal gas in the light of this class of metrics. Imposing the vanishing of the scalar curvature for this system results in a further differential equation for the metric function Ω which is not compatible with the Legendre invariance constraint. This result does not allow us to use Quevedo's interpretation of the curvature scalar as a measure of thermodynamic interaction for this particular class.

  20. [Minimal Change Esophagitis].

    PubMed

    Ryu, Han Seung; Choi, Suck Chei

    2016-01-25

    Gastroesophageal reflux disease (GERD) is defined as a condition which develops when the reflux of gastric contents causes troublesome symptoms and long-term complications. GERD can be divided into erosive reflux disease and non-erosive reflux disease based on endoscopic findings defined by the presence of mucosal break. The Los Angeles classification excludes minimal changes as an evidence of reflux esophagitis because of poor interobserver agreement. In the Asian literature, minimal changes are considered as one of the endoscopic findings of reflux esophagitis, but the clinical significance is still controversial. Minimal change esophagitis is recognized quite frequently among patients with GERD and many endoscopists recognize such findings in their clinical practice. This review is intended to clarify the definition of minimal change esophagitis and their histology, interobserver agreement, and symptom association with GERD.

  1. Minimizing Shortness of Breath

    MedlinePlus

    ... Top Doctors in the Nation Departments & Divisions Home Health Insights Stress & Relaxation Breathing and Relaxation Minimizing Shortness of Breath ... Management Assess Your Stress Coping Strategies Identifying ... & Programs Health Insights Doctors & Departments Research & Science Education & Training Make ...

  2. Heisenberg symmetry and hypermultiplet manifolds

    NASA Astrophysics Data System (ADS)

    Antoniadis, Ignatios; Derendinger, Jean-Pierre; Marios Petropoulos, P.; Siampos, Konstantinos

    2016-04-01

    We study the emergence of Heisenberg (Bianchi II) algebra in hyper-Kähler and quaternionic spaces. This is motivated by the rôle these spaces with this symmetry play in N = 2 hypermultiplet scalar manifolds. We show how to construct related pairs of hyper-Kähler and quaternionic spaces under general symmetry assumptions, the former being a zooming-in limit of the latter at vanishing scalar curvature. We further apply this method for the two hyper-Kähler spaces with Heisenberg algebra, which is reduced to U (1) × U (1) at the quaternionic level. We also show that no quaternionic spaces exist with a strict Heisenberg symmetry - as opposed to Heisenberg ⋉ U (1). We finally discuss the realization of the latter by gauging appropriate Sp (2 , 4) generators in N = 2 conformal supergravity.

  3. Symmetry-plane models of 3D Euler fluid equations: Analytical solutions and finite-time blowup using infinitesimal Lie-symmetry methods

    NASA Astrophysics Data System (ADS)

    Bustamante, Miguel D.

    2014-11-01

    We consider 3D Euler fluids endowed with a discrete symmetry whereby the velocity field is invariant under mirror reflections about a 2D surface known as the ``symmetry plane.'' This type of flow is widely used in numerical simulations of classical/magnetic/quantum turbulence and vortex reconnection. On the 2D symmetry plane, the governing equations are best written in terms of two scalars: vorticity and stretching rate of vorticity. These determine the velocity field on the symmetry plane. However, the governing equations are not closed, because of the contribution of a single pressure term that depends on the full 3D velocity profile. By modelling this pressure term we propose a one-parameter family of sensible models for the flow along the 2D symmetry plane. We apply the method of infinitesimal Lie symmetries and solve the governing equations analytically for the two scalars as functions of time. We show how the value of the model's parameter determines if the analytical solution has a finite-time blowup and obtain explicit formulae for the blowup time. We validate the models by showing that a particular choice of the model's parameter corresponds to a well-known exact solution of 3D Euler equations [Gibbon et al., Physica D 132, 497 (1999)]. We discuss practical applications. Supported by Science Foundation Ireland (SFI) under Grant Number 12/IP/1491.

  4. Symmetry analysis of cellular automata

    NASA Astrophysics Data System (ADS)

    García-Morales, V.

    2013-01-01

    By means of B-calculus [V. García-Morales, Phys. Lett. A 376 (2012) 2645] a universal map for deterministic cellular automata (CAs) has been derived. The latter is shown here to be invariant upon certain transformations (global complementation, reflection and shift). When constructing CA rules in terms of rules of lower range a new symmetry, “invariance under construction” is uncovered. Modular arithmetic is also reformulated within B-calculus and a new symmetry of certain totalistic CA rules, which calculate the Pascal simplices modulo an integer number p, is then also uncovered.

  5. Iterates of maps with symmetry

    NASA Technical Reports Server (NTRS)

    Chossat, Pascal; Golubitsky, Martin

    1988-01-01

    Fixed-point bifurcation, period doubling, and Hopf bifurcation (HB) for iterates of equivariant mappings are investigated analytically, with a focus on HB in the presence of symmetry. An algebraic formulation for the hypotheses of the theorem of Ruelle (1973) is derived, and the case of standing waves in a system of ordinary differential equations with O(2) symmetry is considered in detail. In this case, it is shown that HB can lead directly to motion on an invariant 3-torus, with an unexpected third frequency due to drift of standing waves along the torus.

  6. Unparticles and electroweak symmetry breaking

    SciTech Connect

    Lee, Jong-Phil

    2008-11-23

    We investigate a scalar potential inspired by the unparticle sector for the electroweak symmetry breaking. The scalar potential contains the interaction between the standard model fields and unparticle sector. It is described by the non-integral power of fields that originates from the nontrivial scaling dimension of the unparticle operator. It is found that the electroweak symmetry is broken at tree level when the interaction is turned on. The scale invariance of unparticle sector is also broken simultaneously, resulting in a physical Higgs and a new lighter scalar particle.

  7. Chiral symmetry on the lattice

    SciTech Connect

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.

  8. The Broken Symmetry of Time

    SciTech Connect

    Kastner, Ruth E.

    2011-11-29

    This paper seeks to clarify features of time asymmetry in terms of symmetry breaking. It is observed that, in general, a contingent situation or event requires the breaking of an underlying symmetry. The distinction between the universal anisotropy of temporal processes and the irreversibility of certain physical processes is clarified. It is also proposed that the Transactional Interpretation of quantum mechanics offers an effective way to explain general thermodynamic asymmetry in terms of the time asymmetry of radiation, where prior such efforts have fallen short.

  9. Symmetries of coupled harmonic oscillators

    NASA Technical Reports Server (NTRS)

    Han, D.; Kim, Y. S.

    1993-01-01

    It is shown that the system of two coupled harmonic oscillators possesses many interesting symmetries. It is noted that the symmetry of a single oscillator is that of the three-parameter group Sp(2). Thus two uncoupled oscillator exhibits a direct product of two Sp(2) groups, with six parameters. The coupling can be achieved through a rotation in the two-dimensional space of two oscillator coordinates. The closure of the commutation relations for the generators leads to the ten-parameter group Sp(4) which is locally isomorphic to the deSitter group O(3,2).

  10. Discreteness-induced transitions in multibody reaction systems.

    PubMed

    Saito, Yohei; Sughiyama, Yuki; Kaneko, Kunihiko; Kobayashi, Tetsuya J

    2016-08-01

    A decrease in system size can induce qualitatively different behavior compared to the macroscopic behavior of the corresponding large-size system. The mechanisms of this transition, which is known as the small-size transition, can be attributed to either a relative increase in the noise intensity or to the discreteness of the state space due to the small system size. The former mechanism has been intensively investigated using several toy and realistic models. However, the latter has rarely been analyzed and is sometimes confused with the former, because a toy model that extracts the essence of the discreteness-induced transition mechanism is lacking. In this work, we propose a one- and three-body reaction system as a minimal model of the discreteness-induced transition and derive the conditions under which this transition occurs in more complex systems. This work enriches our understanding of the influence of small system size on system behavior. PMID:27627279

  11. Discreteness-induced transitions in multibody reaction systems

    NASA Astrophysics Data System (ADS)

    Saito, Yohei; Sughiyama, Yuki; Kaneko, Kunihiko; Kobayashi, Tetsuya J.

    2016-08-01

    A decrease in system size can induce qualitatively different behavior compared to the macroscopic behavior of the corresponding large-size system. The mechanisms of this transition, which is known as the small-size transition, can be attributed to either a relative increase in the noise intensity or to the discreteness of the state space due to the small system size. The former mechanism has been intensively investigated using several toy and realistic models. However, the latter has rarely been analyzed and is sometimes confused with the former, because a toy model that extracts the essence of the discreteness-induced transition mechanism is lacking. In this work, we propose a one- and three-body reaction system as a minimal model of the discreteness-induced transition and derive the conditions under which this transition occurs in more complex systems. This work enriches our understanding of the influence of small system size on system behavior.

  12. The method of minimal normal forms

    SciTech Connect

    Mane, S.R.; Weng, W.T.

    1992-01-01

    Normal form methods for solving nonlinear differential equations are reviewed and the comparative merits of three methods are evaluated. The concept of the minimal normal form is explained and is shown to be superior to other choices. The method is then extended to apply to the evaluation of discrete maps of an accelerator or storage ring. Such an extension, as suggested in this paper, is more suited for accelerator-based applications than a formulation utilizing continuous differential equations. A computer code has been generated to systematically implement various normal form formulations for maps in two-dimensional phase space. Specific examples of quadratic and cubic nonlinear fields were used and solved by the method developed. The minimal normal form method shown here gives good results using relatively low order expansions.

  13. The method of minimal normal forms

    SciTech Connect

    Mane, S.R.; Weng, W.T.

    1992-12-31

    Normal form methods for solving nonlinear differential equations are reviewed and the comparative merits of three methods are evaluated. The concept of the minimal normal form is explained and is shown to be superior to other choices. The method is then extended to apply to the evaluation of discrete maps of an accelerator or storage ring. Such an extension, as suggested in this paper, is more suited for accelerator-based applications than a formulation utilizing continuous differential equations. A computer code has been generated to systematically implement various normal form formulations for maps in two-dimensional phase space. Specific examples of quadratic and cubic nonlinear fields were used and solved by the method developed. The minimal normal form method shown here gives good results using relatively low order expansions.

  14. Concurrency and discrete event control

    NASA Technical Reports Server (NTRS)

    Heymann, Michael

    1990-01-01

    Much of discrete event control theory has been developed within the framework of automata and formal languages. An alternative approach inspired by the theories of process-algebra as developed in the computer science literature is presented. The framework, which rests on a new formalism of concurrency, can adequately handle nondeterminism and can be used for analysis of a wide range of discrete event phenomena.

  15. Discrete photonics in waveguide arrays.

    PubMed

    Moison, J M; Belabas, N; Minot, C; Levenson, J A

    2009-08-15

    In homogeneous arrays of coupled waveguides, Floquet-Bloch waves are known to travel freely across the waveguides. We introduce a systematic discussion of the built-in patterning of the coupling constant between neighboring waveguides. Key patterns provide functions such as redirecting, guiding, and focusing these waves, up to nonlinear all-optical routing. This opens the way to light control in a functionalized discrete space, i.e., discrete photonics.

  16. Spin symmetry in the antinucleon spectrum.

    PubMed

    Zhou, Shan-Gui; Meng, Jie; Ring, P

    2003-12-31

    We discuss spin and pseudospin symmetry in the spectrum of single nucleons and single antinucleons in a nucleus. As an example we use relativistic mean field theory to investigate single antinucleon spectra. We find a very well developed spin symmetry in single antineutron and single antiproton spectra. The dominant components of the wave functions of the spin doublet are almost identical. This spin symmetry in antiparticle spectra and the pseudospin symmetry in particle spectra have the same origin. However, it turns out that the spin symmetry in antinucleon spectra is much better developed than the pseudospin symmetry in normal nuclear single particle spectra. PMID:14754045

  17. Charge symmetry at the partonic level

    SciTech Connect

    Londergan, J. T.; Peng, J. C.; Thomas, A. W.

    2010-07-01

    This review article discusses the experimental and theoretical status of partonic charge symmetry. It is shown how the partonic content of various structure functions gets redefined when the assumption of charge symmetry is relaxed. We review various theoretical and phenomenological models for charge symmetry violation in parton distribution functions. We summarize the current experimental upper limits on charge symmetry violation in parton distributions. A series of experiments are presented, which might reveal partonic charge symmetry violation, or alternatively might lower the current upper limits on parton charge symmetry violation.

  18. Spin symmetry in the antinucleon spectrum.

    PubMed

    Zhou, Shan-Gui; Meng, Jie; Ring, P

    2003-12-31

    We discuss spin and pseudospin symmetry in the spectrum of single nucleons and single antinucleons in a nucleus. As an example we use relativistic mean field theory to investigate single antinucleon spectra. We find a very well developed spin symmetry in single antineutron and single antiproton spectra. The dominant components of the wave functions of the spin doublet are almost identical. This spin symmetry in antiparticle spectra and the pseudospin symmetry in particle spectra have the same origin. However, it turns out that the spin symmetry in antinucleon spectra is much better developed than the pseudospin symmetry in normal nuclear single particle spectra.

  19. Minimally invasive procedures

    PubMed Central

    Baltayiannis, Nikolaos; Michail, Chandrinos; Lazaridis, George; Anagnostopoulos, Dimitrios; Baka, Sofia; Mpoukovinas, Ioannis; Karavasilis, Vasilis; Lampaki, Sofia; Papaiwannou, Antonis; Karavergou, Anastasia; Kioumis, Ioannis; Pitsiou, Georgia; Katsikogiannis, Nikolaos; Tsakiridis, Kosmas; Rapti, Aggeliki; Trakada, Georgia; Zissimopoulos, Athanasios; Zarogoulidis, Konstantinos

    2015-01-01

    Minimally invasive procedures, which include laparoscopic surgery, use state-of-the-art technology to reduce the damage to human tissue when performing surgery. Minimally invasive procedures require small “ports” from which the surgeon inserts thin tubes called trocars. Carbon dioxide gas may be used to inflate the area, creating a space between the internal organs and the skin. Then a miniature camera (usually a laparoscope or endoscope) is placed through one of the trocars so the surgical team can view the procedure as a magnified image on video monitors in the operating room. Specialized equipment is inserted through the trocars based on the type of surgery. There are some advanced minimally invasive surgical procedures that can be performed almost exclusively through a single point of entry—meaning only one small incision, like the “uniport” video-assisted thoracoscopic surgery (VATS). Not only do these procedures usually provide equivalent outcomes to traditional “open” surgery (which sometimes require a large incision), but minimally invasive procedures (using small incisions) may offer significant benefits as well: (I) faster recovery; (II) the patient remains for less days hospitalized; (III) less scarring and (IV) less pain. In our current mini review we will present the minimally invasive procedures for thoracic surgery. PMID:25861610

  20. Discrete breathers in alpha-uranium

    NASA Astrophysics Data System (ADS)

    Murzaev, Ramil T.; Babicheva, Rita I.; Zhou, Kun; Korznikova, Elena A.; Fomin, Sergey Yu.; Dubinko, Vladimir I.; Dmitriev, Sergey V.

    2016-07-01

    Uranium is an important radioactive material used in the field of nuclear energy and it is interesting from the scientific point of view because it possesses unique structure and properties. There exist several experimental reports on anomalies of physical properties of uranium that have not been yet explained. Manley et al. [Phys. Rev. Lett. 96, 125501 (2006); Phys. Rev. B 77, 214305 (2008)] speculate that the excitation of discrete breathers (DBs) could be the reason for anisotropy of thermal expansion and for the deviation of heat capacity from the theoretical prediction in the high temperature range. In the present work, with the use of molecular dynamics, the existence of DBs in α-uranium is demonstrated and their properties are studied. It is found that DB frequency lies above the phonon band and increases with DB amplitude. DB is localized on half a dozen of atoms belonging to a straight atomic chain. DB in uranium, unlike DBs in fcc, bcc and hcp metals, is almost immobile. Thus, the DB reported in this study cannot contribute to thermal conductivity and the search for other types of DBs in α-uranium should be continued. Our results demonstrate that even metals with low-symmetry crystal lattices such as the orthorhombic lattice of α-uranium can support DBs.

  1. Baryon and chiral symmetry breaking

    SciTech Connect

    Gorsky, A.; Krikun, A.

    2014-07-23

    We briefly review the generalized Skyrmion model for the baryon recently suggested by us. It takes into account the tower of vector and axial mesons as well as the chiral symmetry breaking. The generalized Skyrmion model provides the qualitative explanation of the Ioffe’s formula for the baryon mass.

  2. The Symmetry of Natural Laws.

    ERIC Educational Resources Information Center

    Brown, Laurie M.

    This document is a monograph intended for advanced undergraduate students, or beginning graduate students, who have some knowledge of modern physics as well as classical physics, including the elementary quantum mechanical treatment of the hydrogen atom and angular momentum. The first chapter introduces symmetry and relates it to the mathematical…

  3. Turning Students into Symmetry Detectives

    ERIC Educational Resources Information Center

    Wilders, Richard; VanOyen, Lawrence

    2011-01-01

    Exploring mathematical symmetry is one way of increasing students' understanding of art. By asking students to search designs and become pattern detectives, teachers can potentially increase their appreciation of art while reinforcing their perception of the use of math in their day-to-day lives. This article shows teachers how they can interest…

  4. Superdeformations and fermion dynamical symmetries

    SciTech Connect

    Wu, Cheng-Li . Dept. of Physics and Atmospheric Science Tennessee Univ., Knoxville, TN . Dept. of Physics and Astronomy Joint Inst. for Heavy Ion Research, Oak Ridge, TN )

    1990-01-01

    In this talk, I will present a link between nuclear collective motions and their underlying fermion dynamical symmetries. In particular, I will focus on the microscopic understanding of deformations. It is shown that the SU{sub 3} of the one major shell fermion dynamical symmetry model (FDSM) is responsible for the physics of low and high spins in normal deformation. For the recently observed phenomena of superdeformation, the physics of the problem dictates a generalization to a supershell structure (SFDSM), which also has an SU{sub 3} fermion dynamical symmetry. Many recently discovered feature of superdeformation are found to be inherent in such an SU{sub 3} symmetry. In both cases the dynamical Pauli effect plays a vital role. A particularly noteworthy discovery from this model is that the superdeformed ground band is not the usual unaligned band but the D-pair aligned (DPA) band, which sharply crosses the excited bands. The existence of such DPA band is a key point to understand many properties of superdeformation. Our studies also poses new experimental challenge. This is particularly interesting since there are now plans to build new and exciting {gamma}-ray detecting systems, like the GAMMASPHERE, which could provide answers to some of these challenges. 34 refs., 11 figs., 5 tabs.

  5. Circular codes, symmetries and transformations.

    PubMed

    Fimmel, Elena; Giannerini, Simone; Gonzalez, Diego Luis; Strüngmann, Lutz

    2015-06-01

    Circular codes, putative remnants of primeval comma-free codes, have gained considerable attention in the last years. In fact they represent a second kind of genetic code potentially involved in detecting and maintaining the normal reading frame in protein coding sequences. The discovering of an universal code across species suggested many theoretical and experimental questions. However, there is a key aspect that relates circular codes to symmetries and transformations that remains to a large extent unexplored. In this article we aim at addressing the issue by studying the symmetries and transformations that connect different circular codes. The main result is that the class of 216 C3 maximal self-complementary codes can be partitioned into 27 equivalence classes defined by a particular set of transformations. We show that such transformations can be put in a group theoretic framework with an intuitive geometric interpretation. More general mathematical results about symmetry transformations which are valid for any kind of circular codes are also presented. Our results pave the way to the study of the biological consequences of the mathematical structure behind circular codes and contribute to shed light on the evolutionary steps that led to the observed symmetries of present codes. PMID:25008961

  6. Strong coupling electroweak symmetry breaking

    SciTech Connect

    Barklow, T.L.; Burdman, G.; Chivukula, R.S.

    1997-04-01

    The authors review models of electroweak symmetry breaking due to new strong interactions at the TeV energy scale and discuss the prospects for their experimental tests. They emphasize the direct observation of the new interactions through high-energy scattering of vector bosons. They also discuss indirect probes of the new interactions and exotic particles predicted by specific theoretical models.

  7. Concomitant Ordering and Symmetry Lowering

    ERIC Educational Resources Information Center

    Boo, William O. J.; Mattern, Daniell L.

    2008-01-01

    Examples of concomitant ordering include magnetic ordering, Jahn-Teller cooperative ordering, electronic ordering, ionic ordering, and ordering of partially-filled sites. Concomitant ordering sets in when a crystal is cooled and always lowers the degree of symmetry of the crystal. Concomitant ordering concepts can also be productively applied to…

  8. Paper Models Illustrating Virus Symmetry.

    ERIC Educational Resources Information Center

    McCarthy, D. A.

    1990-01-01

    Instructions are given for constructing two models, one to illustrate the general principles of symmetry in T=1, T=3, and T=4 viruses, and the other to illustrate the disposition of protein subunits in the T=3 plant viruses and the picornaviruses. (Author/CW)

  9. Platonic Symmetry and Geometric Thinking

    ERIC Educational Resources Information Center

    Zsombor-Murray, Paul

    2007-01-01

    Cubic symmetry is used to build the other four Platonic solids and some formalism from classical geometry is introduced. Initially, the approach is via geometric construction, e.g., the "golden ratio" is necessary to construct an icosahedron with pentagonal faces. Then conventional elementary vector algebra is used to extract quantitative…

  10. Monster symmetry and extremal CFTs

    NASA Astrophysics Data System (ADS)

    Gaiotto, Davide

    2012-11-01

    We test some recent conjectures about extremal selfdual CFTs, which are the candidate holographic duals of pure gravity in AdS 3. We prove that no c = 48 extremal selfdual CFT or SCFT may possess Monster symmetry. Furthermore, we disprove a recent argument against the existence of extremal selfdual CFTs of large central charge.

  11. Minimization principles for the coupled problem of Darcy-Biot-type fluid transport in porous media linked to phase field modeling of fracture

    NASA Astrophysics Data System (ADS)

    Miehe, Christian; Mauthe, Steffen; Teichtmeister, Stephan

    2015-09-01

    This work develops new minimization and saddle point principles for the coupled problem of Darcy-Biot-type fluid transport in porous media at fracture. It shows that the quasi-static problem of elastically deforming, fluid-saturated porous media is related to a minimization principle for the evolution problem. This two-field principle determines the rate of deformation and the fluid mass flux vector. It provides a canonically compact model structure, where the stress equilibrium and the inverse Darcy's law appear as the Euler equations of a variational statement. A Legendre transformation of the dissipation potential relates the minimization principle to a characteristic three field saddle point principle, whose Euler equations determine the evolutions of deformation and fluid content as well as Darcy's law. A further geometric assumption results in modified variational principles for a simplified theory, where the fluid content is linked to the volumetric deformation. The existence of these variational principles underlines inherent symmetries of Darcy-Biot theories of porous media. This can be exploited in the numerical implementation by the construction of time- and space-discrete variational principles, which fully determine the update problems of typical time stepping schemes. Here, the proposed minimization principle for the coupled problem is advantageous with regard to a new unconstrained stable finite element design, while space discretizations of the saddle point principles are constrained by the LBB condition. The variational principles developed provide the most fundamental approach to the discretization of nonlinear fluid-structure interactions, showing symmetric systems in algebraic update procedures. They also provide an excellent starting point for extensions towards more complex problems. This is demonstrated by developing a minimization principle for a phase field description of fracture in fluid-saturated porous media. It is designed for an

  12. Symmetry breaking and singularity structure in Bose-Einstein condensates

    NASA Astrophysics Data System (ADS)

    Commeford, K. A.; Garcia-March, M. A.; Ferrando, A.; Carr, Lincoln D.

    2012-08-01

    We determine the trajectories of vortex singularities that arise after a single vortex is broken by a discretely symmetric impulse in the context of Bose-Einstein condensates in a harmonic trap. The dynamics of these singularities are analyzed to determine the form of the imprinted motion. We find that the symmetry-breaking process introduces two effective forces: a repulsive harmonic force that causes the daughter trajectories to be ejected from the parent singularity and a Magnus force that introduces a torque about the axis of symmetry. For the analytical noninteracting case we find that the parent singularity is reconstructed from the daughter singularities after one period of the trapping frequency. The interactions between singularities in the weakly interacting system do not allow the parent vortex to be reconstructed. Analytic trajectories were compared to the actual minima of the wave function, showing less than 0.5% error for an impulse strength of v=0.00005. We show that these solutions are valid within the impulse regime for various impulse strengths using numerical integration of the Gross-Pitaevskii equation. We also show that the actual duration of the symmetry-breaking potential does not significantly change the dynamics of the system as long as the strength is below v=0.0005.

  13. Symmetry reduction in high dimensions, illustrated in a turbulent pipe

    NASA Astrophysics Data System (ADS)

    Willis, Ashley P.; Short, Kimberly Y.; Cvitanović, Predrag

    2016-02-01

    Equilibrium solutions are believed to structure the pathways for ergodic trajectories in a dynamical system. However, equilibria are atypical for systems with continuous symmetries, i.e., for systems with homogeneous spatial dimensions, whereas relative equilibria (traveling waves) are generic. In order to visualize the unstable manifolds of such solutions, a practical symmetry reduction method is required that converts relative equilibria into equilibria, and relative periodic orbits into periodic orbits. In this article we extend the fixed Fourier mode slice approach, previously applied one-dimensional PDEs, to a spatially three-dimensional fluid flow, and show that it is substantially more effective than our previous approach to slicing. Application of this method to a minimal flow unit pipe leads to the discovery of many relative periodic orbits that appear to fill out the turbulent regions of state space. We further demonstrate the value of this approach to symmetry reduction through projections (projections only possible in the symmetry-reduced space) that reveal the interrelations between these relative periodic orbits and the ways in which they shape the geometry of the turbulent attractor.

  14. Detection and correction of underassigned rotational symmetry prior to structure deposition

    SciTech Connect

    Poon, Billy K.; Grosse-Kunstleve, Ralf W.; Zwart, Peter H.; Sauter, Nicholas K.

    2010-05-01

    An X-ray structural model can be reassigned to a higher symmetry space group using the presented framework if its noncrystallographic symmetry operators are close to being exact crystallographic relationships. About 2% of structures in the Protein Data Bank can be reclassified in this way. Up to 2% of X-ray structures in the Protein Data Bank (PDB) potentially fit into a higher symmetry space group. Redundant protein chains in these structures can be made compatible with exact crystallographic symmetry with minimal atomic movements that are smaller than the expected range of coordinate uncertainty. The incidence of problem cases is somewhat difficult to define precisely, as there is no clear line between underassigned symmetry, in which the subunit differences are unsupported by the data, and pseudosymmetry, in which the subunit differences rest on small but significant intensity differences in the diffraction pattern. To help catch symmetry-assignment problems in the future, it is useful to add a validation step that operates on the refined coordinates just prior to structure deposition. If redundant symmetry-related chains can be removed at this stage, the resulting model (in a higher symmetry space group) can readily serve as an isomorphous replacement starting point for re-refinement using re-indexed and re-integrated raw data. These ideas are implemented in new software tools available at http://cci.lbl.gov/labelit.

  15. Single-Image Vignetting Correction from Gradient Distribution Symmetries

    PubMed Central

    Zheng, Yuanjie; Lin, Stephen; Kang, Sing Bing; Xiao, Rui; Gee, James C.; Kambhamettu, Chandra

    2014-01-01

    We present novel techniques for single-image vignetting correction based on symmetries of two forms of image gradients: semicircular tangential gradients (SCTG) and radial gradients (RG). For a given image pixel, an SCTG is an image gradient along the tangential direction of a circle centered at the presumed optical center and passing through the pixel. An RG is an image gradient along the radial direction with respect to the optical center. We observe that the symmetry properties of SCTG and RG distributions are closely related to the vignetting in the image. Based on these symmetry properties we develop an automatic optical center estimation algorithm by minimizing the asymmetry of SCTG distributions, and also present two methods for vignetting estimation based on minimizing the asymmetry of RG distributions. In comparison to prior approaches to single-image vignetting correction, our methods do not rely on image segmentation and they produce more accurate results. Experiments show our techniques to work well for a wide range of images while achieving a speed-up of 3-5 times compared to a state-of-the-art method. PMID:23599060

  16. Flavor symmetry and a model of {Sigma}(3N{sup 3})

    SciTech Connect

    Ishimori, Hajime

    2012-07-27

    We study the lepton flavor models with the flavor symmetry (Z{sub N} Multiplication-Sign Z{sub N} Multiplication-Sign Z{sub N}) Right-Normal-Factor-Semidirect-Product Z{sub 3}. Our models predict nonvanishing discrete values of {theta}13 as well as {theta}12 and {theta}23 depending on N. For certain values, our models realize the tribimaximal mixing angles with {theta}{sub 13} 0. For other values, our models provide with discrete deviation from the tri-bimaximal mixing angles.

  17. Universal Formulation For Symmetries In Computed Flows

    NASA Technical Reports Server (NTRS)

    Pao, S. Paul; Abdol-Hamid, Khaled S.

    1995-01-01

    Universal formulation for high-order symmetries in boundary conditions on flows devised. Eliminates need for special procedures to incorporate symmetries and corresponding boundary conditions into computer codes solving Navier-Stokes and Euler equations of flow.

  18. Inverse Modeling Via Linearized Functional Minimization

    NASA Astrophysics Data System (ADS)

    Barajas-Solano, D. A.; Wohlberg, B.; Vesselinov, V. V.; Tartakovsky, D. M.

    2014-12-01

    We present a novel parameter estimation methodology for transient models of geophysical systems with uncertain, spatially distributed, heterogeneous and piece-wise continuous parameters.The methodology employs a bayesian approach to propose an inverse modeling problem for the spatial configuration of the model parameters.The likelihood of the configuration is formulated using sparse measurements of both model parameters and transient states.We propose using total variation regularization (TV) as the prior reflecting the heterogeneous, piece-wise continuity assumption on the parameter distribution.The maximum a posteriori (MAP) estimator of the parameter configuration is then computed by minimizing the negative bayesian log-posterior using a linearized functional minimization approach. The computation of the MAP estimator is a large-dimensional nonlinear minimization problem with two sources of nonlinearity: (1) the TV operator, and (2) the nonlinear relation between states and parameters provided by the model's governing equations.We propose a a hybrid linearized functional minimization (LFM) algorithm in two stages to efficiently treat both sources of nonlinearity.The relation between states and parameters is linearized, resulting in a linear minimization sub-problem equipped with the TV operator; this sub-problem is then minimized using the Alternating Direction Method of Multipliers (ADMM). The methodology is illustrated with a transient saturated groundwater flow application in a synthetic domain, stimulated by external point-wise loadings representing aquifer pumping, together with an array of discrete measurements of hydraulic conductivity and transient measurements of hydraulic head.We show that our inversion strategy is able to recover the overall large-scale features of the parameter configuration, and that the reconstruction is improved by the addition of transient information of the state variable.

  19. Ways To Minimize Bullying.

    ERIC Educational Resources Information Center

    Mueller, Mary Ellen; Parisi, Mary Joy

    This report delineates a series of interventions aimed at minimizing incidences of bullying in a suburban elementary school. The social services staff was scheduled to initiate an anti-bullying incentive in fall 2001 due to the increased occurrences of bullying during the prior year. The target population consisted of third- and fourth-grade…

  20. Minimally invasive periodontal therapy.

    PubMed

    Dannan, Aous

    2011-10-01

    Minimally invasive dentistry is a concept that preserves dentition and supporting structures. However, minimally invasive procedures in periodontal treatment are supposed to be limited within periodontal surgery, the aim of which is to represent alternative approaches developed to allow less extensive manipulation of surrounding tissues than conventional procedures, while accomplishing the same objectives. In this review, the concept of minimally invasive periodontal surgery (MIPS) is firstly explained. An electronic search for all studies regarding efficacy and effectiveness of MIPS between 2001 and 2009 was conducted. For this purpose, suitable key words from Medical Subject Headings on PubMed were used to extract the required studies. All studies are demonstrated and important results are concluded. Preliminary data from case cohorts and from many studies reveal that the microsurgical access flap, in terms of MIPS, has a high potential to seal the healing wound from the contaminated oral environment by achieving and maintaining primary closure. Soft tissues are mostly preserved and minimal gingival recession is observed, an important feature to meet the demands of the patient and the clinician in the esthetic zone. However, although the potential efficacy of MIPS in the treatment of deep intrabony defects has been proved, larger studies are required to confirm and extend the reported positive preliminary outcomes.

  1. Minimizing Promotion Trauma.

    ERIC Educational Resources Information Center

    Darling, LuAnn W.; McGrath, Loraine

    1983-01-01

    Nursing administrators can minimize promotion trauma and its unnecessary cost by building awareness of the transition process, clarifying roles and expectations, and attending to the promoted employee's needs. This article will help nursing administrators develop a concept of manager care combined with programs for orientation of new managers,…

  2. Minimally invasive pancreatic surgery.

    PubMed

    Yiannakopoulou, E

    2015-12-01

    Minimally invasive pancreatic surgery is feasible and safe. Laparoscopic distal pancreatectomy should be widely adopted for benign lesions of the pancreas. Laparoscopic pancreaticoduodenectomy, although technically demanding, in the setting of pancreatic ductal adenocarcinoma has a number of advantages including shorter hospital stay, faster recovery, allowing patients to recover in a timelier manner and pursue adjuvant treatment options. Furthermore, it seems that progression-free survival is longer in patients undergoing laparoscopic pancreaticoduodenectomy in comparison with those undergoing open pancreaticoduodenectomy. Minimally invasive middle pancreatectomy seems appropriate for benign or borderline tumors of the neck of the pancreas. Technological advances including intraoperative ultrasound and intraoperative fluorescence imaging systems are expected to facilitate the wide adoption of minimally invasive pancreatic surgery. Although, the oncological outcome seems similar with that of open surgery, there are still concerns, as the majority of relevant evidence comes from retrospective studies. Large multicenter randomized studies comparing laparoscopic with open pancreatectomy as well as robotic assisted with both open and laparoscopic approaches are needed. Robotic approach could be possibly shown to be less invasive than conventional laparoscopic approach through the less traumatic intra-abdominal handling of tissues. In addition, robotic approach could enable the wide adoption of the technique by surgeon who is not that trained in advanced laparoscopic surgery. A putative clinical benefit of minimally invasive pancreatic surgery could be the attenuated surgical stress response leading to reduced morbidity and mortality as well as lack of the detrimental immunosuppressive effect especially for the oncological patients. PMID:26530291

  3. Distributed Relaxation for Conservative Discretizations

    NASA Technical Reports Server (NTRS)

    Diskin, Boris; Thomas, James L.

    2001-01-01

    A multigrid method is defined as having textbook multigrid efficiency (TME) if the solutions to the governing system of equations are attained in a computational work that is a small (less than 10) multiple of the operation count in one target-grid residual evaluation. The way to achieve this efficiency is the distributed relaxation approach. TME solvers employing distributed relaxation have already been demonstrated for nonconservative formulations of high-Reynolds-number viscous incompressible and subsonic compressible flow regimes. The purpose of this paper is to provide foundations for applications of distributed relaxation to conservative discretizations. A direct correspondence between the primitive variable interpolations for calculating fluxes in conservative finite-volume discretizations and stencils of the discretized derivatives in the nonconservative formulation has been established. Based on this correspondence, one can arrive at a conservative discretization which is very efficiently solved with a nonconservative relaxation scheme and this is demonstrated for conservative discretization of the quasi one-dimensional Euler equations. Formulations for both staggered and collocated grid arrangements are considered and extensions of the general procedure to multiple dimensions are discussed.

  4. Yet another symmetry breaking to be discovered

    NASA Astrophysics Data System (ADS)

    Yoshimura, M.

    2016-07-01

    The discovery of spontaneous symmetry breaking in particle physics was the greatest contribution in Nambu's achievements. There is another class of symmetries that exist in low-energy nature, yet is doomed to be broken at high energy, due to a lack of protection of the gauge symmetry. I shall review our approach to searching for this class of symmetry breaking, the lepton number violation linked to the generation of the matter-antimatter asymmetry in our universe.

  5. Partial Dynamical Symmetry in Nuclear Systems

    SciTech Connect

    Escher, J E

    2003-06-02

    Partial dynamical symmetry (PDS) extends and complements the concepts of exact and dynamical symmetry. It allows one to remove undesired constraints from an algebraic theory, while preserving some of the useful aspects of a dynamical symmetry, and to study the effects of symmetry breaking in a controlled manner. An example of a PDS in an interacting fermion system is presented. The associated PDS Hamiltonians are closely related with a realistic quadrupole-quadrupole interaction and provide new insights into this important interaction.

  6. Symmetry Engineering of Graphene Plasmonic Crystals.

    PubMed

    Yeung, Kitty Y M; Chee, Jingyee; Song, Yi; Kong, Jing; Ham, Donhee

    2015-08-12

    The dispersion relation of plasmons in graphene with a periodic lattice of apertures takes a band structure. Light incident on this plasmonic crystal excites only particular plasmonic modes in select bands. The selection rule is not only frequency/wavevector matching but also symmetry matching, where the symmetry of plasmonic modes originates from the point group symmetry of the lattice. We demonstrate versatile manipulation of light-plasmon coupling behaviors by engineering the symmetry of the graphene plasmonic crystal.

  7. Discrete event simulation of continuous systems

    SciTech Connect

    Nutaro, James J

    2007-01-01

    Computer simulation of a system described by differential equations requires that some element of the system be approximated by discrete quantities. There are two system aspects that can be made discrete; time and state. When time is discrete, the differential equation is approximated by a difference equation (i.e., a discrete time system), and the solution is calculated at fixed points in time. When the state is discrete, the differential equation is approximated by a discrete event system. Events correspond to jumps through the discrete state space of the approximation.

  8. Streamwise-Localized Solutions with natural 1-fold symmetry

    NASA Astrophysics Data System (ADS)

    Altmeyer, Sebastian; Willis, Ashley; Hof, Björn

    2014-11-01

    It has been proposed in recent years that turbulence is organized around unstable invariant solutions, which provide the building blocks of the chaotic dynamics. In direct numerical simulations of pipe flow we show that when imposing a minimal symmetry constraint (reflection in an axial plane only) the formation of turbulence can indeed be explained by dynamical systems concepts. The hypersurface separating laminar from turbulent motion, the edge of turbulence, is spanned by the stable manifolds of an exact invariant solution, a periodic orbit of a spatially localized structure. The turbulent states themselves (turbulent puffs in this case) are shown to arise in a bifurcation sequence from a related localized solution (the upper branch orbit). The rather complex bifurcation sequence involves secondary Hopf bifurcations, frequency locking and a period doubling cascade until eventually turbulent puffs arise. In addition we report preliminary results of the transition sequence for pipe flow without symmetry constraints.

  9. Symmetry-adapted Wannier functions in the maximal localization procedure

    NASA Astrophysics Data System (ADS)

    Sakuma, R.

    2013-06-01

    A procedure to construct symmetry-adapted Wannier functions in the framework of the maximally localized Wannier function approach [Marzari and Vanderbilt, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.56.12847 56, 12847 (1997); Souza, Marzari, and Vanderbilt, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.65.035109 65, 035109 (2001)] is presented. In this scheme, the minimization of the spread functional of the Wannier functions is performed with constraints that are derived from symmetry properties of the specified set of the Wannier functions and the Bloch functions used to construct them, therefore one can obtain a solution that does not necessarily yield the global minimum of the spread functional. As a test of this approach, results of atom-centered Wannier functions for GaAs and Cu are presented.

  10. Superalgebra and fermion-boson symmetry

    PubMed Central

    Miyazawa, Hironari

    2010-01-01

    Fermions and bosons are quite different kinds of particles, but it is possible to unify them in a supermultiplet, by introducing a new mathematical scheme called superalgebra. In this article we discuss the development of the concept of symmetry, starting from the rotational symmetry and finally arriving at this fermion-boson (FB) symmetry. PMID:20228617

  11. Gauge symmetries in spin-foam gravity: the case for "cellular quantization".

    PubMed

    Bonzom, Valentin; Smerlak, Matteo

    2012-06-15

    The spin-foam approach to quantum gravity rests on a quantization of BF theory using 2-complexes and group representations. We explain why, in dimension three and higher, this spin-foam quantization must be amended to be made consistent with the gauge symmetries of discrete BF theory. We discuss a suitable generalization, called "cellular quantization," which (1) is finite, (2) produces a topological invariant, (3) matches with the properties of the continuum BF theory, and (4) corresponds to its loop quantization. These results significantly clarify the foundations--and limitations--of the spin-foam formalism and open the path to understanding, in a discrete setting, the symmetry-breaking which reduces BF theory to gravity.

  12. Instanton effects in lattice models of bosonic symmetry-protected topological states

    NASA Astrophysics Data System (ADS)

    Santos, Luiz H.; Fradkin, Eduardo

    2016-04-01

    Bosonic symmetry-protected topological (SPT) states are gapped disordered phases of matter possessing symmetry-preserving boundary excitations. It has been proposed that, at long wavelengths, the universal properties of an SPT system are captured by an effective nonlinear sigma model field theory in the presence of a quantized topological θ term. By studying lattice models of bosonic SPT states, we are able to identify, in their Euclidean path integral formulation, (discrete) Berry phases that hold relevant physical information on the nature of the SPT ground states. These discrete Berry phases are given intuitive physical interpretation in terms of instanton effects that capture the presence of a θ term on the microscopic scale.

  13. Characterizing Floral Symmetry in the Core Goodeniaceae with Geometric Morphometrics

    PubMed Central

    Gardner, Andrew G.; Fitz Gerald, Jonathan N.; Menz, John; Shepherd, Kelly A.; Howarth, Dianella G.; Jabaily, Rachel S.

    2016-01-01

    Core Goodeniaceae is a clade of ~330 species primarily distributed in Australia. Considerable variation in flower morphology exists within this group and we aim to use geometric morphometrics to characterize this variation across the two major subclades: Scaevola sensu lato (s.l.) and Goodenia s.l., the latter of which was hypothesized to exhibit greater variability in floral symmetry form. We test the hypothesis that floral morphological variation can be adequately characterized by our morphometric approach, and that discrete groups of floral symmetry morphologies exist, which broadly correlate with subjectively determined groups. From 335 images of 44 species in the Core Goodeniaceae, two principal components were computed that describe >98% of variation in all datasets. Increasing values of PC1 ventralize the dorsal petals (increasing the angle between them), whereas increasing values of PC2 primarily ventralize the lateral petals (decreasing the angle between them). Manipulation of these two morphological “axes” alone was sufficient to recreate any of the general floral symmetry patterns in the Core Goodeniaceae. Goodenia s.l. exhibits greater variance than Scaevola s.l. in PC1 and PC2, and has a significantly lower mean value for PC1. Clustering clearly separates fan-flowers (with dorsal petals at least 120° separated) from the others, whereas the distinction between pseudo-radial and bilabiate clusters is less clear and may form a continuum rather than two distinct groups. Transitioning from the average fan-flower to the average non-fan-flower is described almost exclusively by PC1, whereas PC2 partially describes the transition between bilabiate and pseudo-radial morphologies. Our geometric morphometric method accurately models Core Goodeniaceae floral symmetry diversity. PMID:27148960

  14. Geometry of discrete quantum computing

    NASA Astrophysics Data System (ADS)

    Hanson, Andrew J.; Ortiz, Gerardo; Sabry, Amr; Tai, Yu-Tsung

    2013-05-01

    Conventional quantum computing entails a geometry based on the description of an n-qubit state using 2n infinite precision complex numbers denoting a vector in a Hilbert space. Such numbers are in general uncomputable using any real-world resources, and, if we have the idea of physical law as some kind of computational algorithm of the universe, we would be compelled to alter our descriptions of physics to be consistent with computable numbers. Our purpose here is to examine the geometric implications of using finite fields Fp and finite complexified fields \\mathbf {F}_{p^2} (based on primes p congruent to 3 (mod4)) as the basis for computations in a theory of discrete quantum computing, which would therefore become a computable theory. Because the states of a discrete n-qubit system are in principle enumerable, we are able to determine the proportions of entangled and unentangled states. In particular, we extend the Hopf fibration that defines the irreducible state space of conventional continuous n-qubit theories (which is the complex projective space \\mathbf {CP}^{2^{n}-1}) to an analogous discrete geometry in which the Hopf circle for any n is found to be a discrete set of p + 1 points. The tally of unit-length n-qubit states is given, and reduced via the generalized Hopf fibration to \\mathbf {DCP}^{2^{n}-1}, the discrete analogue of the complex projective space, which has p^{2^{n}-1} (p-1)\\,\\prod _{k=1}^{n-1} ( p^{2^{k}}+1) irreducible states. Using a measure of entanglement, the purity, we explore the entanglement features of discrete quantum states and find that the n-qubit states based on the complexified field \\mathbf {F}_{p^2} have pn(p - 1)n unentangled states (the product of the tally for a single qubit) with purity 1, and they have pn + 1(p - 1)(p + 1)n - 1 maximally entangled states with purity zero.

  15. New charge for BMS symmetries

    NASA Astrophysics Data System (ADS)

    Kesavan, Aruna; Ashtekar, Abhay

    2016-03-01

    Conservation laws of asymptotic symmetries are essential to quantify the amount of energy-momentum and angular momentum carried away by gravitational radiation from isolated systems. The asymptotic symmetry group of asymptotically flat spacetimes at null infinity is the Bondi-Metzner-Sachs (BMS) group. While the flux associated to an arbitrary BMS vector field was provided by Ashtekar and Streubel (1981) using symplectic methods, the tensorial expression of a corresponding two-dimensional charge integral linear in an arbitrary BMS vector field has not been available in the literature. We fill this gap by providing such a charge. I will discuss its properties and relation to Geroch's supermomentum and the charge of Dray and Streubel (1984).

  16. Facial symmetry in robust anthropometrics.

    PubMed

    Kalina, Jan

    2012-05-01

    Image analysis methods commonly used in forensic anthropology do not have desirable robustness properties, which can be ensured by robust statistical methods. In this paper, the face localization in images is carried out by detecting symmetric areas in the images. Symmetry is measured between two neighboring rectangular areas in the images using a new robust correlation coefficient, which down-weights regions in the face violating the symmetry. Raw images of faces without usual preliminary transformations are considered. The robust correlation coefficient based on the least weighted squares regression yields very promising results also in the localization of such faces, which are not entirely symmetric. Standard methods of statistical machine learning are applied for comparison. The robust correlation analysis can be applicable to other problems of forensic anthropology.

  17. Symmetry of cardiac function assessment.

    PubMed

    Bai, Xu-Fang; Ma, Amy X

    2016-09-01

    Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the first level of symmetry in cardiac function assessment. Both cardiac muscle contraction and relaxation are active. This constructs the second level of symmetry in cardiac function assessment. Combination of the two levels will help to find some hidden indexes or approaches to evaluate cardiac function. In this article, four major indexes from echocardiography were analyzed under this principal, another seventeen indexes or measurement approaches came out of the shadow, which is very helpful in the assessment of cardiac function, especially for the right cardiac function and diastolic cardiac function.

  18. Symmetry of cardiac function assessment.

    PubMed

    Bai, Xu-Fang; Ma, Amy X

    2016-09-01

    Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the first level of symmetry in cardiac function assessment. Both cardiac muscle contraction and relaxation are active. This constructs the second level of symmetry in cardiac function assessment. Combination of the two levels will help to find some hidden indexes or approaches to evaluate cardiac function. In this article, four major indexes from echocardiography were analyzed under this principal, another seventeen indexes or measurement approaches came out of the shadow, which is very helpful in the assessment of cardiac function, especially for the right cardiac function and diastolic cardiac function. PMID:27582768

  19. Tensionless strings from worldsheet symmetries

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun; Chakrabortty, Shankhadeep; Parekh, Pulastya

    2016-01-01

    We revisit the construction of the tensionless limit of closed bosonic string theory in the covariant formulation in the light of Galilean conformal symmetry that rises as the residual gauge symmetry on the tensionless worldsheet. We relate the analysis of the fundamentally tensionless theory to the tensionless limit that is viewed as a contraction of worldsheet coordinates. Analysis of the quantum regime uncovers interesting physics. The degrees of freedom that appear in the tensionless string are fundamentally different from the usual string states. Through a Bogoliubov transformation on the worldsheet, we link the tensionless vacuum to the usual tensile vacuum. As an application, we show that our analysis can be used to understand physics of strings at very high temperatures and propose that these new degrees of freedom are naturally connected with the long-string picture of the Hagedorn phase of free string theory. We also show that tensionless closed strings behave like open strings.

  20. Symmetry breaking around a wormhole

    NASA Astrophysics Data System (ADS)

    Choudhury, A. L.

    1996-11-01

    We have modified the extended version Coule and Maeda's version (D. H. Coule and Kei-ichi Maeda, Class.Quant.Grav.7,995(1990)) of the Gidding-Strominger model (S. B. Giddings and A. Strominger, Nucl.Phys. B307, 854(l988)) of the euclidean gravitational field interacting with axion. The new model has R-symmetry in contrast to the previous model. At the lowest perturbation case the model retains a wormhole solution. We assume that the scalar expands adiabatically and satisfies ideal gas law in a crude first approximation. Under the Higg's mechanism the symmetry can be broken at the tree approximation. This mechanism, we hope, can be used to introduce the degeneracy of quark masses.

  1. Symmetry of cardiac function assessment

    PubMed Central

    Bai, Xu-Fang; Ma, Amy X

    2016-01-01

    Both right and left ventricles are developed from two adjacent segments of the primary heart tube. Though they are different with regard to shape and power, they mirror each other in terms of behavior. This is the first level of symmetry in cardiac function assessment. Both cardiac muscle contraction and relaxation are active. This constructs the second level of symmetry in cardiac function assessment. Combination of the two levels will help to find some hidden indexes or approaches to evaluate cardiac function. In this article, four major indexes from echocardiography were analyzed under this principal, another seventeen indexes or measurement approaches came out of the shadow, which is very helpful in the assessment of cardiac function, especially for the right cardiac function and diastolic cardiac function. PMID:27582768

  2. Chiral symmetry and nucleon structure

    SciTech Connect

    Holstein, B.R. . Dept. of Physics and Astromony Washington Univ., Seattle, WA . Inst. for Nuclear Theory)

    1992-01-01

    Recently it has been realized that significant tests of the validity of QCD are available in low energy experiments (E < 500 MeV) by exploiting the property of (broken) chiral symmetry. This technique has been highly developed in The Goldstone boson sector by the work of Gasser and Leutwyler. Application to the nucleon system is much more difficult and is now being carefully developed.

  3. Discrete cloud structure on Neptune

    NASA Astrophysics Data System (ADS)

    Hammel, H. B.

    1989-07-01

    Recent CCD imaging data for the discrete cloud structure of Neptune shows that while cloud features at CH4-band wavelengths are manifest in the southern hemisphere, they have not been encountered in the northern hemisphere since 1986. A literature search has shown the reflected CH4-band light from the planet to have come from a single discrete feature at least twice in the last 10 years. Disk-integrated photometry derived from the imaging has demonstrated that a bright cloud feature was responsible for the observed 8900 A diurnal variation in 1986 and 1987.

  4. Quantum-field coherent control: Preparation of broken-symmetry entangled states

    SciTech Connect

    Kral, Petr; Thanopulos, Ioannis; Shapiro, Moshe

    2005-08-15

    We show that entangled radiation-matter states with broken symmetries can be prepared by using nonclassical light in the coherent control techniques. We demonstrate the method by realizing the entanglement in degenerate continuum electronic momentum states of opposite directionality and discrete states of opposite handedness in chiral molecules. When the material system is excited simultaneously by classical light and quantum light in a state with several semiclassical phases, the interference conditions guide the system to such entangled radiation-matter states.

  5. Neutrinos Masses in a Multi-Higgs Model with A4 symmetry

    NASA Astrophysics Data System (ADS)

    Machado, A. C. B.; Montero, J. C.; Pleitez, V.

    2012-08-01

    Presently it is well known that neutrino oscillation data are well described by massive neutrinos and their mixing. This suggests changes in the standard model (SM) and makes the flavor physics even more interesting. Recently, it has been proposed a multi-Higgs extension of the SM with Abelian and non-Abelian discrete symmetries which seeks to explain the origin of the masses and mixing matrices in all charge sectors.

  6. Dark matter and global symmetries

    NASA Astrophysics Data System (ADS)

    Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.

    2016-09-01

    General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Saw models. Assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O (1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime.

  7. Two-Higgs-doublet models with Minimal Flavour Violation

    SciTech Connect

    Carlucci, Maria Valentina

    2010-12-22

    The tree-level flavour-changing neutral currents in the two-Higgs-doublet models can be suppressed by protecting the breaking of either flavour or flavour-blind symmetries, but only the first choice, implemented by the application of the Minimal Flavour Violation hypothesis, is stable under quantum corrections. Moreover, a two-Higgs-doublet model with Minimal Flavour Violation enriched with flavour-blind phases can explain the anomalies recently found in the {Delta}F = 2 transitions, namely the large CP-violating phase in B{sub s} mixing and the tension between {epsilon}{sub K} and S{sub {psi}KS}.

  8. Large transition magnetic moment of the neutrino from horizontal symmetry

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; Mohapatra, Rabindra N.

    1990-12-01

    The apparent anticorrelation of the solar-neutrino signal with the 11-yr sunspot cycle observed by Davis can be understood if the electron neutrino has a large magnetic moment. We discuss extensions of the standard model, where the existence of a leptonic SU(2)H-horizontal symmetry between the electron and muon generations provides a way to understand such a large magnetic moment, while keeping the neutrino mass naturally small. A global le-lμ symmetry (li=ith lepton number) is maintained even after spontaneous gauge symmetry breaking, so that the neutrino is of Zeldovich-Konopinski-Mahmoud type with m2νe-m2νμ=0. This condition automatically guarantees that the neutrino spin precession in the magnetic field of the Sun is not suppressed. Of the two extensions of the standard model that we discuss, the first one is a local SU(2)H model with the horizontal symmetry broken completely at a TeV scale. We show how a global U(1)le-lμ can be maintained although le-lμ is a subgroup of the gauged SU(2)H. The second example is the minimal supersymmetric extension of the standard model with R-parity-violating [but (le-lμ)-conserving] interactions. An approximate SU(2)H symmetry between the e-μ families is imposed in order to suppress the neutrino mass, but not its magnetic moment. We provide a detailed theoretical and phenomenological investigation of these two models and discuss their tests at the colliders as well as in low-energy experiments. The models generally predict mνe~=1-10 eV and the existence of charged scalar particles in the mass range of 100 GeV.

  9. Higher-order time-symmetry-breaking phase transition due to meeting of an exceptional point and a Fano resonance

    NASA Astrophysics Data System (ADS)

    Tanaka, Satoshi; Garmon, Savannah; Kanki, Kazuki; Petrosky, Tomio

    2016-08-01

    We have theoretically investigated the time-symmetry-breaking phase-transition process for two discrete states coupled with a one-dimensional continuum by solving the nonlinear eigenvalue problem for the effective Hamiltonian associated with the discrete spectrum. We obtain the effective Hamiltonian with use of the Feshbach-Brillouin-Wigner projection method. Strong energy dependence of the self-energy appearing in the effective Hamiltonian plays a key role in the time-symmetry-breaking phase transition: As a result of competition in the decay process between the Van Hove singularity and the Fano resonance, the phase transition becomes a higher-order transition when both the two discrete states are located near the continuum threshold.

  10. Pilot-Wave Quantum Theory in Discrete Space and Time and the Principle of Least Action

    NASA Astrophysics Data System (ADS)

    Gluza, Janusz; Kosek, Jerzy

    2016-11-01

    The idea of obtaining a pilot-wave quantum theory on a lattice with discrete time is presented. The motion of quantum particles is described by a |Ψ |^2-distributed Markov chain. Stochastic matrices of the process are found by the discrete version of the least-action principle. Probability currents are the consequence of Hamilton's principle and the stochasticity of the Markov process is minimized. As an example, stochastic motion of single particles in a double-slit experiment is examined.

  11. Pilot-Wave Quantum Theory in Discrete Space and Time and the Principle of Least Action

    NASA Astrophysics Data System (ADS)

    Gluza, Janusz; Kosek, Jerzy

    2016-06-01

    The idea of obtaining a pilot-wave quantum theory on a lattice with discrete time is presented. The motion of quantum particles is described by a |Ψ |^2 -distributed Markov chain. Stochastic matrices of the process are found by the discrete version of the least-action principle. Probability currents are the consequence of Hamilton's principle and the stochasticity of the Markov process is minimized. As an example, stochastic motion of single particles in a double-slit experiment is examined.

  12. Enhanced Facial Symmetry Assessment in Orthodontists.

    PubMed

    Jackson, Tate H; Clark, Kait; Mitroff, Stephen R

    2013-01-01

    Assessing facial symmetry is an evolutionarily important process, which suggests that individual differences in this ability should exist. As existing data are inconclusive, the current study explored whether a group trained in facial symmetry assessment, orthodontists, possessed enhanced abilities. Symmetry assessment was measured using face and non-face stimuli among orthodontic residents and two control groups: university participants with no symmetry training and airport security luggage screeners, a group previously shown to possess expert visual search skills unrelated to facial symmetry. Orthodontic residents were more accurate at assessing symmetry in both upright and inverted faces compared to both control groups, but not for non-face stimuli. These differences are not likely due to motivational biases or a speed-accuracy tradeoff-orthodontic residents were slower than the university participants but not the security screeners. Understanding such individual differences in facial symmetry assessment may inform the perception of facial attractiveness.

  13. Relativity symmetries and Lie algebra contractions

    NASA Astrophysics Data System (ADS)

    Cho, Dai-Ning; Kong, Otto C. W.

    2014-12-01

    We revisit the notion of possible relativity or kinematic symmetries mutually connected through Lie algebra contractions under a new perspective on what constitutes a relativity symmetry. Contractions of an SO(m , n) symmetry as an isometry on an m + n dimensional geometric arena which generalizes the notion of spacetime are discussed systematically. One of the key results is five different contractions of a Galilean-type symmetry G(m , n) preserving a symmetry of the same type at dimension m + n - 1, e.g. a G(m , n - 1) , together with the coset space representations that correspond to the usual physical picture. Most of the results are explicitly illustrated through the example of symmetries obtained from the contraction of SO(2 , 4) , which is the particular case for our interest on the physics side as the proposed relativity symmetry for "quantum spacetime". The contractions from G(1 , 3) may be relevant to real physics.

  14. Enhanced Facial Symmetry Assessment in Orthodontists

    PubMed Central

    Jackson, Tate H.; Clark, Kait; Mitroff, Stephen R.

    2013-01-01

    Assessing facial symmetry is an evolutionarily important process, which suggests that individual differences in this ability should exist. As existing data are inconclusive, the current study explored whether a group trained in facial symmetry assessment, orthodontists, possessed enhanced abilities. Symmetry assessment was measured using face and non-face stimuli among orthodontic residents and two control groups: university participants with no symmetry training and airport security luggage screeners, a group previously shown to possess expert visual search skills unrelated to facial symmetry. Orthodontic residents were more accurate at assessing symmetry in both upright and inverted faces compared to both control groups, but not for non-face stimuli. These differences are not likely due to motivational biases or a speed-accuracy tradeoff—orthodontic residents were slower than the university participants but not the security screeners. Understanding such individual differences in facial symmetry assessment may inform the perception of facial attractiveness. PMID:24319342

  15. Staggered fermions and chiral symmetry breaking in transverse lattice regulated QED

    SciTech Connect

    Griffin, P.A.

    1992-07-01

    Staggered fermions are constructed for the transverse lattice regularization scheme. The weak perturbation theory of transverse lattice non-compact QED is developed in light-cone gauge, and we argue that for fixed lattice spacing this theory is ultraviolet finite, order by order in perturbation theory. However, by calculating the anomalous scaling dimension of the link fields, we find that the interaction Hamiltonian becomes non-renormalizable for g{sup 2}(a) > 4{pi}, where g(a) is the bare (lattice) QED coupling constant. We conjecture that this is the critical point of the chiral symmetry breaking phase transition in QED. Non-perturbative chiral symmetry breaking is then studied in the strong coupling limit. The discrete remnant of chiral symmetry that remains on the lattice is spontaneously broken, and the ground state to lowest order in the strong coupling expansion corresponds to the classical ground state of the two-dimensional spin one-half Heisenberg antiferromagnet.

  16. Wave functions of symmetry-protected topological phases from conformal field theories

    NASA Astrophysics Data System (ADS)

    Scaffidi, Thomas; Ringel, Zohar

    2016-03-01

    We propose a method for analyzing two-dimensional symmetry-protected topological (SPT) wave functions using a correspondence with conformal field theories (CFTs) and integrable lattice models. This method generalizes the CFT approach for the fractional quantum Hall effect wherein the wave-function amplitude is written as a many-operator correlator in the CFT. Adopting a bottom-up approach, we start from various known microscopic wave functions of SPTs with discrete symmetries and show how the CFT description emerges at large scale, thereby revealing a deep connection between group cocycles and critical, sometimes integrable, models. We show that the CFT describing the bulk wave function is often also the one describing the entanglement spectrum, but not always. Using a plasma analogy, we also prove the existence of hidden quasi-long-range order for a large class of SPTs. Finally, we show how response to symmetry fluxes is easily described in terms of the CFT.

  17. Supergravity Higgs inflation and shift symmetry in electroweak theory

    SciTech Connect

    Ben-Dayan, Ido; Einhorn, Martin B. E-mail: meinhorn@kitp.ucsb.edu

    2010-12-01

    We present a model of inflation in a supergravity framework in the Einstein frame where the Higgs field of the next to minimal supersymmetric standard model (NMSSM) plays the role of the inflaton. Previous attempts which assumed non-minimal coupling to gravity failed due to a tachyonic instability of the singlet field during inflation. A canonical Kähler potential with minimal coupling to gravity can resolve the tachyonic instability but runs into the η-problem. We suggest a model which is free of the η-problem due to an additional coupling in the Kähler potential which is allowed by the Standard Model gauge group. This induces directions in the potential which we call K-flat. For a certain value of the new coupling in the (N)MSSM, the Kähler potential is special, because it can be associated with a certain shift symmetry for the Higgs doublets, a generalization of the shift symmetry for singlets in earlier models. We find that K-flat direction has H{sub u}{sup 0} = −H{sub d}{sup 0*}. This shift symmetry is broken by interactions coming from the superpotential and gauge fields. This flat direction fails to produce successful inflation in the MSSM but yields a more interesting model in the NMSSM, even though it does not pass existing cosmological constraints. We point out that, in building more sophisticated models of this type, one may also need to take into account their implications for axion searches or other elementary particle constraints.

  18. Some discrete multiple orthogonal polynomials

    NASA Astrophysics Data System (ADS)

    Arvesú, J.; Coussement, J.; van Assche, W.

    2003-04-01

    In this paper, we extend the theory of discrete orthogonal polynomials (on a linear lattice) to polynomials satisfying orthogonality conditions with respect to r positive discrete measures. First we recall the known results of the classical orthogonal polynomials of Charlier, Meixner, Kravchuk and Hahn (T.S. Chihara, An Introduction to Orthogonal Polynomials, Gordon and Breach, New York, 1978; R. Koekoek and R.F. Swarttouw, Reports of the Faculty of Technical Mathematics and Informatics No. 98-17, Delft, 1998; A.F. Nikiforov et al., Classical Orthogonal Polynomials of a Discrete Variable, Springer, Berlin, 1991). These polynomials have a lowering and raising operator, which give rise to a Rodrigues formula, a second order difference equation, and an explicit expression from which the coefficients of the three-term recurrence relation can be obtained. Then we consider r positive discrete measures and define two types of multiple orthogonal polynomials. The continuous case (Jacobi, Laguerre, Hermite, etc.) was studied by Van Assche and Coussement (J. Comput. Appl. Math. 127 (2001) 317-347) and Aptekarev et al. (Multiple orthogonal polynomials for classical weights, manuscript). The families of multiple orthogonal polynomials (of type II) that we will study have a raising operator and hence a Rodrigues formula. This will give us an explicit formula for the polynomials. Finally, there also exists a recurrence relation of order r+1 for these multiple orthogonal polynomials of type II. We compute the coefficients of the recurrence relation explicitly when r=2.

  19. Reduced discretization error in HZETRN

    NASA Astrophysics Data System (ADS)

    Slaba, Tony C.; Blattnig, Steve R.; Tweed, John

    2013-02-01

    The deterministic particle transport code HZETRN is an efficient analysis tool for studying the effects of space radiation on humans, electronics, and shielding materials. In a previous work, numerical methods in the code were reviewed, and new methods were developed that further improved efficiency and reduced overall discretization error. It was also shown that the remaining discretization error could be attributed to low energy light ions (A < 4) with residual ranges smaller than the physical step-size taken by the code. Accurately resolving the spectrum of low energy light particles is important in assessing risk associated with astronaut radiation exposure. In this work, modifications to the light particle transport formalism are presented that accurately resolve the spectrum of low energy light ion target fragments. The modified formalism is shown to significantly reduce overall discretization error and allows a physical approximation to be removed. For typical step-sizes and energy grids used in HZETRN, discretization errors for the revised light particle transport algorithms are shown to be less than 4% for aluminum and water shielding thicknesses as large as 100 g/cm2 exposed to both solar particle event and galactic cosmic ray environments.

  20. Reduced discretization error in HZETRN

    SciTech Connect

    Slaba, Tony C.; Blattnig, Steve R.; Tweed, John

    2013-02-01

    The deterministic particle transport code HZETRN is an efficient analysis tool for studying the effects of space radiation on humans, electronics, and shielding materials. In a previous work, numerical methods in the code were reviewed, and new methods were developed that further improved efficiency and reduced overall discretization error. It was also shown that the remaining discretization error could be attributed to low energy light ions (A < 4) with residual ranges smaller than the physical step-size taken by the code. Accurately resolving the spectrum of low energy light particles is important in assessing risk associated with astronaut radiation exposure. In this work, modifications to the light particle transport formalism are presented that accurately resolve the spectrum of low energy light ion target fragments. The modified formalism is shown to significantly reduce overall discretization error and allows a physical approximation to be removed. For typical step-sizes and energy grids used in HZETRN, discretization errors for the revised light particle transport algorithms are shown to be less than 4% for aluminum and water shielding thicknesses as large as 100 g/cm{sup 2} exposed to both solar particle event and galactic cosmic ray environments.

  1. CKM and PMNS mixing matrices from discrete subgroups of SU(2)

    NASA Astrophysics Data System (ADS)

    Potter, Franklin

    2015-07-01

    Remaining within the realm of the Standard Model(SM) local gauge group, this first principles derivation of both the PMNS and CKM matrices utilizes quaternion generators of the three discrete (i.e., finite) binary rotational subgroups of SU(2) called [3,3,2], [4,3,2], and [5,3,2] for three lepton families in R3 and four related discrete binary rotational subgroups [3,3,3], [4,3,3], [3,4,3], and [5,3,3] represented by four quark families in R4. The traditional 3x3 CKM matrix is extracted as a submatrix of the 4x4 CKM4 matrix. If these two additional quarks b' and t' of a 4th quark family exist, there is the possibility that the SM lagrangian may apply all the way down to the Planck scale. There are then numerous other important consequences. The Weinberg angle is derived using these same quaternion generators, and the triangle anomaly cancellation is satisfied even though there is an obvious mismatch of three lepton families to four quark families. In a discrete space, one can also use these generators to derive a unique connection from the electroweak local gauge group SU(2)L x U(1)Y acting in R4 to the discrete group Weyl E8 in R8. By considering Lorentz transformations in discrete (3,1)-D spacetime, one obtains another Weyl E8 discrete symmetry group in R8, so that the combined symmetry is Weyl E8 x Weyl E8 = "discrete" SO(9,1) in 10-D spacetime. This unique connection is in direct contrast to the 10500 possible connections for superstring theory!

  2. Quantizing the Discrete Painlevé VI Equation: The Lax Formalism

    NASA Astrophysics Data System (ADS)

    Hasegawa, Koji

    2013-08-01

    A discretization of Painlevé VI equation was obtained by Jimbo and Sakai (Lett Math Phys 38:145-154, 1996). There are two ways to quantize it: (1) use the affine Weyl group symmetry (of {D_5^{(1)}}) (Hasegawa in Adv Stud Pure Math 61:275-288, 2011), (2) Lax formalism, i.e. monodromy preserving point of view. It turns out that the second approach is also successful and gives the same quantization as in the first approach.

  3. Black holes and Abelian symmetry breaking

    NASA Astrophysics Data System (ADS)

    Chagoya, Javier; Niz, Gustavo; Tasinato, Gianmassimo

    2016-09-01

    Black hole configurations offer insights on the nonlinear aspects of gravitational theories, and can suggest testable predictions for modifications of General Relativity. In this work, we examine exact black hole configurations in vector–tensor theories, originally proposed to explain dark energy by breaking the Abelian symmetry with a non-minimal coupling of the vector to gravity. We are able to evade the no-go theorems by Bekenstein on the existence of regular black holes in vector–tensor theories with Proca mass terms, and exhibit regular black hole solutions with a profile for the longitudinal vector polarisation, characterised by an additional charge. We analytically find the most general static, spherically symmetric black hole solutions with and without a cosmological constant, and study in some detail their features, such as how the geometry depends on the vector charges. We also include angular momentum, and find solutions describing slowly-rotating black holes. Finally, we extend some of these solutions to higher dimensions.

  4. Black holes and Abelian symmetry breaking

    NASA Astrophysics Data System (ADS)

    Chagoya, Javier; Niz, Gustavo; Tasinato, Gianmassimo

    2016-09-01

    Black hole configurations offer insights on the nonlinear aspects of gravitational theories, and can suggest testable predictions for modifications of General Relativity. In this work, we examine exact black hole configurations in vector-tensor theories, originally proposed to explain dark energy by breaking the Abelian symmetry with a non-minimal coupling of the vector to gravity. We are able to evade the no-go theorems by Bekenstein on the existence of regular black holes in vector-tensor theories with Proca mass terms, and exhibit regular black hole solutions with a profile for the longitudinal vector polarisation, characterised by an additional charge. We analytically find the most general static, spherically symmetric black hole solutions with and without a cosmological constant, and study in some detail their features, such as how the geometry depends on the vector charges. We also include angular momentum, and find solutions describing slowly-rotating black holes. Finally, we extend some of these solutions to higher dimensions.

  5. Accidental symmetries and massless quarks in the economical 3-3-1 model

    NASA Astrophysics Data System (ADS)

    Montero, J. C.; Sánchez-Vega, B. L.

    2015-02-01

    In the framework of a 3-3-1 model with a minimal scalar sector, known as the economical 3-3-1 model, we study its capabilities of generating realistic quark masses. After a detailed study of the symmetries of the model, before and after the spontaneous symmetry breaking, we find a remaining axial symmetry that prevents some quarks from gaining mass at all orders in perturbation theory. Since this accidental symmetry is anomalous, we also consider briefly the possibility of generating their masses for nonperturbative effects. However, we find that nonperturbative effects are not enough to generate the measured masses for the three massless quarks. Hence, these results imply that the economical 3-3-1 model is not a realistic description of the electroweak interaction.

  6. Simultaneous optical flow and source estimation: Space–time discretization and preconditioning

    PubMed Central

    Andreev, R.; Scherzer, O.; Zulehner, W.

    2015-01-01

    We consider the simultaneous estimation of an optical flow field and an illumination source term in a movie sequence. The particular optical flow equation is obtained by assuming that the image intensity is a conserved quantity up to possible sources and sinks which represent varying illumination. We formulate this problem as an energy minimization problem and propose a space–time simultaneous discretization for the optimality system in saddle-point form. We investigate a preconditioning strategy that renders the discrete system well-conditioned uniformly in the discretization resolution. Numerical experiments complement the theory. PMID:26435561

  7. Approaching Minimal Flavour Violation from an SU(5) × S 4 × U(1) SUSY GUT

    NASA Astrophysics Data System (ADS)

    Dimou, Maria; King, Stephen F.; Luhn, Christoph

    2016-02-01

    We show how approximate Minimal Flavour Violation (MFV) can emerge from an SU(5) Supersymmetric Grand Unified Theory (SUSY GUT) supplemented by an S 4 × U(1) family symmetry, which provides a good description of all quark and lepton (including neutrino) masses, mixings and CP violation. Assuming a SUSY breaking mechanism which respects the family symmetry, we calculate in full explicit detail the low energy mass insertion parameters in the super-CKM basis, including the effects of canonical normalisation and renormalisation group running. We find that the very simple family symmetry S 4 ×U(1) is sufficient to approximately reproduce the effects of low energy MFV.

  8. Simulating granular materials by energy minimization

    NASA Astrophysics Data System (ADS)

    Krijgsman, D.; Luding, S.

    2016-03-01

    Discrete element methods are extremely helpful in understanding the complex behaviors of granular media, as they give valuable insight into all internal variables of the system. In this paper, a novel discrete element method for performing simulations of granular media is presented, based on the minimization of the potential energy in the system. Contrary to most discrete element methods (i.e., soft-particle method, event-driven method, and non-smooth contact dynamics), the system does not evolve by (approximately) integrating Newtons equations of motion in time, but rather by searching for mechanical equilibrium solutions for the positions of all particles in the system, which is mathematically equivalent to locally minimizing the potential energy. The new method allows for the rapid creation of jammed initial conditions (to be used for further studies) and for the simulation of quasi-static deformation problems. The major advantage of the new method is that it allows for truly static deformations. The system does not evolve with time, but rather with the externally applied strain or load, so that there is no kinetic energy in the system, in contrast to other quasi-static methods. The performance of the algorithm for both types of applications of the method is tested. Therefore we look at the required number of iterations, for the system to converge to a stable solution. For each single iteration, the required computational effort scales linearly with the number of particles. During the process of creating initial conditions, the required number of iterations for two-dimensional systems scales with the square root of the number of particles in the system. The required number of iterations increases for systems closer to the jamming packing fraction. For a quasi-static pure shear deformation simulation, the results of the new method are validated by regular soft-particle dynamics simulations. The energy minimization algorithm is able to capture the evolution of the

  9. Simulating granular materials by energy minimization

    NASA Astrophysics Data System (ADS)

    Krijgsman, D.; Luding, S.

    2016-11-01

    Discrete element methods are extremely helpful in understanding the complex behaviors of granular media, as they give valuable insight into all internal variables of the system. In this paper, a novel discrete element method for performing simulations of granular media is presented, based on the minimization of the potential energy in the system. Contrary to most discrete element methods (i.e., soft-particle method, event-driven method, and non-smooth contact dynamics), the system does not evolve by (approximately) integrating Newtons equations of motion in time, but rather by searching for mechanical equilibrium solutions for the positions of all particles in the system, which is mathematically equivalent to locally minimizing the potential energy. The new method allows for the rapid creation of jammed initial conditions (to be used for further studies) and for the simulation of quasi-static deformation problems. The major advantage of the new method is that it allows for truly static deformations. The system does not evolve with time, but rather with the externally applied strain or load, so that there is no kinetic energy in the system, in contrast to other quasi-static methods. The performance of the algorithm for both types of applications of the method is tested. Therefore we look at the required number of iterations, for the system to converge to a stable solution. For each single iteration, the required computational effort scales linearly with the number of particles. During the process of creating initial conditions, the required number of iterations for two-dimensional systems scales with the square root of the number of particles in the system. The required number of iterations increases for systems closer to the jamming packing fraction. For a quasi-static pure shear deformation simulation, the results of the new method are validated by regular soft-particle dynamics simulations. The energy minimization algorithm is able to capture the evolution of the

  10. Exact symmetries in the velocity fluctuations of a hot Brownian swimmer

    NASA Astrophysics Data System (ADS)

    Falasco, Gianmaria; Pfaller, Richard; Bregulla, Andreas P.; Cichos, Frank; Kroy, Klaus

    2016-09-01

    Symmetries constrain dynamics. We test this fundamental physical principle, experimentally and by molecular dynamics simulations, for a hot Janus swimmer operating far from thermal equilibrium. Our results establish scalar and vectorial steady-state fluctuation theorems and a thermodynamic uncertainty relation that link the fluctuating particle current to its entropy production at an effective temperature. A Markovian minimal model elucidates the underlying nonequilibrium physics.

  11. Minimally invasive mediastinal surgery

    PubMed Central

    Melfi, Franca M. A.; Mussi, Alfredo

    2016-01-01

    In the past, mediastinal surgery was associated with the necessity of a maximum exposure, which was accomplished through various approaches. In the early 1990s, many surgical fields, including thoracic surgery, observed the development of minimally invasive techniques. These included video-assisted thoracic surgery (VATS), which confers clear advantages over an open approach, such as less trauma, short hospital stay, increased cosmetic results and preservation of lung function. However, VATS is associated with several disadvantages. For this reason, it is not routinely performed for resection of mediastinal mass lesions, especially those located in the anterior mediastinum, a tiny and remote space that contains vital structures at risk of injury. Robotic systems can overcome the limits of VATS, offering three-dimensional (3D) vision and wristed instrumentations, and are being increasingly used. With regards to thymectomy for myasthenia gravis (MG), unilateral and bilateral VATS approaches have demonstrated good long-term neurologic results with low complication rates. Nevertheless, some authors still advocate the necessity of maximum exposure, especially when considering the distribution of normal and ectopic thymic tissue. In recent studies, the robotic approach has shown to provide similar neurological outcomes when compared to transsternal and VATS approaches, and is associated with a low morbidity. Importantly, through a unilateral robotic technique, it is possible to dissect and remove at least the same amount of mediastinal fat tissue. Preliminary results on early-stage thymomatous disease indicated that minimally invasive approaches are safe and feasible, with a low rate of pleural recurrence, underlining the necessity of a “no-touch” technique. However, especially for thymomatous disease characterized by an indolent nature, further studies with long follow-up period are necessary in order to assess oncologic and neurologic results through minimally

  12. Bimaximal Neutrino Mixing and Weak Complementarity with S{sub 4} Discrete Symmetry

    SciTech Connect

    Merlo, Luca

    2010-02-10

    The neutrino oscillation data are well explained by the tri-bimaximal pattern. Recently a paper appeared showing that also the bimaximal pattern could be a very good starting point in order to describe the lepton mixing. In this paper I review both the flavour structures and then I present an explicit model.

  13. Modeling spontaneous chiral symmetry breaking and deracemization phenomena: discrete versus continuum approaches.

    PubMed

    Blanco, Celia; Ribó, Josep M; Hochberg, David

    2015-02-01

    We derive the class of population balance equations (PBE), recently applied to model the Viedma deracemization experiment, from an underlying microreversible kinetic reaction scheme. The continuum limit establishing the relationship between the micro- and macroscopic processes and the associated particle fluxes erases the microreversible nature of the molecular interactions in the population growth rate functions and limits the scope of such PBE models to strict kinetic control. The irreversible binary agglomeration processes modeled in those PBEs contribute an additional source of kinetic control. These limitations are crucial regarding the question of the origin of biological homochirality, where the interest in any model lies precisely in its ability for absolute asymmetric synthesis and the amplification of the tiny inherent statistical chiral fluctuations about the ideal racemic composition up to observable enantiometric excess levels.

  14. The ZOOM minimization package

    SciTech Connect

    Fischler, Mark S.; Sachs, D.; /Fermilab

    2004-11-01

    A new object-oriented Minimization package is available for distribution in the same manner as CLHEP. This package, designed for use in HEP applications, has all the capabilities of Minuit, but is a re-write from scratch, adhering to modern C++ design principles. A primary goal of this package is extensibility in several directions, so that its capabilities can be kept fresh with as little maintenance effort as possible. This package is distinguished by the priority that was assigned to C++ design issues, and the focus on producing an extensible system that will resist becoming obsolete.

  15. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  16. Minimal E6 unification

    NASA Astrophysics Data System (ADS)

    Susič, Vasja

    2016-06-01

    A realistic model in the class of renormalizable supersymmetric E6 Grand Unified Theories is constructed. Its matter sector consists of 3 × 27 representations, while the Higgs sector is 27 +27 ¯+35 1'+35 1' ¯+78 . An analytic solution for a Standard Model vacuum is found and the Yukawa sector analyzed. It is argued that if one considers the increased predictability due to only two symmetric Yukawa matrices in this model, it can be considered a minimal SUSY E6 model with this type of matter sector. This contribution is based on Ref. [1].

  17. a Distributed Gaussian Discrete Variable Representation

    NASA Astrophysics Data System (ADS)

    Karabulut, Hasan

    In this work a discrete variable representation (DVR) is constructed from a distributed Gaussian basis (DGB). A DGB is a finite or infinite chain of uniformly distributed Gaussians g_{n}(x) = e^{-c^2(x/d-n)^2} where n takes integer values. There are three main parts of this thesis. In the first part (Chapter III) the finite chain distributed Gaussian DVR (Finite Chain DG-DVR) is derived. In order to accomplish this, the distributed Gaussian orthogonal polynomials are introduced. The connection of these polynomials to Stieltjes-Wigert polynomials is shown. The recurrence relation for these orthogonal polynomials is derived. Tested recipes are given to calculate the quadrature points and weights and to construct the corresponding Lagrange functions which are analogs of Lagrange interpolation polynomials. The symmetries of quadrature points, weights, and Lagrange functions are derived. Limit cases ctoinfty and cto 0 are studied. In the second part (Chapter IV)the infinite chain limit DG-DVR is derived from a limit of the finite chain DG-DVR. The quadrature points and weights and the Lagrange functions are found in this limit and kinetic energy operator is constructed. It is shown that in the limit c to 0 the infinite chain DG-DVR reduces to Colbert and Miller's DVR. A discussion of ability of a distributed Gaussian basis to represent an arbitrary function is given. The results of this treatment yield a possible explanation of surprising accuracy of Colbert-Miller DVR. In the third part construction of the DG-DVR is given when one point is chosen arbitrarily. Some interesting identities and integral representations for the b _{n} and sigma_ {n} coefficients that are introduced in the second part are found.

  18. Dirac neutrinos with S4 flavor symmetry in warped extra dimensions

    NASA Astrophysics Data System (ADS)

    Ding, Gui-Jun; Zhou, Ye-Ling

    2013-11-01

    case of G being a finite group, there should be some integers n and mi such that Gln=(=1 with n⩾3 which results from the requirement that Gl is non-degenerate. We have performed a systematic scan of the possible values of n up to n=200, we are unable to find solutions for the integers mi such that (=1, and hence the symmetry groups in these cases are infinite. Therefore we conclude that there is no discrete flavor symmetry group that contains all of the symmetries needed for the DC mixing, although one cannot rule out the possibility of a discrete group with a very large order. This is the reason why the discrete flavor symmetry origin of the DC mixing has not been proposed so far. Note that the S×S symmetry can immediately lead to the so-called democratic mass matrix in which each matrix element has the same value [53], where S and S are symmetric groups of degree three acting on the left-handed and the right-handed fermion fields respectively. However, the DC mixing cannot be uniquely determined by the democratic mass matrix, and in fact only the third row of DC mixing matrix is fixed.

  19. Symmetry breaking in neural nets.

    PubMed

    Pessa, E

    1988-01-01

    In this paper two well-known homogeneous models of neural nets undergoing symmetry-breaking transitions are studied in order to see if, after the transition, there is the appearance of Goldstone modes. These have been found only in an approximate way; there are indications, however, that they can play a prominent role when the tissue is subjected to external inputs, constraining it to be slaved to the characteristics of those. This circumstance should be essential in explaining how a structured net can store complex inputs and give subsequently ordered outputs.

  20. Hidden symmetries in jammed systems

    NASA Astrophysics Data System (ADS)

    Morse, Peter K.; Corwin, Eric I.

    2016-07-01

    There are deep, but hidden, geometric structures within jammed systems, associated with hidden symmetries. These can be revealed by repeated transformations under which these structures lead to fixed points. These geometric structures can be found in the Voronoi tesselation of space defined by the packing. In this paper we examine two iterative processes: maximum inscribed sphere (MIS) inversion and a real-space coarsening scheme. Under repeated iterations of the MIS inversion process we find invariant systems in which every particle is equal to the maximum inscribed sphere within its Voronoi cell. Using a real-space coarsening scheme we reveal behavior in geometric order parameters which is length-scale invariant.

  1. History of electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Kibble, T. W. B.

    2015-07-01

    In this talk, I recall the history of the development of the unified electroweak theory, incorporating the symmetry-breaking Higgs mechanism, as I saw it from my standpoint as a member of Abdus Salam's group at Imperial College. I start by describing the state of physics in the years after the Second World War, explain how the goal of a unified gauge theory of weak and electromagnetic interactions emerged, the obstacles encountered, in particular the Goldstone theorem, and how they were overcome, followed by a brief account of more recent history, culminating in the historic discovery of the Higgs boson in 2012.

  2. Mixed finite element methods for linear elasticity with weakly imposed symmetry

    NASA Astrophysics Data System (ADS)

    Arnold, Douglas N.; Falk, Richard S.; Winther, Ragnar

    2007-12-01

    In this paper, we construct new finite element methods for the approximation of the equations of linear elasticity in three space dimensions that produce direct approximations to both stresses and displacements. The methods are based on a modified form of the Hellinger-Reissner variational principle that only weakly imposes the symmetry condition on the stresses. Although this approach has been previously used by a number of authors, a key new ingredient here is a constructive derivation of the elasticity complex starting from the de Rham complex. By mimicking this construction in the discrete case, we derive new mixed finite elements for elasticity in a systematic manner from known discretizations of the de Rham complex. These elements appear to be simpler than the ones previously derived. For example, we construct stable discretizations which use only piecewise linear elements to approximate the stress field and piecewise constant functions to approximate the displacement field.

  3. Exploring Discretization Error in Simulation-Based Aerodynamic Databases

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Nemec, Marian

    2010-01-01

    This work examines the level of discretization error in simulation-based aerodynamic databases and introduces strategies for error control. Simulations are performed using a parallel, multi-level Euler solver on embedded-boundary Cartesian meshes. Discretization errors in user-selected outputs are estimated using the method of adjoint-weighted residuals and we use adaptive mesh refinement to reduce these errors to specified tolerances. Using this framework, we examine the behavior of discretization error throughout a token database computed for a NACA 0012 airfoil consisting of 120 cases. We compare the cost and accuracy of two approaches for aerodynamic database generation. In the first approach, mesh adaptation is used to compute all cases in the database to a prescribed level of accuracy. The second approach conducts all simulations using the same computational mesh without adaptation. We quantitatively assess the error landscape and computational costs in both databases. This investigation highlights sensitivities of the database under a variety of conditions. The presence of transonic shocks or the stiffness in the governing equations near the incompressible limit are shown to dramatically increase discretization error requiring additional mesh resolution to control. Results show that such pathologies lead to error levels that vary by over factor of 40 when using a fixed mesh throughout the database. Alternatively, controlling this sensitivity through mesh adaptation leads to mesh sizes which span two orders of magnitude. We propose strategies to minimize simulation cost in sensitive regions and discuss the role of error-estimation in database quality.

  4. An adaptive mesh refinement algorithm for the discrete ordinates method

    SciTech Connect

    Jessee, J.P.; Fiveland, W.A.; Howell, L.H.; Colella, P.; Pember, R.B.

    1996-03-01

    The discrete ordinates form of the radiative transport equation (RTE) is spatially discretized and solved using an adaptive mesh refinement (AMR) algorithm. This technique permits the local grid refinement to minimize spatial discretization error of the RTE. An error estimator is applied to define regions for local grid refinement; overlapping refined grids are recursively placed in these regions; and the RTE is then solved over the entire domain. The procedure continues until the spatial discretization error has been reduced to a sufficient level. The following aspects of the algorithm are discussed: error estimation, grid generation, communication between refined levels, and solution sequencing. This initial formulation employs the step scheme, and is valid for absorbing and isotopically scattering media in two-dimensional enclosures. The utility of the algorithm is tested by comparing the convergence characteristics and accuracy to those of the standard single-grid algorithm for several benchmark cases. The AMR algorithm provides a reduction in memory requirements and maintains the convergence characteristics of the standard single-grid algorithm; however, the cases illustrate that efficiency gains of the AMR algorithm will not be fully realized until three-dimensional geometries are considered.

  5. Two-flavor QCD simulation with exact chiral symmetry

    SciTech Connect

    Aoki, S.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Yamada, N.; Ishikawa, K-I.; Okawa, M.; Kanaya, K.; Matsufuru, H.; Okamoto, M.; Onogi, T.; Ukawa, A; Yoshie, T.

    2008-07-01

    We perform numerical simulations of lattice QCD with two flavors of dynamical overlap quarks, which have exact chiral symmetry on the lattice. While this fermion discretization is computationally demanding, we demonstrate the feasibility to simulate reasonably large and fine lattices by a careful choice of the lattice action and algorithmic improvements. Our production runs are carried out on a 16{sup 3}x32 lattice at a single lattice spacing around 0.12 fm. We explore the sea quark mass region down to m{sub s}/6, where m{sub s} is the physical strange quark mass, for a good control of the chiral extrapolation in future calculations of physical observables. We describe in detail our setup and algorithmic properties of the production simulations and present results for the static quark potential to fix the lattice scale and the locality of the overlap operator.

  6. On the partitioning strategy based on symmetry transformations

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Peters, J. M.; Chien, L. S.

    1990-01-01

    A computational procedure is presented for the analysis of unsymmetric structures. The procedure is based on a modified version of the symmetry-transformation partitioning strategy, in which the response of the structure is approximated by a linear combination of symmetric/antisymmetric response vectors, each obtained by using only a fraction of the degrees of freedom of the original FEM model. The three key elements of the procedure are: (1) mixed (or primitive-variable) formulation with independent shape functions for the different fields; (2) restructuring of the governing discrete equations of the structure into uncoupled sets in the symmetric and antisymmetric response vectors; and (3) a stable and efficient iterative process for generating the response of the structure. The effectiveness of the proposed procedure and its advantages over classical substructuring are demonstrated by means of numerical examples.

  7. Bilinear R-parity violation with flavor symmetry

    NASA Astrophysics Data System (ADS)

    Bazzocchi, F.; Morisi, S.; Peinado, E.; Valle, J. W. F.; Vicente, A.

    2013-01-01

    Bilinear R-parity violation (BRPV) provides the simplest intrinsically super-symmetric neutrino mass generation scheme. While neutrino mixing parameters can be probed in high energy accelerators, they are unfortunately not predicted by the theory. Here we propose a model based on the discrete flavor symmetry A 4 with a single R-parity violating parameter, leading to (i) correct Cabbibo mixing given by the Gatto-Sartori-Tonin formula, and a successful unification-like b-tau mass relation, and (ii) a correlation between the lepton mixing angles θ 13 and θ 23 in agreement with recent neutrino oscillation data, as well as a (nearly) massless neutrino, leading to absence of neutrinoless double beta decay.

  8. Logarithmic superconformal minimal models

    NASA Astrophysics Data System (ADS)

    Pearce, Paul A.; Rasmussen, Jørgen; Tartaglia, Elena

    2014-05-01

    The higher fusion level logarithmic minimal models {\\cal LM}(P,P';n) have recently been constructed as the diagonal GKO cosets {(A_1^{(1)})_k\\oplus (A_1^ {(1)})_n}/ {(A_1^{(1)})_{k+n}} where n ≥ 1 is an integer fusion level and k = nP/(P‧- P) - 2 is a fractional level. For n = 1, these are the well-studied logarithmic minimal models {\\cal LM}(P,P')\\equiv {\\cal LM}(P,P';1). For n ≥ 2, we argue that these critical theories are realized on the lattice by n × n fusion of the n = 1 models. We study the critical fused lattice models {\\cal LM}(p,p')_{n\\times n} within a lattice approach and focus our study on the n = 2 models. We call these logarithmic superconformal minimal models {\\cal LSM}(p,p')\\equiv {\\cal LM}(P,P';2) where P = |2p - p‧|, P‧ = p‧ and p, p‧ are coprime. These models share the central charges c=c^{P,P';2}=\\frac {3}{2}\\big (1-{2(P'-P)^2}/{P P'}\\big ) of the rational superconformal minimal models {\\cal SM}(P,P'). Lattice realizations of these theories are constructed by fusing 2 × 2 blocks of the elementary face operators of the n = 1 logarithmic minimal models {\\cal LM}(p,p'). Algebraically, this entails the fused planar Temperley-Lieb algebra which is a spin-1 Birman-Murakami-Wenzl tangle algebra with loop fugacity β2 = [x]3 = x2 + 1 + x-2 and twist ω = x4 where x = eiλ and λ = (p‧- p)π/p‧. The first two members of this n = 2 series are superconformal dense polymers {\\cal LSM}(2,3) with c=-\\frac {5}{2}, β2 = 0 and superconformal percolation {\\cal LSM}(3,4) with c = 0, β2 = 1. We calculate the bulk and boundary free energies analytically. By numerically studying finite-size conformal spectra on the strip with appropriate boundary conditions, we argue that, in the continuum scaling limit, these lattice models are associated with the logarithmic superconformal models {\\cal LM}(P,P';2). For system size N, we propose finitized Kac character formulae of the form q^{-{c^{P,P';2}}/{24}+\\Delta ^{P,P';2} _{r

  9. Dark Energy from Discrete Spacetime

    PubMed Central

    Trout, Aaron D.

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies. PMID:24312502

  10. Dark energy from discrete spacetime.

    PubMed

    Trout, Aaron D

    2013-01-01

    Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime. The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological constant with a current value, [Formula: see text] in natural units, in agreement with observation. This calculation is made possible by a novel characterization of the possible DT action values combined with numerical evidence concerning their degeneracies.

  11. "Analytic continuation" of = 2 minimal model

    NASA Astrophysics Data System (ADS)

    Sugawara, Yuji

    2014-04-01

    In this paper we discuss what theory should be identified as the "analytic continuation" with N rArr -N of the {mathcal N}=2 minimal model with the central charge hat {c} = 1 - frac {2}{N}. We clarify how the elliptic genus of the expected model is written in terms of holomorphic linear combinations of the "modular completions" introduced in [T. Eguchi and Y. Sugawara, JHEP 1103, 107 (2011)] in the SL(2)_{N+2}/U(1) supercoset theory. We further discuss how this model could be interpreted as a kind of model of the SL(2)_{N+2}/U(1) supercoset in the (widetilde {{R}},widetilde {R}) sector, in which only the discrete spectrum appears in the torus partition function and the potential IR divergence due to the non-compactness of the target space is removed. We also briefly discuss possible definitions of the sectors with other spin structures.

  12. Symmetry breaking in actin gels - Implications for cellular motility

    NASA Astrophysics Data System (ADS)

    John, Karin; Peyla, Philippe; Misbah, Chaouqi

    2007-03-01

    The physical origin of cell motility is not fully understood. Recently minimal model systems have shown, that polymerizing actin itself can produce a motile force, without the help of motor proteins. Pathogens like Shigella or Listeria use actin to propel themselves forward in their host cell. The same process can be mimicked with polystyrene beads covered with the activating protein ActA, which reside in a solution containing actin monomers. ActA induces the growth of an actin gel at the bead surface. Initially the gel grows symmetrically around the bead until a critical size is reached. Subsequently one observes a symmetry breaking and the gel starts to grow asymmetrically around the bead developing a tail of actin at one side. This symmetry breaking is accompanied by a directed movement of the bead, with the actin tail trailing behind the bead. Force generation relies on the combination of two properties: growth and elasticity of the actin gel. We study this phenomenon theoretically within the framework of a linear elasticity theory and linear flux-force relationships for the evolution of an elastic gel around a hard sphere. Conditions for a parity symmetry breaking are identified analytically and illustrated numerically with the help of a phasefield model.

  13. Symmetry and Symmetry Breaking in Planetary Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Cao, H.; Russell, C. T.; Aurnou, J. M.; Soderlund, K. M.; Dougherty, M. K.

    2014-12-01

    Six out of eight solar system planets currently possess global-scale intrinsic magnetic fields. Different symmetry and symmetry breaking with respect to the spin-axis and the equatorial plane of the host planet can be found for different planetary magnetic fields. With respect to the spin-axis, the magnetic fields of Mercury, Earth, Jupiter, and Saturn are dominated by the axisymmetric part while the magnetic fields of Uranus and Neptune show no such alignment. Moreover, non-axisymmetric components have not been determined unambiguously for the magnetic fields of Mercury and Saturn. With respect to the equatorial plane, the magnetic fields of Earth, Jupiter, and Saturn show small but non-negligible asymmetry while the magnetic field of Mercury shows a significant asymmetry. The magnetic fields of Uranus and Neptune likely possess similar strength in the two hemispheres divided by the equatorial plane, but this needs to be confirmed with future measurements. Here we present our interpretation of the magnetic fields of Mercury and Saturn, both of which are often referred to as anomalous dipolar dynamos. For Mercury, we will show that volumetrically distributed buoyancy sources in its liquid iron core can naturally lead to equatorial symmetry breaking in the dynamo generated magnetic field as observed by MESSENGER. We will also show that the size of the solid inner core inside Mercury is likely smaller than 1000 km and could be detected indirectly with high-spatial-resolution magnetic field measurements near Mercury's north pole. In addition, we will show that degree-2 longitudinal variations observed in the magnetic equator positions of Mercury could have an internal origin. For Saturn's magnetic field, although its extreme axisymmetry could in principle be explained by a stably-stratified electrically-conducting layer on top of the dynamo region, more features such as equator-to-pole field contrasts cannot be explained by this same mechanism simultaneously. Towards

  14. A FORTRAN Program for Discrete Discriminant Analysis

    ERIC Educational Resources Information Center

    Boone, James O.; Brewer, James K.

    1976-01-01

    A Fortran program is presented for discriminant analysis of discrete variables. The program assumes discrete, nominal data with no distributional, variance-covariance assumptions. The program handles a maximum of fifty predictor variables and twelve outcome groups. (Author/JKS)

  15. Contact symmetries and Hamiltonian thermodynamics

    SciTech Connect

    Bravetti, A.; Lopez-Monsalvo, C.S.; Nettel, F.

    2015-10-15

    It has been shown that contact geometry is the proper framework underlying classical thermodynamics and that thermodynamic fluctuations are captured by an additional metric structure related to Fisher’s Information Matrix. In this work we analyse several unaddressed aspects about the application of contact and metric geometry to thermodynamics. We consider here the Thermodynamic Phase Space and start by investigating the role of gauge transformations and Legendre symmetries for metric contact manifolds and their significance in thermodynamics. Then we present a novel mathematical characterization of first order phase transitions as equilibrium processes on the Thermodynamic Phase Space for which the Legendre symmetry is broken. Moreover, we use contact Hamiltonian dynamics to represent thermodynamic processes in a way that resembles the classical Hamiltonian formulation of conservative mechanics and we show that the relevant Hamiltonian coincides with the irreversible entropy production along thermodynamic processes. Therefore, we use such property to give a geometric definition of thermodynamically admissible fluctuations according to the Second Law of thermodynamics. Finally, we show that the length of a curve describing a thermodynamic process measures its entropy production.

  16. 3D toroidal physics: testing the boundaries of symmetry breaking

    NASA Astrophysics Data System (ADS)

    Spong, Don

    2014-10-01

    Toroidal symmetry is an important concept for plasma confinement; it allows the existence of nested flux surface MHD equilibria and conserved invariants for particle motion. However, perfect symmetry is unachievable in realistic toroidal plasma devices. For example, tokamaks have toroidal ripple due to discrete field coils, optimized stellarators do not achieve exact quasi-symmetry, the plasma itself continually seeks lower energy states through helical 3D deformations, and reactors will likely have non-uniform distributions of ferritic steel near the plasma. Also, some level of designed-in 3D magnetic field structure is now anticipated for most concepts in order to lead to a stable, steady-state fusion reactor. Such planned 3D field structures can take many forms, ranging from tokamaks with weak 3D ELM-suppression fields to stellarators with more dominant 3D field structures. There is considerable interest in the development of unified physics models for the full range of 3D effects. Ultimately, the questions of how much symmetry breaking can be tolerated and how to optimize its design must be addressed for all fusion concepts. Fortunately, significant progress is underway in theory, computation and plasma diagnostics on many issues such as magnetic surface quality, plasma screening vs. amplification of 3D perturbations, 3D transport, influence on edge pedestal structures, MHD stability effects, modification of fast ion-driven instabilities, prediction of energetic particle heat loads on plasma-facing materials, effects of 3D fields on turbulence, and magnetic coil design. A closely coupled program of simulation, experimental validation, and design optimization is required to determine what forms and amplitudes of 3D shaping and symmetry breaking will be compatible with future fusion reactors. The development of models to address 3D physics and progress in these areas will be described. This work is supported both by the US Department of Energy under Contract DE

  17. Linear functional minimization for inverse modeling

    DOE PAGES

    Barajas-Solano, David A.; Wohlberg, Brendt Egon; Vesselinov, Velimir Valentinov; Tartakovsky, Daniel M.

    2015-06-01

    In this paper, we present a novel inverse modeling strategy to estimate spatially distributed parameters of nonlinear models. The maximum a posteriori (MAP) estimators of these parameters are based on a likelihood functional, which contains spatially discrete measurements of the system parameters and spatiotemporally discrete measurements of the transient system states. The piecewise continuity prior for the parameters is expressed via Total Variation (TV) regularization. The MAP estimator is computed by minimizing a nonquadratic objective equipped with the TV operator. We apply this inversion algorithm to estimate hydraulic conductivity of a synthetic confined aquifer from measurements of conductivity and hydraulicmore » head. The synthetic conductivity field is composed of a low-conductivity heterogeneous intrusion into a high-conductivity heterogeneous medium. Our algorithm accurately reconstructs the location, orientation, and extent of the intrusion from the steady-state data only. Finally, addition of transient measurements of hydraulic head improves the parameter estimation, accurately reconstructing the conductivity field in the vicinity of observation locations.« less

  18. Symmetry properties in polarimetric remote sensing

    NASA Technical Reports Server (NTRS)

    Nghiem, S. V.; Yueh, S. H.; Kwok, R.; Li, F. K.

    1992-01-01

    This paper presents the relations among polarimetric backscattering coefficients from the viewpoint of symmetry groups. Symmetry of geophysical media encountered in remote sensing due to reflection, rotation, azimuthal, and centrical symmetry groups is considered for both reciprocal and nonreciprocal cases. On the basis of the invariance under symmetry transformations in the linear polarization basis, the scattering coefficients are related by a set of equations which restrict the number of independent parameters in the polarimetric covariance matrix. The properties derived under these transformations are general and apply to all scattering mechanisms in a given symmetrical configuration. The scattering coefficients calculated from theoretical models for layer random media and rough surfaces are shown to obey the derived symmetry relations. Use of symmetry properties in remote sensing of structural and environmental responses of scattering media is discussed. As a practical application, the results from this paper provide new methods for the external calibration of polarimetric radars without the deployment of man-made calibration targets.

  19. Symmetry energy of dilute warm nuclear matter.

    PubMed

    Natowitz, J B; Röpke, G; Typel, S; Blaschke, D; Bonasera, A; Hagel, K; Klähn, T; Kowalski, S; Qin, L; Shlomo, S; Wada, R; Wolter, H H

    2010-05-21

    The symmetry energy of nuclear matter is a fundamental ingredient in the investigation of exotic nuclei, heavy-ion collisions, and astrophysical phenomena. New data from heavy-ion collisions can be used to extract the free symmetry energy and the internal symmetry energy at subsaturation densities and temperatures below 10 MeV. Conventional theoretical calculations of the symmetry energy based on mean-field approaches fail to give the correct low-temperature, low-density limit that is governed by correlations, in particular, by the appearance of bound states. A recently developed quantum-statistical approach that takes the formation of clusters into account predicts symmetry energies that are in very good agreement with the experimental data. A consistent description of the symmetry energy is given that joins the correct low-density limit with quasiparticle approaches valid near the saturation density.

  20. Quantum Deformations of Einstein's Relativistic Symmetries

    SciTech Connect

    Lukierski, Jerzy

    2006-11-03

    We shall outline two ways of introducing the modification of Einstein's relativistic symmetries of special relativity theory -- the Poincare symmetries. The most complete way of introducing the modifications is via the noncocommutative Hopf-algebraic structure describing quantum symmetries. Two types of quantum relativistic symmetries are described, one with constant commutator of quantum Minkowski space coordinates ({theta}{mu}{nu}-deformation) and second with Lie-algebraic structure of quantum space-time, introducing so-called {kappa}-deformation. The third fundamental constant of Nature - fundamental mass {kappa} or length {lambda} - appears naturally in proposed quantum relativistic symmetry scheme. The deformed Minkowski space is described as the representation space (Hopf-module) of deformed Poincare algebra. Some possible perspectives of quantum-deformed relativistic symmetries will be outlined.

  1. Observability of discretized partial differential equations

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Dee, Dick P.

    1988-01-01

    It is shown that complete observability of the discrete model used to assimilate data from a linear partial differential equation (PDE) system is necessary and sufficient for asymptotic stability of the data assimilation process. The observability theory for discrete systems is reviewed and applied to obtain simple observability tests for discretized constant-coefficient PDEs. Examples are used to show how numerical dispersion can result in discrete dynamics with multiple eigenvalues, thereby detracting from observability.

  2. Geometric reductions of ABS equations on an n-cube to discrete Painlevé systems

    NASA Astrophysics Data System (ADS)

    Joshi, N.; Nakazono, N.; Shi, Y.

    2014-12-01

    In this paper, we show how to relate n-dimensional cubes on which ABS equations hold to the symmetry groups of discrete Painlevé equations. We here focus on the reduction from the four-dimensional cube to the q-discrete third Painlevé equation, which is a dynamical system on a rational surface of type A5(1) with the extended affine Weyl group \\tilde{W}({{({{A}2}+{{A}1})}(1)}). We provide general theorems to show that this reduction also extends to other discrete Painlevé equations at least of type A. This research was supported by an Australian Laureate Fellowship # FL 120100094 and grant # DP130100967 from the Australian Research Council.

  3. Minimizing fan energy costs

    SciTech Connect

    Monroe, R.C.

    1985-05-27

    Minimizing fan energy costs and maximizing fan efficiency is the subject of this paper. Blade design itself can cause poor flow distribution and inefficiency. A basic design criterion is that a blade should produce uniform flow over the entire plane of the fan. Also an inherent problem with the axial fan is swirl -- the tangential deflection of exit-flow caused by the effect of torque. Swirl can be prevented with an inexpensive hub component. Basic efficiency can be checked by means of the fan's performance curve. Generally, fewer blades translate into higher axial-fan efficiency. A crowded inboard area creates hub turbulence which lessens efficiency. Whether the pitch of fan blades is fixed or variable also affects energy consumption. Power savings of 50% per year or more can be realized by replacing fixed-pitch, continuously operating fans with fans whose blade pitch or speed is automatically varied.

  4. Transanal Minimally Invasive Surgery

    PubMed Central

    deBeche-Adams, Teresa; Nassif, George

    2015-01-01

    Transanal minimally invasive surgery (TAMIS) was first described in 2010 as a crossover between single-incision laparoscopic surgery and transanal endoscopic microsurgery (TEM) to allow access to the proximal and mid-rectum for resection of benign and early-stage malignant rectal lesions. The TAMIS technique can also be used for noncurative intent surgery of more advanced lesions in patients who are not candidates for radical surgery. Proper workup and staging should be done before surgical decision-making. In addition to the TAMIS port, instrumentation and set up include readily available equipment found in most operating suites. TAMIS has proven its usefulness in a wide range of applications outside of local excision, including repair of rectourethral fistula, removal of rectal foreign body, control of rectal hemorrhage, and as an adjunct in total mesorectal excision for rectal cancer. TAMIS is an easily accessible, technically feasible, and cost-effective alternative to TEM. PMID:26491410

  5. [Minimal invasive implantology].

    PubMed

    Bruck, N; Zagury, A; Nahlieli, O

    2015-07-01

    Endoscopic surgery has changed the philosophy and practice of modern surgery in all aspects of medicine. It gave rise to minimally invasive surgery procedures based on the ability to visualize and to operate via small channels. In maxillofacial surgery, our ability to see clearly the surgical field opened an entirely new world of exploration, as conditions that were once almost impossible to control and whose outcome was uncertain can be now predictably managed. in this article we will descripe the advantage of using the oral endoscope during the dental implantology procedure, and we will describe a unique implant which enable us in combination with the oral endoscope to create a maxillary sinus lift with out the need of the major surgery with all of its risks and complication.

  6. Symmetry-protected single-photon subradiance

    NASA Astrophysics Data System (ADS)

    Cai, Han; Wang, Da-Wei; Svidzinsky, Anatoly A.; Zhu, Shi-Yao; Scully, Marlan O.

    2016-05-01

    We study the protection of subradiant states by the symmetry of the atomic distributions in the Dicke limit, in which collective Lamb shifts cannot be neglected. We find that antisymmetric states are subradiant states for distributions with reflection symmetry. Continuous symmetry can also be used to achieve subradiance. This study is relevant to the problem of robust quantum memory with long storage time and fast readout.

  7. Symmetry relations of magnetic twin laws.

    PubMed

    Schlessman, J; Litvin, D B

    2001-11-01

    Symmetry relationships between two simultaneously observed domain states (domain pair) are used to determine physical properties that can distinguish between the observed domains. Here the tabulation of these symmetry relationships is extended from non-magnetic cases to magnetic cases, in terms of magnetic point groups, i.e. all possible magnetic symmetry groups and magnetic twinning groups of domain pairs are determined and tabulated. PMID:11679705

  8. The near-symmetry of proteins.

    PubMed

    Bonjack-Shterengartz, Maayan; Avnir, David

    2015-04-01

    The majority of protein oligomers form clusters which are nearly symmetric. Understanding of that imperfection, its origins, and perhaps also its advantages requires the conversion of the currently used vague qualitative descriptive language of the near-symmetry into an accurate quantitative measure that will allow to answer questions such as: "What is the degree of symmetry deviation of the protein?," "how do these deviations compare within a family of proteins?," and so on. We developed quantitative methods to answer this type of questions, which are capable of analyzing the whole protein, its backbone or selected portions of it, down to comparison of symmetry-related specific amino-acids, and which are capable of visualizing the various levels of symmetry deviations in the form of symmetry maps. We have applied these methods on an extensive list of homomers and heteromers and found that apparently all proteins never reach perfect symmetry. Strikingly, even homomeric protein clusters are never ideally symmetric. We also found that the main burden of symmetry distortion is on the amino-acids near the symmetry axis; that it is mainly the more hydrophilic amino-acids that take place in symmetry-distortive interactions; and more. The remarkable ability of heteromers to preserve near-symmetry, despite the different sequences, was also shown and analyzed. The comprehensive literature on the suggested advantages symmetric oligomerizations raises a yet-unsolved key question: If symmetry is so advantageous, why do proteins stop shy of perfect symmetry? Some tentative answers to be tested in further studies are suggested in a concluding outlook.

  9. [Minimally invasive breast surgery].

    PubMed

    Mátrai, Zoltán; Gulyás, Gusztáv; Kunos, Csaba; Sávolt, Akos; Farkas, Emil; Szollár, András; Kásler, Miklós

    2014-02-01

    Due to the development in medical science and industrial technology, minimally invasive procedures have appeared in the surgery of benign and malignant breast diseases. In general , such interventions result in significantly reduced breast and chest wall scars, shorter hospitalization and less pain, but they require specific, expensive devices, longer surgical time compared to open surgery. Furthermore, indications or oncological safety have not been established yet. It is quite likely, that minimally invasive surgical procedures with high-tech devices - similar to other surgical subspecialties -, will gradually become popular and it may form part of routine breast surgery even. Vacuum-assisted core biopsy with a therapeutic indication is suitable for the removal of benign fibroadenomas leaving behind an almost invisible scar, while endoscopically assisted skin-sparing and nipple-sparing mastectomy, axillary staging and reconstruction with latissimus dorsi muscle flap are all feasible through the same short axillary incision. Endoscopic techniques are also suitable for the diagnostics and treatment of intracapsular complications of implant-based breast reconstructions (intracapsular fluid, implant rupture, capsular contracture) and for the biopsy of intracapsular lesions with uncertain pathology. Perception of the role of radiofrequency ablation of breast tumors requires further hands-on experience, but it is likely that it can serve as a replacement of surgical removal in a portion of primary tumors in the future due to the development in functional imaging and anticancer drugs. With the reduction of the price of ductoscopes routine examination of the ductal branch system, guided microdochectomy and targeted surgical removal of terminal ducto-lobular units or a "sick lobe" as an anatomical unit may become feasible. The paper presents the experience of the authors and provides a literature review, for the first time in Hungarian language on the subject. Orv. Hetil

  10. Minimally invasive parathyroid surgery

    PubMed Central

    Noureldine, Salem I.; Gooi, Zhen

    2015-01-01

    Traditionally, bilateral cervical exploration for localization of all four parathyroid glands and removal of any that are grossly enlarged has been the standard surgical treatment for primary hyperparathyroidism (PHPT). With the advances in preoperative localization studies and greater public demand for less invasive procedures, novel targeted, minimally invasive techniques to the parathyroid glands have been described and practiced over the past 2 decades. Minimally invasive parathyroidectomy (MIP) can be done either through the standard Kocher incision, a smaller midline incision, with video assistance (purely endoscopic and video-assisted techniques), or through an ectopically placed, extracervical, incision. In current practice, once PHPT is diagnosed, preoperative evaluation using high-resolution radiographic imaging to localize the offending parathyroid gland is essential if MIP is to be considered. The imaging study results suggest where the surgeon should begin the focused procedure and serve as a road map to allow tailoring of an efficient, imaging-guided dissection while eliminating the unnecessary dissection of multiple glands or a bilateral exploration. Intraoperative parathyroid hormone (IOPTH) levels may be measured during the procedure, or a gamma probe used during radioguided parathyroidectomy, to ascertain that the correct gland has been excised and that no other hyperfunctional tissue is present. MIP has many advantages over the traditional bilateral, four-gland exploration. MIP can be performed using local anesthesia, requires less operative time, results in fewer complications, and offers an improved cosmetic result and greater patient satisfaction. Additional advantages of MIP are earlier hospital discharge and decreased overall associated costs. This article aims to address the considerations for accomplishing MIP, including the role of preoperative imaging studies, intraoperative adjuncts, and surgical techniques. PMID:26425454

  11. Non-vanishing U e3 under S 3 symmetry

    NASA Astrophysics Data System (ADS)

    Siyeon, Kim

    2012-07-01

    This work proposes two models of neutrino masses that predict non-zero θ 13 under the non-Abelian discrete flavor symmetry {S}3⊗{Z}2. We advocate that the size of θ 13 is understood as a group theoretical consequence rather than a perturbed effect from the tri-bi-maximal mixing. So, the difference of two models is designed only in terms of the flavor symmetry, by changing the charge assignment of right-handed neutrinos. The PMNS matrix in the first model is obtained from both mass matrices, charged leptons giving rise to non-zero θl_{13} and neutrino masses giving rise to tri-bi-maximal mixing. The physical mixing angles are expressed by a simple relation between θl_{13} and tri-bi-maximal angles to fit the recent experimental results. The other model generates PMNS matrix with non-zero θ 13, only from the neutrino mass transformation. The 5-dimensional effective theory of Majorana neutrinos obtained in this framework is tested with phenomenological bounds in the parametric spaces sin θ 23,sin θ 12 and m 2/ m 3 vs. sin θ 13.

  12. Issues in standard model symmetry breaking

    SciTech Connect

    Golden, M.

    1988-04-01

    This work discusses the symmetry breaking sector of the SU(2) x U(1) electroweak model. The first two chapters discuss Higgs masses in two simple Higgs models. The author proves low-enery theorems for the symmetry breaking sector: The threshold behavior of gauge-boson scattering is completely determined, whenever the symmetry breaking sector meets certain simple conditions. The author uses these theorems to derive event rates for the superconducting super collider (SSC). The author shows that the SSC may be able to determine whether the interactions of the symmetry breaking sector are strong or weak. 54 refs.

  13. Noether gauge symmetry approach in quintom cosmology

    NASA Astrophysics Data System (ADS)

    Aslam, Adnan; Jamil, Mubasher; Momeni, Davood; Myrzakulov, Ratbay; Rashid, Muneer Ahmad; Raza, Muhammad

    2013-12-01

    In literature usual point like symmetries of the Lagrangian have been introduced to study the symmetries and the structure of the fields. This kind of Noether symmetry is a subclass of a more general family of symmetries, called Noether gauge symmetries (NGS). Motivated by this mathematical tool, in this paper, we study the generalized Noether symmetry of quintom model of dark energy, which is a two component fluid model with quintessence and phantom scalar fields. Our model is a generalization of the Noether symmetries of a single and multiple components which have been investigated in detail before. We found the general form of the quintom potential in which the whole dynamical system has a point like symmetry. We investigated different possible solutions of the system for diverse family of gauge function. Specially, we discovered two family of potentials, one corresponds to a free quintessence (phantom) and the second is in the form of quadratic interaction between two components. These two families of potential functions are proposed from the symmetry point of view, but in the quintom models they are used as phenomenological models without clear mathematical justification. From integrability point of view, we found two forms of the scale factor: one is power law and second is de-Sitter. Some cosmological implications of the solutions have been investigated.

  14. Functional ferroic heterostructures with tunable integral symmetry.

    PubMed

    Becher, C; Trassin, M; Lilienblum, M; Nelson, C T; Suresha, S J; Yi, D; Yu, P; Ramesh, R; Fiebig, M; Meier, D

    2014-07-02

    The relation between symmetry and functionality was pinpointed by Pierre Curie who stated that it is the symmetry breaking that creates physical properties. This fundamental principle is nowadays used for engineering heterostructures whose integral symmetry leads to exotic phenomena such as one-way transparency. For switching devices, however, such symmetry-related functionalities cannot be used because the symmetry in conventional heterostructures is immutable once the material has been synthesized. Here we demonstrate a concept for post-growth symmetry control in PbZr0.2Ti0.8O3 and BiFeO3-based heterostructures. A conducting oxide is sandwiched between two ferroelectric layers, and inversion symmetry is reversibly switched on or off by layer-selective electric-field poling. The generalization of our approach to other materials and symmetries is discussed. We thus establish ferroic trilayer structures as device components with reversibly tunable symmetry and demonstrate their use as light emitters that can be activated and deactivated by applying moderate electric voltages.

  15. Search for primordial symmetry breakings in CMB

    NASA Astrophysics Data System (ADS)

    Shiraishi, Maresuke

    2016-06-01

    There are possibilities to violate symmetries (e.g. parity and rotational invariance) in the primordial cosmological fluctuations. Such symmetry breakings can imprint very rich signatures in late-time phenomena, which may be possible to observe. Especially, Cosmic Microwave Background (CMB) will change its face drastically, corresponding to the symmetry-breaking types, since the harmonic-space representation is very sensitive to the statistical, spin and angular dependences of cosmological perturbations. Here, we discuss (1) general responses of CMB to the symmetry breakings, (2) some theoretical models creating interesting CMB signatures, and (3) aspects of the estimation from observational data.

  16. Asymptotic symmetries of Yang-Mills theory

    NASA Astrophysics Data System (ADS)

    Strominger, Andrew

    2014-07-01

    Asymptotic symmetries at future null infinity ( +) of Minkowski space for electrodynamics with massless charged fields, as well as nonabelian gauge theories with gauge group G, are considered at the semiclassical level. The possibility of charge/color flux through + suggests the symmetry group is infinite-dimensional. It is conjectured that the symmetries include a G Kac-Moody symmetry whose generators are "large" gauge transformations which approach locally holomorphic functions on the conformal two-sphere at + and are invariant under null translations. The Kac-Moody currents are constructed from the gauge field at the future boundary of +. The current Ward identities include Weinberg's soft photon theorem and its colored extension.

  17. Fake conformal symmetry in unimodular gravity

    NASA Astrophysics Data System (ADS)

    Oda, Ichiro

    2016-08-01

    We study Weyl symmetry (local conformal symmetry) in unimodular gravity. It is shown that the Noether currents for both Weyl symmetry and global scale symmetry vanish exactly as in conformally invariant scalar-tensor gravity. We clearly explain why in the class of conformally invariant gravitational theories, the Noether currents vanish by starting with conformally invariant scalar-tensor gravity. Moreover, we comment on both classical and quantum-mechanical equivalences in Einstein's general relativity, conformally invariant scalar-tensor gravity, and the Weyl-transverse gravity. Finally, we discuss the Weyl current in the conformally invariant scalar action and see that it is also vanishing.

  18. Motion Mode Decomposition Based on Discrete Fourier Series Expansion

    NASA Astrophysics Data System (ADS)

    Hatta, Yoshiyuki; Shimono, Tomoyuki

    In recent years, several methods for decomposing the whole motion of a parallel multi-degrees-of-freedom (MDOF) system into motion modes have been proposed. A motion mode is a motion element that corresponds to a specific physical action, such as grasping, manipulating, and rotating. Modal decomposition is effective for the expression and analysis of a complicated motion. However, conventional methods can extract motion modes only if the arrangement of actuators in the system has spatial linearity and symmetry. Therefore, the actuators cannot be arranged arbitrarily when the conventional methods are applied. In order to solve this problem, a novel method for modal decomposition is proposed; this method is based on the discrete Fourier series expansion. The proposed method is applied to a parallel MDOF bilateral system in which the arrangement of actuators is spatially asymmetric. Finally, the validity of the proposed method is confirmed on the basis of the experimental results.

  19. A critical analysis of one-loop neutrino mass models with minimal dark matter

    NASA Astrophysics Data System (ADS)

    Ahriche, Amine; McDonald, Kristian L.; Nasri, Salah; Picek, Ivica

    2016-06-01

    A recent paper investigated minimal RνMDM models with the type T1-iii and T3 one-loop topologies. However, the candidate most-minimal model does not possess an accidental symmetry - the scalar potential contains an explicit symmetry breaking term, rendering the dark matter unstable. We present two models that cure this problem. However, we further show that all of the proposed minimal one-loop RνMDM models suffer from a second problem - an additional source of explicit Z2 symmetry breaking in the Yukawa sector. We perform a more-general analysis to show that neutrino mass models using either the type T3 or type T1-iii one-loop topologies do not give viable minimal dark matter candidates. Consequently, one-loop models of neutrino mass with minimal dark matter do not appear possible. Thus, presently there remains a single known (three-loop) model of neutrino mass that gives stable dark matter without invoking any new symmetries.

  20. Predicted nucleation of domain walls in p(x)+ip(y) superconductors by a Z(2) symmetry-breaking transition in external magnetic fields.

    PubMed

    Vadimov, Vasily; Silaev, Mihail

    2013-10-25

    We show that time reversal symmetry-breaking p(x)+ip(y) wave superconductors undergo several phase transitions subjected to an external magnetic field or supercurrent. In such a system, the discrete Z(2) symmetry can recover before a complete destruction of the order parameter. The domain walls associated with Z(2) symmetry can be created in a controllable way by a magnetic field or current sweep according to the Kibble-Zurek scenario. Such domain wall generation can take place in exotic superconductors like Sr(2)RuO(4), thin films of superfluid (3)He-A, and some heavy fermion compounds.

  1. PREFACE: Symmetries in Science XV

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter; Ramek, Michael

    2012-08-01

    Logo Bregenz, the peaceful monastery of Mehrerau and the Opera on the Floating Stage again provided the setting for the international symposium 'Symmetries in Science'. The series which has been running for more than 30 years brings together leading theoreticians whose area of research is, in one way or another, related to symmetry. Since 1992 the meeting took place biannually in Brengez until 2003. In 2009, with the endorsement of the founder, Professor Bruno Gruber, we succeeded in re-establishing the series without external funding. The resounding success of that meeting encouraged us to continue in 2011 and, following on the enthusiasm and positive feedback of the participants, we expect to continue in 2013. Yet again, our meeting in 2011 was very international in flavour and brought together some 30 participants representing 12 nationalities, half of them from countries outside the European Union (from New Zealand to Mexico, Russia to Israel). The broad spectrum, a mixture of experienced experts and highly-motivated newcomers, the intensive exchange of ideas in a harmonious and relaxed atmosphere and the resulting joint projects are probably the secrets of why this meeting is considered to be so special to its participants. At the resumption in 2009 some leading experts and younger scientists from economically weak countries were unable to attend due to the lack of financial resources. This time, with the very worthy and unbureaucratic support of the 'Vereinigung von Freunden und Förderern der J W Goethe-Universität Frankfurt am Main' (in short: 'Friends and Supporters of the Frankfurt University'), it was possible for all candidates to participate. In particular some young, inspired scientists had the chance of presenting their work to a very competent, but also friendly, audience. We wish to thank the 'Freunde und Förderer' for supporting Symmetries in Science XV. Almost all participants contributed to the publication of this Conference Proceedings. There

  2. Coleman-Weinberg symmetry breaking in SU(8) induced by a third rank antisymmetric tensor scalar field

    NASA Astrophysics Data System (ADS)

    Adler, Stephen L.

    2016-08-01

    We study SU(8) symmetry breaking induced by minimizing the Coleman-Weinberg effective potential for a third rank antisymmetric tensor scalar field in the 56 representation. Instead of breaking {SU}(8)\\supset {SU}(3)× {SU}(5), we find that the stable minimum of the potential breaks the original symmetry according to {SU}(8)\\supset {SU}(3)× {Sp}(4). Using both numerical and analytical methods, we present results for the potential minimum, the corresponding Goldstone boson structure and BEH mechanism, and the group-theoretic classification of the residual states after symmetry breaking.

  3. A Parallel Framework with Block Matrices of a Discrete Fourier Transform for Vector-Valued Discrete-Time Signals.

    PubMed

    Soto-Quiros, Pablo

    2015-01-01

    This paper presents a parallel implementation of a kind of discrete Fourier transform (DFT): the vector-valued DFT. The vector-valued DFT is a novel tool to analyze the spectra of vector-valued discrete-time signals. This parallel implementation is developed in terms of a mathematical framework with a set of block matrix operations. These block matrix operations contribute to analysis, design, and implementation of parallel algorithms in multicore processors. In this work, an implementation and experimental investigation of the mathematical framework are performed using MATLAB with the Parallel Computing Toolbox. We found that there is advantage to use multicore processors and a parallel computing environment to minimize the high execution time. Additionally, speedup increases when the number of logical processors and length of the signal increase.

  4. A Parallel Framework with Block Matrices of a Discrete Fourier Transform for Vector-Valued Discrete-Time Signals

    PubMed Central

    Soto-Quiros, Pablo

    2015-01-01

    This paper presents a parallel implementation of a kind of discrete Fourier transform (DFT): the vector-valued DFT. The vector-valued DFT is a novel tool to analyze the spectra of vector-valued discrete-time signals. This parallel implementation is developed in terms of a mathematical framework with a set of block matrix operations. These block matrix operations contribute to analysis, design, and implementation of parallel algorithms in multicore processors. In this work, an implementation and experimental investigation of the mathematical framework are performed using MATLAB with the Parallel Computing Toolbox. We found that there is advantage to use multicore processors and a parallel computing environment to minimize the high execution time. Additionally, speedup increases when the number of logical processors and length of the signal increase. PMID:26451390

  5. Ras activation and symmetry breaking during Dictyostelium chemotaxis.

    PubMed

    Kortholt, Arjan; Keizer-Gunnink, Ineke; Kataria, Rama; Van Haastert, Peter J M

    2013-10-01

    Central to chemotaxis is the molecular mechanism by which a shallow spatial gradient of chemoattractant induces symmetry breaking of activated signaling molecules. Previously, we have used Dictyostelium mutants to investigate the minimal requirements for chemotaxis, and identified a basal signaling module providing activation of Ras and F-actin at the leading edge. Here, we show that Ras activation after application of a pipette releasing the chemoattractant cAMP has three phases, each depending on specific guanine-nucleotide-exchange factors (GEFs). Initially a transient activation of Ras occurs at the entire cell boundary, which is proportional to the local cAMP concentrations and therefore slightly stronger at the front than in the rear of the cell. This transient Ras activation is present in gα2 (gpbB)-null cells but not in gβ (gpbA)-null cells, suggesting that Gβγ mediates the initial activation of Ras. The second phase is symmetry breaking: Ras is activated only at the side of the cell closest to the pipette. Symmetry breaking absolutely requires Gα2 and Gβγ, but not the cytoskeleton or four cAMP-induced signaling pathways, those dependent on phosphatidylinositol (3,4,5)-triphosphate [PtdIns(3,4,5)P3], cGMP, TorC2 and PLA2. As cells move in the gradient, the crescent of activated Ras in the front half of the cell becomes confined to a small area at the utmost front of the cell. Confinement of Ras activation leads to cell polarization, and depends on cGMP formation, myosin and F-actin. The experiments show that activation, symmetry breaking and confinement of Ras during Dictyostelium chemotaxis uses different G-protein subunits and a multitude of Ras GEFs and GTPase-activating proteins (GAPs).

  6. Neutrino mixing and masses in SO(10) GUTs with hidden sector and flavor symmetries

    NASA Astrophysics Data System (ADS)

    Chu, Xiaoyong; Smirnov, Alexei Yu.

    2016-05-01

    We consider the neutrino masses and mixing in the framework of SO(10) GUTs with hidden sector consisting of fermionic and bosonic SO(10) singlets and flavor symmetries. The framework allows to disentangle the CKM physics responsible for the CKM mixing and different mass hierarchies of quarks and leptons and the neutrino new physics which produces smallness of neutrino masses and large lepton mixing. The framework leads naturally to the relation U PMNS ˜ V CKM † U 0, where structure of U 0 is determined by the flavor symmetry. The key feature of the framework is that apart from the Dirac mass matrices m D , the portal mass matrix M D and the mass matrix of singlets M S are also involved in generation of the lepton mixing. This opens up new possibilities to realize the flavor symmetries and explain the data. Using A 4 × Z 4 as the flavor group, we systematically explore the flavor structures which can be obtained in this framework depending on field content and symmetry assignments. We formulate additional conditions which lead to U 0 ˜ U TBM or U BM. They include (i) equality (in general, proportionality) of the singlet flavons couplings, (ii) equality of their VEVs; (iii) correlation between VEVs of singlets and triplet, (iv) certain VEV alignment of flavon triplet(s). These features can follow from additional symmetries or be remnants of further unification. Phenomenologically viable schemes with minimal flavon content and minimal number of couplings are constructed.

  7. F-theory vacua with Z3 gauge symmetry

    NASA Astrophysics Data System (ADS)

    Cvetič, Mirjam; Donagi, Ron; Klevers, Denis; Piragua, Hernan; Poretschkin, Maximilian

    2015-09-01

    Discrete gauge groups naturally arise in F-theory compactifications on genus-one fibered Calabi-Yau manifolds. Such geometries appear in families that are parameterized by the Tate-Shafarevich group of the genus-one fibration. While the F-theory compactification on any element of this family gives rise to the same physics, the corresponding M-theory compactifications on these geometries differ and are obtained by a fluxed circle reduction of the former. In this note, we focus on an element of order three in the Tate-Shafarevich group of the general cubic. We discuss how the different M-theory vacua and the associated discrete gauge groups can be obtained by Higgsing of a pair of five-dimensional U(1) symmetries. The Higgs fields arise from vanishing cycles in I2-fibers that appear at certain codimension two loci in the base. We explicitly identify all three curves that give rise to the corresponding Higgs fields. In this analysis the investigation of different resolved phases of the underlying geometry plays a crucial rôle.

  8. Wormhole dynamics in spherical symmetry

    SciTech Connect

    Hayward, Sean A.

    2009-06-15

    A dynamical theory of traversable wormholes is detailed in spherical symmetry. Generically a wormhole consists of a tunnel of trapped surfaces between two mouths, defined as temporal outer trapping horizons with opposite senses, in mutual causal contact. In static cases, the mouths coincide as the throat of a Morris-Thorne wormhole, with surface gravity providing an invariant measure of the radial curvature or ''flaring-out''. The null energy condition must be violated at a wormhole mouth. Zeroth, first, and second laws are derived for the mouths, as for black holes. Dynamic processes involving wormholes are reviewed, including enlargement or reduction, and interconversion with black holes. A new area of wormhole thermodynamics is suggested.

  9. PREFACE: Symmetries in Science XVI

    NASA Astrophysics Data System (ADS)

    2014-10-01

    This volume of the proceedings ''Symmetries in Science XVI'' is dedicated to the memory of Miguel Lorente and Allan Solomon who both participated several times in these Symposia. We lost not only two great scientists and colleagues, but also two wonderful persons of high esteem whom we will always remember. Dieter Schuch, Michael Ramek There is a German saying ''all good things come in threes'' and ''Symmetries in Science XVI'', convened July 20-26, 2013 at the Mehrerau Monastery, was our third in the sequel of these symposia since taking it over from founder Bruno Gruber who instigated it in 1988 (then in Lochau). Not only the time seemed to have been perfect (one week of beautiful sunshine), but also the medley of participants could hardly have been better. This time, 34 scientists from 16 countries (more than half outside the European Union) came together to report and discuss their latest results in various fields of science, all related to symmetries. The now customary grouping of renowned experts and talented newcomers was very rewarding and stimulating for all. The informal, yet intense, discussions at ''Gasthof Lamm'' occurred (progressively later) each evening till well after midnight and finally till almost daybreak! However, prior to the opening ceremony and during the conference, respectively, we were informed that Miguel Lorente and Allan Solomon had recently passed away. Both attended the SIS Symposia several times and had many friends among present and former participants. Professor Peter Kramer, himself a long-standing participant and whose 80th birthday commemoration prevented him from attending SIS XVI, kindly agreed to write the obituary for Miguel Lorente. Professors Richard Kerner and Carol Penson (both also former attendees) penned, at very short notice, the tribute to Allan Solomon. The obituaries are included in these Proceedings and further tributes have been posted to our conference website. In 28 lectures and an evening poster

  10. Rare Isotopes and Fundamental Symmetries

    NASA Astrophysics Data System (ADS)

    Brown, B. Alex; Engel, Jonathan; Haxton, Wick; Ramsey-Musolf, Michael; Romalis, Michael; Savard, Guy

    2009-01-01

    Experiments searching for new interactions in nuclear beta decay / Klaus P. Jungmann -- The beta-neutrino correlation in sodium-21 and other nuclei / P. A. Vetter ... [et al.] -- Nuclear structure and fundamental symmetries/ B. Alex Brown -- Schiff moments and nuclear structure / J. Engel -- Superallowed nuclear beta decay: recent results and their impact on V[symbol] / J. C. Hardy and I. S. Towner -- New calculation of the isospin-symmetry breaking correlation to superallowed Fermi beta decay / I. S. Towner and J. C. Hardy -- Precise measurement of the [symbol]H to [symbol]He mass difference / D. E. Pinegar ... [et al.] -- Limits on scalar currents from the 0+ to 0+ decay of [symbol]Ar and isospin breaking in [symbol]Cl and [symbol]Cl / A. Garcia -- Nuclear constraints on the weak nucleon-nucleon interaction / W. C. Haxton -- Atomic PNC theory: current status and future prospects / M. S. Safronova -- Parity-violating nucleon-nucleon interactions: what can we learn from nuclear anapole moments? / B. Desplanques -- Proposed experiment for the measurement of the anapole moment in francium / A. Perez Galvan ... [et al.] -- The Radon-EDM experiment / Tim Chupp for the Radon-EDM collaboration -- The lead radius Eexperiment (PREX) and parity violating measurements of neutron densities / C. J. Horowitz -- Nuclear structure aspects of Schiff moment and search for collective enhancements / Naftali Auerbach and Vladimir Zelevinsky -- The interpretation of atomic electric dipole moments: Schiff theorem and its corrections / C. -P. Liu -- T-violation and the search for a permanent electric dipole moment of the mercury atom / M. D. Swallows ... [et al.] -- The new concept for FRIB and its potential for fundamental interactions studies / Guy Savard -- Collinear laser spectroscopy and polarized exotic nuclei at NSCL / K. Minamisono -- Environmental dependence of masses and coupling constants / M. Pospelov.

  11. Neutrino properties and fundamental symmetries

    SciTech Connect

    Bowles, T.J.

    1996-07-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). There are two components to this work. The first is a development of a new detection scheme for neutrinos. The observed deficit of neutrinos from the Sun may be due to either a lack of understanding of physical processes in the Sun or may be due to neutrinos oscillating from one type to another during their transit from the Sun to the Earth. The Sudbury Neutrino Observatory (SNO) is designed to use a water Cerenkov detector employing one thousand tonnes of heavy water to resolve this question. The ability to distinguish muon and tau neutrinos from electron neutrinos is crucial in order to carry out a model-independent test of neutrino oscillations. We describe a developmental exploration of a novel technique to do this using {sup 3}He proportional counters. Such a method offers considerable advantages over the initially proposed method of using Cerenkov light from capture on NaCl in the SNO. The second component of this work is an exploration of optimal detector geometry for a time-reversal invariance experiment. The question of why time moves only in the forward direction is one of the most puzzling problems in modern physics. We know from particle physics measurements of the decay of kaons that there is a charge-parity symmetry that is violated in nature, implying time-reversal invariance violation. Yet, we do not understand the origin of the violation of this symmetry. To promote such an understanding, we are developing concepts and prototype apparatus for a new, highly sensitive technique to search for time-reversal-invariance violation in the beta decay of the free neutron. The optimized detector geometry is seven times more sensitive than that in previous experiments. 15 refs.

  12. Flavor symmetries and fermion masses

    SciTech Connect

    Rasin, A.

    1994-04-01

    We introduce several ways in which approximate flavor symmetries act on fermions and which are consistent with observed fermion masses and mixings. Flavor changing interactions mediated by new scalars appear as a consequence of approximate flavor symmetries. We discuss the experimental limits on masses of the new scalars, and show that the masses can easily be of the order of weak scale. Some implications for neutrino physics are also discussed. Such flavor changing interactions would easily erase any primordial baryon asymmetry. We show that this situation can be saved by simply adding a new charged particle with its own asymmetry. The neutrality of the Universe, together with sphaleron processes, then ensures a survival of baryon asymmetry. Several topics on flavor structure of the supersymmetric grand unified theories are discussed. First, we show that the successful predictions for the Kobayashi-Maskawa mixing matrix elements, V{sub ub}/V{sub cb} = {radical}m{sub u}/m{sub c} and V{sub td}/V{sub ts} = {radical}m{sub d}/m{sub s}, are a consequence of a large class of models, rather than specific properties of a few models. Second, we discuss how the recent observation of the decay {beta} {yields} s{gamma} constrains the parameter space when the ratio of the vacuum expectation values of the two Higgs doublets, tan{Beta}, is large. Finally, we discuss the flavor structure of proton decay. We observe a surprising enhancement of the branching ratio for the muon mode in SO(10) models compared to the same mode in the SU(5) model.

  13. Nonlocalization of Nonlocal Symmetry and Symmetry Reductions of the Burgers Equation

    NASA Astrophysics Data System (ADS)

    Jin, Yan; Jia, Man; Lou, Sen-Yue

    2012-12-01

    Symmetry reduction method is one of the best ways to find exact solutions. In this paper, we study the possibility of symmetry reductions of the well known Burgers equation including the nonlocal symmetry. The related new group invariant solutions are obtained. Especially, the interactions among solitons, Airy waves, and Kummer waves are explicitly given.

  14. A comparison of specularly reflective boundary conditions and rotationally invariant formulations for Discrete Ordinate Methods in axisymmetric geometries

    NASA Astrophysics Data System (ADS)

    Cai, Jian; Roy, Somesh; Modest, Michael F.

    2016-10-01

    In simulations of periodic or symmetric geometries, computational domains are reduced by imaginary boundaries that exploit the symmetry conditions. Two boundary conditions are proposed for Discrete Ordinate Methods to solve axisymmetric radiation problems. Firstly, a specularly reflective boundary condition similar to that is used in Photon Monte Carlo methods is developed for Discrete Ordinate Methods. Secondly, the rotational invariant formulation is revisited for axisymmetric wedge geometries. Correspondingly, a new rotationally invariant boundary condition specially designed for axisymmetric problems on wedge shape is proposed to enforce the rotational invariance properties possessed by the radiative transfer equation (RTE) but violated by three-dimensional conventional Discrete Ordinate Methods. Both boundary conditions have the advantage that the discretization and linear equation solution procedures of conventional three-dimensional DOM are not affected by changing to a reduced geometry. Consistency, accuracy and efficiency of the new boundary conditions are demonstrated by multiple numerical examples involving periodic symmetry and axisymmetry. A comparison between specularly reflective boundary conditions and the rotationally invariant formulation shows that the latter offers several advantages for wedge geometries. In other symmetry conditions, when the rotational invariant formulation is not applicable, specular reflective boundary conditions are still effective.

  15. A minimal lentivirus Tat.

    PubMed Central

    Derse, D; Carvalho, M; Carroll, R; Peterlin, B M

    1991-01-01

    Transcriptional regulatory mechanisms found in lentiviruses employ RNA enhancer elements called trans-activation responsive (TAR) elements. These nascent RNA stem-loops are cis-acting targets of virally encoded Tat effectors. Interactions between Tat and TAR increase the processivity of transcription complexes and lead to efficient copying of viral genomes. To study essential elements of this trans activation, peptide motifs from Tats of two distantly related lentiviruses, equine infectious anemia virus (EIAV) and human immunodeficiency virus type 1 (HIV-1), were fused to the coat protein of bacteriophage R17 and tested on the long terminal repeat of EIAV, where TAR was replaced by the R17 operator, the target of the coat protein. This independent RNA-tethering mechanism mapped activation domains of Tats from HIV-1 and EIAV to 47 and 15 amino acids and RNA-binding domains to 10 and 26 amino acids, respectively. Thus, a minimal lentivirus Tat consists of 25 amino acids, of which 15 modify viral transcription and 10 bind to the target RNA stem-loop. Images PMID:1658392

  16. Recursive multibody dynamics and discrete-time optimal control

    NASA Technical Reports Server (NTRS)

    Deleuterio, G. M. T.; Damaren, C. J.

    1989-01-01

    A recursive algorithm is developed for the solution of the simulation dynamics problem for a chain of rigid bodies. Arbitrary joint constraints are permitted, that is, joints may allow translational and/or rotational degrees of freedom. The recursive procedure is shown to be identical to that encountered in a discrete-time optimal control problem. For each relevant quantity in the multibody dynamics problem, there exists an analog in the context of optimal control. The performance index that is minimized in the control problem is identified as Gibbs' function for the chain of bodies.

  17. Control of discrete event systems modeled as hierarchical state machines

    NASA Technical Reports Server (NTRS)

    Brave, Y.; Heymann, M.

    1991-01-01

    The authors examine a class of discrete event systems (DESs) modeled as asynchronous hierarchical state machines (AHSMs). For this class of DESs, they provide an efficient method for testing reachability, which is an essential step in many control synthesis procedures. This method utilizes the asynchronous nature and hierarchical structure of AHSMs, thereby illustrating the advantage of the AHSM representation as compared with its equivalent (flat) state machine representation. An application of the method is presented where an online minimally restrictive solution is proposed for the problem of maintaining a controlled AHSM within prescribed legal bounds.

  18. Symmetry is less than meets the eye.

    PubMed

    Apthorp, Deborah; Bell, Jason

    2015-03-30

    Symmetry is a ubiquitous feature in the visual environment and can be detected by a variety of species, ranging from insects through to humans [1,2]. Here we show it can also bias estimates of basic scene properties. Mirror (reflective) symmetry can be detected in as little as 50 ms, in both natural and artificial visual scenes, and even when embedded within cluttered backgrounds [1]. In terms of its biological relevance, symmetry is a key determinant in mate selection; the degree of symmetry in a face is positively associated with perceived healthiness and attractiveness ratings [3]. In short, symmetry processing mechanisms are an important part of the neural machinery of vision. We reveal that the importance of symmetry extends beyond the processing of shape and objects. Mirror symmetry biases our perception of scene content, with symmetrical patterns appearing to have fewer components than their asymmetric counterparts. This demonstrates an interaction between two fundamental dimensions of visual analysis: symmetry [1] and number [4]. We propose that this numerical underestimation results from a processing bias away from the redundant information within mirror symmetrical displays, extending existing theories regarding redundancy in visual analysis [5,6]. PMID:25829006

  19. Symmetry in critical random Boolean network dynamics.

    PubMed

    Hossein, Shabnam; Reichl, Matthew D; Bassler, Kevin E

    2014-04-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.

  20. Symmetry is less than meets the eye.

    PubMed

    Apthorp, Deborah; Bell, Jason

    2015-03-30

    Symmetry is a ubiquitous feature in the visual environment and can be detected by a variety of species, ranging from insects through to humans [1,2]. Here we show it can also bias estimates of basic scene properties. Mirror (reflective) symmetry can be detected in as little as 50 ms, in both natural and artificial visual scenes, and even when embedded within cluttered backgrounds [1]. In terms of its biological relevance, symmetry is a key determinant in mate selection; the degree of symmetry in a face is positively associated with perceived healthiness and attractiveness ratings [3]. In short, symmetry processing mechanisms are an important part of the neural machinery of vision. We reveal that the importance of symmetry extends beyond the processing of shape and objects. Mirror symmetry biases our perception of scene content, with symmetrical patterns appearing to have fewer components than their asymmetric counterparts. This demonstrates an interaction between two fundamental dimensions of visual analysis: symmetry [1] and number [4]. We propose that this numerical underestimation results from a processing bias away from the redundant information within mirror symmetrical displays, extending existing theories regarding redundancy in visual analysis [5,6].

  1. Order in the Universe: The Symmetry Principle.

    ERIC Educational Resources Information Center

    Foundation for Integrative Education, Inc., New York, NY.

    The first two papers in this booklet provide a review of the pervasiveness of symmetry in nature and art, discussing how symmetry can be traced through every domain open to our understanding, from all aspects of nature to the special provinces of man; the checks and balances of government, the concept of equal justice, and the aesthetic ordering…

  2. Broken chiral symmetry on a null plane

    SciTech Connect

    Beane, Silas R.

    2013-10-15

    On a null-plane (light-front), all effects of spontaneous chiral symmetry breaking are contained in the three Hamiltonians (dynamical Poincaré generators), while the vacuum state is a chiral invariant. This property is used to give a general proof of Goldstone’s theorem on a null-plane. Focusing on null-plane QCD with N degenerate flavors of light quarks, the chiral-symmetry breaking Hamiltonians are obtained, and the role of vacuum condensates is clarified. In particular, the null-plane Gell-Mann–Oakes–Renner formula is derived, and a general prescription is given for mapping all chiral-symmetry breaking QCD condensates to chiral-symmetry conserving null-plane QCD condensates. The utility of the null-plane description lies in the operator algebra that mixes the null-plane Hamiltonians and the chiral symmetry charges. It is demonstrated that in a certain non-trivial limit, the null-plane operator algebra reduces to the symmetry group SU(2N) of the constituent quark model. -- Highlights: •A proof (the first) of Goldstone’s theorem on a null-plane is given. •The puzzle of chiral-symmetry breaking condensates on a null-plane is solved. •The emergence of spin-flavor symmetries in null-plane QCD is demonstrated.

  3. Teaching symmetry in the introductory physics curriculum

    SciTech Connect

    Hill, C. T.; Lederman, L. M.

    2000-01-01

    Modern physics is largely defined by fundamental symmetry principles and Noether's Theorem. Yet these are not taught, or rarely mentioned, to beginning students, thus missing an opportunity to reveal that the subject of physics is as lively and contemporary as molecular biology, and as beautiful as the arts. We prescribe a symmetry module to insert into the curriculum, of a week's length.

  4. Cubic Icosahedra? A Problem in Assigning Symmetry

    ERIC Educational Resources Information Center

    Lloyd, D. R.

    2010-01-01

    There is a standard convention that the icosahedral groups are classified separately from the cubic groups, but these two symmetry types have been conflated as "cubic" in some chemistry textbooks. In this note, the connection between cubic and icosahedral symmetries is examined, using a simple pictorial model. It is shown that octahedral and…

  5. Complementarity and Symmetry in Family Therapy Communication.

    ERIC Educational Resources Information Center

    Heatherington, Laurie; Friedlander, Myrna L.

    1990-01-01

    Examined relational control communication patterns in systemic family therapy sessions. Results from 29 families showed significantly more complementarity than symmetry. Neither complementarity nor symmetry was predictive of family members' perceptions of the therapeutic alliance as measured by Couple and Family Therapy Alliance Scales. (Author/NB)

  6. Symmetry in critical random Boolean network dynamics

    NASA Astrophysics Data System (ADS)

    Hossein, Shabnam; Reichl, Matthew D.; Bassler, Kevin E.

    2014-04-01

    Using Boolean networks as prototypical examples, the role of symmetry in the dynamics of heterogeneous complex systems is explored. We show that symmetry of the dynamics, especially in critical states, is a controlling feature that can be used both to greatly simplify analysis and to characterize different types of dynamics. Symmetry in Boolean networks is found by determining the frequency at which the various Boolean output functions occur. There are classes of functions that consist of Boolean functions that behave similarly. These classes are orbits of the controlling symmetry group. We find that the symmetry that controls the critical random Boolean networks is expressed through the frequency by which output functions are utilized by nodes that remain active on dynamical attractors. This symmetry preserves canalization, a form of network robustness. We compare it to a different symmetry known to control the dynamics of an evolutionary process that allows Boolean networks to organize into a critical state. Our results demonstrate the usefulness and power of using the symmetry of the behavior of the nodes to characterize complex network dynamics, and introduce an alternative approach to the analysis of heterogeneous complex systems.

  7. S4 flavored CP symmetry for neutrinos

    NASA Astrophysics Data System (ADS)

    Mohapatra, R. N.; Nishi, C. C.

    2012-10-01

    A generalized CP symmetry for leptons is presented where CP transformations are part of an S4 symmetry that connects different families. We study its implications for lepton mixings in a gauge model realization of the idea using a type II seesaw for neutrino masses. The model predicts maximal atmospheric mixing, nonzero θ13 and maximal Dirac phase δD=±(π)/(2).

  8. Teaching Point-Group Symmetry with Three-Dimensional Models

    ERIC Educational Resources Information Center

    Flint, Edward B.

    2011-01-01

    Three tools for teaching symmetry in the context of an upper-level undergraduate or introductory graduate course on the chemical applications of group theory are presented. The first is a collection of objects that have the symmetries of all the low-symmetry and high-symmetry point groups and the point groups with rotational symmetries from 2-fold…

  9. Tests of gravitational symmetries with radio pulsars

    NASA Astrophysics Data System (ADS)

    Shao, LiJing; Wex, Norbert

    2016-09-01

    Symmetries play important roles in modern theories of physical laws. In this paper, we review several experimental tests of important symmetries associated with the gravitational interaction, including the universality of free fall for self-gravitating bodies, time-shift symmetry in the gravitational constant, local position invariance and local Lorentz invariance of gravity, and spacetime translational symmetries. Recent experimental explorations for post-Newtonian gravity are discussed, of which, those from pulsar astronomy are highlighted. All of these tests, of very different aspects of gravity theories, at very different length scales, favor to very high precision the predictions of the strong equivalence principle (SEP) and, in particular, general relativity which embodies SEP completely. As the founding principles of gravity, these symmetries are motivated to be promoted to even stricter tests in future.

  10. Ermakov's Superintegrable Toy and Nonlocal Symmetries

    NASA Astrophysics Data System (ADS)

    Leach, P. G. L.; Karasu Kalkanli, A.; Nucci, M. C.; Andriopoulos, K.

    2005-11-01

    We investigate the symmetry properties of a pair of Ermakov equations. The system is superintegrable and yet possesses only three Lie point symmetries with the algebra sl(2, R). The number of point symmetries is insufficient and the algebra unsuitable for the complete specification of the system. We use the method of reduction of order to reduce the nonlinear fourth-order system to a third-order system comprising a linear second-order equation and a conservation law. We obtain the representation of the complete symmetry group from this system. Four of the required symmetries are nonlocal and the algebra is the direct sum of a one-dimensional Abelian algebra with the semidirect sum of a two-dimensional solvable algebra with a two-dimensional Abelian algebra. The problem illustrates the difficulties which can arise in very elementary systems. Our treatment demonstrates the existence of possible routes to overcome these problems in a systematic fashion.

  11. Dragging two-dimensional discrete solitons by moving linear defects

    SciTech Connect

    Brazhnyi, Valeriy A.; Malomed, Boris A.

    2011-07-15

    We study the mobility of small-amplitude solitons attached to moving defects which drag the solitons across a two-dimensional (2D) discrete nonlinear Schroedinger lattice. Findings are compared to the situation when a free small-amplitude 2D discrete soliton is kicked in a uniform lattice. In agreement with previously known results, after a period of transient motion the free soliton transforms into a localized mode pinned by the Peierls-Nabarro potential, irrespective of the initial velocity. However, the soliton attached to the moving defect can be dragged over an indefinitely long distance (including routes with abrupt turns and circular trajectories) virtually without losses, provided that the dragging velocity is smaller than a certain critical value. Collisions between solitons dragged by two defects in opposite directions are studied too. If the velocity is small enough, the collision leads to a spontaneous symmetry breaking, featuring fusion of two solitons into a single one, which remains attached to either of the two defects.

  12. Numerical solution of Boltzmann equation using discrete velocity grids

    NASA Astrophysics Data System (ADS)

    Vedula, Prakash

    2015-11-01

    An importance sampling based approach for numerical solution of the (single species) Boltzmann equation using discrete velocity grids is proposed. This approach involves a stochastic method for evaluation of the collision integral based on sampling of depleting/replenishing collisions and is designed to preserve important symmetries of the collision operator, including collision invariants. The underlying particle distribution function is represented as a collection of delta functions with associated weights that are non-negative. A key feature in the construction of the proposed method is that it ensures that the weights associated with the distribution function remain non-negative during collisional relaxation, thereby satisfying an important realizability condition. Performance of the proposed approach will be studied using test problems involving spatially homogeneous collisional relaxation flow and microchannel flows. Results obtained from the proposed method will be compared with those obtained from the (deterministic) collisional Lattice Boltzmann Method (cLBM) and the traditional direct simulation Monte Carlo (DSMC) method for solution of Boltzmann equation. Extension of the proposed method using discrete velocity grids for multicomponent mixtures will also be discussed.

  13. Global optimization on set of mixed variables: continuous and discrete with unordered possible values

    NASA Astrophysics Data System (ADS)

    Mikhalev, A. S.; Rouban, A. I.

    2016-04-01

    The algorithms of global non-differentiable minimization of functions on set of the mixed variables: continuous and discrete with unordered specific possible values are constructed. The method of optimization is based on selective averaging of required variables, on adaptive reorganization of the sizes of admissible domain of trial movements and on use of relative values for minimised functions. Existence of discrete variables leads to solution of a sequence of global minimization problems of the functions in space of only continuous variables at the presence: 1) of their inequality restrictions for each problem; 2) of the general inequality restrictions for all problems (i.e. at the absence of dependence of functions fore inequality restrictions from discrete variables). In the first case, presence of discrete variables with unordered non-numeric possible values leads to solution of sequence of problems of global minimization of multiextreme functions on set only of continuous variables at the presence of their inequality restrictions. As a result, among the received optimum solutions the best is selected. In the second variant all minimized functions is convoluted in each sampling point in one multiextreme function and this function is minimised on continuous variables.

  14. Symmetries, weak symmetries, and related solutions of the Grad-Shafranov equation

    SciTech Connect

    Cicogna, G.; Pegoraro, F.; Ceccherini, F.

    2010-10-15

    We discuss a new family of solutions of the Grad-Shafranov (GS) equation that describes D-shaped toroidal plasma equilibria with sharp gradients at the plasma edge. These solutions have been derived by exploiting the continuous Lie symmetry properties of the GS equation and in particular a special type of 'weak' symmetries. In addition, we review the continuous Lie symmetry properties of the GS equation and present a short but exhaustive survey of the possible choices for the arbitrary flux functions that yield GS equations admitting some continuous Lie symmetry. Particular solutions related to these symmetries are also discussed.

  15. Discreteness effects in population dynamics

    NASA Astrophysics Data System (ADS)

    Guevara Hidalgo, Esteban; Lecomte, Vivien

    2016-05-01

    We analyse numerically the effects of small population size in the initial transient regime of a simple example population dynamics. These effects play an important role for the numerical determination of large deviation functions of additive observables for stochastic processes. A method commonly used in order to determine such functions is the so-called cloning algorithm which in its non-constant population version essentially reduces to the determination of the growth rate of a population, averaged over many realizations of the dynamics. However, the averaging of populations is highly dependent not only on the number of realizations of the population dynamics, and on the initial population size but also on the cut-off time (or population) considered to stop their numerical evolution. This may result in an over-influence of discreteness effects at initial times, caused by small population size. We overcome these effects by introducing a (realization-dependent) time delay in the evolution of populations, additional to the discarding of the initial transient regime of the population growth where these discreteness effects are strong. We show that the improvement in the estimation of the large deviation function comes precisely from these two main contributions.

  16. Discrete auroras and magnetotail processes.

    NASA Astrophysics Data System (ADS)

    Lyons, L. R.

    Important information about magnetospheric phenomena associated with auroras and substorms can be inferred from low-altitude auroral observations. Satellite observations have shown that discrete auroral arcs lie within a boundary plasma sheet (BPS) region that is outside the central plasma sheet (CPS). The observations imply that arcs are generated along BPS field lines by magnetospheric processes that form large, perpendicular electric field structures. The BPS and the arc generation processes apparently lie along field lines that are in the vicinity of the boundary between open and closed field lines and cross the tail (or magnetopause) current sheet. Ground-based observations show that the first indication of a substorm onset is the brightening of a quiet, discrete arc. This suggests that substorms are initiated along the BPS field lines associated with arc generation, and not within the CPS. Finally, auroral observations have shown that the area of open, polar-cap field lines varies considerably during periods of geomagnetic activity. Expansion of the polar cap has the potential for releasing trapped plasma sheet particles along freshly open field lines. The resulting evacuation of field lines has the potential for being an important loss process for the plasma sheet and for being a source of tailward flows and energetic particle bursts in the tail.

  17. Spatial Treatment of the Slab-geometry Discrete Ordinates Equations Using Artificial Neural Networks

    SciTech Connect

    Brantley, P S

    2001-03-23

    An artificial neural network (ANN) method is developed for treating the spatial variable of the one-group slab-geometry discrete ordinates (S{sub N}) equations in a homogeneous medium with linearly anisotropic scattering. This ANN method takes advantage of the function approximation capability of multilayer ANNs. The discrete ordinates angular flux is approximated by a multilayer ANN with a single input representing the spatial variable x and N outputs representing the angular flux in each of the discrete ordinates angular directions. A global objective function is formulated which measures how accurately the output of the ANN approximates the solution of the discrete ordinates equations and boundary conditions at specified spatial points. Minimization of this objective function determines the appropriate values for the parameters of the ANN. Numerical results are presented demonstrating the accuracy of the method for both fixed source and incident angular flux problems.

  18. Novel symmetries in an interacting 𝒩 = 2 supersymmetric quantum mechanical model

    NASA Astrophysics Data System (ADS)

    Krishna, S.; Shukla, D.; Malik, R. P.

    2016-07-01

    In this paper, we demonstrate the existence of a set of novel discrete symmetry transformations in the case of an interacting 𝒩 = 2 supersymmetric quantum mechanical model of a system of an electron moving on a sphere in the background of a magnetic monopole and establish its interpretation in the language of differential geometry. These discrete symmetries are, over and above, the usual three continuous symmetries of the theory which together provide the physical realizations of the de Rham cohomological operators of differential geometry. We derive the nilpotent 𝒩 = 2 SUSY transformations by exploiting our idea of supervariable approach and provide geometrical meaning to these transformations in the language of Grassmannian translational generators on a (1, 2)-dimensional supermanifold on which our 𝒩 = 2 SUSY quantum mechanical model is generalized. We express the conserved supercharges and the invariance of the Lagrangian in terms of the supervariables (obtained after the imposition of the SUSY invariant restrictions) and provide the geometrical meaning to (i) the nilpotency property of the 𝒩 = 2 supercharges, and (ii) the SUSY invariance of the Lagrangian of our 𝒩 = 2 SUSY theory.

  19. Novel symmetries in an interacting 𝒩 = 2 supersymmetric quantum mechanical model

    NASA Astrophysics Data System (ADS)

    Krishna, S.; Shukla, D.; Malik, R. P.

    2016-07-01

    In this paper, we demonstrate the existence of a set of novel discrete symmetry transformations in the case of an interacting 𝒩 = 2 supersymmetric quantum mechanical model of a system of an electron moving on a sphere in the background of a magnetic monopole and establish its interpretation in the language of differential geometry. These discrete symmetries are, over and above, the usual three continuous symmetries of the theory which together provide the physical realizations of the de Rham cohomological operators of differential geometry. We derive the nilpotent 𝒩 = 2 SUSY transformations by exploiting our idea of supervariable approach and provide geometrical meaning to these transformations in the language of Grassmannian translational generators on a (1, 2)-dimensional supermanifold on which our 𝒩 = 2 SUSY quantum mechanical model is generalized. We express the conserved supercharges and the invariance of the Lagrangian in terms of the supervariables (obtained after the imposition of the SUSY invariant restrictions) and provide the geometrical meaning to (i) the nilpotency property of the 𝒩 = 2 supercharges, and (ii) the SUSY invariance of the Lagrangian of our 𝒩 = 2 SUSY theory.

  20. Minimal sufficient positive-operator valued measure on a separable Hilbert space

    SciTech Connect

    Kuramochi, Yui

    2015-10-15

    We introduce a concept of a minimal sufficient positive-operator valued measure (POVM), which is the least redundant POVM among the POVMs that have the equivalent information about the measured quantum system. Assuming the system Hilbert space to be separable, we show that for a given POVM, a sufficient statistic called a Lehmann-Scheffé-Bahadur statistic induces a minimal sufficient POVM. We also show that every POVM has an equivalent minimal sufficient POVM and that such a minimal sufficient POVM is unique up to relabeling neglecting null sets. We apply these results to discrete POVMs and information conservation conditions proposed by the author.

  1. PREFACE: Symmetries in Science XIV

    NASA Astrophysics Data System (ADS)

    Schuch, Dieter; Ramek, Michael

    2010-04-01

    Symmetries Logo This volume of the proceedings "Symmetries in Science XIV" is dedicated to the memory of our colleagues and dear friends Marcos Moshinsky and Yuriĭ Smirnov who regularly participated in these Symposia and were a great inspiration to many. We shall miss them. Dieter Schuch and Michael Ramek The international symposium "Symmetries in Science XIV" held at Collegium Mehrerau in Bregenz, Austria from July 19-24, 2009, attended by 32 scientists from 11 countries, was an experiment, performed by theoreticians. Aim of this experiment was to find out if the desire to revive or even continue this conference series was stronger than the very restricted pecuniary boundary conditions. It obviously was! After its establishment by Bruno Gruber in 1979, the biennial series settled in the very stimulating atmosphere of the monastery Mehrerau, which provided the ideal environment for a limited number of invited participants to exchange ideas, without parallel sessions, and pursue deeper discussions (at the latest in the evening at "Gasthof Lamm"). When the conference series terminated in 2003, former participants were quite disappointed. Meeting again at several (larger) conferences in subsequent years, there were repeated expressions of "the lack of a Bregenz-type meeting in our field nowadays" and the question of a possible "revitalization", even without external funding. After some hesitation, but also driven by our own desire to reinstate the series, we consulted Bruno who not only approved wholeheartedly but also offered his full support. It all finally led to the symposium in July 2009. The atmosphere was really like in the "good old days" and the interesting and thought-provoking presentations culminated in the publication of these Proceedings. We are grateful to Carl Bender for establishing contact with IOP making it possible for us to publish these Proceedings in the Journal of Physics Conference Series. A majority of the participants contributed to these

  2. Natural quasicrystal with decagonal symmetry

    PubMed Central

    Bindi, Luca; Yao, Nan; Lin, Chaney; Hollister, Lincoln S.; Andronicos, Christopher L.; Distler, Vadim V.; Eddy, Michael P.; Kostin, Alexander; Kryachko, Valery; MacPherson, Glenn J.; Steinhardt, William M.; Yudovskaya, Marina; Steinhardt, Paul J.

    2015-01-01

    We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite. The new quasicrystal was found associated with steinhardtite (Al38Ni32Fe30), Fe-poor steinhardtite (Al50Ni40Fe10), Al-bearing trevorite (NiFe2O4) and Al-bearing taenite (FeNi). Laboratory studies of decagonal Al71Ni24Fe5 have shown that it is stable over a narrow range of temperatures, 1120 K to 1200 K at standard pressure, providing support for our earlier conclusion that the Khatyrka meteorite reached heterogeneous high temperatures [1100 < T(K) ≤ 1500] and then rapidly cooled after being heated during an impact-induced shock that occurred in outer space 4.5 Gya. The occurrences of metallic Al alloyed with Cu, Ni, and Fe raises new questions regarding conditions that can be achieved in the early solar nebula. PMID:25765857

  3. Bilateral symmetry across Aphrodite Terra

    NASA Technical Reports Server (NTRS)

    Crumpler, L. S.; Head, J. W.; Campbell, D. B.

    1987-01-01

    There are three main highland areas on Venus: Beta Regio, Ishtar Terra and Aphrodite Terra. The latter is least known and the least mapped, yet existing analyses of Aphrodite Terra based on available Pioneer-Venus orbiter data suggest that it may be the site of extensive rifting. Some of the highest resolution (30 km) PV data (SAR) included most of the western half of Aphrodite Terra. Recent analysis of the SAR data together with Arecibo range-doppler topographic profiling (10 X 100 km horizontal and 10 m vertical resolution) across parts of Aphrodite, further characterized the nature of possible tectonic processes in the equatorial highlands. The existence of distinct topographic and radar morphologic linear discontinuities across the nearly east-west strike of Aphrodite Terra is indicated. Another prominent set of linear features is distinctly parallel to and orthogonal to the ground tracks of the PV spacecraft and are not included because of the possibility that they are artifacts. Study of the northwest trending cross-strike discontinuities (CSD's) and the nature of topographic and morphologic features along their strike suggest the presence of bilateral topographic and morphologic symmetry about the long axis of Aphrodite Terra.

  4. Natural quasicrystal with decagonal symmetry.

    PubMed

    Bindi, Luca; Yao, Nan; Lin, Chaney; Hollister, Lincoln S; Andronicos, Christopher L; Distler, Vadim V; Eddy, Michael P; Kostin, Alexander; Kryachko, Valery; MacPherson, Glenn J; Steinhardt, William M; Yudovskaya, Marina; Steinhardt, Paul J

    2015-01-01

    We report the first occurrence of a natural quasicrystal with decagonal symmetry. The quasicrystal, with composition Al71Ni24Fe5, was discovered in the Khatyrka meteorite, a recently described CV3 carbonaceous chondrite. Icosahedrite, Al63Cu24Fe13, the first natural quasicrystal to be identified, was found in the same meteorite. The new quasicrystal was found associated with steinhardtite (Al38Ni32Fe30), Fe-poor steinhardtite (Al50Ni40Fe10), Al-bearing trevorite (NiFe2O4) and Al-bearing taenite (FeNi). Laboratory studies of decagonal Al71Ni24Fe5 have shown that it is stable over a narrow range of temperatures, 1120 K to 1200 K at standard pressure, providing support for our earlier conclusion that the Khatyrka meteorite reached heterogeneous high temperatures [1100 < T(K) ≤ 1500] and then rapidly cooled after being heated during an impact-induced shock that occurred in outer space 4.5 Gya. The occurrences of metallic Al alloyed with Cu, Ni, and Fe raises new questions regarding conditions that can be achieved in the early solar nebula. PMID:25765857

  5. PREFACE: Symmetries in Science XVI

    NASA Astrophysics Data System (ADS)

    2014-10-01

    This volume of the proceedings ''Symmetries in Science XVI'' is dedicated to the memory of Miguel Lorente and Allan Solomon who both participated several times in these Symposia. We lost not only two great scientists and colleagues, but also two wonderful persons of high esteem whom we will always remember. Dieter Schuch, Michael Ramek There is a German saying ''all good things come in threes'' and ''Symmetries in Science XVI'', convened July 20-26, 2013 at the Mehrerau Monastery, was our third in the sequel of these symposia since taking it over from founder Bruno Gruber who instigated it in 1988 (then in Lochau). Not only the time seemed to have been perfect (one week of beautiful sunshine), but also the medley of participants could hardly have been better. This time, 34 scientists from 16 countries (more than half outside the European Union) came together to report and discuss their latest results in various fields of science, all related to symmetries. The now customary grouping of renowned experts and talented newcomers was very rewarding and stimulating for all. The informal, yet intense, discussions at ''Gasthof Lamm'' occurred (progressively later) each evening till well after midnight and finally till almost daybreak! However, prior to the opening ceremony and during the conference, respectively, we were informed that Miguel Lorente and Allan Solomon had recently passed away. Both attended the SIS Symposia several times and had many friends among present and former participants. Professor Peter Kramer, himself a long-standing participant and whose 80th birthday commemoration prevented him from attending SIS XVI, kindly agreed to write the obituary for Miguel Lorente. Professors Richard Kerner and Carol Penson (both also former attendees) penned, at very short notice, the tribute to Allan Solomon. The obituaries are included in these Proceedings and further tributes have been posted to our conference website. In 28 lectures and an evening poster

  6. Structural symmetry in evolutionary games

    PubMed Central

    McAvoy, Alex; Hauert, Christoph

    2015-01-01

    In evolutionary game theory, an important measure of a mutant trait (strategy) is its ability to invade and take over an otherwise-monomorphic population. Typically, one quantifies the success of a mutant strategy via the probability that a randomly occurring mutant will fixate in the population. However, in a structured population, this fixation probability may depend on where the mutant arises. Moreover, the fixation probability is just one quantity by which one can measure the success of a mutant; fixation time, for instance, is another. We define a notion of homogeneity for evolutionary games that captures what it means for two single-mutant states, i.e. two configurations of a single mutant in an otherwise-monomorphic population, to be ‘evolutionarily equivalent’ in the sense that all measures of evolutionary success are the same for both configurations. Using asymmetric games, we argue that the term ‘homogeneous’ should apply to the evolutionary process as a whole rather than to just the population structure. For evolutionary matrix games in graph-structured populations, we give precise conditions under which the resulting process is homogeneous. Finally, we show that asymmetric matrix games can be reduced to symmetric games if the population structure possesses a sufficient degree of symmetry. PMID:26423436

  7. Relativity symmetries and Lie algebra contractions

    SciTech Connect

    Cho, Dai-Ning; Kong, Otto C.W.

    2014-12-15

    We revisit the notion of possible relativity or kinematic symmetries mutually connected through Lie algebra contractions under a new perspective on what constitutes a relativity symmetry. Contractions of an SO(m,n) symmetry as an isometry on an m+n dimensional geometric arena which generalizes the notion of spacetime are discussed systematically. One of the key results is five different contractions of a Galilean-type symmetry G(m,n) preserving a symmetry of the same type at dimension m+n−1, e.g. a G(m,n−1), together with the coset space representations that correspond to the usual physical picture. Most of the results are explicitly illustrated through the example of symmetries obtained from the contraction of SO(2,4), which is the particular case for our interest on the physics side as the proposed relativity symmetry for “quantum spacetime”. The contractions from G(1,3) may be relevant to real physics.

  8. Observers for discrete-time nonlinear systems

    NASA Astrophysics Data System (ADS)

    Grossman, Walter D.

    Observer synthesis for discrete-time nonlinear systems with special applications to parameter estimation is analyzed. Two new types of observers are developed. The first new observer is an adaptation of the Friedland continuous-time parameter estimator to discrete-time systems. The second observer is an adaptation of the continuous-time Gauthier observer to discrete-time systems. By adapting these observers to discrete-time continuous-time parameter estimation problems which were formerly intractable become tractable. In addition to the two newly developed observers, two observers already described in the literature are analyzed and deficiencies with respect to noise rejection are demonstrated. Improved versions of these observers are proposed and their performance demonstrated. The issues of discrete-time observability, discrete-time system inversion, and optimal probing are also addressed.

  9. Ideal shrinking and expansion of discrete sequences

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B.

    1986-01-01

    Ideal methods are described for shrinking or expanding a discrete sequence, image, or image sequence. The methods are ideal in the sense that they preserve the frequency spectrum of the input up to the Nyquist limit of the input or output, whichever is smaller. Fast implementations that make use of the discrete Fourier transform or the discrete Hartley transform are described. The techniques lead to a new multiresolution image pyramid.

  10. Determinant Expressions for Discrete Integrable Maps

    NASA Astrophysics Data System (ADS)

    Sogo, Kiyoshi

    2006-08-01

    Explicit formulas for several discrete integrable maps with periodic boundary condition are obtained, which give the sequential time developments in a form of the quotient of successive determinants of tri-diagonal matrices. We can expect that such formulas make the corresponding numerical simulations simple and stable. The cases of discrete Lotka-Volterra and discrete KdV equations are demonstrated by using the common algorithm computing determinants of tri-diagonal matrices.

  11. Discrete modelling of drapery systems

    NASA Astrophysics Data System (ADS)

    Thoeni, Klaus; Giacomini, Anna

    2016-04-01

    Drapery systems are an efficient and cost-effective measure in preventing and controlling rockfall hazards on rock slopes. The simplest form consists of a row of ground anchors along the top of the slope connected to a horizontal support cable from which a wire mesh is suspended down the face of the slope. Such systems are generally referred to as simple or unsecured draperies (Badger and Duffy 2012). Variations such as secured draperies, where a pattern of ground anchors is incorporated within the field of the mesh, and hybrid systems, where the upper part of an unsecured drapery is elevated to intercept rockfalls originating upslope of the installation, are becoming more and more popular. This work presents a discrete element framework for simulation of unsecured drapery systems and its variations. The numerical model is based on the classical discrete element method (DEM) and implemented into the open-source framework YADE (Šmilauer et al., 2010). The model takes all relevant interactions between block, drapery and slope into account (Thoeni et al., 2014) and was calibrated and validated based on full-scale experiments (Giacomini et al., 2012).The block is modelled as a rigid clump made of spherical particles which allows any shape to be approximated. The drapery is represented by a set of spherical particle with remote interactions. The behaviour of the remote interactions is governed by the constitutive behaviour of the wire and generally corresponds to a piecewise linear stress-strain relation (Thoeni et al., 2013). The same concept is used to model wire ropes. The rock slope is represented by rigid triangular elements where material properties (e.g., normal coefficient of restitution, friction angle) are assigned to each triangle. The capabilities of the developed model to simulate drapery systems and estimate the residual hazard involved with such systems is shown. References Badger, T.C., Duffy, J.D. (2012) Drapery systems. In: Turner, A.K., Schuster R

  12. Discretizing gravity in warped spacetime

    SciTech Connect

    Schwartz, Matthew; Randall, Lisa; Schwartz, Matthew D.; Thambyahpillai, Shiyamala

    2005-07-11

    We investigate the discretized version of the compact Randall-Sundrum model. By studying the mass eigenstates of the lattice theory, we demonstrate that for warped space, unlike for flat space, the strong coupling scale does not depend on the IR scale and lattice size. However, strong coupling does prevent us from taking the continuum limit of the lattice theory. Nonetheless, the lattice theory works in the manifestly holographic regime and successfully reproduces the most significant features of the warped theory. It is even in some respects better than the KK theory, which must be carefully regulated to obtain the correct physical results. Because it is easier to construct lattice theories than to find exact solutions to GR, we expect lattice gravity to be a useful tool for exploring field theory in curved space.

  13. Exploring Symmetry to Assist Alzheimer's Disease Diagnosis

    NASA Astrophysics Data System (ADS)

    Illán, I. A.; Górriz, J. M.; Ramírez, J.; Salas-Gonzalez, D.; López, M.; Padilla, P.; Chaves, R.; Segovia, F.; Puntonet, C. G.

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder first affecting memory functions and then gradually affecting all cognitive functions with behavioral impairments and eventually causing death. Functional brain imaging as Single-Photon Emission Computed Tomography (SPECT) is commonly used to guide the clinician's diagnosis. The essential left-right symmetry of human brains is shown to play a key role in coding and recognition. In the present work we explore the implications of this symmetry in AD diagnosis, showing that recognition may be enhanced when considering this latent symmetry.

  14. Electromagnetic radiation under explicit symmetry breaking.

    PubMed

    Sinha, Dhiraj; Amaratunga, Gehan A J

    2015-04-10

    We report our observation that radiation from a system of accelerating charges is possible only when there is explicit breaking of symmetry in the electric field in space within the spatial configuration of the radiating system. Under symmetry breaking, current within an enclosed area around the radiating structure is not conserved at a certain instant of time resulting in radiation in free space. Electromagnetic radiation from dielectric and piezoelectric material based resonators are discussed in this context. Finally, it is argued that symmetry of a resonator of any form can be explicitly broken to create a radiating antenna.

  15. Lie symmetry theorem of fractional nonholonomic systems

    NASA Astrophysics Data System (ADS)

    Sun, Yi; Chen, Ben-Yong; Fu, Jing-Li

    2014-11-01

    The Lie symmetry theorem of fractional nonholonomic systems in terms of combined fractional derivatives is established, and the fractional Lagrange equations are obtained by virtue of the d'Alembert—Lagrange principle with fractional derivatives. As the Lie symmetry theorem is based on the invariance of differential equations under infinitesimal transformations, by introducing the differential operator of infinitesimal generators, the determining equations are obtained. Furthermore, the limit equations, the additional restriction equations, the structural equations, and the conserved quantity of Lie symmetry are acquired. An example is presented to illustrate the application of results.

  16. \\cal{PT} -symmetry in Rydberg atoms

    NASA Astrophysics Data System (ADS)

    Ziauddin; Chuang, You-Lin; Lee, Ray-Kuang

    2016-07-01

    We propose a scheme to realize parity-time ( {PT} )-symmetry in an ensemble of strongly interacting Rydberg atoms, which act as superatoms due to the dipole blockade mechanism. We show that Rydberg-dressed 87Rb atoms in a four-level inverted Y-type configuration is highly efficient to generate the refractive index for a probe field, with a symmetric (antisymmetric) profile spatially in the corresponding real (imaginary) part. Comparing with earlier investigations, the present scheme provides a versatile platform to control the system from {PT} -symmetry to non-PT -symmetry via different external parameters, i.e., coupling field detuning, probe field intensity and control field intensity.

  17. Electromagnetic radiation under explicit symmetry breaking.

    PubMed

    Sinha, Dhiraj; Amaratunga, Gehan A J

    2015-04-10

    We report our observation that radiation from a system of accelerating charges is possible only when there is explicit breaking of symmetry in the electric field in space within the spatial configuration of the radiating system. Under symmetry breaking, current within an enclosed area around the radiating structure is not conserved at a certain instant of time resulting in radiation in free space. Electromagnetic radiation from dielectric and piezoelectric material based resonators are discussed in this context. Finally, it is argued that symmetry of a resonator of any form can be explicitly broken to create a radiating antenna. PMID:25910163

  18. Electromagnetic Radiation under Explicit Symmetry Breaking

    NASA Astrophysics Data System (ADS)

    Sinha, Dhiraj; Amaratunga, Gehan A. J.

    2015-04-01

    We report our observation that radiation from a system of accelerating charges is possible only when there is explicit breaking of symmetry in the electric field in space within the spatial configuration of the radiating system. Under symmetry breaking, current within an enclosed area around the radiating structure is not conserved at a certain instant of time resulting in radiation in free space. Electromagnetic radiation from dielectric and piezoelectric material based resonators are discussed in this context. Finally, it is argued that symmetry of a resonator of any form can be explicitly broken to create a radiating antenna.

  19. The zonal satellite problem. III. Symmetries

    NASA Astrophysics Data System (ADS)

    Mioc, V.

    The two-body problem associated with a force field described by a potential of the form U=sum_{k=1}nak/rk (r = distance between particles, ak = real parameters) is resumed from the only standpoint of symmetries. Such symmetries, expressed in Hamiltonian coordinates, or in standard polar coordinates, are recovered for McGehee-type coordinates of both collision-blow-up and infinity-blow-up kind. They form diffeomorphic commutative groups endowed with a Boolean structure. Expressed in Levi-Civita's coordinates, the problem exhibits a larger group of symmetries, also commutative and presenting a Boolean structure.

  20. Symmetries in the Anisotropic Kepler Problem

    NASA Astrophysics Data System (ADS)

    Mioc, Vasile

    The two-body problem associated to an anisotropic Newtonian-type potential function is being considered. We point out the complex symmetries that feature this problem. Such symmetries, expressed in standard polar coordinates, are recovered for McGee-type coordinates of both collision-blow-up kind and infinity-blow-up kind. They form isomorphic commutative groups endowed with an idempotent structure. Expressed in Levi-Civita's coordinates, the problem exhibits a larger group of symmetries, also commutative and endowed with an idempotent structure.