Science.gov

Sample records for minimal photoautotroph non-coding

  1. Choreography of the transcriptome, photophysiology, and cell cycle of a minimal photoautotroph, prochlorococcus.

    PubMed

    Zinser, Erik R; Lindell, Debbie; Johnson, Zackary I; Futschik, Matthias E; Steglich, Claudia; Coleman, Maureen L; Wright, Matthew A; Rector, Trent; Steen, Robert; McNulty, Nathan; Thompson, Luke R; Chisholm, Sallie W

    2009-01-01

    The marine cyanobacterium Prochlorococcus MED4 has the smallest genome and cell size of all known photosynthetic organisms. Like all phototrophs at temperate latitudes, it experiences predictable daily variation in available light energy which leads to temporal regulation and partitioning of key cellular processes. To better understand the tempo and choreography of this minimal phototroph, we studied the entire transcriptome of the cell over a simulated daily light-dark cycle, and placed it in the context of diagnostic physiological and cell cycle parameters. All cells in the culture progressed through their cell cycles in synchrony, thus ensuring that our measurements reflected the behavior of individual cells. Ninety percent of the annotated genes were expressed, and 80% had cyclic expression over the diel cycle. For most genes, expression peaked near sunrise or sunset, although more subtle phasing of gene expression was also evident. Periodicities of the transcripts of genes involved in physiological processes such as in cell cycle progression, photosynthesis, and phosphorus metabolism tracked the timing of these activities relative to the light-dark cycle. Furthermore, the transitions between photosynthesis during the day and catabolic consumption of energy reserves at night- metabolic processes that share some of the same enzymes--appear to be tightly choreographed at the level of RNA expression. In-depth investigation of these patterns identified potential regulatory proteins involved in balancing these opposing pathways. Finally, while this analysis has not helped resolve how a cell with so little regulatory capacity, and a 'deficient' circadian mechanism, aligns its cell cycle and metabolism so tightly to a light-dark cycle, it does provide us with a valuable framework upon which to build when the Prochlorococcus proteome and metabolome become available.

  2. Non-coding RNAs in cardiac hypertrophy.

    PubMed

    Ottaviani, Lara; da Costa Martins, Paula A

    2017-02-23

    Heart Failure is one of the largest contributors to disease burden and healthcare outflow in the Western world. Despite significant progress in the treatment of heart failure, disease prognosis remains very poor with the only curative therapy still being heart transplantation. To counteract the current situation, efforts have been made to better understand the underlying molecular pathways in the progression of cardiac disease towards heart failure, and to link the disease to novel therapeutic targets such as non-coding RNAs. The non-coding part of the genome has gained prominence over the last couple of decades by opening a completely new research field and having established different non-coding RNAs species as fundamental regulators of cellular functions. Not surprisingly, their dysregulation is increasingly being linked to pathology, including to cardiac disease. Pre-clinically, non-coding RNAs have been shown to be of great value as therapeutic targets in pathological cardiac remodelling and also as diagnostic/prognostic biomarkers for heart failure. Therefore, it is to expect that non-coding RNA-based therapeutic strategies will reach the bedside in the future and provide new and more efficient treatments for heart failure. Here, we review recent discoveries linking the function and molecular interactions of non-coding RNAs with the pathophysiology of cardiac hypertrophy and heart failure. This article is protected by copyright. All rights reserved.

  3. Non-coding RNAs as antibiotic targets.

    PubMed

    Colameco, Savannah; Elliot, Marie A

    2016-12-22

    Antibiotics inhibit a wide range of essential processes in the bacterial cell, including replication, transcription, translation and cell wall synthesis. In many instances, these antibiotics exert their effects through association with non-coding RNAs. This review highlights many classical antibiotic targets (e.g. rRNAs and the ribosome), explores a number of emerging targets (e.g. tRNAs, RNase P, riboswitches and small RNAs), and discusses the future directions and challenges associated with non-coding RNAs as antibiotic targets.

  4. Non-coding RNAs: An Introduction.

    PubMed

    Yang, Jennifer X; Rastetter, Raphael H; Wilhelm, Dagmar

    2016-01-01

    For many years the main role of RNA, it addition to the housekeeping functions of for example tRNAs and rRNAs, was believed to be a messenger between the genes encoded on the DNA and the functional units of the cell, the proteins. This changed drastically with the identification of the first small non-coding RNA, termed microRNA, some 20 years ago. This discovery opened the field of regulatory RNAs with no or little protein-coding potential. Since then many new classes of regulatory non-coding RNAs, including endogenous small interfering RNAs (endo-siRNAs), PIWI-associated RNAs (piRNAs), and long non-coding RNAs, have been identified and we have made amazing progress in elucidating their expression, biogenesis, mechanisms and mode of action, and function in many, if not all, biological processes. In this chapter we provide an introduction about the current knowledge of the main classes of non-coding RNAs, what is know about their biogenesis and mechanism of function.

  5. Non-coding RNAs and gastric cancer

    PubMed Central

    Li, Pei-Fei; Chen, Sheng-Can; Xia, Tian; Jiang, Xiao-Ming; Shao, Yong-Fu; Xiao, Bing-Xiu; Guo, Jun-Ming

    2014-01-01

    Non-coding RNAs (ncRNAs) play key roles in development, proliferation, differentiation and apoptosis. Altered ncRNA expression is associated with gastric cancer occurrence, invasion, and metastasis. Moreover, aberrant expression of microRNAs (miRNAs) is significantly related to gastric cancer tumor stage, size, differentiation and metastasis. MiRNAs interrupt cellular signaling pathways, inhibit the activity of tumor suppressor genes, and affect the cell cycle in gastric cancer cells. Some miRNAs, including miR-21, miR-106a and miR-421, could be potential markers for the diagnosis of gastric cancer. Long non-coding RNAs (lncRNAs), a new research hotspot among cancer-associated ncRNAs, play important roles in epigenetic, transcriptional and post-transcriptional regulation. Several gastric cancer-associated lncRNAs, such as CCAT1, GACAT1, H19, and SUMO1P3, have been explored. In addition, Piwi-interacting RNAs, another type of small ncRNA that is recognized by gastroenterologists, are involved in gastric carcinogenesis, and piR-651/823 represents an efficient diagnostic biomarker of gastric cancer that can be detected in the blood and gastric juice. Small interfering RNAs also function in post-transcriptional regulation in gastric cancer and might be useful in gastric cancer treatment. PMID:24833871

  6. Non-coding genetic variants in human disease.

    PubMed

    Zhang, Feng; Lupski, James R

    2015-10-15

    Genetic variants, including single-nucleotide variants (SNVs) and copy number variants (CNVs), in the non-coding regions of the human genome can play an important role in human traits and complex diseases. Most of the genome-wide association study (GWAS) signals map to non-coding regions and potentially point to non-coding variants, whereas their functional interpretation is challenging. In this review, we discuss the human non-coding variants and their contributions to human diseases in the following four parts. (i) Functional annotations of non-coding SNPs mapped by GWAS: we discuss recent progress revealing some of the molecular mechanisms for GWAS signals affecting gene function. (ii) Technical progress in interpretation of non-coding variants: we briefly describe some of the technologies for functional annotations of non-coding variants, including the methods for genome-wide mapping of chromatin interaction, computational tools for functional predictions and the new genome editing technologies useful for dissecting potential functional consequences of non-coding variants. (iii) Non-coding CNVs in human diseases: we review our emerging understanding the role of non-coding CNVs in human disease. (iv) Compound inheritance of large genomic deletions and non-coding variants: compound inheritance at a locus consisting of coding variants plus non-coding ones is described.

  7. Non-coding genetic variants in human disease

    PubMed Central

    Zhang, Feng; Lupski, James R.

    2015-01-01

    Genetic variants, including single-nucleotide variants (SNVs) and copy number variants (CNVs), in the non-coding regions of the human genome can play an important role in human traits and complex diseases. Most of the genome-wide association study (GWAS) signals map to non-coding regions and potentially point to non-coding variants, whereas their functional interpretation is challenging. In this review, we discuss the human non-coding variants and their contributions to human diseases in the following four parts. (i) Functional annotations of non-coding SNPs mapped by GWAS: we discuss recent progress revealing some of the molecular mechanisms for GWAS signals affecting gene function. (ii) Technical progress in interpretation of non-coding variants: we briefly describe some of the technologies for functional annotations of non-coding variants, including the methods for genome-wide mapping of chromatin interaction, computational tools for functional predictions and the new genome editing technologies useful for dissecting potential functional consequences of non-coding variants. (iii) Non-coding CNVs in human diseases: we review our emerging understanding the role of non-coding CNVs in human disease. (iv) Compound inheritance of large genomic deletions and non-coding variants: compound inheritance at a locus consisting of coding variants plus non-coding ones is described. PMID:26152199

  8. Non-coding landscapes of colorectal cancer

    PubMed Central

    Ragusa, Marco; Barbagallo, Cristina; Statello, Luisa; Condorelli, Angelo Giuseppe; Battaglia, Rosalia; Tamburello, Lucia; Barbagallo, Davide; Di Pietro, Cinzia; Purrello, Michele

    2015-01-01

    For two decades Vogelstein’s model has been the paradigm for describing the sequence of molecular changes within protein-coding genes that would lead to overt colorectal cancer (CRC). This model is now too simplistic in the light of recent studies, which have shown that our genome is pervasively transcribed in RNAs other than mRNAs, denominated non-coding RNAs (ncRNAs). The discovery that mutations in genes encoding these RNAs [i.e., microRNAs (miRNAs), long non-coding RNAs, and circular RNAs] are causally involved in cancer phenotypes has profoundly modified our vision of tumour molecular genetics and pathobiology. By exploiting a wide range of different mechanisms, ncRNAs control fundamental cellular processes, such as proliferation, differentiation, migration, angiogenesis and apoptosis: these data have also confirmed their role as oncogenes or tumor suppressors in cancer development and progression. The existence of a sophisticated RNA-based regulatory system, which dictates the correct functioning of protein-coding networks, has relevant biological and biomedical consequences. Different miRNAs involved in neoplastic and degenerative diseases exhibit potential predictive and prognostic properties. Furthermore, the key roles of ncRNAs make them very attractive targets for innovative therapeutic approaches. Several recent reports have shown that ncRNAs can be secreted by cells into the extracellular environment (i.e., blood and other body fluids): this suggests the existence of extracellular signalling mechanisms, which may be exploited by cells in physiology and pathology. In this review, we will summarize the most relevant issues on the involvement of cellular and extracellular ncRNAs in disease. We will then specifically describe their involvement in CRC pathobiology and their translational applications to CRC diagnosis, prognosis and therapy. PMID:26556998

  9. Biogeography of photoautotrophs in the high polar biome

    PubMed Central

    Pointing, Stephen B.; Burkhard Büdel; Convey, Peter; Gillman, Len N.; Körner, Christian; Leuzinger, Sebastian; Vincent, Warwick F.

    2015-01-01

    The global latitudinal gradient in biodiversity weakens in the high polar biome and so an alternative explanation for distribution of Arctic and Antarctic photoautotrophs is required. Here we identify how temporal, microclimate and evolutionary drivers of biogeography are important, rather than the macroclimate features that drive plant diversity patterns elsewhere. High polar ecosystems are biologically unique, with a more central role for bryophytes, lichens and microbial photoautotrophs over that of vascular plants. Constraints on vascular plants arise mainly due to stature and ontogenetic barriers. Conversely non-vascular plant and microbial photoautotroph distribution is correlated with favorable microclimates and the capacity for poikilohydric dormancy. Contemporary distribution also depends on evolutionary history, with adaptive and dispersal traits as well as legacy influencing biogeography. We highlight the relevance of these findings to predicting future impacts on diversity of polar photoautotrophs and to the current status of plants in Arctic and Antarctic conservation policy frameworks. PMID:26442009

  10. Non-coding RNAs and atherosclerosis

    PubMed Central

    Fernández-Hernando, Carlos

    2014-01-01

    Non-coding RNAs (ncRNAs) represent a class of RNA molecules that typically do not code for proteins. Emerging data suggest that ncRNAs play an important role in several physiological and pathological conditions such as cancer and cardiovascular diseases (CVDs) including atherosclerosis. The best-characterized ncRNAs are the microRNAs (miRNAs), which are small, ~22 nucleotide (nt) sequences of RNA that regulate gene expression at the posttranscriptional level through transcript degradation or translational repression. MiRNAs control several aspects of atherosclerosis including endothelial cell, vascular smooth cell, and macrophage functions as well as lipoprotein metabolism. Apart from miRNAs, recently ncRNAs, especially long ncRNAs (lncRNAs), have emerged as important potential regulators of the progression of atherosclerosis. However, the molecular mechanism of their regulation and function as well as significance of other ncRNAs such as small nucleolar RNAs (snoRNAs) during atherogenesis is largely unknown. In this review, we summarize the recent findings in the field, highlighting the importance of ncRNAs in atherosclerosis and discuss their potential use as therapeutic targets in CVDs. PMID:24623179

  11. Microdroplet photobioreactor for the photoautotrophic culture of microalgal cells.

    PubMed

    Sung, Young Joon; Kim, Jaoon Young Hwan; Bong, Ki Wan; Sim, Sang Jun

    2016-02-07

    Microalgae, unicellular photoautotrophic microorganisms, have attracted great attention for the production of biofuel and high-value products, but the commercial use of microalgae has been limited by low photosynthetic productivity. To overcome this limitation, it is required to develop an efficient platform for the rapid evaluation of photoautotrophic growth performance and productivity of microalgal strains. Here we describe a droplet-based photobioreactor for high-throughput analysis of the photoautotrophic growth of microalgal cells. By integrating micropillar arrays and adjusting the height of the microchamber, we could accurately monitor the growth kinetics of microalgae in an immobilized microdroplet and improve the transfer rate of CO2 into the microdroplet photobioreactor with an increased contact area between the microdroplet and PDMS surface. The improvement of CO2 transfer into the microdroplet was also confirmed by improved microalgal cell growth and a decrease in pH measured using colorimetric and fluorescence-based assays. The photoautotrophic growth kinetics of Chlorella vulgaris were measured under different CO2 concentrations (ambient, 1%, 2.5%, 5% and 7.5%) and light intensity (35, 55, 100, 150, and 200 μmol photons per m(2) per s) conditions, which are key factors for photoautotrophic growth. Chlorella vulgaris in a microdroplet showed better cell growth performance compared to a flask culture due to the reduced shading effects and improved mass transfer. Finally, we could evaluate the photoautotrophic growth performance of four microalgal strains (Chlorella vulgaris, Chlorella protothecoides, Chlorella sorokiniana and Neochloris oleoabundans) for 120 hours. These results demonstrate that our microdroplet system can be used as an efficient photobioreactor for the rapid evaluation of the photoautotrophic growth of microalgal strains under various conditions.

  12. Nonextensive statistical approach to non-coding human DNA

    NASA Astrophysics Data System (ADS)

    Oikonomou, Th.; Provata, A.; Tirnakli, U.

    2008-04-01

    We use q-exponential distributions, which maximize the nonextensive entropy Sq (defined as Sq≡(1-∑ipiq)/(q-1)), to study the size distributions of non-coding DNA (including introns and intergenic regions) in all human chromosomes. We show that the value of the exponent q describing the non-coding size distributions is similar for all chromosomes and varies between 2≤q≤2.3 with the exception of chromosomes X and Y.

  13. Functional roles of non-coding Y RNAs.

    PubMed

    Kowalski, Madzia P; Krude, Torsten

    2015-09-01

    Non-coding RNAs are involved in a multitude of cellular processes but the biochemical function of many small non-coding RNAs remains unclear. The family of small non-coding Y RNAs is conserved in vertebrates and related RNAs are present in some prokaryotic species. Y RNAs are also homologous to the newly identified family of non-coding stem-bulge RNAs (sbRNAs) in nematodes, for which potential physiological functions are only now emerging. Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates and, when bound to the Ro60 protein, they are involved in RNA stability and cellular responses to stress in several eukaryotic and prokaryotic species. Additionally, short fragments of Y RNAs have recently been identified as abundant components in the blood and tissues of humans and other mammals, with potential diagnostic value. While the number of functional roles of Y RNAs is growing, it is becoming increasingly clear that the conserved structural domains of Y RNAs are essential for distinct cellular functions. Here, we review the biochemical functions associated with these structural RNA domains, as well as the functional conservation of Y RNAs in different species. The existing biochemical and structural evidence supports a domain model for these small non-coding RNAs that has direct implications for the modular evolution of functional non-coding RNAs.

  14. The development of non-coding RNA ontology

    PubMed Central

    Eilbeck, Karen; Smith, Barry; Blake, Judith A.; Dou, Dejing; Huang, Weili; Natale, Darren A.; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T.; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J.; de Silva, Nisansa; Kasukurthi, Mohan Vamsi; Jha, Vikash Kumar; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M.; Tan, Ming

    2016-01-01

    Identification of non-coding RNAs (ncRNAs) has been significantly improved over the past decade. On the other hand, semantic annotation of ncRNA data is facing critical challenges due to the lack of a comprehensive ontology to serve as common data elements and data exchange standards in the field. We developed the Non-Coding RNA Ontology (NCRO) to handle this situation. By providing a formally defined ncRNA controlled vocabulary, the NCRO aims to fill a specific and highly needed niche in semantic annotation of large amounts of ncRNA biological and clinical data. PMID:27990175

  15. Non-coding RNAs in Mammary Gland Development and Disease.

    PubMed

    Sandhu, Gurveen K; Milevskiy, Michael J G; Wilson, Wesley; Shewan, Annette M; Brown, Melissa A

    2016-01-01

    Non-coding RNAs (ncRNAs) are untranslated RNA molecules that function to regulate the expression of numerous genes and associated biochemical pathways and cellular functions. NcRNAs include small interfering RNAs (siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nucleolar RNAs (snoRNAs) and long non-coding RNAs (lncRNAs). They participate in the regulation of all developmental processes and are frequently aberrantly expressed or functionally defective in disease. This Chapter will focus on the role of ncRNAs, in particular miRNAs and lncRNAs, in mammary gland development and disease.

  16. Non-coding RNAs in cancer brain metastasis.

    PubMed

    Wu, Kerui; Sharma, Sambad; Venkat, Suresh; Liu, Keqin; Zhou, Xiaobo; Watabe, Kounosuke

    2016-01-01

    More than 90% of cancer death is attributed to metastatic disease, and the brain is one of the major metastatic sites of melanoma, colon, renal, lung and breast cancers. Despite the recent advancement of targeted therapy for cancer, the incidence of brain metastasis is increasing. One reason is that most therapeutic drugs can't penetrate blood-brain-barrier and tumor cells find the brain as sanctuary site. In this review, we describe the pathophysiology of brain metastases to introduce the latest understandings of metastatic brain malignancies. This review also particularly focuses on non-coding RNAs and their roles in cancer brain metastasis. Furthermore, we discuss the roles of the extracellular vesicles as they are known to transport information between cells to initiate cancer cell-microenvironment communication. The potential clinical translation of non-coding RNAs as a tool for diagnosis and for treatment is also discussed in this review. At the end, the computational aspects of non-coding RNA detection, the sequence and structure calculation and epigenetic regulation of non-coding RNA in brain metastasis are discussed.

  17. Detecting non-coding selective pressure in coding regions

    PubMed Central

    Chen, Hui; Blanchette, Mathieu

    2007-01-01

    Background Comparative genomics approaches, where orthologous DNA regions are compared and inter-species conserved regions are identified, have proven extremely powerful for identifying non-coding regulatory regions located in intergenic or intronic regions. However, non-coding functional elements can also be located within coding region, as is common for exonic splicing enhancers, some transcription factor binding sites, and RNA secondary structure elements affecting mRNA stability, localization, or translation. Since these functional elements are located in regions that are themselves highly conserved because they are coding for a protein, they generally escaped detection by comparative genomics approaches. Results We introduce a comparative genomics approach for detecting non-coding functional elements located within coding regions. Codon evolution is modeled as a mixture of codon substitution models, where each component of the mixture describes the evolution of codons under a specific type of coding selective pressure. We show how to compute the posterior distribution of the entropy and parsimony scores under this null model of codon evolution. The method is applied to a set of growth hormone 1 orthologous mRNA sequences and a known exonic splicing elements is detected. The analysis of a set of CORTBP2 orthologous genes reveals a region of several hundred base pairs under strong non-coding selective pressure whose function remains unknown. Conclusion Non-coding functional elements, in particular those involved in post-transcriptional regulation, are likely to be much more prevalent than is currently known. With the numerous genome sequencing projects underway, comparative genomics approaches like that proposed here are likely to become increasingly powerful at detecting such elements. PMID:17288582

  18. Prioritization of non-coding disease-causing variants and long non-coding RNAs in liver cancer

    PubMed Central

    Li, Hua; He, Zekun; Gu, Yang; Fang, Lin; Lv, Xin

    2016-01-01

    There are multiple bioinformatics tools available for the detection of coding driver mutations in cancers. However, the prioritization of pathogenic non-coding variants remains a challenging and demanding task. The present study was performed to discriminate non-coding disease-causing mutations and prioritize potential cancer-implicated long non-coding RNAs (lncRNAs) in liver cancer using a logistic regression model. A logistic regression model was constructed by combining 19,153 disease-associated ClinVar and human gene mutation database pathogenic variants as the response variable and non-coding features as the predictor variable. Genome-wide association study (GWAS) disease or trait-associated variants and recurrent somatic mutations were used to validate the model. Non-coding gene features with the highest fractions of load were characterized and potential cancer-associated lncRNA candidates were prioritized by combining the fraction of high-scoring regions and average score predicted by the logistic regression model. H3K9me3 and conserved regions were the most negatively and positively informative for the model, respectively. The area under the receiver operating characteristic curve of the model was 0.92. The average score of GWAS disease-associated variants was significantly increased compared with neutral single nucleotide polymorphisms (5.8642 vs. 5.4707; P<0.001), the average score of recurrent somatic mutations of liver cancer was significantly increased compared with non-recurrent somatic mutations (5.4101 vs. 5.2768; P=0.0125). The present study found regions in lncRNAs and introns/untranslated regions of protein coding genes where mutations are most likely to be damaging. In total, 847 lncRNAs were filtered out from the background. Characterization of this subset of lncRNAs showed that these lncRNAs are more conservative, less mutated and more highly expressed compared with other control lncRNAs. In addition, 23 of these lncRNAs were differentially

  19. Prioritization of non-coding disease-causing variants and long non-coding RNAs in liver cancer.

    PubMed

    Li, Hua; He, Zekun; Gu, Yang; Fang, Lin; Lv, Xin

    2016-11-01

    There are multiple bioinformatics tools available for the detection of coding driver mutations in cancers. However, the prioritization of pathogenic non-coding variants remains a challenging and demanding task. The present study was performed to discriminate non-coding disease-causing mutations and prioritize potential cancer-implicated long non-coding RNAs (lncRNAs) in liver cancer using a logistic regression model. A logistic regression model was constructed by combining 19,153 disease-associated ClinVar and human gene mutation database pathogenic variants as the response variable and non-coding features as the predictor variable. Genome-wide association study (GWAS) disease or trait-associated variants and recurrent somatic mutations were used to validate the model. Non-coding gene features with the highest fractions of load were characterized and potential cancer-associated lncRNA candidates were prioritized by combining the fraction of high-scoring regions and average score predicted by the logistic regression model. H3K9me3 and conserved regions were the most negatively and positively informative for the model, respectively. The area under the receiver operating characteristic curve of the model was 0.92. The average score of GWAS disease-associated variants was significantly increased compared with neutral single nucleotide polymorphisms (5.8642 vs. 5.4707; P<0.001), the average score of recurrent somatic mutations of liver cancer was significantly increased compared with non-recurrent somatic mutations (5.4101 vs. 5.2768; P=0.0125). The present study found regions in lncRNAs and introns/untranslated regions of protein coding genes where mutations are most likely to be damaging. In total, 847 lncRNAs were filtered out from the background. Characterization of this subset of lncRNAs showed that these lncRNAs are more conservative, less mutated and more highly expressed compared with other control lncRNAs. In addition, 23 of these lncRNAs were differentially

  20. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates

    PubMed Central

    Dyckmans, Jens; Schrader, Stefan

    2016-01-01

    We tested experimentally if photoautotrophic microorganisms are a carbon source for invertebrates in temperate soils. We exposed forest or arable soils to a 13CO2-enriched atmosphere and quantified 13C assimilation by three common animal groups: earthworms (Oligochaeta), springtails (Hexapoda) and slugs (Gastropoda). Endogeic earthworms (Allolobophora chlorotica) and hemiedaphic springtails (Ceratophysella denticulata) were highly 13C enriched when incubated under light, deriving up to 3.0 and 17.0%, respectively, of their body carbon from the microbial source in 7 days. Earthworms assimilated more 13C in undisturbed soil than when the microbial material was mixed into the soil, presumably reflecting selective surface grazing. By contrast, neither adult nor newly hatched terrestrial slugs (Deroceras reticulatum) grazed on algal mats. Non-photosynthetic 13CO2 fixation in the dark was negligible. We conclude from these preliminary laboratory experiments that, in addition to litter and root-derived carbon from vascular plants, photoautotrophic soil surface microorganisms (cyanobacteria, algae) may be an ecologically important carbon input route for temperate soil animals that are traditionally assigned to the decomposer channel in soil food web models and carbon cycling studies. PMID:26740559

  1. Photoautotrophic microorganisms as a carbon source for temperate soil invertebrates.

    PubMed

    Schmidt, Olaf; Dyckmans, Jens; Schrader, Stefan

    2016-01-01

    We tested experimentally if photoautotrophic microorganisms are a carbon source for invertebrates in temperate soils. We exposed forest or arable soils to a (13)CO2-enriched atmosphere and quantified (13)C assimilation by three common animal groups: earthworms (Oligochaeta), springtails (Hexapoda) and slugs (Gastropoda). Endogeic earthworms (Allolobophora chlorotica) and hemiedaphic springtails (Ceratophysella denticulata) were highly (13)C enriched when incubated under light, deriving up to 3.0 and 17.0%, respectively, of their body carbon from the microbial source in 7 days. Earthworms assimilated more (13)C in undisturbed soil than when the microbial material was mixed into the soil, presumably reflecting selective surface grazing. By contrast, neither adult nor newly hatched terrestrial slugs (Deroceras reticulatum) grazed on algal mats. Non-photosynthetic (13)CO2 fixation in the dark was negligible. We conclude from these preliminary laboratory experiments that, in addition to litter and root-derived carbon from vascular plants, photoautotrophic soil surface microorganisms (cyanobacteria, algae) may be an ecologically important carbon input route for temperate soil animals that are traditionally assigned to the decomposer channel in soil food web models and carbon cycling studies.

  2. Long non-coding RNAs in cancer metabolism.

    PubMed

    Xiao, Zhen-Dong; Zhuang, Li; Gan, Boyi

    2016-10-01

    Altered cellular metabolism is an emerging hallmark of cancer. Accumulating recent evidence links long non-coding RNAs (lncRNAs), a still poorly understood class of non-coding RNAs, to cancer metabolism. Here we review the emerging findings on the functions of lncRNAs in cancer metabolism, with particular emphasis on how lncRNAs regulate glucose and glutamine metabolism in cancer cells, discuss how lncRNAs regulate various aspects of cancer metabolism through their cross-talk with other macromolecules, explore the mechanistic conceptual framework of lncRNAs in reprogramming metabolism in cancers, and highlight the challenges in this field. A more in-depth understanding of lncRNAs in cancer metabolism may enable the development of novel and effective therapeutic strategies targeting cancer metabolism.

  3. Long non-coding RNA CASC2 in human cancer.

    PubMed

    Palmieri, Giuseppe; Paliogiannis, Panagiotis; Sini, Maria Cristina; Manca, Antonella; Palomba, Grazia; Doneddu, Valentina; Tanda, Francesco; Pascale, Maria Rosa; Cossu, Antonio

    2017-03-01

    Long non-coding RNAs cover large part of the non-coding information of the human DNA, which represents more than 90% of the whole genome. They constitute a wide and complex group of molecules with more than 200 nucleotides, which generally lack an open reading frame, and are involved in various ways in the pathophysiology of cancer. Their roles in the regulation of gene expression, imprinting, transcription, and post-translational processing have been described in several types of cancer. CASC2 was discovered in 2004 in patients with endometrial carcinoma as a potential tumor suppressor. Since then, additional studies in other types of neoplasia have been carried out, and both mechanisms and interactions of CASC2 in cancer have been better elucidated. In this review, we summarize the current knowledge on the role of CASC2 in the genesis, progression, and clinical management of human cancer.

  4. Dysregulation of non-coding RNAs in gastric cancer

    PubMed Central

    Yang, Qing; Zhang, Ren-Wen; Sui, Peng-Cheng; He, Hai-Tao; Ding, Lei

    2015-01-01

    Gastric cancer (GC) is one of the most common cancers in the world and a significant threat to the health of patients, especially those from China and Japan. The prognosis for patients with late stage GC receiving the standard of care treatment, including surgery, chemotherapy and radiotherapy, remains poor. Developing novel treatment strategies, identifying new molecules for targeted therapy, and devising screening techniques to detect this cancer in its early stages are needed for GC patients. The discovery of non-coding RNAs (ncRNAs), primarily microRNAs (miRNAs) and long non-coding RNAs (lncRNAs), helped to elucidate the mechanisms of tumorigenesis, diagnosis and treatment of GC. Recently, significant research has been conducted on non-coding RNAs and how the regulatory dysfunction of these RNAs impacts the tumorigenesis of GC. In this study, we review papers published in the last five years concerning the dysregulation of non-coding RNAs, especially miRNAs and lncRNAs, in GC. We summarize instances of aberrant expression of the ncRNAs in GC and their effect on survival-related events, including cell cycle regulation, AKT signaling, apoptosis and drug resistance. Additionally, we evaluate how ncRNA dysregulation affects the metastatic process, including the epithelial-mesenchymal transition, stem cells, transcription factor activity, and oncogene and tumor suppressor expression. Lastly, we determine how ncRNAs affect angiogenesis in the microenvironment of GC. We further discuss the use of ncRNAs as potential biomarkers for use in clinical screening, early diagnosis and prognosis of GC. At present, no ideal ncRNAs have been identified as targets for the treatment of GC. PMID:26494954

  5. The Landscape of long non-coding RNA classification

    PubMed Central

    St Laurent, Georges; Wahlestedt, Claes; Kapranov, Philipp

    2015-01-01

    Advances in the depth and quality of transcriptome sequencing have revealed many new classes of long non-coding RNAs (lncRNAs). lncRNA classification has mushroomed to accommodate these new findings, even though the real dimensions and complexity of the non-coding transcriptome remain unknown. Although evidence of functionality of specific lncRNAs continues to accumulate, conflicting, confusing, and overlapping terminology has fostered ambiguity and lack of clarity in the field in general. The lack of fundamental conceptual un-ambiguous classification framework results in a number of challenges in the annotation and interpretation of non-coding transcriptome data. It also might undermine integration of the new genomic methods and datasets in an effort to unravel function of lncRNA. Here, we review existing lncRNA classifications, nomenclature, and terminology. Then we describe the conceptual guidelines that have emerged for their classification and functional annotation based on expanding and more comprehensive use of large systems biology-based datasets. PMID:25869999

  6. Functions of plants long non-coding RNAs.

    PubMed

    Shafiq, Sarfraz; Li, Jingrui; Sun, Qianwen

    2016-01-01

    Long non-coding RNAs (lncRNAs) have been emerged as important players for various biological pathways, including dosage compensation, genomic imprinting, chromatin regulation, alternative splicing and nuclear organization. A large number of lncRNAs had already been identified by different approaches in plants, while the functions of only a few of them have been investigated. This review will summarize our current understanding of a wide range of plant lncRNAs functions, and highlight their roles in the regulation of diverse pathways in plants. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.

  7. UpSETing chromatin during non-coding RNA production

    PubMed Central

    2013-01-01

    The packaging of eukaryotic DNA into nucleosomal arrays permits cells to tightly regulate and fine-tune gene expression. The ordered disassembly and reassembly of these nucleosomes allows RNA polymerase II (RNAPII) conditional access to the underlying DNA sequences. Disruption of nucleosome reassembly following RNAPII passage results in spurious transcription initiation events, leading to the production of non-coding RNA (ncRNA). We review the molecular mechanisms involved in the suppression of these cryptic initiation events and discuss the role played by ncRNAs in regulating gene expression. PMID:23738864

  8. IRNdb: the database of immunologically relevant non-coding RNAs

    PubMed Central

    Denisenko, Elena; Ho, Daniel; Tamgue, Ousman; Ozturk, Mumin; Suzuki, Harukazu; Brombacher, Frank; Guler, Reto; Schmeier, Sebastian

    2016-01-01

    MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs) and other functional non-coding RNAs (ncRNAs) have emerged as pivotal regulators involved in multiple biological processes. Recently, ncRNA control of gene expression has been identified as a critical regulatory mechanism in the immune system. Despite the great efforts made to discover and characterize ncRNAs, the functional role for most remains unknown. To facilitate discoveries in ncRNA regulation of immune system-related processes, we developed the database of immunologically relevant ncRNAs and target genes (IRNdb). We integrated mouse data on predicted and experimentally supported ncRNA-target interactions, ncRNA and gene annotations, biological pathways and processes and experimental data in a uniform format with a user-friendly web interface. The current version of IRNdb documents 12 930 experimentally supported miRNA-target interactions between 724 miRNAs and 2427 immune-related mouse targets. In addition, we recorded 22 453 lncRNA-immune target and 377 PIWI-interacting RNA-immune target interactions. IRNdb is a comprehensive searchable data repository which will be of help in studying the role of ncRNAs in the immune system. Database URL: http://irndb.org

  9. Non-coding RNAs: the architects of eukaryotic complexity.

    PubMed

    Mattick, J S

    2001-11-01

    Around 98% of all transcriptional output in humans is non-coding RNA. RNA-mediated gene regulation is widespread in higher eukaryotes and complex genetic phenomena like RNA interference, co-suppression, transgene silencing, imprinting, methylation, and possibly position-effect variegation and transvection, all involve intersecting pathways based on or connected to RNA signaling. I suggest that the central dogma is incomplete, and that intronic and other non-coding RNAs have evolved to comprise a second tier of gene expression in eukaryotes, which enables the integration and networking of complex suites of gene activity. Although proteins are the fundamental effectors of cellular function, the basis of eukaryotic complexity and phenotypic variation may lie primarily in a control architecture composed of a highly parallel system of trans-acting RNAs that relay state information required for the coordination and modulation of gene expression, via chromatin remodeling, RNA-DNA, RNA-RNA and RNA-protein interactions. This system has interesting and perhaps informative analogies with small world networks and dataflow computing.

  10. A role for non-coding variation in schizophrenia

    PubMed Central

    Roussos, Panos; Mitchell, Amanda C.; Voloudakis, Georgios; Fullard, John F.; Pothula, Venu M.; Tsang, Jonathan; Stahl, Eli A.; Georgakopoulos, Anastasios; Ruderfer, Douglas M.; Charney, Alexander; Okada, Yukinori; Siminovitch, Katherine A.; Worthington, Jane; Padyukov, Leonid; Klareskog, Lars; Gregersen, Peter K.; Plenge, Robert M.; Raychaudhuri, Soumya; Fromer, Menachem; Purcell, Shaun M.; Brennand, Kristen J.; Robakis, Nikolaos K.; Schadt, Eric E.; Akbarian, Schahram; Sklar, Pamela

    2014-01-01

    SUMMARY A large portion of common variant loci associated with genetic risk for schizophrenia reside within non-coding sequence of unknown function. Here, we demonstrate promoter and enhancer enrichment in schizophrenia variants associated with expression quantitative trait loci (eQTL). The enrichment is greater when functional annotations derived from human brain are used relative to peripheral tissues. Regulatory trait concordance analysis ranked genes within schizophrenia genome-wide significant loci for a potential functional role, based on co-localization of a risk SNP, eQTL and regulatory element sequence. We identified potential physical interactions of non-contiguous proximal and distal regulatory elements. This was verified in prefrontal cortex and induced pluripotent stem cell-derived neurons for the L-type calcium channel (CACNA1C) risk locus. Our findings point to a functional link between schizophrenia-associated non-coding SNPs and 3-dimensional genome architecture associated with chromosomal loopings and transcriptional regulation in the brain. PMID:25453756

  11. RNAcentral: A comprehensive database of non-coding RNA sequences

    DOE PAGES

    Williams, Kelly Porter; Lau, Britney Yan

    2016-10-28

    RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. Furthermore, the website has been subject to continuous improvements focusing on text and sequence similaritymore » searches as well as genome browsing functionality.« less

  12. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs)

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.

  13. [Epigenetics of plant vernalization regulated by non-coding RNAs].

    PubMed

    Zhang, Shao-Feng; Li, Xiao-Rong; Sun, Chuan-Bao; He, Yu-Ke

    2012-07-01

    Many higher plants must experience a period of winter cold to accomplish the transition from vegetative to reproductive growth. This biological process is called vernalization. Some crops such as wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) produce seeds as edible organs, and therefore special measures of rotation and cultivation are necessary for plants to go through an early vernalization for flower differentiation and development, whereas the other crops such as Chinese cabbage (B rapa ssp. pekinenesis) and cabbage (Brassica napus L.) produce leafy heads as edible organs, and additional practice should be taken to avoid vernalization for a prolonged and fully vegetative growth. Before vernalization, flowering is repressed by the action of a gene called Flowering Locus C (FLC). This paper reviewed the function of non-coding RNAs and some proteins including VRN1, VRN2, and VIN3 in epigenetic regulation of FLC during vernalization.

  14. Long non-coding RNAs in normal and malignant hematopoiesis

    PubMed Central

    Nobili, Lucia; Lionetti, Marta; Neri, Antonino

    2016-01-01

    Long non-coding RNAs (lncRNAs) are defined as ncRNAs of more than 200 nt in length. They are involved in a large spectrum of biological processes, such as maintenance of genome integrity, genomic imprinting, cell differentiation, and development by means of mechanisms that remain to be fully elucidated. Besides their role in normal cellular physiology, accumulating evidence has linked lncRNA expression and functions to cancer development and progression. In this review, we summarize and discuss what is known about their expression and roles in hematopoiesis with a particular focus on their cell-type specificity, functional interactions, and involvement in the pathobiology of hematological malignancies. PMID:27177333

  15. RNAcentral: a comprehensive database of non-coding RNA sequences

    PubMed Central

    2017-01-01

    RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. The website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality. All RNAcentral data is provided for free and is available for browsing, bulk downloads, and programmatic access at http://rnacentral.org/. PMID:27794554

  16. RNAcentral: A comprehensive database of non-coding RNA sequences

    SciTech Connect

    Williams, Kelly Porter; Lau, Britney Yan

    2016-10-28

    RNAcentral is a database of non-coding RNA (ncRNA) sequences that aggregates data from specialised ncRNA resources and provides a single entry point for accessing ncRNA sequences of all ncRNA types from all organisms. Since its launch in 2014, RNAcentral has integrated twelve new resources, taking the total number of collaborating database to 22, and began importing new types of data, such as modified nucleotides from MODOMICS and PDB. We created new species-specific identifiers that refer to unique RNA sequences within a context of single species. Furthermore, the website has been subject to continuous improvements focusing on text and sequence similarity searches as well as genome browsing functionality.

  17. Biotransformations of monoterpenes by photoautotrophic micro-organisms.

    PubMed

    Balcerzak, L; Lipok, J; Strub, D; Lochyński, S

    2014-12-01

    Monoterpenes are widely used in food technology, cosmetic and pharmaceutical industries and as compounds of agricultural importance. It is known that compounds comprising this class can be transformed by a variety of organisms, namely by: bacteria, fungi, yeasts, plants or isolated enzymes. Biotransformations, as one of the most important tools of green chemistry, allow obtaining new products using whole cells of micro-organisms or isolated enzymes in mild reaction conditions. Therefore, biotransformations of monoterpenes, by different type of reaction such as: epoxidation, oxidation and stereoselective hydroxylation, resulted in the production of so desired, enantiomerically defined compounds that can be advised as natural seem to be interesting. Bearing in mind that such processes are carried out also by easy to maintain, photoautotrophic micro-organisms cultivated at large scale, this paper is focused on biotransformations of acyclic, monocyclic and bicyclic monoterpenes by freshwater or haliphylic cyanobacteria and microalgae on the way of mainly stereoselective hydroxylation. Moreover, aspects of potential industrial application of obtained products in medicine, perfume, cosmetics and food industry are discussed.

  18. A photoautotrophic source for lycopane in marine water columns

    NASA Technical Reports Server (NTRS)

    Wakeham, Stuart G.; Freeman, Katherine H.; Pease, Tamara K.; Hayes, J. M.

    1993-01-01

    Suspended particulate matter and recent sediments from diverse oceanic sites have been investigated for their contents of lycopane. Lycopane was present in all samples, including both oxic and anoxic water column and sediments. The highest concentrations in the water column were found in surface waters of the central Pacific gyre (1.5 ng/L) and in the anoxic waters of the Cariaco Trench (1.1 ng/L) and the Black Sea (0.3 ng/L). Vertical concentration profiles suggest that lycopane is probably algal in origin. Moreover, biogeochemical conditions in anoxic zones apparently result in a secondary production of lycopane from an as yet unidentified precursor. Compound-specific carbon isotopic analyses have been carried out on lycopane from water column and sediment samples. Isotopic compositions of lycopane range between -23.6 and -32.9 percent and are consistent with a photoautotrophic origin. We postulate that some lycopane is produced in surface waters of the ocean, while additional lycopane is produced in anoxic zones by anaerobic microbial action on an algal precursor.

  19. The Non-Coding RNA Ontology (NCRO): a comprehensive resource for the unification of non-coding RNA biology.

    PubMed

    Huang, Jingshan; Eilbeck, Karen; Smith, Barry; Blake, Judith A; Dou, Dejing; Huang, Weili; Natale, Darren A; Ruttenberg, Alan; Huan, Jun; Zimmermann, Michael T; Jiang, Guoqian; Lin, Yu; Wu, Bin; Strachan, Harrison J; He, Yongqun; Zhang, Shaojie; Wang, Xiaowei; Liu, Zixing; Borchert, Glen M; Tan, Ming

    2016-01-01

    In recent years, sequencing technologies have enabled the identification of a wide range of non-coding RNAs (ncRNAs). Unfortunately, annotation and integration of ncRNA data has lagged behind their identification. Given the large quantity of information being obtained in this area, there emerges an urgent need to integrate what is being discovered by a broad range of relevant communities. To this end, the Non-Coding RNA Ontology (NCRO) is being developed to provide a systematically structured and precisely defined controlled vocabulary for the domain of ncRNAs, thereby facilitating the discovery, curation, analysis, exchange, and reasoning of data about structures of ncRNAs, their molecular and cellular functions, and their impacts upon phenotypes. The goal of NCRO is to serve as a common resource for annotations of diverse research in a way that will significantly enhance integrative and comparative analysis of the myriad resources currently housed in disparate sources. It is our belief that the NCRO ontology can perform an important role in the comprehensive unification of ncRNA biology and, indeed, fill a critical gap in both the Open Biological and Biomedical Ontologies (OBO) Library and the National Center for Biomedical Ontology (NCBO) BioPortal. Our initial focus is on the ontological representation of small regulatory ncRNAs, which we see as the first step in providing a resource for the annotation of data about all forms of ncRNAs. The NCRO ontology is free and open to all users, accessible at: http://purl.obolibrary.org/obo/ncro.owl.

  20. Atrazine tolerance mechanism(s) in photoautotrophic potato cells

    SciTech Connect

    Smeda, R.J.; Hasegawa, P.M.; Weller, S.C. )

    1989-04-01

    A photoautotrophic potato cell line (variant) was isolated and is capable of sustained growth in media containing in the herbicide atrazine at concentration up to 100 x greater than the lethal concentration for the unselected (wild type) cell line (1.0 {mu}M). Fresh weight doubling times of variant cells in the presence or absence of 1.0 {mu}M atrazine were identical to wild type cells grown in the absence of atrazine. Maintenance of variant cells up to 10 passages in the absence of atrazine resulted in a reduction in the concentration of atrazine necessary to inhibit fresh weight gain by 99% (ID{sub 99}) from 100 to 80 {mu}M. Comparison of {sup 14}C-atrazine uptake indicated wild type cells accumulated up to 2.5-fold more atrazine than varient cells within 72h of exposure but no differences were detected thereafter. Electron transport of both isolated chloroplasts and intact cells were significantly inhibited in the wild type cell line by 1.0 {mu}M atrazine but unaffected in the variant cell line by atrazine concentrations up to 10 {mu}M. After 30 days in the presence of 1.0 {mu}M atrazine, wild type cells did not significantly metabolize atrazine, however, variant cells reduced atrazine concentrations to <0.05 {mu}M regardless if the initial atrazine concentration was 1.0 or 10.0 {mu}M. Both metabolism of atrazine and alterations within the chloroplast (potentially a reduction in atrazine binding affinity) appear to be important components of tolerance within variant cells.

  1. Ageing and the Small, Non-Coding RNA World

    PubMed Central

    Kato, Masaomi; Slack, Frank J.

    2012-01-01

    MicroRNAs, a class of small, non-coding RNAs, are now widely known for their importance in many aspects of biology. These small regulatory RNAs have critical functions in diverse biological events, including development and disease. Recent findings show that microRNAs are essential for lifespan determination in the model organisms, C. elegans and Drosophila, suggesting that microRNAs are also involved in the complex process of ageing. Further, short RNA fragments derived from longer parental RNAs, such as transfer RNA cleavage fragments, have now emerged as a novel class of regulatory RNAs that inhibit translation in response to stress. In addition, the RNA editing pathway is likely to act in the double-stranded RNA-mediated silencing machinery to suppress unfavorable RNA interference activity in the ageing process. These multiple, redundant layers in gene regulatory networks may make it possible to both stably and flexibly regulate genetic pathways in ensuring robustness of developmental and ageing processes. PMID:22504407

  2. CANTATAdb: A Collection of Plant Long Non-Coding RNAs

    PubMed Central

    Szcześniak, Michał W.; Rosikiewicz, Wojciech; Makałowska, Izabela

    2016-01-01

    Long non-coding RNAs (lncRNAs) represent a class of potent regulators of gene expression that are found in a wide array of eukaryotes; however, our knowledge about these molecules in plants is still very limited. In particular, a number of model plant species still lack comprehensive data sets of lncRNAs and their annotations, and very little is known about their biological roles. To meet these shortcomings, we created an online database of lncRNAs in 10 model plant species. The lncRNAs were identified computationally using dozens of publicly available RNA sequencing (RNA-Seq) libraries. Expression values, coding potential, sequence alignments as well as other types of data provide annotation for the identified lncRNAs. In order to better characterize them, we investigated their potential roles in splicing modulation and deregulation of microRNA functions. The data are freely available for searching, browsing and downloading from an online database called CANTATAdb (http://cantata.amu.edu.pl, http://yeti.amu.edu.pl/CANTATA/). PMID:26657895

  3. Community structure of non-coding RNA interaction network.

    PubMed

    Nacher, Jose C

    2013-04-02

    Rapid technological advances have shown that the ratio of non-protein coding genes rises to 98.5% in humans, suggesting that current knowledge on genetic information processing might be largely incomplete. It implies that protein-coding sequences only represent a small fraction of cellular transcriptional information. Here, we examine the community structure of the network defined by functional interactions between non-coding RNAs (ncRNAs) and proteins related bio-macromolecules (PRMs) using a two-fold approach: modularity in bipartite network and k-clique community detection. First, the high modularity scores as well as the distribution of community sizes showing a scaling-law revealed manifestly non-random features. Second, the k-clique sub-graphs and overlaps show that the identified communities of the ncRNA molecules of H. sapiens can potentially be associated with certain functions. These findings highlight the complex modular structure of ncRNA interactions and its possible regulatory roles in the cell.

  4. Small non-coding RNA deregulation in endometrial carcinogenesis

    PubMed Central

    Ravo, Maria; Cordella, Angela; Rinaldi, Antonio; Bruno, Giuseppina; Alexandrova, Elena; Saggese, Pasquale; Nassa, Giovanni; Giurato, Giorgio; Tarallo, Roberta; Marchese, Giovanna; Rizzo, Francesca; Stellato, Claudia; Biancardi, Rossella; Troisi, Jacopo; Di Spiezio Sardo, Attilio; Zullo, Fulvio; Weisz, Alessandro; Guida, Maurizio

    2015-01-01

    Small non-coding RNAs (sncRNAs) represent a heterogeneous group of <200nt-long transcripts comprising microRNAs, PIWI-interacting RNAs (piRNAs) and small-nucleolar-RNAs (snoRNAs) involved in physiological and pathological processes such as carcinogenesis and tumor progression. Aberrant sncRNA expression in cancer has been associated with specific clinical phenotypes, grading, staging, metastases development and resistance to therapy. Aim of the present work is to study the role of sncRNAs in endometrial carcinogenesis. Changes in sncRNA expression were identified by high-throughput genomic analysis of paired normal, hyperplastic and cancerous endometrial tissues obtained by endometrial biopsies (n = 10). Using smallRNA sequencing and microarrays we identified significant differences in sncRNA expression pattern between normal, hyperplastic and neoplastic endometrium. This led to the definition of a sncRNA signature (129 microRNAs, 2 of which not previously described, 10 piRNAs and 3 snoRNAs) of neoplastic transformation. Functional bioinformatics analysis identified as downstream targets multiple signaling pathways potentially involved in the hyperplastic and neoplastic tissue responses, including Wnt/β-catenin, and ERK/MAPK and TGF-β-Signaling. Considering the regulatory role of sncRNAs, this newly identified sncRNA signature is likely to reflect the events leading to endometrial cancer, which can be exploited to dissect the carcinogenic process including novel biomarkers for early and non-invasive diagnosis of these tumors. PMID:25686835

  5. Biocomputational prediction of small non-coding RNAs in Streptomyces

    PubMed Central

    Pánek, Josef; Bobek, Jan; Mikulík, Karel; Basler, Marek; Vohradský, Jiří

    2008-01-01

    Background The first systematic study of small non-coding RNAs (sRNA, ncRNA) in Streptomyces is presented. Except for a few exceptions, the Streptomyces sRNAs, as well as the sRNAs in other genera of the Actinomyces group, have remained unstudied. This study was based on sequence conservation in intergenic regions of Streptomyces, localization of transcription termination factors, and genomic arrangement of genes flanking the predicted sRNAs. Results Thirty-two potential sRNAs in Streptomyces were predicted. Of these, expression of 20 was detected by microarrays and RT-PCR. The prediction was validated by a structure based computational approach. Two predicted sRNAs were found to be terminated by transcription termination factors different from the Rho-independent terminators. One predicted sRNA was identified computationally with high probability as a Streptomyces 6S RNA. Out of the 32 predicted sRNAs, 24 were found to be structurally dissimilar from known sRNAs. Conclusion Streptomyces is the largest genus of Actinomyces, whose sRNAs have not been studied. The Actinomyces is a group of bacterial species with unique genomes and phenotypes. Therefore, in Actinomyces, new unique bacterial sRNAs may be identified. The sequence and structural dissimilarity of the predicted Streptomyces sRNAs demonstrated by this study serve as the first evidence of the uniqueness of Actinomyces sRNAs. PMID:18477385

  6. Neighboring gene regulation by antisense long non-coding RNAs.

    PubMed

    Villegas, Victoria E; Zaphiropoulos, Peter G

    2015-02-03

    Antisense transcription, considered until recently as transcriptional noise, is a very common phenomenon in human and eukaryotic transcriptomes, operating in two ways based on whether the antisense RNA acts in cis or in trans. This process can generate long non-coding RNAs (lncRNAs), one of the most diverse classes of cellular transcripts, which have demonstrated multifunctional roles in fundamental biological processes, including embryonic pluripotency, differentiation and development. Antisense lncRNAs have been shown to control nearly every level of gene regulation--pretranscriptional, transcriptional and posttranscriptional--through DNA-RNA, RNA-RNA or protein-RNA interactions. This review is centered on functional studies of antisense lncRNA-mediated regulation of neighboring gene expression. Specifically, it addresses how these transcripts interact with other biological molecules, nucleic acids and proteins, to regulate gene expression through chromatin remodeling at the pretranscriptional level and modulation of transcriptional and post-transcriptional processes by altering the sense mRNA structure or the cellular compartmental distribution, either in the nucleus or the cytoplasm.

  7. Non-coding recurrent mutations in chronic lymphocytic leukaemia.

    PubMed

    Puente, Xose S; Beà, Silvia; Valdés-Mas, Rafael; Villamor, Neus; Gutiérrez-Abril, Jesús; Martín-Subero, José I; Munar, Marta; Rubio-Pérez, Carlota; Jares, Pedro; Aymerich, Marta; Baumann, Tycho; Beekman, Renée; Belver, Laura; Carrio, Anna; Castellano, Giancarlo; Clot, Guillem; Colado, Enrique; Colomer, Dolors; Costa, Dolors; Delgado, Julio; Enjuanes, Anna; Estivill, Xavier; Ferrando, Adolfo A; Gelpí, Josep L; González, Blanca; González, Santiago; González, Marcos; Gut, Marta; Hernández-Rivas, Jesús M; López-Guerra, Mónica; Martín-García, David; Navarro, Alba; Nicolás, Pilar; Orozco, Modesto; Payer, Ángel R; Pinyol, Magda; Pisano, David G; Puente, Diana A; Queirós, Ana C; Quesada, Víctor; Romeo-Casabona, Carlos M; Royo, Cristina; Royo, Romina; Rozman, María; Russiñol, Nuria; Salaverría, Itziar; Stamatopoulos, Kostas; Stunnenberg, Hendrik G; Tamborero, David; Terol, María J; Valencia, Alfonso; López-Bigas, Nuria; Torrents, David; Gut, Ivo; López-Guillermo, Armando; López-Otín, Carlos; Campo, Elías

    2015-10-22

    Chronic lymphocytic leukaemia (CLL) is a frequent disease in which the genetic alterations determining the clinicobiological behaviour are not fully understood. Here we describe a comprehensive evaluation of the genomic landscape of 452 CLL cases and 54 patients with monoclonal B-lymphocytosis, a precursor disorder. We extend the number of CLL driver alterations, including changes in ZNF292, ZMYM3, ARID1A and PTPN11. We also identify novel recurrent mutations in non-coding regions, including the 3' region of NOTCH1, which cause aberrant splicing events, increase NOTCH1 activity and result in a more aggressive disease. In addition, mutations in an enhancer located on chromosome 9p13 result in reduced expression of the B-cell-specific transcription factor PAX5. The accumulative number of driver alterations (0 to ≥4) discriminated between patients with differences in clinical behaviour. This study provides an integrated portrait of the CLL genomic landscape, identifies new recurrent driver mutations of the disease, and suggests clinical interventions that may improve the management of this neoplasia.

  8. Non-coding Y RNAs as tethers and gates

    PubMed Central

    Wolin, Sandra L; Belair, Cedric; Boccitto, Marco; Chen, Xinguo; Sim, Soyeong; Taylor, David W; Wang, Hong-Wei

    2013-01-01

    Non-coding RNAs (ncRNAs) called Y RNAs are abundant components of both animal cells and a variety of bacteria. In all species examined, these ~100 nt RNAs are bound to the Ro 60 kDa (Ro60) autoantigen, a ring-shaped protein that also binds misfolded ncRNAs in some vertebrate nuclei. Although the function of Ro60 RNPs has been mysterious, we recently reported that a bacterial Y RNA tethers Ro60 to the 3′ to 5′ exoribonuclease polynucleotide phosphorylase (PNPase) to form RYPER (Ro60/Y RNA/PNPase Exoribonuclease RNP), a new RNA degradation machine. PNPase is a homotrimeric ring that degrades single-stranded RNA, and Y RNA-mediated tethering of Ro60 increases the effectiveness of PNPase in degrading structured RNAs. Single particle electron microscopy of RYPER suggests that RNA threads through the Ro60 ring into the PNPase cavity. Further studies indicate that Y RNAs may also act as gates to regulate entry of RNA substrates into the Ro60 channel. These findings reveal novel functions for Y RNAs and raise questions about how the bacterial findings relate to the roles of these ncRNAs in animal cells. Here we review the literature on Y RNAs, highlighting their close relationship with Ro60 proteins and the hypothesis that these ncRNAs function generally to tether Ro60 rings to diverse RNA-binding proteins. PMID:24036917

  9. Sequence and Structural Analyses for Functional Non-coding RNAs

    NASA Astrophysics Data System (ADS)

    Sakakibara, Yasubumi; Sato, Kengo

    Analysis and detection of functional RNAs are currently important topics in both molecular biology and bioinformatics research. Several computational methods based on stochastic context-free grammars (SCFGs) have been developed for modeling and analysing functional RNA sequences. These grammatical methods have succeeded in modeling typical secondary structures of RNAs and are used for structural alignments of RNA sequences. Such stochastic models, however, are not sufficient to discriminate member sequences of an RNA family from non-members, and hence to detect non-coding RNA regions from genome sequences. Recently, the support vector machine (SVM) and kernel function techniques have been actively studied and proposed as a solution to various problems in bioinformatics. SVMs are trained from positive and negative samples and have strong, accurate discrimination abilities, and hence are more appropriate for the discrimination tasks. A few kernel functions that extend the string kernel to measure the similarity of two RNA sequences from the viewpoint of secondary structures have been proposed. In this article, we give an overview of recent progress in SCFG-based methods for RNA sequence analysis and novel kernel functions tailored to measure the similarity of two RNA sequences and developed for use with support vector machines (SVM) in discriminating members of an RNA family from non-members.

  10. Non-Coding RNAs in Stroke and Neuroprotection

    PubMed Central

    Saugstad, Julie A.

    2015-01-01

    This review will focus on the current state of knowledge regarding non-coding RNAs (ncRNA) in stroke and neuroprotection. There will be a brief introduction to microRNAs (miRNA), long ncRNAs (lncRNA), and piwi-interacting RNAs (piRNA), followed by evidence for the regulation of ncRNAs in ischemia. This review will also discuss the effect of neuroprotection induced by a sublethal duration of ischemia or other stimuli given before a stroke (preconditioning) on miRNA expression and the role of miRNAs in preconditioning-induced neuroprotection. Experimental manipulation of miRNAs and/or their targets to induce pre- or post-stroke protection will also be presented, as well as discussion on miRNA responses to current post-stroke therapies. This review will conclude with a brief discussion of future directions for ncRNAs studies in stroke, such as new approaches to model complex ncRNA datasets, challenges in ncRNA studies, and the impact of extracellular RNAs on human diseases such as stroke. PMID:25821444

  11. Long non-coding RNAs in colorectal cancer.

    PubMed

    Xie, Xia; Tang, Bo; Xiao, Yu-Feng; Xie, Rui; Li, Bo-Sheng; Dong, Hui; Zhou, Jian-Yun; Yang, Shi-Ming

    2016-02-02

    Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Despite substantial progress in understanding the molecular mechanisms and treatment of CRC in recent years, the overall survival rate of CRC patients has not improved dramatically. The development of CRC is multifactor and multistep processes, in which abnormal gene expression may play an important role. With the advance of human tumor molecular biology, a series of studies have highlighted the role of long non-coding RNAs (lncRNAs) in the development of CRC. CRC-related lncRNAs have been demonstrated to regulate the genes by various mechanisms, including epigenetic modifications, lncRNA-miRNA and lncRNA-protein interactions, and by their actions as miRNA precursors or pseudogenes. Since some lncRNAs can be detected in human body fluid and have good specificity and accessibility, they have been suggested to be used as novel potential biomarkers for CRC diagnosis and prognosis as well as in the prediction of the response to therapy. Therefore, in this review, we will focus on lncRNAs in CRC development, the mechanisms and biomarkers of lncRNAs in CRC.

  12. Non-Coding RNAs in Neural Networks, REST-Assured

    PubMed Central

    Rossbach, Michael

    2011-01-01

    In the nervous system, several key steps in cellular complexity and development are regulated by non-coding RNAs (ncRNAs) and the repressor element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF). REST recruits gene regulatory complexes to regulatory sequences, among them the repressor element-1/neuron-restrictive silencer element, and mediates developmental stage-specific gene expression or repression, chromatin (re-)organization or silencing for protein-coding genes as well as for several ncRNAs like microRNAs, short interfering RNAs or long ncRNAs. NcRNAs are far from being just transcriptional noise and are involved in chromatin accessibility, transcription and post-transcriptional processing, trafficking, or RNA editing. REST and its cofactor CoREST are both highly regulated through various ncRNAs. The importance of the correct regulation within the ncRNA network, the ncRNAome, is demonstrated when it comes to a deregulation of REST and/or ncRNAs associated with molecular pathophysiology underlying diverse disorders including neurodegenerative diseases or brain tumors. PMID:22303307

  13. Regulation of mammalian cell differentiation by long non-coding RNAs.

    PubMed

    Hu, Wenqian; Alvarez-Dominguez, Juan R; Lodish, Harvey F

    2012-11-06

    Differentiation of specialized cell types from stem and progenitor cells is tightly regulated at several levels, both during development and during somatic tissue homeostasis. Many long non-coding RNAs have been recognized as an additional layer of regulation in the specification of cellular identities; these non-coding species can modulate gene-expression programmes in various biological contexts through diverse mechanisms at the transcriptional, translational or messenger RNA stability levels. Here, we summarize findings that implicate long non-coding RNAs in the control of mammalian cell differentiation. We focus on several representative differentiation systems and discuss how specific long non-coding RNAs contribute to the regulation of mammalian development.

  14. Non-Coding RNAs: New Players in Skin Wound Healing

    PubMed Central

    Herter, Eva K.; Xu Landén, Ning

    2017-01-01

    Significance: Wound healing is a basic physiological process that is utilized to keep the integrity of the skin. Impaired wound repair, such as chronic wounds and pathological scars, presents a major health and economic burden worldwide. To date, efficient targeted treatment for these wound disorders is still lacking, which is largely due to our limited understanding of the biological mechanisms underlying these diseases. Research driven around discovering new therapies for these complications is, therefore, an urgent need. Recent Advances: The vast majority of the human genome is transcribed to RNAs that lack protein-coding capacity. Intensive research in the recent decade has revealed that these non-coding RNAs (ncRNAs) function as important regulators of cellular physiology and pathology, which makes them promising therapeutic and diagnostic entities. Critical Issues: A class of short ncRNAs, microRNAs, has been found to be indispensable for all the phases of skin wound healing and plays important roles in the pathogenesis of wound complications. The role of long ncRNAs (lncRNA) in skin wound healing remains largely unexplored. Recent studies revealed the essential role of lncRNAs in epidermal differentiation and stress response, indicating their potential importance for skin wound healing, which warrants future research. Future Directions: An investigation of ncRNAs will add new layers of complexity to our understanding of normal skin wound healing as well as to the pathogenesis of wound disorders. Development of ncRNA-based biomarkers and treatments is an interesting and important avenue for future research on wound healing. PMID:28289554

  15. Non-Coding RNAs: New Players in Skin Wound Healing.

    PubMed

    Herter, Eva K; Xu Landén, Ning

    2017-03-01

    Significance: Wound healing is a basic physiological process that is utilized to keep the integrity of the skin. Impaired wound repair, such as chronic wounds and pathological scars, presents a major health and economic burden worldwide. To date, efficient targeted treatment for these wound disorders is still lacking, which is largely due to our limited understanding of the biological mechanisms underlying these diseases. Research driven around discovering new therapies for these complications is, therefore, an urgent need. Recent Advances: The vast majority of the human genome is transcribed to RNAs that lack protein-coding capacity. Intensive research in the recent decade has revealed that these non-coding RNAs (ncRNAs) function as important regulators of cellular physiology and pathology, which makes them promising therapeutic and diagnostic entities. Critical Issues: A class of short ncRNAs, microRNAs, has been found to be indispensable for all the phases of skin wound healing and plays important roles in the pathogenesis of wound complications. The role of long ncRNAs (lncRNA) in skin wound healing remains largely unexplored. Recent studies revealed the essential role of lncRNAs in epidermal differentiation and stress response, indicating their potential importance for skin wound healing, which warrants future research. Future Directions: An investigation of ncRNAs will add new layers of complexity to our understanding of normal skin wound healing as well as to the pathogenesis of wound disorders. Development of ncRNA-based biomarkers and treatments is an interesting and important avenue for future research on wound healing.

  16. Novel classes of non-coding RNAs and cancer

    PubMed Central

    2012-01-01

    For the many years, the central dogma of molecular biology has been that RNA functions mainly as an informational intermediate between a DNA sequence and its encoded protein. But one of the great surprises of modern biology was the discovery that protein-coding genes represent less than 2% of the total genome sequence, and subsequently the fact that at least 90% of the human genome is actively transcribed. Thus, the human transcriptome was found to be more complex than a collection of protein-coding genes and their splice variants. Although initially argued to be spurious transcriptional noise or accumulated evolutionary debris arising from the early assembly of genes and/or the insertion of mobile genetic elements, recent evidence suggests that the non-coding RNAs (ncRNAs) may play major biological roles in cellular development, physiology and pathologies. NcRNAs could be grouped into two major classes based on the transcript size; small ncRNAs and long ncRNAs. Each of these classes can be further divided, whereas novel subclasses are still being discovered and characterized. Although, in the last years, small ncRNAs called microRNAs were studied most frequently with more than ten thousand hits at PubMed database, recently, evidence has begun to accumulate describing the molecular mechanisms by which a wide range of novel RNA species function, providing insight into their functional roles in cellular biology and in human disease. In this review, we summarize newly discovered classes of ncRNAs, and highlight their functioning in cancer biology and potential usage as biomarkers or therapeutic targets. PMID:22613733

  17. Definition and annotation of (myco)bacterial non-coding RNA.

    PubMed

    Lamichhane, Gyanu; Arnvig, Kristine B; McDonough, Kathleen A

    2013-01-01

    RNA in bacteria may be broadly classified into coding and non-coding types. The prior, also known as messenger RNA, encode proteins as their final product. The non-coding RNA include all RNAs that are not translated into a protein. Examples of extensively studied and therefore prominent non-coding RNAs include rRNA, tRNA, tmRNA, whose designations reflect the functions performed by these RNAs. Discoveries of non-coding RNAs in mycobacteria have been reported in the recent years. At this early stage of this discipline of mycobacterial research, there is an opportunity for the scientific community to establish a consistent, systematic and objective approach to annotation of these RNAs. We are providing recommendations for this systematic annotation that we hope will be adopted by the mycobacterial research community. These may also serve as templates for annotation of non-coding RNAs in other bacteria.

  18. The long non-coding RNA Morrbid regulates Bim and short-lived myeloid cell lifespan

    PubMed Central

    McCright, Sam J.; Kumar, Dinesh B. Uthaya; Collet, Magalie A.; Mowel, Walter K.; Elliott, Ellen N.; Uyar, Asli; Makiya, Michelle A.; Dunagin, Margaret C.; Harman, Christian C.D.; Virtue, Anthony T.; Zhu, Stella; Bailis, Will; Stein, Judith; Hughes, Cynthia; Raj, Arjun; Wherry, E. John; Goff, Loyal A.; Klion, Amy D.; Rinn, John L.; Williams, Adam; Flavell, Richard A.; Henao-Mejia, Jorge

    2016-01-01

    Summary Neutrophils, eosinophils and “classical” monocytes collectively account for ~70% of human blood leukocytes and are among the shortest-lived cells in the body1,2. Precise regulation of the lifespan of these myeloid cells is critical to maintain protective immune responses while minimizing the deleterious consequences of prolonged inflammation1,2. However, how the lifespan of these cells is strictly controlled remains largely unknown. Here, we identify a novel long non-coding RNA (lncRNA) that we termed Morrbid, which tightly controls the survival of neutrophils, eosinophils and “classical” monocytes in response to pro-survival cytokines. To control the lifespan of these cells, Morrbid regulates the transcription of its neighboring pro-apoptotic gene, Bcl2l11 (Bim), by promoting the enrichment of the PRC2 complex at the Bcl2l11 promoter to maintain this gene in a poised state. Notably, Morrbid regulates this process in cis, enabling allele-specific control of Bcl2l11 transcription. Thus, in these highly inflammatory cells, changes in Morrbid levels provide a locus-specific regulatory mechanism that allows for rapid control of apoptosis in response to extracellular pro-survival signals. As MORRBID is present in humans and dysregulated in patients with hypereosinophilic syndrome, this lncRNA may represent a potential therapeutic target for inflammatory disorders characterized by aberrant short-lived myeloid cell lifespan. PMID:27525555

  19. Non-Coding RNAs as Potential Neuroprotectants against Ischemic Brain Injury.

    PubMed

    Kaur, Prameet; Liu, Fujia; Tan, Jun Rong; Lim, Kai Ying; Sepramaniam, Sugunavathi; Karolina, Dwi Setyowati; Armugam, Arunmozhiarasi; Jeyaseelan, Kandiah

    2013-03-20

    Over the past decade, scientific discoveries have highlighted new roles for a unique class of non-coding RNAs. Transcribed from the genome, these non-coding RNAs have been implicated in determining the biological complexity seen in mammals by acting as transcriptional and translational regulators. Non-coding RNAs, which can be sub-classified into long non-coding RNAs, microRNAs, PIWI-interacting RNAs and several others, are widely expressed in the nervous system with roles in neurogenesis, development and maintenance of the neuronal phenotype. Perturbations of these non-coding transcripts have been observed in ischemic preconditioning as well as ischemic brain injury with characterization of the mechanisms by which they confer toxicity. Their dysregulation may also confer pathogenic conditions in neurovascular diseases. A better understanding of their expression patterns and functions has uncovered the potential use of these riboregulators as neuroprotectants to antagonize the detrimental molecular events taking place upon ischemic-reperfusion injury. In this review, we discuss the various roles of non-coding RNAs in brain development and their mechanisms of gene regulation in relation to ischemic brain injury. We will also address the future directions and open questions for identifying promising non-coding RNAs that could eventually serve as potential neuroprotectants against ischemic brain injury.

  20. Non-coding RNAs and LRRFIP1 Regulate TNF Expression1

    PubMed Central

    Shi, Lihua; Song, Li; Fitzgerald, Michael; Maurer, Kelly; Bagashev, Asen; Sullivan, Kathleen E.

    2014-01-01

    Non-coding RNAs have been implicated in the regulation of expression of numerous genes, however, the mechanism is not fully understood. We identified bidirectional, long non-coding RNAs upstream of the TNF gene using five different methods. They arose in a region where the repressors LRRFIP1, EZH2, and SUZ12 were demonstrated to bind, suggesting a role in repression. The non-coding RNAs were polyadenylated, capped, and chromatin-associated. Knock-down of the non-coding RNAs was associated with de-repression of TNF mRNA and diminished binding of LRRFIP1 to both RNA targets and chromatin. Over-expression of the non-coding RNAs led to diminished expression of TNF and recruitment of repressor proteins to the locus. One repressor protein, LRRFIP1, bound directly to the non-coding RNAs. These data place the non-coding RNAs upstream of TNF gene as central to the transcriptional regulation. They appear to serve as a platform for the assembly of a repressive complex. PMID:24567534

  1. Non-coding RNAs and Berberine: A new mechanism of its anti-diabetic activities.

    PubMed

    Chang, Wenguang

    2017-01-15

    Type 2 Diabetes (T2D) is a metabolic disease with high mortality and morbidity. Non-coding RNAs, including small and long non-coding RNAs, are a novel class of functional RNA molecules that regulate multiple biological functions through diverse mechanisms. Studies in the last decade have demonstrated that non-coding RNAs may represent compelling therapeutic targets and play important roles in regulating the course of insulin resistance and T2D. Berberine, a plant-based alkaloid, has shown promise as an anti-hyperglycaemic, anti-hyperlipidaemic agent against T2D. Previous studies have primarily focused on a diverse array of efficacy end points of berberine in the pathogenesis of metabolic syndromes and inflammation or oxidative stress. Currently, an increasing number of studies have revealed the importance of non-coding RNAs as regulators of the anti-diabetic effects of berberine. The regulation of non-coding RNAs has been associated with several therapeutic actions of berberine in T2D progression. Thus, this review summarizes the anti-diabetic mechanisms of berberine by focusing on its role in regulating non-coding RNA, thus demonstrating that berberine exerts global anti-diabetic effects by targeting non-coding RNAs and that these effects involve several miRNAs, lncRNAs and multiple signal pathways, which may enhance the current understanding of the anti-diabetic mechanism actions of berberine and provide new pathological targets for the development of berberine-related drugs.

  2. Identification and analysis of mouse non-coding RNA using transcriptome data.

    PubMed

    Zhao, Yuhui; Liu, Wanfei; Zeng, Jingyao; Liu, Shoucheng; Tan, Xinyu; Aljohi, Hasanawad; Hu, Songnian

    2016-06-01

    Transcripts are expressed spatially and temporally and they are very complicated, precise and specific; however, most studies are focused on protein-coding related genes. Recently, massively parallel cDNA sequencing (RNA-seq) has emerged to be a new and promising tool for transcriptome research, and numbers of non-coding RNAs, especially lincRNAs, have been widely identified and well characterized as important regulators of diverse biological processes. In this study, we used ultra-deep RNA-seq data from 15 mouse tissues to study the diversity and dynamic of non-coding RNAs in mouse. Using our own criteria, we identified totally 16,249 non-coding genes (21,569 non-coding RNAs) in mouse. We annotated these non-coding RNAs by diverse properties and found non-coding RNAs are generally shorter, have fewer exons, express in lower level and are more strikingly tissue-specific compared with protein-coding genes. Moreover, these non-coding RNAs show significant enrichment with transcriptional initiation and elongation signals including histone modifications (H3K4me3, H3K27me3 and H3K36me3), RNAPII binding sites and CAGE tags. The gene set enrichment analysis (GSEA) result revealed several sets of lincRNAs associated with diverse biological processes such as immune effector process, muscle development and sexual reproduction. Taken together, this study provides a more comprehensive annotation of mouse non-coding RNAs and gives an opportunity for future functional and evolutionary study of mouse non-coding RNAs.

  3. Water/carbonate stripping for CO.sub.2 capture adsorber regeneration and CO.sub.2 delivery to photoautotrophs

    DOEpatents

    Chance, Ronald; Koros, William J.; McCool, Benjamin; Noel, James

    2015-08-11

    The invention provides systems and methods for the delivery of carbon to photoautotrophs. The invention utilizes low energy regeneration of adsorbent for CO.sub.2 capture and provides for effective CO.sub.2 loading into liquids useful for photoautotroph growth and/or production of photosynthetic products, such as biofuels, via photoautotrophic culture media. The inventive system comprises a fluid/membrane/fluid contactor that provides selective transfer of molecular CO.sub.2 via a dense (non-porous) membrane from a carbonate-based CO.sub.2 snipping solution to a culture medium where the CO.sub.2 is consumed by a photoautotroph for the production of biofuels, biofuel precursors or other commercial products.

  4. Photoautotrophic microorganisms and bioremediation of industrial effluents: current status and future prospects.

    PubMed

    Brar, Amandeep; Kumar, Manish; Vivekanand, Vivek; Pareek, Nidhi

    2017-05-01

    Growth of the industrial sector, a result of population explosion has become the root cause of environmental deterioration and has raised the concerns for efficient wastewater management and reuse. Photoautotrophic cultivation of microorganisms is a boon and considered as a potential biological treatment for remediation of wastewater as it sequesters CO2 during growth. Photoautotrophs viz. cyanobacteria, micro-algae and macro-algae can photosynthetically assimilate the excessive pollutants present in the wastewater. The present review emphasizes on the achievability of microorganisms to bestow wastewater as the nutrient source for biomass production, which can further be reused for feed, food and fertilizers. To support this, various case studies have been cited that prove phycoremediation as a cost-effective and sustainable process over conventional wastewater treatment processes that requires high chemical load and more energy inputs.

  5. Large-scale prediction of long non-coding RNA functions in a coding–non-coding gene co-expression network

    PubMed Central

    Liao, Qi; Liu, Changning; Yuan, Xiongying; Kang, Shuli; Miao, Ruoyu; Xiao, Hui; Zhao, Guoguang; Luo, Haitao; Bu, Dechao; Zhao, Haitao; Skogerbø, Geir; Wu, Zhongdao; Zhao, Yi

    2011-01-01

    Although accumulating evidence has provided insight into the various functions of long-non-coding RNAs (lncRNAs), the exact functions of the majority of such transcripts are still unknown. Here, we report the first computational annotation of lncRNA functions based on public microarray expression profiles. A coding–non-coding gene co-expression (CNC) network was constructed from re-annotated Affymetrix Mouse Genome Array data. Probable functions for altogether 340 lncRNAs were predicted based on topological or other network characteristics, such as module sharing, association with network hubs and combinations of co-expression and genomic adjacency. The functions annotated to the lncRNAs mainly involve organ or tissue development (e.g. neuron, eye and muscle development), cellular transport (e.g. neuronal transport and sodium ion, acid or lipid transport) or metabolic processes (e.g. involving macromolecules, phosphocreatine and tyrosine). PMID:21247874

  6. Impact of Nutrition on Non-Coding RNA Epigenetics in Breast and Gynecological Cancer

    PubMed Central

    Krakowsky, Rosanna H. E.; Tollefsbol, Trygve O.

    2015-01-01

    Cancer is the second leading cause of death in females. According to the American Cancer Society, there are 327,660 new cases in breast and gynecological cancers estimated in 2014, placing emphasis on the need for cancer prevention and new cancer treatment strategies. One important approach to cancer prevention involves phytochemicals, biologically active compounds derived from plants. A variety of studies on the impact of dietary compounds found in cruciferous vegetables, green tea, and spices like curry and black pepper have revealed epigenetic changes in female cancers. Thus, an important emerging topic comprises epigenetic changes due to the modulation of non-coding RNA levels. Since it has been shown that non-coding RNAs such as microRNAs and long non-coding RNAs are aberrantly expressed in cancer, and furthermore are linked to distinct cancer phenotypes, understanding the effects of dietary compounds and supplements on the epigenetic modulator non-coding RNA is of great interest. This article reviews the current findings on nutrition-induced changes in breast and gynecological cancers at the non-coding RNA level. PMID:26075205

  7. Impact of Nutrition on Non-Coding RNA Epigenetics in Breast and Gynecological Cancer.

    PubMed

    Krakowsky, Rosanna H E; Tollefsbol, Trygve O

    2015-01-01

    Cancer is the second leading cause of death in females. According to the American Cancer Society, there are 327,660 new cases in breast and gynecological cancers estimated in 2014, placing emphasis on the need for cancer prevention and new cancer treatment strategies. One important approach to cancer prevention involves phytochemicals, biologically active compounds derived from plants. A variety of studies on the impact of dietary compounds found in cruciferous vegetables, green tea, and spices like curry and black pepper have revealed epigenetic changes in female cancers. Thus, an important emerging topic comprises epigenetic changes due to the modulation of non-coding RNA levels. Since it has been shown that non-coding RNAs such as microRNAs and long non-coding RNAs are aberrantly expressed in cancer, and furthermore are linked to distinct cancer phenotypes, understanding the effects of dietary compounds and supplements on the epigenetic modulator non-coding RNA is of great interest. This article reviews the current findings on nutrition-induced changes in breast and gynecological cancers at the non-coding RNA level.

  8. Structure based approaches for targeting non-coding RNAs with small molecules

    PubMed Central

    Shortridge, Matthew D.; Varani, Gabriele

    2015-01-01

    The increasing appreciation of the central role of non-coding RNAs (miRNAs and long non coding RNAs) in chronic and degenerative human disease makes them attractive therapeutic targets. This would not be unprecedented: the bacterial ribosomal RNA is a mainstay for antibacterial treatment, while the conservation and functional importance of viral RNA regulatory elements has long suggested they would constitute attractive targets for new antivirals. Oligonucleotide-based chemistry has obvious appeals but also considerable pharmacological limitations that are yet to be addressed satisfactorily. Recent studies identifying small molecules targeting non-coding RNAs may provide an alternative approach to oligonucleotide methods. Here we review recent work investigating new structural and chemical principles for targeting RNA with small molecules. PMID:25687935

  9. A Micropeptide Encoded by a Putative Long Non-coding RNA Regulates Muscle Performance

    PubMed Central

    Anderson, Douglas M.; Anderson, Kelly M.; Chang, Chi-Lun; Makarewich, Catherine A.; Nelson, Benjamin R.; McAnally, John R.; Kasaragod, Prasad; Shelton, John M.; Liou, Jen; Bassel-Duby, Rhonda; Olson, Eric N.

    2015-01-01

    Summary Functional micropeptides can be concealed within RNAs that appear to be non-coding. We discovered a conserved micropeptide, that we named myoregulin (MLN), encoded by a skeletal muscle-specific RNA annotated as a putative long non-coding RNA. MLN shares structural and functional similarity with phospholamban (PLN) and sarcolipin (SLN), which inhibit SERCA, the membrane pump that controls muscle relaxation by regulating Ca2+ uptake into the sarcoplasmic reticulum (SR). MLN interacts directly with SERCA and impedes Ca2+ uptake into the SR. In contrast to PLN and SLN, which are expressed in cardiac and slow skeletal muscle in mice, MLN is robustly expressed in all skeletal muscle. Genetic deletion of MLN in mice enhances Ca2+ handling in skeletal muscle and improves exercise performance. These findings identify MLN as an important regulator of skeletal muscle physiology and highlight the possibility that additional micropeptides are encoded in the many RNAs currently annotated as non-coding. PMID:25640239

  10. Therapeutic Resistance in Acute Myeloid Leukemia: The Role of Non-Coding RNAs

    PubMed Central

    Zebisch, Armin; Hatzl, Stefan; Pichler, Martin; Wölfler, Albert; Sill, Heinz

    2016-01-01

    Acute myeloid leukemia (AML) is caused by malignant transformation of hematopoietic stem or progenitor cells and displays the most frequent acute leukemia in adults. Although some patients can be cured with high dose chemotherapy and allogeneic hematopoietic stem cell transplantation, the majority still succumbs to chemoresistant disease. Micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs) are non-coding RNA fragments and act as key players in the regulation of both physiologic and pathologic gene expression profiles. Aberrant expression of various non-coding RNAs proved to be of seminal importance in the pathogenesis of AML, as well in the development of resistance to chemotherapy. In this review, we discuss the role of miRNAs and lncRNAs with respect to sensitivity and resistance to treatment regimens currently used in AML and provide an outlook on potential therapeutic targets emerging thereof. PMID:27973410

  11. Emerging Roles for Non-Coding RNAs in Male Reproductive Development in Flowering Plants

    PubMed Central

    Grant-Downton, Robert; Rodriguez-Enriquez, Josefina

    2012-01-01

    Knowledge of sexual reproduction systems in flowering plants is essential to humankind, with crop fertility vitally important for food security. Here, we review rapidly emerging new evidence for the key importance of non-coding RNAs in male reproductive development in flowering plants. From the commitment of somatic cells to initiating reproductive development through to meiosis and the development of pollen—containing the male gametes (sperm cells)—in the anther, there is now overwhelming data for a diversity of non-coding RNAs and emerging evidence for crucial roles for them in regulating cellular events at these developmental stages. A particularly exciting development has been the association of one example of cytoplasmic male sterility, which has become an unparalleled breeding tool for producing new crop hybrids, with a non-coding RNA locus. PMID:24970151

  12. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance.

    PubMed

    Ayers, Duncan; Vandesompele, Jo

    2017-03-03

    Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology.

  13. Non-coding RNAs in pluripotency and neural differentiation of human pluripotent stem cells

    PubMed Central

    Lukovic, Dunja; Moreno-Manzano, Victoria; Klabusay, Martin; Stojkovic, Miodrag; Bhattacharya, Shomi S.; Erceg, Slaven

    2014-01-01

    Several studies have demonstrated the important role of non-coding RNAs as regulators of posttranscriptional processes, including stem cells self-renewal and neural differentiation. Human embryonic stem cells (hESCs) and induced pluripotent stem cells (ihPSCs) show enormous potential in regenerative medicine due to their capacity to differentiate to virtually any type of cells of human body. Deciphering the role of non-coding RNAs in pluripotency, self-renewal and neural differentiation will reveal new molecular mechanisms involved in induction and maintenances of pluripotent state as well as triggering these cells toward clinically relevant cells for transplantation. In this brief review we will summarize recently published studies which reveal the role of non-coding RNAs in pluripotency and neural differentiation of hESCs and ihPSC. PMID:24860598

  14. Influence of microRNAs and Long Non-Coding RNAs in Cancer Chemoresistance

    PubMed Central

    Ayers, Duncan; Vandesompele, Jo

    2017-01-01

    Innate and acquired chemoresistance exhibited by most tumours exposed to conventional chemotherapeutic agents account for the majority of relapse cases in cancer patients. Such chemoresistance phenotypes are of a multi-factorial nature from multiple key molecular players. The discovery of the RNA interference pathway in 1998 and the widespread gene regulatory influences exerted by microRNAs (miRNAs) and other non-coding RNAs have certainly expanded the level of intricacy present for the development of any single physiological phenotype, including cancer chemoresistance. This review article focuses on the latest research efforts in identifying and validating specific key molecular players from the two main families of non-coding RNAs, namely miRNAs and long non-coding RNAs (lncRNAs), having direct or indirect influences in the development of cancer drug resistance properties and how such knowledge can be utilised for novel theranostics in oncology. PMID:28273813

  15. Emerging Roles for Non-Coding RNAs in Male Reproductive Development in Flowering Plants.

    PubMed

    Grant-Downton, Robert; Rodriguez-Enriquez, Josefina

    2012-12-04

    Knowledge of sexual reproduction systems in flowering plants is essential to humankind, with crop fertility vitally important for food security. Here, we review rapidly emerging new evidence for the key importance of non-coding RNAs in male reproductive development in flowering plants. From the commitment of somatic cells to initiating reproductive development through to meiosis and the development of pollen-containing the male gametes (sperm cells)-in the anther, there is now overwhelming data for a diversity of non-coding RNAs and emerging evidence for crucial roles for them in regulating cellular events at these developmental stages. A particularly exciting development has been the association of one example of cytoplasmic male sterility, which has become an unparalleled breeding tool for producing new crop hybrids, with a non-coding RNA locus.

  16. The decalog of long non-coding RNA involvement in cancer diagnosis and monitoring.

    PubMed

    Kunej, Tanja; Obsteter, Jana; Pogacar, Ziva; Horvat, Simon; Calin, George Adrian

    2014-12-01

    Long non-coding RNAs (lncRNAs) are transcripts without protein-coding capacity; initially regarded as "transcriptional noise", lately they have emerged as essential factors in both cell biology and mechanisms of disease. In this article, we present basic knowledge of lncRNA molecular mechanisms, associated physiological processes and cancer association, as well as their diagnostic and therapeutic value in the form of a decalog: (1) Non-coding RNAs (ncRNAs) are transcripts without protein-coding capacity divided by size (short and long ncRNAs), function (housekeeping RNA and regulatory RNA) and direction of transcription (sense/antisense, bidirectional, intronic and intergenic), containing a broad range of molecules with diverse properties and functions, such as messenger RNA, transfer RNA, microRNA and long non-coding RNAs. (2) Long non-coding RNAs are implicated in many molecular mechanisms, such as transcriptional regulation, post-transcriptional regulation and processing of other short ncRNAs. (3) Long non-coding RNAs play an important role in many physiological processes such as X-chromosome inactivation, cell differentiation, immune response and apoptosis. (4) Long non-coding RNAs have been linked to hallmarks of cancer: (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) enabling replicative immortality; (d) activating invasion and metastasis; (e) inducing angiogenesis; (f) resisting cell death; and (g) reprogramming energy metabolism. (5) Regarding their impact on cancer cells, lncRNAs are divided into two groups: oncogenic and tumor-suppressor lncRNAs. (6) Studies of lncRNA involvement in cancer usually analyze deregulated expression patterns at the RNA level as well as the effects of single nucleotide polymorphisms and copy number variations at the DNA level. (7) Long non-coding RNAs have potential as novel biomarkers due to tissue-specific expression patterns, efficient detection in body fluids and high stability. (8) LncRNAs serve

  17. The evolving ribosome: from non-coded peptide bond formation to sophisticated translation machinery.

    PubMed

    Davidovich, Chen; Belousoff, Matthew; Bashan, Anat; Yonath, Ada

    2009-09-01

    Structural analysis supported by biochemical, mutagenesis and computational evidence, revealed that the contemporary ribosome's active site is a universal symmetrical pocket made of ribosomal RNA. This pocket seems to be the remnant of the proto-ribosome, a dimeric RNA assembly evolved by gene duplication, capable of autonomously catalyzing peptide bond formation and non-coded amino acid polymerization.

  18. Standing your Ground to Exoribonucleases: Function of Flavivirus Long Non-coding RNAs

    PubMed Central

    Charley, Phillida A.; Wilusz, Jeffrey

    2015-01-01

    Members of the Flaviviridae (e.g. Dengue virus, West Nile virus, and Hepatitis C virus) contain a positive-sense RNA genome that encodes a large polyprotein. It is now also clear most if not all of these viruses also produce an abundant subgenomic long non-coding RNA. These non-coding RNAs, which are called subgenomicflavivirus RNAs (sfRNAs) or Xrn1-resistant RNAs (xrRNAs), are stable decay intermediates generated from the viral genomic RNA through the stalling of the cellular exoribonuclease Xrn1 at highly structured regions. Several functions of these flavivirus long non-coding RNAs have been revealed in recent years. The generation of these sfRNAs/xrRNAs from viral transcripts results in the repression of Xrn1 and the dysregulation of cellular mRNA stability. The abundant sfRNAs also serve directly as a decoy for important cellular protein regulators of the interferon and RNA interference antiviral pathways. Thus the generation of long non-coding RNAs from flaviviruses, hepaciviruses and pestiviruses likely disrupts aspects of innate immunity and may directly contribute to viral replication, cytopathology and pathogenesis. PMID:26368052

  19. Identification and characterization of long non-coding RNAs in rainbow trout eggs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long non-coding RNAs (lncRNAs) are in general considered as a diverse class of transcripts longer than 200 nucleotides that structurally resemble mRNAs but do not encode proteins. Recent advances in RNA sequencing (RNA-Seq) and bioinformatics methods have provided an opportunity to indentify and ana...

  20. The non-coding landscape of head and neck squamous cell carcinoma.

    PubMed

    Zou, Angela E; Zheng, Hao; Saad, Maarouf A; Rahimy, Mehran; Ku, Jonjei; Kuo, Selena Z; Honda, Thomas K; Wang-Rodriguez, Jessica; Xuan, Yinan; Korrapati, Avinaash; Yu, Vicky; Singh, Pranav; Grandis, Jennifer R; King, Charles C; Lippman, Scott M; Wang, Xiao Qi; Hinton, Andrew; Ongkeko, Weg M

    2016-08-09

    Head and neck squamous cell carcinoma (HNSCC) is an aggressive disease marked by frequent recurrence and metastasis and stagnant survival rates. To enhance molecular knowledge of HNSCC and define a non-coding RNA (ncRNA) landscape of the disease, we profiled the transcriptome-wide dysregulation of long non-coding RNA (lncRNA), microRNA (miRNA), and PIWI-interacting RNA (piRNA) using RNA-sequencing data from 422 HNSCC patients in The Cancer Genome Atlas (TCGA). 307 non-coding transcripts differentially expressed in HNSCC were significantly correlated with patient survival, and associated with mutations in TP53, CDKN2A, CASP8, PRDM9, and FBXW7 and copy number variations in chromosomes 3, 5, 7, and 18. We also observed widespread ncRNA correlation to concurrent TP53 and chromosome 3p loss, a compelling predictor of poor prognosis in HNSCCs. Three selected ncRNAs were additionally associated with tumor stage, HPV status, and other clinical characteristics, and modulation of their expression in vitro reveals differential regulation of genes involved in epithelial-mesenchymal transition and apoptotic response. This comprehensive characterization of the HNSCC non-coding transcriptome introduces new layers of understanding for the disease, and nominates a novel panel of transcripts with potential utility as prognostic markers or therapeutic targets.

  1. cncRNAs: Bi-functional RNAs with protein coding and non-coding functions.

    PubMed

    Kumari, Pooja; Sampath, Karuna

    2015-12-01

    For many decades, the major function of mRNA was thought to be to provide protein-coding information embedded in the genome. The advent of high-throughput sequencing has led to the discovery of pervasive transcription of eukaryotic genomes and opened the world of RNA-mediated gene regulation. Many regulatory RNAs have been found to be incapable of protein coding and are hence termed as non-coding RNAs (ncRNAs). However, studies in recent years have shown that several previously annotated non-coding RNAs have the potential to encode proteins, and conversely, some coding RNAs have regulatory functions independent of the protein they encode. Such bi-functional RNAs, with both protein coding and non-coding functions, which we term as 'cncRNAs', have emerged as new players in cellular systems. Here, we describe the functions of some cncRNAs identified from bacteria to humans. Because the functions of many RNAs across genomes remains unclear, we propose that RNAs be classified as coding, non-coding or both only after careful analysis of their functions.

  2. The non-coding landscape of head and neck squamous cell carcinoma

    PubMed Central

    Zou, Angela E.; Zheng, Hao; Saad, Maarouf A.; Rahimy, Mehran; Ku, Jonjei; Kuo, Selena Z.; Honda, Thomas K.; Wang-Rodriguez, Jessica; Xuan, Yinan; Korrapati, Avinaash; Yu, Vicky; Singh, Pranav; Grandis, Jennifer R.; King, Charles C.; Lippman, Scott M.; Wang, Xiao Qi; Hinton, Andrew; Ongkeko, Weg M.

    2016-01-01

    Head and neck squamous cell carcinoma (HNSCC) is an aggressive disease marked by frequent recurrence and metastasis and stagnant survival rates. To enhance molecular knowledge of HNSCC and define a non-coding RNA (ncRNA) landscape of the disease, we profiled the transcriptome-wide dysregulation of long non-coding RNA (lncRNA), microRNA (miRNA), and PIWI-interacting RNA (piRNA) using RNA-sequencing data from 422 HNSCC patients in The Cancer Genome Atlas (TCGA). 307 non-coding transcripts differentially expressed in HNSCC were significantly correlated with patient survival, and associated with mutations in TP53, CDKN2A, CASP8, PRDM9, and FBXW7 and copy number variations in chromosomes 3, 5, 7, and 18. We also observed widespread ncRNA correlation to concurrent TP53 and chromosome 3p loss, a compelling predictor of poor prognosis in HNSCCs. Three selected ncRNAs were additionally associated with tumor stage, HPV status, and other clinical characteristics, and modulation of their expression in vitro reveals differential regulation of genes involved in epithelial-mesenchymal transition and apoptotic response. This comprehensive characterization of the HNSCC non-coding transcriptome introduces new layers of understanding for the disease, and nominates a novel panel of transcripts with potential utility as prognostic markers or therapeutic targets. PMID:27323410

  3. There is a world beyond protein mutations: the role of non-coding RNAs in melanomagenesis.

    PubMed

    Swoboda, Rolf K; Herlyn, Meenhard

    2013-05-01

    Until recently, the general perception has been that mutations in protein-coding genes are responsible for tumorigenesis. With the discovery of (V600E)BRAF in about 50% of cutaneous melanomas, there was an increased effort to find additional mutations. However, mutations characterized in melanoma to date cannot account for the development of all melanomas. With the discovery of microRNAs as important players in melanomagenesis, protein mutations are no longer considered the sole drivers of tumors. Recent research findings have expanded the view for tumor initiation and progression to additional non-coding RNAs. The data suggest that tumorigenesis is likely an interplay between mutated proteins and deregulation of non-coding RNAs in the cell with an additional role of the tumor environment. With the exception of microRNAs, our knowledge of the role of non-coding RNAs in melanoma is in its infancy. Using few examples, we will summarize some of the roles of non-coding RNAs in tumorigenesis. Thus, there is a whole world beyond protein-coding sequences and microRNAs, which can cause melanoma.

  4. Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production.

    PubMed

    Liu, Jin; Huang, Junchao; Sun, Zheng; Zhong, Yujuan; Jiang, Yue; Chen, Feng

    2011-01-01

    The objective of this study was to document and compare the lipid class and fatty acid composition of the green microalga Chlorella zofingiensis cultivated under photoautotrophic and heterotrophic conditions. Compared with photoautotrophic cells, a 900% increase in lipid yield was achieved in heterotrophic cells fed with 30 g L(-1) of glucose. Furthermore heterotrophic cells accumulated predominantly neutral lipids (NL) that accounted for 79.5% of total lipids with 88.7% being triacylglycerol (TAG); whereas photoautotrophic cells contained mainly the membrane lipids glycolipids (GL) and phospholipids (PL). Together with the much higher content of oleic acid (C18:1) (35.2% of total fatty acids), oils from heterotrophic C. zofingiensis appear to be more feasible for biodiesel production. Our study highlights the possibility of using heterotrophic algae for producing high quality biodiesel.

  5. Mammalian hibernation and regulation of lipid metabolism: a focus on non-coding RNAs.

    PubMed

    Lang-Ouellette, D; Richard, T G; Morin, P

    2014-11-01

    Numerous species will confront severe environmental conditions by undergoing significant metabolic rate reduction. Mammalian hibernation is one such natural model of hypometabolism. Hibernators experience considerable physiological, metabolic, and molecular changes to survive the harsh challenges associated with winter. Whether as fuel source or as key signaling molecules, lipids are of primary importance for a successful bout of hibernation and their careful regulation throughout this process is essential. In recent years, a plethora of non-coding RNAs has emerged as potential regulators of targets implicated in lipid metabolism in diverse models. In this review, we introduce the general characteristics associated with mammalian hibernation, present the importance of lipid metabolism prior to and during hibernation, as well as discuss the potential relevance of non-coding RNAs such as miRNAs and lncRNAs during this process.

  6. Detection of Long Non-coding RNA Expression by Non-radioactive Northern Blots

    PubMed Central

    Hu, Xiaowen; Feng, Yi; Hu, Zhongyi; Zhang, Youyou; Yuan, Chao-Xing; Xu, Xiaowei; Zhang, Lin

    2016-01-01

    With the advances in sequencing technology and transcriptome analysis, it is estimated that up to 75% of the human genome is transcribed into RNAs. This finding prompted intensive investigations on the biological functions of non-coding RNAs and led to very exciting discoveries of microRNAs as important players in disease pathogenesis and therapeutic applications. Research on long non-coding RNAs (lncRNAs) is in its infancy, yet a broad spectrum of biological regulations has been attributed to lncRNAs. As a novel class of RNA transcripts, the expression level and splicing variants of lncRNAs are various. Northern blot analysis can help us learn about the identity, size, and abundance of lncRNAs. Here we describe how to use northern blot to determine lncRNA abundance and identify different splicing variants of a given lncRNA. PMID:26721491

  7. Enhancers as non-coding RNA transcription units: recent insights and future perspectives.

    PubMed

    Li, Wenbo; Notani, Dimple; Rosenfeld, Michael G

    2016-04-01

    Networks of regulatory enhancers dictate distinct cell identities and cellular responses to diverse signals by instructing precise spatiotemporal patterns of gene expression. However, 35 years after their discovery, enhancer functions and mechanisms remain incompletely understood. Intriguingly, recent evidence suggests that many, if not all, functional enhancers are themselves transcription units, generating non-coding enhancer RNAs. This observation provides a fundamental insight into the inter-regulation between enhancers and promoters, which can both act as transcription units; it also raises crucial questions regarding the potential biological roles of the enhancer transcription process and non-coding enhancer RNAs. Here, we review research progress in this field and discuss several important, unresolved questions regarding the roles and mechanisms of enhancers in gene regulation.

  8. Role of Non-coding Regulatory RNA in the Virulence of Human Pathogenic Vibrios.

    PubMed

    Pérez-Reytor, Diliana; Plaza, Nicolás; Espejo, Romilio T; Navarrete, Paola; Bastías, Roberto; Garcia, Katherine

    2016-01-01

    In recent decades, the identification of small non-coding RNAs in bacteria has revealed an important regulatory mechanism of gene expression involved in the response to environmental signals and to the control of virulence. In the family Vibrionaceae, which includes several human and animal pathogens, small non-coding RNAs (sRNAs) are closely related to important processes including metabolism, quorum sensing, virulence, and fitness. Studies conducted in silico and experiments using microarrays and high-throughput RNA sequencing have led to the discovery of an unexpected number of sRNAs in Vibrios. The present review discusses the most relevant reports regarding the mechanisms of action of sRNAs and their implications in the virulence of the main human pathogens in the family Vibrionaceae: Vibrio parahaemolyticus, V. vulnificus and V. cholerae.

  9. Role of Non-coding Regulatory RNA in the Virulence of Human Pathogenic Vibrios

    PubMed Central

    Pérez-Reytor, Diliana; Plaza, Nicolás; Espejo, Romilio T.; Navarrete, Paola; Bastías, Roberto; Garcia, Katherine

    2017-01-01

    In recent decades, the identification of small non-coding RNAs in bacteria has revealed an important regulatory mechanism of gene expression involved in the response to environmental signals and to the control of virulence. In the family Vibrionaceae, which includes several human and animal pathogens, small non-coding RNAs (sRNAs) are closely related to important processes including metabolism, quorum sensing, virulence, and fitness. Studies conducted in silico and experiments using microarrays and high-throughput RNA sequencing have led to the discovery of an unexpected number of sRNAs in Vibrios. The present review discusses the most relevant reports regarding the mechanisms of action of sRNAs and their implications in the virulence of the main human pathogens in the family Vibrionaceae: Vibrio parahaemolyticus, V. vulnificus and V. cholerae. PMID:28123382

  10. Long non-coding RNAs act as regulators of cell autophagy in diseases

    PubMed Central

    Xu, Zhijie; Yan, Yuanliang; Qian, Long; Gong, Zhicheng

    2017-01-01

    Identification of long non-coding RNAs (lncRNAs) has provided a substantial increase in our understanding of the non-coding transcriptome. Studies have revealed a crucial function of lncRNAs in the modulation of cell autophagy in vitro and in vivo, further contributing to the hallmarks of disease phenotypes. These findings have profoundly altered our understanding of disease pathobiology, and may lead to the emergence of new biological concepts underlying autophagy-associated diseases, such as the carcinomas. Studies on the molecular mechanism of the lncRNA-autophagy axis may offer additional avenues for therapeutic intervention and biomarker assessment. In this review, we discuss recent findings on the multiple molecular roles of regulatory lncRNAs in the signaling pathways of cell autophagy. The emerging knowledge in this rapidly advancing field will offer novel insights into human diseases, especially cancers. PMID:28184916

  11. The Role and Molecular Mechanism of Non-Coding RNAs in Pathological Cardiac Remodeling

    PubMed Central

    Gao, Jinning; Xu, Wenhua; Wang, Jianxun; Wang, Kun; Li, Peifeng

    2017-01-01

    Non-coding RNAs (ncRNAs) are a class of RNA molecules that do not encode proteins. Studies show that ncRNAs are not only involved in cell proliferation, apoptosis, differentiation, metabolism and other physiological processes, but also involved in the pathogenesis of diseases. Cardiac remodeling is the main pathological basis of a variety of cardiovascular diseases. Many studies have shown that the occurrence and development of cardiac remodeling are closely related with the regulation of ncRNAs. Recent research of ncRNAs in heart disease has achieved rapid development. Thus, we summarize here the latest research progress and mainly the molecular mechanism of ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), in cardiac remodeling, aiming to look for new targets for heart disease treatment. PMID:28287427

  12. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin.

    PubMed

    Böhmdorfer, Gudrun; Sethuraman, Shriya; Rowley, M Jordan; Krzyszton, Michal; Rothi, M Hafiz; Bouzit, Lilia; Wierzbicki, Andrzej T

    2016-10-25

    RNA-mediated transcriptional gene silencing is a conserved process where small RNAs target transposons and other sequences for repression by establishing chromatin modifications. A central element of this process are long non-coding RNAs (lncRNA), which in Arabidopsis thaliana are produced by a specialized RNA polymerase known as Pol V. Here we show that non-coding transcription by Pol V is controlled by preexisting chromatin modifications located within the transcribed regions. Most Pol V transcripts are associated with AGO4 but are not sliced by AGO4. Pol V-dependent DNA methylation is established on both strands of DNA and is tightly restricted to Pol V-transcribed regions. This indicates that chromatin modifications are established in close proximity to Pol V. Finally, Pol V transcription is preferentially enriched on edges of silenced transposable elements, where Pol V transcribes into TEs. We propose that Pol V may play an important role in the determination of heterochromatin boundaries.

  13. Computational approaches towards understanding human long non-coding RNA biology.

    PubMed

    Jalali, Saakshi; Kapoor, Shruti; Sivadas, Ambily; Bhartiya, Deeksha; Scaria, Vinod

    2015-07-15

    Long non-coding RNAs (lncRNAs) form the largest class of non-protein coding genes in the human genome. While a small subset of well-characterized lncRNAs has demonstrated their significant role in diverse biological functions like chromatin modifications, post-transcriptional regulation, imprinting etc., the functional significance of a vast majority of them still remains an enigma. Increasing evidence of the implications of lncRNAs in various diseases including cancer and major developmental processes has further enhanced the need to gain mechanistic insights into the lncRNA functions. Here, we present a comprehensive review of the various computational approaches and tools available for the identification and annotation of long non-coding RNAs. We also discuss a conceptual roadmap to systematically explore the functional properties of the lncRNAs using computational approaches.

  14. Barcelona conference on epigenetics and cancer 2015: Coding and non-coding functions of the genome

    PubMed Central

    Corujo, David; Mas, Gloria; Malinverni, Roberto; Di Croce, Luciano; Buschbeck, Marcus

    2016-01-01

    ABSTRACT The Barcelona Conference on Epigenetics and Cancer (BCEC) entitled “Coding and Non-Coding functions of the Genome” took place October 29–30, 2015 in Barcelona. The 2015 BCEC was the third edition of a series of annual conferences jointly organized by 5 leading research centers in Barcelona together with B-Debate, an initiative of BioCat. Luciano Di Croce from the Center for Genomic Regulation and Marcus Buschbeck from the Josep Carreras Leukemia Research Institute put together the scientific program with a particular focus on the role of non-coding RNAs in enhancer regulation, epigenetic control by Polycomb complexes, histone variants, and nuclear organization. In one and a half days, 22 talks and 56 posters were presented to an audience of 215 participants. PMID:26996885

  15. Small non-coding RNAs in plant-pathogenic Xanthomonas spp.

    PubMed

    Abendroth, Ulrike; Schmidtke, Cornelius; Bonas, Ulla

    2014-01-01

    The genus Xanthomonas comprises a large group of plant-pathogenic bacteria. The infection and bacterial multiplication in the plant tissue depends on the type III secretion system and other virulence determinants. Recent studies revealed that bacterial virulence is also controlled at the post-transcriptional level by small non-coding RNAs (sRNAs). In this review, we highlight our current knowledge about sRNAs and RNA-binding proteins in Xanthomonas species.

  16. An expanding universe of the non-coding genome in cancer biology.

    PubMed

    Xue, Bin; He, Lin

    2014-06-01

    Neoplastic transformation is caused by accumulation of genetic and epigenetic alterations that ultimately convert normal cells into tumor cells with uncontrolled proliferation and survival, unlimited replicative potential and invasive growth [Hanahan,D. et al. (2011) Hallmarks of cancer: the next generation. Cell, 144, 646-674]. Although the majority of the cancer studies have focused on the functions of protein-coding genes, emerging evidence has started to reveal the importance of the vast non-coding genome, which constitutes more than 98% of the human genome. A number of non-coding RNAs (ncRNAs) derived from the 'dark matter' of the human genome exhibit cancer-specific differential expression and/or genomic alterations, and it is increasingly clear that ncRNAs, including small ncRNAs and long ncRNAs (lncRNAs), play an important role in cancer development by regulating protein-coding gene expression through diverse mechanisms. In addition to ncRNAs, nearly half of the mammalian genomes consist of transposable elements, particularly retrotransposons. Once depicted as selfish genomic parasites that propagate at the expense of host fitness, retrotransposon elements could also confer regulatory complexity to the host genomes during development and disease. Reactivation of retrotransposons in cancer, while capable of causing insertional mutagenesis and genome rearrangements to promote oncogenesis, could also alter host gene expression networks to favor tumor development. Taken together, the functional significance of non-coding genome in tumorigenesis has been previously underestimated, and diverse transcripts derived from the non-coding genome could act as integral functional components of the oncogene and tumor suppressor network.

  17. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements.

    PubMed

    Maliszewska-Olejniczak, Kamila; Gruchota, Julita; Gromadka, Robert; Denby Wilkes, Cyril; Arnaiz, Olivier; Mathy, Nathalie; Duharcourt, Sandra; Bétermier, Mireille; Nowak, Jacek K

    2015-07-01

    Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for

  18. Transcriptional dynamics reveal critical roles for non-coding RNAs in the immediate-early response.

    PubMed

    Aitken, Stuart; Magi, Shigeyuki; Alhendi, Ahmad M N; Itoh, Masayoshi; Kawaji, Hideya; Lassmann, Timo; Daub, Carsten O; Arner, Erik; Carninci, Piero; Forrest, Alistair R R; Hayashizaki, Yoshihide; Khachigian, Levon M; Okada-Hatakeyama, Mariko; Semple, Colin A

    2015-04-01

    The immediate-early response mediates cell fate in response to a variety of extracellular stimuli and is dysregulated in many cancers. However, the specificity of the response across stimuli and cell types, and the roles of non-coding RNAs are not well understood. Using a large collection of densely-sampled time series expression data we have examined the induction of the immediate-early response in unparalleled detail, across cell types and stimuli. We exploit cap analysis of gene expression (CAGE) time series datasets to directly measure promoter activities over time. Using a novel analysis method for time series data we identify transcripts with expression patterns that closely resemble the dynamics of known immediate-early genes (IEGs) and this enables a comprehensive comparative study of these genes and their chromatin state. Surprisingly, these data suggest that the earliest transcriptional responses often involve promoters generating non-coding RNAs, many of which are produced in advance of canonical protein-coding IEGs. IEGs are known to be capable of induction without de novo protein synthesis. Consistent with this, we find that the response of both protein-coding and non-coding RNA IEGs can be explained by their transcriptionally poised, permissive chromatin state prior to stimulation. We also explore the function of non-coding RNAs in the attenuation of the immediate early response in a small RNA sequencing dataset matched to the CAGE data: We identify a novel set of microRNAs responsible for the attenuation of the IEG response in an estrogen receptor positive cancer cell line. Our computational statistical method is well suited to meta-analyses as there is no requirement for transcripts to pass thresholds for significant differential expression between time points, and it is agnostic to the number of time points per dataset.

  19. The Notch driven long non-coding RNA repertoire in T-cell acute lymphoblastic leukemia.

    PubMed

    Durinck, Kaat; Wallaert, Annelynn; Van de Walle, Inge; Van Loocke, Wouter; Volders, Pieter-Jan; Vanhauwaert, Suzanne; Geerdens, Ellen; Benoit, Yves; Van Roy, Nadine; Poppe, Bruce; Soulier, Jean; Cools, Jan; Mestdagh, Pieter; Vandesompele, Jo; Rondou, Pieter; Van Vlierberghe, Pieter; Taghon, Tom; Speleman, Frank

    2014-12-01

    Genetic studies in T-cell acute lymphoblastic leukemia have uncovered a remarkable complexity of oncogenic and loss-of-function mutations. Amongst this plethora of genetic changes, NOTCH1 activating mutations stand out as the most frequently occurring genetic defect, identified in more than 50% of T-cell acute lymphoblastic leukemias, supporting a role as an essential driver for this gene in T-cell acute lymphoblastic leukemia oncogenesis. In this study, we aimed to establish a comprehensive compendium of the long non-coding RNA transcriptome under control of Notch signaling. For this purpose, we measured the transcriptional response of all protein coding genes and long non-coding RNAs upon pharmacological Notch inhibition in the human T-cell acute lymphoblastic leukemia cell line CUTLL1 using RNA-sequencing. Similar Notch dependent profiles were established for normal human CD34(+) thymic T-cell progenitors exposed to Notch signaling activity in vivo. In addition, we generated long non-coding RNA expression profiles (array data) from ex vivo isolated Notch active CD34(+) and Notch inactive CD4(+)CD8(+) thymocytes and from a primary cohort of 15 T-cell acute lymphoblastic leukemia patients with known NOTCH1 mutation status. Integration of these expression datasets with publicly available Notch1 ChIP-sequencing data resulted in the identification of long non-coding RNAs directly regulated by Notch activity in normal and malignant T cells. Given the central role of Notch in T-cell acute lymphoblastic leukemia oncogenesis, these data pave the way for the development of novel therapeutic strategies that target hyperactive Notch signaling in human T-cell acute lymphoblastic leukemia.

  20. Variation in conserved non-coding sequences on chromosome 5q andsusceptibility to asthma and atopy

    SciTech Connect

    Donfack, Joseph; Schneider, Daniel H.; Tan, Zheng; Kurz,Thorsten; Dubchak, Inna; Frazer, Kelly A.; Ober, Carole

    2005-09-10

    Background: Evolutionarily conserved sequences likely havebiological function. Methods: To determine whether variation in conservedsequences in non-coding DNA contributes to risk for human disease, westudied six conserved non-coding elements in the Th2 cytokine cluster onhuman chromosome 5q31 in a large Hutterite pedigree and in samples ofoutbred European American and African American asthma cases and controls.Results: Among six conserved non-coding elements (>100 bp,>70percent identity; human-mouse comparison), we identified one singlenucleotide polymorphism (SNP) in each of two conserved elements and sixSNPs in the flanking regions of three conserved elements. We genotypedour samples for four of these SNPs and an additional three SNPs each inthe IL13 and IL4 genes. While there was only modest evidence forassociation with single SNPs in the Hutterite and European Americansamples (P<0.05), there were highly significant associations inEuropean Americans between asthma and haplotypes comprised of SNPs in theIL4 gene (P<0.001), including a SNP in a conserved non-codingelement. Furthermore, variation in the IL13 gene was strongly associatedwith total IgE (P = 0.00022) and allergic sensitization to mold allergens(P = 0.00076) in the Hutterites, and more modestly associated withsensitization to molds in the European Americans and African Americans (P<0.01). Conclusion: These results indicate that there is overalllittle variation in the conserved non-coding elements on 5q31, butvariation in IL4 and IL13, including possibly one SNP in a conservedelement, influence asthma and atopic phenotypes in diversepopulations.

  1. Synthetic long non-coding RNAs [SINEUPs] rescue defective gene expression in vivo

    PubMed Central

    Indrieri, Alessia; Grimaldi, Claudia; Zucchelli, Silvia; Tammaro, Roberta; Gustincich, Stefano; Franco, Brunella

    2016-01-01

    Non-coding RNAs provide additional regulatory layers to gene expression as well as the potential to being exploited as therapeutic tools. Non-coding RNA-based therapeutic approaches have been attempted in dominant diseases, however their use for treatment of genetic diseases caused by insufficient gene dosage is currently more challenging. SINEUPs are long antisense non-coding RNAs that up-regulate translation in mammalian cells in a gene-specific manner, although, so far evidence of SINEUP efficacy has only been demonstrated in in vitro systems. We now show that synthetic SINEUPs effectively and specifically increase protein levels of a gene of interest in vivo. We demonstrated that SINEUPs rescue haploinsufficient gene dosage in a medakafish model of a human disorder leading to amelioration of the disease phenotype. Our results demonstrate that SINEUPs act through mechanisms conserved among vertebrates and that SINEUP technology can be successfully applied in vivo as a new research and therapeutic tool for gene-specific up-regulation of endogenous functional proteins. PMID:27265476

  2. Non-coding RNA in control of gene regulatory programs in cardiac development and disease.

    PubMed

    Philippen, Leonne E; Dirkx, Ellen; da Costa-Martins, Paula A; De Windt, Leon J

    2015-12-01

    Organogenesis of the vertebrate heart is a highly specialized process involving progressive specification and differentiation of distinct embryonic cardiac progenitor cell populations driven by specialized gene programming events. Likewise, the onset of pathologies in the adult heart, including cardiac hypertrophy, involves the reactivation of embryonic gene programs. In both cases, these intricate genomic events are temporally and spatially regulated by complex signaling networks and gene regulatory networks. Apart from well-established transcriptional mechanisms, increasing evidence indicates that gene programming in both the developing and the diseased myocardium are under epigenetic control by non-coding RNAs (ncRNAs). MicroRNAs regulate gene expression at the post-transcriptional level, and numerous studies have now established critical roles for this species of tiny RNAs in a broad range of aspects from cardiogenesis towards adult heart failure. Recent reports now also implicate the larger family of long non-coding RNAs (lncRNAs) in these processes as well. Here we discuss the involvement of these two ncRNA classes in proper cardiac development and hypertrophic disease processes of the adult myocardium. This article is part of a Special Issue entitled: Non-coding RNAs.

  3. Functional annotation of the vlinc class of non-coding RNAs using systems biology approach

    PubMed Central

    Laurent, Georges St.; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J.L.; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R.R.; Nicolas, Estelle; McCaffrey, Timothy A.; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp

    2016-01-01

    Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlincRNAs genes likely function in cis to activate nearby genes. This effect while most pronounced in closely spaced vlincRNA–gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlincRNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. PMID:27001520

  4. NCAD, a database integrating the intrinsic conformational preferences of non-coded amino acids

    PubMed Central

    Revilla-López, Guillem; Torras, Juan; Curcó, David; Casanovas, Jordi; Calaza, M. Isabel; Zanuy, David; Jiménez, Ana I.; Cativiela, Carlos; Nussinov, Ruth; Grodzinski, Piotr; Alemán, Carlos

    2010-01-01

    Peptides and proteins find an ever-increasing number of applications in the biomedical and materials engineering fields. The use of non-proteinogenic amino acids endowed with diverse physicochemical and structural features opens the possibility to design proteins and peptides with novel properties and functions. Moreover, non-proteinogenic residues are particularly useful to control the three-dimensional arrangement of peptidic chains, which is a crucial issue for most applications. However, information regarding such amino acids –also called non-coded, non-canonical or non-standard– is usually scattered among publications specialized in quite diverse fields as well as in patents. Making all these data useful to the scientific community requires new tools and a framework for their assembly and coherent organization. We have successfully compiled, organized and built a database (NCAD, Non-Coded Amino acids Database) containing information about the intrinsic conformational preferences of non-proteinogenic residues determined by quantum mechanical calculations, as well as bibliographic information about their synthesis, physical and spectroscopic characterization, conformational propensities established experimentally, and applications. The architecture of the database is presented in this work together with the first family of non-coded residues included, namely, α-tetrasubstituted α-amino acids. Furthermore, the NCAD usefulness is demonstrated through a test-case application example. PMID:20455555

  5. Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development

    PubMed Central

    Anderson, Kelly M.; Anderson, Douglas M.; McAnally, John R.; Shelton, John M.; Bassel-Duby, Rhonda; Olson, Eric N.

    2017-01-01

    HAND2 is an ancestral regulator of heart development and one of four transcription factors that control the reprogramming of fibroblasts into cardiomyocytes1–4. Deletion of Hand2 in mice results in right ventricle hypoplasia and embryonic lethality1,5. Hand2 expression is tightly regulated by upstream enhancers6,7 that reside within a super-enhancer delineated by histone H3 acetyl Lys27 (H3K27ac) modifications8. Here we show that transcription of a Hand2-associated long non-coding RNA, which we named upperhand (Uph), is required to maintain the super-enhancer signature and elongation of RNA polymerase II through the Hand2 enhancer locus. Blockade of Uph transcription, but not knockdown of the mature transcript, abolished Hand2 expression, causing right ventricular hypoplasia and embryonic lethality in mice. Given the substantial number of uncharacterized promoter-associated long non-coding RNAs encoded by the mammalian genome9, the Uph–Hand2 regulatory partnership offers a mechanism by which divergent non-coding transcription can establish a permissive chromatin environment. PMID:27783597

  6. Correia Repeat Enclosed Elements and Non-Coding RNAs in the Neisseria Species

    PubMed Central

    Roberts, Sabrina B.; Spencer-Smith, Russell; Shah, Mahwish; Nebel, Jean-Christophe; Cook, Richard T.; Snyder, Lori A. S.

    2016-01-01

    Neisseria gonorrhoeae is capable of causing gonorrhoea and more complex diseases in the human host. Neisseria meningitidis is a closely related pathogen that shares many of the same genomic features and virulence factors, but causes the life threatening diseases meningococcal meningitis and septicaemia. The importance of non-coding RNAs in gene regulation has become increasingly evident having been demonstrated to be involved in regulons responsible for iron acquisition, antigenic variation, and virulence. Neisseria spp. contain an IS-like element, the Correia Repeat Enclosed Element, which has been predicted to be mobile within the genomes or to have been in the past. This repeat, present in over 100 copies in the genome, has the ability to alter gene expression and regulation in several ways. We reveal here that Correia Repeat Enclosed Elements tend to be near non-coding RNAs in the Neisseria spp., especially N. gonorrhoeae. These results suggest that Correia Repeat Enclosed Elements may have disrupted ancestral regulatory networks not just through their influence on regulatory proteins but also for non-coding RNAs. PMID:27681925

  7. Current Status of Long Non-Coding RNAs in Human Breast Cancer

    PubMed Central

    Cerk, Stefanie; Schwarzenbacher, Daniela; Adiprasito, Jan Basri; Stotz, Michael; Hutterer, Georg C.; Gerger, Armin; Ling, Hui; Calin, George Adrian; Pichler, Martin

    2016-01-01

    Breast cancer represents a major health burden in Europe and North America, as recently published data report breast cancer as the second leading cause of cancer related death in women worldwide. Breast cancer is regarded as a highly heterogeneous disease in terms of clinical course and biological behavior and can be divided into several molecular subtypes, with different prognosis and treatment responses. The discovery of numerous non-coding RNAs has dramatically changed our understanding of cell biology, especially the pathophysiology of cancer. Long non-coding RNAs (lncRNAs) are non-protein-coding transcripts >200 nucleotides in length. Several studies have demonstrated their role as key regulators of gene expression, cell biology and carcinogenesis. Deregulated expression levels of lncRNAs have been observed in various types of cancers including breast cancer. lncRNAs are involved in cancer initiation, progression, and metastases. In this review, we summarize the recent literature to highlight the current status of this class of long non-coding lncRNAs in breast cancer. PMID:27608009

  8. MicroRNAs: Non-coding fine tuners of receptor tyrosine kinase signalling in cancer.

    PubMed

    Donzelli, Sara; Cioce, Mario; Muti, Paola; Strano, Sabrina; Yarden, Yosef; Blandino, Giovanni

    2016-02-01

    Emerging evidence point to a crucial role for non-coding RNAs in modulating homeostatic signaling under physiological and pathological conditions. MicroRNAs, the best-characterized non-coding RNAs to date, can exquisitely integrate spatial and temporal signals in complex networks, thereby confer specificity and sensitivity to tissue response to changes in the microenvironment. MicroRNAs appear as preferential partners for Receptor Tyrosine Kinases (RTKs) in mediating signaling under stress conditions. Stress signaling can be especially relevant to disease. Here we focus on the ability of microRNAs to mediate RTK signaling in cancer, by acting as both tumor suppressors and oncogenes. We will provide a few general examples of microRNAs modulating specific tumorigenic functions downstream of RTK signaling and integrate oncogenic signals from multiple RTKs. A special focus will be devoted to epidermal growth factor receptor (EGFR) signaling, a system offering relatively rich information. We will explore the role of selected microRNAs as bidirectional modulators of EGFR functions in cancer cells. In addition, we will present the emerging evidence for microRNAs being specifically modulated by oncogenic EGFR mutants and we will discuss how this impinges on EGFRmut driven chemoresistance, which fits into the tumor heterogeneity-driven cancer progression. Finally, we discuss how other non-coding RNA species are emerging as important modulators of cancer progression and why the scenario depicted herein is destined to become increasingly complex in the future.

  9. A two-dimensional mutate-and-map strategy for non-coding RNA structure

    NASA Astrophysics Data System (ADS)

    Kladwang, Wipapat; Vanlang, Christopher C.; Cordero, Pablo; Das, Rhiju

    2011-12-01

    Non-coding RNAs fold into precise base-pairing patterns to carry out critical roles in genetic regulation and protein synthesis, but determining RNA structure remains difficult. Here, we show that coupling systematic mutagenesis with high-throughput chemical mapping enables accurate base-pair inference of domains from ribosomal RNA, ribozymes and riboswitches. For a six-RNA benchmark that has challenged previous chemical/computational methods, this ‘mutate-and-map’ strategy gives secondary structures that are in agreement with crystallography (helix error rates, 2%), including a blind test on a double-glycine riboswitch. Through modelling of partially ordered states, the method enables the first test of an interdomain helix-swap hypothesis for ligand-binding cooperativity in a glycine riboswitch. Finally, the data report on tertiary contacts within non-coding RNAs, and coupling to the Rosetta/FARFAR algorithm gives nucleotide-resolution three-dimensional models (helix root-mean-squared deviation, 5.7 Å) of an adenine riboswitch. These results establish a promising two-dimensional chemical strategy for inferring the secondary and tertiary structures that underlie non-coding RNA behaviour.

  10. Origin and evolution of the long non-coding genes in the X-inactivation center.

    PubMed

    Romito, Antonio; Rougeulle, Claire

    2011-11-01

    Random X chromosome inactivation (XCI), the eutherian mechanism of X-linked gene dosage compensation, is controlled by a cis-acting locus termed the X-inactivation center (Xic). One of the striking features that characterize the Xic landscape is the abundance of loci transcribing non-coding RNAs (ncRNAs), including Xist, the master regulator of the inactivation process. Recent comparative genomic analyses have depicted the evolutionary scenario behind the origin of the X-inactivation center, revealing that this locus evolved from a region harboring protein-coding genes. During mammalian radiation, this ancestral protein-coding region was disrupted in the marsupial group, whilst it provided in eutherian lineage the starting material for the non-translated RNAs of the X-inactivation center. The emergence of non-coding genes occurred by a dual mechanism involving loss of protein-coding function of the pre-existing genes and integration of different classes of mobile elements, some of which modeled the structure and sequence of the non-coding genes in a species-specific manner. The rising genes started to produce transcripts that acquired function in regulating the epigenetic status of the X chromosome, as shown for Xist, its antisense Tsix, Jpx, and recently suggested for Ftx. Thus, the appearance of the Xic, which occurred after the divergence between eutherians and marsupials, was the basis for the evolution of random X inactivation as a strategy to achieve dosage compensation.

  11. Non-coding RNAs: Functions and applications in endocrine-related cancer.

    PubMed

    Venkatesh, Thejaswini; Suresh, Padmanaban S; Tsutsumi, Rie

    2015-11-15

    A significant fraction of the human genome is transcribed as non-coding RNAs (ncRNAs). This non-coding transcriptome has challenged the notion of the central dogma and its involvement in transcriptional and post-transcriptional regulation of gene expression is well established. Interestingly, several ncRNAs are dysregulated in cancer and current non-coding transcriptome research aims to use our increasing knowledge of these ncRNAs for the development of cancer biomarkers and anti-cancer drugs. In endocrine-related cancers, for which survival rates can be relatively low, there is a need for such advancements. In this review, we aimed to summarize the roles and clinical implications of recently discovered ncRNAs, including long ncRNAs, PIWI-interacting RNAs, tRNA- and Y RNA-derived ncRNAs, and small nucleolar RNAs, in endocrine-related cancers affecting both sexes. We focus on recent studies highlighting discoveries in ncRNA biology and expression in cancer, and conclude with a discussion on the challenges and future directions, including clinical application. ncRNAs show great promise as diagnostic tools and therapeutic targets, but further work is necessary to realize the potential of these unconventional transcripts.

  12. The 5' and 3' ends of alphavirus RNAs--Non-coding is not non-functional.

    PubMed

    Hyde, Jennifer L; Chen, Rubing; Trobaugh, Derek W; Diamond, Michael S; Weaver, Scott C; Klimstra, William B; Wilusz, Jeffrey

    2015-08-03

    The non-coding regions found at the 5' and 3' ends of alphavirus genomes regulate viral gene expression, replication, translation and virus-host interactions, which have significant implications for viral evolution, host range, and pathogenesis. The functions of these non-coding regions are mediated by a combination of linear sequence and structural elements. The capped 5' untranslated region (UTR) contains promoter elements, translational regulatory sequences that modulate dependence on cellular translation factors, and structures that help to avoid innate immune defenses. The polyadenylated 3' UTR contains highly conserved sequence elements for viral replication, binding sites for cellular miRNAs that determine cell tropism, host range, and pathogenesis, and conserved binding regions for a cellular protein that influences viral RNA stability. Nonetheless, there are additional conserved elements in non-coding regions of the virus (e.g., the repeated sequence elements in the 3' UTR) whose function remains obscure. Thus, key questions remain as to the function of these short yet influential untranslated segments of alphavirus RNAs.

  13. Downregulation of long non-coding RNA MEG3 in nasopharyngeal carcinoma.

    PubMed

    Chak, Wing-Po; Lung, Raymond Wai-Ming; Tong, Joanna Hung-Man; Chan, Sylvia Yat-Yee; Lun, Samantha Wei-Man; Tsao, Sai-Wah; Lo, Kwok-Wai; To, Ka-Fai

    2017-03-01

    In our previous whole-transcriptome sequencing analysis, downregulation of a long non-coding RNA, maternally expressed gene 3 (MEG3), was identified in NPC samples. This finding suggests the possible role of MEG3 as a tumor suppressor in this distinctive disease. In the present study, two MEG3 variants, AF119863 (MEG3-AF) and BX247998 (MEG3-BX), were found abundantly expressed in a normal nasopharyngeal epithelial cell line, NP69. Significant downregulation of MEG3-AF was further verified in a panel of NPC samples including xenografts and primary biopsies. MEG3 is an imprinted gene located within chromosome 14q32, a common deleted region in NPC. Both DNA copy number loss and aberrant promoter methylation contributed to MEG3 inactivation. Interestingly, MEG3 expression could successfully be rescued by the treatment of a demethylation agent. Besides, ectopic expression of MEG3 in NPC cell lines resulted in considerable repression of in vitro anchorage-independent growth and in vivo tumorigenicity, in addition to significant inhibition in cell proliferation, colony formation, and induction of cell cycle arrest. Finally, we revealed the association between MEG3 activity and the p53 signaling cascade. Our findings characterize MEG3 as a tumor suppressive long non-coding RNA in NPC and encourage the development of precise long non-coding RNA-targeted epigenetic therapy against this malignancy. © 2016 Wiley Periodicals, Inc.

  14. Prospective and therapeutic screening value of non-coding RNA as biomarkers in cardiovascular disease

    PubMed Central

    Busch, Albert; Eken, Suzanne M.

    2016-01-01

    Non-coding RNA (ncRNA) is a class of genetic, epigenetic and translational regulators, containing short and long transcripts with intriguing abilities for use as biomarkers due to their superordinate role in disease development. In the past five years many of these have been investigated in cardiovascular diseases (CVD), mainly myocardial infarction (MI) and heart failure. To extend this view, we summarize the existing data about ncRNA as biomarker in the whole entity of CVDs by literature-based review and comparison of the identified candidates. The myomirs miRNA-1, -133a/b, -208a, -499 with well-defined cellular functions have proven equal to classic protein biomarkers for disease detection in MI. Other microRNAs (miRNAs) were reproducibly found to correlate with disease, disease severity and outcome in heart failure, stroke, coronary artery disease (CAD) and aortic aneurysm. An additional utilization has been discovered for therapeutic monitoring. The function of long non-coding transcripts is only about to be unraveled, yet shows great potential for outcome prediction. ncRNA biomarkers have a distinct role if no alternative test is available or has is performing poorly. With increasing mechanistic understanding, circulating miRNA and long non-coding transcripts will provide useful disease information with high predictive power. PMID:27429962

  15. Conservation and dissipation of light energy in desiccation-tolerant photoautotrophs, two sides of the same coin.

    PubMed

    Heber, Ulrich

    2012-09-01

    Conservation of light energy in photosynthesis is possible only in hydrated photoautotrophs. It requires complex biochemistry and is limited in capacity. Charge separation in reaction centres of photosystem II initiates energy conservation but opens also the path to photooxidative damage. A main mechanism of photoprotection active in hydrated photoautotrophs is controlled by light. This is achieved by coupling light flux to the protonation of a special thylakoid protein which activates thermal energy dissipation. This mechanism facilitates the simultaneous occurrence of energy conservation and energy dissipation but cannot completely prevent damage by light. Continuous metabolic repair is required to compensate damage. More efficient photoprotection is needed by desiccation-tolerant photoautotrophs. Loss of water during desiccation activates ultra-fast energy dissipation in mosses and lichens. Desiccation-induced energy dissipation neither requires a protonation reaction nor light but photoprotection often increases when light is present during desiccation. Two different mechanisms contribute to photoprotection of desiccated photoautotrophs. One facilitates energy dissipation in the antenna of photosystem II which is faster than energy capture by functional reaction centres. When this is insufficient for full photoprotection, the other one permits energy dissipation in the reaction centres themselves.

  16. The non-coding B2 RNA binds to the DNA cleft and active site region of RNA polymerase II

    PubMed Central

    Ponicsan, Steven L.; Houel, Stephane; Old, William M.; Ahn, Natalie G.; Goodrich, James A.; Kugel, Jennifer F.

    2013-01-01

    The B2 family of short interspersed elements is transcribed into non-coding RNA by RNA polymerase III. The ~180 nt B2 RNA has been shown to potently repress mRNA transcription by binding tightly to RNA polymerase II (Pol II) and assembling with it into complexes on promoter DNA, where it keeps the polymerase from properly engaging the promoter DNA. Mammalian Pol II is a ~500 kD complex that contains 12 different protein subunits, providing many possible surfaces for interaction with B2 RNA. We found that the carboxy-terminal domain of the largest Pol II subunit was not required for B2 RNA to bind Pol II and repress transcription in vitro. To identify the surface on Pol II to which the minimal functional region of B2 RNA binds, we coupled multi-step affinity purification, reversible formaldehyde crosslinking, peptide sequencing by mass spectrometry, and analysis of peptide enrichment. The Pol II peptides most highly recovered after crosslinking to B2 RNA mapped to the DNA binding cleft and active site region of Pol II. These studies determine the location of a defined nucleic acid binding site on a large, native, multi-subunit complex and provide insight into the mechanism of transcriptional repression by B2 RNA. PMID:23416138

  17. Non-coding RNAs and Hypertension–Unveiling Unexpected Mechanisms of Hypertension by the Dark Matter of the Genome

    PubMed Central

    Murakami, Kazuo

    2015-01-01

    Hypertension is a major risk factor of cardiovascular diseases and a most important health problem in developed countries. Investigations on pathophysiology of hypertension have been based on gene products from coding region that occupies only about 1% of total genome region. On the other hand, non-coding region that occupies almost 99% of human genome has been regarded as “junk” for a long time and went unnoticed until these days. But recently, it turned out that non-coding region is extensively transcribed to non-coding RNAs and has various functions. This review highlights recent updates on the significance of non-coding RNAs such as micro RNAs and long non-coding RNAs (lncRNAs) on the pathogenesis of hypertension, also providing an introduction to basic biology of non-coding RNAs. For example, microRNAs are associated with hypertension via neuro-fumoral factor, sympathetic nerve activity, ion transporters in kidneys, endothelial function, vascular smooth muscle phenotype transformation, or communication between cells. Although reports of lncRNAs on pathogenesis of hypertension are scarce at the moment, new lncRNAs in relation to hypertension are being discovered at a rapid pace owing to novel techniques such as microarray or next-generation sequencing. In the clinical settings, clinical use of non-coding RNAs in identifying cardiovascular risks or developing novel tools for treating hypertension such as molecular decoy or mimicks is promising, although improvement in chemical modification or drug delivery system is necessary. PMID:25828869

  18. Screening and characterization of oleaginous Chlorella strains and exploration of photoautotrophic Chlorella protothecoides for oil production.

    PubMed

    Sun, Zheng; Zhou, Zhi-gang; Gerken, Henri; Chen, Feng; Liu, Jin

    2015-05-01

    The growth and oil production of nine Chlorella strains were comparatively assessed and Chlorellaprotothecoides CS-41 demonstrated the greatest lipid production potential. The effects of different nitrogen forms and concentrations, phosphorus concentrations and light intensities on growth and oil production were studied in laboratory columns. C. protothecoides CS-41 accumulated lipids up to 55% of dry weight, with triacylglycerol and oleic acid being 71% of total lipids and 59% of total fatty acids, respectively. High biomass and lipid productivities were achieved in outdoor panel PBRs, up to 1.25 and 0.59 g L(-1) day(-1), or 44. 1 and 16.1 g m(-2) day(-1), respectively. A two-stage cultivation strategy was proposed to enhance the algal biomass and lipid production. This is the first comprehensive investigation of both indoor and outdoor photoautotrophic C. protothecoides cultures for oil production, and C. protothecoides CS-41 represents a promising biofuel feedstock worthy of further exploration.

  19. Potential prognostic long non-coding RNA identification and their validation in predicting survival of patients with multiple myeloma.

    PubMed

    Hu, Ai-Xin; Huang, Zhi-Yong; Zhang, Lin; Shen, Jian

    2017-04-01

    Multiple myeloma, a typical hematological malignancy, is characterized by malignant proliferation of plasma cells. This study was to identify differently expressed long non-coding RNAs to predict the survival of patients with multiple myeloma efficiently. Gene expressing profiles of diagnosed patients with multiple myeloma, GSE24080 (559 samples) and GSE57317 (55 samples), were downloaded from Gene Expression Omnibus database. After processing, survival-related long non-coding RNAs were identified by Cox regression analysis. The prognosis of multiple myeloma patients with differently expressed long non-coding RNAs was predicted by Kaplan-Meier analysis. Meanwhile, stratified analysis was performed based on the concentrations of serum beta 2-microglobulin (S-beta 2m), albumin, and lactate dehydrogenase of multiple myeloma patients. Gene set enrichment analysis was performed to further explore the functions of identified long non-coding RNAs. A total of 176 long non-coding RNAs significantly related to the survival of multiple myeloma patients (p < 0.05) were identified. In dataset GSE24080 and GSE57317, there were 558 and 55 patients being clustered into two groups with significant differences, respectively. Stratified analysis indicated that prediction of the prognoses with these long non-coding RNAs was independent from other clinical phenotype of multiple myeloma. Gene set enrichment analysis-identified pathways of cell cycle, focal adhesion, and G2-M checkpoint were associated with these long non-coding RNAs. A total of 176 long non-coding RNAs, especially RP1-286D6.1, AC008875.2, MTMR9L, AC069360.2, and AL512791.1, were potential biomarkers to evaluate the prognosis of multiple myeloma patients. These long non-coding RNAs participated indispensably in many pathways associated to the development of multiple myeloma; however, the molecular mechanisms need to be further studied.

  20. NONCODEv4: exploring the world of long non-coding RNA genes

    PubMed Central

    Xie, Chaoyong; Yuan, Jiao; Li, Hui; Li, Ming; Zhao, Guoguang; Bu, Dechao; Zhu, Weimin; Wu, Wei; Chen, Runsheng; Zhao, Yi

    2014-01-01

    NONCODE (http://www.bioinfo.org/noncode/) is an integrated knowledge database dedicated to non-coding RNAs (excluding tRNAs and rRNAs). Non-coding RNAs (ncRNAs) have been implied in diseases and identified to play important roles in various biological processes. Since NONCODE version 3.0 was released 2 years ago, discovery of novel ncRNAs has been promoted by high-throughput RNA sequencing (RNA-Seq). In this update of NONCODE, we expand the ncRNA data set by collection of newly identified ncRNAs from literature published in the last 2 years and integration of the latest version of RefSeq and Ensembl. Particularly, the number of long non-coding RNA (lncRNA) has increased sharply from 73 327 to 210 831. Owing to similar alternative splicing pattern to mRNAs, the concept of lncRNA genes was put forward to help systematic understanding of lncRNAs. The 56 018 and 46 475 lncRNA genes were generated from 95 135 and 67 628 lncRNAs for human and mouse, respectively. Additionally, we present expression profile of lncRNA genes by graphs based on public RNA-seq data for human and mouse, as well as predict functions of these lncRNA genes. The improvements brought to the database also include an incorporation of an ID conversion tool from RefSeq or Ensembl ID to NONCODE ID and a service of lncRNA identification. NONCODE is also accessible through http://www.noncode.org/. PMID:24285305

  1. Harnessing the Power of SIRT1 and Non-coding RNAs in Vascular Disease

    PubMed Central

    Maiese, Kenneth

    2016-01-01

    Noncommunicable diseases (NCDs) contribute to a significant amount of disability and death in the world. Of these disorders, vascular disease is ranked high, falls within the five leading causes of death, and impacts multiple other disease entities such as those of the cardiac system, nervous system, and metabolic disease. Targeting the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1) pathway and the modulation of micro ribonucleic acids (miRNAs) may hold great promise for the development of novel strategies for the treatment of vascular disease since each of these pathways are highly relevant to cardiac and nervous system disorders as well as to metabolic dysfunction. SIRT1 is vital in determining the course of stem cell development and the survival, metabolism, and life span of differentiated cells that are overseen by both autophagy and apoptosis. SIRT1 interfaces with a number of pathways that involve forkhead transcription factors, mechanistic of rapamycin (mTOR), AMP activated protein kinase (AMPK) and Wnt1 inducible signaling pathway protein 1 (WISP1) such that the level of activity of SIRT1 can become a critical determinant for biological and clinical outcomes. The essential fine control of SIRT1 is directly tied to the world of non-coding RNAs that ultimately oversee SIRT1 activity to either extend or end cellular survival. Future studies that can further elucidate the crosstalk between SIRT1 and non-coding RNAs should serve well our ability to harness the power of SIRT1 and non-coding RNAs for the treatment of vascular disorders. PMID:27897112

  2. Activation of p53 by MEG3 non-coding RNA.

    PubMed

    Zhou, Yunli; Zhong, Ying; Wang, Yingying; Zhang, Xun; Batista, Dalia L; Gejman, Roger; Ansell, Peter J; Zhao, Jing; Weng, Catherine; Klibanski, Anne

    2007-08-24

    MEG3 is a maternally expressed imprinted gene suggested to function as a non-coding RNA. Our previous studies suggest that MEG3 has a function of tumor suppression. The tumor suppressor p53 plays a central role in tumor suppression and mediates the functions of many other tumor suppressors. Therefore, we hypothesized that MEG3 functions through activation of p53. We found that transfection of expression constructs for MEG3 and its isoforms results in a significant increase in p53 protein levels and dramatically stimulates p53-dependent transcription from a p53-responsive promoter. Using this as the functional assay, we demonstrated that the open reading frames encoded by MEG3 transcripts are not required for MEG3 function, and the folding of MEG3 RNA is critical to its function, supporting the concept that MEG3 functions as a non-coding RNA. We further found that MEG3 stimulates expression of the growth differentiation factor 15 (GDF15) by enhancing p53 binding to the GDF15 gene promoter. Interestingly, MEG3 does not stimulate p21(CIP1) expression, suggesting that MEG3 can regulate the specificity of p53 transcriptional activation. p53 degradation is mainly mediated by the mouse double minute 2 homolog (MDM2). We found that MDM2 levels were down-regulated in cells transfected with MEG3, suggesting that MDM2 suppression contributes at least in part to p53 accumulation induced by MEG3. Finally, we found that MEG3 is able to inhibit cell proliferation in the absence of p53. These data suggest that MEG3 non-coding RNA may function as a tumor suppressor, whose action is mediated by both p53-dependent and p53-independent pathways.

  3. Long antisense non-coding RNAs and the epigenetic regulation of gene expression.

    PubMed

    Vadaie, Nadia; Morris, Kevin V

    2013-08-01

    Shortly after the completion of the human genome project in 2003, the Encode project was launched. The project was set out to identify the functional elements in the human genome, and unexpectedly it was found that >80% of the genome is transcribed. The Encode project identified those transcribed regions of the genome to be encoded by non-coding RNAs (ncRNAs). With only 2% of the genome carrying gene-encoding proteins, the conundrum was then, what is the function, if any, of these non-coding regions of the genome? These ncRNAs included both short and long RNAs. The focus of this review will be on antisense long non-coding RNAs (lncRNAs), as these transcripts have been observed to play a role in gene expression of protein-coding genes. Some lncRNAs have been found to regulate protein-coding gene transcription at the epigenetic level, whereby they suppress transcription through the recruitment of protein complexes to target loci in the genome. Conversely, there are lncRNAs that have a positive role in gene expression with less known about mechanism, and some lncRNAs have been shown to be involved in post-transcriptional processes. Additionally, lncRNAs have been observed to regulate their own expression in a positive feedback loop by functioning as a decoy. The biological significance of lncRNAs is only just now becoming evident, with many lncRNAs found to play a significant role in several human diseases.

  4. Integrated genome analysis suggests that most conserved non-coding sequences are regulatory factor binding sites

    PubMed Central

    Hemberg, Martin; Gray, Jesse M.; Cloonan, Nicole; Kuersten, Scott; Grimmond, Sean; Greenberg, Michael E.; Kreiman, Gabriel

    2012-01-01

    More than 98% of a typical vertebrate genome does not code for proteins. Although non-coding regions are sprinkled with short (<200 bp) islands of evolutionarily conserved sequences, the function of most of these unannotated conserved islands remains unknown. One possibility is that unannotated conserved islands could encode non-coding RNAs (ncRNAs); alternatively, unannotated conserved islands could serve as promoter-distal regulatory factor binding sites (RFBSs) like enhancers. Here we assess these possibilities by comparing unannotated conserved islands in the human and mouse genomes to transcribed regions and to RFBSs, relying on a detailed case study of one human and one mouse cell type. We define transcribed regions by applying a novel transcript-calling algorithm to RNA-Seq data obtained from total cellular RNA, and we define RFBSs using ChIP-Seq and DNAse-hypersensitivity assays. We find that unannotated conserved islands are four times more likely to coincide with RFBSs than with unannotated ncRNAs. Thousands of conserved RFBSs can be categorized as insulators based on the presence of CTCF or as enhancers based on the presence of p300/CBP and H3K4me1. While many unannotated conserved RFBSs are transcriptionally active to some extent, the transcripts produced tend to be unspliced, non-polyadenylated and expressed at levels 10 to 100-fold lower than annotated coding or ncRNAs. Extending these findings across multiple cell types and tissues, we propose that most conserved non-coding genomic DNA in vertebrate genomes corresponds to promoter-distal regulatory elements. PMID:22684627

  5. Expression profile of long non-coding RNAs in colorectal cancer: A microarray analysis.

    PubMed

    Luo, Jia; Xu, Luning; Jiang, Yigui; Zhuo, Dexiang; Zhang, Shengjun; Wu, Lianhui; Xu, Huadong; Huang, Yue

    2016-04-01

    Colorectal cancer (CRC) is one of the most prevalent malignant tumors and the second cause of cancer-related mortality worldwide. Due to increased morbidity and mortality rates, there is an urgent need to understand the pathogenesis of CRC, discover strategies that can improve diagnosis, and ultimately identify therapies targeting this disease. Over the past several years, research into tumor progression mechanisms has been devoted to identifying and understanding various coding and non-coding regions of the genome and how these genetic variants may affect tumorigenesis and progression. Recently, long non-coding RNAs (lncRNAs), which are non‑protein coding transcripts longer than 200 nucleotides, have emerged as a key aspect in tumor pathogenesis. In the present study, we examined the lncRNA and mRNA expression profiles in 4 patients with colon adenocarcinoma, with paired adjacent normal tissues as controls. Microarray data showed that a total of 3,523 lncRNAs and 2,515 mRNAs were consistently differentially expressed in the CRC tissues compared to adjacent normal tissues. Upon comparison of the differentially expressed transcripts between the groups, we identified 22 pathways which were related to the upregulated transcripts and 24 pathways that corresponded to the downregulated transcripts. Gene ontology analysis revealed that the upregulated transcripts were predominantly enriched in DNA metabolic processes, and the downregulated transcripts were predominantly enriched in organic hydroxyl compound metabolic processes. Coding-non-coding gene co-expression analysis showed that these differentially expressed lncRNAs were closely correlated with 'Wnt signaling pathway' components, whose aberrant activation plays a central role in CRC, indicating that a functional correlation exists between them. In conclusion, the results of the microarray and informatic analysis strongly suggest that lncRNA dysregulation is involved in the complicated process of CRC development

  6. Involvement of Host Non-Coding RNAs in the Pathogenesis of the Influenza Virus

    PubMed Central

    Ma, Yanmei; Ouyang, Jing; Wei, Jingyun; Maarouf, Mohamed; Chen, Ji-Long

    2016-01-01

    Non-coding RNAs (ncRNAs) are a new type of regulators that play important roles in various cellular processes, including cell growth, differentiation, survival, and apoptosis. ncRNAs, including small non-coding RNAs (e.g., microRNAs, small interfering RNAs) and long non-coding RNAs (lncRNAs), are pervasively transcribed in human and mammalian cells. Recently, it has been recognized that these ncRNAs are critically implicated in the virus–host interaction as key regulators of transcription or post-transcription during viral infection. Influenza A virus (IAV) is still a major threat to human health. Hundreds of ncRNAs are differentially expressed in response to infection with IAV, such as infection by pandemic H1N1 and highly pathogenic avian strains. There is increasing evidence demonstrating functional involvement of these regulatory microRNAs, vault RNAs (vtRNAs) and lncRNAs in pathogenesis of influenza virus, including a variety of host immune responses. For example, it has been shown that ncRNAs regulate activation of pattern recognition receptor (PRR)-associated signaling and transcription factors (nuclear factor κ-light-chain-enhancer of activated B cells, NF-κB), as well as production of interferons (IFNs) and cytokines, and expression of critical IFN-stimulated genes (ISGs). The vital functions of IAV-regulated ncRNAs either to against defend viral invasion or to promote progeny viron production are summarized in this review. In addition, we also highlight the potentials of ncRNAs as therapeutic targets and diagnostic biomarkers. PMID:28035991

  7. NEAT1: A novel cancer-related long non-coding RNA.

    PubMed

    Yu, Xin; Li, Zheng; Zheng, Heyi; Chan, Matthew T V; Wu, William Ka Kei

    2017-04-01

    Aberrant overexpression of the long non-coding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) has been documented in different types of solid tumours, such as lung cancer, oesophageal cancer, colorectal cancer and hepatocellular carcinoma, in which its high levels are associated with poor prognosis. In contrast, NEAT1 is downregulated in acute promyelocytic leukaemia where it promotes leucocyte differentiation. In this review, we provide an overview of current evidence concerning the oncogenic role and potential clinical utilities of NEAT1. Further investigations are warranted to elucidate the upstream and downstream mechanisms of NEAT1 overexpression.

  8. In silico discovery and modeling of non-coding RNA structure in viruses.

    PubMed

    Moss, Walter N; Steitz, Joan A

    2015-12-01

    This review covers several computational methods for discovering structured non-coding RNAs in viruses and modeling their putative secondary structures. Here we will use examples from two target viruses to highlight these approaches: influenza A virus-a relatively small, segmented RNA virus; and Epstein-Barr virus-a relatively large DNA virus with a complex transcriptome. Each system has unique challenges to overcome and unique characteristics to exploit. From these particular cases, generically useful approaches can be derived for the study of additional viral targets.

  9. Multisubunit RNA Polymerases IV and V: Purveyors of Non-Coding RNA for Plant Gene Silencing

    SciTech Connect

    Haag, Jeremy R.; Pikaard, Craig S.

    2011-08-01

    In all eukaryotes, nuclear DNA-dependent RNA polymerases I, II and III synthesize the myriad RNAs that are essential for life. Remarkably, plants have evolved two additional multisubunit RNA polymerases, RNA polymerases IV and V, which orchestrate non-coding RNA-mediated gene silencing processes affecting development, transposon taming, antiviral defence and allelic crosstalk. Biochemical details concerning the templates and products of RNA polymerases IV and V are lacking. However, their subunit compositions reveal that they evolved as specialized forms of RNA polymerase II, which provides the unique opportunity to study the functional diversification of a eukaryotic RNA polymerase family.

  10. Molecular function and regulation of long non-coding RNAs: paradigms with potential roles in cancer.

    PubMed

    Hajjari, Mohammadreza; Khoshnevisan, Atefeh; Shin, Young Kee

    2014-11-01

    Different long non-coding RNAs (lncRNAs) are transcribed within the genome. Although initially argued to be spurious transcriptional noise, these RNAs play important roles in biological pathways, as shown by different studies. Also, there are some reports about the role of lncRNAs in different cancers. They can contribute to the development and progression of cancer by the functioning as oncogene or/and tumor suppressor molecules. In this review, we point to some important lncRNAs as examples which seem to be involved in cancer initiation/progression.

  11. TFIIS-Dependent Non-coding Transcription Regulates Developmental Genome Rearrangements

    PubMed Central

    Maliszewska-Olejniczak, Kamila; Gruchota, Julita; Gromadka, Robert; Denby Wilkes, Cyril; Arnaiz, Olivier; Mathy, Nathalie; Duharcourt, Sandra; Bétermier, Mireille; Nowak, Jacek K.

    2015-01-01

    Because of their nuclear dimorphism, ciliates provide a unique opportunity to study the role of non-coding RNAs (ncRNAs) in the communication between germline and somatic lineages. In these unicellular eukaryotes, a new somatic nucleus develops at each sexual cycle from a copy of the zygotic (germline) nucleus, while the old somatic nucleus degenerates. In the ciliate Paramecium tetraurelia, the genome is massively rearranged during this process through the reproducible elimination of repeated sequences and the precise excision of over 45,000 short, single-copy Internal Eliminated Sequences (IESs). Different types of ncRNAs resulting from genome-wide transcription were shown to be involved in the epigenetic regulation of genome rearrangements. To understand how ncRNAs are produced from the entire genome, we have focused on a homolog of the TFIIS elongation factor, which regulates RNA polymerase II transcriptional pausing. Six TFIIS-paralogs, representing four distinct families, can be found in P. tetraurelia genome. Using RNA interference, we showed that TFIIS4, which encodes a development-specific TFIIS protein, is essential for the formation of a functional somatic genome. Molecular analyses and high-throughput DNA sequencing upon TFIIS4 RNAi demonstrated that TFIIS4 is involved in all kinds of genome rearrangements, including excision of ~48% of IESs. Localization of a GFP-TFIIS4 fusion revealed that TFIIS4 appears specifically in the new somatic nucleus at an early developmental stage, before IES excision. RT-PCR experiments showed that TFIIS4 is necessary for the synthesis of IES-containing non-coding transcripts. We propose that these IES+ transcripts originate from the developing somatic nucleus and serve as pairing substrates for germline-specific short RNAs that target elimination of their homologous sequences. Our study, therefore, connects the onset of zygotic non coding transcription to the control of genome plasticity in Paramecium, and establishes for

  12. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs) . Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This document contains the appendices to the main report.

  13. Roles, Functions, and Mechanisms of Long Non-coding RNAs in Cancer

    PubMed Central

    Fang, Yiwen; Fullwood, Melissa J.

    2016-01-01

    Long non-coding RNAs (lncRNAs) play important roles in cancer. They are involved in chromatin remodeling, as well as transcriptional and post-transcriptional regulation, through a variety of chromatin-based mechanisms and via cross-talk with other RNA species. lncRNAs can function as decoys, scaffolds, and enhancer RNAs. This review summarizes the characteristics of lncRNAs, including their roles, functions, and working mechanisms, describes methods for identifying and annotating lncRNAs, and discusses future opportunities for lncRNA-based therapies using antisense oligonucleotides. PMID:26883671

  14. A Central Role for Long Non-Coding RNA in Cancer

    PubMed Central

    Mitra, Sheetal A.; Mitra, Anirban P.; Triche, Timothy J.

    2011-01-01

    Long non-coding RNAs (ncRNAs) have been shown to regulate important biological processes that support normal cellular functions. Aberrant regulation of these essential functions can promote tumor development. In this review, we underscore the importance of the regulatory role played by this distinct class of ncRNAs in cancer-associated pathways that govern mechanisms such as cell growth, invasion, and metastasis. We also highlight the possibility of using these unique RNAs as diagnostic and prognostic biomarkers in malignancies. PMID:22363342

  15. Non-coding RNAs and heme oxygenase-1 in vaccinia virus infection

    SciTech Connect

    Meseda, Clement A.; Srinivasan, Kumar; Wise, Jasen; Catalano, Jennifer; Yamada, Kenneth M.; Dhawan, Subhash

    2014-11-07

    Highlights: • Heme oxygenase-1 (HO-1) induction inhibited vaccinia virus infection of macrophages. • Reduced infectivity inversely correlated with increased expression of non-coding RNAs. • The regulation of HO-1 and ncRNAs suggests a novel host defense response against vaccinia virus infection. - Abstract: Small nuclear RNAs (snRNAs) are <200 nucleotide non-coding uridylate-rich RNAs. Although the functions of many snRNAs remain undetermined, a population of snRNAs is produced during the early phase of infection of cells by vaccinia virus. In the present study, we demonstrate a direct correlation between expression of the cytoprotective enzyme heme oxygenase-1 (HO-1), suppression of selective snRNA expression, and inhibition of vaccinia virus infection of macrophages. Hemin induced HO-1 expression, completely reversed virus-induced host snRNA expression, and suppressed vaccinia virus infection. This involvement of specific virus-induced snRNAs and associated gene clusters suggests a novel HO-1-dependent host-defense pathway in poxvirus infection.

  16. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin

    PubMed Central

    Böhmdorfer, Gudrun; Sethuraman, Shriya; Rowley, M Jordan; Krzyszton, Michal; Rothi, M Hafiz; Bouzit, Lilia; Wierzbicki, Andrzej T

    2016-01-01

    RNA-mediated transcriptional gene silencing is a conserved process where small RNAs target transposons and other sequences for repression by establishing chromatin modifications. A central element of this process are long non-coding RNAs (lncRNA), which in Arabidopsis thaliana are produced by a specialized RNA polymerase known as Pol V. Here we show that non-coding transcription by Pol V is controlled by preexisting chromatin modifications located within the transcribed regions. Most Pol V transcripts are associated with AGO4 but are not sliced by AGO4. Pol V-dependent DNA methylation is established on both strands of DNA and is tightly restricted to Pol V-transcribed regions. This indicates that chromatin modifications are established in close proximity to Pol V. Finally, Pol V transcription is preferentially enriched on edges of silenced transposable elements, where Pol V transcribes into TEs. We propose that Pol V may play an important role in the determination of heterochromatin boundaries. DOI: http://dx.doi.org/10.7554/eLife.19092.001 PMID:27779094

  17. Emerging roles of non-coding RNAs in gastric cancer: Pathogenesis and clinical implications

    PubMed Central

    Xie, Shan-Shan; Jin, Juan; Xu, Xiao; Zhuo, Wei; Zhou, Tian-Hua

    2016-01-01

    Gastric cancer is a leading cause of cancer-related deaths. However, the mechanisms underlying gastric carcinogenesis remain largely unclear. The association of non-coding RNAs (ncRNAs) with cancer has been widely studied during the past decade. In general, ncRNAs have been classified as small ncRNAs, including microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). Emerging evidence shows that miRNAs and lncRNAs play key roles in the formation and progression of many cancers. In this review, we focus on the regulation of miRNAs and lncRNAs in gastric cancer. miRNAs and lncRNAs appear to be involved in gastric tumor growth, invasion, and metastasis and in establishment of the gastric tumor microenvironment through various mechanisms. Furthermore, we also discuss the possibilities of establishing miRNAs and lncRNAs as potential biomarkers and therapeutic targets for gastric cancer. Taken together, we summarize the emerging roles of ncRNAs in gastric cancer development and their possible clinical significance. PMID:26811659

  18. Computational identification of human long intergenic non-coding RNAs using a GA-SVM algorithm.

    PubMed

    Wang, Yanqiu; Li, Yang; Wang, Qi; Lv, Yingli; Wang, Shiyuan; Chen, Xi; Yu, Xuexin; Jiang, Wei; Li, Xia

    2014-01-01

    Long intergenic non-coding RNAs (lincRNAs) are a new type of non-coding RNAs and are closely related with the occurrence and development of diseases. In previous studies, most lincRNAs have been identified through next-generation sequencing. Because lincRNAs exhibit tissue-specific expression, the reproducibility of lincRNA discovery in different studies is very poor. In this study, not including lincRNA expression, we used the sequence, structural and protein-coding potential features as potential features to construct a classifier that can be used to distinguish lincRNAs from non-lincRNAs. The GA-SVM algorithm was performed to extract the optimized feature subset. Compared with several feature subsets, the five-fold cross validation results showed that this optimized feature subset exhibited the best performance for the identification of human lincRNAs. Moreover, the LincRNA Classifier based on Selected Features (linc-SF) was constructed by support vector machine (SVM) based on the optimized feature subset. The performance of this classifier was further evaluated by predicting lincRNAs from two independent lincRNA sets. Because the recognition rates for the two lincRNA sets were 100% and 99.8%, the linc-SF was found to be effective for the prediction of human lincRNAs.

  19. Circulating long non-coding RNAs NRON and MHRT as novel predictive biomarkers of heart failure.

    PubMed

    Xuan, Lina; Sun, Lihua; Zhang, Ying; Huang, Yuechao; Hou, Yan; Li, Qingqi; Guo, Ying; Feng, Bingbing; Cui, Lina; Wang, Xiaoxue; Wang, Zhiguo; Tian, Ye; Yu, Bo; Wang, Shu; Xu, Chaoqian; Zhang, Mingyu; Du, Zhimin; Lu, Yanjie; Yang, Bao Feng

    2017-03-14

    This study sought to evaluate the potential of circulating long non-coding RNAs (lncRNAs) as biomarkers for heart failure (HF). We measured the circulating levels of 13 individual lncRNAs which are known to be relevant to cardiovascular disease in the plasma samples from 72 HF patients and 60 non-HF control participants using real-time reverse transcription-polymerase chain reaction (real-time RT-PCR) methods. We found that out of the 13 lncRNAs tested, non-coding repressor of NFAT (NRON) and myosin heavy-chain-associated RNA transcripts (MHRT) had significantly higher plasma levels in HF than in non-HF subjects: 3.17 ± 0.30 versus 1.0 ± 0.07 for NRON (P < 0.0001) and 1.66 ± 0.14 versus 1.0 ± 0.12 for MHRT (P < 0.0001). The area under the ROC curve was 0.865 for NRON and 0.702 for MHRT. Univariate and multivariate analyses identified NRON and MHRT as independent predictors for HF. Spearman's rank correlation analysis showed that NRON was negatively correlated with HDL and positively correlated with LDH, whereas MHRT was positively correlated with AST and LDH. Hence, elevation of circulating NRON and MHRT predicts HF and may be considered as novel biomarkers of HF.

  20. Non-Coding RNAs: The “Dark Matter” of Cardiovascular Pathophysiology

    PubMed Central

    Iaconetti, Claudio; Gareri, Clarice; Polimeni, Alberto; Indolfi, Ciro

    2013-01-01

    Large-scale analyses of mammalian transcriptomes have identified a significant number of different RNA molecules that are not translated into protein. In fact, the use of new sequencing technologies has identified that most of the genome is transcribed, producing a heterogeneous population of RNAs which do not encode for proteins (ncRNAs). Emerging data suggest that these transcripts influence the development of cardiovascular disease. The best characterized non-coding RNA family is represented by short highly conserved RNA molecules, termed microRNAs (miRNAs), which mediate a process of mRNA silencing through transcript degradation or translational repression. These microRNAs (miRNAs) are expressed in cardiovascular tissues and play key roles in many cardiovascular pathologies, such as coronary artery disease (CAD) and heart failure (HF). Potential links between other ncRNAs, like long non-coding RNA, and cardiovascular disease are intriguing but the functions of these transcripts are largely unknown. Thus, the functional characterization of ncRNAs is essential to improve the overall understanding of cellular processes involved in cardiovascular diseases in order to define new therapeutic strategies. This review outlines the current knowledge of the different ncRNA classes and summarizes their role in cardiovascular development and disease. PMID:24113581

  1. Polycomb group protein gene silencing, non-coding RNA, stem cells, and cancer.

    PubMed

    Gieni, Randall S; Hendzel, Michael J

    2009-10-01

    Epigenetic programming is an important facet of biology, controlling gene expression patterns and the choice between developmental pathways. The Polycomb group proteins (PcGs) silence gene expression, allowing cells to both acquire and maintain identity. PcG silencing is important for stemness, X chromosome inactivation (XCI), genomic imprinting, and the abnormally silenced genes in cancers. Stem and cancer cells commonly share gene expression patterns, regulatory mechanisms, and signalling pathways. Many microRNA species have oncogenic or tumor suppressor activity, and disruptions in these networks are common in cancer; however, long non-coding (nc)RNA species are also important. Many of these directly guide PcG deposition and gene silencing at the HOX locus, during XCI, and in examples of genomic imprinting. Since inappropriate HOX expression and loss of genomic imprinting are hallmarks of cancer, disruption of long ncRNA-mediated PcG silencing likely has a role in oncogenesis. Aberrant silencing of coding and non-coding loci is critical for both the genesis and progression of cancers. In addition, PcGs are commonly abnormally overexpressed years prior to cancer pathology, making early PcG targeted therapy an option to reverse tumor formation, someday replacing the blunt instrument of eradication in the cancer therapy arsenal.

  2. A meiosis-specific Spt5 homolog involved in non-coding transcription.

    PubMed

    Gruchota, Julita; Denby Wilkes, Cyril; Arnaiz, Olivier; Sperling, Linda; Nowak, Jacek K

    2017-01-03

    Spt5 is a conserved and essential transcriptional regulator that binds directly to RNA polymerase and is involved in transcription elongation, polymerase pausing and various co-transcriptional processes. To investigate the role of Spt5 in non-coding transcription, we used the unicellular model Paramecium tetraurelia In this ciliate, development is controlled by epigenetic mechanisms that use different classes of non-coding RNAs to target DNA elimination. We identified two SPT5 genes. One (STP5v) is involved in vegetative growth, while the other (SPT5m) is essential for sexual reproduction. We focused our study on SPT5m, expressed at meiosis and associated with germline nuclei during sexual processes. Upon Spt5m depletion, we observed absence of scnRNAs, piRNA-like 25 nt small RNAs produced at meiosis. The scnRNAs are a temporal copy of the germline genome and play a key role in programming DNA elimination. Moreover, Spt5m depletion abolishes elimination of all germline-limited sequences, including sequences whose excision was previously shown to be scnRNA-independent. This suggests that in addition to scnRNA production, Spt5 is involved in setting some as yet uncharacterized epigenetic information at meiosis. Our study establishes that Spt5m is crucial for developmental genome rearrangements and necessary for scnRNA production.

  3. Identification and Role of Regulatory Non-Coding RNAs in Listeria monocytogenes

    PubMed Central

    Izar, Benjamin; Mraheil, Mobarak Abu; Hain, Torsten

    2011-01-01

    Bacterial regulatory non-coding RNAs control numerous mRNA targets that direct a plethora of biological processes, such as the adaption to environmental changes, growth and virulence. Recently developed high-throughput techniques, such as genomic tiling arrays and RNA-Seq have allowed investigating prokaryotic cis- and trans-acting regulatory RNAs, including sRNAs, asRNAs, untranslated regions (UTR) and riboswitches. As a result, we obtained a more comprehensive view on the complexity and plasticity of the prokaryotic genome biology. Listeria monocytogenes was utilized as a model system for intracellular pathogenic bacteria in several studies, which revealed the presence of about 180 regulatory RNAs in the listerial genome. A regulatory role of non-coding RNAs in survival, virulence and adaptation mechanisms of L. monocytogenes was confirmed in subsequent experiments, thus, providing insight into a multifaceted modulatory function of RNA/mRNA interference. In this review, we discuss the identification of regulatory RNAs by high-throughput techniques and in their functional role in L. monocytogenes. PMID:21954346

  4. Regulatory non-coding RNA: new instruments in the orchestration of cell death

    PubMed Central

    Su, Ye; Wu, Haijiang; Pavlosky, Alexander; Zou, Ling-Lin; Deng, Xinna; Zhang, Zhu-Xu; Jevnikar, Anthony M

    2016-01-01

    Non-coding RNA (ncRNA) comprises a substantial portion of primary transcripts that are generated by genomic transcription, but are not translated into protein. The possible functions of these once considered ‘junk' molecules have incited considerable interest and new insights have emerged. The two major members of ncRNAs, namely micro RNA (miRNA) and long non-coding RNA (lncRNA), have important regulatory roles in gene expression and many important physiological processes, which has recently been extended to programmed cell death. The previous paradigm of programmed cell death only by apoptosis has recently expanded to include modalities of regulated necrosis (RN), and particularly necroptosis. However, most research efforts in this field have been on protein regulators, leaving the role of ncRNAs largely unexplored. In this review, we discuss important findings concerning miRNAs and lncRNAs that modulate apoptosis and RN pathways, as well as the miRNA–lncRNA interactions that affect cell death regulation. PMID:27512954

  5. Non-coding RNAs deregulation in oral squamous cell carcinoma: advances and challenges.

    PubMed

    Yu, T; Li, C; Wang, Z; Liu, K; Xu, C; Yang, Q; Tang, Y; Wu, Y

    2016-05-01

    Oral squamous cell carcinoma (OSCC) is a common cause of cancer death. Despite decades of improvements in exploring new treatments and considerable advance in multimodality treatment, satisfactory curative rates have not yet been reached. The difficulty of early diagnosis and the high prevalence of metastasis associated with OSCC contribute to its dismal prognosis. In the last few decades the emerging data from both tumor biology and clinical trials led to growing interest in the research for predictive biomarkers. Non-coding RNAs (ncRNAs) are promising biomarkers. Among numerous kinds of ncRNAs, short ncRNAs, such as microRNAs (miRNAs), have been extensively investigated with regard to their biogenesis, function, and importance in carcinogenesis. In contrast to miRNAs, long non-coding RNAs (lncRNAs) are much less known concerning their functions in human cancers especially in OSCC. The present review highlighted the roles of miRNAs and newly discovered lncRNAs in oral tumorigenesis, metastasis, and their clinical implication.

  6. microRNAs: short non-coding bullets of gain of function mutant p53 proteins

    PubMed Central

    Donzelli, Sara; Strano, Sabrina; Blandino, Giovanni

    2014-01-01

    TP53 gene mutations are present in more than half of all human cancers. The resulting proteins are mostly full-length with a single aminoacid change and are abundantly present in cancer cells. Some of mutant p53 proteins gain oncogenic activities through which actively contribute to the aberrant cell proliferation, increased resistance to apoptotic stimuli and ability to metastatize of cancer cells. Gain of function mutant p53 proteins can transcriptionally regulate the expression of a large plethora of target genes. This mainly occurs through the formation of oncogenic transcriptional competent complexes that include mutant p53 protein, known transcription factors, posttranslational modifiers and scaffold proteins. Mutant p53 protein can also transcriptionally regulate the expression of microRNAs, small non-coding RNAs that regulate gene expression at the posttranscriptional level. Each microRNA can putatively target the expression of hundred mRNAs and consequently impact on many cellular functions. Thus, gain of function mutant p53 proteins can exert their oncogenic activities through the modulation of both non-coding and coding regions of human genome. PMID:25594041

  7. Identifying (non-)coding RNAs and small peptides: challenges and opportunities.

    PubMed

    Pauli, Andrea; Valen, Eivind; Schier, Alexander F

    2015-01-01

    Over the past decade, high-throughput studies have identified many novel transcripts. While their existence is undisputed, their coding potential and functionality have remained controversial. Recent computational approaches guided by ribosome profiling have indicated that translation is far more pervasive than anticipated and takes place on many transcripts previously assumed to be non-coding. Some of these newly discovered translated transcripts encode short, functional proteins that had been missed in prior screens. Other transcripts are translated, but it might be the process of translation rather than the resulting peptides that serves a function. Here, we review annotation studies in zebrafish to discuss the challenges of placing RNAs onto the continuum that ranges from functional protein-encoding mRNAs to potentially non-functional peptide-producing RNAs to non-coding RNAs. As highlighted by the discovery of the novel signaling peptide Apela/ELABELA/Toddler, accurate annotations can give rise to exciting opportunities to identify the functions of previously uncharacterized transcripts.

  8. Junk DNA and the long non-coding RNA twist in cancer genetics

    PubMed Central

    Ling, Hui; Vincent, Kimberly; Pichler, Martin; Fodde, Riccardo; Berindan-Neagoe, Ioana; Slack, Frank J.; Calin, George A

    2015-01-01

    The central dogma of molecular biology states that the flow of genetic information moves from DNA to RNA to protein. However, in the last decade this dogma has been challenged by new findings on non-coding RNAs (ncRNAs) such as microRNAs (miRNAs). More recently, long non-coding RNAs (lncRNAs) have attracted much attention due to their large number and biological significance. Many lncRNAs have been identified as mapping to regulatory elements including gene promoters and enhancers, ultraconserved regions, and intergenic regions of protein-coding genes. Yet, the biological function and molecular mechanisms of lncRNA in human diseases in general and cancer in particular remain largely unknown. Data from the literature suggest that lncRNA, often via interaction with proteins, functions in specific genomic loci or use their own transcription loci for regulatory activity. In this review, we summarize recent findings supporting the importance of DNA loci in lncRNA function, and the underlying molecular mechanisms via cis or trans regulation, and discuss their implications in cancer. In addition, we use the 8q24 genomic locus, a region containing interactive SNPs, DNA regulatory elements and lncRNAs, as an example to illustrate how single nucleotide polymorphism (SNP) located within lncRNAs may be functionally associated with the individual’s susceptibility to cancer. PMID:25619839

  9. Long Non-Coding RNAs As Potential Novel Prognostic Biomarkers in Colorectal Cancer

    PubMed Central

    Saus, Ester; Brunet-Vega, Anna; Iraola-Guzmán, Susana; Pegueroles, Cinta; Gabaldón, Toni; Pericay, Carles

    2016-01-01

    Colorectal cancer (CRC) is the fourth most common cause of death worldwide. Surgery is usually the first line of treatment for patients with CRC but many tumors with similar histopathological features show significantly different clinical outcomes. The discovery of robust prognostic biomarkers in patients with CRC is imperative to achieve more effective treatment strategies and improve patient's care. Recent progress in next generation sequencing methods and transcriptome analysis has revealed that a much larger part of the genome is transcribed into RNA than previously assumed. Collectively referred to as non-coding RNAs (ncRNAs), some of these RNA molecules such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been shown to be altered and to play critical roles in tumor biology. This discovery leads to exciting possibilities for personalized cancer diagnosis, and therapy. Many lncRNAs are tissue and cancer-type specific and have already revealed to be useful as prognostic markers. In this review, we focus on recent findings concerning aberrant expression of lncRNAs in CRC tumors and emphasize their prognostic potential in CRC. Further studies focused on the mechanisms of action of lncRNAs will contribute to the development of novel biomarkers for diagnosis and disease progression. PMID:27148353

  10. Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational driver events

    PubMed Central

    Ashouri, Arghavan; Sayin, Volkan I.; Van den Eynden, Jimmy; Singh, Simranjit X.; Papagiannakopoulos, Thales; Larsson, Erik

    2016-01-01

    Thousands of long non-coding RNAs (lncRNAs) lie interspersed with coding genes across the genome, and a small subset has been implicated as downstream effectors in oncogenic pathways. Here we make use of transcriptome and exome sequencing data from thousands of tumours across 19 cancer types, to identify lncRNAs that are induced or repressed in relation to somatic mutations in key oncogenic driver genes. Our screen confirms known coding and non-coding effectors and also associates many new lncRNAs to relevant pathways. The associations are often highly reproducible across cancer types, and while many lncRNAs are co-expressed with their protein-coding hosts or neighbours, some are intergenic and independent. We highlight lncRNAs with possible functions downstream of the tumour suppressor TP53 and the master antioxidant transcription factor NFE2L2. Our study provides a comprehensive overview of lncRNA transcriptional alterations in relation to key driver mutational events in human cancers.

  11. Long Non-coding RNA in Neurons: New Players in Early Response to BDNF Stimulation.

    PubMed

    Aliperti, Vincenza; Donizetti, Aldo

    2016-01-01

    Brain-derived neurotrophic factor (BDNF) is a neurotrophin family member that is highly expressed and widely distributed in the brain. BDNF is critical for neural survival and plasticity both during development and in adulthood, and dysfunction in its signaling may contribute to a number of neurodegenerative disorders. Deep understanding of the BDNF-activated molecular cascade may thus help to find new biomarkers and therapeutic targets. One interesting direction is related to the early phase of BDNF-dependent gene expression regulation, which is responsible for the activation of selective gene programs that lead to stable functional and structural remodeling of neurons. Immediate-early coding genes activated by BDNF are under investigation, but the involvement of the non-coding RNAs is largely unexplored, especially the long non-coding RNAs (lncRNAs). lncRNAs are emerging as key regulators that can orchestrate different aspects of nervous system development, homeostasis, and plasticity, making them attractive candidate markers and therapeutic targets for brain diseases. We used microarray technology to identify differentially expressed lncRNAs in the immediate response phase of BDNF stimulation in a neuronal cell model. Our observations on the putative functional role of lncRNAs provide clues to their involvement as master regulators of gene expression cascade triggered by BDNF.

  12. Identification of long non-coding RNAs biomarkers for early diagnosis of myocardial infarction from the dysregulated coding-non-coding co-expression network

    PubMed Central

    Sun, Chaoyu; Jiang, Hao; Sun, Zhiguo; Gui, Yifang; Xia, Hongyuan

    2016-01-01

    Long non-coding RNAs (lncRNAs) have recently been shown as novel promising diagnostic or prognostic biomarkers for various cancers. However, lncRNA expression patterns and their predictive value in early diagnosis of myocardial infarction (MI) have not been systematically investigated. In our study, we performed a comprehensive analysis of lncRNA expression profiles in MI and found altered lncRNA expression pattern in MI compared to healthy samples. We then constructed a lncRNA-mRNA dysregulation network (DLMCEN) by integrating aberrant lncRNAs, mRNAs and their co-dysregulation relationships, and found that some of mRNAs were previously reported to be involved in cardiovascular disease, suggesting the functional roles of dysregulated lncRNAs in the pathogenesis of MI. Therefore, using support vector machine (SVM) and leave one out cross-validation (LOOCV), we developed a 9-lncRNA signature (termed 9LncSigAMI) from the discovery cohort which could distinguish MI patients from healthy samples with accuracy of 95.96%, sensitivity of 93.88% and specificity of 98%, and validated its predictive power in early diagnosis of MI in another completely independent cohort. Functional analysis demonstrated that these nine lncRNA biomarkers in the 9LncSigAMI may be involved in myocardial innate immune and inflammatory response, and their deregulation may lead to the dysfunction of the inflammatory and immune system contributing to MI recurrence. With prospective validation, the 9LncSigAMI identified by our work will provide additional diagnostic information beyond other known clinical parameters, and increase the understanding of the molecular mechanism underlying the pathogenesis of MI. PMID:27634901

  13. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium

    PubMed Central

    2013-01-01

    Background The world faces the challenge to develop sustainable technologies to replace thousands of products that have been generated from fossil fuels. Microbial cell factories serve as promising alternatives for the production of diverse commodity chemicals and biofuels from renewable resources. For example, polylactic acid (PLA) with its biodegradable properties is a sustainable, environmentally friendly alternative to polyethylene. At present, PLA microbial production is mainly dependent on food crops such as corn and sugarcane. Moreover, optically pure isomers of lactic acid are required for the production of PLA, where D-lactic acid controls the thermochemical and physical properties of PLA. Henceforth, production of D-lactic acid through a more sustainable source (CO2) is desirable. Results We have performed metabolic engineering on Synechocystis sp. PCC 6803 for the phototrophic synthesis of optically pure D-lactic acid from CO2. Synthesis of optically pure D-lactic acid was achieved by utilizing a recently discovered enzyme (i.e., a mutated glycerol dehydrogenase, GlyDH*). Significant improvements in D-lactic acid synthesis were achieved through codon optimization and by balancing the cofactor (NADH) availability through the heterologous expression of a soluble transhydrogenase. We have also discovered that addition of acetate to the cultures improved lactic acid production. More interestingly, 13C-pathway analysis revealed that acetate was not used for the synthesis of lactic acid, but was mainly used for synthesis of certain biomass building blocks (such as leucine and glutamate). Finally, the optimal strain was able to accumulate 1.14 g/L (photoautotrophic condition) and 2.17 g/L (phototrophic condition with acetate) of D-lactate in 24 days. Conclusions We have demonstrated the photoautotrophic production of D-lactic acid by engineering a cyanobacterium Synechocystis 6803. The engineered strain shows an excellent D-lactic acid productivity from CO2. In

  14. Minimal Pairs: Minimal Importance?

    ERIC Educational Resources Information Center

    Brown, Adam

    1995-01-01

    This article argues that minimal pairs do not merit as much attention as they receive in pronunciation instruction. There are other aspects of pronunciation that are of greater importance, and there are other ways of teaching vowel and consonant pronunciation. (13 references) (VWL)

  15. Long Non-Coding RNA as Potential Biomarker for Prostate Cancer: Is It Making a Difference?

    PubMed Central

    Deng, Junli; Tang, Jie; Wang, Guo; Zhu, Yuan-Shan

    2017-01-01

    Whole genome transcriptomic analyses have identified numerous long non-coding RNA (lncRNA) transcripts that are increasingly implicated in cancer biology. LncRNAs are found to promote essential cancer cell functions such as proliferation, invasion, and metastasis, with the potential to serve as novel biomarkers of various cancers and to further reveal uncharacterized aspects of tumor biology. However, the biological and molecular mechanisms as well as the clinical applications of lncRNAs in diverse diseases are not completely understood, and remain to be fully explored. LncRNAs may be critical players and regulators in prostate cancer carcinogenesis and progression, and could serve as potential biomarkers for prostate cancer. This review focuses on lncRNA biomarkers that are already available for clinical use and provides an overview of lncRNA biomarkers that are under investigation for clinical development in prostate cancer. PMID:28272371

  16. Non-coding RNAs as clinical biomarkers for cancer diagnosis and prognosis.

    PubMed

    Mishra, Prasun J

    2014-11-01

    Developing more precise diagnostics approaches to predict cancer progression and prognosis is the key to precision medicine. Overwhelming evidence now suggests that small non-coding RNAs such as miRNAs can be useful tools as biomarkers for molecular diagnostics. miRNAs can serve as biomarkers in a variety of diseases, such as neurological disorders, cardiovascular disease, Type II diabetes, cancer and so on. miRNAs can not only be utilized for monitoring treatment but also for patient stratification and hence are promising predictive biomarkers in cancer progression and prognosis, as well as in predicting drug response. This article focuses on some of the recent findings in the field of miRNA biomarkers and discusses its implications for cancer diagnostics and precision medicine.

  17. Long Non-coding RNAs in Urologic Malignancies: Functional Roles and Clinical Translation

    PubMed Central

    Chen, Jiajia; Miao, Zhijun; Xue, Boxin; Shan, Yuxi; Weng, Guobin; Shen, Bairong

    2016-01-01

    Early diagnosis and surveillance for metastasis and recurrences are critical issues of urologic cancer. Deregulation of long non-coding RNAs (lncRNAs) has been implicated in urologic malignancies and represents potential markers or therapeutic targets. However, the utility of lncRNA as biomarkers appears to be overstated due to heterogeneous or irreproducible results from different studies. Thus, a critical and cautious review on the biomarker potential of lncRNAs is needed. This review provides an update on new findings of lncRNA-based markers for urologic cancer. The diverse mechanisms and associated examples of lncRNAs involved during the carcinogenesis of prostate cancer, bladder cancer and renal cancer were discussed in a more balanced and critical manner, as were the suitability of lncRNAs as diagnostic or prognostics markers. PMID:27698924

  18. Association between long non-coding RNA and human rare diseases (Review)

    PubMed Central

    HE, JIN-HUA; HAN, ZE-PING; LI, YU-GUANG

    2014-01-01

    Long non-coding RNAs (lncRNAs) are untranslated transcripts with longer than 200 nucleotides (nt), which possess many of the structural characteristics of mRNAs, including a poly A tail, 5′-capping, and a promoter structure, but no conserved open reading frame. Moreover, lncRNA expression patterns change during differentiation and exhibit a variety of splicing patterns. Many lncRNAs are expressed at specific times and in specific tissues during development. It has been proposed that lncRNAs are involved in the epigenetic regulation of coding genes, and thus exert a powerful effect on a number of physiological and pathological processes, including the pathogenesis of many human rare diseases. PMID:24649062

  19. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease.

    PubMed

    Roberts, Thomas C; Morris, Kevin V; Wood, Matthew J A

    2014-09-26

    Long non-coding RNAs (lncRNAs) are transcripts with low protein-coding potential that represent a large proportion of the transcriptional output of the cell. Many lncRNAs exhibit features indicative of functionality including tissue-restricted expression, localization to distinct subcellular structures, regulated expression and evolutionary conservation. Some lncRNAs have been shown to associate with chromatin-modifying activities and transcription factors, suggesting that a common mode of action may be to guide protein complexes to target genomic loci. However, the functions (if any) of the vast majority of lncRNA transcripts are currently unknown, and the subject of investigation. Here, we consider the putative role(s) of lncRNAs in neurodevelopment and brain function with an emphasis on the epigenetic regulation of gene expression. Associations of lncRNAs with neurodevelopmental/neuropsychiatric disorders, neurodegeneration and brain cancers are also discussed.

  20. Role of Non-Coding RNAs in the Transgenerational Epigenetic Transmission of the Effects of Reprotoxicants.

    PubMed

    Larriba, Eduardo; del Mazo, Jesús

    2016-03-25

    Non-coding RNAs (ncRNAs) are regulatory elements of gene expression and chromatin structure. Both long and small ncRNAs can also act as inductors and targets of epigenetic programs. Epigenetic patterns can be transmitted from one cell to the daughter cell, but, importantly, also through generations. Diversity of ncRNAs is emerging with new and surprising roles. Functional interactions among ncRNAs and between specific ncRNAs and structural elements of the chromatin are drawing a complex landscape. In this scenario, epigenetic changes induced by environmental stressors, including reprotoxicants, can explain some transgenerationally-transmitted phenotypes in non-Mendelian ways. In this review, we analyze mechanisms of action of reprotoxicants upon different types of ncRNAs and epigenetic modifications causing transgenerationally transmitted characters through germ cells but affecting germ cells and reproductive systems. A functional model of epigenetic mechanisms of transgenerational transmission ncRNAs-mediated is also proposed.

  1. Evaluation of Agency Non-Code Layered Pressure Vessels (LPVs). Corrected Copy, Aug. 25, 2014

    NASA Technical Reports Server (NTRS)

    Prosser, William H.

    2014-01-01

    In coordination with the Office of Safety and Mission Assurance and the respective Center Pressure System Managers (PSMs), the NASA Engineering and Safety Center (NESC) was requested to formulate a consensus draft proposal for the development of additional testing and analysis methods to establish the technical validity, and any limitation thereof, for the continued safe operation of facility non-code layered pressure vessels. The PSMs from each NASA Center were asked to participate as part of the assessment team by providing, collecting, and reviewing data regarding current operations of these vessels. This report contains the outcome of the assessment and the findings, observations, and NESC recommendations to the Agency and individual NASA Centers.

  2. Long Non-Coding RNA as Potential Biomarker for Prostate Cancer: Is It Making a Difference?

    PubMed

    Deng, Junli; Tang, Jie; Wang, Guo; Zhu, Yuan-Shan

    2017-03-07

    Whole genome transcriptomic analyses have identified numerous long non-coding RNA (lncRNA) transcripts that are increasingly implicated in cancer biology. LncRNAs are found to promote essential cancer cell functions such as proliferation, invasion, and metastasis, with the potential to serve as novel biomarkers of various cancers and to further reveal uncharacterized aspects of tumor biology. However, the biological and molecular mechanisms as well as the clinical applications of lncRNAs in diverse diseases are not completely understood, and remain to be fully explored. LncRNAs may be critical players and regulators in prostate cancer carcinogenesis and progression, and could serve as potential biomarkers for prostate cancer. This review focuses on lncRNA biomarkers that are already available for clinical use and provides an overview of lncRNA biomarkers that are under investigation for clinical development in prostate cancer.

  3. Predicting non-coding RNA genes in Escherichia coli with boosted genetic programming.

    PubMed

    Saetrom, Pål; Sneve, Ragnhild; Kristiansen, Knut I; Snøve, Ola; Grünfeld, Thomas; Rognes, Torbjørn; Seeberg, Erling

    2005-01-01

    Several methods exist for predicting non-coding RNA (ncRNA) genes in Escherichia coli (E.coli). In addition to about sixty known ncRNA genes excluding tRNAs and rRNAs, various methods have predicted more than thousand ncRNA genes, but only 95 of these candidates were confirmed by more than one study. Here, we introduce a new method that uses automatic discovery of sequence patterns to predict ncRNA genes. The method predicts 135 novel candidates. In addition, the method predicts 152 genes that overlap with predictions in the literature. We test sixteen predictions experimentally, and show that twelve of these are actual ncRNA transcripts. Six of the twelve verified candidates were novel predictions. The relatively high confirmation rate indicates that many of the untested novel predictions are also ncRNAs, and we therefore speculate that E.coli contains more ncRNA genes than previously estimated.

  4. ANRIL: a pivotal tumor suppressor long non-coding RNA in human cancers.

    PubMed

    Li, Zheng; Yu, Xin; Shen, Jianxiong

    2016-05-01

    Long non-coding RNAs (lncRNAs) are a family of non-protein-coding RNAs with length more than 200 nucleotides. LncRNAs played important roles in many biological processes such as cell development, proliferation, invasion and migration. Deregulation of LncRNAs was found in multiple tumors where they can act as a tumor suppressor gene or oncogene. LncRNA ANRIL was identified as an oncogene involved in a number of tumors such as gastric cancer, lung cancer, hepatocellular carcinoma, and esophageal squamous cell carcinoma. Inhibition of ANRIL suppressed the cancer cell proliferation, migration and invasion. Increasing data has showed that ANRIL may act as a diagnostic and prognostic biomarker for some tumors. In our review, we summarize an overview of current knowledge concerning the expression and role of ANRIL in various cancers.

  5. Role of non-coding RNA transcription around gene regulatory elements in transcription factor recruitment

    PubMed Central

    Ohta, Kunihiro

    2017-01-01

    ABSTRACT Eukaryotic cells produce a variety of non-coding RNAs (ncRNAs), many of which have been shown to play pivotal roles in biological processes such as differentiation, maintenance of pluripotency of stem cells, and cellular response to various stresses. Genome-wide analyses have revealed that many ncRNAs are transcribed around regulatory DNA elements located proximal or distal to gene promoters, but their biological functions are largely unknown. Recently, it has been demonstrated in yeast and mouse that ncRNA transcription around gene promoters and enhancers facilitates DNA binding of transcription factors to their target sites. These results suggest universal roles of promoter/enhancer-associated ncRNAs in the recruitment of transcription factors to their binding sites. PMID:27763805

  6. Role of Non-Coding RNAs in the Transgenerational Epigenetic Transmission of the Effects of Reprotoxicants

    PubMed Central

    Larriba, Eduardo; del Mazo, Jesús

    2016-01-01

    Non-coding RNAs (ncRNAs) are regulatory elements of gene expression and chromatin structure. Both long and small ncRNAs can also act as inductors and targets of epigenetic programs. Epigenetic patterns can be transmitted from one cell to the daughter cell, but, importantly, also through generations. Diversity of ncRNAs is emerging with new and surprising roles. Functional interactions among ncRNAs and between specific ncRNAs and structural elements of the chromatin are drawing a complex landscape. In this scenario, epigenetic changes induced by environmental stressors, including reprotoxicants, can explain some transgenerationally-transmitted phenotypes in non-Mendelian ways. In this review, we analyze mechanisms of action of reprotoxicants upon different types of ncRNAs and epigenetic modifications causing transgenerationally transmitted characters through germ cells but affecting germ cells and reproductive systems. A functional model of epigenetic mechanisms of transgenerational transmission ncRNAs-mediated is also proposed. PMID:27023531

  7. The role of non-coding RNAs in male sex determination and differentiation.

    PubMed

    Rastetter, Raphael H; Smith, Craig A; Wilhelm, Dagmar

    2015-09-01

    A complex network of gene regulation and interaction drives male sex determination and differentiation. While many important protein-coding genes that are necessary for proper male development have been identified, many disorders in human sex development are still unexplained at the molecular level. This suggests that key factors and regulatory mechanisms are still unknown. In recent years, extensive data have shown that different classes of non-coding RNAs (ncRNAs) play a role in almost all developmental and physiological pathways. Here we review what is known about their role in male sex determination and differentiation not only in mammals, but also other species. While for some processes a key role for ncRNA has been identified, we are still far from having a complete picture.

  8. A Long Journey Ahead: Long Non-coding RNAs in Bacterial Infections

    PubMed Central

    zur Bruegge, Jennifer; Einspanier, Ralf; Sharbati, Soroush

    2017-01-01

    Bacterial pathogens have coevolved with their hosts and acquired strategies to circumvent defense mechanisms of host cells. It was shown that bacteria interfere with the expression of mammalian microRNAs to modify immune signaling, autophagy, or the apoptotic machinery. Recently, a new class of regulatory RNAs, long non-coding RNAs (lncRNAs), was reported to have a pivotal role in the regulation of eukaryotic gene expression. A growing body of literature reports on specific involvement of lncRNAs in the host cell response toward bacterial infections. This mini review summarizes recent data that focuses on lncRNA function in host cells during bacterial infection and provides a perspective where future research in this regard may be going.

  9. The role of long non-coding RNAs in neurodevelopment, brain function and neurological disease

    PubMed Central

    Roberts, Thomas C.; Morris, Kevin V.; Wood, Matthew J. A.

    2014-01-01

    Long non-coding RNAs (lncRNAs) are transcripts with low protein-coding potential that represent a large proportion of the transcriptional output of the cell. Many lncRNAs exhibit features indicative of functionality including tissue-restricted expression, localization to distinct subcellular structures, regulated expression and evolutionary conservation. Some lncRNAs have been shown to associate with chromatin-modifying activities and transcription factors, suggesting that a common mode of action may be to guide protein complexes to target genomic loci. However, the functions (if any) of the vast majority of lncRNA transcripts are currently unknown, and the subject of investigation. Here, we consider the putative role(s) of lncRNAs in neurodevelopment and brain function with an emphasis on the epigenetic regulation of gene expression. Associations of lncRNAs with neurodevelopmental/neuropsychiatric disorders, neurodegeneration and brain cancers are also discussed. PMID:25135968

  10. Long non-coding RNAs in anti-cancer drug resistance

    PubMed Central

    Chen, Qin-nan; Wei, Chen-chen; Wang, Zhao-xia; Sun, Ming

    2017-01-01

    Chemotherapy is one of the basic treatments for cancers; however, drug resistance is mainly responsible for the failure of clinical treatment. The mechanism of drug resistance is complicated because of interaction among various factors including drug efflux, DNA damage repair, apoptosis and targets mutation. Long non-coding RNAs (lncRNAs) have been a focus of research in the field of bioscience, and the latest studies have revealed that lncRNAs play essential roles in drug resistance in breast cancer, gastric cancer and lung cancer, et al. Dysregulation of multiple targets and pathways by lncRNAs results in the occurrence of chemoresistance. In this review, we will discuss the mechanisms underlying lncRNA-mediated resistance to chemotherapy and the therapeutic potential of lncRNAs in future cancer treatment. PMID:27713133

  11. Long non-coding RNAs as novel therapeutic targets in cancer.

    PubMed

    Lavorgna, Giovanni; Vago, Riccardo; Sarmini, Mohamad; Montorsi, Francesco; Salonia, Andrea; Bellone, Matteo

    2016-08-01

    Thanks to impressive technology advancements, pervasive expression of non-coding RNAs (ncRNAs) has been recently identified in the genome of numerous cancers. Long ncRNAs (lncRNAs) belong to a new class of ncRNAs including tens of thousands different species. A fraction of these molecules shows a striking cancer-enriched expression pattern, suggesting an essential role in tumor cells and, possibly, a utility in therapeutic terms. This review aims at summarizing current knowledge for the identification and validation of lncRNAs as therapeutics targets in tumors. Both in-silico and wet-biology resources are presented in relation to the many challenges that the scientific community still needs to address in terms of lncRNA identification, stratification, patient personalization, drug delivery and toxicity.

  12. MetastamiRs: Non-Coding MicroRNAs Driving Cancer Invasion and Metastasis

    PubMed Central

    Lopez-Camarillo, Cesar; Marchat, Laurence A.; Arechaga-Ocampo, Elena; Perez-Plasencia, Carlos; del Moral-Hernandez, Oscar; Castaneda-Ortiz, Elizabeth J.; Rodriguez-Cuevas, Sergio

    2012-01-01

    MicroRNAs (miRNAs) are small non-coding RNAs of ~22 nucleotides that function as negative regulators of gene expression by either inhibiting translation or inducing deadenylation-dependent degradation of target transcripts. Notably, deregulation of miRNAs expression is associated with the initiation and progression of human cancers where they act as oncogenes or tumor suppressors contributing to tumorigenesis. Abnormal miRNA expression may provide potential diagnostic and prognostic tumor biomarkers and new therapeutic targets in cancer. Recently, several miRNAs have been shown to initiate invasion and metastasis by targeting multiple proteins that are major players in these cellular events, thus they have been denominated as metastamiRs. Here, we present a review of the current knowledge of miRNAs in cancer with a special focus on metastamiRs. In addition we discuss their potential use as novel specific markers for cancer progression. PMID:22408395

  13. The Underexploited Role of Non-Coding RNAs in Lysosomal Storage Diseases

    PubMed Central

    de Queiroz, Matheus Trovão; Pereira, Vanessa Gonçalves; do Nascimento, Cinthia Castro; D’Almeida, Vânia

    2016-01-01

    Non-coding RNAs (ncRNAs) are a functional class of RNA involved in the regulation of several cellular processes which may modulate disease onset, progression, and prognosis. Lysosomal storage diseases (LSD) are a group of rare disorders caused by mutations of genes encoding specific hydrolases or non-enzymatic proteins, characterized by a wide spectrum of manifestations. The alteration of ncRNA levels is well established in several human diseases such as cancer and auto-immune disorders; however, there is a lack of information focused on the role of ncRNA in rare diseases. Recent reports related to changes in ncRNA expression and its consequences on LSD physiopathology show us the importance to keep advancing in this field. This article will summarize recent findings and provide key points for further studies on LSD and ncRNA association. PMID:27708618

  14. Genome-wide identification and characterization of long intergenic non-coding RNAs in Ganoderma lucidum.

    PubMed

    Li, Jianqin; Wu, Bin; Xu, Jiang; Liu, Chang

    2014-01-01

    Ganoderma lucidum is a white-rot fungus best-known for its medicinal activities. We have previously sequenced its genome and annotated the protein coding genes. However, long non-coding RNAs in G. lucidum genome have not been analyzed. In this study, we have identified and characterized long intergenic non-coding RNAs (lincRNA) in G. lucidum systematically. We developed a computational pipeline, which was used to analyze RNA-Seq data derived from G. lucidum samples collected from three developmental stages. A total of 402 lincRNA candidates were identified, with an average length of 609 bp. Analysis of their adjacent protein-coding genes (apcGenes) revealed that 46 apcGenes belong to the pathways of triterpenoid biosynthesis and lignin degradation, or families of cytochrome P450, mating type B genes, and carbohydrate-active enzymes. To determine if lincRNAs and these apcGenes have any interactions, the corresponding pairs of lincRNAs and apcGenes were analyzed in detail. We developed a modified 3' RACE method to analyze the transcriptional direction of a transcript. Among the 46 lincRNAs, 37 were found unidirectionally transcribed, and 9 were found bidirectionally transcribed. The expression profiles of 16 of these 37 lincRNAs were found to be highly correlated with those of the apcGenes across the three developmental stages. Among them, 11 are positively correlated (r>0.8) and 5 are negatively correlated (r<-0.8). The co-localization and co-expression of lincRNAs and those apcGenes playing important functions is consistent with the notion that lincRNAs might be important regulators for cellular processes. In summary, this represents the very first study to identify and characterize lincRNAs in the genomes of basidiomycetes. The results obtained here have laid the foundation for study of potential lincRNA-mediated expression regulation of genes in G. lucidum.

  15. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts.

    PubMed

    Paraskevopoulou, Maria D; Vlachos, Ioannis S; Karagkouni, Dimitra; Georgakilas, Georgios; Kanellos, Ilias; Vergoulis, Thanasis; Zagganas, Konstantinos; Tsanakas, Panayiotis; Floros, Evangelos; Dalamagas, Theodore; Hatzigeorgiou, Artemis G

    2016-01-04

    microRNAs (miRNAs) are short non-coding RNAs (ncRNAs) that act as post-transcriptional regulators of coding gene expression. Long non-coding RNAs (lncRNAs) have been recently reported to interact with miRNAs. The sponge-like function of lncRNAs introduces an extra layer of complexity in the miRNA interactome. DIANA-LncBase v1 provided a database of experimentally supported and in silico predicted miRNA Recognition Elements (MREs) on lncRNAs. The second version of LncBase (www.microrna.gr/LncBase) presents an extensive collection of miRNA:lncRNA interactions. The significantly enhanced database includes more than 70 000 low and high-throughput, (in)direct miRNA:lncRNA experimentally supported interactions, derived from manually curated publications and the analysis of 153 AGO CLIP-Seq libraries. The new experimental module presents a 14-fold increase compared to the previous release. LncBase v2 hosts in silico predicted miRNA targets on lncRNAs, identified with the DIANA-microT algorithm. The relevant module provides millions of predicted miRNA binding sites, accompanied with detailed metadata and MRE conservation metrics. LncBase v2 caters information regarding cell type specific miRNA:lncRNA regulation and enables users to easily identify interactions in 66 different cell types, spanning 36 tissues for human and mouse. Database entries are also supported by accurate lncRNA expression information, derived from the analysis of more than 6 billion RNA-Seq reads.

  16. An Improved Canine Genome and a Comprehensive Catalogue of Coding Genes and Non-Coding Transcripts

    PubMed Central

    Hoeppner, Marc P.; Lundquist, Andrew; Pirun, Mono; Meadows, Jennifer R. S.; Zamani, Neda; Johnson, Jeremy; Sundström, Görel; Cook, April; FitzGerald, Michael G.; Swofford, Ross; Mauceli, Evan; Moghadam, Behrooz Torabi; Greka, Anna; Alföldi, Jessica; Abouelleil, Amr; Aftuck, Lynne; Bessette, Daniel; Berlin, Aaron; Brown, Adam; Gearin, Gary; Lui, Annie; Macdonald, J. Pendexter; Priest, Margaret; Shea, Terrance; Turner-Maier, Jason; Zimmer, Andrew; Lander, Eric S.; di Palma, Federica

    2014-01-01

    The domestic dog, Canis familiaris, is a well-established model system for mapping trait and disease loci. While the original draft sequence was of good quality, gaps were abundant particularly in promoter regions of the genome, negatively impacting the annotation and study of candidate genes. Here, we present an improved genome build, canFam3.1, which includes 85 MB of novel sequence and now covers 99.8% of the euchromatic portion of the genome. We also present multiple RNA-Sequencing data sets from 10 different canine tissues to catalog ∼175,000 expressed loci. While about 90% of the coding genes previously annotated by EnsEMBL have measurable expression in at least one sample, the number of transcript isoforms detected by our data expands the EnsEMBL annotations by a factor of four. Syntenic comparison with the human genome revealed an additional ∼3,000 loci that are characterized as protein coding in human and were also expressed in the dog, suggesting that those were previously not annotated in the EnsEMBL canine gene set. In addition to ∼20,700 high-confidence protein coding loci, we found ∼4,600 antisense transcripts overlapping exons of protein coding genes, ∼7,200 intergenic multi-exon transcripts without coding potential, likely candidates for long intergenic non-coding RNAs (lincRNAs) and ∼11,000 transcripts were reported by two different library construction methods but did not fit any of the above categories. Of the lincRNAs, about 6,000 have no annotated orthologs in human or mouse. Functional analysis of two novel transcripts with shRNA in a mouse kidney cell line altered cell morphology and motility. All in all, we provide a much-improved annotation of the canine genome and suggest regulatory functions for several of the novel non-coding transcripts. PMID:24625832

  17. Functional Studies and In Silico Analyses to Evaluate Non-Coding Variants in Inherited Cardiomyopathies

    PubMed Central

    Frisso, Giulia; Detta, Nicola; Coppola, Pamela; Mazzaccara, Cristina; Pricolo, Maria Rosaria; D’Onofrio, Antonio; Limongelli, Giuseppe; Calabrò, Raffaele; Salvatore, Francesco

    2016-01-01

    Point mutations are the most common cause of inherited diseases. Bioinformatics tools can help to predict the pathogenicity of mutations found during genetic screening, but they may work less well in determining the effect of point mutations in non-coding regions. In silico analysis of intronic variants can reveal their impact on the splicing process, but the consequence of a given substitution is generally not predictable. The aim of this study was to functionally test five intronic variants (MYBPC3-c.506-2A>C, MYBPC3-c.906-7G>T, MYBPC3-c.2308+3G>C, SCN5A-c.393-5C>A, and ACTC1-c.617-7T>C) found in five patients affected by inherited cardiomyopathies in the attempt to verify their pathogenic role. Analysis of the MYBPC3-c.506-2A>C mutation in mRNA from the peripheral blood of one of the patients affected by hypertrophic cardiac myopathy revealed the loss of the canonical splice site and the use of an alternative splicing site, which caused the loss of the first seven nucleotides of exon 5 (MYBPC3-G169AfsX14). In the other four patients, we generated minigene constructs and transfected them in HEK-293 cells. This minigene approach showed that MYBPC3-c.2308+3G>C and SCN5A-c.393-5C>A altered pre-mRNA processing, thus resulting in the skipping of one exon. No alterations were found in either MYBPC3-c.906-7G>T or ACTC1-c.617-7T>C. In conclusion, functional in vitro analysis of the effects of potential splicing mutations can confirm or otherwise the putative pathogenicity of non-coding mutations, and thus help to guide the patient's clinical management and improve genetic counseling in affected families. PMID:27834932

  18. Non-coding RNAs in crop genetic modification: considerations and predictable environmental risk assessments (ERA).

    PubMed

    Ramesh, S V

    2013-09-01

    Of late non-coding RNAs (ncRNAs)-mediated gene silencing is an influential tool deliberately deployed to negatively regulate the expression of targeted genes. In addition to the widely employed small interfering RNA (siRNA)-mediated gene silencing approach, other variants like artificial miRNA (amiRNA), miRNA mimics, and artificial transacting siRNAs (tasiRNAs) are being explored and successfully deployed in developing non-coding RNA-based genetically modified plants. The ncRNA-based gene manipulations are typified with mobile nature of silencing signals, interference from viral genome-derived suppressor proteins, and an obligation for meticulous computational analysis to prevaricate any inadvertent effects. In a broad sense, risk assessment inquiries for genetically modified plants based on the expression of ncRNAs are competently addressed by the environmental risk assessment (ERA) models, currently in vogue, designed for the first generation transgenic plants which are based on the expression of heterologous proteins. Nevertheless, transgenic plants functioning on the foundation of ncRNAs warrant due attention with respect to their unique attributes like off-target or non-target gene silencing effects, small RNAs (sRNAs) persistence, food and feed safety assessments, problems in detection and tracking of sRNAs in food, impact of ncRNAs in plant protection measures, effect of mutations etc. The role of recent developments in sequencing techniques like next generation sequencing (NGS) and the ERA paradigm of the different countries in vogue are also discussed in the context of ncRNA-based gene manipulations.

  19. Identification of Long Non-Coding RNAs Deregulated in Multiple Myeloma Cells Resistant to Proteasome Inhibitors

    PubMed Central

    Malek, Ehsan; Kim, Byung-Gyu; Driscoll, James J.

    2016-01-01

    While the clinical benefit of proteasome inhibitors (PIs) for multiple myeloma (MM) treatment remains unchallenged, dose-limiting toxicities and the inevitable emergence of drug resistance limit their long-term utility. Disease eradication is compromised by drug resistance that is either present de novo or therapy-induced, which accounts for the majority of tumor relapses and MM-related deaths. Non-coding RNAs (ncRNAs) are a broad class of RNA molecules, including long non-coding RNAs (lncRNAs), that do not encode proteins but play a major role in regulating the fundamental cellular processes that control cancer initiation, metastasis, and therapeutic resistance. While lncRNAs have recently attracted significant attention as therapeutic targets to potentially improve cancer treatment, identification of lncRNAs that are deregulated in cells resistant to PIs has not been previously addressed. We have modeled drug resistance by generating three MM cell lines with acquired resistance to either bortezomib, carfilzomib, or ixazomib. Genome-wide profiling identified lncRNAs that were significantly deregulated in all three PI-resistant cell lines relative to the drug-sensitive parental cell line. Strikingly, certain lncRNAs deregulated in the three PI-resistant cell lines were also deregulated in MM plasma cells isolated from newly diagnosed patients compared to healthy plasma cells. Taken together, these preliminary studies strongly suggest that lncRNAs represent potential therapeutic targets to prevent or overcome drug resistance. More investigations are ongoing to expand these initial studies in a greater number of MM patients to better define lncRNAs signatures that contribute to PI resistance in MM. PMID:27782060

  20. Altered long non-coding RNA transcriptomic profiles in brain microvascular endothelium after cerebral ischemia.

    PubMed

    Zhang, J; Yuan, L; Zhang, X; Hamblin, M H; Zhu, T; Meng, F; Li, Y; Chen, Y E; Yin, K J

    2016-03-01

    The brain endothelium is an important therapeutic target for the inhibition of cerebrovascular dysfunction in ischemic stroke. Previously, we documented the important regulatory roles of microRNAs in the cerebral vasculature, in particular the cerebral vascular endothelium. However, the functional significance and molecular mechanisms of other classes of non-coding RNAs in the regulation of cerebrovascular endothelial pathophysiology after stroke are completely unknown. Using RNA sequencing (RNA-seq) technology, we profiled long non-coding RNA (lncRNA) expressional signatures in primary brain microvascular endothelial cells (BMECs) after oxygen-glucose deprivation (OGD), an in vitro mimic of ischemic stroke conditions. After 16h of OGD exposure, the expression levels for 362 of the 10,677 lncRNAs analyzed changed significantly, including a total of 147 lncRNAs increased and 70 lncRNAs decreased by more than 2-fold. Among them, the most highly upregulated lncRNAs include Snhg12, Malat1, and lnc-OGD 1006, whereas the most highly downregulated lncRNAs include 281008D09Rik, Peg13, and lnc-OGD 3916. Alteration of the most highly upregulated/downregulated ODG-responsive lncRNAs was further confirmed in cultured BMECs after OGD as well as isolated cerebral microvessels in mice following transient middle cerebral artery occlusion (MCAO) and 24h reperfusion by the quantitative real-time PCR approach. Moreover, promoter analysis of altered ODG-responsive endothelial lncRNA genes by bioinformatics showed substantial transcription factor binding sites on lncRNAs, implying potential transcriptional regulation of those lncRNAs. These findings are the first to identify OGD-responsive brain endothelial lncRNAs, which suggest potential pathological roles for these lncRNAs in mediating endothelial responses to ischemic stimuli. Endothelial-selective lncRNAs may function as a class of novel master regulators in cerebrovascular endothelial pathologies after ischemic stroke.

  1. Developmental programming of long non-coding RNAs during postnatal liver maturation in mice.

    PubMed

    Peng, Lai; Paulson, Ariel; Li, Hua; Piekos, Stephanie; He, Xi; Li, Linheng; Zhong, Xiao-Bo

    2014-01-01

    The liver is a vital organ with critical functions in metabolism, protein synthesis, and immune defense. Most of the liver functions are not mature at birth and many changes happen during postnatal liver development. However, it is unclear what changes occur in liver after birth, at what developmental stages they occur, and how the developmental processes are regulated. Long non-coding RNAs (lncRNAs) are involved in organ development and cell differentiation. Here, we analyzed the transcriptome of lncRNAs in mouse liver from perinatal (day -2) to adult (day 60) by RNA-Sequencing, with an attempt to understand the role of lncRNAs in liver maturation. We found around 15,000 genes expressed, including about 2,000 lncRNAs. Most lncRNAs were expressed at a lower level than coding RNAs. Both coding RNAs and lncRNAs displayed three major ontogenic patterns: enriched at neonatal, adolescent, or adult stages. Neighboring coding and non-coding RNAs showed the trend to exhibit highly correlated ontogenic expression patterns. Gene ontology (GO) analysis revealed that some lncRNAs enriched at neonatal ages have their neighbor protein coding genes also enriched at neonatal ages and associated with cell proliferation, immune activation related processes, tissue organization pathways, and hematopoiesis; other lncRNAs enriched at adolescent ages have their neighbor protein coding genes associated with different metabolic processes. These data reveal significant functional transition during postnatal liver development and imply the potential importance of lncRNAs in liver maturation.

  2. Cigarette smoke exposure-associated alterations to non-coding RNA.

    PubMed

    Maccani, Matthew A; Knopik, Valerie S

    2012-01-01

    Environmental exposures vary by timing, severity, and frequency and may have a number of deleterious effects throughout the life course. The period of in utero development, for example, is one of the most crucial stages of development during which adverse environmental exposures can both alter the growth and development of the fetus as well as lead to aberrant fetal programming, increasing disease risk. During fetal development and beyond, the plethora of exposures, including nutrients, drugs, stress, and trauma, influence health, development, and survival. Recent research in environmental epigenetics has investigated the roles of environmental exposures in influencing epigenetic modes of gene regulation during pregnancy and at various stages of life. Many relatively common environmental exposures, such as cigarette smoking, alcohol consumption, and drug use, may have consequences for the expression and function of non-coding RNA (ncRNA), important post-transcriptional regulators of gene expression. A number of ncRNA have been discovered, including microRNA (miRNA), Piwi-interacting RNA (piRNA), and long non-coding RNA (long ncRNA). The best-characterized species of ncRNA are miRNA, the mature forms of which are ∼22 nucleotides in length and capable of post-transcriptionally regulating target mRNA utilizing mechanisms based largely on the degree of complementarity between miRNA and target mRNA. Because miRNA can still negatively regulate gene expression when imperfectly base-paired with a target mRNA, a single miRNA can have a large number of potential mRNA targets and can regulate many different biological processes critical for health and development. The following review analyzes the current literature detailing links between cigarette smoke exposure and aberrant expression and function of ncRNA, assesses how such alterations may have consequences throughout the life course, and proposes future directions for this intriguing field of research.

  3. An improved canine genome and a comprehensive catalogue of coding genes and non-coding transcripts.

    PubMed

    Hoeppner, Marc P; Lundquist, Andrew; Pirun, Mono; Meadows, Jennifer R S; Zamani, Neda; Johnson, Jeremy; Sundström, Görel; Cook, April; FitzGerald, Michael G; Swofford, Ross; Mauceli, Evan; Moghadam, Behrooz Torabi; Greka, Anna; Alföldi, Jessica; Abouelleil, Amr; Aftuck, Lynne; Bessette, Daniel; Berlin, Aaron; Brown, Adam; Gearin, Gary; Lui, Annie; Macdonald, J Pendexter; Priest, Margaret; Shea, Terrance; Turner-Maier, Jason; Zimmer, Andrew; Lander, Eric S; di Palma, Federica; Lindblad-Toh, Kerstin; Grabherr, Manfred G

    2014-01-01

    The domestic dog, Canis familiaris, is a well-established model system for mapping trait and disease loci. While the original draft sequence was of good quality, gaps were abundant particularly in promoter regions of the genome, negatively impacting the annotation and study of candidate genes. Here, we present an improved genome build, canFam3.1, which includes 85 MB of novel sequence and now covers 99.8% of the euchromatic portion of the genome. We also present multiple RNA-Sequencing data sets from 10 different canine tissues to catalog ∼175,000 expressed loci. While about 90% of the coding genes previously annotated by EnsEMBL have measurable expression in at least one sample, the number of transcript isoforms detected by our data expands the EnsEMBL annotations by a factor of four. Syntenic comparison with the human genome revealed an additional ∼3,000 loci that are characterized as protein coding in human and were also expressed in the dog, suggesting that those were previously not annotated in the EnsEMBL canine gene set. In addition to ∼20,700 high-confidence protein coding loci, we found ∼4,600 antisense transcripts overlapping exons of protein coding genes, ∼7,200 intergenic multi-exon transcripts without coding potential, likely candidates for long intergenic non-coding RNAs (lincRNAs) and ∼11,000 transcripts were reported by two different library construction methods but did not fit any of the above categories. Of the lincRNAs, about 6,000 have no annotated orthologs in human or mouse. Functional analysis of two novel transcripts with shRNA in a mouse kidney cell line altered cell morphology and motility. All in all, we provide a much-improved annotation of the canine genome and suggest regulatory functions for several of the novel non-coding transcripts.

  4. A comprehensive catalogue of the coding and non-coding transcripts of the human inner ear.

    PubMed

    Schrauwen, Isabelle; Hasin-Brumshtein, Yehudit; Corneveaux, Jason J; Ohmen, Jeffrey; White, Cory; Allen, April N; Lusis, Aldons J; Van Camp, Guy; Huentelman, Matthew J; Friedman, Rick A

    2016-03-01

    The mammalian inner ear consists of the cochlea and the vestibular labyrinth (utricle, saccule, and semicircular canals), which participate in both hearing and balance. Proper development and life-long function of these structures involves a highly complex coordinated system of spatial and temporal gene expression. The characterization of the inner ear transcriptome is likely important for the functional study of auditory and vestibular components, yet, primarily due to tissue unavailability, detailed expression catalogues of the human inner ear remain largely incomplete. We report here, for the first time, comprehensive transcriptome characterization of the adult human cochlea, ampulla, saccule and utricle of the vestibule obtained from patients without hearing abnormalities. Using RNA-Seq, we measured the expression of >50,000 predicted genes corresponding to approximately 200,000 transcripts, in the adult inner ear and compared it to 32 other human tissues. First, we identified genes preferentially expressed in the inner ear, and unique either to the vestibule or cochlea. Next, we examined expression levels of specific groups of potentially interesting RNAs, such as genes implicated in hearing loss, long non-coding RNAs, pseudogenes and transcripts subject to nonsense mediated decay (NMD). We uncover the spatial specificity of expression of these RNAs in the hearing/balance system, and reveal evidence of tissue specific NMD. Lastly, we investigated the non-syndromic deafness loci to which no gene has been mapped, and narrow the list of potential candidates for each locus. These data represent the first high-resolution transcriptome catalogue of the adult human inner ear. A comprehensive identification of coding and non-coding RNAs in the inner ear will enable pathways of auditory and vestibular function to be further defined in the study of hearing and balance. Expression data are freely accessible at https://www.tgen.org/home/research/research-divisions/neurogenomics/supplementary-data/inner-ear-transcriptome.aspx.

  5. CVD-associated non-coding RNA, ANRIL, modulates expression of atherogenic pathways in VSMC

    SciTech Connect

    Congrains, Ada; Kamide, Kei; Katsuya, Tomohiro; Yasuda, Osamu; Oguro, Ryousuke; Yamamoto, Koichi; Ohishi, Mitsuru; Rakugi, Hiromi

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer ANRIL maps in the strongest susceptibility locus for cardiovascular disease. Black-Right-Pointing-Pointer Silencing of ANRIL leads to altered expression of tissue remodeling-related genes. Black-Right-Pointing-Pointer The effects of ANRIL on gene expression are splicing variant specific. Black-Right-Pointing-Pointer ANRIL affects progression of cardiovascular disease by regulating proliferation and apoptosis pathways. -- Abstract: ANRIL is a newly discovered non-coding RNA lying on the strongest genetic susceptibility locus for cardiovascular disease (CVD) in the chromosome 9p21 region. Genome-wide association studies have been linking polymorphisms in this locus with CVD and several other major diseases such as diabetes and cancer. The role of this non-coding RNA in atherosclerosis progression is still poorly understood. In this study, we investigated the implication of ANRIL in the modulation of gene sets directly involved in atherosclerosis. We designed and tested siRNA sequences to selectively target two exons (exon 1 and exon 19) of the transcript and successfully knocked down expression of ANRIL in human aortic vascular smooth muscle cells (HuAoVSMC). We used a pathway-focused RT-PCR array to profile gene expression changes caused by ANRIL knock down. Notably, the genes affected by each of the siRNAs were different, suggesting that different splicing variants of ANRIL might have distinct roles in cell physiology. Our results suggest that ANRIL splicing variants play a role in coordinating tissue remodeling, by modulating the expression of genes involved in cell proliferation, apoptosis, extra-cellular matrix remodeling and inflammatory response to finally impact in the risk of cardiovascular disease and other pathologies.

  6. An Interactive network of long non-coding RNAs facilitates the Drosophila sex determination decision

    PubMed Central

    Mulvey, Brett B.; Olcese, Ursula; Cabrera, Janel R.; Horabin, Jamila I.

    2014-01-01

    Genome analysis in several eukaryotes shows a surprising number of transcripts which do not encode conventional messenger RNAs. Once considered noise, these non-coding RNAs (ncRNAs) appear capable of controlling gene expression by various means. We find Drosophila sex determination, specifically the master-switch gene Sex-lethal (Sxl), is regulated by long ncRNAs (>200 nt). The lncRNAs influence the dose sensitive establishment promoter of Sxl, SxlPe, which must be activated to specify female sex. They are primarily from two regions, R1 and R2, upstream of SxlPeand show a dynamic developmental profile. Of the four lncRNA strands only one, R2 antisense, has its peak coincident with SxlPe transcription, suggesting it may promote activation. Indeed, its expression is regulated by the X chromosome counting genes, whose dose determines whether SxlPe is transcribed. Transgenic lines which ectopically express each of the lncRNAs show they can act in trans, impacting the process of sex determination but also altering the levels of the other lncRNAs. Generally, expression of R1 is negative whereas R2 is positive to females. This ectopic expression also results in a change in the local chromatin marks, affecting the timing and strength of SxlPe transcription. The chromatin marks are those deposited by the Polycomb and Trithorax groups of chromatin modifying proteins, which we find bind to the lncRNAs. We suggest the increasing numbers of non-coding transcripts being identified are a harbinger of interacting networks similar to the one we describe. PMID:24954180

  7. Characterization of Sus scrofa small non-coding RNAs present in both female and male gonads.

    PubMed

    Kowalczykiewicz, Dorota; Świercz, Aleksandra; Handschuh, Luiza; Leśniak, Katarzyna; Figlerowicz, Marek; Wrzesinski, Jan

    2014-01-01

    Small non-coding RNAs (sncRNAs) are indispensable for proper germ cell development, emphasizing the need for greater elucidation of the mechanisms of germline development and regulation of this process by sncRNAs. We used deep sequencing to characterize three families of small non-coding RNAs (piRNAs, miRNAs, and tRFs) present in Sus scrofa gonads and focused on the small RNA fraction present in both male and female gonads. Although similar numbers of reads were obtained from both types of gonads, the number of unique RNA sequences in the ovaries was several times lower. Of the sequences detected in the testes, 2.6% of piRNAs, 9% of miRNAs, and 10% of tRFs were also present in the ovaries. Notably, the majority of the shared piRNAs mapped to ribosomal RNAs and were derived from clustered loci. In addition, the most abundant miRNAs present in the ovaries and testes are conserved and are involved in many biological processes such as the regulation of homeobox genes, the control of cell proliferation, and carcinogenesis. Unexpectedly, we detected a novel sncRNA type, the tRFs, which are 30-36-nt RNA fragments derived from tRNA molecules, in gonads. Analysis of S. scrofa piRNAs show that testes specific piRNAs are biased for 5' uracil but both testes and ovaries specific piRNAs are not biased for adenine at the 10th nucleotide position. These observations indicate that adult porcine piRNAs are predominantly produced by a primary processing pathway or other mechanisms and secondary piRNAs generated by ping-pong mechanism are absent.

  8. Intronic RNAs constitute the major fraction of the non-coding RNA in mammalian cells

    PubMed Central

    2012-01-01

    Background The function of RNA from the non-coding (the so called “dark matter”) regions of the genome has been a subject of considerable recent debate. Perhaps the most controversy is regarding the function of RNAs found in introns of annotated transcripts, where most of the reads that map outside of exons are usually found. However, it has been reported that the levels of RNA in introns are minor relative to those of the corresponding exons, and that changes in the levels of intronic RNAs correlate tightly with that of adjacent exons. This would suggest that RNAs produced from the vast expanse of intronic space are just pieces of pre-mRNAs or excised introns en route to degradation. Results We present data that challenges the notion that intronic RNAs are mere by-standers in the cell. By performing a highly quantitative RNAseq analysis of transcriptome changes during an inflammation time course, we show that intronic RNAs have a number of features that would be expected from functional, standalone RNA species. We show that there are thousands of introns in the mouse genome that generate RNAs whose overall abundance, which changes throughout the inflammation timecourse, and other properties suggest that they function in yet unknown ways. Conclusions So far, the focus of non-coding RNA discovery has shied away from intronic regions as those were believed to simply encode parts of pre-mRNAs. Results presented here suggest a very different situation – the sequences encoded in the introns appear to harbor a yet unexplored reservoir of novel, functional RNAs. As such, they should not be ignored in surveys of functional transcripts or other genomic studies. PMID:23006825

  9. Comparison of non-coding RNAs in human and canine cancer

    PubMed Central

    Wagner, Siegfried; Willenbrock, Saskia; Nolte, Ingo; Escobar, Hugo Murua

    2012-01-01

    The discovery of the post-transcriptional gene silencing (PTGS) by small non-protein-coding RNAs is considered as a major breakthrough in biology. In the last decade we just started to realize the biologic function and complexity of gene regulation by small non-coding RNAs. PTGS is a conserved phenomenon which was observed in various species such as fungi, worms, plants, and mammals. Micro RNAs (miRNA) and small interfering RNAs (siRNAs) are two gene silencing mediators constituting an evolutionary conserved class of non-coding RNAs regulating many biological processes in eukaryotes. As this small RNAs appear to regulate gene expression at translational and transcriptional level it is not surprising that during the last decade many human diseases among them Alzheimer's disease, cardiovascular diseases, and various cancer types were associated with deregulated miRNA expression. Consequently small RNAs are considered to hold big promises as therapeutic agents. However, despite of the enormous therapeutic potential many questions remain unanswered. A major critical point, when evaluating novel therapeutic approaches, is the transfer of in vitro settings to an in vivo model. Classical animal models rely on the laboratory kept animals under artificial conditions and often missing an intact immune system. Model organisms with spontaneously occurring tumors as e.g., dogs provide the possibility to evaluate therapeutic agents under the surveillance of an in intact immune system and thereby providing an authentic tumor reacting scenario. Considering the genomic similarity between canines and humans and the advantages of the dog as cancer model system for human neoplasias the analyses of the complex role of small RNAs in canine tumor development could be of major value for both species. Herein we discuss comparatively the role of miRNAs in human and canine cancer development and highlight the potential and advantages of the model organism dog for tumor research. PMID

  10. Evaluation of growth yield of Spirulina (Arthrospira) sp. in photoautotrophic, heterotrophic and mixotrophic cultures.

    PubMed

    Chojnacka, Katarzyna; Zielińska, Agnieszka

    2012-02-01

    In microbial cultures, both cellular growth rate and yield (defined as the degree of substrate conversion into the biomass) are important. Although effect of culture conditions on growth kinetics has been well documented for various microbial strains, there is almost no literature concerning the effect of environmental conditions on growth equilibrium, expressed as biomass yield coefficients from substrate. The present paper discusses the effect of culture conditions: irradiance (physical substrate) and glucose concentration (chemical substrate) on biomass yield coefficients from two chemical substrates: glucose and nitrate-nitrogen in photoautotrophic, heterotrophic and mixotrophic culture of blue-green alga Spirulina (Arthrospira) sp. The efficiency of substrates incorporation into the biomass can be precisely determined only if the elemental composition of the biomass is known. The experimental results showed that culture conditions had a substantial influence on biomass yield coefficients (biomass yield from glucose and nitrate-nitrogen). It was found that, the increase of irradiance favoured increase of biomass yield coefficient from both, glucose and nitrate-nitrogen. However, in the case of yield from nitrogen in mixotrophic culture, the effect was opposite. The effect of glucose concentration was different: the higher the initial glucose concentration, the lower the biomass yield coefficients from chemical substrates.

  11. Direct membrane-carbonation photobioreactor producing photoautotrophic biomass via carbon dioxide transfer and nutrient removal.

    PubMed

    Kim, Hyun-Woo; Cheng, Jing; Rittmann, Bruce E

    2016-03-01

    An advanced-material photobioreactor, the direct membrane-carbonation photobioreactor (DMCPBR), was tested to investigate the impact of directly submerging a membrane carbonation (MC) module of hollow-fiber membranes inside the photobioreactor. Results demonstrate that the DMCPBR utilized over 90% of the supplied CO2 by matching the CO2 flux to the C demand of photoautotrophic biomass growth. The surface area of the submerged MC module was the key to control CO2 delivery and biomass productivity. Tracking the fate of supplied CO2 explained how the DMCPBR reduced loss of gaseous CO2 while matching the inorganic carbon (IC) demand to its supply. Accurate fate analysis required that the biomass-associated C include soluble microbial products as a sink for captured CO2. With the CO2 supply matched to the photosynthetic demand, light attenuation limited the rate microalgal photosynthesis. The DMCPBR presents an opportunity to improve CO2-deliver efficiency and make microalgae a more effective strategy for C-neutral resource recovery.

  12. An altered Q sub B polypeptide as the basis for atrazine resistance in photoautotrophic potato cells

    SciTech Connect

    Smeda, R.J.; Hasegawa, P.M.; Weller, S.C. )

    1990-05-01

    A photoautotrophic potato cell line (variant) was isolated and is capable of sustained growth in media containing the herbicide atrazine at concentrations up to 100-fold greater than the lethal concentration (1.0 {mu}M) for the unselected (wild type) cell line. The basis for atrazine resistance could not be identified by differential uptake or metabolism. Photosynthetic electron transport rates for both intact cell and isolated thylakoid membranes from chloroplasts were unaffected in variant cells at atrazine concentrations up to 100-fold greater than for wild type cells. Photoaffinity labeling of isolated thylakoid membranes from both cell lines with {sup 14}C-azidoatrazine revealed an altered Q{sub B} polypeptide in variant cells resulting in low or no affinity for atrazine. A portion of the chloroplast psbA gene, encoding the Q{sub B} polypeptide, was sequenced for both cell lines. The basis for atrazine resistance in variant cells was identified as a single base change resulting in the alteration of serine to threonine at position 264 of the Q{sub B} polypeptide. In addition to atrazine resistance, variant cells exhibit enhanced tolerance to the herbicides DCMU and metribuzin, but greater sensitivity to bentazon. No reductions in variant cell growth and photosynthetic efficiency in the absence of atrazine were observed.

  13. Long antisense non-coding RNAs function to direct epigenetic complexes that regulate transcription in human cells

    PubMed Central

    Morris, Kevin V.

    2009-01-01

    Epigenetic silencing of tumor suppressor gene promoters is one of the most common observations found in cancer. Despite the plethora of observed epigenetically silenced cancer related genes little is known about what is guiding the silencing to these particular loci. Two recent articles suggest that long antisense non-coding RNAs function as epigenetic regulators of transcription in human cells. These reports, along with previous observations that small antisense non-coding RNAs can epigenetically regulate transcription, imply that long antisense non-coding RNAs function as endogenous transcriptional regulatory RNAs in humans. Mechanistically, these long antisense non-coding RNAs may be involved in maintaining balanced transcription at bidirectionally transcribed loci as a method to modulate gene expression according to the selective pressures placed on the cell. The loss of this intricate bidirectional RNA based regulatory network can result in overt epigenetic silencing of gene expression. In the case of tumor suppressor genes, this silencing can lead to the loss of cellular regulation and be a contributing factor in cancer. This perspective will highlight the endogenous effector RNAs and mechanism of action whereby long antisense non-coding RNAs transcriptionally regulate gene expression in human cells. PMID:19633414

  14. Non-coding RNAs and hypertension-unveiling unexpected mechanisms of hypertension by the dark matter of the genome.

    PubMed

    Murakami, Kazuo

    2015-01-01

    Hypertension is a major risk factor of cardiovascular diseases and a most important health problem in developed countries. Investigations on pathophysiology of hypertension have been based on gene products from coding region that occupies only about 1% of total genome region. On the other hand, non-coding region that occupies almost 99% of human genome has been regarded as "junk" for a long time and went unnoticed until these days. But recently, it turned out that noncoding region is extensively transcribed to non-coding RNAs and has various functions. This review highlights recent updates on the significance of non-coding RNAs such as micro RNAs and long non-coding RNAs (lncRNAs) on the pathogenesis of hypertension, also providing an introduction to basic biology of noncoding RNAs. For example, microRNAs are associated with hypertension via neuro-fumoral factor, sympathetic nerve activity, ion transporters in kidneys, endothelial function, vascular smooth muscle phenotype transformation, or communication between cells. Although reports of lncRNAs on pathogenesis of hypertension are scarce at the moment, new lncRNAs in relation to hypertension are being discovered at a rapid pace owing to novel techniques such as microarray or next-generation sequencing. In the clinical settings, clinical use of non-coding RNAs in identifying cardiovascular risks or developing novel tools for treating hypertension such as molecular decoy or mimicks is promising, although improvement in chemical modification or drug delivery system is necessary.

  15. A Dual Model for Prioritizing Cancer Mutations in the Non-coding Genome Based on Germline and Somatic Events

    PubMed Central

    Li, Jia; Poursat, Marie-Anne; Drubay, Damien; Motz, Arnaud; Saci, Zohra; Morillon, Antonin; Michiels, Stefan; Gautheret, Daniel

    2015-01-01

    We address here the issue of prioritizing non-coding mutations in the tumoral genome. To this aim, we created two independent computational models. The first (germline) model estimates purifying selection based on population SNP data. The second (somatic) model estimates tumor mutation density based on whole genome tumor sequencing. We show that each model reflects a different set of constraints acting either on the normal or tumor genome, and we identify the specific genome features that most contribute to these constraints. Importantly, we show that the somatic mutation model carries independent functional information that can be used to narrow down the non-coding regions that may be relevant to cancer progression. On this basis, we identify positions in non-coding RNAs and the non-coding parts of mRNAs that are both under purifying selection in the germline and protected from mutation in tumors, thus introducing a new strategy for future detection of cancer driver elements in the expressed non-coding genome. PMID:26588488

  16. A Dual Model for Prioritizing Cancer Mutations in the Non-coding Genome Based on Germline and Somatic Events.

    PubMed

    Li, Jia; Poursat, Marie-Anne; Drubay, Damien; Motz, Arnaud; Saci, Zohra; Morillon, Antonin; Michiels, Stefan; Gautheret, Daniel

    2015-11-01

    We address here the issue of prioritizing non-coding mutations in the tumoral genome. To this aim, we created two independent computational models. The first (germline) model estimates purifying selection based on population SNP data. The second (somatic) model estimates tumor mutation density based on whole genome tumor sequencing. We show that each model reflects a different set of constraints acting either on the normal or tumor genome, and we identify the specific genome features that most contribute to these constraints. Importantly, we show that the somatic mutation model carries independent functional information that can be used to narrow down the non-coding regions that may be relevant to cancer progression. On this basis, we identify positions in non-coding RNAs and the non-coding parts of mRNAs that are both under purifying selection in the germline and protected from mutation in tumors, thus introducing a new strategy for future detection of cancer driver elements in the expressed non-coding genome.

  17. microRNA-9 targets the long non-coding RNA MALAT1 for degradation in the nucleus

    PubMed Central

    Leucci, Eleonora; Patella, Francesca; Waage, Johannes; Holmstrøm, Kim; Lindow, Morten; Porse, Bo; Kauppinen, Sakari; Lund, Anders H.

    2013-01-01

    microRNAs regulate the expression of over 60% of protein coding genes by targeting their mRNAs to AGO2-containing complexes in the cytoplasm and promoting their translational inhibition and/or degradation. There is little evidence so far for microRNA-mediated regulation of other classes of non-coding RNAs. Here we report that microRNA-9 (miR-9) regulates the expression of the Metastasis Associated Lung Adenocarcinoma Transcript 1 (MALAT-1), one of the most abundant and conserved long non-coding RNAs. Intriguingly, we find that miR-9 targets AGO2-mediated regulation of MALAT1 in the nucleus. Our findings reveal a novel direct regulatory link between two important classes of non-coding RNAs, miRs and lncRNAs, and advance our understanding of microRNA functions. PMID:23985560

  18. Non-extensive trends in the size distribution of coding and non-coding DNA sequences in the human genome

    NASA Astrophysics Data System (ADS)

    Oikonomou, Th.; Provata, A.

    2006-03-01

    We study the primary DNA structure of four of the most completely sequenced human chromosomes (including chromosome 19 which is the most dense in coding), using non-extensive statistics. We show that the exponents governing the spatial decay of the coding size distributions vary between 5.2 ≤r ≤5.7 for the short scales and 1.45 ≤q ≤1.50 for the large scales. On the contrary, the exponents governing the spatial decay of the non-coding size distributions in these four chromosomes, take the values 2.4 ≤r ≤3.2 for the short scales and 1.50 ≤q ≤1.72 for the large scales. These results, in particular the values of the tail exponent q, indicate the existence of correlations in the coding and non-coding size distributions with tendency for higher correlations in the non-coding DNA.

  19. Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics Analysis to the Development of Non-Invasive Diagnostic Tools.

    PubMed

    Kunz, Meik; Wolf, Beat; Schulze, Harald; Atlan, David; Walles, Thorsten; Walles, Heike; Dandekar, Thomas

    2016-12-26

    Lung cancer is currently the leading cause of cancer related mortality due to late diagnosis and limited treatment intervention. Non-coding RNAs are not translated into proteins and have emerged as fundamental regulators of gene expression. Recent studies reported that microRNAs and long non-coding RNAs are involved in lung cancer development and progression. Moreover, they appear as new promising non-invasive biomarkers for early lung cancer diagnosis. Here, we highlight their potential as biomarker in lung cancer and present how bioinformatics can contribute to the development of non-invasive diagnostic tools. For this, we discuss several bioinformatics algorithms and software tools for a comprehensive understanding and functional characterization of microRNAs and long non-coding RNAs.

  20. Cis-encoded non-coding antisense RNAs in streptococci and other low GC Gram (+) bacterial pathogens

    PubMed Central

    Cho, Kyu Hong; Kim, Jeong-Ho

    2015-01-01

    Due to recent advances of bioinformatics and high throughput sequencing technology, discovery of regulatory non-coding RNAs in bacteria has been increased to a great extent. Based on this bandwagon, many studies searching for trans-acting small non-coding RNAs in streptococci have been performed intensively, especially in the important human pathogen, group A and B streptococci. However, studies for cis-encoded non-coding antisense RNAs in streptococci have been scarce. A recent study shows antisense RNAs are involved in virulence gene regulation in group B streptococcus, S. agalactiae. This suggests antisense RNAs could have important roles in the pathogenesis of streptococcal pathogens. In this review, we describe recent discoveries of chromosomal cis-encoded antisense RNAs in streptococcal pathogens and other low GC Gram (+) bacteria to provide a guide for future studies. PMID:25859258

  1. Non-Coding RNAs in Lung Cancer: Contribution of Bioinformatics Analysis to the Development of Non-Invasive Diagnostic Tools

    PubMed Central

    Kunz, Meik; Wolf, Beat; Schulze, Harald; Atlan, David; Walles, Thorsten; Walles, Heike; Dandekar, Thomas

    2016-01-01

    Lung cancer is currently the leading cause of cancer related mortality due to late diagnosis and limited treatment intervention. Non-coding RNAs are not translated into proteins and have emerged as fundamental regulators of gene expression. Recent studies reported that microRNAs and long non-coding RNAs are involved in lung cancer development and progression. Moreover, they appear as new promising non-invasive biomarkers for early lung cancer diagnosis. Here, we highlight their potential as biomarker in lung cancer and present how bioinformatics can contribute to the development of non-invasive diagnostic tools. For this, we discuss several bioinformatics algorithms and software tools for a comprehensive understanding and functional characterization of microRNAs and long non-coding RNAs. PMID:28035947

  2. Transcriptional profiling of long non-coding RNAs and novel transcribed regions across a diverse panel of archived human cancers

    PubMed Central

    2012-01-01

    Background Molecular characterization of tumors has been critical for identifying important genes in cancer biology and for improving tumor classification and diagnosis. Long non-coding RNAs, as a new, relatively unstudied class of transcripts, provide a rich opportunity to identify both functional drivers and cancer-type-specific biomarkers. However, despite the potential importance of long non-coding RNAs to the cancer field, no comprehensive survey of long non-coding RNA expression across various cancers has been reported. Results We performed a sequencing-based transcriptional survey of both known long non-coding RNAs and novel intergenic transcripts across a panel of 64 archival tumor samples comprising 17 diagnostic subtypes of adenocarcinomas, squamous cell carcinomas and sarcomas. We identified hundreds of transcripts from among the known 1,065 long non-coding RNAs surveyed that showed variability in transcript levels between the tumor types and are therefore potential biomarker candidates. We discovered 1,071 novel intergenic transcribed regions and demonstrate that these show similar patterns of variability between tumor types. We found that many of these differentially expressed cancer transcripts are also expressed in normal tissues. One such novel transcript specifically expressed in breast tissue was further evaluated using RNA in situ hybridization on a panel of breast tumors. It was shown to correlate with low tumor grade and estrogen receptor expression, thereby representing a potentially important new breast cancer biomarker. Conclusions This study provides the first large survey of long non-coding RNA expression within a panel of solid cancers and also identifies a number of novel transcribed regions differentially expressed across distinct cancer types that represent candidate biomarkers for future research. PMID:22929540

  3. Multifractal detrended cross-correlation analysis of coding and non-coding DNA sequences through chaos-game representation

    NASA Astrophysics Data System (ADS)

    Pal, Mayukha; Satish, B.; Srinivas, K.; Rao, P. Madhusudana; Manimaran, P.

    2015-10-01

    We propose a new approach combining the chaos game representation and the two dimensional multifractal detrended cross correlation analysis methods to examine multifractal behavior in power law cross correlation between any pair of nucleotide sequences of unequal lengths. In this work, we analyzed the characteristic behavior of coding and non-coding DNA sequences of eight prokaryotes. The results show the presence of strong multifractal nature between coding and non-coding sequences of all data sets. We found that this integrative approach helps us to consider complete DNA sequences for characterization, and further it may be useful for classification, clustering, identification of class affiliation of nucleotide sequences etc. with high precision.

  4. Genome-Wide Identification and Characterization of Long Intergenic Non-Coding RNAs in Ganoderma lucidum

    PubMed Central

    Xu, Jiang; Liu, Chang

    2014-01-01

    Ganoderma lucidum is a white-rot fungus best-known for its medicinal activities. We have previously sequenced its genome and annotated the protein coding genes. However, long non-coding RNAs in G. lucidum genome have not been analyzed. In this study, we have identified and characterized long intergenic non-coding RNAs (lincRNA) in G. lucidum systematically. We developed a computational pipeline, which was used to analyze RNA-Seq data derived from G. lucidum samples collected from three developmental stages. A total of 402 lincRNA candidates were identified, with an average length of 609 bp. Analysis of their adjacent protein-coding genes (apcGenes) revealed that 46 apcGenes belong to the pathways of triterpenoid biosynthesis and lignin degradation, or families of cytochrome P450, mating type B genes, and carbohydrate-active enzymes. To determine if lincRNAs and these apcGenes have any interactions, the corresponding pairs of lincRNAs and apcGenes were analyzed in detail. We developed a modified 3′ RACE method to analyze the transcriptional direction of a transcript. Among the 46 lincRNAs, 37 were found unidirectionally transcribed, and 9 were found bidirectionally transcribed. The expression profiles of 16 of these 37 lincRNAs were found to be highly correlated with those of the apcGenes across the three developmental stages. Among them, 11 are positively correlated (r>0.8) and 5 are negatively correlated (r<−0.8). The co-localization and co-expression of lincRNAs and those apcGenes playing important functions is consistent with the notion that lincRNAs might be important regulators for cellular processes. In summary, this represents the very first study to identify and characterize lincRNAs in the genomes of basidiomycetes. The results obtained here have laid the foundation for study of potential lincRNA-mediated expression regulation of genes in G. lucidum. PMID:24932683

  5. Long non-coding RNA containing ultraconserved genomic region 8 promotes bladder cancer tumorigenesis.

    PubMed

    Olivieri, Michele; Ferro, Matteo; Terreri, Sara; Durso, Montano; Romanelli, Alessandra; Avitabile, Concetta; De Cobelli, Ottavio; Messere, Anna; Bruzzese, Dario; Vannini, Ivan; Marinelli, Luciana; Novellino, Ettore; Zhang, Wei; Incoronato, Mariarosaria; Ilardi, Gennaro; Staibano, Stefania; Marra, Laura; Franco, Renato; Perdonà, Sisto; Terracciano, Daniela; Czerniak, Bogdan; Liguori, Giovanna L; Colonna, Vincenza; Fabbri, Muller; Febbraio, Ferdinando; Calin, George A; Cimmino, Amelia

    2016-04-12

    Ultraconserved regions (UCRs) have been shown to originate non-coding RNA transcripts (T-UCRs) that have different expression profiles and play functional roles in the pathophysiology of multiple cancers. The relevance of these functions to the pathogenesis of bladder cancer (BlCa) is speculative. To elucidate this relevance, we first used genome-wide profiling to evaluate the expression of T-UCRs in BlCa tissues. Analysis of two datasets comprising normal bladder tissues and BlCa specimens with a custom T-UCR microarray identified ultraconserved RNA (uc.) 8+ as the most upregulated T-UCR in BlCa tissues, although its expression was lower than in pericancerous bladder tissues. These results were confirmed on BlCa tissues by real-time PCR and by in situ hybridization. Although uc.8+ is located within intron 1 of CASZ1, a zinc-finger transcription factor, the transcribed non-coding RNA encoding uc.8+ is expressed independently of CASZ1. In vitro experiments evaluating the effects of uc.8+ silencing, showed significantly decreased capacities for cancer cell invasion, migration, and proliferation. From this, we proposed and validated a model of interaction in which uc.8+ shuttles from the nucleus to the cytoplasm of BlCa cells, interacts with microRNA (miR)-596, and cooperates in the promotion and development of BlCa. Using computational analysis, we investigated the miR-binding domain accessibility, as determined by base-pairing interactions within the uc.8+ predicted secondary structure, RNA binding affinity, and RNA species abundance in bladder tissues and showed that uc.8+ is a natural decoy for miR-596. Thus uc.8+ upregulation results in increased expression of MMP9, increasing the invasive potential of BlCa cells. These interactions between evolutionarily conserved regions of DNA suggest that natural selection has preserved this potentially regulatory layer that uses RNA to modulate miR levels, opening up the possibility for development of useful markers for

  6. Long non-coding RNA containing ultraconserved genomic region 8 promotes bladder cancer tumorigenesis

    PubMed Central

    Durso, Montano; Romanelli, Alessandra; Avitabile, Concetta; De Cobelli, Ottavio; Messere, Anna; Bruzzese, Dario; Vannini, Ivan; Marinelli, Luciana; Novellino, Ettore; Zhang, Wei; Incoronato, Mariarosaria; Ilardi, Gennaro; Staibano, Stefania; Marra, Laura; Franco, Renato; Perdonà, Sisto; Terracciano, Daniela; Czerniak, Bogdan; Liguori, Giovanna L.; Colonna, Vincenza; Fabbri, Muller; Febbraio, Ferdinando

    2016-01-01

    Ultraconserved regions (UCRs) have been shown to originate non-coding RNA transcripts (T-UCRs) that have different expression profiles and play functional roles in the pathophysiology of multiple cancers. The relevance of these functions to the pathogenesis of bladder cancer (BlCa) is speculative. To elucidate this relevance, we first used genome-wide profiling to evaluate the expression of T-UCRs in BlCa tissues. Analysis of two datasets comprising normal bladder tissues and BlCa specimens with a custom T-UCR microarray identified ultraconserved RNA (uc.) 8+ as the most upregulated T-UCR in BlCa tissues, although its expression was lower than in pericancerous bladder tissues. These results were confirmed on BlCa tissues by real-time PCR and by in situ hybridization. Although uc.8+ is located within intron 1 of CASZ1, a zinc-finger transcription factor, the transcribed non-coding RNA encoding uc.8+ is expressed independently of CASZ1. In vitro experiments evaluating the effects of uc.8+ silencing, showed significantly decreased capacities for cancer cell invasion, migration, and proliferation. From this, we proposed and validated a model of interaction in which uc.8+ shuttles from the nucleus to the cytoplasm of BlCa cells, interacts with microRNA (miR)-596, and cooperates in the promotion and development of BlCa. Using computational analysis, we investigated the miR-binding domain accessibility, as determined by base-pairing interactions within the uc.8+ predicted secondary structure, RNA binding affinity, and RNA species abundance in bladder tissues and showed that uc.8+ is a natural decoy for miR-596. Thus uc.8+ upregulation results in increased expression of MMP9, increasing the invasive potential of BlCa cells. These interactions between evolutionarily conserved regions of DNA suggest that natural selection has preserved this potentially regulatory layer that uses RNA to modulate miR levels, opening up the possibility for development of useful markers for

  7. Small Open Reading Frames, Non-Coding RNAs and Repetitive Elements in Bradyrhizobium japonicum USDA 110

    PubMed Central

    Hahn, Julia; Tsoy, Olga V.; Thalmann, Sebastian; Čuklina, Jelena; Gelfand, Mikhail S.

    2016-01-01

    Small open reading frames (sORFs) and genes for non-coding RNAs are poorly investigated components of most genomes. Our analysis of 1391 ORFs recently annotated in the soybean symbiont Bradyrhizobium japonicum USDA 110 revealed that 78% of them contain less than 80 codons. Twenty-one of these sORFs are conserved in or outside Alphaproteobacteria and most of them are similar to genes found in transposable elements, in line with their broad distribution. Stabilizing selection was demonstrated for sORFs with proteomic evidence and bll1319_ISGA which is conserved at the nucleotide level in 16 alphaproteobacterial species, 79 species from other taxa and 49 other Proteobacteria. Further we used Northern blot hybridization to validate ten small RNAs (BjsR1 to BjsR10) belonging to new RNA families. We found that BjsR1 and BjsR3 have homologs outside the genus Bradyrhizobium, and BjsR5, BjsR6, BjsR7, and BjsR10 have up to four imperfect copies in Bradyrhizobium genomes. BjsR8, BjsR9, and BjsR10 are present exclusively in nodules, while the other sRNAs are also expressed in liquid cultures. We also found that the level of BjsR4 decreases after exposure to tellurite and iron, and this down-regulation contributes to survival under high iron conditions. Analysis of additional small RNAs overlapping with 3’-UTRs revealed two new repetitive elements named Br-REP1 and Br-REP2. These REP elements may play roles in the genomic plasticity and gene regulation and could be useful for strain identification by PCR-fingerprinting. Furthermore, we studied two potential toxin genes in the symbiotic island and confirmed toxicity of the yhaV homolog bll1687 but not of the newly annotated higB homolog blr0229_ISGA in E. coli. Finally, we revealed transcription interference resulting in an antisense RNA complementary to blr1853, a gene induced in symbiosis. The presented results expand our knowledge on sORFs, non-coding RNAs and repetitive elements in B. japonicum and related bacteria. PMID

  8. Mining Mammalian Transcript Data for Functional Long Non-Coding RNAs

    PubMed Central

    Khachane, Amit N.; Harrison, Paul M.

    2010-01-01

    Background The role of long non-coding RNAs (lncRNAs) in controlling gene expression has garnered increased interest in recent years. Sequencing projects, such as Fantom3 for mouse and H-InvDB for human, have generated abundant data on transcribed components of mammalian cells, the majority of which appear not to be protein-coding. However, much of the non-protein-coding transcriptome could merely be a consequence of ‘transcription noise’. It is therefore essential to use bioinformatic approaches to identify the likely functional candidates in a high throughput manner. Principal Findings We derived a scheme for classifying and annotating likely functional lncRNAs in mammals. Using the available experimental full-length cDNA data sets for human and mouse, we identified 78 lncRNAs that are either syntenically conserved between human and mouse, or that originate from the same protein-coding genes. Of these, 11 have significant sequence homology. We found that these lncRNAs exhibit: (i) patterns of codon substitution typical of non-coding transcripts; (ii) preservation of sequences in distant mammals such as dog and cow, (iii) significant sequence conservation relative to their corresponding flanking regions (in 50% cases, flanking regions do not have homology at all; and in the remaining, the degree of conservation is significantly less); (iv) existence mostly as single-exon forms (8/11); and, (v) presence of conserved and stable secondary structure motifs within them. We further identified orthologous protein-coding genes that are contributing to the pool of lncRNAs; of which, genes implicated in carcinogenesis are significantly over-represented. Conclusion Our comparative mammalian genomics approach coupled with evolutionary analysis identified a small population of conserved long non-protein-coding RNAs (lncRNAs) that are potentially functional across Mammalia. Additionally, our analysis indicates that amongst the orthologous protein-coding genes that produce

  9. Initial characterization of the photosynthetic apparatus of "Candidatus Chlorothrix halophila," a filamentous, anoxygenic photoautotroph.

    PubMed

    van de Meene, Allison M L; Le Olson, Tien; Collins, Aaron M; Blankenship, Robert E

    2007-06-01

    "Candidatus Chlorothrix halophila" is a recently described halophilic, filamentous, anoxygenic photoautotroph (J. A. Klappenbach and B. K. Pierson, Arch. Microbiol. 181:17-25, 2004) that was enriched from the hypersaline microbial mats at Guerrero Negro, Mexico. Analysis of the photosynthetic apparatus by negative staining, spectroscopy, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the photosynthetic apparatus in this organism has similarities to the photosynthetic apparatus in both the Chloroflexi and Chlorobi phyla of green photosynthetic bacteria. The chlorosomes were found to be ellipsoidal and of various sizes, characteristics that are comparable to characteristics of chlorosomes in other species of green photosynthetic bacteria. The absorption spectrum of whole cells was dominated by the chlorosome bacteriochlorophyll c (BChl c) peak at 759 nm, with fluorescence emission at 760 nm. A second fluorescence emission band was observed at 870 nm and was tentatively attributed to a membrane-bound antenna complex. Fluorescence emission spectra obtained at 77 K revealed another complex that fluoresced at 820 nm, which probably resulted from the chlorosome baseplate complex. All of these results suggest that BChl c is present in the chlorosomes of "Ca. Chlorothrix halophila," that BChl a is present in the baseplate, and that there is a membrane-bound antenna complex. Analysis of the proteins in the chlorosomes revealed an approximately 6-kDa band, which was found to be related to the BChl c binding protein CsmA found in other green bacteria. Overall, the absorbance and fluorescence spectra of "Ca. Chlorothrix halophila" revealed an interesting mixture of photosynthetic characteristics that seemed to have properties similar to properties of both phyla of green bacteria when they were compared to the photosynthetic characteristics of Chlorobium tepidum and Chloroflexus aurantiacus.

  10. A combination of vermiculite and paper pulp supporting material for the photoautotrophic micropropagation of sweet potato.

    PubMed

    Afreen-Zobayed; Zobayed; Kubota; Kozai; Hasegawa

    2000-08-22

    A mixture of vermiculite (hydrous silicates) and paper pulp (waste product of paper industry) was used as a supporting material for the in vitro photoautotrophic micropropagation of plantlets. Sweet potato was used as a model plant to find out the appropriate proportion of vermiculite and paper pulp for the optimum growth of the plantlets. The plantlets grown in the conventional supporting material, agar, were used as the control. The study revealed that in all aspects, the plantlets grown in vermiculite mixed with 30% (w/w) paper pulp exhibited the highest growth performance. The shoot and root fresh mass were x2.7 greater than those in agar (control); the leaf, stem and root dry mass were also greater and at least two fold in this treatment compared with those in the control. The net photosynthetic rate per plantlet was highest in this treatment, and on day 20 it was 15.3 µmol CO(2) h(-1) as compared with 9.8 µmol CO(2) h(-1) in the control. The growth of both shoots and roots decreased gradually with the increase or decrease of percentage of paper pulp in the supporting material. In general, the growth was significantly poorer in the plantlets grown in 100% vermiculite than that in vermiculite mixed with 30% paper pulp but still greater than in the control. The porosity of the supporting materials increased with the increase in the percentage of paper pulp in the supporting material. After transplanting to the ex vitro condition the survival percentage did not vary significantly (90-100%) among the treatments, except in control where it was only 73%. The number of unfolded leaves and the stem height were similar among the treatments except those in the control.

  11. High-density photoautotrophic algal cultures: design, construction, and operation of a novel photobioreactor system.

    PubMed

    Javanmardian, M; Palsson, B O

    1991-12-05

    A photobioreactor system has been designed, constructed and implemented to achieve high photosynthetic rates in high-density photoautotrophic algal cell suspensions. This unit is designed for efficient oxygen and biomass production rates, and it also can be used for the production of secreted products. A fiber-optic based optical transmission system that is coupled to an internal light distribution system illuminates the culture volume uniformly, at light intensities of 1.7 mW/cm(2) over a specific surface area of 3.2 cm(2)/cm(3). Uniform light distribution is achieved throughout the reactor without interfering with the flow pattern required to keep the cells in suspension. An on-line ultrafiltration unit exchanges spent with fresh medium, and its use results in very high cell densities, up to 10(9) cells/mL [3% (w/v)] for eukaryotic green alga chlorella vulgaris. DNA histograms obtained form flow cytometric analysis reveal that on-line ultrafiltration influences the growth pattern. Prior to ultrafiltration the cells seem to have at a particular point in the cell cycle where they contain multiple chromosomal equivalents. Following ultrafiltration, these cells divide, and the new cells are committed to division so that cell growth resumes. The Prototype photobioreactor system was operated both in batch and in continuous mode for over 2 months. The measured oxygen production rate of 4-6 mmol/L culture h under continuous operation is consistent with the predicted performance of the unit for the provided light intensity.

  12. A pathophysiological view of the long non-coding RNA world

    PubMed Central

    Di Gesualdo, Federico; Capaccioli, Sergio; Lulli, Matteo

    2014-01-01

    Because cells are constantly exposed to micro-environmental changes, they require the ability to adapt to maintain a dynamic equilibrium. Proteins are considered critical for the regulation of gene expression, which is a fundamental process in determining the cellular responses to stimuli. Recently, revolutionary findings in RNA research and the advent of high-throughput genomic technologies have revealed a pervasive transcription of the human genome, which generates many long non-coding RNAs (lncRNAs) whose roles are largely undefined. However, there is evidence that lncRNAs are involved in several cellular physiological processes such as adaptation to stresses, cell differentiation, maintenance of pluripotency and apoptosis. The correct balance of lncRNA levels is crucial for the maintenance of cellular equilibrium, and the dysregulation of lncRNA expression is linked to many disorders; certain transcripts are useful prognostic markers for some of these pathologies. This review revisits the classic concept of cellular homeostasis from the perspective of lncRNAs specifically to understand how this novel class of molecules contributes to cellular balance and how its dysregulated expression can lead to the onset of pathologies such as cancer. PMID:25428918

  13. A Review of Computational Methods for Finding Non-Coding RNA Genes

    PubMed Central

    Abbas, Qaisar; Raza, Syed Mansoor; Biyabani, Azizuddin Ahmed; Jaffar, Muhammad Arfan

    2016-01-01

    Finding non-coding RNA (ncRNA) genes has emerged over the past few years as a cutting-edge trend in bioinformatics. There are numerous computational intelligence (CI) challenges in the annotation and interpretation of ncRNAs because it requires a domain-related expert knowledge in CI techniques. Moreover, there are many classes predicted yet not experimentally verified by researchers. Recently, researchers have applied many CI methods to predict the classes of ncRNAs. However, the diverse CI approaches lack a definitive classification framework to take advantage of past studies. A few review papers have attempted to summarize CI approaches, but focused on the particular methodological viewpoints. Accordingly, in this article, we summarize in greater detail than previously available, the CI techniques for finding ncRNAs genes. We differentiate from the existing bodies of research and discuss concisely the technical merits of various techniques. Lastly, we review the limitations of ncRNA gene-finding CI methods with a point-of-view towards the development of new computational tools. PMID:27918472

  14. Classification of non-coding RNA using graph representations ofsecondary structure

    SciTech Connect

    Karklin, Yan; Meraz, Richard F.; Holbrook, Stephen R.

    2004-06-07

    Some genes produce transcripts that function directly in regulatory, catalytic, or structural roles in the cell. These non-coding RNAs are prevalent in all living organisms, and methods that aid the understanding of their functional roles are essential. RNA secondary structure, the pattern of base-pairing, contains the critical information for determining the three dimensional structure and function of the molecule. In this work we examine whether the basic geometric and topological properties of secondary structure are sufficient to distinguish between RNA families in a learning framework. First, we develop a labeled dual graph representation of RNA secondary structure by adding biologically meaningful labels to the dual graphs proposed by Gan et al [1]. Next, we define a similarity measure directly on the labeled dual graphs using the recently developed marginalized kernels [2]. Using this similarity measure, we were able to train Support Vector Machine classifiers to distinguish RNAs of known families from random RNAs with similar statistics. For 22 of the 25 families tested, the classifier achieved better than 70% accuracy, with much higher accuracy rates for some families. Training a set of classifiers to automatically assign family labels to RNAs using a one vs. all multi-class scheme also yielded encouraging results. From these initial learning experiments, we suggest that the labeled dual graph representation, together with kernel machine methods, has potential for use in automated analysis and classification of uncharacterized RNA molecules or efficient genome-wide screens for RNA molecules from existing families.

  15. Identification of Non-Coding RNAs in the Candida parapsilosis Species Group

    PubMed Central

    Donovan, Paul D.; Schröder, Markus S.; Higgins, Desmond G.

    2016-01-01

    The Candida CTG clade is a monophyletic group of fungal species that translates CTG as serine, and includes the pathogens Candida albicans and Candida parapsilosis. Research has typically focused on identifying protein-coding genes in these species. Here, we use bioinformatic and experimental approaches to annotate known classes of non-coding RNAs in three CTG-clade species, Candida parapsilosis, Candida orthopsilosis and Lodderomyces elongisporus. We also update the annotation of ncRNAs in the C. albicans genome. The majority of ncRNAs identified were snoRNAs. Approximately 50% of snoRNAs (including most of the C/D box class) are encoded in introns. Most are within mono- and polycistronic transcripts with no protein coding potential. Five polycistronic clusters of snoRNAs are highly conserved in fungi. In polycistronic regions, splicing occurs via the classical pathway, as well as by nested and recursive splicing. We identified spliceosomal small nuclear RNAs, the telomerase RNA component, signal recognition particle, RNase P RNA component and the related RNase MRP RNA component in all three genomes. Stem loop IV of the U2 spliceosomal RNA and the associated binding proteins were lost from the ancestor of C. parapsilosis and C. orthopsilosis, following the divergence from L. elongisporus. The RNA component of the MRP is longer in C. parapsilosis, C. orthopsilosis and L. elongisporus than in S. cerevisiae, but is substantially shorter than in C. albicans. PMID:27658249

  16. Two lamprey Hedgehog genes share non-coding regulatory sequences and expression patterns with gnathostome Hedgehogs.

    PubMed

    Kano, Shungo; Xiao, Jin-Hua; Osório, Joana; Ekker, Marc; Hadzhiev, Yavor; Müller, Ferenc; Casane, Didier; Magdelenat, Ghislaine; Rétaux, Sylvie

    2010-10-13

    Hedgehog (Hh) genes play major roles in animal development and studies of their evolution, expression and function point to major differences among chordates. Here we focused on Hh genes in lampreys in order to characterize the evolution of Hh signalling at the emergence of vertebrates. Screening of a cosmid library of the river lamprey Lampetra fluviatilis and searching the preliminary genome assembly of the sea lamprey Petromyzon marinus indicate that lampreys have two Hh genes, named Hha and Hhb. Phylogenetic analyses suggest that Hha and Hhb are lamprey-specific paralogs closely related to Sonic/Indian Hh genes. Expression analysis indicates that Hha and Hhb are expressed in a Sonic Hh-like pattern. The two transcripts are expressed in largely overlapping but not identical domains in the lamprey embryonic brain, including a newly-described expression domain in the nasohypophyseal placode. Global alignments of genomic sequences and local alignment with known gnathostome regulatory motifs show that lamprey Hhs share conserved non-coding elements (CNE) with gnathostome Hhs albeit with sequences that have significantly diverged and dispersed. Functional assays using zebrafish embryos demonstrate gnathostome-like midline enhancer activity for CNEs contained in intron2. We conclude that lamprey Hh genes are gnathostome Shh-like in terms of expression and regulation. In addition, they show some lamprey-specific features, including duplication and structural (but not functional) changes in the intronic/regulatory sequences.

  17. Role of Conserved Non-Coding Regulatory Elements in LMW Glutenin Gene Expression

    PubMed Central

    Juhász, Angéla; Makai, Szabolcs; Sebestyén, Endre; Tamás, László; Balázs, Ervin

    2011-01-01

    Transcriptional regulation of LMW glutenin genes were investigated in-silico, using publicly available gene sequences and expression data. Genes were grouped into different LMW glutenin types and their promoter profiles were determined using cis-acting regulatory elements databases and published results. The various cis-acting elements belong to some conserved non-coding regulatory regions (CREs) and might act in two different ways. There are elements, such as GCN4 motifs found in the long endosperm box that could serve as key factors in tissue-specific expression. Some other elements, such as the AACA/TA motifs or the individual prolamin box variants, might modulate the level of expression. Based on the promoter sequences and expression characteristic LMW glutenin genes might be transcribed following two different mechanisms. Most of the s- and i-type genes show a continuously increasing expression pattern. The m-type genes, however, demonstrate normal distribution in their expression profiles. Differences observed in their expression could be related to the differences found in their promoter sequences. Polymorphisms in the number and combination of cis-acting elements in their promoter regions can be of crucial importance in the diverse levels of production of single LMW glutenin gene types. PMID:22242127

  18. Regulation of protein homeostasis in neurodegenerative diseases: the role of coding and non-coding genes.

    PubMed

    Sin, Olga; Nollen, Ellen A A

    2015-11-01

    Protein homeostasis is fundamental for cell function and survival, because proteins are involved in all aspects of cellular function, ranging from cell metabolism and cell division to the cell's response to environmental challenges. Protein homeostasis is tightly regulated by the synthesis, folding, trafficking and clearance of proteins, all of which act in an orchestrated manner to ensure proteome stability. The protein quality control system is enhanced by stress response pathways, which take action whenever the proteome is challenged by environmental or physiological stress. Aging, however, damages the proteome, and such proteome damage is thought to be associated with aging-related diseases. In this review, we discuss the different cellular processes that define the protein quality control system and focus on their role in protein conformational diseases. We highlight the power of using small organisms to model neurodegenerative diseases and how these models can be exploited to discover genetic modulators of protein aggregation and toxicity. We also link findings from small model organisms to the situation in higher organisms and describe how some of the genetic modifiers discovered in organisms such as worms are functionally conserved throughout evolution. Finally, we demonstrate that the non-coding genome also plays a role in maintaining protein homeostasis. In all, this review highlights the importance of protein and RNA homeostasis in neurodegenerative diseases.

  19. Coding and non-coding gene regulatory networks underlie the immune response in liver cirrhosis

    PubMed Central

    Zhang, Xueming; Huang, Yongming; Yang, Zhengpeng; Zhang, Yuguo; Zhang, Weihui; Gao, Zu-hua; Xue, Dongbo

    2017-01-01

    Liver cirrhosis is recognized as being the consequence of immune-mediated hepatocyte damage and repair processes. However, the regulation of these immune responses underlying liver cirrhosis has not been elucidated. In this study, we used GEO datasets and bioinformatics methods to established coding and non-coding gene regulatory networks including transcription factor-/lncRNA-microRNA-mRNA, and competing endogenous RNA interaction networks. Our results identified 2224 mRNAs, 70 lncRNAs and 46 microRNAs were differentially expressed in liver cirrhosis. The transcription factor -/lncRNA- microRNA-mRNA network we uncovered that results in immune-mediated liver cirrhosis is comprised of 5 core microRNAs (e.g., miR-203; miR-219-5p), 3 transcription factors (i.e., FOXP3, ETS1 and FOS) and 7 lncRNAs (e.g., ENTS00000671336, ENST00000575137). The competing endogenous RNA interaction network we identified includes a complex immune response regulatory subnetwork that controls the entire liver cirrhosis network. Additionally, we found 10 overlapping GO terms shared by both liver cirrhosis and hepatocellular carcinoma including “immune response” as well. Interestingly, the overlapping differentially expressed genes in liver cirrhosis and hepatocellular carcinoma were enriched in immune response-related functional terms. In summary, a complex gene regulatory network underlying immune response processes may play an important role in the development and progression of liver cirrhosis, and its development into hepatocellular carcinoma. PMID:28355233

  20. Structural basis of the non-coding RNA RsmZ acting as a protein sponge.

    PubMed

    Duss, Olivier; Michel, Erich; Yulikov, Maxim; Schubert, Mario; Jeschke, Gunnar; Allain, Frédéric H-T

    2014-05-29

    MicroRNA and protein sequestration by non-coding RNAs (ncRNAs) has recently generated much interest. In the bacterial Csr/Rsm system, which is considered to be the most general global post-transcriptional regulatory system responsible for bacterial virulence, ncRNAs such as CsrB or RsmZ activate translation initiation by sequestering homodimeric CsrA-type proteins from the ribosome-binding site of a subset of messenger RNAs. However, the mechanism of ncRNA-mediated protein sequestration is not understood at the molecular level. Here we show for Pseudomonas fluorescens that RsmE protein dimers assemble sequentially, specifically and cooperatively onto the ncRNA RsmZ within a narrow affinity range. This assembly yields two different native ribonucleoprotein structures. Using a powerful combination of nuclear magnetic resonance and electron paramagnetic resonance spectroscopy we elucidate these 70-kilodalton solution structures, thereby revealing the molecular mechanism of the sequestration process and how RsmE binding protects the ncRNA from RNase E degradation. Overall, our findings suggest that RsmZ is well-tuned to sequester, store and release RsmE and therefore can be viewed as an ideal protein 'sponge'.

  1. Development of cytotoxicity-sensitive human cells using overexpression of long non-coding RNAs.

    PubMed

    Tani, Hidenori; Torimura, Masaki

    2015-05-01

    Biosensors using live cells are analytical devices that have the advantage of being highly sensitive for their targets. Although attention has primarily focused on reporter gene assays using functional promoters, cell viability assays are still efficient. We focus on long non-coding RNAs (lncRNAs) that are involved in the molecular mechanisms associated with responses to cellular stresses as a new biological material. Here we have developed human live cells transfected with lncRNAs that can be used as an intelligent sensor of cytotoxicity for a broad range of environmental stresses. We identified three lncRNAs (GAS5, IDI2-AS1, and SNHG15) that responded to cycloheximide in HEK293 cells. Overexpression of these lncRNAs sensitized human cells to cell death in response to various stresses (cycloheximide, ultraviolet irradiation, mercury II chloride, or hydrogen peroxide). In particular, dual lncRNA (GAS5 plus IDI2-AS1, or GAS5 plus SNHG15) overexpression sensitized cells to cell death by more cellular stresses. We propose a method for highly sensitive biosensors using overexpression of lncRNAs that can potentially measure the cytotoxicity signals of various environmental stresses.

  2. The Long Non-Coding RNA RHPN1-AS1 Promotes Uveal Melanoma Progression

    PubMed Central

    Lu, Linna; Yu, Xiaoyu; Zhang, Leilei; Ding, Xia; Pan, Hui; Wen, Xuyang; Xu, Shiqiong; Xing, Yue; Fan, Jiayan; Ge, Shengfang; Zhang, He; Jia, Renbing; Fan, Xianqun

    2017-01-01

    Increasing evidence suggests that aberrant long non-coding RNAs (lncRNAs) are significantly correlated with the pathogenesis, development and metastasis of cancers. RHPN1 antisense RNA 1 (RHPN1-AS1) is a 2030-bp transcript originating from human chromosome 8q24. However, the role of RHPN1-AS1 in uveal melanoma (UM) remains to be clarified. In this study, we aimed to elucidate the molecular function of RHPN1-AS1 in UM. The RNA levels of RHPN1-AS1 in UM cell lines were examined using the quantitative real-time polymerase chain reaction (qRT-PCR). Short interfering RNAs (siRNAs) were designed to quench RHPN1-AS1 expression, and UM cells stably expressing short hairpin (sh) RHPN1-AS1 were established. Next, the cell proliferation and migration abilities were determined using a colony formation assay and a transwell migration/invasion assay. A tumor xenograft model in nude mice was established to confirm the function of RHPN1-AS1 in vivo. RHPN1-AS1 was significantly upregulated in a number of UM cell lines compared with the normal human retinal pigment epithelium (RPE) cell line. RHPN1-AS1 knockdown significantly inhibited UM cell proliferation and migration in vitro and in vivo. Our data suggest that RHPN1-AS1 could be an oncoRNA in UM, which may serve as a candidate prognostic biomarker and target for new therapies in malignant UM. PMID:28124977

  3. Low mitochondrial DNA variation among American alligators and a novel non-coding region in crocodilians.

    PubMed

    Glenn, Travis C; Staton, Joseph L; Vu, Alex T; Davis, Lisa M; Bremer, Jaime R Alvarado; Rhodes, Walter E; Brisbin, I Lehr; Sawyer, Roger H

    2002-12-15

    We analyzed 1317-1823 base pairs (bp) of mitochondrial DNA sequence beginning in the 5' end of cytochrome b (cyt b) and ending in the central domain of the control region for 25 American alligators (Alligator mississippiensis) and compared these to a homologous sequence from a Chinese alligator (A. sinensis). Both species share a non-coding spacer between cyt b and tRNA(Thr). Chinese alligator cyt b differs from that of the American alligator by 17.5% at the nucleotide level and 13.8% for inferred amino acids, which is consistent with their presumed ancient divergence. Only two cyt b haplotypes were detected among the 25 American alligators (693-1199 bp surveyed), with one haplotype shared among 24 individuals. One alligator from Mississippi differed from all other alligators by a single silent substitution. The control region contained only slightly more variation among the 25 American alligators, with two variable positions (624 bp surveyed), yielding three haplotypes with 22, two, and one individuals in each of these groups. Previous genetic studies examining allozymes and the proportion of variable microsatellite DNA loci also found low levels of genetic diversity in American alligators. However, in contrast with allozymes, microsatellites, and morphology, the mtDNA data shows no evidence of differentiation among populations from the extremes of the species range. These results suggest that American alligators underwent a severe population bottleneck in the late Pleistocene, resulting in nearly homogenous mtDNA among all American alligators today.

  4. Non-coding RNAs in Prostate Cancer: From Discovery to Clinical Applications.

    PubMed

    Ceder, Yvonne

    2016-01-01

    Prostate cancer is a heterogeneous disease for which the molecular mechanisms are still not fully elucidated. Prostate cancer research has traditionally focused on genomic and epigenetic alterations affecting the proteome, but over the last decade non-coding RNAs, especially microRNAs, have been recognized to play a key role in prostate cancer progression. A considerable number of individual microRNAs have been found to be deregulated in prostate cancer and their biological significance elucidated in functional studies. This review will delineate the current advances regarding the involvement of microRNAs and their targets in prostate cancer biology as well as their potential usage in the clinical management of the disease. The main focus will be on microRNAs contributing to initiation and progression of prostate cancer, including androgen signalling, cellular plasticity, stem cells biology and metastatic processes. To conclude, implications on potential future microRNA-based therapeutics based on the recent advances regarding the interplay between microRNAs and their targets are discussed.

  5. Non-coding RNAs in the plant response to abiotic stress.

    PubMed

    Contreras-Cubas, Cecilia; Palomar, Miguel; Arteaga-Vázquez, Mario; Reyes, José Luis; Covarrubias, Alejandra A

    2012-10-01

    As sessile organisms, plants have to cope with the ever-changing environment as well as with numerous forms of stress. To react to these external cues, plants have evolved a suite of response mechanisms operating at many different levels, ranging from physiological to molecular processes that provide the organism with a wide phenotypic plasticity, allowing for fine tuning of the reactions to these adverse circumstances. During the past decade, non-coding RNAs (ncRNAs) have emerged as key regulatory molecules, which contribute to a significant portion of the transcriptome in eukaryotes and are involved in the control of transcriptional and post-transcriptional gene regulatory pathways. Although accumulated evidence supports an important role for ncRNAs in plant response and adaptation to abiotic stress, their mechanism(s) of action still remains obscure and a functional characterization of the ncRNA repertoire in plants is still needed. Moreover, common features in the biogenesis of different small ncRNAs, and in some cases, cross talk between different gene regulatory pathways may add to the complexity of these pathways and could play important roles in modulating stress responses. Here we review the various ncRNAs that have been reported to participate in the response to abiotic stress in plants, focusing on their importance in plant adaptation and evolution. Understanding how ncRNAs work may reveal novel mechanisms involved in the plant responses to the environment.

  6. The hallmarks of cancer: a long non-coding RNA point of view.

    PubMed

    Gutschner, Tony; Diederichs, Sven

    2012-06-01

    With the advent of next generation sequencing methods and progress in transcriptome analysis, it became obvious that the human genome contains much more than just protein-coding genes. In fact, up to 70% of our genome is transcribed into RNA that does not serve as templates for proteins. In this review, we focus on the emerging roles of these long non-coding RNAs (lncRNAs) in the field of tumor biology. Long ncRNAs were found to be deregulated in several human cancers and show tissue-specific expression. Functional studies revealed a broad spectrum of mechanisms applied by lncRNAs such as HOTAIR, MALAT1, ANRIL or lincRNA-p21 to fulfill their functions. Here, we link the cellular processes influenced by long ncRNAs to the hallmarks of cancer and therefore provide an ncRNA point-of-view on tumor biology. This should stimulate new research directions and therapeutic options considering long ncRNAs as novel prognostic markers and therapeutic targets.

  7. Motility modulation by the small non-coding RNA SroC in Salmonella Typhimurium.

    PubMed

    Fuentes, Danitza N; Calderón, Paulina F; Acuña, Lillian G; Rodas, Paula I; Paredes-Sabja, Daniel; Fuentes, Juan A; Gil, Fernando; Calderón, Iván L

    2015-09-01

    Bacterial regulatory networks of gene expression include the interaction of diverse types of molecules such as the small non-coding RNAs (sRNAs) and their cognate messenger RNAs (mRNAs). In this study, we demonstrated that the Salmonella Typhimurium sRNA SroC is significantly expressed between the late-exponential and stationary phase of growth in an rpoS-dependent manner. The expression of flagellar genes predicted as targets of this sRNA was quantitatively analyzed in both a ΔsroC mutant and a SroC-overexpressing (pSroC) strain. Deletion of sroC increased flagellar gene expression (i.e. flhBAE and fliE). Conversely, overexpression of SroC reduced flhBAE and fliE expression. These observations correlated with phenotypic evaluation of motility, where sroC deletion slightly increased motility, which in turn, was drastically reduced upon overexpression of SroC. The effects of deletion and overexpression of sroC in biofilm formation were also examined, where the ΔsroC and pSroC strains exhibited a reduced and increased ability to form biofilm, respectively. Furthermore, electron microscopy revealed that the wild-type strain overexpressing SroC had a non-flagellated phenotype. Taken together, our results showed that S. Typhimurium sRNA SroC modulates the flagellar synthesis by down-regulating the expression of flhBAE and fliE genes.

  8. Towards a therapy for Angelman syndrome by reduction of a long non-coding RNA

    PubMed Central

    Meng, Linyan; Ward, Amanda J.; Chun, Seung; Bennett, C. Frank; Beaudet, Arthur L.; Rigo, Frank

    2014-01-01

    Angelman syndrome (AS) is a single gene disorder characterized by intellectual disability, developmental delay, behavioral uniqueness, speech impairment, seizures, and ataxia1,2. It is caused by maternal deficiency of the imprinted gene UBE3A, encoding an E3 ubiquitin ligase3-5. All patients carry at least one copy of paternal UBE3A, which is intact but silenced by a nuclear-localized long non-coding RNA, UBE3A antisense transcript (UBE3A-ATS)6-8. Murine Ube3a-ATS reduction by either transcription termination or topoisomerase I inhibition increased paternal Ube3a expression9,10. Despite a clear understanding of the disease-causing event in AS and the potential to harness the intact paternal allele to correct disease, no gene-specific treatment exists for patients. Here we developed a potential therapeutic intervention for AS by reducing Ube3a-ATS with antisense oligonucleotides (ASOs). ASO treatment achieved specific reduction of Ube3a-ATS and sustained unsilencing of paternal Ube3a in neurons in vitro and in vivo. Partial restoration of UBE3A protein in an AS mouse model ameliorated some cognitive deficits associated with the disease. Although additional studies of phenotypic correction are needed, for the first time we developed a sequence-specific and clinically feasible method to activate expression of the paternal Ube3a allele. PMID:25470045

  9. Form and Function of Exosome-Associated Long Non-coding RNAs in Cancer.

    PubMed

    Hewson, Chris; Morris, Kevin V

    2016-01-01

    The recent discovery that long non-coding RNAs (lncRNAs) are functional and are not merely "transcriptional noise" has spawned an entirely new arena of investigation. LncRNAs have been found to be functional in the regulation of a wide variety of genes, including those involved in cancer. Studies have identified that lncRNAs play a role in the development and regulation of cancer and can also act as prognostic markers. Meanwhile, exosomes , which are extracellular particles generated endogenously by cells, have been observed to act as transport vesicles for a variety of biological components, particularly proteins and RNAs. This transportation of biological components has been shown to impact a variety of biological processes including the development of cancer. Collectively, these observations, along with those of several recent studies, suggest that lncRNAs and exosomes may function together to disseminate cell signals that alter and/or control local cellular microenvironments. This review will identify the various roles that lncRNAs and exosomes play in cancer development, as well as the possibility that exosomes may transfer functional lncRNAs between cells as a means of cell-to-cell communication.

  10. Genome-wide analyses of small non-coding RNAs in streptococci

    PubMed Central

    Patenge, Nadja; Pappesch, Roberto; Khani, Afsaneh; Kreikemeyer, Bernd

    2015-01-01

    Streptococci represent a diverse group of Gram-positive bacteria, which colonize a wide range of hosts among animals and humans. Streptococcal species occur as commensal as well as pathogenic organisms. Many of the pathogenic species can cause severe, invasive infections in their hosts leading to a high morbidity and mortality. The consequence is a tremendous suffering on the part of men and livestock besides the significant financial burden in the agricultural and healthcare sectors. An environmentally stimulated and tightly controlled expression of virulence factor genes is of fundamental importance for streptococcal pathogenicity. Bacterial small non-coding RNAs (sRNAs) modulate the expression of genes involved in stress response, sugar metabolism, surface composition, and other properties that are related to bacterial virulence. Even though the regulatory character is shared by this class of RNAs, variation on the molecular level results in a high diversity of functional mechanisms. The knowledge about the role of sRNAs in streptococci is still limited, but in recent years, genome-wide screens for sRNAs have been conducted in an increasing number of species. Bioinformatics prediction approaches have been employed as well as expression analyses by classical array techniques or next generation sequencing. This review will give an overview of whole genome screens for sRNAs in streptococci with a focus on describing the different methods and comparing their outcome considering sRNA conservation among species, functional similarities, and relevance for streptococcal infection. PMID:26042151

  11. Natural variation in non-coding regions underlying phenotypic diversity in budding yeast.

    PubMed

    Salinas, Francisco; de Boer, Carl G; Abarca, Valentina; García, Verónica; Cuevas, Mara; Araos, Sebastian; Larrondo, Luis F; Martínez, Claudio; Cubillos, Francisco A

    2016-02-22

    Linkage mapping studies in model organisms have typically focused their efforts in polymorphisms within coding regions, ignoring those within regulatory regions that may contribute to gene expression variation. In this context, differences in transcript abundance are frequently proposed as a source of phenotypic diversity between individuals, however, until now, little molecular evidence has been provided. Here, we examined Allele Specific Expression (ASE) in six F1 hybrids from Saccharomyces cerevisiae derived from crosses between representative strains of the four main lineages described in yeast. ASE varied between crosses with levels ranging between 28% and 60%. Part of the variation in expression levels could be explained by differences in transcription factors binding to polymorphic cis-regulations and to differences in trans-activation depending on the allelic form of the TF. Analysis on highly expressed alleles on each background suggested ASN1 as a candidate transcript underlying nitrogen consumption differences between two strains. Further promoter allele swap analysis under fermentation conditions confirmed that coding and non-coding regions explained aspartic and glutamic acid consumption differences, likely due to a polymorphism affecting Uga3 binding. Together, we provide a new catalogue of variants to bridge the gap between genotype and phenotype.

  12. Expression of macro non-coding RNAs Meg8 and Irm in mouse embryonic development.

    PubMed

    Gu, Tiantian; He, Hongjuan; Han, Zhengbin; Zeng, Tiebo; Huang, Zhijun; Liu, Qi; Gu, Ning; Chen, Yan; Sugimoto, Kenkichi; Jiang, Huijie; Wu, Qiong

    2012-07-01

    Non-coding RNAs (ncRNAs) Meg8 and Irm were previously identified as alternatively splicing isoforms of Rian gene. Ascertaining ncRNAs spatiotemporal expression patterns is crucial for understanding the physiological roles of ncRNAs during tissue and organ development. In this study in mouse embryos, we focused on the developmental regulation expression of imprinted macro ncRNAs, Meg8 and Irm by using in situ hybridization and quantitative real-time RT-PCR (QRT-PCR). The in situ hybridization results showed that Meg8 and Irm were expressed in the developing brain at embryonic day 10.5 (E10.5) and E11.5, while Irm expression signals were strikingly detected in the somite, where Meg8 expression signals were undetectable. By E15.5, they were expressed in brain, tongue, liver, lung and neuroendocrine tissues, while Irm displayed more restricted expression in tongue and skeletal muscle than Meg8. Furthermore, quantitative analysis confirmed that they were highly expressed in tongue and brain at E12.5, E15.5 and E18.5. These results indicated that Meg8 and Irm might be coordinately expressed and functionally correlated in diverse of organs. Notably, Irm was more closely associated with morphogenesis of skeletal muscle in contrast to Meg8 during embryonic development.

  13. Dysregulated long intergenic non-coding RNA modules contribute to heart failure

    PubMed Central

    Zhang, Xinxin; Yu, Fulong; Lan, Yujia; Xu, Jinyuan; Pang, Bo; Han, Dong; Xiao, Yun; Li, Xia

    2016-01-01

    Long intergenic non-coding RNAs (lincRNAs) are emerging as important regulatory molecules involved in diseases including heart failure. However, little is known about how the lincRNAs work together with protein-coding genes (PCGs) contributing to the pathogenesis of heart failure. In this study, we constructed a comprehensive transcriptome profile of lincRNAs, PCGs and miRNAs using RNA-seq and miRNA-seq data of 16 heart failure patients (HFs) and 8 non-failing individuals (NFs). Through integrating lincRNA and PCG expression profiles, we identified HF-associated lincRNA modules. We identified a heart-specific lincRNA module which was significantly enriched for differentially expressed lincRNAs and PCGs. This module was associated with heart failure rather than with other clinical traits such as sex, age, smoking and diabetes mellitus. Moreover, the module was significantly correlated with certain indicators of left ventricular function like ejection fraction and left ventricular end-diastolic diameter, implying the potential of its components as crucial biomarkers. Apart from enhancer-like function, lincRNAs in this module could act as competing endogenous RNAs (ceRNAs) to regulate genes which were associated with left-ventricular systolic function. Our work provided deep insights into the critical roles of lincRNAs in the pathology of heart failure and suggested that they could be valuable biomarkers and therapeutic targets. PMID:28040802

  14. Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing.

    PubMed

    Zhang, Rui; Deng, Patricia; Jacobson, Dionna; Li, Jin Billy

    2017-02-01

    Adenosine-to-inosine RNA editing diversifies the transcriptome and promotes functional diversity, particularly in the brain. A plethora of editing sites has been recently identified; however, how they are selected and regulated and which are functionally important are largely unknown. Here we show the cis-regulation and stepwise selection of RNA editing during Drosophila evolution and pinpoint a large number of functional editing sites. We found that the establishment of editing and variation in editing levels across Drosophila species are largely explained and predicted by cis-regulatory elements. Furthermore, editing events that arose early in the species tree tend to be more highly edited in clusters and enriched in slowly-evolved neuronal genes, thus suggesting that the main role of RNA editing is for fine-tuning neurological functions. While nonsynonymous editing events have been long recognized as playing a functional role, in addition to nonsynonymous editing sites, a large fraction of 3'UTR editing sites is evolutionarily constrained, highly edited, and thus likely functional. We find that these 3'UTR editing events can alter mRNA stability and affect miRNA binding and thus highlight the functional roles of noncoding RNA editing. Our work, through evolutionary analyses of RNA editing in Drosophila, uncovers novel insights of RNA editing regulation as well as its functions in both coding and non-coding regions.

  15. Long non-coding RNA INXS is a critical mediator of BCL-XS induced apoptosis

    PubMed Central

    DeOcesano-Pereira, Carlos; Amaral, Murilo S.; Parreira, Kleber S.; Ayupe, Ana C.; Jacysyn, Jacqueline F.; Amarante-Mendes, Gustavo P.; Reis, Eduardo M.; Verjovski-Almeida, Sergio

    2014-01-01

    BCL-X mRNA alternative splicing generates pro-apoptotic BCL-XS or anti-apoptotic BCL-XL gene products and the mechanism that regulates splice shifting is incompletely understood. We identified and characterized a long non-coding RNA (lncRNA) named INXS, transcribed from the opposite genomic strand of BCL-X, that was 5- to 9-fold less abundant in tumor cell lines from kidney, liver, breast and prostate and in kidney tumor tissues compared with non-tumors. INXS is an unspliced 1903 nt-long RNA, is transcribed by RNA polymerase II, 5′-capped, nuclear enriched and binds Sam68 splicing-modulator. Three apoptosis-inducing agents increased INXS lncRNA endogenous expression in the 786-O kidney tumor cell line, increased BCL-XS/BCL-XL mRNA ratio and activated caspases 3, 7 and 9. These effects were abrogated in the presence of INXS knockdown. Similarly, ectopic INXS overexpression caused a shift in splicing toward BCL-XS and activation of caspases, thus leading to apoptosis. BCL-XS protein accumulation was detected upon INXS overexpression. In a mouse xenograft model, intra-tumor injections of an INXS-expressing plasmid caused a marked reduction in tumor weight, and an increase in BCL-XS isoform, as determined in the excised tumors. We revealed an endogenous lncRNA that induces apoptosis, suggesting that INXS is a possible target to be explored in cancer therapies. PMID:24992962

  16. Conservation and Losses of Non-Coding RNAs in Avian Genomes

    PubMed Central

    Gardner, Paul P.; Fasold, Mario; Burge, Sarah W.; Ninova, Maria; Hertel, Jana; Kehr, Stephanie; Steeves, Tammy E.; Griffiths-Jones, Sam; Stadler, Peter F.

    2015-01-01

    Here we present the results of a large-scale bioinformatics annotation of non-coding RNA loci in 48 avian genomes. Our approach uses probabilistic models of hand-curated families from the Rfam database to infer conserved RNA families within each avian genome. We supplement these annotations with predictions from the tRNA annotation tool, tRNAscan-SE and microRNAs from miRBase. We identify 34 lncRNA-associated loci that are conserved between birds and mammals and validate 12 of these in chicken. We report several intriguing cases where a reported mammalian lncRNA, but not its function, is conserved. We also demonstrate extensive conservation of classical ncRNAs (e.g., tRNAs) and more recently discovered ncRNAs (e.g., snoRNAs and miRNAs) in birds. Furthermore, we describe numerous “losses” of several RNA families, and attribute these to either genuine loss, divergence or missing data. In particular, we show that many of these losses are due to the challenges associated with assembling avian microchromosomes. These combined results illustrate the utility of applying homology-based methods for annotating novel vertebrate genomes. PMID:25822729

  17. Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing

    PubMed Central

    Jacobson, Dionna

    2017-01-01

    Adenosine-to-inosine RNA editing diversifies the transcriptome and promotes functional diversity, particularly in the brain. A plethora of editing sites has been recently identified; however, how they are selected and regulated and which are functionally important are largely unknown. Here we show the cis-regulation and stepwise selection of RNA editing during Drosophila evolution and pinpoint a large number of functional editing sites. We found that the establishment of editing and variation in editing levels across Drosophila species are largely explained and predicted by cis-regulatory elements. Furthermore, editing events that arose early in the species tree tend to be more highly edited in clusters and enriched in slowly-evolved neuronal genes, thus suggesting that the main role of RNA editing is for fine-tuning neurological functions. While nonsynonymous editing events have been long recognized as playing a functional role, in addition to nonsynonymous editing sites, a large fraction of 3’UTR editing sites is evolutionarily constrained, highly edited, and thus likely functional. We find that these 3’UTR editing events can alter mRNA stability and affect miRNA binding and thus highlight the functional roles of noncoding RNA editing. Our work, through evolutionary analyses of RNA editing in Drosophila, uncovers novel insights of RNA editing regulation as well as its functions in both coding and non-coding regions. PMID:28166241

  18. Transcription of Satellite III non-coding RNAs is a general stress response in human cells

    PubMed Central

    Valgardsdottir, Rut; Chiodi, Ilaria; Giordano, Manuela; Rossi, Antonio; Bazzini, Silvia; Ghigna, Claudia; Riva, Silvano; Biamonti, Giuseppe

    2008-01-01

    In heat-shocked human cells, heat shock factor 1 activates transcription of tandem arrays of repetitive Satellite III (SatIII) DNA in pericentromeric heterochromatin. Satellite III RNAs remain associated with sites of transcription in nuclear stress bodies (nSBs). Here we use real-time RT-PCR to study the expression of these genomic regions. Transcription is highly asymmetrical and most of the transcripts contain the G-rich strand of the repeat. A low level of G-rich RNAs is detectable in unstressed cells and a 104-fold induction occurs after heat shock. G-rich RNAs are induced by a wide range of stress treatments including heavy metals, UV-C, oxidative and hyper-osmotic stress. Differences exist among stressing agents both for the kinetics and the extent of induction (>100- to 80.000-fold). In all cases, G-rich transcripts are associated with nSBs. On the contrary, C-rich transcripts are almost undetectable in unstressed cells and modestly increase after stress. Production of SatIII RNAs after hyper-osmotic stress depends on the Tonicity Element Binding Protein indicating that activation of the arrays is triggered by different transcription factors. This is the first example of a non-coding RNA whose transcription is controlled by different transcription factors under different growth conditions. PMID:18039709

  19. Current Insights into Long Non-Coding RNAs (LncRNAs) in Prostate Cancer

    PubMed Central

    Smolle, Maria A.; Bauernhofer, Thomas; Pummer, Karl; Calin, George A.; Pichler, Martin

    2017-01-01

    The importance of long non-coding RNAs (lncRNAs) in the pathogenesis of various malignancies has been uncovered over the last few years. Their dysregulation often contributes to or is a result of tumour progression. In prostate cancer, the most common malignancy in men, lncRNAs can promote castration resistance, cell proliferation, invasion, and metastatic spread. Expression patterns of lncRNAs often change during tumour progression; their expression levels may constantly rise (e.g., HOX transcript antisense RNA, HOTAIR), or steadily decrease (e.g., downregulated RNA in cancer, DRAIC). In prostate cancer, lncRNAs likewise have diagnostic (e.g., prostate cancer antigen 3, PCA3), prognostic (e.g., second chromosome locus associated with prostate-1, SChLAP1), and predictive (e.g., metastasis-associated lung adenocarcinoma transcript-1, MALAT-1) functions. Considering their dynamic role in prostate cancer, lncRNAs may also serve as therapeutic targets, helping to prevent development of castration resistance, maintain stable disease, and prohibit metastatic spread. PMID:28241429

  20. Long non-coding RNAs as regulators of the endocrine system.

    PubMed

    Knoll, Marko; Lodish, Harvey F; Sun, Lei

    2015-03-01

    Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers.

  1. Noncoder: a web interface for exon array-based detection of long non-coding RNAs

    PubMed Central

    Gellert, Pascal; Ponomareva, Yuliya; Braun, Thomas; Uchida, Shizuka

    2013-01-01

    Due to recent technical developments, a high number of long non-coding RNAs (lncRNAs) have been discovered in mammals. Although it has been shown that lncRNAs are regulated differently among tissues and disease statuses, functions of these transcripts are still unknown in most cases. GeneChip Exon 1.0 ST Arrays (exon arrays) from Affymetrix, Inc. have been used widely to profile genome-wide expression changes and alternative splicing of protein-coding genes. Here, we demonstrate that re-annotation of exon array probes can be used to profile expressions of tens of thousands of lncRNAs. With this annotation, a detailed inspection of lncRNAs and their isoforms is possible. To allow for a general usage to the research community, we developed a user-friendly web interface called ‘noncoder’. By uploading CEL files from exon arrays and with a few mouse clicks and parameter settings, exon array data will be normalized and analysed to identify differentially expressed lncRNAs. Noncoder provides the detailed annotation information of lncRNAs and is equipped with unique features to allow for an efficient search for interesting lncRNAs to be studied further. The web interface is available at http://noncoder.mpi-bn.mpg.de. PMID:23012263

  2. Natural variation in non-coding regions underlying phenotypic diversity in budding yeast

    PubMed Central

    Salinas, Francisco; de Boer, Carl G.; Abarca, Valentina; García, Verónica; Cuevas, Mara; Araos, Sebastian; Larrondo, Luis F.; Martínez, Claudio; Cubillos, Francisco A.

    2016-01-01

    Linkage mapping studies in model organisms have typically focused their efforts in polymorphisms within coding regions, ignoring those within regulatory regions that may contribute to gene expression variation. In this context, differences in transcript abundance are frequently proposed as a source of phenotypic diversity between individuals, however, until now, little molecular evidence has been provided. Here, we examined Allele Specific Expression (ASE) in six F1 hybrids from Saccharomyces cerevisiae derived from crosses between representative strains of the four main lineages described in yeast. ASE varied between crosses with levels ranging between 28% and 60%. Part of the variation in expression levels could be explained by differences in transcription factors binding to polymorphic cis-regulations and to differences in trans-activation depending on the allelic form of the TF. Analysis on highly expressed alleles on each background suggested ASN1 as a candidate transcript underlying nitrogen consumption differences between two strains. Further promoter allele swap analysis under fermentation conditions confirmed that coding and non-coding regions explained aspartic and glutamic acid consumption differences, likely due to a polymorphism affecting Uga3 binding. Together, we provide a new catalogue of variants to bridge the gap between genotype and phenotype. PMID:26898953

  3. Non-coding effects of circular RNA CCDC66 promote colon cancer growth and metastasis.

    PubMed

    Hsiao, Kuei-Yang; Lin, Ya-Chi; Gupta, Sachin Kumar; Chang, Ning; Yen, Laising; Sun, H Sunny; Tsai, Shaw-Jenq

    2017-03-01

    Circular RNA (circRNA) is a class of non-coding RNA whose functions remain mostly unknown. Recent studies indicate circRNA may be involved in disease pathogenesis, but direct evidence is scarce. Here we characterize the functional role of a novel circRNA, circCCDC66, in colorectal cancer (CRC). RNA-Seq data from matched normal and tumor colon tissue samples identified numerous circRNAs specifically elevated in cancer cells, several of which were verified by quantitative RT-PCR. CircCCDC66 expression was elevated in polyps and colon cancer and was associated with poor prognosis. Gain-of-function and loss-of-function studies in CRC cell-lines demonstrated that circCCDC66 controlled multiple pathological processes, including cell proliferation, migration, invasion, and anchorage-independent growth. In-depth characterization revealed that circCCDC66 exerts its function via regulation of a subset of oncogenes, and knockdown of circCCDC66 inhibited tumor growth and cancer invasion in xenograft and orthotopic mouse models, respectively. Taken together, these findings highlight a novel oncogenic function of circRNA in cancer progression and metastasis.

  4. Long non-coding RNA analysis of muscular responses to testosterone deficiency in Huainan male pigs.

    PubMed

    Xing, Baosong; Bai, Xianxiao; Guo, Hongxia; Chen, Junfeng; Hua, Liushuai; Zhang, Jiaqing; Ma, Qiang; Ren, Qiaoling; Wang, Huashuai; Wang, Jing

    2017-02-09

    Long non-coding RNAs (lncRNAs) participated in growth and development of skeletal muscle; however, little is known about their response to testosterone deficiency in porcine skeletal muscle. We compared lean mass related carcass traits and lncRNAs expression files in Longissimus dorsi (LD) muscle between intact and castrated Huainan male pigs. The results showed that castration significantly reduced eye muscle area and lean meat percentage (P < 0.05), but increased the fat mass weight (P < 0.05). Meanwhile, 8946 lncRNAs, including 6743 intergenic lncRNAs (lincRNAs), 498 anti-sense lncRNAs, and 1705 intronic lncRNAs, were identified in porcine LD, among which, 385 lncRNAs were considered as the differentially expressed candidates between intact groups and castrated groups (q-value < 0.05). Functional analysis indicated that these differently expressed lncRNAs and their target genes were involved in the estrogen receptor signaling pathway and skeletal and muscular system development and function. We first detect porcine muscular lncRNA response to castration, and the results suggested that lncRNAs and their target genes participated in the regulation of testosterone deficiency-related skeletal muscle growth.

  5. The RNA-centred view of the synapse: non-coding RNAs and synaptic plasticity

    PubMed Central

    Smalheiser, Neil R.

    2014-01-01

    If mRNAs were the only RNAs made by a neuron, there would be a simple mapping of mRNAs to proteins. However, microRNAs and other non-coding RNAs (ncRNAs; endo-siRNAs, piRNAs, BC1, BC200, antisense and long ncRNAs, repeat-related transcripts, etc.) regulate mRNAs via effects on protein translation as well as transcriptional and epigenetic mechanisms. Not only are genes ON or OFF, but their ability to be translated can be turned ON or OFF at the level of synapses, supporting an enormous increase in information capacity. Here, I review evidence that ncRNAs are expressed pervasively within dendrites in mammalian brain; that some are activity-dependent and highly enriched near synapses; and that synaptic ncRNAs participate in plasticity responses including learning and memory. Ultimately, ncRNAs can be viewed as the post-it notes of the neuron. They have no literal meaning of their own, but derive their functions from where (and to what) they are stuck. This may explain, in part, why ncRNAs differ so dramatically from protein-coding genes, both in terms of the usual indicators of functionality and in terms of evolutionary constraints. ncRNAs do not appear to be direct mediators of synaptic transmission in the manner of neurotransmitters or receptors, yet they orchestrate synaptic plasticity—and may drive species-specific changes in cognition. PMID:25135965

  6. Towards a therapy for Angelman syndrome by targeting a long non-coding RNA.

    PubMed

    Meng, Linyan; Ward, Amanda J; Chun, Seung; Bennett, C Frank; Beaudet, Arthur L; Rigo, Frank

    2015-02-19

    Angelman syndrome is a single-gene disorder characterized by intellectual disability, developmental delay, behavioural uniqueness, speech impairment, seizures and ataxia. It is caused by maternal deficiency of the imprinted gene UBE3A, encoding an E3 ubiquitin ligase. All patients carry at least one copy of paternal UBE3A, which is intact but silenced by a nuclear-localized long non-coding RNA, UBE3A antisense transcript (UBE3A-ATS). Murine Ube3a-ATS reduction by either transcription termination or topoisomerase I inhibition has been shown to increase paternal Ube3a expression. Despite a clear understanding of the disease-causing event in Angelman syndrome and the potential to harness the intact paternal allele to correct the disease, no gene-specific treatment exists for patients. Here we developed a potential therapeutic intervention for Angelman syndrome by reducing Ube3a-ATS with antisense oligonucleotides (ASOs). ASO treatment achieved specific reduction of Ube3a-ATS and sustained unsilencing of paternal Ube3a in neurons in vitro and in vivo. Partial restoration of UBE3A protein in an Angelman syndrome mouse model ameliorated some cognitive deficits associated with the disease. Although additional studies of phenotypic correction are needed, we have developed a sequence-specific and clinically feasible method to activate expression of the paternal Ube3a allele.

  7. Long non-coding RNA Loc554202 regulates proliferation and migration in breast cancer cells

    SciTech Connect

    Shi, Yongguo; Lu, Jianwei; Zhou, Jing; Tan, Xueming; He, Ye; Ding, Jie; Tian, Yun; Wang, Li; Wang, Keming

    2014-04-04

    Highlights: • First, we have shown that upregulated of the Loc554202 in breast cancer tissues. • Second, we demonstrated the function of Loc554202 in breast cancer cell. • Finally, we demonstrated that LOC554202 knockdown could inhibit tumor growth in vivo. - Abstract: Data derived from massive cloning and traditional sequencing methods have revealed that long non-coding RNAs (lncRNA) play important roles in the development and progression of cancer. Although many studies suggest that the lncRNAs have different cellular functions, many of them are not yet to be identified and characterized for the mechanism of their functions. To address this question, we assay the expression level of lncRNAs–Loc554202 in breast cancer tissues and find that Loc554202 is significantly increased compared with normal control, and associated with advanced pathologic stage and tumor size. Moreover, knockdown of Loc554202 decreased breast cancer cell proliferation, induced apoptosis and inhibits migration/invasion in vitro and impeded tumorigenesis in vivo. These data suggest an important role of Loc554202 in breast tumorigenesis.

  8. p53-inducible long non-coding RNA PICART1 mediates cancer cell proliferation and migration.

    PubMed

    Cao, Yu; Lin, Minglin; Bu, Yiwen; Ling, Hongyan; He, Yingchun; Huang, Chenfei; Shen, Yi; Song, Bob; Cao, Deliang

    2017-05-01

    Long non-coding RNAs (lncRNAs) function in the development and progression of cancer, but only a small portion of lncRNAs have been characterized to date. A novel lncRNA transcript, 2.53 kb in length, was identified by transcriptome sequencing analysis, and was named p53-inducible cancer-associated RNA transcript 1 (PICART1). PICART1 was found to be upregulated by p53 through a p53-binding site at -1808 to -1783 bp. In breast and colorectal cancer cells and tissues, PICART1 expression was found to be decreased. Ectopic expression of PICART1 suppressed the growth, proliferation, migration, and invasion of MCF7, MDA-MB-231 and HCT116 cells whereas silencing of PICART1 stimulated cell growth and migration. In these cells, the expression of PICART1 suppressed levels of p-AKT (Thr308 and Ser473) and p-GSK3β (Ser9), and accordingly, β-catenin, cyclin D1 and c-Myc expression were decreased, while p21Waf/cip1 expression was increased. Together these data suggest that PICART1 is a novel p53-inducible tumor-suppressor lncRNA, functioning through the AKT/GSK3β/β-catenin signaling cascade.

  9. Targeting long non-coding RNA-TUG1 inhibits tumor growth and angiogenesis in hepatoblastoma

    PubMed Central

    Dong, R; Liu, G-B; Liu, B-H; Chen, G; Li, K; Zheng, S; Dong, K-R

    2016-01-01

    Hepatoblastoma is the most common liver tumor of early childhood, which is usually characterized by unusual hypervascularity. Recently, long non-coding RNAs (lncRNA) have emerged as gene regulators and prognostic markers in several cancers, including hepatoblastoma. We previously reveal that lnRNA-TUG1 is upregulated in hepatoblastoma specimens by microarray analysis. In this study, we aim to elucidate the biological and clinical significance of TUG1 upregulation in hepatoblastoma. We show that TUG1 is significantly upregulated in human hepatoblastoma specimens and metastatic hepatoblastoma cell lines. TUG1 knockdown inhibits tumor growth and angiogenesis in vivo, and decreases hepatoblastoma cell viability, proliferation, migration, and invasion in vitro. TUG1, miR-34a-5p, and VEGFA constitutes to a regulatory network, and participates in regulating hepatoblastoma cell function, tumor progression, and tumor angiogenesis. Overall, our findings indicate that TUG1 upregulation contributes to unusual hypervascularity of hepatoblastoma. TUG1 is a promising therapeutic target for aggressive, recurrent, or metastatic hepatoblastoma. PMID:27362796

  10. Regulation of spermatogenesis by small non-coding RNAs: role of the germ granule.

    PubMed

    de Mateo, Sara; Sassone-Corsi, Paolo

    2014-05-01

    The spermatogenic process relays in highly regulated gene expression mechanisms at the transcriptional and post-transcriptional levels to generate the male gamete that is needed for the perpetuation of the species. Small non-coding RNA pathways have been determined to participate in the post-transcriptional regulatory processes of germ cells. The most important sncRNA molecules that are critically involved in spermatogenesis belong to the miRNA and piRNAs pathways as illustrated by animal models where ablation of specific protein components displays male infertility. Several elements of these regulatory pathways have been found in the nuage or germ granule, a non-membranous cytoplasmatic structure that can be seen in spermatocytes and spermatids. This notion suggests that germ granules may act as organizer centers for silencing pathways in the germline. In general, miRNAs regulate spermatogenesis through targeting and down-regulation of specific transcripts to eventually promote sperm development. However, piRNAs are powerful repressors of transposon elements expression in the spermatogenic process. Here we describe the suggested functions that miRNA and piRNAs pathways execute in the regulation of spermatogenesis and include some recent studies in the field. Despite major strides on the detailed molecular mechanisms of sncRNAs in relation to spermatogenesis, there is plenty to discover on this fascinating regulatory program.

  11. An atlas of human long non-coding RNAs with accurate 5' ends.

    PubMed

    Hon, Chung-Chau; Ramilowski, Jordan A; Harshbarger, Jayson; Bertin, Nicolas; Rackham, Owen J L; Gough, Julian; Denisenko, Elena; Schmeier, Sebastian; Poulsen, Thomas M; Severin, Jessica; Lizio, Marina; Kawaji, Hideya; Kasukawa, Takeya; Itoh, Masayoshi; Burroughs, A Maxwell; Noma, Shohei; Djebali, Sarah; Alam, Tanvir; Medvedeva, Yulia A; Testa, Alison C; Lipovich, Leonard; Yip, Chi-Wai; Abugessaisa, Imad; Mendez, Mickaël; Hasegawa, Akira; Tang, Dave; Lassmann, Timo; Heutink, Peter; Babina, Magda; Wells, Christine A; Kojima, Soichi; Nakamura, Yukio; Suzuki, Harukazu; Daub, Carsten O; de Hoon, Michiel J L; Arner, Erik; Hayashizaki, Yoshihide; Carninci, Piero; Forrest, Alistair R R

    2017-03-09

    Long non-coding RNAs (lncRNAs) are largely heterogeneous and functionally uncharacterized. Here, using FANTOM5 cap analysis of gene expression (CAGE) data, we integrate multiple transcript collections to generate a comprehensive atlas of 27,919 human lncRNA genes with high-confidence 5' ends and expression profiles across 1,829 samples from the major human primary cell types and tissues. Genomic and epigenomic classification of these lncRNAs reveals that most intergenic lncRNAs originate from enhancers rather than from promoters. Incorporating genetic and expression data, we show that lncRNAs overlapping trait-associated single nucleotide polymorphisms are specifically expressed in cell types relevant to the traits, implicating these lncRNAs in multiple diseases. We further demonstrate that lncRNAs overlapping expression quantitative trait loci (eQTL)-associated single nucleotide polymorphisms of messenger RNAs are co-expressed with the corresponding messenger RNAs, suggesting their potential roles in transcriptional regulation. Combining these findings with conservation data, we identify 19,175 potentially functional lncRNAs in the human genome.

  12. Profiling analysis of long non-coding RNAs in early postnatal mouse hearts

    PubMed Central

    Sun, Xiongshan; Han, Qi; Luo, Hongqin; Pan, Xiaodong; Ji, Yan; Yang, Yao; Chen, Hanying; Wang, Fangjie; Lai, Wenjing; Guan, Xiao; Zhang, Qi; Tang, Yuan; Chu, Jianhong; Yu, Jianhua; Shou, Weinian; Deng, Youcai; Li, Xiaohui

    2017-01-01

    Mammalian cardiomyocytes undergo a critical hyperplastic-to-hypertrophic growth transition at early postnatal age, which is important in establishing normal physiological function of postnatal hearts. In the current study, we intended to explore the role of long non-coding (lnc) RNAs in this transitional stage. We analyzed lncRNA expression profiles in mouse hearts at postnatal day (P) 1, P7 and P28 via microarray. We identified 1,146 differentially expressed lncRNAs with more than 2.0-fold change when compared the expression profiles of P1 to P7, P1 to P28, and P7 to P28. The neighboring genes of these differentially expressed lncRNAs were mainly involved in DNA replication-associated biological processes. We were particularly interested in one novel cardiac-enriched lncRNA, ENSMUST00000117266, whose expression was dramatically down-regulated from P1 to P28 and was also sensitive to hypoxia, paraquat, and myocardial infarction. Knockdown ENSMUST00000117266 led to a significant increase of neonatal mouse cardiomyocytes in G0/G1 phase and reduction in G2/M phase, suggesting that ENSMUST00000117266 is involved in regulating cardiomyocyte proliferative activity and is likely associated with hyperplastic-to-hypertrophic growth transition. In conclusion, our data have identified a large group of lncRNAs presented in the early postnatal mouse heart. Some of these lncRNAs may have important functions in cardiac hyperplastic-to-hypertrophic growth transition. PMID:28266538

  13. Retinal expression of small non-coding RNAs in a murine model of proliferative retinopathy

    PubMed Central

    Liu, Chi-Hsiu; Wang, Zhongxiao; Sun, Ye; SanGiovanni, John Paul; Chen, Jing

    2016-01-01

    Ocular neovascularization is a leading cause of blindness in proliferative retinopathy. Small non-coding RNAs (sncRNAs) play critical roles in both vascular and neuronal development of the retina through post-transcriptional regulation of target gene expression. To identify the function and therapeutic potential of sncRNAs in retinopathy, we assessed the expression profile of retinal sncRNAs in a mouse model of oxygen-induced retinopathy (OIR) with pathologic proliferation of neovessels. Approximately 2% of all analyzed sncRNAs were significantly altered in OIR retinas compared with normoxic controls. Twenty three microRNAs with substantial up- or down-regulation were identified, including miR-351, -762, -210, 145, -155, -129-5p, -150, -203, and -375, which were further analyzed for their potential target genes in angiogenic, hypoxic, and immune response-related pathways. In addition, nineteen small nucleolar RNAs also revealed differential expression in OIR retinas compared with control retinas. A decrease of overall microRNA expression in OIR retinas was consistent with reduced microRNA processing enzyme Dicer, and increased expression of Alu element in OIR. Together, our findings elucidated a group of differentially expressed sncRNAs in a murine model of proliferative retinopathy. These sncRNAs may exert critical post-transcriptional regulatory roles in regulating pathological neovascularization in eye diseases. PMID:27653551

  14. Insights into the Regulatory Role of Non-coding RNAs in Cancer Metabolism

    PubMed Central

    Beltrán-Anaya, Fredy O.; Cedro-Tanda, Alberto; Hidalgo-Miranda, Alfredo; Romero-Cordoba, Sandra L.

    2016-01-01

    Cancer represents a complex disease originated from alterations in several genes leading to disturbances in important signaling pathways in tumor biology, favoring heterogeneity that promotes adaptability and pharmacological resistance of tumor cells. Metabolic reprogramming has emerged as an important hallmark of cancer characterized by the presence of aerobic glycolysis, increased glutaminolysis and fatty acid biosynthesis, as well as an altered mitochondrial energy production. The metabolic switches that support energetic requirements of cancer cells are closely related to either activation of oncogenes or down-modulation of tumor-suppressor genes, finally leading to dysregulation of cell proliferation, metastasis and drug resistance signals. Non-coding RNAs (ncRNAs) have emerged as one important kind of molecules that can regulate altered genes contributing, to the establishment of metabolic reprogramming. Moreover, diverse metabolic signals can regulate ncRNA expression and activity at genetic, transcriptional, or epigenetic levels. The regulatory landscape of ncRNAs may provide a new approach for understanding and treatment of different types of malignancies. In this review we discuss the regulatory role exerted by ncRNAs on metabolic enzymes and pathways involved in glucose, lipid, and amino acid metabolism. We also review how metabolic stress conditions and tumoral microenvironment influence ncRNA expression and activity. Furthermore, we comment on the therapeutic potential of metabolism-related ncRNAs in cancer. PMID:27551267

  15. Satellite non-coding RNAs: the emerging players in cells, cellular pathways and cancer.

    PubMed

    Ferreira, Daniela; Meles, Susana; Escudeiro, Ana; Mendes-da-Silva, Ana; Adega, Filomena; Chaves, Raquel

    2015-09-01

    For several decades, transcriptional inactivity was considered as one of the particular features of constitutive heterochromatin and, therefore, of its major component, satellite DNA sequences. However, more recently, succeeding evidences have demonstrated that these sequences can indeed be transcribed, yielding satellite non-coding RNAs with important roles in the organization and regulation of genomes. Since then, several studies have been conducted, trying to understand the function(s) of these sequences not only in the normal but also in cancer genomes. It is thought that the association between cancer and satncRNAs is mostly due to the influence of these transcripts in the genome instability, a hallmark of cancer. The few reports on satellite DNA transcription in cancer contexts point to its overexpression; however, this scenario may be far more complex, variable, and influenced by a number of factors and the exact role of satncRNAs in the oncogenic process remains poorly understood. The greater is the knowledge on the association of satncRNAs with cancer, the greater would be the opportunity to assist cancer treatment, either by the design of effective therapies targeting these molecules or by using them as biomarkers in cancer diagnosis, prognosis, and with predictive value.

  16. From structure prediction to genomic screens for novel non-coding RNAs.

    PubMed

    Gorodkin, Jan; Hofacker, Ivo L

    2011-08-01

    Non-coding RNAs (ncRNAs) are receiving more and more attention not only as an abundant class of genes, but also as regulatory structural elements (some located in mRNAs). A key feature of RNA function is its structure. Computational methods were developed early for folding and prediction of RNA structure with the aim of assisting in functional analysis. With the discovery of more and more ncRNAs, it has become clear that a large fraction of these are highly structured. Interestingly, a large part of the structure is comprised of regular Watson-Crick and GU wobble base pairs. This and the increased amount of available genomes have made it possible to employ structure-based methods for genomic screens. The field has moved from folding prediction of single sequences to computational screens for ncRNAs in genomic sequence using the RNA structure as the main characteristic feature. Whereas early methods focused on energy-directed folding of single sequences, comparative analysis based on structure preserving changes of base pairs has been efficient in improving accuracy, and today this constitutes a key component in genomic screens. Here, we cover the basic principles of RNA folding and touch upon some of the concepts in current methods that have been applied in genomic screens for de novo RNA structures in searches for novel ncRNA genes and regulatory RNA structure on mRNAs. We discuss the strengths and weaknesses of the different strategies and how they can complement each other.

  17. The Role of Long Non-Coding RNAs in Ovarian Cancer

    PubMed Central

    Nikpayam, Elahe; Tasharrofi, Behnoosh; Sarrafzadeh, Shaghayegh; Ghafouri-Fard, Soudeh

    2017-01-01

    Ovarian cancer is the most fatal tumor of female’s reproductive system, and several genetics and environmental factors are involved in its development. Various studies have already identified some suitable biomarkers to facilitate the early detection, the prognosis evaluation, and the assessment of treatment response. However, the aim of this review is to investigate the role of long non-coding RNAs (lncRNAs) in tumorigenesis process of ovarian cancer and their potential applications as ovarian cancer biomarkers. We performed an online literature search of the MEDLINE/PubMed databases using the keywords, including ovarian cancer, lncRNA, and biomarker. We found that several lncRNAs have been shown to be deregulated in ovarian cancer and the specific mechanism of their enrollment in ovarian cancer has been defined for a few of them. In addition, expression profiling has revealed an association between lncRNAs and patients’ survival, metastasis potential, as well as treatment response. Expression profiling and methylation analysis of lncRNAs in ovarian cancer may lead to the identification of novel biomarkers that can help in the classification of patients based on prognosis and treatment response. PMID:27664137

  18. Large intervening non-coding RNA HOTAIR is associated with hepatocellular carcinoma progression.

    PubMed

    Geng, Y J; Xie, S L; Li, Q; Ma, J; Wang, G Y

    2011-01-01

    Increasing evidence suggests that large intervening non-coding RNAs (lincRNAs) regulate key pathways in cancer invasion and metastasis. In this observational retrospective study, the expression of the oncogenic lincRNA HOX transcript antisense RNA (HOTAIR) gene was measured in 63 patients with hepatocellular carcinoma (HCC) following hepatic resection. The HOTAIR gene was significantly overexpressed in HCC tissues compared with adjacent non-tumour tissues. Patients with high HOTAIR gene expression in their tumours had an increased risk of recurrence after hepatectomy. There was also a significant correlation between HOTAIR expression and lymph node metastasis. In vitro assays in the HCC cell line Bel7402 demonstrated that knockdown of HOTAIR lincRNA reduced cell proliferation and was associated with reductions in levels of matrix metalloproteinase-9 and vascular endothelial growth factor protein, which are important for cell motility and metastasis. In conclusion, HOTAIR lincRNA might be a potential biomarker for the existence of lymph node metastasis in HCC.

  19. Small Non-coding RNAs Associated with Viral Infectious Diseases of Veterinary Importance: Potential Clinical Applications

    PubMed Central

    Samir, Mohamed; Pessler, Frank

    2016-01-01

    MicroRNAs (miRNAs) represent a class of small non-coding RNA (sncRNA) molecules that can regulate mRNAs by inducing their degradation or by blocking translation. Considering that miRNAs are ubiquitous, stable, and conserved across animal species, it seems feasible to exploit them for clinical applications. Unlike in human viral diseases, where some miRNA-based molecules have progressed to clinical application, in veterinary medicine, this concept is just starting to come into view. Clinically, miRNAs could represent powerful diagnostic tools to pinpoint animal viral diseases and/or prognostic tools to follow up disease progression or remission. Additionally, the possible consequences of miRNA dysregulation make them potential therapeutic targets and open the possibilities to use them as tools to generate viral disease-resistant livestock. This review presents an update of preclinical studies on using sncRNAs to combat viral diseases that affect pet and farm animals. Moreover, we discuss the possibilities and challenges of bringing these bench-based discoveries to the veterinary clinic. PMID:27092305

  20. Archetype and Rearranged Non-coding Control Regions in Urothelial Bladder Carcinoma of Immunocompetent Individuals

    PubMed Central

    ANZIVINO, ELENA; ANTONELLA ZINGAROPOLI, MARIA; IANNETTA, MARCO; ANTONIETTA PIETROPAOLO, VALERIA; OLIVA, ALESSANDRA; IORI, FRANCESCO; CIARDI, ANTONIO; MARIA RODIO, DONATELLA; ANTONINI, FRANCESCA; GIOVANNI FEDELE, CESARE; D’ABRAMO, ALESSANDRA; MARIA MASTROIANNI, CLAUDIO; VULLO, VINCENZO; ROSA CIARDI, MARIA

    2016-01-01

    Background: Polyomaviruses (PyVs) are potential transforming viruses. Despite their involvement in human tumours still being debated, there is evidence to suggest a role for PyVs in bladder carcinoma (BC). Therefore, a possible association between PyVs and BC was investigated. Materials and Methods: Urine, blood and fresh bladder tissue specimens were collected from 29 patients with BC. PyV prevalence, non-coding control region (NCCR) organization and genotypic analysis were assessed. Results: Data showed a significant prevalence of John Cunningham (JC) PyV in BC tissues and in urine with respect to BKPyV, while simian virus 40 was not revealed. A BKPyV rearranged NCCR sequence was isolated, whereas a JCPyV archetypal structure was consistently retained. A prevalence of European genotypes was observed. Conclusion: Our data would suggest a JCPyV involvement in cancer progression and a BKPyV association with BC pathogenesis in immunocompetent patients. However, further work is necessary to better understand the exact role of PyVs in urothelial carcinogenesis. PMID:27807073

  1. Regulation of Non-coding RNAs in Heat Stress Responses of Plants

    PubMed Central

    Zhao, Jianguo; He, Qingsong; Chen, Gang; Wang, Li; Jin, Biao

    2016-01-01

    Heat stress is an important factor limiting plant growth, development, and productivity; thus, plants have evolved special adaptive mechanisms to cope with high-temperature stress. Non-coding RNAs (ncRNAs) are a class of regulatory RNAs that play an important role in many biological processes. Recently developed advanced technologies, such as genome-wide transcriptomic analysis, have revealed that abundant ncRNAs are expressed under heat stress. Although this area of research is still in its infancy, an increasing number of several classes of regulatory ncRNA (i.e., miRNA, siRNA, and lncRNA) related to heat stress responses have been reported. In this mini-review, we discuss our current understanding of the role of ncRNAs in heat stress responses in plants, especially miRNAs, siRNAs, and their targets. For example, the miR398-CSD/CCS-HSF, miR396-WRKY6, miR159-GAMYB, and TAS1-HTT-HSF pathways regulate plant heat tolerance. We highlight the hormone/development-related miRNAs involved in heat stress, and discuss the regulatory networks of miRNA-targets. We also note that DNA methylation and alternative splicing could affect miRNA expression under heat stress, and some lncRNAs could respond to heat stress. Finally, we briefly discuss future prospects concerning the ncRNA-related mechanisms of heat stress responses in plants. PMID:27588021

  2. Non-Coding RNAs in Saliva: Emerging Biomarkers for Molecular Diagnostics

    PubMed Central

    Majem, Blanca; Rigau, Marina; Reventós, Jaume; Wong, David T.

    2015-01-01

    Saliva is a complex body fluid that comprises secretions from the major and minor salivary glands, which are extensively supplied by blood. Therefore, molecules such as proteins, DNA, RNA, etc., present in plasma could be also present in saliva. Many studies have reported that saliva body fluid can be useful for discriminating several oral diseases, but also systemic diseases including cancer. Most of these studies revealed messenger RNA (mRNA) and proteomic biomarker signatures rather than specific non-coding RNA (ncRNA) profiles. NcRNAs are emerging as new regulators of diverse biological functions, playing an important role in oncogenesis and tumor progression. Indeed, the small size of these molecules makes them very stable in different body fluids and not as susceptible as mRNAs to degradation by ribonucleases (RNases). Therefore, the development of a non-invasive salivary test, based on ncRNAs profiles, could have a significant applicability to clinical practice, not only by reducing the cost of the health system, but also by benefitting the patient. Here, we summarize the current status and clinical implications of the ncRNAs present in human saliva as a source of biological information. PMID:25898412

  3. The pivotal role of small non-coding RNAs in the regulation of seed development.

    PubMed

    Rodrigues, Andreia S; Miguel, Célia M

    2017-03-13

    Seeds represent a crucial stage of the seed plants life cycle. It is during seed development that the foundations of the future plant body, and the ability to give rise to a new plant capable of growing under sometimes adverse environmental conditions, are established. Small non-coding RNAs are major regulators of gene expression both at the post-transcriptional and transcriptional levels and, not surprisingly, these elements play major roles in seed development and germination. We review here the current knowledge about small RNA expression and functions in seed development, going from the morphogenesis phase comprehending embryo development and patterning, to the several steps of the maturation phase, ending in the transition to the germination. A special focus is given to the small RNAs for which functional studies have been conducted and their participation in regulatory networks operating in seeds. Many challenges remain ahead for dissecting the complex small RNA landscape in seeds, but this is a highly relevant issue in plant biology and advances in this area will most certainly impact plant breeding.

  4. Transposable Element Insertions in Long Intergenic Non-Coding RNA Genes

    PubMed Central

    Kannan, Sivakumar; Chernikova, Diana; Rogozin, Igor B.; Poliakov, Eugenia; Managadze, David; Koonin, Eugene V.; Milanesi, Luciano

    2015-01-01

    Transposable elements (TEs) are abundant in mammalian genomes and appear to have contributed to the evolution of their hosts by providing novel regulatory or coding sequences. We analyzed different regions of long intergenic non-coding RNA (lincRNA) genes in human and mouse genomes to systematically assess the potential contribution of TEs to the evolution of the structure and regulation of expression of lincRNA genes. Introns of lincRNA genes contain the highest percentage of TE-derived sequences (TES), followed by exons and then promoter regions although the density of TEs is not significantly different between exons and promoters. Higher frequencies of ancient TEs in promoters and exons compared to introns implies that many lincRNA genes emerged before the split of primates and rodents. The content of TES in lincRNA genes is substantially higher than that in protein-coding genes, especially in exons and promoter regions. A significant positive correlation was detected between the content of TEs and evolutionary rate of lincRNAs indicating that inserted TEs are preferentially fixed in fast-evolving lincRNA genes. These results are consistent with the repeat insertion domains of LncRNAs hypothesis under which TEs have substantially contributed to the origin, evolution, and, in particular, fast functional diversification, of lincRNA genes. PMID:26106594

  5. Retroposition as a source of antisense long non-coding RNAs with possible regulatory functions.

    PubMed

    Bryzghalov, Oleksii; Szcześniak, Michał Wojciech; Makałowska, Izabela

    2016-01-01

    Long non-coding RNAs (lncRNAs) are a class of intensely studied, yet enigmatic molecules that make up a substantial portion of the human transcriptome. In this work, we link the origins and functions of some lncRNAs to retroposition, a process resulting in the creation of intronless copies (retrocopies) of the so-called parental genes. We found 35 human retrocopies transcribed in antisense and giving rise to 58 lncRNA transcripts. These lncRNAs share sequence similarity with the corresponding parental genes but in the sense/antisense orientation, meaning they have the potential to interact with each other and to form RNA:RNA duplexes. We took a closer look at these duplexes and found that 10 of the lncRNAs might regulate parental gene expression and processing at the pre-mRNA and mRNA levels. Further analysis of the co-expression and expression correlation provided support for the existence of functional coupling between lncRNAs and their mate parental gene transcripts.

  6. Discovery of putative small non-coding RNAs from the obligate intracellular bacterium Wolbachia pipientis.

    PubMed

    Woolfit, Megan; Algama, Manjula; Keith, Jonathan M; McGraw, Elizabeth A; Popovici, Jean

    2015-01-01

    Wolbachia pipientis is an endosymbiotic bacterium that induces a wide range of effects in its insect hosts, including manipulation of reproduction and protection against pathogens. Little is known of the molecular mechanisms underlying the insect-Wolbachia interaction, though it is likely to be mediated via the secretion of proteins or other factors. There is an increasing amount of evidence that bacteria regulate many cellular processes, including secretion of virulence factors, using small non-coding RNAs (sRNAs), but sRNAs have not previously been described from Wolbachia. We have used two independent approaches, one based on comparative genomics and the other using RNA-Seq data generated for gene expression studies, to identify candidate sRNAs in Wolbachia. We experimentally characterized the expression of one of these candidates in four Wolbachia strains, and showed that it is differentially regulated in different host tissues and sexes. Given the roles played by sRNAs in other host-associated bacteria, the conservation of the candidate sRNAs between different Wolbachia strains, and the sex- and tissue-specific differential regulation we have identified, we hypothesise that sRNAs may play a significant role in the biology of Wolbachia, and in particular in its interactions with its host.

  7. Prognostic value of long non-coding RNA MALAT1 in cancer patients.

    PubMed

    Wu, Yihua; Lu, Wei; Xu, Jinming; Shi, Yu; Zhang, Honghe; Xia, Dajing

    2016-01-01

    Metastasis associated in lung adenocarcinoma transcript 1 (MALAT1) was identified to be the first long non-coding RNA as a biomarker of independent prognostic value for early stage non-small cell lung cancer patient survival. In recent years, the association between upregulated tissue MALAT1 level and incidence of various cancers including bladder cancer, colorectal cancer, and renal cancer has been widely discussed. The aim of our present study was to assess the potential prognostic value of MALAT1 in various human cancers. PubMed, Embase, Ovid, and Cochrane Library databases were systematically searched, and eligible studies evaluating the prognostic value of MALAT1 in various cancers were included. Finally, 11 studies encompassing 1216 participants reporting with sufficient data were enrolled in the current meta-analysis. The pooled hazard ratio (HR) was 2.05 (95 % confidence interval (CI) 1.64-2.55, p < 0.01) for overall survival (OS) and 2.66 (95 % CI 1.86-3.80, p < 0.01) for disease-free survival (DFS). In conclusion, high tissue MALAT1 level was associated with an inferior clinical outcome in various cancers, suggesting that MALAT1 might serve as a potential prognostic biomarker for various cancers.

  8. Transcriptomic profiling of long non-coding RNAs in dermatomyositis by microarray analysis

    PubMed Central

    Peng, Qing-Lin; Zhang, Ya-Mei; Yang, Han-Bo; Shu, Xiao-Ming; Lu, Xin; Wang, Guo-Chun

    2016-01-01

    Long non-coding RNAs (lncRNAs) are prevalently transcribed in the genome and have been found to be of functional importance. However, the potential roles of lncRNAs in dermatomyositis (DM) remain unknown. In this study, a lncRNA + mRNA microarray analysis was performed to profile lncRNAs and mRNAs from 15 treatment-naive DM patients and 5 healthy controls. We revealed a total of 1198 lncRNAs (322 up-regulated and 876 down-regulated) and 1213 mRNAs (665 up-regulated and 548 down-regulated) were significantly differentially expressed in DM patients compared with the healthy controls (fold change>2, P < 0.05). Subgrouping DM patients according to the presence of interstitial lung disease and anti-Jo-1 antibody revealed different expression patterns of the lncRNAs. Pathway and gene ontology analysis for the differentially expressed mRNAs confirmed that type 1 interferon signaling was the most significantly dysregulated pathway in all DM subgroups. In addition, distinct pathways that uniquely associated with DM subgroup were also identified. Bioinformatics prediction suggested that linc-DGCR6-1 may be a lncRNA that regulates type 1 interferon-inducible gene USP18, which was found highly expressed in the perifascicular areas of the muscle fibers of DM patients. Our findings provide an overview of aberrantly expressed lncRNAs in DM muscle and further broaden the understanding of DM pathogenesis. PMID:27605457

  9. Identification of a Novel Small Non-Coding RNA Modulating the Intracellular Survival of Brucella melitensis

    PubMed Central

    Wang, Yufei; Ke, Yuehua; Xu, Jie; Wang, Ligui; Wang, Tongkun; Liang, Hui; Zhang, Wei; Gong, Chunli; Yuan, Jiuyun; Zhuang, Yubin; An, Chang; Lei, Shuangshuang; Du, Xinying; Wang, Zhoujia; Li, Wenna; Yuan, Xitong; Huang, Liuyu; Yang, Xiaoli; Chen, Zeliang

    2015-01-01

    Bacterial small non-coding RNAs (sRNAs) are gene expression modulators respond to environmental changes, stressful conditions, and pathogenesis. In this study, by using a combined bioinformatic and experimental approach, eight novel sRNA genes were identified in intracellular pathogen Brucella melitensis. BSR0602, one sRNA that was highly induced in stationary phase, was further examined and found to modulate the intracellular survival of B. melitensis. BSR0602 was present at very high levels in vitro under stresses similar to those encountered during infection in host macrophages. Furthermore, BSR0602 was found to be highly expressed in the spleens of infected mice, suggesting its potential role in the control of pathogenesis. BSR0602 targets the mRNAs coding for gntR, a global transcriptional regulator, which is required for B. melitensis virulence. Overexpression of BSR0602 results in distinct reduction in the gntR mRNA level. B. melitensis with high level of BSR0602 is defective in bacteria intracellular survival in macrophages and defective in growth in the spleens of infected mice. Therefore, BSR0602 may directly inhibit the expression of gntR, which then impairs Brucellae intracellular survival and contributes to Brucella infection. Our findings suggest that BSR0602 is responsible for bacterial adaptation to stress conditions and thus modulate B. melitensis intracellular survival. PMID:25852653

  10. Long non-coding RNA regulation of epithelial–mesenchymal transition in cancer metastasis

    PubMed Central

    Xu, Q; Deng, F; Qin, Y; Zhao, Z; Wu, Z; Xing, Z; Ji, A; Wang, Q J

    2016-01-01

    Metastasis is a multistep process starting with the dissemination of tumor cells from a primary site and ending with secondary tumor development in an anatomically distant location. The epithelial–mesenchymal transition (EMT), a process that endows epithelial tumor cells with mesenchymal properties including reduced adhesion and increased motility, is considered a critical step driving the early phase of cancer metastasis. Although significant progress has been made in understanding the molecular characteristics of EMT, the intracellular mechanisms driving transition through the various stages of EMT remain unclear. In recent years, an increasing number of studies have demonstrated the involvement of long non-coding RNAs (lncRNAs) in tumor metastasis through modulating EMT. LncRNAs and their associated signaling networks have now emerged as new players in the induction and regulation of EMT during metastasis. Here we summarize the recent findings and characterizations of several known lncRNAs involved in the regulation of EMT. We will also discuss the potential use of these lncRNAs as diagnostic and prognostic biomarkers as well as therapeutic targets to slow down or prevent metastatic spread of malignant tumors. PMID:27277676

  11. Expression of a non-coding RNA in ectromelia virus is required for normal plaque formation.

    PubMed

    Esteban, David J; Upton, Chris; Bartow-McKenney, Casey; Buller, R Mark L; Chen, Nanhai G; Schriewer, Jill; Lefkowitz, Elliot J; Wang, Chunlin

    2014-02-01

    Poxviruses are dsDNA viruses with large genomes. Many genes in the genome remain uncharacterized, and recent studies have demonstrated that the poxvirus transcriptome includes numerous so-called anomalous transcripts not associated with open reading frames. Here, we characterize the expression and role of an apparently non-coding RNA in orthopoxviruses, which we call viral hairpin RNA (vhRNA). Using a bioinformatics approach, we predicted expression of a transcript not associated with an open reading frame that is likely to form a stem-loop structure due to the presence of a 21 nt palindromic sequence. Expression of the transcript as early as 2 h post-infection was confirmed by northern blot and analysis of publicly available vaccinia virus infected cell transcriptomes. The transcription start site was determined by RACE PCE and transcriptome analysis, and early and late promoter sequences were identified. Finally, to test the function of the transcript we generated an ectromelia virus knockout, which failed to form plaques in cell culture. The important role of the transcript in viral replication was further demonstrated using siRNA. Although the function of the transcript remains unknown, our work contributes to evidence of an increasingly complex poxvirus transcriptome, suggesting that transcripts such as vhRNA not associated with an annotated open reading frame can play an important role in viral replication.

  12. Comparison of small molecules and oligonucleotides that target a toxic, non-coding RNA.

    PubMed

    Costales, Matthew G; Rzuczek, Suzanne G; Disney, Matthew D

    2016-06-01

    Potential RNA targets for chemical probes and therapeutic modalities are pervasive in the transcriptome. Oligonucleotide-based therapeutics are commonly used to target RNA sequence. Small molecules are emerging as a modality to target RNA structures selectively, but their development is still in its infancy. In this work, we compare the activity of oligonucleotides and several classes of small molecules that target the non-coding r(CCUG) repeat expansion (r(CCUG)(exp)) that causes myotonic dystrophy type 2 (DM2), an incurable disease that is the second-most common cause of adult onset muscular dystrophy. Small molecule types investigated include monomers, dimers, and multivalent compounds synthesized on-site by using RNA-templated click chemistry. Oligonucleotides investigated include phosphorothioates that cleave their target and vivo-morpholinos that modulate target RNA activity via binding. We show that compounds assembled on-site that recognize structure have the highest potencies amongst small molecules and are similar in potency to a vivo-morpholino modified oligonucleotide that targets sequence. These studies are likely to impact the design of therapeutic modalities targeting other repeats expansions that cause fragile X syndrome and amyotrophic lateral sclerosis, for example.

  13. Dysregulation of the long non-coding RNA transcriptome in a Rett syndrome mouse model.

    PubMed

    Petazzi, Paolo; Sandoval, Juan; Szczesna, Karolina; Jorge, Olga C; Roa, Laura; Sayols, Sergi; Gomez, Antonio; Huertas, Dori; Esteller, Manel

    2013-07-01

    Mecp2 is a transcriptional repressor protein that is mutated in Rett syndrome, a neurodevelopmental disorder that is the second most common cause of mental retardation in women. It has been shown that the loss of the Mecp2 protein in Rett syndrome cells alters the transcriptional silencing of coding genes and microRNAs. Herein, we have studied the impact of Mecp2 impairment in a Rett syndrome mouse model on the global transcriptional patterns of long non-coding RNAs (lncRNAs). Using a microarray platform that assesses 41,232 unique lncRNA transcripts, we have identified the aberrant lncRNA transcriptome that is present in the brain of Rett syndrome mice. The study of the most relevant lncRNAs altered in the assay highlighted the upregulation of the AK081227 and AK087060 transcripts in Mecp2-null mice brains. Chromatin immunoprecipitation demonstrated the Mecp2 occupancy in the 5'-end genomic loci of the described lncRNAs and its absence in Rett syndrome mice. Most importantly, we were able to show that the overexpression of AK081227 mediated by the Mecp2 loss was associated with the downregulation of its host coding protein gene, the gamma-aminobutyric acid receptor subunit Rho 2 (Gabrr2). Overall, our findings indicate that the transcriptional dysregulation of lncRNAs upon Mecp2 loss contributes to the neurological phenotype of Rett syndrome and highlights the complex interaction between ncRNAs and coding-RNAs.

  14. Long non-coding RNA expression profile in vulvar squamous cell carcinoma and its clinical significance.

    PubMed

    Ni, Sha; Zhao, Xiaoyu; Ouyang, Ling

    2016-11-01

    Researchers have recently demonstrated the key role of long non-coding RNAs (lncRNAs) in regulating embryogenesis and gene expression. However, the exact mechanism used by lncRNAs in carcinogenesis is still unclear. In particular, studies regarding the role of lncRNAs in vulvar squamous cell carcinomas (VSCCs) are limited. Using microarray analysis, the genome-wide expression profile of lncRNAs was investigated in four paired VSCCs and adjacent normal vulvar tissues. Accordingly, several novel lncRNA candidates (HOAIR, MALAT1, MEG3, NEAT1, MIR31HG and LINC00478) were chosen for further study and real-time reverse transcription PCR (RT-PCR) was used to confirm the expression levels among 35 tissue samples. A panel of dysregulated lncRNAs (MEG3 and MALAT1) were also identified as potential biomarkers as they also correlated with VSCC carcinogenesis. In summary, the results revealed that aberrantly expressed lncRNAs may be a factor in VSCC pathogenesis, potentially providing new biomarkers and therapeutic targets for VSCC.

  15. Long Non-coding RNA ANRIL and Polycomb in Human Cancers and Cardiovascular Disease.

    PubMed

    Aguilo, Francesca; Di Cecilia, Serena; Walsh, Martin J

    2016-01-01

    The long non-coding RNA CDKN2B-AS1, commonly referred to as the A ntisense N on-coding R NA in the I NK4 L ocus (ANRIL), is a 3.8-kb-long RNA transcribed from the short arm of human chromosome 9 on p21.3 that overlaps a critical region encompassing three major tumor suppressor loci juxtaposed to the INK4b-ARF-INK4a gene cluster and the methyl-thioadenosine phosphorylase (MTAP) gene. Genome-wide association studies have identified this region with a remarkable and growing number of disease-associated DNA alterations and single nucleotide polymorphisms, which corresponds to increased susceptibility to human disease. Recent attention has been devoted on whether these alterations in the ANRIL sequence affect its expression levels and/or its splicing transcript variation, and in consequence, global cellular homeostasis. Moreover, recent evidence postulates that ANRIL not only can regulate their immediate genomic neighbors in cis, but also has the capacity to regulate additional loci in trans. This action would further increase the complexity for mechanisms imposed through ANRIL and furthering the scope of this lncRNA in disease pathogenesis. In this chapter, we summarize the most recent findings on the investigation of ANRIL and provide a perspective on the biological and clinical significance of ANRIL as a putative biomarker, specifically, its potential role in directing cellular fates leading to cancer and cardiovascular disease.

  16. Genetic evidence for conserved non-coding element function across species–the ears have it

    PubMed Central

    Turner, Eric E.; Cox, Timothy C.

    2014-01-01

    Comparison of genomic sequences from diverse vertebrate species has revealed numerous highly conserved regions that do not appear to encode proteins or functional RNAs. Often these “conserved non-coding elements,” or CNEs, can direct gene expression to specific tissues in transgenic models, demonstrating they have regulatory function. CNEs are frequently found near “developmental” genes, particularly transcription factors, implying that these elements have essential regulatory roles in development. However, actual examples demonstrating CNE regulatory functions across species have been few, and recent loss-of-function studies of several CNEs in mice have shown relatively minor effects. In this Perspectives article, we discuss new findings in “fancy” rats and Highland cattle demonstrating that function of a CNE near the Hmx1 gene is crucial for normal external ear development and when disrupted can mimic loss-of function Hmx1 coding mutations in mice and humans. These findings provide important support for conserved developmental roles of CNEs in divergent species, and reinforce the concept that CNEs should be examined systematically in the ongoing search for genetic causes of human developmental disorders in the era of genome-scale sequencing. PMID:24478720

  17. Non-coding RNA regulation in pathogenic bacteria located inside eukaryotic cells

    PubMed Central

    Ortega, Álvaro D.; Quereda, Juan J.; Pucciarelli, M. Graciela; García-del Portillo, Francisco

    2014-01-01

    Intracellular bacterial pathogens have evolved distinct lifestyles inside eukaryotic cells. Some pathogens coexist with the infected cell in an obligate intracellular state, whereas others transit between the extracellular and intracellular environment. Adaptation to these intracellular lifestyles is regulated in both space and time. Non-coding small RNAs (sRNAs) are post-transcriptional regulatory molecules that fine-tune important processes in bacterial physiology including cell envelope architecture, intermediate metabolism, bacterial communication, biofilm formation, and virulence. Recent studies have shown production of defined sRNA species by intracellular bacteria located inside eukaryotic cells. The molecules targeted by these sRNAs and their expression dynamics along the intracellular infection cycle remain, however, poorly characterized. Technical difficulties linked to the isolation of “intact” intracellular bacteria from infected host cells might explain why sRNA regulation in these specialized pathogens is still a largely unexplored field. Transition from the extracellular to the intracellular lifestyle provides an ideal scenario in which regulatory sRNAs are intended to participate; so much work must be done in this direction. This review focuses on sRNAs expressed by intracellular bacterial pathogens during the infection of eukaryotic cells, strategies used with these pathogens to identify sRNAs required for virulence, and the experimental technical challenges associated to this type of studies. We also discuss varied techniques for their potential application to study RNA regulation in intracellular bacterial infections. PMID:25429360

  18. MicroRNAs and non-coding RNAs in virus-infected cells

    PubMed Central

    Ouellet, Dominique L.; Provost, Patrick

    2010-01-01

    Within the past few years, microRNAs (miRNAs) and other non-coding RNAs (ncRNAs) have emerged as elements with critically high importance in post-transcriptional control of cellular and, more recently, viral processes. Endogenously produced by a component of the miRNA-guided RNA silencing machinery known as Dicer, miRNAs are known to control messenger RNA (mRNA) translation through recognition of specific binding sites usually located in their 3′ untranslated region. Recent evidences indicate that the host miRNA pathway may represent an adapted antiviral defense mechanism that can act either by direct miRNA-mediated modulation of viral gene expression or through recognition and inactivation of structured viral RNA species by the protein components of the RNA silencing machinery, such as Dicer. This latter process, however, is a double-edge sword, as it may yield viral miRNAs exerting gene regulatory properties on both host and viral mRNAs. Our knowledge of the interaction between viruses and host RNA silencing machineries, and how this influences the course of infection, is becoming increasingly complex. This review article aims to summarize our current knowledge about viral miRNAs/ncRNAs and their targets, as well as cellular miRNAs that are modulated by viruses upon infection. PMID:20217543

  19. Long non-coding RNAs as regulators of the endocrine system

    PubMed Central

    Knoll, Marko; Lodish, Harvey F.; Sun, Lei

    2015-01-01

    Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic β cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers. PMID:25560704

  20. A long non-coding RNA promotes full activation of adult gene expression in the chicken α-globin domain.

    PubMed

    Arriaga-Canon, Cristian; Fonseca-Guzmán, Yael; Valdes-Quezada, Christian; Arzate-Mejía, Rodrigo; Guerrero, Georgina; Recillas-Targa, Félix

    2014-01-01

    Long non-coding RNAs (lncRNAs) were recently shown to regulate chromatin remodelling activities. Their function in regulating gene expression switching during specific developmental stages is poorly understood. Here we describe a nuclear, non-coding transcript responsive for the stage-specific activation of the chicken adult α(D) globin gene. This non-coding transcript, named α-globin transcript long non-coding RNA (lncRNA-αGT) is transcriptionally upregulated in late stages of chicken development, when active chromatin marks the adult α(D) gene promoter. Accordingly, the lncRNA-αGT promoter drives erythroid-specific transcription. Furthermore, loss of function experiments showed that lncRNA-αGT is required for full activation of the α(D) adult gene and maintenance of transcriptionally active chromatin. These findings uncovered lncRNA-αGT as an important part of the switching from embryonic to adult α-globin gene expression, and suggest a function of lncRNA-αGT in contributing to the maintenance of adult α-globin gene expression by promoting an active chromatin structure.

  1. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism.

    PubMed

    Shih, Jing-Wen; Wang, Ling-Yu; Hung, Chiu-Lien; Kung, Hsing-Jien; Hsieh, Chia-Ling

    2015-12-04

    Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed.

  2. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism

    PubMed Central

    Shih, Jing-Wen; Wang, Ling-Yu; Hung, Chiu-Lien; Kung, Hsing-Jien; Hsieh, Chia-Ling

    2015-01-01

    Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed. PMID:26690121

  3. Protection of the genome and central protein-coding sequences by non-coding DNA against DNA damage from radiation.

    PubMed

    Qiu, Guo-Hua

    2015-01-01

    Non-coding DNA comprises a very large proportion of the total genomic content in higher organisms, but its function remains largely unclear. Non-coding DNA sequences constitute the majority of peripheral heterochromatin, which has been hypothesized to be the genome's 'bodyguard' against DNA damage from chemicals and radiation for almost four decades. The bodyguard protective function of peripheral heterochromatin in genome defense has been strengthened by the results from numerous recent studies, which are summarized in this review. These data have suggested that cells and/or organisms with a higher level of heterochromatin and more non-coding DNA sequences, including longer telomeric DNA and rDNAs, exhibit a lower frequency of DNA damage, higher radioresistance and longer lifespan after IR exposure. In addition, the majority of heterochromatin is peripherally located in the three-dimensional structure of genome organization. Therefore, the peripheral heterochromatin with non-coding DNA could play a protective role in genome defense against DNA damage from ionizing radiation by both absorbing the radicals from water radiolysis in the cytosol and reducing the energy of IR. However, the bodyguard protection by heterochromatin has been challenged by the observation that DNA damage is less frequently detected in peripheral heterochromatin than in euchromatin, which is inconsistent with the expectation and simulation results. Previous studies have also shown that the DNA damage in peripheral heterochromatin is rarely repaired and moves more quickly, broadly and outwardly to approach the nuclear pore complex (NPC). Additionally, it has been shown that extrachromosomal circular DNAs (eccDNAs) are formed in the nucleus, highly detectable in the cytoplasm (particularly under stress conditions) and shuttle between the nucleus and the cytoplasm. Based on these studies, this review speculates that the sites of DNA damage in peripheral heterochromatin could occur more

  4. Paraspeckle formation during the biogenesis of long non-coding RNAs.

    PubMed

    Naganuma, Takao; Hirose, Tetsuro

    2013-03-01

    Paraspeckles are unique subnuclear structures that are built around a specific long non-coding RNA (lncRNA), NEAT1, which is comprised of two isoforms (NEAT1_1 and NEAT1_2) that are produced by alternative 3'-end processing. NEAT1 lncRNAs are unusual RNA polymerase II transcripts that lack introns. The non-polyadenylated 3'-end of NEAT1_2 is non-canonically processed by RNase P. NEAT1_2 is an essential component for paraspeckle formation. Paraspeckles form during the NEAT1_2 lncRNA biogenesis process, which encompasses transcription from its own chromosome locus through lncRNA processing and accumulation. Recent RNAi analyses of 40 paraspeckle proteins (PSPs) identified four PSPs that are required for paraspeckle formation by mediating NEAT1 processing and accumulation. In particular, HNRNPK was shown to arrest CFIm-dependent NEAT1_1 polyadenylation, leading to NEAT1_2 synthesis. The other three PSPs were required for paraspeckle formation, but did not affect NEAT1_2 expression. This observation suggests that NEAT1_2 accumulation is necessary but not sufficient for paraspeckle formation. An additional step, presumably the bundling of NEAT1 ribonucleoprotein sub-complexes, may be required for construction of the intact paraspeckle structure. NEAT1 expression is likely regulated at transcriptional and post-transcriptional steps under certain stress conditions, suggesting roles for paraspeckles in the lncRNA-mediated regulation of gene expression, such as the nucleocytoplasmic transport of mRNA in response to certain stimuli.

  5. Aberrant Expression of Long Non-Coding RNAs in Schizophrenia Patients

    PubMed Central

    Chen, Shengdong; Sun, Xinyang; Niu, Wei; Kong, Lingming; He, Mingjun; Li, Wanshuai; Zhong, Aifang; Lu, Jim; Zhang, Liyi

    2016-01-01

    Background Dysfunction of long non-coding RNAs (lncRNAs) has been demonstrated to be involved in psychiatric diseases. However, the expression patterns and functions of the regulatory lncRNAs in schizophrenia (SZ) patients have rarely been systematically reported. Material/Methods The lncRNAs in peripheral blood mononuclear cells (PBMCs) were screened and compared between the SZ patients and demographically-matched healthy controls using microarray analysis, and then were validated by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) method. Three verified significantly dysregulated lncRNAs of PBMCs were selected and then measured in SZ patients before and after the antipsychotic treatment. SZ symptomatology improvement was measured by Positive And Negative Syndrome Scale (PANSS) scores. Results One hundred and twenty-five lncRNAs were significantly differentially expressed in SZ patients compared with healthy controls, of which 62 were up-regulated and 63 were down-regulated. Concurrent with the significant decrease of the PANSS scores of patients after the treatment, the PBMC levels of lncRNA NONHSAT089447 and NONHSAT041499 were strikingly decreased (P<0.05). Down-regulation of PBMC expression of NONHSAT041499 was significantly correlated to the improvement of positive and activity symptoms of patients (r=−0.444 and −0.423, respectively, P<0.05, accounting for 16.9% and 15.1%, respectively), and was also significantly associated with better outcomes (odds ratio 2.325 for positive symptom and 12.340 for activity symptom). Conclusions LncRNA NONHSAT089447 and NONHSAT041499 might be involved in the pathogenesis and development of SZ, and the PBMC level of NONHSAT041499 is significantly associated with the treatment outcomes of SZ. PMID:27650396

  6. Long Non-Coding RNA: Potential Diagnostic and Therapeutic Biomarker for Major Depressive Disorder

    PubMed Central

    Cui, Xuelian; Sun, Xinyang; Niu, Wei; Kong, Lingming; He, Mingjun; Zhong, Aifang; Chen, Shengdong; Jiang, Kunhong; Zhang, Liyi; Cheng, Zaohuo

    2016-01-01

    Background The criteria for diagnosing depression are based on behavioral observation and self-reporting of symptoms by the patients or guardians without any biological validation of the disease. This study aimed to identify long non-coding RNAs (lncRNAs) in peripheral blood mononuclear cells (PBMCs) as robust and predictive biomarkers for diagnosis and therapy response in major depressive disorder (MDD). Material/Methods We used human lncRNA 3.0 microarray profiling (which covers 30,586 human lncRNAs), using PBMCs from five MDD patients and five controls. Differentially expressed lncRNAs in the PBMCs of MDD patients were identified, of which 10 candidate lncRNAs were selected for real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) analysis in a larger cohort of 138 MDD patients and 63 healthy controls. Then among the 138 MDD patients who received standard antidepressant treatment, 30 were randomly selected for lncRNAs expression retesting and symptomatology assessments after three-weeks and six-weeks of antidepressant treatment. Results Six lncRNAs (TCONS_00019174, ENST00000566208, NONHSAG045500, ENST00000517573, NONHSAT034045, and NONHSAT142707) were significantly downregulated in MDD patients compared to control patients, and the area under the receiver operator curve (ROC) of these six lncRNAs cases, combined, was 0.719 (95% confidence interval (CI): 0.617–0.821). There was no difference in the expression of these six lncRNAs based on gender (p>0.05) or age (p>0.05). Conclusions These results suggest that the combined expression of six lncRNAs in PBMCs may serve as a potential biomarker for diagnosis and therapy response of MDD in the clinical setting. PMID:28039689

  7. A long non-coding RNA contributes to doxorubicin resistance of osteosarcoma.

    PubMed

    Zhang, Chun-Lin; Zhu, Kun-Peng; Shen, Guo-Qi; Zhu, Zhong-Sheng

    2016-02-01

    Long non-coding RNAs (lncRNAs) are emerging in molecular biology as crucial regulators of cancer. Although the aberrant expression of lncRNAs has been observed in osteosarcoma (OS), the molecular mechanisms underlying lncRNAs in doxorubicin resistance of OS still unknown. In the current study, we investigated a novel lncRNA, termed ODRUL (osteosarcoma doxorubicin-resistance related up-regulated lncRNA), and evaluated its role in the occurrence of doxorubicin resistance in OS. LncRNA microarray revealed that lncRNA ODRUL was the most up-regulated expressed in the doxorubicin-resistant OS cell line. Quantitative real-time PCR (qRT-PCR) confirmed that lncRNA ODRUL was higher in different doxorubicin-resistant OS cell lines and lower in different doxorubicin-sensitive OS cell lines. Moreover, we showed that lncRNA ODRUL was increased in specimens of OS patients with a poor chemoresponse and lung metastasis. We further demonstrated that lncRNA ODRUL inhibition could inhibit OS cell proliferation, migration, and partly reversed doxorubicin resistance in vitro. In addition, we found that the expression of classical drug resistance-related ATP-binding cassette, subfamily B, member 1 (ABCB1) gene was decreased after the lncRNA ODRUL knockdown. Thus, we concluded that lncRNA ODRUL may act as a pro-doxorubicin-resistant molecule through inducing the expression of the classical multidrug resistance-related ABCB1 gene in osteosarcoma cells .These findings may provide a novel target for reversing doxorubicin resistance in OS.

  8. Investigation of Long Non-coding RNA Expression Profiles in the Substantia Nigra of Parkinson's Disease.

    PubMed

    Ni, Yaohui; Huang, Hua; Chen, Yaqin; Cao, Maohong; Zhou, Hongzhi; Zhang, Yuanyuan

    2017-03-01

    Genetics is considered as an important risk factor in the pathological changes of Parkinson's disease (PD). Substantia nigra (SN) is thought to be the most vulnerable area in this process. In recent decades, however, few related long non-coding RNAs (lncRNAs) in the SN of PD patients had been identified and the functions of those lncRNAs had been studied even less. In this study, we sought to investigate the lncRNA expression profiles and their potential functions in the SN of PD patients. We screened lncRNA expression profiles in the SN of PD patients using the lncRNA mining approach from the ArrayExpress database, which included GSE20295. The samples were from 11 of PD and 14 of normal tissue samples. We identified 87 lncRNAs that were altered significantly in the SN during the occurrence of PD. Among these lncRNAs, lncRNA AL049437 and lncRNA AK021630 varied most dramatically. AL049437 was up-regulated in the PD samples, while AK021630 was down-regulated. Based on the results, we focused on the potential roles of the two lncRNAs in the pathogenesis of PD by the knockdown of the expression of AL049437 or AK021630 in human neuroblastoma SH-SY5Y cell line. Results indicated that the reduction in AL049437 level increased cell viability, mitochondrial transmembrane potential (Δψm), mitochondrial mass, and tyrosine hydroxylase (TyrH) secretion. By contrast, the knockdown of AK021630 resulted in the opposite effect. Based on these results, we speculated that lncRNA AL049437 likely contributed to the risk of PD, while lncRNA AK021630 likely inhibited the occurrence of PD.

  9. CAHM, a long non-coding RNA gene hypermethylated in colorectal neoplasia

    PubMed Central

    Pedersen, Susanne K; Mitchell, Susan M; Graham, Lloyd D; McEvoy, Aidan; Thomas, Melissa L; Baker, Rohan T; Ross, Jason P; Xu, Zheng-Zhou; Ho, Thu; LaPointe, Lawrence C; Young, Graeme P; Molloy, Peter L

    2014-01-01

    The CAHM gene (Colorectal Adenocarcinoma HyperMethylated), previously LOC100526820, is located on chromosome 6, hg19 chr6:163 834 097–163 834 982. It lacks introns, encodes a long non-coding RNA (lncRNA) and is located adjacent to the gene QKI, which encodes an RNA binding protein. Deep bisulphite sequencing of ten colorectal cancer (CRC) and matched normal tissues demonstrated frequent hypermethylation within the CAHM gene in cancer. A quantitative methylation-specific PCR (qMSP) was used to characterize additional tissue samples. With a threshold of 5% methylation, the CAHM assay was positive in 2/26 normal colorectal tissues (8%), 17/21 adenomas (81%), and 56/79 CRC samples (71%). A reverse transcriptase-qPCR assay showed that CAHM RNA levels correlated negatively with CAHM % methylation, and therefore CAHM gene expression is typically decreased in CRC. The CAHM qMSP assay was applied to DNA isolated from plasma specimens from 220 colonoscopy-examined patients. Using a threshold of 3 pg methylated genomic DNA per mL plasma, methylated CAHM sequences were detected in the plasma DNA of 40/73 (55%) of CRC patients compared with 3/73 (4%) from subjects with adenomas and 5/74 (7%) from subjects without neoplasia. Both the frequency of detection and the amount of methylated CAHM DNA released into plasma increased with increasing cancer stage. Methylated CAHM DNA shows promise as a plasma biomarker for use in screening for CRC. PMID:24799664

  10. Systematically characterizing dysfunctional long intergenic non-coding RNAs in multiple brain regions of major psychosis

    PubMed Central

    Zhao, Hongying; Li, Feng; Deng, Yulan; Liu, Ling; Lan, Yujia; Zhang, Xinxin; Zhao, Tingting; Xu, Chaohan; Xu, Chun; Xiao, Yun; Li, Xia

    2016-01-01

    Schizophrenia (SZ) and bipolar disorder (BD) are severe neuropsychiatric disorders with serious impact on patients, together termed “major psychosis”. Recently, long intergenic non-coding RNAs (lincRNAs) were reported to play important roles in mental diseases. However, little was known about their molecular mechanism in pathogenesis of SZ and BD. Here, we performed RNA sequencing on 82 post-mortem brain tissues from three brain regions (orbitofrontal cortex (BA11), anterior cingulate cortex (BA24) and dorsolateral prefrontal cortex (BA9)) of patients with SZ and BD and control subjects, generating over one billion reads. We characterized lincRNA transcriptome in the three brain regions and identified 20 differentially expressed lincRNAs (DELincRNAs) in BA11 for BD, 34 and 1 in BA24 and BA9 for SZ, respectively. Our results showed that these DELincRNAs exhibited brain region-specific patterns. Applying weighted gene co-expression network analysis, we revealed that DELincRNAs together with other genes can function as modules to perform different functions in different brain regions, such as immune system development in BA24 and oligodendrocyte differentiation in BA9. Additionally, we found that DNA methylation alteration could partly explain the dysregulation of lincRNAs, some of which could function as enhancers in the pathogenesis of major psychosis. Together, we performed systematical characterization of dysfunctional lincRNAs in multiple brain regions of major psychosis, which provided a valuable resource to understand their roles in SZ and BD pathology and helped to discover novel biomarkers. PMID:27661005

  11. Open chromatin profiling of human postmortem brain infers functional roles for non-coding schizophrenia loci.

    PubMed

    Fullard, John F; Giambartolomei, Claudia; Hauberg, Mads E; Xu, Ke; Voloudakis, Georgios; Shao, Zhiping; Bare, Christopher; Dudley, Joel T; Mattheisen, Manuel; Robakis, Nikolaos K; Haroutunian, Vahram; Roussos, Panos

    2017-03-14

    Open chromatin provides access to DNA binding proteins for the correct spatiotemporal regulation of gene expression. Mapping chromatin accessibility has been widely used to identify the location of cis regulatory elements (CREs) including promoters and enhancers. CREs show tissue- and cell-type specificity and disease-associated variants are often enriched for CREs in the tissues and cells that pertain to a given disease. To better understand the role of CREs in neuropsychiatric disorders we applied the Assay for Transposase Accessible Chromatin followed by sequencing (ATAC-seq) to neuronal and non-neuronal nuclei isolated from frozen postmortem human brain by fluorescence-activated nuclear sorting (FANS). Most of the identified open chromatin regions (OCRs) are differentially accessible between neurons and non-neurons, and show enrichment with known cell type markers, promoters and enhancers. Relative to those of non-neurons, neuronal OCRs are more evolutionarily conserved and are enriched in distal regulatory elements. Transcription factor (TF) footprinting analysis identifies differences in the regulome between neuronal and non-neuronal cells and ascribes putative functional roles to a number of non-coding schizophrenia (SCZ) risk variants. Among the identified variants is a Single Nucleotide Polymorphism (SNP) proximal to the gene encoding SNX19. In vitro experiments reveal that this SNP leads to an increase in transcriptional activity. As elevated expression of SNX19 has been associated with SCZ, our data provides evidence that the identified SNP contributes to disease. These results represent the first analysis of OCRs and TF binding sites in distinct populations of postmortem human brain cells and further our understanding of the regulome and the impact of neuropsychiatric disease-associated genetic risk variants.

  12. Long Non-coding RNA H19 Induces Cerebral Ischemia Reperfusion Injury via Activation of Autophagy

    PubMed Central

    Wang, Jue; Cao, Bin; Han, Dong; Sun, Miao; Feng, Juan

    2017-01-01

    Long non-coding RNA H19 (lncRNA H19) was found to be upregulated by hypoxia, its expression and function have never been tested in cerebral ischemia and reperfusion (I/R) injury. This study intended to investigate the role of lncRNA H19 and H19 gene variation in cerebral I/R injury with focusing on its relationship with autophagy activation. Cerebral I/R was induced in rats by middle cerebral artery occlusion followed by reperfusion. SH-SY5Y cells were subjected to oxygen and glucose deprivation and reperfusion (OGD/R) to simulate I/R injury. Real-time PCR, flow cytometry, immunofluorescence and Western blot were used to evaluate the level of lncRNA H19, apoptosis, autophagy and some related proteins. The modified multiple ligase reaction was used to analyze the gene polymorphism of six SNPs in H19, rs217727, rs2067051, rs2251375, rs492994, rs2839698 and rs10732516 in ischemic stroke patients. We found that the expression of lncRNA H19 was upregulated by cerebral I/R in rats, as well as by OGD/R in vitro in the cells. Inhibition of lncRNA H19 and autophagy protected cells from OGD/R-induced death, respectively. Autophagy activation induced by OGD/R was prevented by H19 siRNA. Autophagy inducer, rapamycin, abolished lncRNA H19 effect. Furthermore, we found that lncRNA H19 inhibited autophagy through DUSP5-ERK1/2 axis. The result from blood samples of ischemic patients revealed that the variation of H19 gene increased the risk of ischemic stroke. Taken together, the results of present study suggest that LncRNA H19 could be a new therapeutic target of ischemic stroke. PMID:28203482

  13. Identification of proteins binding coding and non-coding human RNAs using protein microarrays

    PubMed Central

    2012-01-01

    Background The regulation and function of mammalian RNAs has been increasingly appreciated to operate via RNA-protein interactions. With the recent discovery of thousands of novel human RNA molecules by high-throughput RNA sequencing, efficient methods to uncover RNA-protein interactions are urgently required. Existing methods to study proteins associated with a given RNA are laborious and require substantial amounts of cell-derived starting material. To overcome these limitations, we have developed a rapid and large-scale approach to characterize binding of in vitro transcribed labeled RNA to ~9,400 human recombinant proteins spotted on protein microarrays. Results We have optimized methodology to probe human protein microarrays with full-length RNA molecules and have identified 137 RNA-protein interactions specific for 10 coding and non-coding RNAs. Those proteins showed strong enrichment for common human RNA binding domains such as RRM, RBD, as well as K homology and CCCH type zinc finger motifs. Previously unknown RNA-protein interactions were discovered using this technique, and these interactions were biochemically verified between TP53 mRNA and Staufen1 protein as well as between HRAS mRNA and CNBP protein. Functional characterization of the interaction between Staufen 1 protein and TP53 mRNA revealed a novel role for Staufen 1 in preserving TP53 RNA stability. Conclusions Our approach demonstrates a scalable methodology, allowing rapid and efficient identification of novel human RNA-protein interactions using RNA hybridization to human protein microarrays. Biochemical validation of newly identified interactions between TP53-Stau1 and HRAS-CNBP using reciprocal pull-down experiments, both in vitro and in vivo, demonstrates the utility of this approach to study uncharacterized RNA-protein interactions. PMID:23157412

  14. The Role of Ctk1 Kinase in Termination of Small Non-Coding RNAs

    PubMed Central

    Lenstra, Tineke L.; Tudek, Agnieszka; Clauder, Sandra; Xu, Zhenyu; Pachis, Spyridon T.; van Leenen, Dik; Kemmeren, Patrick; Steinmetz, Lars M.; Libri, Domenico; Holstege, Frank C. P.

    2013-01-01

    Transcription termination in Saccharomyces cerevisiae can be performed by at least two distinct pathways and is influenced by the phosphorylation status of the carboxy-terminal domain (CTD) of RNA polymerase II (Pol II). Late termination of mRNAs is performed by the CPF/CF complex, the recruitment of which is dependent on CTD-Ser2 phosphorylation (Ser2P). Early termination of shorter cryptic unstable transcripts (CUTs) and small nucleolar/nuclear RNAs (sno/snRNAs) is performed by the Nrd1-Nab3-Sen1 (NNS) complex that binds phosphorylated CTD-Ser5 (Ser5P) via the CTD-interacting domain (CID) of Nrd1p. In this study, mutants of the different termination pathways were compared by genome-wide expression analysis. Surprisingly, the expression changes observed upon loss of the CTD-Ser2 kinase Ctk1p are more similar to those derived from alterations in the Ser5P-dependent NNS pathway, than from loss of CTD-Ser2P binding factors. Tiling array analysis of ctk1Δ cells reveals readthrough at snoRNAs, at many cryptic unstable transcripts (CUTs) and stable uncharacterized transcripts (SUTs), but only at some mRNAs. Despite the suggested predominant role in termination of mRNAs, we observed that a CTK1 deletion or a Pol II CTD mutant lacking all Ser2 positions does not result in a global mRNA termination defect. Rather, termination defects in these strains are widely observed at NNS-dependent genes. These results indicate that Ctk1p and Ser2 CTD phosphorylation have a wide impact in termination of small non-coding RNAs but only affect a subset of mRNA coding genes. PMID:24324601

  15. Long non-coding RNA HOTAIR promotes carcinogenesis and invasion of gastric adenocarcinoma

    SciTech Connect

    Lee, Na Keum; Lee, Jung Hwa; Park, Chan Hyuk; Yu, Dayeon; Lee, Yong Chan; Cheong, Jae-Ho; Noh, Sung Hoon; Lee, Sang Kil

    2014-08-22

    Highlights: • HOTAIR expression was tested in fifty patients with gastric cancer. • Cell proliferation was measured after HOTAIR silencing in gastric cancer cell line. • siRNA–HOTAIR suppresses cell invasiveness and capacity of migration. • Knock down of HOTAR leads to decreased expression of EMT markers. • Inhibition of HOTAIR induces apoptosis and cell cycle arrest. - Abstract: Gastric cancer is one of the major causes of cancer death worldwide; however, the mechanism of carcinogenesis is complex and poorly understood. Long non-coding RNA HOTAIR (HOX transcript antisense RNA) recently emerged as a promoter of metastasis in various cancers including gastric cancer. Here we investigated the impact of HOTAIR on apoptosis, cell proliferation and cell cycle to dissect the carcinogenesis of gastric cancer. We examined the mechanism of invasion and metastasis and analyzed the clinical significance of HOTAIR. Downregulation of HOTAIR was confirmed by two different siRNAs. The expression of HOTAIR was significantly elevated in various gastric cancer cell lines and tissues compared to normal control. si-HOTAIR significantly reduced viability in MKN 28, MKN 74, and KATO III cells but not in AGS cells. si-HOTAIR induced apoptosis in KATO III cells. Lymphovascular invasion and lymph node metastasis were more common in the high level of HOTAIR group. si-HOTAIR significantly decreased invasiveness and migration. si-HOTAIR led to differential expression of epithelial to mesenchymal transition markers. We found that HOTAIR was involved in inhibition of apoptosis and promoted invasiveness, supporting a role for HOTAIR in carcinogenesis and progression of gastric cancer.

  16. Long non-coding RNA HOTAIR is associated with human cervical cancer progression.

    PubMed

    Kim, Hee Jung; Lee, Dae Woo; Yim, Ga Won; Nam, Eun Ji; Kim, Sunghoon; Kim, Sang Wun; Kim, Young Tae

    2015-02-01

    The functions of many long non-coding RNAs (lncRNAs) in human cancers remain to be clarified. The lncRNA Hox transcript antisense intergenic RNA (HOTAIR) has been reported to reprogram chromatin organization and promote breast and colorectal cancer metastasis, the involvement of lncRNAs in cervical cancer is just beginning to be studied. In the present study, we examined the expression and the functional role of HOTAIR in cervical cancer. HOTAIR expression was determined in cervical cancer tissues (n=111) and corresponding normal tissues (n=40) by using real-time polymerase chain reaction, and its correlation with clinical parameters and prognosis were analyzed. To determine the effect of HOTAIR knockdown and overexpression in cervical cancer cell lines, we used the CCK-8 assay, wound healing migration and matrigel invasion assay. The expression level of HOTAIR in cervical cancer tissues was higher than that in corresponding non-cancerous tissues. High HOTAIR expression correlated with lymph node metastasis, and reduced overall survival. A multivariate analysis showed that HOTAIR was a prognostic factor for predicting cervical cancer recurrence. Knockdown of HOTAIR reduced cell proliferation, migration, and invasion in cervical cancer cell lines. Moreover, HOTAIR regulated the expression of vascular endothelial growth factor, matrix metalloproteinase-9 and epithelial-to-mesenchymal transition (EMT)-related genes, which are important for cell motility and metastasis. Therefore, HOTAIR may promote tumor aggressiveness through the upregulation of VEGF and MMP-9 and EMT-related genes. These findings indicate that HOTAIR may represent a novel biomarker for predicting recurrence and prognosis and serve as a promising therapeutic target in cervical cancer.

  17. Cancer therapies activate RIG-I-like receptor pathway through endogenous non-coding RNAs

    PubMed Central

    Ranoa, Diana Rose E.; Parekh, Akash D.; Pitroda, Sean P.; Huang, Xiaona; Darga, Thomas; Wong, Anthony C.; Huang, Lei; Andrade, Jorge; Staley, Jonathan P.; Satoh, Takashi; Akira, Shizuo

    2016-01-01

    Emerging evidence indicates that ionizing radiation (IR) and chemotherapy activate Type I interferon (IFN) signaling in tumor and host cells. However, the mechanism of induction is poorly understood. We identified a novel radioprotective role for the DEXH box RNA helicase LGP2 (DHX58) through its suppression of IR-induced cytotoxic IFN-beta [1]. LGP2 inhibits activation of the RIG-I-like receptor (RLR) pathway upon binding of viral RNA to the cytoplasmic sensors RIG-I (DDX58) and MDA5 (IFIH1) and subsequent IFN signaling via the mitochondrial adaptor protein MAVS (IPS1). Here we show that MAVS is necessary for IFN-beta induction and interferon-stimulated gene expression in the response to IR. Suppression of MAVS conferred radioresistance in normal and cancer cells. Germline deletion of RIG-I, but not MDA5, protected mice from death following total body irradiation, while deletion of LGP2 accelerated the death of irradiated animals. In human tumors depletion of RIG-I conferred resistance to IR and different classes of chemotherapy drugs. Mechanistically, IR stimulated the binding of cytoplasmic RIG-I with small endogenous non-coding RNAs (sncRNAs), which triggered IFN-beta activity. We demonstrate that the small nuclear RNAs U1 and U2 translocate to the cytoplasm after IR treatment, thus stimulating the formation of RIG-I: RNA complexes and initiating downstream signaling events. Taken together, these findings suggest that the physiologic responses to radio-/chemo-therapy converge on an antiviral program in recruitment of the RLR pathway by a sncRNA-dependent activation of RIG-I which commences cytotoxic IFN signaling. Importantly, activation of interferon genes by radiation or chemotherapy is associated with a favorable outcome in patients undergoing treatment for cancer. To our knowledge, this is the first demonstration of a cell-intrinsic response to clinically relevant genotoxic treatments mediated by an RNA-dependent mechanism. PMID:27034163

  18. Systematically profiling and annotating long intergenic non-coding RNAs in human embryonic stem cell

    PubMed Central

    2013-01-01

    Background While more and more long intergenic non-coding RNAs (lincRNAs) were identified to take important roles in both maintaining pluripotency and regulating differentiation, how these lincRNAs may define and drive cell fate decisions on a global scale are still mostly elusive. Systematical profiling and comprehensive annotation of embryonic stem cells lincRNAs may not only bring a clearer big picture of these novel regulators but also shed light on their functionalities. Results Based on multiple RNA-Seq datasets, we systematically identified 300 human embryonic stem cell lincRNAs (hES lincRNAs). Of which, one forth (78 out of 300) hES lincRNAs were further identified to be biasedly expressed in human ES cells. Functional analysis showed that they were preferentially involved in several early-development related biological processes. Comparative genomics analysis further suggested that around half of the identified hES lincRNAs were conserved in mouse. To facilitate further investigation of these hES lincRNAs, we constructed an online portal for biologists to access all their sequences and annotations interactively. In addition to navigation through a genome browse interface, users can also locate lincRNAs through an advanced query interface based on both keywords and expression profiles, and analyze results through multiple tools. Conclusions By integrating multiple RNA-Seq datasets, we systematically characterized and annotated 300 hES lincRNAs. A full functional web portal is available freely at http://scbrowse.cbi.pku.edu.cn. As the first global profiling and annotating of human embryonic stem cell lincRNAs, this work aims to provide a valuable resource for both experimental biologists and bioinformaticians. PMID:24564552

  19. Natural Antisense Transcripts and Long Non-Coding RNA in Neurospora crassa

    PubMed Central

    Arthanari, Yamini; Heintzen, Christian; Griffiths-Jones, Sam; Crosthwaite, Susan K.

    2014-01-01

    The prevalence of long non-coding RNAs (lncRNA) and natural antisense transcripts (NATs) has been reported in a variety of organisms. While a consensus has yet to be reached on their global importance, an increasing number of examples have been shown to be functional, regulating gene expression at the transcriptional and post-transcriptional level. Here, we use RNA sequencing data from the ABI SOLiD platform to identify lncRNA and NATs obtained from samples of the filamentous fungus Neurospora crassa grown under different light and temperature conditions. We identify 939 novel lncRNAs, of which 477 are antisense to annotated genes. Across the whole dataset, the extent of overlap between sense and antisense transcripts is large: 371 sense/antisense transcripts are complementary over 500 nts or more and 236 overlap by more than 1000 nts. Most prevalent are 3′ end overlaps between convergently transcribed sense/antisense pairs, but examples of divergently transcribed pairs and nested transcripts are also present. We confirm the expression of a subset of sense/antisense transcript pairs by qPCR. We examine the size, types of overlap and expression levels under the different environmental stimuli of light and temperature, and identify 11 lncRNAs that are up-regulated in response to light. We also find differences in transcript length and the position of introns between protein-coding transcripts that have antisense expression and transcripts with no antisense expression. These results demonstrate the ability of N. crassa lncRNAs and NATs to be regulated by different environmental stimuli and provide the scope for further investigation into the function of NATs. PMID:24621812

  20. Long Non-coding RNA H19 Induces Cerebral Ischemia Reperfusion Injury via Activation of Autophagy.

    PubMed

    Wang, Jue; Cao, Bin; Han, Dong; Sun, Miao; Feng, Juan

    2017-02-01

    Long non-coding RNA H19 (lncRNA H19) was found to be upregulated by hypoxia, its expression and function have never been tested in cerebral ischemia and reperfusion (I/R) injury. This study intended to investigate the role of lncRNA H19 and H19 gene variation in cerebral I/R injury with focusing on its relationship with autophagy activation. Cerebral I/R was induced in rats by middle cerebral artery occlusion followed by reperfusion. SH-SY5Y cells were subjected to oxygen and glucose deprivation and reperfusion (OGD/R) to simulate I/R injury. Real-time PCR, flow cytometry, immunofluorescence and Western blot were used to evaluate the level of lncRNA H19, apoptosis, autophagy and some related proteins. The modified multiple ligase reaction was used to analyze the gene polymorphism of six SNPs in H19, rs217727, rs2067051, rs2251375, rs492994, rs2839698 and rs10732516 in ischemic stroke patients. We found that the expression of lncRNA H19 was upregulated by cerebral I/R in rats, as well as by OGD/R in vitro in the cells. Inhibition of lncRNA H19 and autophagy protected cells from OGD/R-induced death, respectively. Autophagy activation induced by OGD/R was prevented by H19 siRNA. Autophagy inducer, rapamycin, abolished lncRNA H19 effect. Furthermore, we found that lncRNA H19 inhibited autophagy through DUSP5-ERK1/2 axis. The result from blood samples of ischemic patients revealed that the variation of H19 gene increased the risk of ischemic stroke. Taken together, the results of present study suggest that LncRNA H19 could be a new therapeutic target of ischemic stroke.

  1. Meiotic Recombination Hotspots of Fission Yeast Are Directed to Loci that Express Non-Coding RNA

    PubMed Central

    Wahls, Wayne P.; Siegel, Eric R.; Davidson, Mari K.

    2008-01-01

    Background Polyadenylated, mRNA-like transcripts with no coding potential are abundant in eukaryotes, but the functions of these long non-coding RNAs (ncRNAs) are enigmatic. In meiosis, Rec12 (Spo11) catalyzes the formation of dsDNA breaks (DSBs) that initiate homologous recombination. Most meiotic recombination is positioned at hotspots, but knowledge of the mechanisms is nebulous. In the fission yeast genome DSBs are located within 194 prominent peaks separated on average by 65-kbp intervals of DNA that are largely free of DSBs. Methodology/Principal Findings We compared the genome-wide distribution of DSB peaks to that of polyadenylated ncRNA molecules of the prl class. DSB peaks map to ncRNA loci that may be situated within ORFs, near the boundaries of ORFs and intergenic regions, or most often within intergenic regions. Unconditional statistical tests revealed that this colocalization is non-random and robust (P≤5.5×10−8). Furthermore, we tested and rejected the hypothesis that the ncRNA loci and DSB peaks localize preferentially, but independently, to a third entity on the chromosomes. Conclusions/Significance Meiotic DSB hotspots are directed to loci that express polyadenylated ncRNAs. This reveals an unexpected, possibly unitary mechanism for what directs meiotic recombination to hotspots. It also reveals a likely biological function for enigmatic ncRNAs. We propose specific mechanisms by which ncRNA molecules, or some aspect of RNA metabolism associated with ncRNA loci, help to position recombination protein complexes at DSB hotspots within chromosomes. PMID:18682829

  2. An efficient screening method for the isolation of heterotrophic bacteria influencing growth of diatoms under photoautotrophic conditions.

    PubMed

    Zecher, Karsten; Jagmann, Nina; Seemann, Philipp; Philipp, Bodo

    2015-12-01

    Interactions between photoautotrophic diatoms and heterotrophic bacteria are important for the biogeochemical C-cycle in the oceans. Additionally, biofilms formed by diatoms and bacteria are the initiating step of biofouling processes, which causes high costs in shipping. Despite this ecological and economical importance, the knowledge about biochemical and molecular mechanisms underlying these interkingdom interactions is relatively small. For analyzing these mechanisms, laboratory model systems are required. In this study, an efficient screening method for isolating bacteria influencing photoautotrophic diatom growth was established. First, diatom cultures of Phaeodactylum tricornutum and Thalassiosira pseudonana were made axenic by applying β-lactam antibiotics. Second, a non-invasive method for measuring growth of multiple parallel diatom cultures by chlorophyll fluorescence was established. This method allowed semi-quantitative chlorophyll determination of cultures with up to 3 μg (chlorophyll) ml(-1). Axenic diatom cultures were then used for enriching bacteria and led to the isolation of 24 strains influencing growth of both diatom strains in various ways. For example, Rheinheimera sp. strain Tn16 inhibited growth of T. pseudonana, while it stimulated growth and cell aggregation of P. tricornutum. Thus, this screening method is appropriate for isolating heterotrophic bacteria showing different interactions with different diatom species ranging from synergistic to antagonistic. In consecutive applications, this method will be useful to screen for bacterial mutants with altered phenotypes regarding the influence on diatom growth.

  3. Medium screening and optimization for photoautotrophic culture of Chlorella pyrenoidosa with high lipid productivity indoors and outdoors.

    PubMed

    Wang, Weiliang; Han, Feifei; Li, Yuanguang; Wu, Yinsong; Wang, Jun; Pan, Ronghua; Shen, Guomin

    2014-10-01

    Medium screening and optimization is one of the most important preconditions for photoautotrophic cultivation of microalgae. Although, it has been widely conducted indoors, little work performed outdoors. There are enormous differences between indoor and outdoor conditions, especially for light intensity, temperature and their diurnal or annual fluctuations, which would greatly influence microalgae growth. No data shows whether the differences would lead to different results on medium screening and optimization. In present study, medium screening for the photoautotrophic cultivation of Chlorella pyrenoidosa was carried out indoors and outdoors firstly, and then the selected medium was optimized. The results showed that F-Si medium is the optimum both under indoor and outdoor conditions. Based on F-Si medium, nutrients were optimized as follows: NaNO3 500mgl(-1), NaH2PO4·2H2O 7.7mgl(-1) and FeCl3·6H2O 6.30mgl(-1). With the optimized medium, the biomass, lipid content and productivity were all significantly higher both indoors and outdoors.

  4. Control of competence by related non-coding csRNAs in Streptococcus pneumoniae R6

    PubMed Central

    Laux, Anke; Sexauer, Anne; Sivaselvarajah, Dineshan; Kaysen, Anne; Brückner, Reinhold

    2015-01-01

    The two-component regulatory system CiaRH of Streptococcus pneumoniae is involved in β-lactam resistance, maintenance of cell integrity, bacteriocin production, host colonization, virulence, and competence. The response regulator CiaR controls, among other genes, expression of five highly similar small non-coding RNAs, designated csRNAs. These csRNAs control competence development by targeting comC, encoding the precursor of the competence stimulating peptide, which is essential to initiate the regulatory cascade leading to competence. In addition, another gene product of the CiaR regulon, the serine protease HtrA, is also involved in competence control. In the absence of HtrA, five csRNAs could suppress competence, but one csRNA alone was not effective. To determine if all csRNAs are needed, reporter gene fusions to competence genes were used to monitor competence gene expression in the presence of different csRNAs. These experiments showed that two csRNAs were not enough to prevent competence, but combinations of three csRNAs, csRNA1,2,3, or csRNA1,2,4 were sufficient. In S. pneumoniae strains expressing only csRNA5, a surprising positive effect was detected on the level of early competence gene expression. Hence, the role of the csRNAs in competence regulation is more complex than anticipated. Mutations in comC (comC8) partially disrupting predicted complementarity to the csRNAs led to competence even in the presence of all csRNAs. Reconstitution of csRNA complementarity to comC8 restored competence suppression. Again, more than one csRNA was needed. In this case, even two mutated csRNAs complementary to comC8, csRNA1–8 and csRNA2–8, were suppressive. In conclusion, competence in S. pneumoniae is additively controlled by the csRNAs via post-transcriptional regulation of comC. PMID:26257773

  5. Long Non-Coding RNA and Alternative Splicing Modulations in Parkinson's Leukocytes Identified by RNA Sequencing

    PubMed Central

    Soreq, Lilach; Guffanti, Alessandro; Salomonis, Nathan; Simchovitz, Alon; Israel, Zvi; Bergman, Hagai; Soreq, Hermona

    2014-01-01

    The continuously prolonged human lifespan is accompanied by increase in neurodegenerative diseases incidence, calling for the development of inexpensive blood-based diagnostics. Analyzing blood cell transcripts by RNA-Seq is a robust means to identify novel biomarkers that rapidly becomes a commonplace. However, there is lack of tools to discover novel exons, junctions and splicing events and to precisely and sensitively assess differential splicing through RNA-Seq data analysis and across RNA-Seq platforms. Here, we present a new and comprehensive computational workflow for whole-transcriptome RNA-Seq analysis, using an updated version of the software AltAnalyze, to identify both known and novel high-confidence alternative splicing events, and to integrate them with both protein-domains and microRNA binding annotations. We applied the novel workflow on RNA-Seq data from Parkinson's disease (PD) patients' leukocytes pre- and post- Deep Brain Stimulation (DBS) treatment and compared to healthy controls. Disease-mediated changes included decreased usage of alternative promoters and N-termini, 5′-end variations and mutually-exclusive exons. The PD regulated FUS and HNRNP A/B included prion-like domains regulated regions. We also present here a workflow to identify and analyze long non-coding RNAs (lncRNAs) via RNA-Seq data. We identified reduced lncRNA expression and selective PD-induced changes in 13 of over 6,000 detected leukocyte lncRNAs, four of which were inversely altered post-DBS. These included the U1 spliceosomal lncRNA and RP11-462G22.1, each entailing sequence complementarity to numerous microRNAs. Analysis of RNA-Seq from PD and unaffected controls brains revealed over 7,000 brain-expressed lncRNAs, of which 3,495 were co-expressed in the leukocytes including U1, which showed both leukocyte and brain increases. Furthermore, qRT-PCR validations confirmed these co-increases in PD leukocytes and two brain regions, the amygdala and substantia

  6. Systematic identification and characterization of long non-coding RNAs in mouse mature sperm

    PubMed Central

    Zhang, Xiaoning; Gao, Fengxin; Fu, Jianbo; Zhang, Peng; Wang, Yuqing; Zeng, Xuhui

    2017-01-01

    Increasing studies have shown that mature spermatozoa contain many transcripts including mRNAs and miRNAs. However, the expression profile of long non-coding RNAs (lncRNAs) in mammalian sperm has not been systematically investigated. Here, we used highly purified RNA to investigate lncRNA expression profiles in mouse mature sperm by stranded-specific RNA-seq. We identified 20,907 known and 4,088 novel lncRNAs transcripts, and the existence of intact lncRNAs was confirmed by RT-PCR and fluorescence in situ hybridization on two representative lncRNAs. Compared to round spermatids, 1,794 upregulated and 165 downregulated lncRNAs and 4,435 upregulated and 3,920 downregulated mRNAs were identified in sperm. Based on the “Cis and Trans” RNA-RNA interaction principle, we found 14,259 targeted coding genes of differently expressed lncRNAs. In terms of Gene ontology (GO) analysis, differentially expressed lncRNAs targeted genes mainly related to nucleic acid metabolic, protein modification, chromatin and histone modification, heterocycle compound metabolic, sperm function, spermatogenesis and other processes. In contrast, differentially expressed transcripts of mRNAs were highly enriched for protein metabolic process and RNA metabolic, spermatogenesis, sperm motility, cell cycle, chromatin organization, heterocycle and aromatic compound metabolic processes. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis showed that the differentially expressed lncRNAs were involved in RNA transport, mRNA surveillance pathway, PI3K-Akt signaling pathway, AMPK signaling pathway, protein processing in endoplasmic reticulum. Metabolic pathways, mRNA surveillance pathway, AMPK signaling pathway, cell cycle, RNA transport splicesome and endocytosis incorporated with the differentially expressed mRNA. Furthermore, many lncRNAs were specifically expressed in testis/sperm, and 880 lncRNAs were conserved between human and mouse. In summary, this study provides a preliminary

  7. A Tumor-Specific Prognostic Long Non-Coding RNA Signature in Gastric Cancer

    PubMed Central

    Ren, Wu; Zhang, Jian; Li, Wei; Li, Zongcheng; Hu, Shuofeng; Suo, Jian; Ying, Xiaomin

    2016-01-01

    Background Aberrant expression of long non-coding RNAs (lncRNAs) is associated with prognosis of gastric cancer, some of which could be further evaluated as potential biomarkers. In this study, we attempted to identify a specific lncRNA signature to predict the prognosis of gastric cancer. Material/Methods The genome-wide lncRNA expression in the high-throughput RNA-sequencing data was retrieved from the Cancer Genome Atlas (TCGA). Differential expression of lncRNAs was identified using the Limma package. Survival analysis was conducted by use of univariate and multivariate Cox regression models. Functional enrichment analysis of lncRNAs was based on co-expressed mRNAs. DAVID was used to perform gene ontology and KEGG pathway analysis. Results A total of 452 differentially expressed lncRNAs between gastric cancer and matched normal tissues were screened, of which 76 lncRNAs were identified to be gastric cancer-specific from a pan-cancer analysis of 12 types of human cancer. Among these 76 gastric cancer-specific lncRNAs, 5 lncRNAs (CTD-2616J11.14, RP1-90G24.10, RP11-150O12.3, RP11-1149O23.2, and MLK7-AS1) were significantly associated with the overall survival of patients with gastric cancer. A gastric cancer-specific 5-lncRNA signature was deduced to divide the patients into high- and low-risk groups with significantly different survival times (P<0.0001). Multivariate Cox regression analysis showed that this 5-lncRNA signature was an independent predictor of prognosis. Functional enrichment analysis of the 5 lncRNAs showed that they were mainly involved in DNA replication, mitotic cell cycle, programmed cell death, and RNA splicing. Conclusions Our results suggest that this tumor-specific lncRNA signature may be clinically useful in the prediction of gastric cancer prognosis. PMID:27727196

  8. Fast and accurate search for non-coding RNA pseudoknot structures in genomes

    PubMed Central

    Huang, Zhibin; Wu, Yong; Robertson, Joseph; Feng, Liang; Malmberg, Russell L.; Cai, Liming

    2008-01-01

    Motivation: Searching genomes for non-coding RNAs (ncRNAs) by their secondary structure has become an important goal for bioinformatics. For pseudoknot-free structures, ncRNA search can be effective based on the covariance model and CYK-type dynamic programming. However, the computational difficulty in aligning an RNA sequence to a pseudoknot has prohibited fast and accurate search of arbitrary RNA structures. Our previous work introduced a graph model for RNA pseudoknots and proposed to solve the structure–sequence alignment by graph optimization. Given k candidate regions in the target sequence for each of the n stems in the structure, we could compute a best alignment in time O(ktn) based upon a tree width t decomposition of the structure graph. However, to implement this method to programs that can routinely perform fast yet accurate RNA pseudoknot searches, we need novel heuristics to ensure that, without degrading the accuracy, only a small number of stem candidates need to be examined and a tree decomposition of a small tree width can always be found for the structure graph. Results: The current work builds on the previous one with newly developed preprocessing algorithms to reduce the values for parameters k and t and to implement the search method into a practical program, called RNATOPS, for RNA pseudoknot search. In particular, we introduce techniques, based on probabilistic profiling and distance penalty functions, which can identify for every stem just a small number k (e.g. k ≤ 10) of plausible regions in the target sequence to which the stem needs to align. We also devised a specialized tree decomposition algorithm that can yield tree decomposition of small tree width t (e.g. t ≤ 4) for almost all RNA structure graphs. Our experiments show that with RNATOPS it is possible to routinely search prokaryotic and eukaryotic genomes for specific RNA structures of medium to large sizes, including pseudoknots, with high sensitivity and high

  9. GAS5 long non-coding RNA in malignant pleural mesothelioma

    PubMed Central

    2014-01-01

    Background Malignant pleural mesothelioma (MPM) is an aggressive cancer with short overall survival. Long non-coding RNAs (lncRNA) are a class of RNAs more than 200 nucleotides long that do not code for protein and are part of the 90% of the human genome that is transcribed. Earlier experimental studies in mice showed GAS5 (growth arrest specific transcript 5) gene deletion in asbestos driven mesothelioma. GAS5 encodes for a lncRNA whose function is not well known, but it has been shown to act as glucocorticoid receptor decoy and microRNA “sponge”. Our aim was to investigate the possible role of the GAS5 in the growth of MPM. Methods Primary MPM cultures grown in serum-free condition in 3% oxygen or MPM cell lines grown in serum-containing medium were used to investigate the modulation of GAS5 by growth arrest after inhibition of Hedgehog or PI3K/mTOR signalling. Cell cycle length was determined by EdU incorporation assay in doxycycline inducible short hairpinGAS5 clones generated from ZL55SPT cells. Gene expression was quantified by quantitative PCR. To investigate the GAS5 promoter, a 0.77 kb sequence was inserted into a pGL3 reporter vector and luciferase activity was determined after transfection into MPM cells. Localization of GAS5 lncRNA was identified by in situ hybridization. To characterize cells expressing GAS5, expression of podoplanin and Ki-67 was assessed by immunohistochemistry. Results GAS5 expression was lower in MPM cell lines compared to normal mesothelial cells. GAS5 was upregulated upon growth arrest induced by inhibition of Hedgehog and PI3K/mTOR signalling in in vitro MPM models. The increase in GAS5 lncRNA was accompanied by increased promoter activity. Silencing of GAS5 increased the expression of glucocorticoid responsive genes glucocorticoid inducible leucine-zipper and serum/glucocorticoid-regulated kinase-1 and shortened the length of the cell cycle. Drug induced growth arrest was associated with GAS5 accumulation in the nuclei

  10. Genome-wide discovery of long non-coding RNAs in Rainbow Trout and their potential roles in muscle growth and quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ENCODE project revealed that ~70% of the human genome is transcribed. While only 1-2% of the RNAs encode for proteins, the rest are non-coding RNAs. LncRNAs form a diverse class of non-coding RNAs that are longer than 200nt. Evidences are emerging that lncRNAs play critical roles in various cel...

  11. Sequence-Based Analysis Uncovers an Abundance of Non-Coding RNA in the Total Transcriptome of Mycobacterium tuberculosis

    PubMed Central

    Arnvig, Kristine B.; Comas, Iñaki; Thomson, Nicholas R.; Houghton, Joanna; Boshoff, Helena I.; Croucher, Nicholas J.; Rose, Graham; Perkins, Timothy T.; Parkhill, Julian; Dougan, Gordon; Young, Douglas B.

    2011-01-01

    RNA sequencing provides a new perspective on the genome of Mycobacterium tuberculosis by revealing an extensive presence of non-coding RNA, including long 5’ and 3’ untranslated regions, antisense transcripts, and intergenic small RNA (sRNA) molecules. More than a quarter of all sequence reads mapping outside of ribosomal RNA genes represent non-coding RNA, and the density of reads mapping to intergenic regions was more than two-fold higher than that mapping to annotated coding sequences. Selected sRNAs were found at increased abundance in stationary phase cultures and accumulated to remarkably high levels in the lungs of chronically infected mice, indicating a potential contribution to pathogenesis. The ability of tubercle bacilli to adapt to changing environments within the host is critical to their ability to cause disease and to persist during drug treatment; it is likely that novel post-transcriptional regulatory networks will play an important role in these adaptive responses. PMID:22072964

  12. Nucleotide sequence of the capsid protein gene and 3' non-coding region of papaya mosaic virus RNA.

    PubMed

    Abouhaidar, M G

    1988-01-01

    The nucleotide sequences of cDNA clones corresponding to the 3' OH end of papaya mosaic virus RNA have been determined. The 3'-terminal sequence obtained was 900 nucleotides in length, excluding the poly(A) tail, and contained an open reading frame capable of giving rise to a protein of 214 amino acid residues with an Mr of 22930. This protein was identified as the viral capsid protein. The 3' non-coding region of PMV genome RNA was about 121 nucleotides long [excluding the poly(A) tail] and homologous to the complementary sequence of the non-coding region at the 5' end of PMV RNA. A long open reading frame was also found in the predicted 5' end region of the negative strand.

  13. Overexpression of long non-coding RNAs following exposure to xenobiotics in the aquatic midge Chironomus riparius.

    PubMed

    Martínez-Guitarte, José-Luis; Planelló, Rosario; Morcillo, Gloria

    2012-04-01

    Non-coding RNAs (ncRNAs) represent an important transcriptional output of eukaryotic genomes. In addition to their functional relevance as housekeeping and regulatory elements, recent studies have suggested their involvement in rather unexpected cellular functions. The aim of this work was to analyse the transcriptional behaviour of non-coding RNAs in the toxic response to pollutants in Chironomus riparius, a reference organism in aquatic toxicology. Three well-characterized long non-coding sequences were studied: telomeric repeats, Cla repetitive elements and the SINE CTRT1. Transcription levels were evaluated by RT-PCR after 24-h exposures to three current aquatic contaminants: bisphenol A (BPA), benzyl butyl phthalate (BBP) and the heavy metal cadmium (Cd). Upregulation of telomeric transcripts was found after BPA treatments. Moreover, BPA significantly activated Cla transcription, which also appeared to be increased by cadmium, whereas BBP did not affect the transcription levels of these sequences. Transcription of SINE CTRT1 was not altered by any of the chemicals tested. These data are discussed in the light of previous studies that have shown a response by long ncRNAS (lncRNAs) to cellular stressors, indicating a relationship with environmental stimuli. Our results demonstrated for the first time the ability of bisphenol A to activate non-coding sequences mainly located at telomeres and centromeres. Overall, this study provides evidence that xenobiotics can induce specific responses in ncRNAs derived from repetitive sequences that could be relevant in the toxic response, and also suggests that ncRNAs could represent a novel class of potential biomarkers in toxicological assessment.

  14. Differential expression of small non-coding RNAs in serum from cattle challenged with viruses causing bovine respiratory disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    MicroRNAs and tRNA-derived RNA fragments (tRFs) are the two most abundant groups of small non-coding RNAs. The potential for microRNAs and tRFs to be used as pathogen exposure indicators is yet to be fully explored. Our objective was to identify microRNAs and tRFs in cattle challenged with a non-cy...

  15. Germ cell-specific sustained activation of Wnt signalling perturbs spermatogenesis in aged mice, possibly through non-coding RNAs

    PubMed Central

    Kumar, Manish; Atkins, Joshua; Cairns, Murray; Ali, Ayesha; Tanwar, Pradeep S.

    2016-01-01

    Dysregulated Wnt signalling is associated with human infertility and testicular cancer. However, the role of Wnt signalling in male germ cells remains poorly understood. In this study, we first confirmed the activity of Wnt signalling in mouse, dog and human testes. To determine the physiological importance of the Wnt pathway, we developed a mouse model with germ cell-specific constitutive activation of βcatenin. In young mutants, similar to controls, germ cell development was normal. However, with age, mutant testes showed defective spermatogenesis, progressive germ cell loss, and flawed meiotic entry of spermatogonial cells. Flow sorting confirmed reduced germ cell populations at the leptotene/zygotene stages of meiosis in mutant group. Using thymidine analogues-based DNA double labelling technique, we further established decline in germ cell proliferation and differentiation. Overactivation of Wnt/βcatenin signalling in a spermatogonial cell line resulted in reduced cell proliferation, viability and colony formation. RNA sequencing analysis of testes revealed significant alterations in the non-coding regions of mutant mouse genome. One of the novel non-coding RNAs was switched on in mutant testes compared to controls. QPCR analysis confirmed upregulation of this unique non-coding RNA in mutant testis. In summary, our results highlight the significance of Wnt signalling in male germ cells. PMID:27992363

  16. The long non-coding RNA NEAT1 is responsive to neuronal activity and is associated with hyperexcitability states

    PubMed Central

    Barry, Guy; Briggs, James A.; Hwang, Do Won; Nayler, Sam P.; Fortuna, Patrick R. J.; Jonkhout, Nicky; Dachet, Fabien; Maag, Jesper L. V.; Mestdagh, Pieter; Singh, Erin M.; Avesson, Lotta; Kaczorowski, Dominik C.; Ozturk, Ezgi; Jones, Nigel C.; Vetter, Irina; Arriola-Martinez, Luis; Hu, Jianfei; Franco, Gloria R.; Warn, Victoria M.; Gong, Andrew; Dinger, Marcel E.; Rigo, Frank; Lipovich, Leonard; Morris, Margaret J.; O’Brien, Terence J.; Lee, Dong Soo; Loeb, Jeffrey A.; Blackshaw, Seth; Mattick, John S.; Wolvetang, Ernst J.

    2017-01-01

    Despite their abundance, the molecular functions of long non-coding RNAs in mammalian nervous systems remain poorly understood. Here we show that the long non-coding RNA, NEAT1, directly modulates neuronal excitability and is associated with pathological seizure states. Specifically, NEAT1 is dynamically regulated by neuronal activity in vitro and in vivo, binds epilepsy-associated potassium channel-interacting proteins including KCNAB2 and KCNIP1, and induces a neuronal hyper-potentiation phenotype in iPSC-derived human cortical neurons following antisense oligonucleotide knockdown. Next generation sequencing reveals a strong association of NEAT1 with increased ion channel gene expression upon activation of iPSC-derived neurons following NEAT1 knockdown. Furthermore, we show that while NEAT1 is acutely down-regulated in response to neuronal activity, repeated stimulation results in NEAT1 becoming chronically unresponsive in independent in vivo rat model systems relevant to temporal lobe epilepsy. We extended previous studies showing increased NEAT1 expression in resected cortical tissue from high spiking regions of patients suffering from intractable seizures. Our results indicate a role for NEAT1 in modulating human neuronal activity and suggest a novel mechanistic link between an activity-dependent long non-coding RNA and epilepsy. PMID:28054653

  17. Non-coding RNAs and HIV: viral manipulation of host dark matter to shape the cellular environment

    PubMed Central

    Barichievy, Samantha; Naidoo, Jerolen; Mhlanga, Musa M.

    2015-01-01

    On October 28th 1943 Winston Churchill said “we shape our buildings, and afterward our buildings shape us” (Humes, 1994). Churchill was pondering how and when to rebuild the British House of Commons, which had been destroyed by enemy bombs on May 10th 1941. The old House had been small and insufficient to hold all its members, but was restored to its original form in 1950 in order to recapture the “convenience and dignity” that the building had shaped into its parliamentary members. The circular loop whereby buildings or dwellings are shaped and go on to shape those that reside in them is also true of pathogens and their hosts. As obligate parasites, pathogens need to alter their cellular host environments to ensure survival. Typically pathogens modify cellular transcription profiles and in doing so, the pathogen in turn is affected, thereby closing the loop. As key orchestrators of gene expression, non-coding RNAs provide a vast and extremely precise set of tools for pathogens to target in order to shape the cellular environment. This review will focus on host non-coding RNAs that are manipulated by the infamous intracellular pathogen, the human immunodeficiency virus (HIV). We will briefly describe both short and long host non-coding RNAs and discuss how HIV gains control of these factors to ensure widespread dissemination throughout the host as well as the establishment of lifelong, chronic infection. PMID:25859257

  18. Genome-wide analysis of long intergenic non-coding RNAs in chickpea and their potential role in flower development

    PubMed Central

    Khemka, Niraj; Singh, Vikash Kumar; Garg, Rohini; Jain, Mukesh

    2016-01-01

    Non-coding RNAs constitute a major portion of the transcriptome in most of eukaryotes. Long non-coding transcripts originating from the DNA segment present between the protein coding genes are termed as long intergenic non-coding RNAs (lincRNAs). Several evidences suggest the role of lincRNAs in regulation of various biological processes. In this study, we identified a total of 2248 lincRNAs in chickpea using RNA-seq data from eight successive stages of flower development and three vegetative tissues via an optimized pipeline. Different characteristic features of lincRNAs were studied and compared with those of predicted mRNAs in chickpea. Further, we utilized a method using network propagation algorithm to reveal the putative function of lincRNAs in plants. In total, at least 79% of the identified chickpea lincRNAs were assigned with a putative function. A comprehensive expression profiling revealed differential expression patterns and tissue specificity of lincRNAs in different stages of flower development in chickpea. In addition, potential lincRNAs-miRNA interactions were explored for the predicted lincRNAs in chickpea. These findings will pave the way for understanding the role of lincRNAs in the regulatory mechanism underlying flower development in chickpea and other legumes. PMID:27628568

  19. Next-gen sequencing identifies non-coding variation disrupting miRNA-binding sites in neurological disorders.

    PubMed

    Devanna, P; Chen, X S; Ho, J; Gajewski, D; Smith, S D; Gialluisi, A; Francks, C; Fisher, S E; Newbury, D F; Vernes, S C

    2017-03-14

    Understanding the genetic factors underlying neurodevelopmental and neuropsychiatric disorders is a major challenge given their prevalence and potential severity for quality of life. While large-scale genomic screens have made major advances in this area, for many disorders the genetic underpinnings are complex and poorly understood. To date the field has focused predominantly on protein coding variation, but given the importance of tightly controlled gene expression for normal brain development and disorder, variation that affects non-coding regulatory regions of the genome is likely to play an important role in these phenotypes. Herein we show the importance of 3 prime untranslated region (3'UTR) non-coding regulatory variants across neurodevelopmental and neuropsychiatric disorders. We devised a pipeline for identifying and functionally validating putatively pathogenic variants from next generation sequencing (NGS) data. We applied this pipeline to a cohort of children with severe specific language impairment (SLI) and identified a functional, SLI-associated variant affecting gene regulation in cells and post-mortem human brain. This variant and the affected gene (ARHGEF39) represent new putative risk factors for SLI. Furthermore, we identified 3'UTR regulatory variants across autism, schizophrenia and bipolar disorder NGS cohorts demonstrating their impact on neurodevelopmental and neuropsychiatric disorders. Our findings show the importance of investigating non-coding regulatory variants when determining risk factors contributing to neurodevelopmental and neuropsychiatric disorders. In the future, integration of such regulatory variation with protein coding changes will be essential for uncovering the genetic causes of complex neurological disorders and the fundamental mechanisms underlying health and disease.Molecular Psychiatry advance online publication, 14 March 2017; doi:10.1038/mp.2017.30.

  20. In search of coding and non-coding regions of DNA sequences based on balanced estimation of diffusion entropy.

    PubMed

    Zhang, Jin; Zhang, Wenqing; Yang, Huijie

    2016-01-01

    Identification of coding regions in DNA sequences remains challenging. Various methods have been proposed, but these are limited by species-dependence and the need for adequate training sets. The elements in DNA coding regions are known to be distributed in a quasi-random way, while those in non-coding regions have typical similar structures. For short sequences, these statistical characteristics cannot be extracted correctly and cannot even be detected. This paper introduces a new way to solve the problem: balanced estimation of diffusion entropy (BEDE).

  1. No longer a nuisance: long non-coding RNAs join CENP-A in epigenetic centromere regulation.

    PubMed

    Rošić, Silvana; Erhardt, Sylvia

    2016-04-01

    Centromeres represent the basis for kinetochore formation, and are essential for proper chromosome segregation during mitosis. Despite these essential roles, centromeres are not defined by specific DNA sequences, but by epigenetic means. The histone variant CENP-A controls centromere identity epigenetically and is essential for recruiting kinetochore components that attach the chromosomes to the mitotic spindle during mitosis. Recently, a new player in centromere regulation has emerged: long non-coding RNAs transcribed from repetitive regions of centromeric DNA function in regulating centromeres epigenetically. This review summarizes recent findings on the essential roles that transcription, pericentromeric transcripts, and centromere-derived RNAs play in centromere biology.

  2. Current Status of Long Non-Coding RNAs in Human Cancer with Specific Focus on Colorectal Cancer

    PubMed Central

    Smolle, Maria; Uranitsch, Stefan; Gerger, Armin; Pichler, Martin; Haybaeck, Johannes

    2014-01-01

    The latest investigations of long non-coding RNAs (lncRNAs) have revealed their important role in human cancers. LncRNAs are larger than 200 nucleotides in length and fulfill their cellular purpose without being translated into proteins. Though the molecular functions of some lncRNAs have been elucidated, there is still a high number of lncRNAs with unknown or controversial functions. In this review, we provide an overview of different lncRNAs and their role in human cancers. In particular, we emphasize their importance in tumorigenesis of colorectal cancer, the third most common cancer worldwide. PMID:25119862

  3. Non-coding RNAs in Host-Pathogen Interactions: Subversion of Mammalian Cell Functions by Protozoan Parasites.

    PubMed

    Bayer-Santos, Ethel; Marini, Marjorie M; da Silveira, José F

    2017-01-01

    Pathogens have evolved mechanisms to modulate host cell functions and avoid recognition and destruction by the host damage response. For many years, researchers have focused on proteins as the main effectors used by pathogens to hijack host cell pathways, but only recently with the development of deep RNA sequencing these molecules were brought to light as key players in infectious diseases. Protozoan parasites such as those from the genera Plasmodium, Toxoplasma, Leishmania, and Trypanosoma cause life-threatening diseases and are responsible for 1000s of deaths worldwide every year. Some of these parasites replicate intracellularly when infecting mammalian hosts, whereas others can survive and replicate extracellularly in the bloodstream. Each of these parasites uses specific evasion mechanisms to avoid being killed by the host defense system. An increasing number of studies have shown that these pathogens can transfer non-coding RNA molecules to the host cells to modulate their functions. This transference usually happens via extracellular vesicles, which are small membrane vesicles secreted by the microorganism. In this mini-review we will combine published work regarding several protozoan parasites that were shown to use non-coding RNAs in inter-kingdom communication and briefly discuss future perspectives in the field.

  4. Hepatitis B virus X protein-mediated non-coding RNA aberrations in the development of human hepatocellular carcinoma

    PubMed Central

    Zhang, Bei; Han, Siqi; Feng, Bing; Chu, Xiaoyuan; Chen, Longbang; Wang, Rui

    2017-01-01

    Hepatitis B virus (HBV) has an important role in the development of human hepatocellular carcinoma (HCC). Accumulated evidence has shown that HBV-encoded X protein (HBx) can induce both genetic alterations in tumor suppressor genes and oncogenes, as well as epigenetic aberrations in HCC pathogens. Non-coding RNAs (ncRNAs) mainly include microRNAs and long non-coding RNAs (lncRNAs). Although ncRNAs cannot code proteins, growing evidence has shown that they have various important biological functions in cell proliferation, cell cycle control, anti-apoptosis, epithelial–mesenchymal transition, tumor invasion and metastasis. This review summarizes the current knowledge regarding the mechanisms and emerging roles of ncRNAs in the pathogenesis of HBV-related HCC. Accumulated data have shown that ncRNAs regulated by HBx have a crucial role in HBV-associated hepatocarcinogenesis. The findings of these studies will contribute to more clinical applications of HBV-related ncRNAs as potential diagnostic markers or as molecular therapeutic targets to prevent and treat HBV-related HCC. PMID:28186085

  5. Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD.

    PubMed

    Yu, Xiaohua; Zhang, Yong; Li, Tingting; Ma, Zhao; Jia, Haixue; Chen, Qian; Zhao, Yixia; Zhai, Lili; Zhong, Ran; Li, Changyin; Zou, Xiaoting; Meng, Jiao; Chen, Antony K; Puri, Pier Lorenzo; Chen, Meihong; Zhu, Dahai

    2017-01-16

    Long non-coding RNAs (lncRNAs) are important regulators of diverse biological processes. Here we report on functional identification and characterization of a novel long intergenic non-coding RNA with MyoD-regulated and skeletal muscle-restricted expression that promotes the activation of the myogenic program, and is therefore termed Linc-RAM (Linc-RNA Activator of Myogenesis). Linc-RAM is transcribed from an intergenic region of myogenic cells and its expression is upregulated during myogenesis. Notably, in vivo functional studies show that Linc-RAM knockout mice display impaired muscle regeneration due to the differentiation defect of satellite cells. Mechanistically, Linc-RAM regulates expression of myogenic genes by directly binding MyoD, which in turn promotes the assembly of the MyoD-Baf60c-Brg1 complex on the regulatory elements of target genes. Collectively, our findings reveal the functional role and molecular mechanism of a lineage-specific Linc-RAM as a regulatory lncRNA required for tissues-specific chromatin remodelling and gene expression.

  6. Profiling of conserved non-coding elements upstream of SHOX and functional characterisation of the SHOX cis-regulatory landscape

    PubMed Central

    Verdin, Hannah; Fernández-Miñán, Ana; Benito-Sanz, Sara; Janssens, Sandra; Callewaert, Bert; Waele, Kathleen De; Schepper, Jean De; François, Inge; Menten, Björn; Heath, Karen E.; Gómez-Skarmeta, José Luis; Baere, Elfride De

    2015-01-01

    Genetic defects such as copy number variations (CNVs) in non-coding regions containing conserved non-coding elements (CNEs) outside the transcription unit of their target gene, can underlie genetic disease. An example of this is the short stature homeobox (SHOX) gene, regulated by seven CNEs located downstream and upstream of SHOX, with proven enhancer capacity in chicken limbs. CNVs of the downstream CNEs have been reported in many idiopathic short stature (ISS) cases, however, only recently have a few CNVs of the upstream enhancers been identified. Here, we set out to provide insight into: (i) the cis-regulatory role of these upstream CNEs in human cells, (ii) the prevalence of upstream CNVs in ISS, and (iii) the chromatin architecture of the SHOX cis-regulatory landscape in chicken and human cells. Firstly, luciferase assays in human U2OS cells, and 4C-seq both in chicken limb buds and human U2OS cells, demonstrated cis-regulatory enhancer capacities of the upstream CNEs. Secondly, CNVs of these upstream CNEs were found in three of 501 ISS patients. Finally, our 4C-seq interaction map of the SHOX region reveals a cis-regulatory domain spanning more than 1 Mb and harbouring putative new cis-regulatory elements. PMID:26631348

  7. Feedback modulation of cholesterol metabolism by the lipid-responsive non-coding RNA LeXis.

    PubMed

    Sallam, Tamer; Jones, Marius C; Gilliland, Thomas; Zhang, Li; Wu, Xiaohui; Eskin, Ascia; Sandhu, Jaspreet; Casero, David; Vallim, Thomas Q de Aguiar; Hong, Cynthia; Katz, Melanie; Lee, Richard; Whitelegge, Julian; Tontonoz, Peter

    2016-06-02

    Liver X receptors (LXRs) are transcriptional regulators of cellular and systemic cholesterol homeostasis. Under conditions of excess cholesterol, LXR activation induces the expression of several genes involved in cholesterol efflux, facilitates cholesterol esterification by promoting fatty acid synthesis, and inhibits cholesterol uptake by the low-density lipoprotein receptor. The fact that sterol content is maintained in a narrow range in most cell types and in the organism as a whole suggests that extensive crosstalk between regulatory pathways must exist. However, the molecular mechanisms that integrate LXRs with other lipid metabolic pathways are incompletely understood. Here we show that ligand activation of LXRs in mouse liver not only promotes cholesterol efflux, but also simultaneously inhibits cholesterol biosynthesis. We further identify the long non-coding RNA LeXis as a mediator of this effect. Hepatic LeXis expression is robustly induced in response to a Western diet (high in fat and cholesterol) or to pharmacological LXR activation. Raising or lowering LeXis levels in the liver affects the expression of genes involved in cholesterol biosynthesis and alters the cholesterol levels in the liver and plasma. LeXis interacts with and affects the DNA interactions of RALY, a heterogeneous ribonucleoprotein that acts as a transcriptional cofactor for cholesterol biosynthetic genes in the mouse liver. These findings outline a regulatory role for a non-coding RNA in lipid metabolism and advance our understanding of the mechanisms that coordinate sterol homeostasis.

  8. Feedback modulation of cholesterol metabolism by LeXis, a lipid-responsive non-coding RNA

    PubMed Central

    Sallam, Tamer; Jones, Marius; Gilliland, Thomas; Zhang, Li; Wu, Xiaohui; Eskin, Ascia; Sandhu, Jaspreet; Casero, David; de Aguiar Vallim, Thomas; Hong, Cynthia; Katz, Melanie; Lee, Richard; Whitelegge, Julian; Tontonoz, Peter

    2016-01-01

    The liver X receptors (LXRs) are transcriptional regulators of cellular and systemic cholesterol homeostasis. In the setting of cholesterol excess, LXR activation induces the expression of a battery of genes involved in cholesterol efflux 1, facilities cholesterol esterification by promoting fatty acid synthesis 2, and inhibits cholesterol uptake by the low-density lipoprotein receptor (LDLR)3. The fact that sterol content is maintained in a narrow range in most cell types and in the organism as a whole suggests that extensive crosstalk between regulatory pathways must exist. However, the molecular mechanisms that integrate LXRs with other lipid metabolic pathways, are incompletely understood. Here we show that ligand activation of LXRs in liver not only promotes cholesterol efflux, but also simultaneously inhibits cholesterol biosynthesis. We further identify the long non-coding RNA LeXis as one mediator of this effect. Hepatic LeXis expression is robustly induced in response to western diet feeding or pharmacologic LXR activation. Raising or lowering the levels of LeXis in liver affects the expression of cholesterol biosynthetic genes, and the levels of cholesterol in the liver and plasma. LeXis interacts with and affects the DNA interactions of Raly, a heterogeneous ribonucleoprotein that is required for the maximal expression of cholesterologenic genes in mouse liver. These studies outline a regulatory role for a non-coding RNA in lipid metabolism and advance our understanding of the mechanisms orchestrating sterol homeostasis. PMID:27251289

  9. A long non-coding RNA interacts with Gfra1 and maintains survival of mouse spermatogonial stem cells

    PubMed Central

    Li, L; Wang, M; Wang, M; Wu, X; Geng, L; Xue, Y; Wei, X; Jia, Y; Wu, X

    2016-01-01

    Spermatogonial stem cells (SSCs) are unique male germline stem cells that support spermatogenesis and male fertility. Long non-coding RNAs (lncRNA) have been identified as key regulators of stem cell fate; however, their role in SSCs has not been explored. Here, we report that a novel spermatogonia-specific lncRNA (lncRNA033862) is essential for the survival of murine SSCs. LncRNA033862 is expressed in early spermatogonia including SSC and was among 805 lncRNAs identified by global expression profiling as responsive to glial cell-derived neurotrophic factor (GDNF), a growth factor required for SSC self-renewal and survival. LncRNA033862 is an antisense transcript of the GDNF receptor alpha1 (Gfra1) that lacks protein coding potential and regulates Gfra1 expression levels by interacting with Gfra1 chromatin. Importantly, lncRNA033862 knockdown severely impairs SSC survival and their capacity to repopulate recipient testes in a transplantation assay. Collectively, our data provide the first evidence that long non-coding RNAs (lncRNAs) regulate SSC fate. PMID:26962690

  10. Non-coding RNAs in Host–Pathogen Interactions: Subversion of Mammalian Cell Functions by Protozoan Parasites

    PubMed Central

    Bayer-Santos, Ethel; Marini, Marjorie M.; da Silveira, José F.

    2017-01-01

    Pathogens have evolved mechanisms to modulate host cell functions and avoid recognition and destruction by the host damage response. For many years, researchers have focused on proteins as the main effectors used by pathogens to hijack host cell pathways, but only recently with the development of deep RNA sequencing these molecules were brought to light as key players in infectious diseases. Protozoan parasites such as those from the genera Plasmodium, Toxoplasma, Leishmania, and Trypanosoma cause life-threatening diseases and are responsible for 1000s of deaths worldwide every year. Some of these parasites replicate intracellularly when infecting mammalian hosts, whereas others can survive and replicate extracellularly in the bloodstream. Each of these parasites uses specific evasion mechanisms to avoid being killed by the host defense system. An increasing number of studies have shown that these pathogens can transfer non-coding RNA molecules to the host cells to modulate their functions. This transference usually happens via extracellular vesicles, which are small membrane vesicles secreted by the microorganism. In this mini-review we will combine published work regarding several protozoan parasites that were shown to use non-coding RNAs in inter-kingdom communication and briefly discuss future perspectives in the field. PMID:28377760

  11. The Long Non-Coding RNAs: A New (P)layer in the “Dark Matter”

    PubMed Central

    Derrien, Thomas; Guigó, Roderic; Johnson, Rory

    2012-01-01

    The transcriptome of a cell is represented by a myriad of different RNA molecules with and without protein-coding capacities. In recent years, advances in sequencing technologies have allowed researchers to more fully appreciate the complexity of whole transcriptomes, showing that the vast majority of the genome is transcribed, producing a diverse population of non-protein coding RNAs (ncRNAs). Thus, the biological significance of non-coding RNAs (ncRNAs) have been largely underestimated. Amongst these multiple classes of ncRNAs, the long non-coding RNAs (lncRNAs) are apparently the most numerous and functionally diverse. A small but growing number of lncRNAs have been experimentally studied, and a view is emerging that these are key regulators of epigenetic gene regulation in mammalian cells. LncRNAs have already been implicated in human diseases such as cancer and neurodegeneration, highlighting the importance of this emergent field. In this article, we review the catalogs of annotated lncRNAs and the latest advances in our understanding of lncRNAs. PMID:22303401

  12. Role of microRNAs and long-non-coding RNAs in CD4(+) T-cell differentiation.

    PubMed

    Pagani, Massimiliano; Rossetti, Grazisa; Panzeri, Ilaria; de Candia, Paola; Bonnal, Raoul J P; Rossi, Riccardo L; Geginat, Jens; Abrignani, Sergio

    2013-05-01

    CD4(+) T lymphocytes orchestrate adaptive immune responses by differentiating into various subsets of effector T cells such as T-helper 1 (Th1), Th2, Th17, and regulatory T cells. These subsets have been generally described by master transcription factors that dictate the expression of cytokines and receptors, which ultimately define lymphocyte effector functions. However, the view of T-lymphocyte subsets as stable and terminally differentiated lineages has been challenged by increasing evidence of functional plasticity within CD4(+) T-cell subsets, which implies flexible programming of effector functions depending on time and space of T-cell activation. An outstanding question with broad basic and traslational implications relates to the mechanisms, besides transcriptional regulation, which define the plasticity of effector functions. In this study, we discuss the emerging role of regulatory non-coding RNAs in T-cell differentiation and plasticity. Not only microRNAs have been proven to be important for CD4(+) T-cell differentiation, but it is also likely that the overall T-cell functioning is the result of a multilayered network composed by coding RNAs as well as by short and long non-coding RNAs. The integrated study of all the nodes of this network will provide a comprehensive view of the molecular mechanisms underlying T-cell functions in health and disease.

  13. Incorporation of the influenza A virus NA segment into virions does not require cognate non-coding sequences

    PubMed Central

    Crescenzo-Chaigne, Bernadette; Barbezange, Cyril V. S.; Léandri, Stéphane; Roquin, Camille; Berthault, Camille; van der Werf, Sylvie

    2017-01-01

    For each influenza virus genome segment, the coding sequence is flanked by non-coding (NC) regions comprising shared, conserved sequences and specific, non-conserved sequences. The latter and adjacent parts of the coding sequence are involved in genome packaging, but the precise role of the non-conserved NC sequences is still unclear. The aim of this study is to better understand the role of the non-conserved non-coding sequences in the incorporation of the viral segments into virions. The NA-segment NC sequences were systematically replaced by those of the seven other segments. Recombinant viruses harbouring two segments with identical NC sequences were successfully rescued. Virus growth kinetics and serial passages were performed, and incorporation of the viral segments was tested by real-time RT-PCR. An initial virus growth deficiency correlated to a specific defect in NA segment incorporation. Upon serial passages, growth properties were restored. Sequencing revealed that the replacing 5′NC sequence length drove the type of mutations obtained. With sequences longer than the original, point mutations in the coding region with or without substitutions in the 3′NC region were detected. With shorter sequences, insertions were observed in the 5′NC region. Restoration of viral fitness was linked to restoration of the NA segment incorporation. PMID:28240311

  14. Natural genetic variation impacts expression levels of coding, non-coding, and antisense transcripts in fission yeast

    PubMed Central

    Clément-Ziza, Mathieu; Marsellach, Francesc X; Codlin, Sandra; Papadakis, Manos A; Reinhardt, Susanne; Rodríguez-López, María; Martin, Stuart; Marguerat, Samuel; Schmidt, Alexander; Lee, Eunhye; Workman, Christopher T; Bähler, Jürg; Beyer, Andreas

    2014-01-01

    Our current understanding of how natural genetic variation affects gene expression beyond well-annotated coding genes is still limited. The use of deep sequencing technologies for the study of expression quantitative trait loci (eQTLs) has the potential to close this gap. Here, we generated the first recombinant strain library for fission yeast and conducted an RNA-seq-based QTL study of the coding, non-coding, and antisense transcriptomes. We show that the frequency of distal effects (trans-eQTLs) greatly exceeds the number of local effects (cis-eQTLs) and that non-coding RNAs are as likely to be affected by eQTLs as protein-coding RNAs. We identified a genetic variation of swc5 that modifies the levels of 871 RNAs, with effects on both sense and antisense transcription, and show that this effect most likely goes through a compromised deposition of the histone variant H2A.Z. The strains, methods, and datasets generated here provide a rich resource for future studies. PMID:25432776

  15. Identification of differentially expressed small non-coding RNAs in the legume endosymbiont Sinorhizobium meliloti by comparative genomics.

    PubMed

    del Val, Coral; Rivas, Elena; Torres-Quesada, Omar; Toro, Nicolás; Jiménez-Zurdo, José I

    2007-12-01

    Bacterial small non-coding RNAs (sRNAs) are being recognized as novel widespread regulators of gene expression in response to environmental signals. Here, we present the first search for sRNA-encoding genes in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, performed by a genome-wide computational analysis of its intergenic regions. Comparative sequence data from eight related alpha-proteobacteria were obtained, and the interspecies pairwise alignments were scored with the programs eQRNA and RNAz as complementary predictive tools to identify conserved and stable secondary structures corresponding to putative non-coding RNAs. Northern experiments confirmed that eight of the predicted loci, selected among the original 32 candidates as most probable sRNA genes, expressed small transcripts. This result supports the combined use of eQRNA and RNAz as a robust strategy to identify novel sRNAs in bacteria. Furthermore, seven of the transcripts accumulated differentially in free-living and symbiotic conditions. Experimental mapping of the 5'-ends of the detected transcripts revealed that their encoding genes are organized in autonomous transcription units with recognizable promoter and, in most cases, termination signatures. These findings suggest novel regulatory functions for sRNAs related to the interactions of alpha-proteobacteria with their eukaryotic hosts.

  16. The role of non-coding RNAs in diabetic nephropathy: potential applications as biomarkers for disease development and progression.

    PubMed

    Alvarez, M Lucrecia; Distefano, Johanna K

    2013-01-01

    Diabetic nephropathy, a progressive kidney disease that develops secondary to diabetes, is the major cause of chronic kidney disease in developed countries, and contributes significantly to increased morbidity and mortality among individuals with diabetes. Although the causes of diabetic nephropathy are not fully understood, recent studies demonstrate a role for epigenetic factors in the development of the disease. For example, non-coding RNA (ncRNA) molecules, including microRNAs (miRNAs), have been shown to be functionally important in modulating renal response to hyperglycemia and progression of diabetic nephropathy. Characterization of miRNA expression in diabetic nephropathy from studies of animal models of diabetes, and in vitro investigations using different types of kidney cells also support this role. The goal of this review, therefore, is to summarize the current state of knowledge of specific ncRNAs involved in the development of diabetic nephropathy, with a focus on the potential role of miRNAs to serve as sensitive, non-invasive biomarkers of kidney disease and progression. Non-coding RNAs are currently recognized as potentially important regulators of genes involved in processes related to the development of diabetic nephropathy, and as such, represent viable targets for both clinical diagnostic strategies and therapeutic intervention.

  17. acal is a Long Non-coding RNA in JNK Signaling in Epithelial Shape Changes during Drosophila Dorsal Closure

    PubMed Central

    Ríos-Barrera, Luis Daniel; Gutiérrez-Pérez, Irene; Domínguez, María; Riesgo-Escovar, Juan Rafael

    2015-01-01

    Dorsal closure is an epithelial remodeling process taking place during Drosophila embryogenesis. JNK signaling coordinates dorsal closure. We identify and characterize acal as a novel negative dorsal closure regulator. acal represents a new level of JNK regulation. The acal locus codes for a conserved, long, non-coding, nuclear RNA. Long non-coding RNAs are an abundant and diverse class of gene regulators. Mutations in acal are lethal. acal mRNA expression is dynamic and is processed into a collection of 50 to 120 bp fragments. We show that acal lies downstream of raw, a pioneer protein, helping explain part of raw functions, and interacts genetically with Polycomb. acal functions in trans regulating mRNA expression of two genes involved in JNK signaling and dorsal closure: Connector of kinase to AP1 (Cka) and anterior open (aop). Cka is a conserved scaffold protein that brings together JNK and Jun, and aop is a transcription factor. Misregulation of Cka and aop can account for dorsal closure phenotypes in acal mutants. PMID:25710168

  18. The long non-coding RNA LINC01013 enhances invasion of human anaplastic large-cell lymphoma.

    PubMed

    Chung, I-Hsiao; Lu, Pei-Hsuan; Lin, Yang-Hsiang; Tsai, Ming-Ming; Lin, Yun-Wen; Yeh, Chau-Ting; Lin, Kwang-Huei

    2017-03-22

    Anaplastic large-cell lymphoma (ALCL) is a rare type of highly malignant, non-Hodgkin lymphoma (NHL). Currently, only studies on the chimeric oncogene NPM-ALK have reported a link to ALCL progression. However, the specific molecular mechanisms underlying the invasion of ALCL are still unclear. Here, we sought to investigate differentially expressed, long non-coding RNAs (lncRNAs) in ALCL and their potential biological function. Our microarray analyses revealed that LINC01013, a novel non-coding RNA gene, was highly expressed in clinical specimens of ALCL and was significantly upregulated in invasive ALCL cell lines. Knockdown of LINC01013 suppressed tumor cell invasion; conversely, its overexpression enhanced tumor cell invasion. LINC01013-induced invasion was mediated by activation of the epithelial-to-mesenchymal transition (EMT)-associated proteins, snail and fibronectin. Specifically, LINC01013 induced snail, resulting in activation of fibronectin and enhanced ALCL cell invasion. Collectively, these findings support a potential role for LINC01013 in cancer cell invasion through the snail-fibronectin activation cascade and suggest that LINC01013 could potentially be utilized as a metastasis marker in ALCL.

  19. Intergenic variants may predispose to major depression disorder through regulation of long non-coding RNA expression.

    PubMed

    Ye, Ning; Rao, Shuquan; Du, Tingfu; Hu, Huiling; Liu, Zeyue; Shen, Yan; Xu, Qi

    2017-02-15

    Genome-wide association (GWA) studies have identified numerous genetic variants for major depressive disorder (MDD) although most of the genetic variants are intergenic. It has been found that approximately 54% of long non-coding RNAs (lncRNAs) are located in the intergenic regions. We hypothesized that intergenic variants might be involved in the pathogenesis of MDD through regulating the expression of lncRNAs where these variants are located. In this study, several MDD-associated SNPs in three known intergenic lncRNAs were initially genotyped among 978 patients with MDD and 1176 controls, and the real-time PCR assay was performed to quantify the expression of LINC01108 and LINC00578 in peripheral blood cells from 20 MDD patients and 20 controls. The results showed that rs12526133 present in LINC01108 was strongly associated with MDD (χ(2)=11.68, P=6.3E-04), and LINC01108 expression was significantly higher in the patient group than in the control group (FC=1.90, P<0.001). The expression of LINC00998 was significantly lower in MDD patients than controls based on microarray analysis (FC=0.11, P<0.001), so that its tag SNPs were genotyped and rs2272260 in LINC00998 was found to be associated with MDD (χ(2)=26.39, P=2.8E-07). This work suggests that non-coding variants may play an important role in conferring risk of MDD.

  20. Long non-coding RNA Linc-RAM enhances myogenic differentiation by interacting with MyoD

    PubMed Central

    Yu, Xiaohua; Zhang, Yong; Li, Tingting; Ma, Zhao; Jia, Haixue; Chen, Qian; Zhao, Yixia; Zhai, Lili; Zhong, Ran; Li, Changyin; Zou, Xiaoting; Meng, Jiao; Chen, Antony K.; Puri, Pier Lorenzo; Chen, Meihong; Zhu, Dahai

    2017-01-01

    Long non-coding RNAs (lncRNAs) are important regulators of diverse biological processes. Here we report on functional identification and characterization of a novel long intergenic non-coding RNA with MyoD-regulated and skeletal muscle-restricted expression that promotes the activation of the myogenic program, and is therefore termed Linc-RAM (Linc-RNA Activator of Myogenesis). Linc-RAM is transcribed from an intergenic region of myogenic cells and its expression is upregulated during myogenesis. Notably, in vivo functional studies show that Linc-RAM knockout mice display impaired muscle regeneration due to the differentiation defect of satellite cells. Mechanistically, Linc-RAM regulates expression of myogenic genes by directly binding MyoD, which in turn promotes the assembly of the MyoD–Baf60c–Brg1 complex on the regulatory elements of target genes. Collectively, our findings reveal the functional role and molecular mechanism of a lineage-specific Linc-RAM as a regulatory lncRNA required for tissues-specific chromatin remodelling and gene expression. PMID:28091529

  1. Hepatitis B virus X protein-mediated non-coding RNA aberrations in the development of human hepatocellular carcinoma.

    PubMed

    Zhang, Bei; Han, Siqi; Feng, Bing; Chu, Xiaoyuan; Chen, Longbang; Wang, Rui

    2017-02-10

    Hepatitis B virus (HBV) has an important role in the development of human hepatocellular carcinoma (HCC). Accumulated evidence has shown that HBV-encoded X protein (HBx) can induce both genetic alterations in tumor suppressor genes and oncogenes, as well as epigenetic aberrations in HCC pathogens. Non-coding RNAs (ncRNAs) mainly include microRNAs and long non-coding RNAs (lncRNAs). Although ncRNAs cannot code proteins, growing evidence has shown that they have various important biological functions in cell proliferation, cell cycle control, anti-apoptosis, epithelial-mesenchymal transition, tumor invasion and metastasis. This review summarizes the current knowledge regarding the mechanisms and emerging roles of ncRNAs in the pathogenesis of HBV-related HCC. Accumulated data have shown that ncRNAs regulated by HBx have a crucial role in HBV-associated hepatocarcinogenesis. The findings of these studies will contribute to more clinical applications of HBV-related ncRNAs as potential diagnostic markers or as molecular therapeutic targets to prevent and treat HBV-related HCC.

  2. Minimal Reduplication

    ERIC Educational Resources Information Center

    Kirchner, Jesse Saba

    2010-01-01

    This dissertation introduces Minimal Reduplication, a new theory and framework within generative grammar for analyzing reduplication in human language. I argue that reduplication is an emergent property in multiple components of the grammar. In particular, reduplication occurs independently in the phonology and syntax components, and in both cases…

  3. Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome

    SciTech Connect

    Hodkinson, Brendan P; Gottel, Neil R; Schadt, Christopher Warren; Lutzoni, Francois

    2011-01-01

    Although common knowledge dictates that the lichen thallus is formed solely by a fungus (mycobiont) that develops a symbiotic relationship with an alga and/or cyanobacterium (photobiont), the non-photoautotrophic bacteria found in lichen microbiomes are increasingly regarded as integral components of lichen thalli. For this study, comparative analyses were conducted on lichen-associated bacterial communities to test for effects of photobiont-types (i.e. green algal vs. cyanobacterial), mycobiont-types and large-scale spatial distances (from tropical to arctic latitudes). Amplicons of the 16S (SSU) rRNA gene were examined using both Sanger sequencing of cloned fragments and barcoded pyrosequencing. Rhizobiales is typically the most abundant and taxonomically diverse order in lichen microbiomes; however, overall bacterial diversity in lichens is shown to be much higher than previously reported. Members of Acidobacteriaceae, Acetobacteraceae, Brucellaceae and sequence group LAR1 are the most commonly found groups across the phylogenetically and geographically broad array of lichens examined here. Major bacterial community trends are significantly correlated with differences in large-scale geography, photobiont-type and mycobiont-type. The lichen as a microcosm represents a structured, unique microbial habitat with greater ecological complexity and bacterial diversity than previously appreciated and can serve as a model system for studying larger ecological and evolutionary principles.

  4. Comparison of the effect of salinity on the D/H ratio of fatty acids of heterotrophic and photoautotrophic microorganisms.

    PubMed

    Heinzelmann, Sandra M; Chivall, David; M'Boule, Daniela; Sinke-Schoen, Danielle; Villanueva, Laura; Damsté, Jaap S Sinninghe; Schouten, Stefan; van der Meer, Marcel T J

    2015-05-01

    The core metabolism of microorganisms has a major influence on the hydrogen isotopic composition of their fatty acids. Heterotrophic microorganisms produce fatty acids with a deuterium to hydrogen (D/H) ratio either slightly depleted or enriched in D compared to the growth water, while photo- and chemoautotrophic microorganisms produce fatty acids which are heavily depleted in D. However, besides metabolism other biochemical and environmental factors (i.e. biosynthetic pathways, growth phase and temperature) have been shown to affect the D/H ratio of fatty acids, and it is necessary to evaluate the magnitude of these effects compared to that of metabolism. Here, we show that the effect of salinity on the D/H ratio of fatty acids depends on the core metabolism of the microorganism. While fatty acids of the photoautotroph Isochrysis galbana become more enriched in D with increasing salinity (enrichment of 30-40‰ over a range of 25 salinity units), no effect of salinity on the D/H ratio of fatty acids of the heterotrophic Pseudomonas str. LFY10 was observed ((ε)lipid/water of the C16:0 fatty acid of ~120‰ over a range of 10 salinity units). This can likely be explained by the relative contributions of different H and nicotinamide adenine dinucleotide phosphate sources during fatty acid biosynthesis.

  5. Long non-coding RNAs and human X-chromosome regulation: a coat for the active X chromosome.

    PubMed

    Vallot, Céline; Rougeulle, Claire

    2013-08-01

    In mammals, the genic disequilibrium between males (XY) and females (XX) is resolved through the inactivation of one of the X-chromosomes in females. X-chromosome inactivation (XCI) takes place in all mammalian species, but has mainly been studied in the mouse model where it was shown to be controlled by the interplay of several long non-coding RNA (lncRNA). However, recent data point toward the existence of species divergences among mammals in the strategies used to achieve XCI. The recent discovery of XACT, a novel lncRNA that coats the active X-chromosome specifically in human pluripotent cells, further highlights the existence of human-specific mechanisms of X-chromosome regulation. Here, we discuss the roles of lncRNAs in defining species-specific mechanisms controlling X-inactivation and explore the potential role of large lncRNAs in gene activation.

  6. Small Non-Coding RNAs: New Insights in Modulation of Host Immune Response by Intracellular Bacterial Pathogens

    PubMed Central

    Ahmed, Waqas; Zheng, Ke; Liu, Zheng-Fei

    2016-01-01

    Pathogenic bacteria possess intricate regulatory networks that temporally control the production of virulence factors and enable the bacteria to survive and proliferate within host cell. Small non-coding RNAs (sRNAs) have been identified as important regulators of gene expression in diverse biological contexts. Recent research has shown bacterial sRNAs involved in growth and development, cell proliferation, differentiation, metabolism, cell signaling, and immune response through regulating protein–protein interactions or via their ability to base pair with RNA and DNA. In this review, we provide a brief overview of mechanism of action employed by immune-related sRNAs, their known functions in immunity, and how they can be integrated into regulatory circuits that govern virulence, which will facilitate our understanding of pathogenesis and the development of novel, more effective therapeutic approaches to treat infections caused by intracellular bacterial pathogens. PMID:27803700

  7. Beyond Thymidylate Synthase and Dihydrofolate Reductase: Impact of Non-coding microRNAs in Anticancer Chemoresistance.

    PubMed

    Ju, Jingfang

    2012-09-01

    Chemoresistance is one of the major reasons for the failure of anticancer chemotherapy in treating advanced stage cancer. The mechanism of chemoresistance to fluoropyrimidines and antifolates has been extensively investigated in the past 40 years. It has been well established that thymidylate synthase (TYMS, TS) and dihydrofolate reductase (DHFR) are two major targets for fluoropyrimidines and antifolates, respectively. The regulatory mechanism of TS and DHFR expression is rather complex involving transcriptional, post-transcriptional and translational regulations. Our recent understanding of the chemoresistance mechanism has been extended beyond the simple one target/drug view. In this review, we will focus on the recent advancement of non-coding microRNAs (miRNAs) in contributing to the regulations of TS and DHFR expression, and to the chemoresistance mechanism of fluoropyrimidines and antifolates.

  8. Conservation of the Exon-Intron Structure of Long Intergenic Non-Coding RNA Genes in Eutherian Mammals

    PubMed Central

    Chernikova, Diana; Managadze, David; Glazko, Galina V.; Makalowski, Wojciech; Rogozin, Igor B.

    2016-01-01

    The abundance of mammalian long intergenic non-coding RNA (lincRNA) genes is high, yet their functions remain largely unknown. One possible way to study this important question is to use large-scale comparisons of various characteristics of lincRNA with those of protein-coding genes for which a large body of functional information is available. A prominent feature of mammalian protein-coding genes is the high evolutionary conservation of the exon-intron structure. Comparative analysis of putative intron positions in lincRNA genes from various mammalian genomes suggests that some lincRNA introns have been conserved for over 100 million years, thus the primary and/or secondary structure of these molecules is likely to be functionally important. PMID:27429005

  9. Intraclonal diversity in follicular lymphoma analyzed by quantitative ultra-deep sequencing of non-coding regions1

    PubMed Central

    Spence, Janice M.; Abumoussa, Andrew; Spence, John P.; Burack, W. Richard

    2014-01-01

    Cancers are characterized by genomic instability and the resulting intra-clonal diversity is a prerequisite for tumor evolution. Therefore, metrics of tumor heterogeneity may prove to be clinically meaningful. Intra-clonal heterogeneity in follicular lymphoma (FL) is apparent from studies of somatic hypermutation (SHM) caused by Activation Induced Deaminase (AID) in IGH. Aberrant SHM (aSHM), defined as AID activity outside of the IG loci, predominantly targets non-coding regions causing numerous “passenger” mutations but has the potential to generate rare significant “driver” mutations. The quantitative relationship between SHM and aSHM has not been defined. To measure SHM and aSHM, ultradeep sequencing (>20,000 fold coverage) was performed on IGH (∼1650nt) and 9 other non-coding regions potentially targeted by AID (combined 9411nt), including the 5′UTR of BCL2. Single nucleotide variants (SNV) were found in 12/12 FL specimens (median 136 SHM and 53 aSHM). The aSHM SNVs were associated with AID-motifs (p<0.0001). The number of SNVs at BCL2 varied widely among specimens and correlated with the number of SNVs at 8 other potential aSHM sites. In contrast SHM at IGH was not predictive of aSHM. Tumor heterogeneity is apparent from SNVs at low variant allele frequencies (VAF); the relative number of SNVs with VAF<5% varied with clinical grade indicating that tumor heterogeneity based on aSHM reflects a clinically meaningful parameter. These data suggest that genome-wide aSHM may be estimated from aSHM of BCL2 but not SHM of IGH. The results demonstrate a practical approach to the quantification of intra-tumoral genetic heterogeneity for clinical specimens. PMID:25311808

  10. Small nucleolar RNA host genes and long non-coding RNA responses in directly irradiated and bystander cells.

    PubMed

    Chaudhry, M Ahmad

    2014-04-01

    The irradiated cells communicate with unirradiated cells and induce changes in them through a phenomenon known as the bystander effect. The nature of the bystander signal and how it impacts unirradiated cells remains to be discovered. Examination of molecular changes could lead to the identification of pathways underlying the bystander effect. Apart from microRNAs, little is known about the regulation of other non-coding RNAs (ncRNA) in irradiated or bystander cells. In this study we monitored the transcriptional changes of several small nucleolar RNAs (snoRNAs) host genes and long non-coding RNAs (lncRNAs) that are known to participate in a variety of cellular functions, in irradiated and bystander cells to gain insight into the molecular pathways affected in these cells. We used human lymphoblasts TK6 cells in a medium exchanged bystander effect model system to examine ncRNA expression alterations. The snoRNA host genes SNHG1 and SNHG4 were upregulated in irradiated TK6 cells but were repressed in bystander cells. The SNHG5 and SNHG11 were downregulated in irradiated and bystander cells and the expression levels of these ncRNA were significantly lower in bystander cells. The lncRNA MALAT1, MATR3, SRA1, and SOX2OT were induced in irradiated TK6 cells and their expression levels were repressed in bystander cells. The lncRNA RMST was induced in both irradiated and bystander cells. Taken together, these results indicate that expression levels of ncRNA are modulated in irradiated and bystander cells and these transcriptional changes could be associated with the bystander effect.

  11. Circulating microRNAs and long non-coding RNAs in gastric cancer diagnosis: An update and review

    PubMed Central

    Huang, Ya-Kai; Yu, Jian-Chun

    2015-01-01

    Gastric cancer (GC) is the fourth most common cancer and the third leading cause of cancer mortality worldwide. MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most popular non-coding RNAs in cancer research. To date, the roles of miRNAs and lncRNAs have been extensively studied in GC, suggesting that miRNAs and lncRNAs represent a vital component of tumor biology. Furthermore, circulating miRNAs and lncRNAs are found to be dysregulated in patients with GC compared with healthy individuals. Circulating miRNAs and lncRNAs may function as promising biomarkers to improve the early detection of GC. Multiple possibilities for miRNA secretion have been elucidated, including active secretion by microvesicles, exosomes, apoptotic bodies, high-density lipoproteins and protein complexes as well as passive leakage from cells. However, the mechanism underlying lncRNA secretion and the functions of circulating miRNAs and lncRNAs have not been fully illuminated. Concurrently, to standardize results of global investigations of circulating miRNAs and lncRNAs biomarker studies, several recommendations for pre-analytic considerations are put forward. In this review, we summarize the known circulating miRNAs and lncRNAs for GC diagnosis. The possible mechanism of miRNA and lncRNA secretion as well as methodologies for identification of circulating miRNAs and lncRNAs are also discussed. The topics covered here highlight new insights into GC diagnosis and screening. PMID:26379393

  12. Non-coding-regulatory regions of human brain genes delineated by bacterial artificial chromosome knock-in mice

    PubMed Central

    2013-01-01

    Background The next big challenge in human genetics is understanding the 98% of the genome that comprises non-coding DNA. Hidden in this DNA are sequences critical for gene regulation, and new experimental strategies are needed to understand the functional role of gene-regulation sequences in health and disease. In this study, we build upon our HuGX ('high-throughput human genes on the X chromosome’) strategy to expand our understanding of human gene regulation in vivo. Results In all, ten human genes known to express in therapeutically important brain regions were chosen for study. For eight of these genes, human bacterial artificial chromosome clones were identified, retrofitted with a reporter, knocked single-copy into the Hprt locus in mouse embryonic stem cells, and mouse strains derived. Five of these human genes expressed in mouse, and all expressed in the adult brain region for which they were chosen. This defined the boundaries of the genomic DNA sufficient for brain expression, and refined our knowledge regarding the complexity of gene regulation. We also characterized for the first time the expression of human MAOA and NR2F2, two genes for which the mouse homologs have been extensively studied in the central nervous system (CNS), and AMOTL1 and NOV, for which roles in CNS have been unclear. Conclusions We have demonstrated the use of the HuGX strategy to functionally delineate non-coding-regulatory regions of therapeutically important human brain genes. Our results also show that a careful investigation, using publicly available resources and bioinformatics, can lead to accurate predictions of gene expression. PMID:24124870

  13. Targeting Non-Coding RNAs in Plants with the CRISPR-Cas Technology is a Challenge yet Worth Accepting.

    PubMed

    Basak, Jolly; Nithin, Chandran

    2015-01-01

    Non-coding RNAs (ncRNAs) have emerged as versatile master regulator of biological functions in recent years. MicroRNAs (miRNAs) are small endogenous ncRNAs of 18-24 nucleotides in length that originates from long self-complementary precursors. Besides their direct involvement in developmental processes, plant miRNAs play key roles in gene regulatory networks and varied biological processes. Alternatively, long ncRNAs (lncRNAs) are a large and diverse class of transcribed ncRNAs whose length exceed that of 200 nucleotides. Plant lncRNAs are transcribed by different RNA polymerases, showing diverse structural features. Plant lncRNAs also are important regulators of gene expression in diverse biological processes. There has been a breakthrough in the technology of genome editing, the CRISPR-Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9) technology, in the last decade. CRISPR loci are transcribed into ncRNA and eventually form a functional complex with Cas9 and further guide the complex to cleave complementary invading DNA. The CRISPR-Cas technology has been successfully applied in model plants such as Arabidopsis and tobacco and important crops like wheat, maize, and rice. However, all these studies are focused on protein coding genes. Information about targeting non-coding genes is scarce. Hitherto, the CRISPR-Cas technology has been exclusively used in vertebrate systems to engineer miRNA/lncRNAs, but it is still relatively unexplored in plants. While briefing miRNAs, lncRNAs and applications of the CRISPR-Cas technology in human and animals, this review essentially elaborates several strategies to overcome the challenges of applying the CRISPR-Cas technology in editing ncRNAs in plants and the future perspective of this field.

  14. Silencing of long non-coding RNA ANRIL inhibits the development of multidrug resistance in gastric cancer cells.

    PubMed

    Lan, Wei-Guang; Xu, Dian-Hong; Xu, Chen; Ding, Chang-Ling; Ning, Fang-Ling; Zhou, Yan-Li; Ma, Long-Bo; Liu, Chang-Min; Han, Xia

    2016-07-01

    The development of multidrug resistance (MDR) is a crucial cause of therapy failure in gastric cancer, which results in disease recurrence and metastasis. Long non-coding RNAs (lncRNAs) have been proven to be critical in carcinogenesis and metastasis of gastric cancer. However, little is known about the roles of ANRIL (antisense non-coding RNA in the INK4 locus) in gastric cancer MDR. The aim of our study is to identify the biological function of ANRIL in gastric cancer MDR. In our results, ANRIL was highly expressed in gastric cancer tissues of cisplatin-resistant and 5-fluorouracil (5-FU)-resistant patients, and the same upregulation trends were observed in cisplatin-resistant cells (BGC823/DDP) and 5-FU-resistant cells (BGC823/5-FU). In addition, BGC823/DDP and BGC823/5-FU cells transfected with ANRIL siRNA and treated with cisplatin or 5-FU, respectively, exhibited significant lower survival rate, decreased invasion capability, and high percentage of apoptotic tumor cells. The influence of ANRIL knockdown on MDR was assessed by measuring IC50 of BGC823/DDP and BGC823/5-FU cells to cisplatin and 5-FU, the result showed that silencing ANRIL decreased the IC50 values in gastric cancer cells. Moreover, qRT-PCR and western blotting revealed that ANRIL knockdown decreased the expression of MDR1 and MRP1, both of which are MDR related genes; regression analysis showed that the expression of ANRIL positively correlated with the expression of MDR1 and MRP1, resprectively In summary, knockdown of lncRNA ANRIL in gastric cancer cells inhibits the development of MDR, suggesting an efficacious target for reversing MDR in gastric cancer therapy.

  15. Targeting Non-Coding RNAs in Plants with the CRISPR-Cas Technology is a Challenge yet Worth Accepting

    PubMed Central

    Basak, Jolly; Nithin, Chandran

    2015-01-01

    Non-coding RNAs (ncRNAs) have emerged as versatile master regulator of biological functions in recent years. MicroRNAs (miRNAs) are small endogenous ncRNAs of 18–24 nucleotides in length that originates from long self-complementary precursors. Besides their direct involvement in developmental processes, plant miRNAs play key roles in gene regulatory networks and varied biological processes. Alternatively, long ncRNAs (lncRNAs) are a large and diverse class of transcribed ncRNAs whose length exceed that of 200 nucleotides. Plant lncRNAs are transcribed by different RNA polymerases, showing diverse structural features. Plant lncRNAs also are important regulators of gene expression in diverse biological processes. There has been a breakthrough in the technology of genome editing, the CRISPR-Cas9 (clustered regulatory interspaced short palindromic repeats/CRISPR-associated protein 9) technology, in the last decade. CRISPR loci are transcribed into ncRNA and eventually form a functional complex with Cas9 and further guide the complex to cleave complementary invading DNA. The CRISPR-Cas technology has been successfully applied in model plants such as Arabidopsis and tobacco and important crops like wheat, maize, and rice. However, all these studies are focused on protein coding genes. Information about targeting non-coding genes is scarce. Hitherto, the CRISPR-Cas technology has been exclusively used in vertebrate systems to engineer miRNA/lncRNAs, but it is still relatively unexplored in plants. While briefing miRNAs, lncRNAs and applications of the CRISPR-Cas technology in human and animals, this review essentially elaborates several strategies to overcome the challenges of applying the CRISPR-Cas technology in editing ncRNAs in plants and the future perspective of this field. PMID:26635829

  16. Expression Quantitative Trait Loci Information Improves Predictive Modeling of Disease Relevance of Non-Coding Genetic Variation

    PubMed Central

    Raj, Towfique; McGeachie, Michael J.; Qiu, Weiliang; Ziniti, John P.; Stubbs, Benjamin J.; Liang, Liming; Martinez, Fernando D.; Strunk, Robert C.; Lemanske, Robert F.; Liu, Andrew H.; Stranger, Barbara E.; Carey, Vincent J.; Raby, Benjamin A.

    2015-01-01

    Disease-associated loci identified through genome-wide association studies (GWAS) frequently localize to non-coding sequence. We and others have demonstrated strong enrichment of such single nucleotide polymorphisms (SNPs) for expression quantitative trait loci (eQTLs), supporting an important role for regulatory genetic variation in complex disease pathogenesis. Herein we describe our initial efforts to develop a predictive model of disease-associated variants leveraging eQTL information. We first catalogued cis-acting eQTLs (SNPs within 100kb of target gene transcripts) by meta-analyzing four studies of three blood-derived tissues (n = 586). At a false discovery rate < 5%, we mapped eQTLs for 6,535 genes; these were enriched for disease-associated genes (P < 10−04), particularly those related to immune diseases and metabolic traits. Based on eQTL information and other variant annotations (distance from target gene transcript, minor allele frequency, and chromatin state), we created multivariate logistic regression models to predict SNP membership in reported GWAS. The complete model revealed independent contributions of specific annotations as strong predictors, including evidence for an eQTL (odds ratio (OR) = 1.2–2.0, P < 10−11) and the chromatin states of active promoters, different classes of strong or weak enhancers, or transcriptionally active regions (OR = 1.5–2.3, P < 10−11). This complete prediction model including eQTL association information ultimately allowed for better discrimination of SNPs with higher probabilities of GWAS membership (6.3–10.0%, compared to 3.5% for a random SNP) than the other two models excluding eQTL information. This eQTL-based prediction model of disease relevance can help systematically prioritize non-coding GWAS SNPs for further functional characterization. PMID:26474488

  17. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer's disease: an integrative review.

    PubMed

    Millan, Mark J

    2017-03-17

    The human genome encodes a vast repertoire of protein non-coding RNAs (ncRNA), some specific to the brain. MicroRNAs, which interfere with the translation of target mRNAs, are of particular interest since their deregulation has been implicated in neurodegenerative disorders like Alzheimer's disease (AD). However, it remains challenging to link the complex body of observations on miRNAs and AD into a coherent framework. Using extensive graphical support, this article discusses how a diverse panoply of miRNAs convergently and divergently impact (and are impacted by) core pathophysiological processes underlying AD: neuroinflammation and oxidative stress; aberrant generation of β-amyloid-42 (Aβ42); anomalies in the production, cleavage and post-translational marking of Tau; impaired clearance of Aβ42 and Tau; perturbation of axonal organisation; disruption of synaptic plasticity; endoplasmic reticulum stress and the unfolded protein response; mitochondrial dysfunction; aberrant induction of cell cycle re-entry; and apoptotic loss of neurons. Intriguingly, some classes of miRNA provoke these cellular anomalies, whereas others act in a counter-regulatory, protective mode. Moreover, changes in levels of certain species of miRNA are a consequence of the above-mentioned anomalies. In addition to miRNAs, circular RNAs, piwiRNAs, long non-coding RNAs and other types of ncRNA are being increasingly implicated in AD. Overall, a complex mesh of deregulated and multi-tasking ncRNAs reciprocally interacts with pathophysiological mechanisms underlying AD. Alterations in ncRNAs can be detected in CSF and the circulation as well as the brain, and are showing promise as biomarkers, with the ultimate goal clinical exploitation as targets for novel modes of symptomatic and course-altering therapy.

  18. Emergence of Photoautotrophic Minimal Protocell-Like Supramolecular Assemblies, "Jeewanu" Synthesied Photo Chemically in an Irradiated Sterilised Aqueous Mixture of Some Inorganic and Organic Substances

    NASA Astrophysics Data System (ADS)

    Gupta, Vinod Kumar

    2014-12-01

    Sunlight exposed sterilised aqueous mixture of ammonium molybdate, diammonium hydrogen phosphate, biological minerals and formaldehyde showed photochemical formation of self-sustaining biomimetic protocell-like supramolecular assemblies "Jeewanu" (Bahadur and Ranganayaki J Brit Interplanet Soc 23:813-829 1970). The structural and functional characteristics of Jeewanu suggests that in possible prebiotic atmosphere photosy nergistic collaboration of non-linear processes at mesoscopic level established autocatalytic pathways on mineral surfaces by selforganisation and self recognition and led to emergence of similar earliest energy transducing supramolecular assemblies which might have given rise to common universal ancestor on the earth or elsewhere.

  19. Photoautotrophic Polyhydroxybutyrate Granule Formation Is Regulated by Cyanobacterial Phasin PhaP in Synechocystis sp. Strain PCC 6803

    PubMed Central

    Hauf, Waldemar; Watzer, Björn; Roos, Nora; Klotz, Alexander

    2015-01-01

    Cyanobacteria are photoautotrophic microorganisms which fix atmospheric carbon dioxide via the Calvin-Benson cycle to produce carbon backbones for primary metabolism. Fixed carbon can also be stored as intracellular glycogen, and in some cyanobacterial species like Synechocystis sp. strain PCC 6803, polyhydroxybutyrate (PHB) accumulates when major nutrients like phosphorus or nitrogen are absent. So far only three enzymes which participate in PHB metabolism have been identified in this organism, namely, PhaA, PhaB, and the heterodimeric PHB synthase PhaEC. In this work, we describe the cyanobacterial PHA surface-coating protein (phasin), which we term PhaP, encoded by ssl2501. Translational fusion of Ssl2501 with enhanced green fluorescent protein (eGFP) showed a clear colocalization to PHB granules. A deletion of ssl2501 reduced the number of PHB granules per cell, whereas the mean PHB granule size increased as expected for a typical phasin. Although deletion of ssl2501 had almost no effect on the amount of PHB, the biosynthetic activity of PHB synthase was negatively affected. Secondary-structure prediction and circular dichroism (CD) spectroscopy of PhaP revealed that the protein consists of two α-helices, both of them associating with PHB granules. Purified PhaP forms oligomeric structures in solution, and both α-helices of PhaP contribute to oligomerization. Together, these results support the idea that Ssl2501 encodes a cyanobacterial phasin, PhaP, which regulates the surface-to-volume ratio of PHB granules. PMID:25911471

  20. Exploration of small RNA-seq data for small non-coding RNAs in Human Colorectal Cancer

    PubMed Central

    Koduru, Srinivas V; Tiwari, Amit K; Hazard, Sprague W; Mahajan, Milind; Ravnic, Dino J

    2017-01-01

    Background: Improved healthcare and recent breakthroughs in technology have substantially reduced cancer mortality rates worldwide. Recent advancements in next-generation sequencing (NGS) have allowed genomic analysis of the human transcriptome. Now, using NGS we can further look into small non-coding regions of RNAs (sncRNAs) such as microRNAs (miRNAs), Piwi-interacting-RNAs (piRNAs), long non-coding RNAs (lncRNAs), and small nuclear/nucleolar RNAs (sn/snoRNAs) among others. Recent studies looking at sncRNAs indicate their role in important biological processes such as cancer progression and predict their role as biomarkers for disease diagnosis, prognosis, and therapy. Results: In the present study, we data mined publically available small RNA sequencing data from colorectal tissue samples of eight matched patients (benign, tumor, and metastasis) and remapped the data for various small RNA annotations. We identified aberrant expression of 13 miRNAs in tumor and metastasis specimens [tumor vs benign group (19 miRNAs) and metastasis vs benign group (38 miRNAs)] of which five were upregulated, and eight were downregulated, during disease progression. Pathway analysis of aberrantly expressed miRNAs showed that the majority of miRNAs involved in colon cancer were also involved in other cancers. Analysis of piRNAs revealed six to be over-expressed in the tumor vs benign cohort and 24 in the metastasis vs benign group. Only two piRNAs were shared between the two cohorts. Examining other types of small RNAs [sn/snoRNAs, mt_rRNA, miscRNA, nonsense mediated decay (NMD), and rRNAs] identified 15 sncRNAs in the tumor vs benign group and 104 in the metastasis vs benign group, with only four others being commonly expressed. Conclusion: In summary, our comprehensive analysis on publicly available small RNA-seq data identified multiple differentially expressed sncRNAs during colorectal cancer progression at different stages compared to normal colon tissue. We speculate that

  1. SHARAKU: an algorithm for aligning and clustering read mapping profiles of deep sequencing in non-coding RNA processing

    PubMed Central

    Tsuchiya, Mariko; Amano, Kojiro; Abe, Masaya; Seki, Misato; Hase, Sumitaka; Sato, Kengo; Sakakibara, Yasubumi

    2016-01-01

    Motivation: Deep sequencing of the transcripts of regulatory non-coding RNA generates footprints of post-transcriptional processes. After obtaining sequence reads, the short reads are mapped to a reference genome, and specific mapping patterns can be detected called read mapping profiles, which are distinct from random non-functional degradation patterns. These patterns reflect the maturation processes that lead to the production of shorter RNA sequences. Recent next-generation sequencing studies have revealed not only the typical maturation process of miRNAs but also the various processing mechanisms of small RNAs derived from tRNAs and snoRNAs. Results: We developed an algorithm termed SHARAKU to align two read mapping profiles of next-generation sequencing outputs for non-coding RNAs. In contrast with previous work, SHARAKU incorporates the primary and secondary sequence structures into an alignment of read mapping profiles to allow for the detection of common processing patterns. Using a benchmark simulated dataset, SHARAKU exhibited superior performance to previous methods for correctly clustering the read mapping profiles with respect to 5′-end processing and 3′-end processing from degradation patterns and in detecting similar processing patterns in deriving the shorter RNAs. Further, using experimental data of small RNA sequencing for the common marmoset brain, SHARAKU succeeded in identifying the significant clusters of read mapping profiles for similar processing patterns of small derived RNA families expressed in the brain. Availability and Implementation: The source code of our program SHARAKU is available at http://www.dna.bio.keio.ac.jp/sharaku/, and the simulated dataset used in this work is available at the same link. Accession code: The sequence data from the whole RNA transcripts in the hippocampus of the left brain used in this work is available from the DNA DataBank of Japan (DDBJ) Sequence Read Archive (DRA) under the accession number DRA

  2. In the shadow: The emerging role of long non-coding RNAs in the immune response of Atlantic salmon.

    PubMed

    Tarifeño-Saldivia, E; Valenzuela-Miranda, D; Gallardo-Escárate, C

    2017-03-31

    The genomic era has increased the research effort to uncover how the genome of an organism, and specifically the transcriptome, is modulated after interplaying with pathogenic microorganisms and ectoparasites. However, the ever-increasing accessibility of sequencing technology has also evidenced regulatory roles of long non-coding RNAs (lncRNAs) related to several biological processes including immune response. This study reports a high-confidence annotation and a comparative transcriptome analysis of lncRNAs from several tissues of Salmo salar infected with the most prevalent pathogens in the Chilean salmon aquaculture such as the infectious salmon anemia (ISA) virus, the intracellular bacterium Piscirickettsia salmonis and the ectoparasite copepod Caligus rogercresseyi. Our analyses showed that lncRNAs are widely modulated during infection. However, this modulation is pathogen-specific and highly correlated with immuno-related genes associated with innate immune response. These findings represent the first discovery for the widespread differential expression of lncRNAs in response to infections with different types of pathogens in Atlantic salmon, suggesting that lncRNAs are pivotal player during the fish immune response.

  3. MIAT Is a Pro-fibrotic Long Non-coding RNA Governing Cardiac Fibrosis in Post-infarct Myocardium

    PubMed Central

    Qu, Xuefeng; Du, Yue; Shu, You; Gao, Ming; Sun, Fei; Luo, Shenjian; Yang, Ti; Zhan, Linfeng; Yuan, Yin; Chu, Wenfeng; Pan, Zhenwei; Wang, Zhiguo; Yang, Baofeng; Lu, Yanjie

    2017-01-01

    A long non-coding RNA (lncRNA), named myocardial infarction associated transcript (MIAT), has been documented to confer risk of myocardial infarction (MI). The aim of this study is to elucidate the pathophysiological role of MIAT in regulation of cardiac fibrosis. In a mouse model of MI, we found that MIAT was remarkably up-regulated, which was accompanied by cardiac interstitial fibrosis. MIAT up-regulation in MI was accompanied by deregulation of some fibrosis-related regulators: down-regulation of miR-24 and up-regulation of Furin and TGF-β1. Most notably, knockdown of endogenous MIAT by its siRNA reduced cardiac fibrosis and improved cardiac function and restored the deregulated expression of the fibrosis-related regulators. In cardiac fibroblasts treated with serum or angiotensin II, similar up-regulation of MIAT and down-regulation of miR-24 were consistently observed. These changes promoted fibroblasts proliferation and collagen accumulation, whereas knockdown of MIAT by siRNA or overexpression of miR-24 with its mimic abrogated the fibrogenesis. Our study therefore has identified MIAT as the first pro-fibrotic lncRNA in heart and unraveled the role of MIAT in the pathogenesis of MI. These findings also promise that normalization of MIAT level may prove to be a therapeutic option for the treatment of MI-induced cardiac fibrosis and the associated cardiac dysfunction. PMID:28198439

  4. Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology

    PubMed Central

    Zhou, Zhiheng; Liu, Haibai; Wang, Caixia; Lu, Qian; Huang, Qinhai; Zheng, Chanjiao; Lei, Yixiong

    2015-01-01

    Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in a variety of physiological and pathophysiological processes. Our study was to investigate whether lncRNAs as novel expression signatures are able to modulate DNA damage and repair in cadmium(Cd) toxicity. There were aberrant expression profiles of lncRNAs in 35th Cd-induced cells as compared to untreated 16HBE cells. siRNA-mediated knockdown of ENST00000414355 inhibited the growth of DNA-damaged cells and decreased the expressions of DNA-damage related genes (ATM, ATR and ATRIP), while increased the expressions of DNA-repair related genes (DDB1, DDB2, OGG1, ERCC1, MSH2, RAD50, XRCC1 and BARD1). Cadmium increased ENST00000414355 expression in the lung of Cd-exposed rats in a dose-dependent manner. A significant positive correlation was observed between blood ENST00000414355 expression and urinary/blood Cd concentrations, and there were significant correlations of lncRNA-ENST00000414355 expression with the expressions of target genes in the lung of Cd-exposed rats and the blood of Cd exposed workers. These results indicate that some lncRNAs are aberrantly expressed in Cd-treated 16HBE cells. lncRNA-ENST00000414355 may serve as a signature for DNA damage and repair related to the epigenetic mechanisms underlying the cadmium toxicity and become a novel biomarker of cadmium toxicity. PMID:26472689

  5. Hypothalamic transcriptomes of 99 mouse strains reveal trans eQTL hotspots, splicing QTLs and novel non-coding genes

    SciTech Connect

    Hasin-Brumshtein, Yehudit; Khan, Arshad H.; Hormozdiari, Farhad; Pan, Calvin; Parks, Brian W.; Petyuk, Vladislav A.; Piehowski, Paul D.; Brümmer, Anneke; Pellegrini, Matteo; Xiao, Xinshu; Eskin, Eleazar; Smith, Richard D.; Lusis, Aldons J.; Smith, Desmond J.

    2016-09-13

    Previous studies had shown that the integration of genome wide expression profiles, in metabolic tissues, with genetic and phenotypic variance, provided valuable insight into the underlying molecular mechanisms. We used RNA-Seq to characterize hypothalamic transcriptome in 99 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), a reference resource population for cardiovascular and metabolic traits. We report numerous novel transcripts supported by proteomic analyses, as well as novel non coding RNAs. High resolution genetic mapping of transcript levels in HMDP, reveals bothlocalandtransexpression Quantitative Trait Loci (eQTLs) demonstrating 2transeQTL 'hotspots' associated with expression of hundreds of genes. We also report thousands of alternative splicing events regulated by genetic variants. Finally, comparison with about 150 metabolic and cardiovascular traits revealed many highly significant associations. Our data provide a rich resource for understanding the many physiologic functions mediated by the hypothalamus and their genetic regulation.

  6. In Silico Characterization of miRNA and Long Non-Coding RNA Interplay in Multiple Myeloma

    PubMed Central

    Ronchetti, Domenica; Manzoni, Martina; Todoerti, Katia; Neri, Antonino; Agnelli, Luca

    2016-01-01

    The identification of deregulated microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in multiple myeloma (MM) has progressively added a further level of complexity to MM biology. In addition, the cross-regulation between lncRNAs and miRNAs has begun to emerge, and theoretical and experimental studies have demonstrated the competing endogenous RNA (ceRNA) activity of lncRNAs as natural miRNA decoys in pathophysiological conditions, including cancer. Currently, information concerning lncRNA and miRNA interplay in MM is virtually absent. Herein, we investigated in silico the lncRNA and miRNA relationship in a representative datasets encompassing 95 MM and 30 plasma cell leukemia patients at diagnosis and in four normal controls, whose expression profiles were generated by a custom annotation pipeline to detect specific lncRNAs. We applied target prediction analysis based on miRanda and RNA22 algorithms to 235 lncRNAs and 459 miRNAs selected with a potential pivotal role in the pathology of MM. Among pairs that showed a significant correlation between lncRNA and miRNA expression levels, we identified 11 lncRNA–miRNA relationships suggestive of a novel ceRNA network with relevance in MM. PMID:27916857

  7. Long non-coding RNA BANCR regulates growth and metastasis and is associated with poor prognosis in retinoblastoma.

    PubMed

    Su, Shizheng; Gao, Jian; Wang, Tao; Wang, Ju; Li, Hong; Wang, Zhen

    2015-09-01

    Recent evidence shows that BRAF-activated non-coding RNA (BANCR) acts as a critical role in the proliferation and metastasis in malignant melanoma and lung cancer; however, little is known about the significance of lncRNA BANCR in retinoblastoma. The purpose of our study is to explore the role of lncRNA BANCR in retinoblastoma clinical samples and cell lines. The expression of lncRNA BANCR was measured in 60 retinoblastoma samples and normal retina samples by using RT-PCR. The effects of lncRNA BANCR on cell proliferation, migration, and invasion were also explored. In our results, lncRNA BANCR is overexpressed in retinoblastoma tissues and cell lines and is associated with tumor size, choroidal invasion, and optic nerve invasion. Moreover, patients with high levels of lncRNA BANCR expression had poorer survival than those with lower levels of lncRNA BANCR expression. Multivariate analysis showed that increased lncRNA BANCR expression was a poor independent prognostic factor for retinoblastoma patients. Furthermore, knocking down lncRNA BANCR expression significantly suppressed the retinoblastoma cell proliferation, migration, and invasion in vitro. In conclusion, lncRNA BANCR plays a significant role in retinoblastoma aggressiveness and prognosis and may act as a promising target for therapeutic strategy and prognostic prediction.

  8. Long non-coding RNA MVIH is associated with poor prognosis and malignant biological behavior in breast cancer.

    PubMed

    Lei, Bo; Xu, Shou-Ping; Liang, Xiao-Shuan; Li, Yi-Wen; Zhang, Jin-Feng; Zhang, Guo-Qiang; Pang, Da

    2016-04-01

    In recent years, with the development of transcriptomics, the effect of long non-coding RNAs (LncRNAs) on the regulation of biological processes is being elucidated. LncRNAs play an important role in tumor occurrence and development. LncRNA associated with microvascular invasion in hepatocellular carcinoma (LncRNA MVIH) was first identified in hepatocellular carcinoma and is associated with angiogenesis, tumor growth and metastasis upregulation, and poor recurrence-free survival. MVIH has an important role in non-small cell lung cancer, in which it promotes cell proliferation and metastasis, and high MVIH expression indicates poor overall survival. However, the involvement of MVIH in breast cancer is unclear. Our research revealed that the expression levels of MVIH in breast cancer tissues were higher than in adjacent noncancerous tissues, and high MVIH expression was correlated with Ki67 expression. Moreover, breast cancer patients with high MVIH expression levels showed poor overall survival and disease-free survival. Multivariate analysis results indicated that MVIH was an independent prognostic factor in breast cancer. In addition, upregulated MVIH expression levels promoted cell proliferation and cell cycle, and inhibited cell apoptosis, while reduced MVIH expression showed the converse. In summary, our findings suggest that MVIH may have an important role in breast cancer and may serve as a new biomarker and a potential therapeutic target.

  9. Long non-coding RNA GAS5 controls human embryonic stem cell self-renewal by maintaining NODAL signalling

    PubMed Central

    Xu, Chen; Zhang, Yan; Wang, Qiaoling; Xu, Zhenyu; Jiang, Junfeng; Gao, Yuping; Gao, Minzhi; Kang, Jiuhong; Wu, Minjuan; Xiong, Jun; Ji, Kaihong; Yuan, Wen; Wang, Yue; Liu, Houqi

    2016-01-01

    Long non-coding RNAs (lncRNAs) are known players in the regulatory circuitry of the self-renewal in human embryonic stem cells (hESCs). However, most hESC-specific lncRNAs remain uncharacterized. Here we demonstrate that growth-arrest-specific transcript 5 (GAS5), a known tumour suppressor and growth arrest-related lncRNA, is highly expressed and directly regulated by pluripotency factors OCT4 and SOX2 in hESCs. Phenotypic analysis shows that GAS5 knockdown significantly impairs hESC self-renewal, but its overexpression significantly promotes hESC self-renewal. Using RNA sequencing and functional analysis, we demonstrate that GAS5 maintains NODAL signalling by protecting NODAL expression from miRNA-mediated degradation. Therefore, we propose that the above pluripotency factors, GAS5 and NODAL form a feed-forward signalling loop that maintains hESC self-renewal. As this regulatory function of GAS5 is stem cell specific, our findings also indicate that the functions of lncRNAs may vary in different cell types due to competing endogenous mechanisms. PMID:27811843

  10. Up-regulation of BRAF activated non-coding RNA is associated with radiation therapy for lung cancer.

    PubMed

    Chen, Jian-xiang; Chen, Ming; Zheng, Yuan-da; Wang, Sheng-ye; Shen, Zhu-ping

    2015-04-01

    Radiation therapy has become more effective in treating primary tumors, such as lung cancer. Recent evidence suggested that BRAF activated non-coding RNAs (BANCR) play a critical role in cellular processes and are found to be dysregulated in a variety of cancers. The clinical significance of BANCR in radiation therapy, and its molecular mechanisms controlling tumor growth are unclear. In the present study, C57BL/6 mice were inoculated Lewis lung cancer cells and exposed to radiation therapy, then BANCR expression was analyzed using qPCR. Chromatin immunoprecipitation and western blot were performed to calculate the enrichment of histone acetylation and HDAC3 protein levels in Lewis lung cancer cells, respectively. MTT assay was used to evaluate the effects of BANCR on Lewis lung cancer cell viability. Finally, we found that BANCR expression was significantly increased in C57BL/6 mice receiving radiation therapy (P<0.05) compared with control group. Additionally, knockdown of BANCR expression was associated with larger tumor size in C57BL/6 mice inoculated Lewis lung cancer cells. Histone deacetylation was observed to involve in the regulation of BANCR in Lewis lung cancer cells. Moreover, over expression HDAC3 reversed the effect of rays on BANCR expression. MTT assay showed that knockdown of BANCR expression promoted cell viability surviving from radiation. In conclusion, these findings indicated that radiation therapy was an effective treatment for lung cancer, and it may exert function through up-regulation BANCR expression.

  11. An Abundant Class of Non-coding DNA Can Prevent Stochastic Gene Silencing in the C. elegans Germline.

    PubMed

    Frøkjær-Jensen, Christian; Jain, Nimit; Hansen, Loren; Davis, M Wayne; Li, Yongbin; Zhao, Di; Rebora, Karine; Millet, Jonathan R M; Liu, Xiao; Kim, Stuart K; Dupuy, Denis; Jorgensen, Erik M; Fire, Andrew Z

    2016-07-14

    Cells benefit from silencing foreign genetic elements but must simultaneously avoid inactivating endogenous genes. Although chromatin modifications and RNAs contribute to maintenance of silenced states, the establishment of silenced regions will inevitably reflect underlying DNA sequence and/or structure. Here, we demonstrate that a pervasive non-coding DNA feature in Caenorhabditis elegans, characterized by 10-base pair periodic An/Tn-clusters (PATCs), can license transgenes for germline expression within repressive chromatin domains. Transgenes containing natural or synthetic PATCs are resistant to position effect variegation and stochastic silencing in the germline. Among endogenous genes, intron length and PATC-character undergo dramatic changes as orthologs move from active to repressive chromatin over evolutionary time, indicating a dynamic character to the An/Tn periodicity. We propose that PATCs form the basis of a cellular immune system, identifying certain endogenous genes in heterochromatic contexts as privileged while foreign DNA can be suppressed with no requirement for a cellular memory of prior exposure.

  12. Long non-coding RNA AK027294 involves in the process of proliferation, migration, and apoptosis of colorectal cancer cells.

    PubMed

    Niu, Hui; Hu, Zhaoyang; Liu, Hui; Hu, Guoliang; Yang, Bo; Wu, Shixiu; Li, Fang

    2016-08-01

    This study is aimed to investigate the differentially expressed long non-coding RNAs (lncRNAs) in colorectal cancer and its potential biological function. Colorectal adenoma is the precancerous lesions of colorectal cancer, so in this study, we used colorectal adenoma as negative control. The global lncRNA expression profile in colorectal cancer and adenoma was evaluated by bioinformatics. The biological functions and potential mechanism of AK027294 were investigated in HCT116, HCT8, and SW480 colorectal cancer cells. A total of 135 lncRNAs were found to be differentially expressed in colorectal cancer and adenoma tissues. Among them, 71 lncRNAs were up-regulated and 64 lncRNAs were down-regulated. Especially, AK027294 was found to be highly expressed in colorectal cancer tissues compared with colorectal adenoma tissues (fold change is 184.5). Our results indicated that AK027294 down-regulation significantly inhibited colorectal cancer cells proliferation and migration, but promoted cell apoptosis (P < 0.05). The potential mechanism of AK027294 might be associated with the regulation of caspase-3, caspase-8, Bcl-2, MMP12, MMP9, and TWIST. The lncRNA expression profile in colorectal cancer suggests lncRNAs may play important roles in the occurrence and progression of colorectal cancer. AK027294 is highly expressed in colorectal cancer and closely correlates with colorectal cells proliferation, migration, and apoptosis.

  13. Long non-coding RNA GAS5 inhibited hepatitis C virus replication by binding viral NS3 protein.

    PubMed

    Qian, Xijing; Xu, Chen; Zhao, Ping; Qi, Zhongtian

    2016-05-01

    HCV infection has a complex and dynamic process which involves a large number of viral and host factors. Long non-coding RNA GAS5 inhibits liver fibrosis and liver tumor migration and invasion. However, the contribution of GAS5 on HCV infection remains unknown. In this study, GAS5 was gradually upregulated during HCV infection in Huh7 cells. In addition, GAS5 attenuated virus replication with its 5' end sequences, as confirmed by different GAS5 truncations. Moreover, this 5' end sequences showed RNA-protein interaction with HCV NS3 protein that could act as a decoy to inhibit its functions, which contributed to the suppression of HCV replication. Finally, the innate immune responses remained low in HCV infected Huh7 cells, ruling out the possibility of GAS5 to modulate innate immunity. Thus, HCV stimulated endogenous GAS5 can suppress HCV infection by acting as HCV NS3 protein decoy, providing a potential role of GAS5 as a diagnostic or therapeutic target.

  14. Genome-wide long non-coding RNA screening, identification and characterization in a model microorganism Chlamydomonas reinhardtii.

    PubMed

    Li, Hui; Wang, Yuting; Chen, Meirong; Xiao, Peng; Hu, Changxing; Zeng, Zhiyong; Wang, Chaogang; Wang, Jiangxin; Hu, Zhangli

    2016-09-23

    Microalgae are regarded as the most promising biofuel candidates and extensive metabolic engineering were conducted but very few improvements were achieved. Long non-coding RNA (lncRNA) investigation and manipulation may provide new insights for this issue. LncRNAs refer to transcripts that are longer than 200 nucleotides, do not encode proteins but play important roles in eukaryotic gene regulation. However, no information of potential lncRNAs has been reported in eukaryotic alga. Recently, we performed RNA sequencing in Chlamydomonas reinhardtii, and obtained totally 3,574 putative lncRNAs. 1440 were considered as high-confidence lncRNAs, including 936 large intergenic, 310 intronic and 194 anti-sense lncRNAs. The average transcript length, ORF length and numbers of exons for lncRNAs are much less than for genes in this green alga. In contrast with human lncRNAs of which more than 98% are spliced, the percentage in C. reinhardtii is only 48.1%. In addition, we identified 367 lncRNAs responsive to sulfur deprivation, including 36 photosynthesis-related lncRNAs. This is the first time that lncRNAs were explored in the unicellular model organism C. reinhardtii. The lncRNA data could also provide new insights into C. reinhardtii hydrogen production under sulfur deprivation.

  15. The PRC2-binding long non-coding RNAs in human and mouse genomes are associated with predictive sequence features

    PubMed Central

    Tu, Shiqi; Yuan, Guo-Cheng; Shao, Zhen

    2017-01-01

    Recently, long non-coding RNAs (lncRNAs) have emerged as an important class of molecules involved in many cellular processes. One of their primary functions is to shape epigenetic landscape through interactions with chromatin modifying proteins. However, mechanisms contributing to the specificity of such interactions remain poorly understood. Here we took the human and mouse lncRNAs that were experimentally determined to have physical interactions with Polycomb repressive complex 2 (PRC2), and systematically investigated the sequence features of these lncRNAs by developing a new computational pipeline for sequences composition analysis, in which each sequence is considered as a series of transitions between adjacent nucleotides. Through that, PRC2-binding lncRNAs were found to be associated with a set of distinctive and evolutionarily conserved sequence features, which can be utilized to distinguish them from the others with considerable accuracy. We further identified fragments of PRC2-binding lncRNAs that are enriched with these sequence features, and found they show strong PRC2-binding signals and are more highly conserved across species than the other parts, implying their functional importance. PMID:28139710

  16. Identification and expression of small non-coding RNA, L10-Leader, in different growth phases of Streptococcus mutans.

    PubMed

    Xia, Li; Xia, Wei; Li, Shaohua; Li, Wuju; Liu, Jiaojiao; Ding, Hongmei; Li, Jie; Li, Hui; Chen, Ying; Su, Xueting; Wang, Wei; Sun, Li; Wang, Chenglong; Shao, Ningsheng; Chu, Bingfeng

    2012-06-01

    Streptococcus mutans is one of the major cariogenic bacteria in the oral environment. Small non-coding RNAs (sRNAs) play important roles in the regulation of bacterial growth, stress tolerance, and virulence. In this study, we experimentally verified the existence of sRNA, L10-Leader, in S. mutans for the first time. Our results show that the expression level of L10-Leader was growth-phase dependent in S. mutans and varied among different clinical strains of S. mutans. The level of L10-Leader in S. mutans UA159 was closely related to the pH value, but not to the concentrations of glucose and sucrose in culture medium. We predicted target mRNAs of L10-Leader bioinformatically and found that some of these mRNAs were related to growth and stress response. Five predicted mRNA targets were selected and detected by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR), and we found that the expression levels of these mRNAs were closely related to the level of L10-Leader at different growth phases of the bacteria. Our results indicate that L10-Leader may play an important role in the regulation of responses in S. mutans, especially during its growth phase and acid adaption response.

  17. Long non-coding RNA NR_045623 and NR_028291 involved in benzene hematotoxicity in occupationally benzene-exposed workers.

    PubMed

    Bai, Wenlin; Yang, Jing; Yang, Gengxia; Niu, Piye; Tian, Lin; Gao, Ai

    2014-06-01

    Benzene is an established human hematotoxicant and leukemogen. New insights into the pathogenesis of benzene hematotoxicity are urgently needed. Long non-coding RNA (lncRNA) widely participate in various physiological and pathological processes. It has been shown that lncRNA plays an important role in hematologic malignancy tumorigenesis. However, the expression and biological function of lncRNA during benzene hematotoxicity progress remain largely unknown. An integrated analysis of differentially expressed lncRNA and mRNA was performed to identify genes which were likely to be critical for benzene hematotoxicity through Microarray analysis. Dynamic gene network analysis of the differentially expressed lncRNA and mRNA was constructed and two main lncRNA (NR_045623 and NR_028291) were discovered and two key lncRNA subnets were involved in immune responses, hematopoiesis, B cell receptor signaling pathway and chronic myeloid leukemia. These findings suggested that NR_045623 and NR_028291 might be the key genes associated with benzene hematotoxicity.

  18. Long non-coding RNA: a versatile regulator of the nuclear factor-κB signalling circuit.

    PubMed

    Mao, Xiaohua; Su, Zhenyi; Mookhtiar, Adnan K

    2017-04-01

    The nuclear factor-κB (NF-κB) family of transcription factors play an essential role for the regulation of inflammatory responses, immune function and malignant transformation. Aberrant activity of this signalling pathway may lead to inflammation, autoimmune diseases and oncogenesis. Over the last two decades great progress has been made in the understanding of NF-κB activation and how the response is counteracted for maintaining tissue homeostasis. Therapeutic targeting of this pathway has largely remained ineffective due to the widespread role of this vital pathway and the lack of specificity of the therapies currently available. Besides regulatory proteins and microRNAs, long non-coding RNA (lncRNA) is emerging as another critical layer of the intricate modulatory architecture for the control of the NF-κB signalling circuit. In this paper we focus on recent progress concerning lncRNA-mediated modulation of the NF-κB pathway, and evaluate the potential therapeutic uses and challenges of using lncRNAs that regulate NF-κB activity.

  19. Co-expression analysis and identification of fecundity-related long non-coding RNAs in sheep ovaries

    PubMed Central

    Miao, Xiangyang; Luo, Qingmiao; Zhao, Huijing; Qin, Xiaoyu

    2016-01-01

    Small Tail Han sheep, including the FecBBFecBB (Han BB) and FecB+ FecB+ (Han++) genotypes, and Dorset sheep exhibit different fecundities. To identify novel long non-coding RNAs (lncRNAs) associated with sheep fecundity to better understand their molecular mechanisms, a genome-wide analysis of mRNAs and lncRNAs from Han BB, Han++ and Dorset sheep was performed. After the identification of differentially expressed mRNAs and lncRNAs, 16 significant modules were explored by using weighted gene coexpression network analysis (WGCNA) followed by functional enrichment analysis of the genes and lncRNAs in significant modules. Among these selected modules, the yellow and brown modules were significantly related to sheep fecundity. lncRNAs (e.g., NR0B1, XLOC_041882, and MYH15) in the yellow module were mainly involved in the TGF-β signalling pathway, and NYAP1 and BCORL1 were significantly associated with the oxytocin signalling pathway, which regulates several genes in the coexpression network of the brown module. Overall, we identified several gene modules associated with sheep fecundity, as well as networks consisting of hub genes and lncRNAs that may contribute to sheep prolificacy by regulating the target mRNAs related to the TGF-β and oxytocin signalling pathways. This study provides an alternative strategy for the identification of potential candidate regulatory lncRNAs. PMID:27982099

  20. Genome-Wide Identification and Characterization of Long Non-Coding RNAs from Mulberry (Morus notabilis) RNA-seq Data

    PubMed Central

    Song, Xiaobo; Sun, Liang; Luo, Haitao; Ma, Qingguo; Zhao, Yi; Pei, Dong

    2016-01-01

    Numerous sources of evidence suggest that most of the eukaryotic genome is transcribed into protein-coding mRNAs and also into a large number of non-coding RNAs (ncRNAs). Long ncRNAs (lncRNAs), a group consisting of ncRNAs longer than 200 nucleotides, have been found to play critical roles in transcriptional, post-transcriptional, and epigenetic gene regulation across all kingdoms of life. However, lncRNAs and their regulatory roles remain poorly characterized in plants, especially in woody plants. In this paper, we used a computational approach to identify novel lncRNAs from a published RNA-seq data set and analyzed their sequences and expression patterns. In total, 1133 novel lncRNAs were identified in mulberry, and 106 of these lncRNAs displayed a predominant tissue-specific expression in the five major tissues investigated. Additionally, functional predictions revealed that tissue-specific lncRNAs adjacent to protein-coding genes might play important regulatory roles in the development of floral organ and root in mulberry. The pipeline used in this study would be useful for the identification of lncRNAs obtained from other deep sequencing data. Furthermore, the predicted lncRNAs would be beneficial towards an understanding of the variations in gene expression in plants. PMID:26938562

  1. Long non-coding RNA CCAT2 functions as an oncogene in hepatocellular carcinoma, regulating cellular proliferation, migration and apoptosis

    PubMed Central

    ZHOU, NING; SI, ZHONGZHOU; LI, TING; CHEN, GUANGSHUN; ZHANG, ZHONGQIANG; QI, HAIZHI

    2016-01-01

    An increasing number of studies have demonstrated that the dysregulation of long non-coding RNAs (lncRNAs) may serve an important role in tumor progression. Previous studies have reported that the lncRNA, colon cancer associated transcript 2 (CCAT2), was highly expressed in various tumors. However, the function of CCAT2 in hepatocellular carcinoma (HCC) has not yet been elucidated. The aim of the present study was to identify novel oncogene lncRNAs and investigate their physiological function and mechanism in HCC. Using reverse transcription-quantitative polymerase chain reaction, it was observed that CCAT2 was upregulated in HCC tissues and human HCC cell lines. Furthermore, the impacts of CCAT2 on cell proliferation, migration and apoptosis were analyzed using cell migration, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and enzyme-linked immunosorbent assay analysis respectively. The overexpression of CCAT2 using a synthesized vector significantly promoted cell migration and proliferation, and inhibited apoptosis of HCC cells in vitro. The suppression of CCAT2 expression resulted in opposing effects. To the best of our knowledge, the present study is the first to demonstrate that CCAT2 functions as a oncogene in HCC. Further investigation is required to clarify the molecular mechanisms of this lncRNA in HCC development. PMID:27347113

  2. Fact or fiction: updates on how protein-coding genes might emerge de novo from previously non-coding DNA.

    PubMed

    Schmitz, Jonathan F; Bornberg-Bauer, Erich

    2017-01-01

    Over the last few years, there has been an increasing amount of evidence for the de novo emergence of protein-coding genes, i.e. out of non-coding DNA. Here, we review the current literature and summarize the state of the field. We focus specifically on open questions and challenges in the study of de novo protein-coding genes such as the identification and verification of de novo-emerged genes. The greatest obstacle to date is the lack of high-quality genomic data with very short divergence times which could help precisely pin down the location of origin of a de novo gene. We conclude that, while there is plenty of evidence from a genetics perspective, there is a lack of functional studies of bona fide de novo genes and almost no knowledge about protein structures and how they come about during the emergence of de novo protein-coding genes. We suggest that future studies should concentrate on the functional and structural characterization of de novo protein-coding genes as well as the detailed study of the emergence of functional de novo protein-coding genes.

  3. Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast.

    PubMed

    Ard, Ryan; Tong, Pin; Allshire, Robin C

    2014-11-27

    Most long non-coding RNAs (lncRNAs) encoded by eukaryotic genomes remain uncharacterized. Here we focus on a set of intergenic lncRNAs in fission yeast. Deleting one of these lncRNAs exhibited a clear phenotype: drug sensitivity. Detailed analyses of the affected locus revealed that transcription of the nc-tgp1 lncRNA regulates drug tolerance by repressing the adjacent phosphate-responsive permease gene transporter for glycerophosphodiester 1 (tgp1(+)). We demonstrate that the act of transcribing nc-tgp1 over the tgp1(+) promoter increases nucleosome density, prevents transcription factor access and thus represses tgp1(+) without the need for RNA interference or heterochromatin components. We therefore conclude that tgp1(+) is regulated by transcriptional interference. Accordingly, decreased nc-tgp1 transcription permits tgp1(+) expression upon phosphate starvation. Furthermore, nc-tgp1 loss induces tgp1(+) even in repressive conditions. Notably, drug sensitivity results directly from tgp1(+) expression in the absence of the nc-tgp1 RNA. Thus, transcription of an lncRNA governs drug tolerance in fission yeast.

  4. A non-coding plastid DNA phylogeny of Asian Begonia (Begoniaceae): evidence for morphological homoplasy and sectional polyphyly.

    PubMed

    Thomas, D C; Hughes, M; Phutthai, T; Rajbhandary, S; Rubite, R; Ardi, W H; Richardson, J E

    2011-09-01

    Maximum likelihood and Bayesian analyses of non-coding plastid DNA sequence data based on a broad sampling of all major Asian Begonia sections (ndhA intron, ndhF-rpl32 spacer, rpl32-trnL spacer, 3977 aligned characters, 84 species) were used to reconstruct the phylogeny of Asian Begonia and to test the monophyly of major Asian Begonia sections. Ovary and fruit characters which are crucial in current sectional circumscriptions were mapped on the phylogeny to assess their utility in infrageneric classifications. The results indicate that the strong systematic emphasis placed on single, homoplasious characters such as undivided placenta lamellae (section Reichenheimia) and fleshy pericarps (section Sphenanthera), and the recognition of sections primarily based on a suite of plesiomorphic characters including three-locular ovaries with axillary, bilamellate placentae and dry, dehiscent pericarps (section Diploclinium), has resulted in the circumscription of several polyphyletic sections. Moreover, sections Platycentrum and Petermannia were recovered as paraphyletic. Because of the homoplasy of systematically important characters, current classifications have a certain diagnostic, but only poor predictive value. The presented phylogeny provides for the first time a reasonably resolved and supported phylogenetic framework for Asian Begonia which has the power to inform future taxonomic, biogeographic and evolutionary studies.

  5. 2-O-Methylmagnolol upregulates the long non-coding RNA, GAS5, and enhances apoptosis in skin cancer cells.

    PubMed

    Wang, Tong-Hong; Chan, Chieh-Wen; Fang, Jia-You; Shih, Ya-Min; Liu, Yi-Wen; Wang, Tzu-Chien V; Chen, Chi-Yuan

    2017-03-02

    Magnolol, a hydroxylated biphenol compound isolated from the bark of Magnolia officinalis, has been shown to exhibit anti-proliferative effect in various cancer cells, including skin cancer cells. Methoxylation of magnolol appears to improve its anti-inflammatory activity, yet the effect of this modification on the agent's antitumor activity remains unknown. In this work, we report that 2-O-methylmagnolol (MM1) displays improved antitumor activity against skin cancer cells compared to magnolol both in vitro and in vivo. The increased antitumor activity of MM1 appears to correlate with its increased ability to induce apoptosis. DNA microarray and network pathway analyses suggest that MM1 affects certain key factors involved in regulating apoptosis and programmed cell death. Interestingly, the level of the long non-coding (lnc) RNA of growth arrest-specific 5 (GAS5) was increased in MM1-treated cells, and inhibition of lncRNA GAS5 inhibited MM1-induced apoptosis. Conversely, overexpression of lncRNA GAS5 inhibited cell proliferation and promoted cell apoptosis in skin cancer cells. The expression of lncRNA GAS5 in the skin cancer tissues was found to be lower than that in the adjacent normal tissues in a majority of patients. Taken together, our findings suggest that MM1 has improved antitumor activity in skin cancer cells, and that this is due, at least in part, to the upregulation of lncRNA GAS5 and the enhancement of apoptosis.

  6. Identification of non-coding RNAs with a new composite feature in the Hybrid Random Forest Ensemble algorithm

    PubMed Central

    Lertampaiporn, Supatcha; Thammarongtham, Chinae; Nukoolkit, Chakarida; Kaewkamnerdpong, Boonserm; Ruengjitchatchawalya, Marasri

    2014-01-01

    To identify non-coding RNA (ncRNA) signals within genomic regions, a classification tool was developed based on a hybrid random forest (RF) with a logistic regression model to efficiently discriminate short ncRNA sequences as well as long complex ncRNA sequences. This RF-based classifier was trained on a well-balanced dataset with a discriminative set of features and achieved an accuracy, sensitivity and specificity of 92.11%, 90.7% and 93.5%, respectively. The selected feature set includes a new proposed feature, SCORE. This feature is generated based on a logistic regression function that combines five significant features—structure, sequence, modularity, structural robustness and coding potential—to enable improved characterization of long ncRNA (lncRNA) elements. The use of SCORE improved the performance of the RF-based classifier in the identification of Rfam lncRNA families. A genome-wide ncRNA classification framework was applied to a wide variety of organisms, with an emphasis on those of economic, social, public health, environmental and agricultural significance, such as various bacteria genomes, the Arthrospira (Spirulina) genome, and rice and human genomic regions. Our framework was able to identify known ncRNAs with sensitivities of greater than 90% and 77.7% for prokaryotic and eukaryotic sequences, respectively. Our classifier is available at http://ncrna-pred.com/HLRF.htm. PMID:24771344

  7. Reduced expression of the long non-coding RNA AI364715 in gastric cancer and its clinical significance.

    PubMed

    Zhu, Shengqian; Mao, Jinqin; Shao, Yongfu; Chen, Fang; Zhu, Xiaoqin; Xu, Dingli; Zhang, Xinjun; Guo, Junming

    2015-09-01

    Long non-coding RNA (lncRNA), which is greater than 200 nucleotides, is a class of RNA molecules without protein coding function. In recent years, studies have shown that lncRNAs are associated with cancers. They are affecting the occurrence and development of cancers. However, the diagnostic significances of lncRNAs in gastric cancer are largely unknown. In this study, we focused on AI364715, one typical lncRNA. A total of 186 samples were collected from two cancer centers. To find the potential association between its level and gastric cancer, we first collected 75 paired gastric cancer tissues and normal tissues, which are 5 cm away from the edge of carcinoma. Besides, 18 human healthy gastric mucosa and 18 gastric precancerous lesions (dysplasia) were also collected. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) was first used to detect the expression level of AI364715 at multiple stages of gastric tumorigenesis. Then, the relationships between AI364715 level and the clinicopathological factors of patients with gastric cancer were analyzed. The results showed that the expression level of AI364715 in gastric cancer tissues was downregulated. Meanwhile, its expression level was closely associated with tumor size and differentiation. More importantly, AI364715 expression level was significantly changed in dysplasia, the typical precancerous lesions. Taken together, AI364715 may be a potential biomarker for the diagnosis of gastric cancer.

  8. Fact or fiction: updates on how protein-coding genes might emerge de novo from previously non-coding DNA

    PubMed Central

    Schmitz, Jonathan F; Bornberg-Bauer, Erich

    2017-01-01

    Over the last few years, there has been an increasing amount of evidence for the de novo emergence of protein-coding genes, i.e. out of non-coding DNA. Here, we review the current literature and summarize the state of the field. We focus specifically on open questions and challenges in the study of de novo protein-coding genes such as the identification and verification of de novo-emerged genes. The greatest obstacle to date is the lack of high-quality genomic data with very short divergence times which could help precisely pin down the location of origin of a de novo gene. We conclude that, while there is plenty of evidence from a genetics perspective, there is a lack of functional studies of bona fide de novo genes and almost no knowledge about protein structures and how they come about during the emergence of de novo protein-coding genes. We suggest that future studies should concentrate on the functional and structural characterization of de novo protein-coding genes as well as the detailed study of the emergence of functional de novo protein-coding genes. PMID:28163910

  9. Hypothalamic transcriptomes of 99 mouse strains reveal trans eQTL hotspots, splicing QTLs and novel non-coding genes

    PubMed Central

    Hasin-Brumshtein, Yehudit; Khan, Arshad H; Hormozdiari, Farhad; Pan, Calvin; Parks, Brian W; Petyuk, Vladislav A; Piehowski, Paul D; Brümmer, Anneke; Pellegrini, Matteo; Xiao, Xinshu; Eskin, Eleazar; Smith, Richard D; Lusis, Aldons J; Smith, Desmond J

    2016-01-01

    Previous studies had shown that the integration of genome wide expression profiles, in metabolic tissues, with genetic and phenotypic variance, provided valuable insight into the underlying molecular mechanisms. We used RNA-Seq to characterize hypothalamic transcriptome in 99 inbred strains of mice from the Hybrid Mouse Diversity Panel (HMDP), a reference resource population for cardiovascular and metabolic traits. We report numerous novel transcripts supported by proteomic analyses, as well as novel non coding RNAs. High resolution genetic mapping of transcript levels in HMDP, reveals both local and trans expression Quantitative Trait Loci (eQTLs) demonstrating 2 trans eQTL 'hotspots' associated with expression of hundreds of genes. We also report thousands of alternative splicing events regulated by genetic variants. Finally, comparison with about 150 metabolic and cardiovascular traits revealed many highly significant associations. Our data provide a rich resource for understanding the many physiologic functions mediated by the hypothalamus and their genetic regulation. DOI: http://dx.doi.org/10.7554/eLife.15614.001 PMID:27623010

  10. An improved method for identification of small non-coding RNAs in bacteria using support vector machine

    PubMed Central

    Barman, Ranjan Kumar; Mukhopadhyay, Anirban; Das, Santasabuj

    2017-01-01

    Bacterial small non-coding RNAs (sRNAs) are not translated into proteins, but act as functional RNAs. They are involved in diverse biological processes like virulence, stress response and quorum sensing. Several high-throughput techniques have enabled identification of sRNAs in bacteria, but experimental detection remains a challenge and grossly incomplete for most species. Thus, there is a need to develop computational tools to predict bacterial sRNAs. Here, we propose a computational method to identify sRNAs in bacteria using support vector machine (SVM) classifier. The primary sequence and secondary structure features of experimentally-validated sRNAs of Salmonella Typhimurium LT2 (SLT2) was used to build the optimal SVM model. We found that a tri-nucleotide composition feature of sRNAs achieved an accuracy of 88.35% for SLT2. We validated the SVM model also on the experimentally-detected sRNAs of E. coli and Salmonella Typhi. The proposed model had robustly attained an accuracy of 81.25% and 88.82% for E. coli K-12 and S. Typhi Ty2, respectively. We confirmed that this method significantly improved the identification of sRNAs in bacteria. Furthermore, we used a sliding window-based method and identified sRNAs from complete genomes of SLT2, S. Typhi Ty2 and E. coli K-12 with sensitivities of 89.09%, 83.33% and 67.39%, respectively. PMID:28383059

  11. SINEUPs: A new class of natural and synthetic antisense long non-coding RNAs that activate translation

    PubMed Central

    Zucchelli, S; Cotella, D; Takahashi, H; Carrieri, C; Cimatti, L; Fasolo, F; Jones, MH; Sblattero, D; Sanges, R; Santoro, C; Persichetti, F; Carninci, P; Gustincich, S

    2015-01-01

    Over the past 10 years, it has emerged that pervasive transcription in mammalian genomes has a tremendous impact on several biological functions. Most of transcribed RNAs are lncRNAs and repetitive elements. In this review, we will detail the discovery of a new functional class of natural and synthetic antisense lncRNAs that stimulate translation of sense mRNAs. These molecules have been named SINEUPs since their function requires the activity of an embedded inverted SINEB2 sequence to UP-regulate translation. Natural SINEUPs suggest that embedded Transposable Elements may represent functional domains in long non-coding RNAs. Synthetic SINEUPs may be designed by targeting the antisense sequence to the mRNA of choice representing the first scalable tool to increase protein synthesis of potentially any gene of interest. We will discuss potential applications of SINEUP technology in the field of molecular biology experiments, in protein manufacturing as well as in therapy of haploinsufficiencies. PMID:26259533

  12. lncRScan-SVM: A Tool for Predicting Long Non-Coding RNAs Using Support Vector Machine.

    PubMed

    Sun, Lei; Liu, Hui; Zhang, Lin; Meng, Jia

    2015-01-01

    Functional long non-coding RNAs (lncRNAs) have been bringing novel insight into biological study, however it is still not trivial to accurately distinguish the lncRNA transcripts (LNCTs) from the protein coding ones (PCTs). As various information and data about lncRNAs are preserved by previous studies, it is appealing to develop novel methods to identify the lncRNAs more accurately. Our method lncRScan-SVM aims at classifying PCTs and LNCTs using support vector machine (SVM). The gold-standard datasets for lncRScan-SVM model training, lncRNA prediction and method comparison were constructed according to the GENCODE gene annotations of human and mouse respectively. By integrating features derived from gene structure, transcript sequence, potential codon sequence and conservation, lncRScan-SVM outperforms other approaches, which is evaluated by several criteria such as sensitivity, specificity, accuracy, Matthews correlation coefficient (MCC) and area under curve (AUC). In addition, several known human lncRNA datasets were assessed using lncRScan-SVM. LncRScan-SVM is an efficient tool for predicting the lncRNAs, and it is quite useful for current lncRNA study.

  13. Long Non-Coding RNA PVT1 Facilitates Cervical Cancer Progression Via Negative Regulating of miR-424.

    PubMed

    Gao, Ya-Li; Zhao, Zi-Shen; Zhang, Ming-Yun; Han, Li-Jie; Dong, Yu-Jin; Xu, Bo

    2017-03-08

    Emerging evidence suggests that the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 gene (PVT1) is involved in pathogenesis of cervical cancer. However, the potential mechanism is rarely reported. Our study found that PVT1 was up-regulated in cervical cancer tissue and cell lines. After transfecting PVT1 siRNA, the proliferation, migration and invasion of cervical cancer cells were markedly decreased. MiRNA expression profiles demonstrate that miR-424 was markedly down-regulated in cervical cancer tissue. Bioinformatics analysis revealed that miR-424 was potentially targeted by PVT1, which was confirmed by dual-luciferase reporter assay. Pearson's correlation analysis showed that PVT1 expression was negatively related to miR-424 expression in glioma cancer tissues. Finally, miR-424 lower-expression could recover the tumor-suppressive effects of PVT1 knockdown in cervical cancer cell lines. Our results reveal the tumor-promoting role of PVT1, acting as competing endogenous RNA (ceRNA) or a molecular sponge in negatively modulating miR-424, which might provide a novel therapeutic target for cervical cancer.

  14. Long Non-coding RNA HOTAIR Is Targeted and Regulated by miR-141 in Human Cancer Cells*

    PubMed Central

    Chiyomaru, Takeshi; Fukuhara, Shinichiro; Saini, Sharanjot; Majid, Shahana; Deng, Guoren; Shahryari, Varahram; Chang, Inik; Tanaka, Yuichiro; Enokida, Hideki; Nakagawa, Masayuki; Dahiya, Rajvir; Yamamura, Soichiro

    2014-01-01

    HOTAIR is a long non-coding RNA that interacts with the polycomb repressive complex and suppresses its target genes. HOTAIR has also been demonstrated to promote malignancy. MicroRNA-141 (miR-141) has been reported to play a role in the epithelial to mesenchymal transition process, and the expression of miR-141 is inversely correlated with tumorigenicity and invasiveness in several human cancers. We found that HOTAIR expression is inversely correlated to miR-141 expression in renal carcinoma cells. HOTAIR promotes malignancy, including proliferation and invasion, whereas miR-141 suppresses malignancy in human cancer cells. miR-141 binds to HOTAIR in a sequence-specific manner and suppresses HOTAIR expression and functions, including proliferation and invasion. Both HOTAIR and miR-141 were associated with the immunoprecipitated Ago2 (Argonaute2) complex, and the Ago2 complex cleaved HOTAIR in the presence of miR-141. These results demonstrate that HOTAIR is suppressed by miR-141 in an Ago2-dependent manner. PMID:24616104

  15. Long non-coding RNA HOTAIR is targeted and regulated by miR-141 in human cancer cells.

    PubMed

    Chiyomaru, Takeshi; Fukuhara, Shinichiro; Saini, Sharanjot; Majid, Shahana; Deng, Guoren; Shahryari, Varahram; Chang, Inik; Tanaka, Yuichiro; Enokida, Hideki; Nakagawa, Masayuki; Dahiya, Rajvir; Yamamura, Soichiro

    2014-05-02

    HOTAIR is a long non-coding RNA that interacts with the polycomb repressive complex and suppresses its target genes. HOTAIR has also been demonstrated to promote malignancy. MicroRNA-141 (miR-141) has been reported to play a role in the epithelial to mesenchymal transition process, and the expression of miR-141 is inversely correlated with tumorigenicity and invasiveness in several human cancers. We found that HOTAIR expression is inversely correlated to miR-141 expression in renal carcinoma cells. HOTAIR promotes malignancy, including proliferation and invasion, whereas miR-141 suppresses malignancy in human cancer cells. miR-141 binds to HOTAIR in a sequence-specific manner and suppresses HOTAIR expression and functions, including proliferation and invasion. Both HOTAIR and miR-141 were associated with the immunoprecipitated Ago2 (Argonaute2) complex, and the Ago2 complex cleaved HOTAIR in the presence of miR-141. These results demonstrate that HOTAIR is suppressed by miR-141 in an Ago2-dependent manner.

  16. Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculogenic mimicry and angiogenesis.

    PubMed

    Li, Yue; Wu, Zhenzhen; Yuan, Jia; Sun, Li; Lin, Li; Huang, Na; Bin, Jianping; Liao, Yulin; Liao, Wangjun

    2017-06-01

    MALAT1 is an oncogenic long non-coding RNA that has been found to promote the proliferation of many malignant cell types and non-malignant human umbilical vein endothelial cells (HUVECs). However, the functions of MALAT1 in vasculogenic mimicry (VM) and angiogenesis and the potential mechanisms responsible have not yet been investigated in any malignancy. Here, in situ hybridization and CD31/periodic acid-Schiff double staining of 150 gastric cancer (GC) clinical specimens revealed that MALAT1 expression was tightly associated with densities of VM and endothelial vessels. MALAT1 knockdown markedly reduced GC cell migration, invasion, tumorigenicity, metastasis, and VM, while restricting HUVEC angiogenesis and increasing vascular permeability. Moreover, MALAT1 was found to regulate expression of VE-cadherin, β-catenin, MMPs 2 and 9, MT1-MMP, p-ERK, p-FAK, and p-paxillin, which have been established as classical markers of VM and angiogenesis and components of associated signaling pathways. Consistent with this, the p-ERK inhibitors U0126 and PD98059 both effectively blocked GC cell VM. In conclusion, MALAT1 can promote tumorigenicity and metastasis in GC by facilitating VM and angiogenesis via the VE-cadherin/β-catenin complex and ERK/MMP and FAK/paxillin signaling pathways.

  17. Altered long non-coding RNA expression profile in patients with IgA-negative mesangial proliferative glomerulonephritis.

    PubMed

    Sui, Weiguo; Li, Huan; Ou, Minglin; Tang, Dong'e; Dai, Yong

    2012-07-01

    Mesangial proliferative glomerulonephritis (MsPGN) is one of the most common immune-mediated renal diseases. The mesangium is expanded and hypercellular, immuno-globulin deposits can be found in the mesangium, but the mechanism underlying its cause remains largely unclear. There is a large amount of evidence suggesting that long ﹥200 nucleotide) non-coding RNAs (lncRNA) have important regulatory functions in the epigenetic control of gene expression. Multiple lines of evidence increasingly link mutations and dysregulations of lncRNAs to a diverse number of human diseases. Through microarray expression analysis, tests show that thousands of lncRNAs and protein-coding genes are significantly differentially expressed in IgA-negative MsPGN. Some lncRNAs and their neighboring protein-coding genes are closely related and are cooperatively expressed. This may be part of a potential regulatory mechanism. The malfunction of regulation in the network of lncRNAs may be a possible mechanism for the development of IgA-negative MsPGN. Our observations suggest that some lncRNAs are closely related to IgA-negative MsPGN and may be playing an important role in this disease.

  18. Long non-coding RNA UC001kfo promotes hepatocellular carcinoma proliferation and metastasis by targeting α-SMA.

    PubMed

    Pan, Yanfeng; Qin, Tao; Yin, Shenglu; Zhang, Xianqiang; Gao, Xiaojuan; Mu, Lifen

    2017-03-01

    Several long non-coding RNAs (lncRNAs) have been investigated and found to be correlated with the behaviours and prognosis of hepatocellular carcinoma (HCC); Specifically, we revealed that the lncRNA UC001kfo was differentially expressed in HCC tissues compared with normal liver tissues using lncRNA microarrays, but its functional role in cancers, including HCC, has not yet been elucidated. The present study found that the expression of UC001kfo was upregulated in HCC tissues and cell lines in comparison with tumour-adjacent tissues and normal hepatocytes, respectively. In addition, a high UC001kfo level was determined to be correlated with macro-vascular invasion and TNM stage of HCC. Specifically, patients with high UC001kfo expression displayed a significantly lower overall survival rate and progression-free survival rate. Moreover, both univariate and multivariate COX regression analyses identified TNM stage and high UC001kfo expression as risk factors for poor prognosis in HCC patients. In addition, UC001kfo was verified to promote the proliferation, metastasis and epithelial-mesenchymal transition (EMT) in HCC cells in both in vitro and in vivo assays. Mechanistically, α-SMA was indicated as a potential target gene of UC001kfo in mediating HCC metastasis. In conclusion, UC001kfo promotes HCC proliferation and metastasis by targeting α-SMA, and UC001kfo may potentially serve as a prognostic marker and a therapeutic target for treatment of HCC.

  19. A novel non-coding RNA lncRNA-JADE connects DNA damage signalling to histone H4 acetylation.

    PubMed

    Wan, Guohui; Hu, Xiaoxiao; Liu, Yunhua; Han, Cecil; Sood, Anil K; Calin, George A; Zhang, Xinna; Lu, Xiongbin

    2013-10-30

    A prompt and efficient DNA damage response (DDR) eliminates the detrimental effects of DNA lesions in eukaryotic cells. Basic and preclinical studies suggest that the DDR is one of the primary anti-cancer barriers during tumorigenesis. The DDR involves a complex network of processes that detect and repair DNA damage, in which long non-coding RNAs (lncRNAs), a new class of regulatory RNAs, may play an important role. In the current study, we identified a novel lncRNA, lncRNA-JADE, that is induced after DNA damage in an ataxia-telangiectasia mutated (ATM)-dependent manner. LncRNA-JADE transcriptionally activates Jade1, a key component in the HBO1 (human acetylase binding to ORC1) histone acetylation complex. Consequently, lncRNA-JADE induces histone H4 acetylation in the DDR. Markedly higher levels of lncRNA-JADE were observed in human breast tumours in comparison with normal breast tissues. Knockdown of lncRNA-JADE significantly inhibited breast tumour growth in vivo. On the basis of these results, we propose that lncRNA-JADE is a key functional link that connects the DDR to histone H4 acetylation, and that dysregulation of lncRNA-JADE may contribute to breast tumorigenesis.

  20. nc886, a non-coding RNA and suppressor of PKR, exerts an oncogenic function in thyroid cancer

    PubMed Central

    Lee, Hyun-Sung; Lee, Ju-Seog; Park, Eun Jung; Choi, Sun Shim; Min, Jae Woong; Park, Daeyoon; Hwang, Jung-Ah; Johnson, Betty H.; Jeon, Sung Ho; Kim, In-Hoo; Lee, Yeon-Su; Lee, Yong Sun

    2016-01-01

    nc886 is a recently identified cellular non-coding RNA and its depletion leads to acute cell death via PKR (Protein Kinase RNA-activated) activation. nc886 expression is increased in some malignancies, but silenced in others. However, the precise role of nc886/PKR is controversial: is it a tumor suppressor or an oncogene? In this study, we have clarified the role of nc886 in thyroid cancer by sequentially generating PKR knockout (KO) and PKR/nc886 double KO cell lines from Nthy-ori 3-1, a partially transformed thyroid cell line. Compared to the wildtype, PKR KO alone does not exhibit any significant phenotypic changes. However, nc886 KO cells are less proliferative, migratory, and invasive than their parental PKR KO cells. Importantly, the requirement of nc886 in tumor phenotypes is totally independent of PKR. In our microarray data, nc886 KO suppresses some genes whose elevated expression is associated with poor survival confirmed by data from total of 505 thyroid cancer patients in the Caner Genome Atlas project. Also, the nc886 expression level tends to be elevated and in more aggressively metastatic tumor specimens from thyroid cancer patients. In summary, we have discovered nc886's tumor-promoting role in thyroid cancer which has been concealed by the PKR-mediated acute cell death. PMID:27612419

  1. Long non-coding RNA SOX2OT: expression signature, splicing patterns, and emerging roles in pluripotency and tumorigenesis

    PubMed Central

    Shahryari, Alireza; Jazi, Marie Saghaeian; Samaei, Nader M.; Mowla, Seyed J.

    2015-01-01

    SOX2 overlapping transcript (SOX2OT) is a long non-coding RNA which harbors one of the major regulators of pluripotency, SOX2 gene, in its intronic region. SOX2OT gene is mapped to human chromosome 3q26.3 (Chr3q26.3) locus and is extended in a high conserved region of over 700 kb. Little is known about the exact role of SOX2OT; however, recent studies have demonstrated a positive role for it in transcription regulation of SOX2 gene. Similar to SOX2, SOX2OT is highly expressed in embryonic stem cells and down-regulated upon the induction of differentiation. SOX2OT is dynamically regulated during the embryogenesis of vertebrates, and delimited to the brain in adult mice and human. Recently, the disregulation of SOX2OT expression and its concomitant expression with SOX2 have become highlighted in some somatic cancers including esophageal squamous cell carcinoma, lung squamous cell carcinoma, and breast cancer. Interestingly, SOX2OT is differentially spliced into multiple mRNA-like transcripts in stem and cancer cells. In this review, we are describing the structural and functional features of SOX2OT, with an emphasis on its expression signature, its splicing patterns and its critical function in the regulation of SOX2 expression during development and tumorigenesis. PMID:26136768

  2. Identification of a novel human long non-coding RNA that regulates hepatic lipid metabolism by inhibiting SREBP-1c

    PubMed Central

    Li, Duan; Cheng, Min; Niu, Yuqiang; Chi, Xiaojing; Liu, Xiuying; Fan, Jingjing; Fan, Heng; Chang, Yongsheng; Yang, Wei

    2017-01-01

    Sterol regulatory element binding proteins (SREBPs) are master regulators of hepatic lipid homeostasis. Aberrant expression of SREBPs frequently leads to lipid metabolism dysregulation. Long non-coding RNAs (lncRNAs) have been identified with diverse biological functions, but the effects of lncRNAs on lipid metabolism are rarely reported. Here, we identified a novel human specific lncRNA, lncHR1, as a negative regulator of SREBP-1c expression. Overexpression of lncHR1 inhibited expression of SREBP-1c and fatty acid synthase (FAS) and then repressed oleic acid-induced hepatic cell triglyceride (TG) and lipid droplet (LD) accumulation. In vivo, the data of established transgenic animals showed that mice with lncHR1 expression had less hepatic expression of SREBP-1c, FAS, Acetyl-CoA carboxylase α (ACCα), and less hepatic and plasma TG after being fed a high-fat diet. Therefore, we report a novel lncRNA which can decrease lipid metabolism by repressing SREBP-1c gene expression. PMID:28367099

  3. Specific expression of novel long non-coding RNAs in high-hyperdiploid childhood acute lymphoblastic leukemia.

    PubMed

    Lajoie, Mathieu; Drouin, Simon; Caron, Maxime; St-Onge, Pascal; Ouimet, Manon; Gioia, Romain; Lafond, Marie-Hélène; Vidal, Ramon; Richer, Chantal; Oualkacha, Karim; Droit, Arnaud; Sinnett, Daniel

    2017-01-01

    Pre-B cell childhood acute lymphoblastic leukemia (pre-B cALL) is a heterogeneous disease involving many subtypes typically stratified using a combination of cytogenetic and molecular-based assays. These methods, although widely used, rely on the presence of known chromosomal translocations, which is a limiting factor. There is therefore a need for robust, sensitive, and specific molecular biomarkers unaffected by such limitations that would allow better risk stratification and consequently better clinical outcome. In this study we performed a transcriptome analysis of 56 pre-B cALL patients to identify expression signatures in different subtypes. In both protein-coding and long non-coding RNAs (lncRNA), we identified subtype-specific gene signatures distinguishing pre-B cALL subtypes, particularly in t(12;21) and hyperdiploid cases. The genes up-regulated in pre-B cALL subtypes were enriched in bivalent chromatin marks in their promoters. LncRNAs is a new and under-studied class of transcripts. The subtype-specific nature of lncRNAs suggests they may be suitable clinical biomarkers to guide risk stratification and targeted therapies in pre-B cALL patients.

  4. Association of Long Non-Coding RNA HOTAIR Polymorphisms with Cervical Cancer Risk in a Chinese Population

    PubMed Central

    Guo, Liangsheng; Lu, Xueguan; Zheng, Lijun; Liu, Xianying; Hu, Min

    2016-01-01

    Long non-coding RNAs (lncRNAs), HOTAIR has been reported to be upregulated in cervical cancer development and progression. However, SNPs (single nucleotide polymorphisms) in the lncRNAs and their associations with cervical cancer susceptibility have not been reported. In the current study, we hypothesized that SNPs within the lncRNA HOTAIR may influence the risk of cervical cancer. We performed a case-control study including 510 cervical cancer patients (cases) and 713 cancer-free individuals (controls) to investigate the association between three haplotype-tagging SNPs (rs920778, rs1899663 and rs4759314) in the lncRNA HOTAIR and the risk of cervical cancer. We found a strong association between the SNP rs920778 in the intronic enhancer of the HOTAIR and cervical cancer (P<10−4). Moreover, the cervical cancer patients with homozygous TT genotype were significantly associated with tumor-node-metastasis (TNM) stage. In vitro assays with allele-specific reporter constructs indicated that the reporter constructs bearing rs920778T allele conferred elevated reporter gene transcriptional activity when compared to the reporter constructs containing rs920778C allele. Furthermore, HOTAIR expression was higher in cervical cancer tissues than that in corresponding normal tissues, and the high expression was associated with the risk-associated allele T. In summary, our studies provide strong functional evidence that functional SNP rs920778 regulates HOTAIR expression, and may ultimately influence the predisposition for cervical cancer. PMID:27467165

  5. Genome-wide long non-coding RNA screening, identification and characterization in a model microorganism Chlamydomonas reinhardtii

    PubMed Central

    Li, Hui; Wang, Yuting; Chen, Meirong; Xiao, Peng; Hu, Changxing; Zeng, Zhiyong; Wang, Chaogang; Wang, Jiangxin; Hu, Zhangli

    2016-01-01

    Microalgae are regarded as the most promising biofuel candidates and extensive metabolic engineering were conducted but very few improvements were achieved. Long non-coding RNA (lncRNA) investigation and manipulation may provide new insights for this issue. LncRNAs refer to transcripts that are longer than 200 nucleotides, do not encode proteins but play important roles in eukaryotic gene regulation. However, no information of potential lncRNAs has been reported in eukaryotic alga. Recently, we performed RNA sequencing in Chlamydomonas reinhardtii, and obtained totally 3,574 putative lncRNAs. 1440 were considered as high-confidence lncRNAs, including 936 large intergenic, 310 intronic and 194 anti-sense lncRNAs. The average transcript length, ORF length and numbers of exons for lncRNAs are much less than for genes in this green alga. In contrast with human lncRNAs of which more than 98% are spliced, the percentage in C. reinhardtii is only 48.1%. In addition, we identified 367 lncRNAs responsive to sulfur deprivation, including 36 photosynthesis-related lncRNAs. This is the first time that lncRNAs were explored in the unicellular model organism C. reinhardtii. The lncRNA data could also provide new insights into C. reinhardtii hydrogen production under sulfur deprivation. PMID:27659799

  6. The structure of the genotype–phenotype map strongly constrains the evolution of non-coding RNA

    PubMed Central

    Dingle, Kamaludin; Schaper, Steffen; Louis, Ard A.

    2015-01-01

    The prevalence of neutral mutations implies that biological systems typically have many more genotypes than phenotypes. But, can the way that genotypes are distributed over phenotypes determine evolutionary outcomes? Answering such questions is difficult, in part because the number of genotypes can be hyper-astronomically large. By solving the genotype–phenotype (GP) map for RNA secondary structure (SS) for systems up to length L = 126 nucleotides (where the set of all possible RNA strands would weigh more than the mass of the visible universe), we show that the GP map strongly constrains the evolution of non-coding RNA (ncRNA). Simple random sampling over genotypes predicts the distribution of properties such as the mutational robustness or the number of stems per SS found in naturally occurring ncRNA with surprising accuracy. Because we ignore natural selection, this strikingly close correspondence with the mapping suggests that structures allowing for functionality are easily discovered, despite the enormous size of the genetic spaces. The mapping is extremely biased: the majority of genotypes map to an exponentially small portion of the morphospace of all biophysically possible structures. Such strong constraints provide a non-adaptive explanation for the convergent evolution of structures such as the hammerhead ribozyme. These results present a particularly clear example of bias in the arrival of variation strongly shaping evolutionary outcomes and may be relevant to Mayr's distinction between proximate and ultimate causes in evolutionary biology. PMID:26640651

  7. Long intergenic non-coding RNA 271 is predictive of a poorer prognosis of papillary thyroid cancer

    PubMed Central

    Ma, Ben; Liao, Tian; Wen, Duo; Dong, Chuanpeng; Zhou, Li; Yang, Shuwen; Wang, Yu; Ji, Qinghai

    2016-01-01

    A number of long non-coding RNAs (lncRNAs) have been found to play critical roles in oncogenesis and tumor progression. We aimed to investigate whether lncRNAs could act as prognostic biomarkers for papillary thyroid cancer (PTC) that may assist us in evaluating disease status and prognosis for patients. We found 220 lncRNAs with expression alteration from the annotated 2773 lncRNAs approved by the HUGO gene nomenclature committee in The Cancer Genome Atlas (TCGA) dataset, of which FAM41C, CTBP1-AS2, LINC00271, HAR1A, LINC00310 and HAS2-AS1 were associated with recurrence. After adjusting classical clinicopathogical factors and BRAFV600E mutation, LINC00271 was found to be an independent risk factor for extrathyroidal extension, lymph node metastasis, advanced tumor stage III/IV and recurrence in multivariate analyses. Additionally, LINC00271 expression was significantly downregulated in PTCs versus adjacent normal tissues (P < 0.001). The Gene Set Enrichment Analysis (GSEA) revealed that genes associated with cell adhesion molecules, cell cycle, P53 signaling pathway and JAK/STAT signaling pathway were remarkably enriched in lower-LINC00271 versus higher-LINC00271 tumors. In conclusion, LINC00271 was identified as a possible suppressor gene in PTC in our study, and it may serve as a potential predictor of poor prognoses in PTC. PMID:27833134

  8. Comprehensive analysis of The Cancer Genome Atlas reveals a unique gene and non-coding RNA signature of fibrolamellar carcinoma

    PubMed Central

    Dinh, Timothy A.; Vitucci, Eva C. M.; Wauthier, Eliane; Graham, Rondell P.; Pitman, Wendy A.; Oikawa, Tsunekazu; Chen, Mengjie; Silva, Grace O.; Greene, Kevin G.; Torbenson, Michael S.; Reid, Lola M.; Sethupathy, Praveen

    2017-01-01

    Fibrolamellar carcinoma (FLC) is a unique liver cancer primarily affecting young adults and characterized by a fusion event between DNAJB1 and PRKACA. By analyzing RNA-sequencing data from The Cancer Genome Atlas (TCGA) for >9,100 tumors across ~30 cancer types, we show that the DNAJB1-PRKACA fusion is specific to FLCs. We demonstrate that FLC tumors (n = 6) exhibit distinct messenger RNA (mRNA) and long intergenic non-coding RNA (lincRNA) profiles compared to hepatocellular carcinoma (n = 263) and cholangiocarcinoma (n = 36), the two most common liver cancers. We also identify a set of mRNAs (n = 16) and lincRNAs (n = 4), including LINC00473, that distinguish FLC from ~25 other liver and non-liver cancer types. We confirm this unique FLC signature by analysis of two independent FLC cohorts (n = 20 and 34). Lastly, we validate the overexpression of one specific gene in the FLC signature, carbonic anhydrase XII (CA12), at the protein level by western blot and immunohistochemistry. Both the mRNA and lincRNA signatures support a major role for protein kinase A (PKA) signaling in shaping the FLC gene expression landscape, and present novel candidate FLC oncogenes that merit further investigation. PMID:28304380

  9. IRES-dependent translation of the long non coding RNA meloe in melanoma cells produces the most immunogenic MELOE antigens

    PubMed Central

    Charpentier, Maud; Croyal, Mikael; Carbonnelle, Delphine; Fortun, Agnès; Florenceau, Laetitia; Rabu, Catherine; Krempf, Michel; Labarrière, Nathalie; Lang, François

    2016-01-01

    MELOE-1 and MELOE-2, two highly specific melanoma antigens involved in T cell immunosurveillance are produced by IRES-dependent translation of the long « non coding » and polycistronic RNA, meloe. In the present study, we document the expression of an additional ORF, MELOE-3, located in the 5′ region of meloe. Data from in vitro translation experiments and transfection of melanoma cells with bicistronic vectors documented that MELOE-3 is exclusively translated by the classical cap-dependent pathway. Using a sensitive tandem mass spectrometry technique, we detected the presence of MELOE-3 in total lysates of both melanoma cells and normal melanocytes. This contrasts with our previous observation of the melanoma-restricted expression of MELOE-1 and MELOE-2. Furthermore, in vitro stimulation of PBMC from 6 healthy donors with overlapping peptides from MELOE-1 or MELOE-3 revealed a very scarce MELOE-3 specific T cell repertoire as compared to the abundant repertoire observed against MELOE-1. The poor immunogenicity of MELOE-3 and its expression in melanocytes is consistent with an immune tolerance towards a physiologically expressed protein. In contrast, melanoma-restricted expression of IRES-dependent MELOE-1 may explain its high immunogenicity. In conclusion, within the MELOE family, IRES-dependent antigens represent the best T cell targets for immunotherapy of melanoma. PMID:27486971

  10. Non-coding genomic regions possessing enhancer and silencer potential are associated with healthy aging and exceptional survival.

    PubMed

    Kim, Sangkyu; Welsh, David A; Myers, Leann; Cherry, Katie E; Wyckoff, Jennifer; Jazwinski, S Michal

    2015-02-28

    We have completed a genome-wide linkage scan for healthy aging using data collected from a family study, followed by fine-mapping by association in a separate population, the first such attempt reported. The family cohort consisted of parents of age 90 or above and their children ranging in age from 50 to 80. As a quantitative measure of healthy aging, we used a frailty index, called FI34, based on 34 health and function variables. The linkage scan found a single significant linkage peak on chromosome 12. Using an independent cohort of unrelated nonagenarians, we carried out a fine-scale association mapping of the region suggestive of linkage and identified three sites associated with healthy aging. These healthy-aging sites (HASs) are located in intergenic regions at 12q13-14. HAS-1 has been previously associated with multiple diseases, and an enhancer was recently mapped and experimentally validated within the site. HAS-2 is a previously uncharacterized site possessing genomic features suggestive of enhancer activity. HAS-3 contains features associated with Polycomb repression. The HASs also contain variants associated with exceptional longevity, based on a separate analysis. Our results provide insight into functional genomic networks involving non-coding regulatory elements that are involved in healthy aging and longevity.

  11. Mutual inhibition between YAP and SRSF1 maintains long non-coding RNA, Malat1-induced tumourigenesis in liver cancer.

    PubMed

    Wang, Jiayi; Wang, Hongmei; Zhang, Yue; Zhen, Ni; Zhang, Li; Qiao, Yongxia; Weng, Wenhao; Liu, Xiangfan; Ma, Lifang; Xiao, Weifan; Yu, Wenjun; Chu, Qinghua; Pan, Qiuhui; Sun, Fenyong

    2014-05-01

    Emerging studies have revealed that Malat1 is overexpressed in many malignant diseases, including liver cancer, and contributes to enhancing cell migration or facilitating proliferation. However, the mechanism underlying its regulation has largely remained elusive. Here, we characterised the oncoprotein Yes-associated protein (YAP), which up-regulated metastasis-associated lung adenocarcinoma transcript 1 (Malat1) expression at both transcriptional and post-transcriptional levels, whereas serine/arginine-rich splicing factor 1 (SRSF1) played an opposing role. SRSF1 inhibited YAP activity by preventing its co-occupation with TCF/β-catenin on the Malat1 promoter. In contrast, overexpression of YAP impaired the nuclear retention of both SRSF1 and itself via an interaction with Angiomotin (AMOT). This effect removed the inhibitory role of SRSF1 on Malat1 in the nucleus. Furthermore, higher expression of YAP was consistent with a lower SRSF1 nuclear accumulation in human liver cancer tissues. We also revealed that overexpression of YAP combined with a knockdown of SRSF1 resulted in conspicuously enhanced transwell cell mobility, accelerated tumour growth rate, and loss of body weight in a tail vein-injected mouse models. Taken together, these data provided a novel mechanism underlying the balance between SRSF1, YAP and Malat1 and uncovered a new role of YAP in regulating long non-coding RNA (lncRNA). Thus, disrupting the interaction between YAP and SRSF1 may serve as a crucial therapeutic method in liver cancer.

  12. Non-coding RNAs derived from an alternatively spliced REST transcript (REST-003) regulate breast cancer invasiveness.

    PubMed

    Lee, Nan Sook; Evgrafov, Oleg V; Souaiaia, Tade; Bonyad, Adrineh; Herstein, Jennifer; Lee, Joo Yeun; Kim, Jihong; Ning, Yan; Sixto, Marcos; Weitz, Andrew C; Lenz, Heinz-Josef; Wang, Kai; Knowles, James A; Press, Michael F; Salvaterra, Paul M; Shung, K Kirk; Chow, Robert H

    2015-06-08

    RE1-Silencing Transcription factor (REST) has a well-established role in regulating transcription of genes important for neuronal development. Its role in cancer, though significant, is less well understood. We show that REST downregulation in weakly invasive MCF-7 breast cancer cells converts them to a more invasive phenotype, while REST overexpression in highly invasive MDA-MB-231 cells suppresses invasiveness. Surprisingly, the mechanism responsible for these phenotypic changes does not depend directly on the transcriptional function of REST protein. Instead, it is driven by previously unstudied mid-size (30-200 nt) non-coding RNAs (ncRNAs) derived from the first exon of an alternatively spliced REST transcript: REST-003. We show that processing of REST-003 into ncRNAs is controlled by an uncharacterized serine/arginine repeat-related protein, SRRM3. SRRM3 expression may be under REST-mediated transcriptional control, as it increases following REST downregulation. The SRRM3-dependent regulation of REST-003 processing into ncRNAs has many similarities to recently described promoter-associated small RNA-like processes. Targeting ncRNAs that control invasiveness could lead to new therapeutic approaches to limit breast cancer metastasis.

  13. Large intervening non-coding RNA HOTAIR is an indicator of poor prognosis and a therapeutic target in human cancers.

    PubMed

    Yao, Yanlan; Li, Jinming; Wang, Lunan

    2014-10-20

    In the human genome, the fraction of protein-coding genes that are stably transcribed is only up to 2%, with the remaining numerous RNAs having no protein-coding function. These non-coding RNAs (ncRNAs) have received considerable attention in cancer research in recent years. Breakthroughs have been made in understanding microRNAs and small interfering RNAs, but larger RNAs such as long ncRNAs (lncRNAs) remain an enigma. One lncRNA, HOX antisense intergenic RNA (HOTAIR), has been shown to be dysregulated in many types of cancer, including breast cancer, colorectal cancer, and hepatoma. HOTAIR functions as a regulatory molecule in a wide variety of biological processes. However, its mechanism of action has not been clearly elucidated. It is widely believed that HOTAIR mediates chromosomal remodeling and coordinates with polycomb repressive complex 2 (PRC2) to regulate gene expression. Further study of HOTAIR-related pathways and the role of HOTAIR in tumorigenesis and tumor progression may identify new treatment targets. In this review, we will focus on the characteristics of HOTAIR, as well as data pertaining to its mechanism and its association with cancers.

  14. Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington's disease.

    PubMed

    Soldati, Chiara; Bithell, Angela; Johnston, Caroline; Wong, Kee-Yew; Stanton, Lawrence W; Buckley, Noel J

    2013-02-01

    Huntingtin (Htt) protein interacts with many transcriptional regulators, with widespread disruption to the transcriptome in Huntington's disease (HD) brought about by altered interactions with the mutant Htt (muHtt) protein. Repressor Element-1 Silencing Transcription Factor (REST) is a repressor whose association with Htt in the cytoplasm is disrupted in HD, leading to increased nuclear REST and concomitant repression of several neuronal-specific genes, including brain-derived neurotrophic factor (Bdnf). Here, we explored a wide set of HD dysregulated genes to identify direct REST targets whose expression is altered in a cellular model of HD but that can be rescued by knock-down of REST activity. We found many direct REST target genes encoding proteins important for nervous system development, including a cohort involved in synaptic transmission, at least two of which can be rescued at the protein level by REST knock-down. We also identified several microRNAs (miRNAs) whose aberrant repression is directly mediated by REST, including miR-137, which has not previously been shown to be a direct REST target in mouse. These data provide evidence of the contribution of inappropriate REST-mediated transcriptional repression to the widespread changes in coding and non-coding gene expression in a cellular model of HD that may affect normal neuronal function and survival.

  15. Integrative analysis reveals clinical phenotypes and oncogenic potentials of long non-coding RNAs across 15 cancer types

    PubMed Central

    Piccolo, Stephen R.; Zhang, Xiao-Qin; Li, Jun-Hao; Zhou, Hui; Yang, Jian-Hua; Qu, Liang-Hu

    2016-01-01

    Long non-coding RNAs (lncRNAs) have been shown to contribute to tumorigenesis. However, surprisingly little is known about the comprehensive clinical and genomic characterization of lncRNAs across human cancer. In this study, we conducted comprehensive analyses for the expression profile, clinical outcomes, somatic copy number alterations (SCNAs) profile of lncRNAs in ~7000 clinical samples from 15 different cancer types. We identified significantly differentially expressed lncRNAs between tumor and normal tissues from each cancer. Notably, we characterized 47 lncRNAs which were extensively dysregulated in at least 10 cancer types, suggesting a conserved function in cancer development. We also analyzed the associations between lncRNA expressions and patient survival, and identified sets of lncRNAs that possessed significant prognostic values in specific cancer types. Our combined analysis of SCNA data and expression data uncovered 116 dysregulated lncRNAs are strikingly genomic altered across 15 cancer types, indicating their oncogenic potentials. Our study may lay the groundwork for future functional studies of lncRNAs and help facilitate the discovery of novel clinical biomarkers. PMID:27147563

  16. Identification and characterization of the gene expression profiles for protein coding and non-coding RNAs of pancreatic ductal adenocarcinomas

    PubMed Central

    Gutiérrez, María Laura; Corchete, Luis; Teodosio, Cristina; Sarasquete, María Eugenia; Abad, María del Mar; Iglesias, Manuel; Esteban, Carmen

    2015-01-01

    Significant advances have been achieved in recent years in the identification of the genetic and the molecular alterations of pancreatic ductal adenocarcinoma (PDAC). Despite this, at present the understanding of the precise mechanisms involved in the development and malignant transformation of PDAC remain relatively limited. Here, we evaluated for the first time, the molecular heterogeneity of PDAC tumors, through simultaneous assessment of the gene expression profile (GEP) for both coding and non-coding genes of tumor samples from 27 consecutive PDAC patients. Overall, we identified a common GEP for all PDAC tumors, characterized by an increased expression of genes involved in PDAC cell proliferation, local invasion and metastatic capacity, together with a significant alteration of the early steps of the cellular immune response. At the same time, we confirm and extend on previous observations about the genetic complexity of PDAC tumors as revealed by the demonstration of two clearly distinct and unique GEPs (e.g. epithelial-like vs. mesenchymal-like) reflecting the alteration of different signaling pathways involved in the oncogenesis and progression of these tumors. Our results also highlight the potential role of the immune system microenvironment in these tumors, with potential diagnostic and therapeutic implications. PMID:26053098

  17. The PRC2-binding long non-coding RNAs in human and mouse genomes are associated with predictive sequence features

    NASA Astrophysics Data System (ADS)

    Tu, Shiqi; Yuan, Guo-Cheng; Shao, Zhen

    2017-01-01

    Recently, long non-coding RNAs (lncRNAs) have emerged as an important class of molecules involved in many cellular processes. One of their primary functions is to shape epigenetic landscape through interactions with chromatin modifying proteins. However, mechanisms contributing to the specificity of such interactions remain poorly understood. Here we took the human and mouse lncRNAs that were experimentally determined to have physical interactions with Polycomb repressive complex 2 (PRC2), and systematically investigated the sequence features of these lncRNAs by developing a new computational pipeline for sequences composition analysis, in which each sequence is considered as a series of transitions between adjacent nucleotides. Through that, PRC2-binding lncRNAs were found to be associated with a set of distinctive and evolutionarily conserved sequence features, which can be utilized to distinguish them from the others with considerable accuracy. We further identified fragments of PRC2-binding lncRNAs that are enriched with these sequence features, and found they show strong PRC2-binding signals and are more highly conserved across species than the other parts, implying their functional importance.

  18. Long non-coding RNA urothelial carcinoma associated 1 induces cell replication by inhibiting BRG1 in 5637 cells

    PubMed Central

    WANG, XIUJUAN; GONG, YANBING; JIN, BO; WU, CHENGLIN; YANG, JIANMING; WANG, LE; ZHANG, ZHENG; MAO, ZEBIN

    2014-01-01

    Long non-coding RNA urothelial carcinoma associated 1 (UCA1) was first identified in bladder cancer tissues. High expression of UCA1 in bladder cancer has suggested it may serve as a potential diagnostic molecular marker for bladder cancer. Subsequent research in bladder cancer cell lines showed that UCA1 can promote cell proliferation, but the underlying mechanism remains unknown. In the present study, we identified BRG1 as a UCA1 binding partner using an in vitro RNA pull-down assay, and RNA-binding protein immunoprecipitation assay confirmed UCA1-BRG binding in bladder cancer cells in vivo. BRG1 is a chromatin remodeling factor with reported tumor suppressor activities that directly upregulates levels of the p21 cell cycle inhibitor by binding sequences in the p21 promoter. Depletion of UCA1 by RNAi resulted in upregulated p21 levels and inhibition of cell replication, while overexpressed UCA1 reduced p21 protein and promoted cell growth. Notably, UCA1 downregulation of p21 and induction of cell proliferation antagonized the function of BRG1. UCA1 highly expressed tissue samples are often with BRG1 high expression. Furthermore, we found that UCA1 impairs both binding of BRG1 to the p21 promoter and chromatin remodeling activity of BRG1. Collectively, these results demonstrate that UCA1 promotes bladder cancer cell proliferation by inhibiting BRG1. PMID:24993775

  19. Long non-coding RNA CCAT2 is up-regulated in gastric cancer and associated with poor prognosis

    PubMed Central

    Wang, Chen-Yu; Hua, Long; Yao, Kun-Hou; Chen, Jiang-Tao; Zhang, Jun-Jie; Hu, Jun-Hong

    2015-01-01

    Introduction: Dysregulation of long non-coding RNAs (lncRNAs) play important roles in tumor progression. The aim of our study was to explore the clinicopathologic and prognostic significance of lncRNA CCAT2 expression in human gastric cancer. Methods: Expression levels of lncRNA CCAT2 in 85 pairs of gastric cancer and adjacent non-tumor tissues were detected by quantitative real-time PCR (qRT-PCR). In order to determine its prognostic value, overall survival and progression-free survival were evaluated using the Kaplan-Meier method, and multivariate analysis was performed using the Cox proportional hazard analysis. Results: Expression levels of lncRNA CCAT2 in gastric cancer tissues were significantly higher than those in adjacent non-tumor tissues. By statistical analyses, high lncRNA CCAT2 expression was observed to be closely correlated with higher incidence of lymph node metastasis and distance metastasis. Moreover, patients with high lncRNA CCAT2 expression had shorter overall survival and progression-free survival compared with the low lncRNA CCAT2 group. Multivariate analyses indicated that high lncRNA CCAT2 expression was an independent poor prognostic factor for gastric cancer patients. Conclusions: Our results suggested that up-regulation of lncRNA CCAT2 was correlated with gastric cancer progression, and lncRNA CCAT2 might be a potential molecular biomarker for predicting the prognosis of patients. PMID:25755774

  20. Specific expression of novel long non-coding RNAs in high-hyperdiploid childhood acute lymphoblastic leukemia

    PubMed Central

    Drouin, Simon; Caron, Maxime; St-Onge, Pascal; Gioia, Romain; Richer, Chantal; Oualkacha, Karim; Droit, Arnaud; Sinnett, Daniel

    2017-01-01

    Pre-B cell childhood acute lymphoblastic leukemia (pre-B cALL) is a heterogeneous disease involving many subtypes typically stratified using a combination of cytogenetic and molecular-based assays. These methods, although widely used, rely on the presence of known chromosomal translocations, which is a limiting factor. There is therefore a need for robust, sensitive, and specific molecular biomarkers unaffected by such limitations that would allow better risk stratification and consequently better clinical outcome. In this study we performed a transcriptome analysis of 56 pre-B cALL patients to identify expression signatures in different subtypes. In both protein-coding and long non-coding RNAs (lncRNA), we identified subtype-specific gene signatures distinguishing pre-B cALL subtypes, particularly in t(12;21) and hyperdiploid cases. The genes up-regulated in pre-B cALL subtypes were enriched in bivalent chromatin marks in their promoters. LncRNAs is a new and under-studied class of transcripts. The subtype-specific nature of lncRNAs suggests they may be suitable clinical biomarkers to guide risk stratification and targeted therapies in pre-B cALL patients. PMID:28346506

  1. Non-coding Y RNAs associate with early replicating euchromatin concordantly with the origin recognition complex (ORC).

    PubMed

    Kheir, Eyemen G A; Krude, Torsten

    2017-02-24

    Non-coding Y RNAs are essential for the initiation of chromosomal DNA replication in vertebrates, yet their association with chromatin during the cell cycle is not characterised. Here, we quantify human Y RNA levels in soluble and chromatin-associated intracellular fractions and investigate topographically their dynamic association with chromatin during the cell cycle. We find that, on average, about a million Y RNA molecules are present in the soluble fraction of a proliferating cell, and 5-10-fold less in association with chromatin. These levels decrease substantially in quiescence. No significant differences are apparent between cancer and non-cancer cell lines. Y RNAs associate with euchromatin throughout the cell cycle. Their levels are 2-4-fold higher in S than in G1 phase or mitosis. Y RNAs are not detectable at active DNA replication foci, and re-associate with replicated euchromatin during mid/late S phase. The dynamics and sites of Y1 RNA association with chromatin are concordant with those of the origin recognition complex, ORC. Our data therefore suggest a functional role of Y RNAs in a common pathway with ORC.

  2. A Non-Coding RNA Promotes Bacterial Persistence and Decreases Virulence by Regulating a Regulator in Staphylococcus aureus

    PubMed Central

    Tomasini, Arnaud; Caldelari, Isabelle; Benito, Yvonne; Hammann, Philippe; Geissmann, Thomas; Boisset, Sandrine; Romby, Pascale; Vandenesch, François

    2014-01-01

    Staphylococcus aureus produces a high number of RNAs for which the functions are poorly understood. Several non-coding RNAs carry a C-rich sequence suggesting that they regulate mRNAs at the post-transcriptional level. We demonstrate that the Sigma B-dependent RsaA RNA represses the synthesis of the global transcriptional regulator MgrA by forming an imperfect duplex with the Shine and Dalgarno sequence and a loop-loop interaction within the coding region of the target mRNA. These two recognition sites are required for translation repression. Consequently, RsaA causes enhanced production of biofilm and a decreased synthesis of capsule formation in several strain backgrounds. These phenotypes led to a decreased protection of S. aureus against opsonophagocytic killing by polymorphonuclear leukocytes compared to the mutant strains lacking RsaA. Mice animal models showed that RsaA attenuates the severity of acute systemic infections and enhances chronic catheter infection. RsaA takes part in a regulatory network that contributes to the complex interactions of S. aureus with the host immune system to moderate invasiveness and favour chronic infections. It is the first example of a conserved small RNA in S. aureus functioning as a virulence suppressor of acute infections. Because S. aureus is essentially a human commensal, we propose that RsaA has been positively selected through evolution to support commensalism and saprophytic interactions with the host. PMID:24651379

  3. A non-coding genomic duplication at the HMX1 locus is associated with crop ears in highland cattle.

    PubMed

    Koch, Caroline Tina; Bruggmann, Rémy; Tetens, Jens; Drögemüller, Cord

    2013-01-01

    Highland cattle with congenital crop ears have notches of variable size on the tips of both ears. In some cases, cartilage deformation can be seen and occasionally the external ears are shortened. We collected 40 cases and 80 controls across Switzerland. Pedigree data analysis confirmed a monogenic autosomal dominant mode of inheritance with variable expressivity. All affected animals could be traced back to a single common ancestor. A genome-wide association study was performed and the causative mutation was mapped to a 4 Mb interval on bovine chromosome 6. The H6 family homeobox 1 (HMX1) gene was selected as a positional and functional candidate gene. By whole genome re-sequencing of an affected Highland cattle, we detected 6 non-synonymous coding sequence variants and two variants in an ultra-conserved element at the HMX1 locus with respect to the reference genome. Of these 8 variants, only a non-coding 76 bp genomic duplication (g.106720058_106720133dup) located in the conserved region was perfectly associated with crop ears. The identified copy number variation probably results in HMX1 misregulation and possible gain-of-function. Our findings confirm the role of HMX1 during the development of the external ear. As it is sometimes difficult to phenotypically diagnose Highland cattle with slight ear notches, genetic testing can now be used to improve selection against this undesired trait.

  4. Long non-coding RNA PVT1 activates hepatic stellate cells through competitively binding microRNA-152

    PubMed Central

    Zheng, Jianjian; Yu, Fujun; Dong, Peihong; Wu, Limei; Zhang, Yuan; Hu, Yanwei; Zheng, Lei

    2016-01-01

    Epithelial-mesenchymal transition (EMT) process is considered as a key event in the activation of hepatic stellate cells (HSCs). Hedgehog (Hh) pathway is known to be required for EMT process. Long non-coding RNAs (lncRNAs) have been reported to be involved in a wide range of biological processes. Plasmacytoma variant translocation 1 (PVT1), a novel lncRNA, is often up-regulated in various human cancers. However, the role of PVT1 in liver fibrosis remains undefined. In this study, PVT1 was increased in fibrotic liver tissues and activated HSCs. Depletion of PVT1 attenuated collagen deposits in vivo. In vitro, PVT1 down-regulation inhibited HSC activation including the reduction of HSC proliferation, α-SMA and type I collagen. Further studies showed that PVT1 knockdown suppressed HSC activation was through inhibiting EMT process and Hh pathway. Patched1 (PTCH1), a negative regulator factor of Hh pathway, was enhanced by PVT1 knockdown. PTCH1 demethylation caused by miR-152 was responsible for the effects of PVT1 knockdown on PTCH1 expression. Notably, miR-152 inhibitor reversed the effects of PVT1 knockdown on HSC activation. Luciferase reporter assays and pull-down assays showed a direct interaction between miR-152 and PVT1. Collectively, we demonstrate that PVT1 epigenetically down-regulates PTCH1 expression via competitively binding miR-152, contributing to EMT process in liver fibrosis. PMID:27588491

  5. Disentangling the Effects of Colocalizing Genomic Annotations to Functionally Prioritize Non-coding Variants within Complex-Trait Loci.

    PubMed

    Trynka, Gosia; Westra, Harm-Jan; Slowikowski, Kamil; Hu, Xinli; Xu, Han; Stranger, Barbara E; Klein, Robert J; Han, Buhm; Raychaudhuri, Soumya

    2015-07-02

    Identifying genomic annotations that differentiate causal from trait-associated variants is essential to fine mapping disease loci. Although many studies have identified non-coding functional annotations that overlap disease-associated variants, these annotations often colocalize, complicating the ability to use these annotations for fine mapping causal variation. We developed a statistical approach (Genomic Annotation Shifter [GoShifter]) to assess whether enriched annotations are able to prioritize causal variation. GoShifter defines the null distribution of an annotation overlapping an allele by locally shifting annotations; this approach is less sensitive to biases arising from local genomic structure than commonly used enrichment methods that depend on SNP matching. Local shifting also allows GoShifter to identify independent causal effects from colocalizing annotations. Using GoShifter, we confirmed that variants in expression quantitative trail loci drive gene-expression changes though DNase-I hypersensitive sites (DHSs) near transcription start sites and independently through 3' UTR regulation. We also showed that (1) 15%-36% of trait-associated loci map to DHSs independently of other annotations; (2) loci associated with breast cancer and rheumatoid arthritis harbor potentially causal variants near the summits of histone marks rather than full peak bodies; (3) variants associated with height are highly enriched in embryonic stem cell DHSs; and (4) we can effectively prioritize causal variation at specific loci.

  6. Mining Affymetrix microarray data for long non-coding RNAs: altered expression in the nucleus accumbens of heroin abusers.

    PubMed

    Michelhaugh, Sharon K; Lipovich, Leonard; Blythe, Jason; Jia, Hui; Kapatos, Gregory; Bannon, Michael J

    2011-02-01

    Although recent data suggest that some long non-coding RNAs (lncRNAs) exert widespread effects on gene expression and organelle formation, lncRNAs as a group constitute a sizable but poorly characterized fraction of the human transcriptome. We investigated whether some human lncRNA sequences were fortuitously represented on commonly used microarrays, then used this annotation to assess lncRNA expression in human brain. A computational and annotation pipeline was developed to identify lncRNA transcripts represented on Affymetrix U133 arrays. A previously published dataset derived from human nucleus accumbens was then examined for potential lncRNA expression. Twenty-three lncRNAs were determined to be represented on U133 arrays. Of these, dataset analysis revealed that five lncRNAs were consistently detected in samples of human nucleus accumbens. Strikingly, the abundance of these lncRNAs was up-regulated in human heroin abusers compared to matched drug-free control subjects, a finding confirmed by quantitative PCR. This study presents a paradigm for examining existing Affymetrix datasets for the detection and potential regulation of lncRNA expression, including changes associated with human disease. The finding that all detected lncRNAs were up-regulated in heroin abusers is consonant with the proposed role of lncRNAs as mediators of widespread changes in gene expression as occur in drug abuse.

  7. Correlation of long non-coding RNA H19 expression with cisplatin-resistance and clinical outcome in lung adenocarcinoma.

    PubMed

    Wang, Qi; Cheng, Ningning; Li, Xuefei; Pan, Hui; Li, Chunyu; Ren, Shengxiang; Su, Chunxia; Cai, Weijing; Zhao, Chao; Zhang, Limin; Zhou, Caicun

    2017-01-10

    The acquired drug resistance would influence the efficacy of cisplatin-based chemotherapy in non-small-cell lung cancer. The present study aimed to investigate the correlation of long non-coding RNA (lncRNA) H19 with cisplatin-resistance and clinical outcome in lung adenocarcinoma. In our study, the expression of H19 in cisplatin-resistant A549/DDP cells was unregulated. Knockdown of H19 restored the response of A549/DDP cells to cisplatin. H19-mediated chemosensitivity enhancement was associated with metastasis, induction of G0/G1 cell-cycle arrest, cell proliferation, and increased apoptosis. Furthermore, lncRNA H19 expression was significantly related to TNM stage and metastasis (P = 0.012). Overexpression of H19 was negatively correlated with cisplatin-based chemotherapy response in patients. Patients with high H19 expression exhibited a significantly shorter median progression-free survival (PFS) [4.7 months] than the low-expression patients (6.3months) [P = 0.002]. In summary, H19-mediated regulation of cisplatin resistance in human lung adenocarcinoma cells is demonstrated for the first time. H19 could potentially serve as a molecular marker to predict the clinical outcomes of lung adenocarcinoma patients.

  8. Identification of prognostic biomarkers in glioblastoma using a long non-coding RNA-mediated, competitive endogenous RNA network

    PubMed Central

    Cao, Yuze; Wang, Peng; Ning, Shangwei; Xiao, Wenbiao; Xiao, Bo; Li, Xia

    2016-01-01

    Glioblastoma multiforme (GBM) is a highly malignant brain tumor associated with a poor prognosis. Cross-talk between competitive endogenous RNAs (ceRNAs) plays a critical role in tumor development and physiology. In this study, we present a multi-step computational approach to construct a functional GBM long non-coding RNA (lncRNA)-mediated ceRNA network (LMCN) by integrating genome-wide lncRNA and mRNA expression profiles, miRNA-target interactions, functional analyses, and clinical survival analyses. LncRNAs in the LMCN exhibited specific topological features consistent with a regulatory association with coding mRNAs across GBM pathology. We determined that the lncRNA MCM3AP-AS was involved in RNA processing and cell cycle-related functions, and was correlated with patient survival. MCM3AP-AS and MIR17HG acted synergistically to regulate mRNAs in a network module of the competitive LMCN. By integrating the expression profile of this module into a risk model, we stratified GBM patients in both the The Cancer Genome Atlas and an independent GBM dataset into distinct risk groups. Finally, survival analyses demonstrated that the lncRNAs and network module are potential prognostic biomarkers for GBM. Thus, ceRNAs could accelerate biomarker discovery and therapeutic development in GBM. PMID:27229531

  9. Long non-coding RNAs as novel expression signatures modulate DNA damage and repair in cadmium toxicology

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiheng; Liu, Haibai; Wang, Caixia; Lu, Qian; Huang, Qinhai; Zheng, Chanjiao; Lei, Yixiong

    2015-10-01

    Increasing evidence suggests that long non-coding RNAs (lncRNAs) are involved in a variety of physiological and pathophysiological processes. Our study was to investigate whether lncRNAs as novel expression signatures are able to modulate DNA damage and repair in cadmium(Cd) toxicity. There were aberrant expression profiles of lncRNAs in 35th Cd-induced cells as compared to untreated 16HBE cells. siRNA-mediated knockdown of ENST00000414355 inhibited the growth of DNA-damaged cells and decreased the expressions of DNA-damage related genes (ATM, ATR and ATRIP), while increased the expressions of DNA-repair related genes (DDB1, DDB2, OGG1, ERCC1, MSH2, RAD50, XRCC1 and BARD1). Cadmium increased ENST00000414355 expression in the lung of Cd-exposed rats in a dose-dependent manner. A significant positive correlation was observed between blood ENST00000414355 expression and urinary/blood Cd concentrations, and there were significant correlations of lncRNA-ENST00000414355 expression with the expressions of target genes in the lung of Cd-exposed rats and the blood of Cd exposed workers. These results indicate that some lncRNAs are aberrantly expressed in Cd-treated 16HBE cells. lncRNA-ENST00000414355 may serve as a signature for DNA damage and repair related to the epigenetic mechanisms underlying the cadmium toxicity and become a novel biomarker of cadmium toxicity.

  10. Tag SNPs of long non-coding RNA TINCR affect the genetic susceptibility to gastric cancer in a Chinese population

    PubMed Central

    Tang, Ran; Huan, Xiangkun; Zhu, Yi; Xu, Zekuan; Liu, Ping; Yang, Li

    2016-01-01

    Tissue differentiation-inducing non-protein coding RNA (TINCR) is required for normal epidermal differentiation. TINCR is also strongly overexpressed in human gastric cancer (GC) and contributes to carcinogenesis and tumor progression. However, the association between TINCR polymorphisms and the risk of any diseases, such as GC, remains unknown. In the present study, the tag single nucleotide polymorphisms rs8113645, rs2288947, rs8105637, and rs12610531 were analyzed in 602 patients with GC and 602 age- and sex-matched controls. Polymorphisms were genotyped using TaqMan technology. Carriers of variant rs8113645 and rs2288947 alleles indicated reduced risks of GC (p = 0.003 and 0.037, respectively). A allele genotypes of rs8113645 and G allele genotypes of rs2288947 (rs8113645 GA and AA; rs2288947 AG and GG) were also significantly associated with decreased GC risk (p < 0.05). Stratification analysis displayed that the correlations between GC risk and variant genotypes of both rs8113645 and rs2288947were more evident in younger individuals, men, nonsmokers, and individuals from rural areas. We also demonstrated that rs8113645 GA+AA genotype carriers had lower TINCR mRNA expression levels compared with common genotype in both normal and GC tissues (p < 0.05). These results suggest that long non-coding RNA TINCR polymorphisms may be implicated in GC development. PMID:27893425

  11. Heterogeneity in Genetic Diversity among Non-Coding Loci Fails to Fit Neutral Coalescent Models of Population History

    PubMed Central

    Peters, Jeffrey L.; Roberts, Trina E.; Winker, Kevin; McCracken, Kevin G.

    2012-01-01

    Inferring aspects of the population histories of species using coalescent analyses of non-coding nuclear DNA has grown in popularity. These inferences, such as divergence, gene flow, and changes in population size, assume that genetic data reflect simple population histories and neutral evolutionary processes. However, violating model assumptions can result in a poor fit between empirical data and the models. We sampled 22 nuclear intron sequences from at least 19 different chromosomes (a genomic transect) to test for deviations from selective neutrality in the gadwall (Anas strepera), a Holarctic duck. Nucleotide diversity among these loci varied by nearly two orders of magnitude (from 0.0004 to 0.029), and this heterogeneity could not be explained by differences in substitution rates alone. Using two different coalescent methods to infer models of population history and then simulating neutral genetic diversity under these models, we found that the observed among-locus heterogeneity in nucleotide diversity was significantly higher than expected for these simple models. Defining more complex models of population history demonstrated that a pre-divergence bottleneck was also unlikely to explain this heterogeneity. However, both selection and interspecific hybridization could account for the heterogeneity observed among loci. Regardless of the cause of the deviation, our results illustrate that violating key assumptions of coalescent models can mislead inferences of population history. PMID:22384117

  12. DNA methylation patterns of protein-coding genes and long non-coding RNAs in males with schizophrenia.

    PubMed

    Liao, Qi; Wang, Yunliang; Cheng, Jia; Dai, Dongjun; Zhou, Xingyu; Zhang, Yuzheng; Li, Jinfeng; Yin, Honglei; Gao, Shugui; Duan, Shiwei

    2015-11-01

    Schizophrenia (SCZ) is one of the most complex mental illnesses affecting ~1% of the population worldwide. SCZ pathogenesis is considered to be a result of genetic as well as epigenetic alterations. Previous studies have aimed to identify the causative genes of SCZ. However, DNA methylation of long non-coding RNAs (lncRNAs) involved in SCZ has not been fully elucidated. In the present study, a comprehensive genome-wide analysis of DNA methylation was conducted using samples from two male patients with paranoid and undifferentiated SCZ, respectively. Methyl-CpG binding domain protein-enriched genome sequencing was used. In the two patients with paranoid and undifferentiated SCZ, 1,397 and 1,437 peaks were identified, respectively. Bioinformatic analysis demonstrated that peaks were enriched in protein-coding genes, which exhibited nervous system and brain functions. A number of these peaks in gene promoter regions may affect gene expression and, therefore, influence SCZ-associated pathways. Furthermore, 7 and 20 lncRNAs, respectively, in the Refseq database were hypermethylated. According to the lncRNA dataset in the NONCODE database, ~30% of intergenic peaks overlapped with novel lncRNA loci. The results of the present study demonstrated that aberrant hypermethylation of lncRNA genes may be an important epigenetic factor associated with SCZ. However, further studies using larger sample sizes are required.

  13. Downregulation of a putative plastid PDC E1α subunit impairs photosynthetic activity and triacylglycerol accumulation in nitrogen-starved photoautotrophic Chlamydomonas reinhardtii

    PubMed Central

    Shtaida, Nastassia; Khozin-Goldberg, Inna; Solovchenko, Alexei; Chekanov, Konstantin; Didi-Cohen, Shoshana; Leu, Stefan; Cohen, Zvi; Boussiba, Sammy

    2014-01-01

    The chloroplast pyruvate dehydrogenase complex (cpPDC) catalyses the oxidative decarboxylation of pyruvate forming acetyl-CoA, an immediate primer for the initial reactions of de novo fatty acid (FA) synthesis. Little is known about the source of acetyl-CoA in the chloroplasts of photosynthetic microalgae, which are capable of producing high amounts of the storage lipid triacylglycerol (TAG) under conditions of nutrient stresses. We generated Chlamydomonas reinhardtii CC-1618 mutants with decreased expression of the PDC2_E1α gene, encoding the putative chloroplast pyruvate dehydrogenase subunit E1α, using artificial microRNA. A comparative study on the effects of PDC2_E1α silencing on FAs and TAG production in C. reinhardtii, grown photoautotrophically and mixotrophically, with and without a nitrogen source in the nutrient medium, was carried out. Reduced expression of PDC2 _E1α led to a severely hampered photoautotrophic growth phenotype with drastic impairment in TAG accumulation under nitrogen deprivation. In the presence of acetate, downregulation of PDC2_E1α exerted little to no effect on TAG production and photosynthetic activity. In contrast, under photoautotrophic conditions, especially in the absence of a nitrogen source, a dramatic decline in photosynthetic oxygen evolution and photosystem II quantum yield against a background of the apparent over-reduction of the photosynthetic electron chain was recorded. Our results suggest an essential role of cpPDC in the supply of carbon precursors for de novo FA synthesis in microalgae under conditions of photoautotrophy. A shortage of this supply is detrimental to the nitrogen-starvation-induced synthesis of storage TAG, an important carbon and energy sink in stressed Chlamydomonas cells, thereby impairing the acclimation ability of the microalga. PMID:25210079

  14. Identification of Potential Key Long Non-Coding RNAs and Target Genes Associated with Pneumonia Using Long Non-Coding RNA Sequencing (lncRNA-Seq): A Preliminary Study

    PubMed Central

    Huang, Sai; Feng, Cong; Chen, Li; Huang, Zhi; Zhou, Xuan; Li, Bei; Wang, Li-li; Chen, Wei; Lv, Fa-qin; Li, Tan-shi

    2016-01-01

    Background This study aimed to identify the potential key long non-coding RNAs (lncRNAs) and target genes associated with pneumonia using lncRNA sequencing (lncRNA-seq). Material/Methods A total of 9 peripheral blood samples from patients with mild pneumonia (n=3) and severe pneumonia (n=3), as well as volunteers without pneumonia (n=3), were received for lncRNA-seq. Based on the sequencing data, differentially expressed lncRNAs (DE-lncRNAs) were identified by the limma package. After the functional enrichment analysis, target genes of DE-lncRNAs were predicted, and the regulatory network was constructed. Results In total, 99 DE-lncRNAs (14 upregulated and 85 downregulated ones) were identified in the mild pneumonia group and 85 (72 upregulated and 13 downregulated ones) in the severe pneumonia group, compared with the control group. Among these DE-lncRNAs, 9 lncRNAs were upregulated in both the mild and severe pneumonia groups. A set of 868 genes were predicted to be targeted by these 9 DE-lncRNAs. In the network, RP11-248E9.5 and RP11-456D7.1 targeted the majority of genes. RP11-248E9.5 regulated several genes together with CTD-2300H10.2, such as QRFP and EPS8. Both upregulated RP11-456D7.1 and RP11-96C23.9 regulated several genes, such as PDK2. RP11-456D7.1 also positively regulated CCL21. Conclusions These novel lncRNAs and their target genes may be closely associated with the progression of pneumonia. PMID:27663962

  15. Identification of circulating long non-coding RNA GAS5 as a potential biomarker for non-small cell lung cancer diagnosisnon-small cell lung cancer, long non-coding RNA, plasma, GAS5, biomarker.

    PubMed

    Tan, Qian; Zuo, Jiangcheng; Qiu, Shili; Yu, Yalan; Zhou, Hu; Li, Nandi; Wang, Hui; Liang, Chunzi; Yu, Mingxia; Tu, Jiancheng

    2017-05-01

    Non-small cell lung cancer (NSCLC) is one of the most malignant cancers in the world. Early diagnosis of NSCLC has become especially important for patient treatment and prognosis. Increasing evidence suggest that long non-coding RNA GAS5 plays vital roles in cancer proliferation and differentiation in NSCLC. However, its clinical value in the diagnosis of NSCLC is unclear. The objective of this study was to evaluate the importance of circulating GAS5 as a biomarker for NSCLC diagnosis. In our study, quantitative real-time PCR (QRT-PCR) was applied to detect the GAS5 expression level in 80 pairs of cancer tissues and 57 pairs of plasma samples of NSCLC patients. Further analysis was performed to study the differential expression of circulating GAS5 in 111 NSCLC patients and 78 healthy controls in our study. The results showed that GAS5 decreased in NSCLC tissues compared to noncancerous tissues (P<0.001). Furthermore, the GAS5 expression level was statistically declined in early stage of NSCLC before surgery compared with healthy controls (P<0.05) and sharply increased in postoperative groups (P=0.026). ROC curve analysis for early stage of NSCLC with the combination of GAS5, CEA and CA199 showed that the area under the ROC curve (AUC) was 0.734 (95% CI, 0.628‑0.839; P<0.0005). In conclusion, circulating GAS5 could be functioned as a potential combined biomarker for screening NSCLC and patient monitoring after surgical treatment.

  16. Analysis of non-coding transcriptome in rice and maize uncovers roles of conserved lncRNAs associated with agriculture traits.

    PubMed

    Wang, Huan; Niu, Qi-Wen; Wu, Hui-Wen; Liu, Jun; Ye, Jian; Yu, Niu; Chua, Nam-Hai

    2015-10-01

    Long non-coding RNAs (lncRNAs) have recently been found to widely exist in eukaryotes and play important roles in key biological processes. To extend our knowledge of lncRNAs in crop plants we performed both non-directional and strand-specific RNA-sequencing experiments to profile non-coding transcriptomes of various rice and maize organs at different developmental stages. Analysis of more than 3 billion reads identified 22 334 long intergenic non-coding RNAs (lincRNAs) and 6673 pairs of sense and natural antisense transcript (NAT). Many lincRNA genes were associated with epigenetic marks. Expression of rice lincRNA genes was significantly correlated with that of nearby protein-coding genes. A set of NAT genes also showed expression correlation with their sense genes. More than 200 rice lincRNA genes had homologous non-coding sequences in the maize genome. Much more lincRNA and NAT genes were derived from conserved genomic regions between the two cereals presenting positional conservation. Protein-coding genes flanking or having a sense-antisense relationship to these conserved lncRNA genes were mainly involved in development and stress responses, suggesting that the associated lncRNAs might have similar functions. Integrating previous genome-wide association studies (GWAS), we found that hundreds of lincRNAs contain trait-associated SNPs (single nucleotide polymorphisms [SNPs]) suggesting their putative contributions to developmental and agriculture traits.

  17. Small non-coding RNAs (sncRNA) regulate gene silencing and modify homeostatic status in animals faced with porcine reproductive and respiratory syndrome virus (PRRSV)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It has been established that reduced susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV) has a genetic component. This genetic component may take the form of small non-coding RNAs (sncRNA), which are molecules that function as regulators of gene expression. Various sncRNAs ...

  18. Identification of a long non-coding RNA gene, growth hormone secretagogue receptor opposite strand, which stimulates cell migration in non-small cell lung cancer cell lines.

    PubMed

    Whiteside, Eliza J; Seim, Inge; Pauli, Jana P; O'Keeffe, Angela J; Thomas, Patrick B; Carter, Shea L; Walpole, Carina M; Fung, Jenny N T; Josh, Peter; Herington, Adrian C; Chopin, Lisa K

    2013-08-01

    The molecular mechanisms involved in non‑small cell lung cancer tumourigenesis are largely unknown; however, recent studies have suggested that long non-coding RNAs (lncRNAs) are likely to play a role. In this study, we used public databases to identify an mRNA-like, candidate long non-coding RNA, GHSROS (GHSR opposite strand), transcribed from the antisense strand of the ghrelin receptor gene, growth hormone secretagogue receptor (GHSR). Quantitative real-time RT-PCR revealed higher expression of GHSROS in lung cancer tissue compared to adjacent, non-tumour lung tissue. In common with many long non-coding RNAs, GHSROS is 5' capped and 3' polyadenylated (mRNA-like), lacks an extensive open reading frame and harbours a transposable element. Engineered overexpression of GHSROS stimulated cell migration in the A549 and NCI-H1299 non-small cell lung cancer cell lines, but suppressed cell migration in the Beas-2B normal lung-derived bronchoepithelial cell line. This suggests that GHSROS function may be dependent on the oncogenic context. The identification of GHSROS, which is expressed in lung cancer and stimulates cell migration in lung cancer cell lines, contributes to the growing number of non-coding RNAs that play a role in the regulation of tumourigenesis and metastatic cancer progression.

  19. Functional Investigation of a Non-coding Variant Associated with Adolescent Idiopathic Scoliosis in Zebrafish: Elevated Expression of the Ladybird Homeobox Gene Causes Body Axis Deformation.

    PubMed

    Guo, Long; Yamashita, Hiroshi; Kou, Ikuyo; Takimoto, Aki; Meguro-Horike, Makiko; Horike, Shin-ichi; Sakuma, Tetsushi; Miura, Shigenori; Adachi, Taiji; Yamamoto, Takashi; Ikegawa, Shiro; Hiraki, Yuji; Shukunami, Chisa

    2016-01-01

    Previously, we identified an adolescent idiopathic scoliosis susceptibility locus near human ladybird homeobox 1 (LBX1) and FLJ41350 by a genome-wide association study. Here, we characterized the associated non-coding variant and investigated the function of these genes. A chromosome conformation capture assay revealed that the genome region with the most significantly associated single nucleotide polymorphism (rs11190870) physically interacted with the promoter region of LBX1-FLJ41350. The promoter in the direction of LBX1, combined with a 590-bp region including rs11190870, had higher transcriptional activity with the risk allele than that with the non-risk allele in HEK 293T cells. The ubiquitous overexpression of human LBX1 or either of the zebrafish lbx genes (lbx1a, lbx1b, and lbx2), but not FLJ41350, in zebrafish embryos caused body curvature followed by death prior to vertebral column formation. Such body axis deformation was not observed in transcription activator-like effector nucleases mediated knockout zebrafish of lbx1b or lbx2. Mosaic expression of lbx1b driven by the GATA2 minimal promoter and the lbx1b enhancer in zebrafish significantly alleviated the embryonic lethal phenotype to allow observation of the later onset of the spinal curvature with or without vertebral malformation. Deformation of the embryonic body axis by lbx1b overexpression was associated with defects in convergent extension, which is a component of the main axis-elongation machinery in gastrulating embryos. In embryos overexpressing lbx1b, wnt5b, a ligand of the non-canonical Wnt/planar cell polarity (PCP) pathway, was significantly downregulated. Injection of mRNA for wnt5b or RhoA, a key downstream effector of Wnt/PCP signaling, rescued the defective convergent extension phenotype and attenuated the lbx1b-induced curvature of the body axis. Thus, our study presents a novel pathological feature of LBX1 and its zebrafish homologs in body axis deformation at various stages of

  20. Functional Investigation of a Non-coding Variant Associated with Adolescent Idiopathic Scoliosis in Zebrafish: Elevated Expression of the Ladybird Homeobox Gene Causes Body Axis Deformation

    PubMed Central

    Guo, Long; Yamashita, Hiroshi; Kou, Ikuyo; Takimoto, Aki; Meguro-Horike, Makiko; Horike, Shin-ichi; Sakuma, Tetsushi; Miura, Shigenori; Adachi, Taiji; Yamamoto, Takashi; Ikegawa, Shiro; Hiraki, Yuji; Shukunami, Chisa

    2016-01-01

    Previously, we identified an adolescent idiopathic scoliosis susceptibility locus near human ladybird homeobox 1 (LBX1) and FLJ41350 by a genome-wide association study. Here, we characterized the associated non-coding variant and investigated the function of these genes. A chromosome conformation capture assay revealed that the genome region with the most significantly associated single nucleotide polymorphism (rs11190870) physically interacted with the promoter region of LBX1-FLJ41350. The promoter in the direction of LBX1, combined with a 590-bp region including rs11190870, had higher transcriptional activity with the risk allele than that with the non-risk allele in HEK 293T cells. The ubiquitous overexpression of human LBX1 or either of the zebrafish lbx genes (lbx1a, lbx1b, and lbx2), but not FLJ41350, in zebrafish embryos caused body curvature followed by death prior to vertebral column formation. Such body axis deformation was not observed in transcription activator-like effector nucleases mediated knockout zebrafish of lbx1b or lbx2. Mosaic expression of lbx1b driven by the GATA2 minimal promoter and the lbx1b enhancer in zebrafish significantly alleviated the embryonic lethal phenotype to allow observation of the later onset of the spinal curvature with or without vertebral malformation. Deformation of the embryonic body axis by lbx1b overexpression was associated with defects in convergent extension, which is a component of the main axis-elongation machinery in gastrulating embryos. In embryos overexpressing lbx1b, wnt5b, a ligand of the non-canonical Wnt/planar cell polarity (PCP) pathway, was significantly downregulated. Injection of mRNA for wnt5b or RhoA, a key downstream effector of Wnt/PCP signaling, rescued the defective convergent extension phenotype and attenuated the lbx1b-induced curvature of the body axis. Thus, our study presents a novel pathological feature of LBX1 and its zebrafish homologs in body axis deformation at various stages of

  1. Minimal cosmography

    NASA Astrophysics Data System (ADS)

    Piazza, Federico; Schücker, Thomas

    2016-04-01

    The minimal requirement for cosmography—a non-dynamical description of the universe—is a prescription for calculating null geodesics, and time-like geodesics as a function of their proper time. In this paper, we consider the most general linear connection compatible with homogeneity and isotropy, but not necessarily with a metric. A light-cone structure is assigned by choosing a set of geodesics representing light rays. This defines a "scale factor" and a local notion of distance, as that travelled by light in a given proper time interval. We find that the velocities and relativistic energies of free-falling bodies decrease in time as a consequence of cosmic expansion, but at a rate that can be different than that dictated by the usual metric framework. By extrapolating this behavior to photons' redshift, we find that the latter is in principle independent of the "scale factor". Interestingly, redshift-distance relations and other standard geometric observables are modified in this extended framework, in a way that could be experimentally tested. An extremely tight constraint on the model, however, is represented by the blackbody-ness of the cosmic microwave background. Finally, as a check, we also consider the effects of a non-metric connection in a different set-up, namely, that of a static, spherically symmetric spacetime.

  2. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes

    DOE PAGES

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui; ...

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptionalmore » regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.« less

  3. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening.

    PubMed

    Zhu, Benzhong; Yang, Yongfang; Li, Ran; Fu, Daqi; Wen, Liwei; Luo, Yunbo; Zhu, Hongliang

    2015-08-01

    Recently, long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in model plants, such as Arabidopsis, rice, and maize. However, the presence of lncRNAs and how they function in fleshy fruit ripening are still largely unknown because fleshy fruit ripening is not present in the above model plants. Tomato is the model system for fruit ripening studies due to its dramatic ripening process. To investigate further the role of lncRNAs in fruit ripening, it is necessary and urgent to discover and identify novel lncRNAs and understand the function of lncRNAs in tomato fruit ripening. Here it is reported that 3679 lncRNAs were discovered from wild-type tomato and ripening mutant fruit. The lncRNAs are transcribed from all tomato chromosomes, 85.1% of which came from intergenic regions. Tomato lncRNAs are shorter and have fewer exons than protein-coding genes, a situation reminiscent of lncRNAs from other model plants. It was also observed that 490 lncRNAs were significantly up-regulated in ripening mutant fruits, and 187 lncRNAs were down-regulated, indicating that lncRNAs could be involved in the regulation of fruit ripening. In line with this, silencing of two novel tomato intergenic lncRNAs, lncRNA1459 and lncRNA1840, resulted in an obvious delay of ripening of wild-type fruit. Overall, the results indicated that lncRNAs might be essential regulators of tomato fruit ripening, which sheds new light on the regulation of fruit ripening.

  4. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-κB1

    SciTech Connect

    Zhang, Zhi-Xin; Liu, Zhi-Qiang; Jiang, Biao; Lu, Xin-Yang; Ning, Xiao-Fei; Yuan, Chuan-Tao; Wang, Ai-Liang

    2015-09-18

    Background and objective: Long non-coding RNA, BANCR, has been demonstrated to contribute to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer is still unknown. In present study, we investigated whether BANCR was involved in the development of gastric cancer cells via regulation of NF-κB1. Methods: Human gastric cancer tissues were isolated as well as human gastric cell lines MGC803 and BGC823 were cultured to investigate the role of BANCR in gastric cancer. Results: BANCR expression was significantly up-regulated in gastric tumor tissues and gastric cell lines. Down-regulation of BANCR inhibited gastric cancer cell growth and promoted cell apoptosis, and it also contributed to a significant decrease of NF-κB1 (P50/105) expression and 3′UTR of NF-κB1 activity. Overexpression of NF-κB1 reversed the effect of BANCR on cancer cell growth and apoptosis. MiroRNA-9 (miR-9) targeted NF-κB1, and miR-9 inhibitor also reversed the effects of BANCR on gastric cancer cell growth and apoptosis. Conclusion: BANCR was highly expressed both in gastric tumor tissues and in cancer cells. NF-κB1 and miR-9 were involved in the role of BANCR in gastric cancer cell growth and apoptosis. - Highlights: • BANCR up-regulated in gastric cancer (GC) tissues and cell lines MGC803 and BGC823. • Down-regulation of BANCR inhibited GC cell growth and promoted cell apoptosis. • Down-regulation of BANCR contributed to decreased 3′UTR of NF-κB1 and its expression. • Overexpressed NF-κB1 reversed the effect of BANCR on GC cell growth. • miR-9 inhibitor reversed the effect of BANCR on cancer GC cell growth.

  5. Identification and characterization of three Vibrio alginolyticus non-coding RNAs involved in adhesion, chemotaxis, and motility processes.

    PubMed

    Huang, Lixing; Hu, Jiao; Su, Yongquan; Qin, Yingxue; Kong, Wendi; Ma, Ying; Xu, Xiaojin; Lin, Mao; Yan, Qingpi

    2015-01-01

    The capability of Vibrio alginolyticus to adhere to fish mucus is a key virulence factor of the bacteria. Our previous research showed that stress conditions, such as Cu(2+), Pb(2+), Hg(2+), and low pH, can reduce this adhesion ability. Non-coding (nc) RNAs play a crucial role in regulating bacterial gene expression, affecting the bacteria's pathogenicity. To investigate the mechanism(s) underlying the decline in adhesion ability caused by stressors, we combined high-throughput sequencing with computational techniques to detect stressed ncRNA dynamics. These approaches yielded three commonly altered ncRNAs that are predicted to regulate the bacterial chemotaxis pathway, which plays a key role in the adhesion process of bacteria. We hypothesized they play a key role in the adhesion process of V. alginolyticus. In this study, we validated the effects of these three ncRNAs on their predicted target genes and their role in the V. alginolyticus adhesion process with RNA interference (i), quantitative real-time polymerase chain reaction (qPCR), northern blot, capillary assay, and in vitro adhesion assays. The expression of these ncRNAs and their predicted target genes were confirmed by qPCR and northern blot, which reinforced the reliability of the sequencing data and the target prediction. Overexpression of these ncRNAs was capable of reducing the chemotactic and adhesion ability of V. alginolyticus, and the expression levels of their target genes were also significantly reduced. Our results indicated that these three ncRNAs: (1) are able to regulate the bacterial chemotaxis pathway, and (2) play a key role in the adhesion process of V. alginolyticus.

  6. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes.

    PubMed

    Alam, Tanvir; Medvedeva, Yulia A; Jia, Hui; Brown, James B; Lipovich, Leonard; Bajic, Vladimir B

    2014-01-01

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

  7. Evolutionarily divergent spliceosomal snRNAs and a conserved non-coding RNA processing motif in Giardia lamblia.

    PubMed

    Hudson, Andrew J; Moore, Ashley N; Elniski, David; Joseph, Joella; Yee, Janet; Russell, Anthony G

    2012-11-01

    Non-coding RNAs (ncRNAs) have diverse essential biological functions in all organisms, and in eukaryotes, two such classes of ncRNAs are the small nucleolar (sno) and small nuclear (sn) RNAs. In this study, we have identified and characterized a collection of sno and snRNAs in Giardia lamblia, by exploiting our discovery of a conserved 12 nt RNA processing sequence motif found in the 3' end regions of a large number of G. lamblia ncRNA genes. RNA end mapping and other experiments indicate the motif serves to mediate ncRNA 3' end formation from mono- and di-cistronic RNA precursor transcripts. Remarkably, we find the motif is also utilized in the processing pathway of all four previously identified trans-spliced G. lamblia introns, revealing a common RNA processing pathway for ncRNAs and trans-spliced introns in this organism. Motif sequence conservation then allowed for the bioinformatic and experimental identification of additional G. lamblia ncRNAs, including new U1 and U6 spliceosomal snRNA candidates. The U6 snRNA candidate was then used as a tool to identity novel U2 and U4 snRNAs, based on predicted phylogenetically conserved snRNA-snRNA base-pairing interactions, from a set of previously identified G. lamblia ncRNAs without assigned function. The Giardia snRNAs retain the core features of spliceosomal snRNAs but are sufficiently evolutionarily divergent to explain the difficulties in their identification. Most intriguingly, all of these snRNAs show structural features diagnostic of U2-dependent/major and U12-dependent/minor spliceosomal snRNAs.

  8. Promoter analysis reveals globally differential regulation of human long non-coding RNA and protein-coding genes

    SciTech Connect

    Alam, Tanvir; Medvedeva, Yulia A.; Jia, Hui; Brown, James B.; Lipovich, Leonard; Bajic, Vladimir B.; Mantovani, Roberto

    2014-10-02

    Transcriptional regulation of protein-coding genes is increasingly well-understood on a global scale, yet no comparable information exists for long non-coding RNA (lncRNA) genes, which were recently recognized to be as numerous as protein-coding genes in mammalian genomes. We performed a genome-wide comparative analysis of the promoters of human lncRNA and protein-coding genes, finding global differences in specific genetic and epigenetic features relevant to transcriptional regulation. These two groups of genes are hence subject to separate transcriptional regulatory programs, including distinct transcription factor (TF) proteins that significantly favor lncRNA, rather than coding-gene, promoters. We report a specific signature of promoter-proximal transcriptional regulation of lncRNA genes, including several distinct transcription factor binding sites (TFBS). Experimental DNase I hypersensitive site profiles are consistent with active configurations of these lncRNA TFBS sets in diverse human cell types. TFBS ChIP-seq datasets confirm the binding events that we predicted using computational approaches for a subset of factors. For several TFs known to be directly regulated by lncRNAs, we find that their putative TFBSs are enriched at lncRNA promoters, suggesting that the TFs and the lncRNAs may participate in a bidirectional feedback loop regulatory network. Accordingly, cells may be able to modulate lncRNA expression levels independently of mRNA levels via distinct regulatory pathways. Our results also raise the possibility that, given the historical reliance on protein-coding gene catalogs to define the chromatin states of active promoters, a revision of these chromatin signature profiles to incorporate expressed lncRNA genes is warranted in the future.

  9. Inhibition of long non-coding RNA UCA1 by CRISPR/Cas9 attenuated malignant phenotypes of bladder cancer.

    PubMed

    Zhen, Shuai; Hua, Ling; Liu, Yun-Hui; Sun, Xiao-Min; Jiang, Meng-Meng; Chen, Wei; Zhao, Le; Li, Xu

    2017-02-07

    CRISPR/Cas9 is a novel and effective genome editing technique, but its application is not widely expanded to manipulate long non-coding RNA (lncRNA) expression. The lncRNA urothelial carcinoma-associated 1 (UCA1) is upregulated in bladder cancer and promotes the progression of bladder cancer. Here, we design gRNAs specific to UCA1 and construct CRISPR/Cas9 systems targeting UCA1. Single CRISPR/Cas9-UCA1 can effectively inhibit UCA1 expression when transfected into 5637 and T24 bladder cancer cells, while the combined transfection of the two most effective CRISPR/Cas9-UCA1s can generate more satisfied inhibitory effect. CRISPR/Cas9-UCA1s attenuate UCA1 expression via targeted genome-specific DNA cleavage, resulting in the significant inhibition of cell proliferation, migration and invasion in vitro and in vivo. The mechanisms associated with the inhibitory effect of CRISPR/Cas9-UCA1 on malignant phenotypes of bladder cancer are attributed to the induction of cell cycle arrest at G1 phase, a substantial increase of apoptosis, and an enhanced activity of MMPs. Additionally, urinary UCA1 can be used as a non-invasive diagnostic marker for bladder cancer as revealed by a meta-analysis. Collectively, our data suggest that CRISPR/Cas9 technique can be used to down-modulate lncRNA expression, and urinary UCA1 may be used as a non-invasive marker for diagnosis of bladder cancer.

  10. RNA sequencing and functional analysis implicate the regulatory role of long non-coding RNAs in tomato fruit ripening

    PubMed Central

    Zhu, Benzhong; Yang, Yongfang; Li, Ran; Fu, Daqi; Wen, Liwei; Luo, Yunbo; Zhu, Hongliang

    2015-01-01

    Recently, long non-coding RNAs (lncRNAs) have been shown to play critical regulatory roles in model plants, such as Arabidopsis, rice, and maize. However, the presence of lncRNAs and how they function in fleshy fruit ripening are still largely unknown because fleshy fruit ripening is not present in the above model plants. Tomato is the model system for fruit ripening studies due to its dramatic ripening process. To investigate further the role of lncRNAs in fruit ripening, it is necessary and urgent to discover and identify novel lncRNAs and understand the function of lncRNAs in tomato fruit ripening. Here it is reported that 3679 lncRNAs were discovered from wild-type tomato and ripening mutant fruit. The lncRNAs are transcribed from all tomato chromosomes, 85.1% of which came from intergenic regions. Tomato lncRNAs are shorter and have fewer exons than protein-coding genes, a situation reminiscent of lncRNAs from other model plants. It was also observed that 490 lncRNAs were significantly up-regulated in ripening mutant fruits, and 187 lncRNAs were down-regulated, indicating that lncRNAs could be involved in the regulation of fruit ripening. In line with this, silencing of two novel tomato intergenic lncRNAs, lncRNA1459 and lncRNA1840, resulted in an obvious delay of ripening of wild-type fruit. Overall, the results indicated that lncRNAs might be essential regulators of tomato fruit ripening, which sheds new light on the regulation of fruit ripening. PMID:25948705

  11. Virtual screening of gene expression regulatory sites in non-coding regions of the infectious salmon anemia virus

    PubMed Central

    2014-01-01

    Background Members of the Orthomyxoviridae family, which contains an important fish pathogen called the infectious salmon anemia virus (ISAV), have a genome consisting of eight segments of single-stranded RNA that encode different viral proteins. Each of these segments is flanked by non-coding regions (NCRs). In other Orthomyxoviruses, sequences have been shown within these NCRs that regulate gene expression and virulence; however, only the sequences of these regions are known in ISAV, and a biological role has not yet been attributed to these regions. This study aims to determine possible functions of the NCRs of ISAV. Results The results suggested an association between the molecular architecture of NCR regions and their role in the viral life cycle. The available NCR sequences from ISAV isolates were compiled, alignments were performed to obtain a consensus sequence, and conserved regions were identified in this consensus sequence. To determine the molecular structure adopted by these NCRs, various bioinformatics tools, including RNAfold, RNAstructure, Sfold, and Mfold, were used. This hypothetical structure, together with a comparison with influenza, yielded reliable secondary structure models that lead to the identification of conserved nucleotide positions on an intergenus level. These models determined which nucleotide positions are involved in the recognition of the vRNA/cRNA by RNA-dependent RNA polymerase (RdRp) or mRNA by the ribosome. Conclusions The information obtained in this work allowed the proposal of previously unknown sites that are involved in the regulation of different stages of the viral cycle, leading to the identification of new viral targets that may assist future antiviral strategies. PMID:25069483

  12. The long non-coding RNA HOTAIR increases tumour growth and invasion in cervical cancer by targeting the Notch pathway

    PubMed Central

    Kim, Sang Wun; Park, Sun-Ae; Chun, Kyung-Hee; Cho, Nam Hoon; Song, Yong Sang; Kim, Young Tae

    2016-01-01

    Evidence suggests that the long non-coding RNA (lncRNA), HOTAIR, is involved in cervical cancer pathogenesis. We examined serum HOTAIR expression levels in cervical cancer patients and determined the relationships between HOTAIR expression and several clinicopathological factors, including survival. We also examined the functional consequences of HOTAIR overexpression both in vitro and in vivo. Compared with control patients, HOTAIR expression was significantly greater in the serum of cervical cancer patients (P < 0.001). The results indicated that this increase was significantly associated with tumour size (P = 0.030), lymphovascular space invasion (P = 0.037), and lymph node metastasis (P = 0.043). Univariate analysis revealed that disease-free survival and overall survival times were significantly shorter in cervical cancer patients with high HOTAIR expression (hazard ratio [HR] = 4.27, 4.68 and P = 0.039, 0.031, respectively). Cell proliferation and invasion in vitro increased as a result of lentiviral-mediated HOTAIR overexpression in cervical cancer cell lines. HOTAIR knockdown inhibited these properties and increased apoptosis. In vivo xenograft experiments using the HOTAIR-overexpressing SiHa cell line revealed that HOTAIR was a strong inducer of tumour growth and modulated the expression of epithelial-mesenchymal transition and Notch-Wnt signalling pathway-related genes. This result suggested that HOTAIR overexpression promoted cell proliferation and invasion. In conclusion, increased HOTAIR expression was associated with decreased patient survival times. HOTAIR may be a useful target for treatment of cervical cancer patients. PMID:27323817

  13. Primate-specific oestrogen-responsive long non-coding RNAs regulate proliferation and viability of human breast cancer cells

    PubMed Central

    Lin, Chin-Yo; Dachet, Fabien; Cai, Juan; Ju, Donghong; Goldstone, Amanda; Wood, Emily J.; Liu, Ka; Jia, Hui; Kosir, Mary A.; Thepsuwan, Pattaraporn

    2016-01-01

    Long non-coding RNAs (lncRNAs) are transcripts of a recently discovered class of genes which do not code for proteins. LncRNA genes are approximately as numerous as protein-coding genes in the human genome. However, comparatively little remains known about lncRNA functions. We globally interrogated changes in the lncRNA transcriptome of oestrogen receptor positive human breast cancer cells following treatment with oestrogen, and identified 127 oestrogen-responsive lncRNAs. Consistent with the emerging evidence that most human lncRNA genes lack homologues outside of primates, our evolutionary analysis revealed primate-specific lncRNAs downstream of oestrogen signalling. We demonstrate, using multiple functional assays to probe gain- and loss-of-function phenotypes in two oestrogen receptor positive human breast cancer cell lines, that two primate-specific oestrogen-responsive lncRNAs identified in this study (the oestrogen-repressed lncRNA BC041455, which reduces cell viability, and the oestrogen-induced lncRNA CR593775, which increases cell viability) exert previously unrecognized functions in cell proliferation and growth factor signalling pathways. The results suggest that oestrogen-responsive lncRNAs are capable of altering the proliferation and viability of human breast cancer cells. No effects on cellular phenotypes were associated with control transfections. As heretofore unappreciated components of key signalling pathways in cancers, including the MAP kinase pathway, lncRNAs hence represent a novel mechanism of action for oestrogen effects on cellular proliferation and viability phenotypes. This finding warrants further investigation in basic and translational studies of breast and potentially other types of cancers, has broad relevance to lncRNAs in other nuclear hormone receptor pathways, and should facilitate exploiting and targeting these cell viability modulating lncRNAs in post-genomic therapeutics. PMID:28003470

  14. Silencing nc886, a Non-Coding RNA, Induces Apoptosis of Human Endometrial Cancer Cells-1A In Vitro

    PubMed Central

    Hu, Zhuoying; Zhang, Hongyu; Tang, Liangdan; Lou, Meng; Geng, Yanqing

    2017-01-01

    Background The role that nc886, a non-coding microRNA, plays in human endometrial cancer is unknown. The present study aimed to describe the functional role of nc886 in human endometrial cancer-1A (HEC-1A) cell line, which may provide another target for human endometrial cancer treatment. Material/Methods The expression levels of nv886 in normal human endometrial tissue and the early phase and late phase of human endometrial cancer tissues were determined and compared by fluorescence in situ hybridization (FISH). Small interference RNA (siRNA) was used to inhibit nc886, and cell proliferation was evaluated with the MTT test. mRNA levels of PKR, NF-κB, vascular endothelial growth factor (VEGF), and caspase-3 were determined against glyceraldehyde 3-phosphate dehydrogenase (GAPDH between the HEC-1A control group and the silenced group (nc886 silenced with siRNA) by real-time reverse transcription polymerase chain reaction (RT-PCR). The protein levels of PKR (total and phosphorylated form), NF-κB, VEGF, and caspase-3 were determined against GAPDH by Western blotting, and cell apoptosis was determined by flow cytometry. Results Our results indicated that a higher level of nc886 was expressed in the late phase of human endometrial cancer tissue, less than in the early phase but still higher than in normal human endometrial tissue. After nc886 was silenced, protein levels of p-PKR (phosphorylated PKR) and caspase-3 were increased, whereas NF-κB and VEGF were decreased. Conclusions The rate of apoptosis in the silenced group was increased and the rate of cell proliferation was slower in comparison to the control. PMID:28298621

  15. Long non-coding RNA MEG3 induces cell apoptosis in esophageal cancer through endoplasmic reticulum stress.

    PubMed

    Huang, Zhen-Lun; Chen, Rui-Pei; Zhou, Xiao-Tao; Zhan, Hao-Lian; Hu, Min-Min; Liu, Bin; Wu, Guan-Di; Wu, Ling-Fei

    2017-05-01

    Long non-coding RNAs (lncRNAs) play important roles in diverse biological processes, such as cell growth, apoptosis and migration. Although downregulation of lncRNA MEG3 has been identified in several cancers, little is known about its role in esophageal squamous cell carcinoma (ESCC). The aim of the present study was to detect MEG3 expression in clinical ESCC tissues, investigate its biological functions and the endoplasmic reticulum (ER) stress-relative mechanism. MEG3 expression levels were detected by qRT-PCR in both tumor tissues and adjacent non-tumor tissues from 28 ESCC patients. PcDNA3.1-MEG3 recombinant plasmids were constructed and transfected to EC109 cells. Cell growth was analyzed by CCK-8 assay. Cell apoptosis was analyzed by fluorescence microscope and Annexin V/PI assay. The protein expression was determined by western blot analysis. The results showed that MEG3 decreased significantly in ESCC tissues relative to adjacent normal tissues. PcDNA3.1-MEG3 plasmids were successfully constructed and the expression level of MEG3 significantly increased after MEG3 transfection to EC109 cells. Ectopic expression of MEG3 inhibited EC109 cell proliferation and induced apoptosis in vitro. MEG3 overexpression increased the expression of ER stress‑related proteins (GRP78, IRE1, PERK, ATF6, CHOP and cleaved‑caspase-3). Our results first demonstrate that MEG3 is downregulated in ESCC tissues. MEG3 was able to inhibit cell growth and induced apoptosis in EC109 cells, most probably via activation of the ER stress pathway.

  16. Characterization of long non-coding RNA expression profiles in lymph node metastasis of early-stage cervical cancer

    PubMed Central

    SHANG, CHUNLIANG; ZHU, WENHUI; LIU, TIANYU; WANG, WEI; HUANG, GUANGXIN; HUANG, JIAMING; ZHAO, PEIZHEN; ZHAO, YUNHE; YAO, SHUZHONG

    2016-01-01

    Pelvic lymph node metastasis (PLNM) is an independent prognostic parameter and determines the treatment strategies of cervical cancer. Increasing evidence indicates that long non-coding RNAs (lncRNAs) play a crucial role in the process of tumor biological functions. This study aimed to mine lymph node metastasis-associated lncRNAs and investigate their potential pathophysiological mechanism in cervical cancer lymph node metastasis. We applied the lncRNA-mining approach to identify lncRNA transcripts represented on Affymetrix human genome U133 plus 2.0 microarrays from Gene Expression Omnibus (GEO) and then by validation in clinical specimens. The biological role and molecular mechanism of these lncRNAs were predicted by bioinformatic analysis. Subsequently, a receiver operating characteristic (ROC) curve and survival curve were conducted to evaluate the diagnostic and prognostic value of candidate lncRNAs. In total, 234 differentially expressed lncRNAs were identified to significantly associate with pelvic lymph node metastasis in early-stage cervical cancer. Our qRT-PCR results were consistent with the mining analysis (P<0.05). The functional enrichment analysis suggested that these lncRNAs may be involved in the biological process of lymph node metastasis. The ROC curves demonstrated satisfactory discrimination power of MIR100HG and AC024560.2 with areas under the curve of 0.801 and 0.837, respectively. Survival curve also indicated that patients with high MIR100HG expression had a tendency of poor prognosis. This is the first study to successfully mine the lncRNA expression patterns in PLNM of early-stage cervical cancer. MIR100HG and AC024560.2 may be a potential biomarkers of PLNM and these lncRNAs may provide broader perspective for combating cervical cancer metastasis. PMID:27035672

  17. CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism.

    PubMed

    Ellis, Blake C; Graham, Lloyd D; Molloy, Peter L

    2014-02-01

    Colorectal neoplasia differentially expressed (CRNDE) is a novel gene that is activated early in colorectal cancer but whose regulation and functions are unknown. CRNDE transcripts are recognized as long non-coding RNAs (lncRNAs), which potentially interact with chromatin-modifying complexes to regulate gene expression via epigenetic changes. Complex alternative splicing results in numerous transcripts from this gene, and we have identified novel transcripts containing a highly-conserved sequence within intron 4 ("gVC-In4"). In colorectal cancer cells, we demonstrate that treatment with insulin and insulin-like growth factors (IGF) repressed CRNDE nuclear transcripts, including those encompassing gVC-In4. These repressive effects were negated by use of inhibitors against either the PI3K/Akt/mTOR pathway or Raf/MAPK pathway, suggesting CRNDE is a downstream target of both signaling cascades. Expression array analyses revealed that siRNA-mediated knockdown of gVC-In4 transcripts affected the expression of many genes, which showed correlation with insulin/IGF signaling pathway components and responses, including glucose and lipid metabolism. Some of the genes are identical to those affected by insulin treatment in the same cell line. The results suggest that CRNDE expression promotes the metabolic changes by which cancer cells switch to aerobic glycolysis (Warburg effect). This is the first report of a lncRNA regulated by insulin/IGFs, and our findings indicate a role for CRNDE nuclear transcripts in regulating cellular metabolism which may correlate with their upregulation in colorectal cancer.

  18. Differentially expressed three non-coding alternate exons at 5' UTR of regulatory type I beta subunit gene of mouse.

    PubMed

    Banday, Abdul Rouf; Azim, Shafquat; Tabish, Mohammad

    2012-04-01

    Prkar1b gene encodes regulatory type I, beta subunit (RIβ) of cAMP dependent protein kinase A in mouse. Among the various isoforms of regulatory and catalytic subunits that comprise mammalian PKA, RIβ subunit is considered to be one of the important subunits for neuronal functions. This is involved in multiple forms of synaptic plasticity, and influences memory and learning by maintaining hippocampal long-term potentiation (LTP). Deficient expression of this gene has been implicated in autoimmune disease systemic lupus erythematosus (SLE). We have identified two novel non-coding exons of the Prkar1b gene (designated as exon 1A and exon 1B), which are spliced to the canonical exon 2 and constitute the 5' untranslated region giving rise to three alternative transcript isoforms. We have also confirmed the expression of the previously known first exon (designated as exon 1C) with known transcript published earlier. The transcripts containing exons 1A, 1B and 1C are differentially regulated during the development and tissue types. In silico study of more than 20 kb nucleotide sequence upstream of known translational initiation codon revealed three distinct promoter regions named as PA, PB, and PC upstream of the exon 1A, exon 1B and exon 1C respectively. PB is non-CpG related promoter but PA and PC are CpG related promoters, however all three promoters are TATA less. Further analysis showed that these promoters possess potential signature sequences for common as well as different transcription factors suggesting complex regulation of Prkar1b gene.

  19. Identification and characterization of three Vibrio alginolyticus non-coding RNAs involved in adhesion, chemotaxis, and motility processes

    PubMed Central

    Huang, Lixing; Hu, Jiao; Su, Yongquan; Qin, Yingxue; Kong, Wendi; Ma, Ying; Xu, Xiaojin; Lin, Mao; Yan, Qingpi

    2015-01-01

    The capability of Vibrio alginolyticus to adhere to fish mucus is a key virulence factor of the bacteria. Our previous research showed that stress conditions, such as Cu2+, Pb2+, Hg2+, and low pH, can reduce this adhesion ability. Non-coding (nc) RNAs play a crucial role in regulating bacterial gene expression, affecting the bacteria's pathogenicity. To investigate the mechanism(s) underlying the decline in adhesion ability caused by stressors, we combined high-throughput sequencing with computational techniques to detect stressed ncRNA dynamics. These approaches yielded three commonly altered ncRNAs that are predicted to regulate the bacterial chemotaxis pathway, which plays a key role in the adhesion process of bacteria. We hypothesized they play a key role in the adhesion process of V. alginolyticus. In this study, we validated the effects of these three ncRNAs on their predicted target genes and their role in the V. alginolyticus adhesion process with RNA interference (i), quantitative real-time polymerase chain reaction (qPCR), northern blot, capillary assay, and in vitro adhesion assays. The expression of these ncRNAs and their predicted target genes were confirmed by qPCR and northern blot, which reinforced the reliability of the sequencing data and the target prediction. Overexpression of these ncRNAs was capable of reducing the chemotactic and adhesion ability of V. alginolyticus, and the expression levels of their target genes were also significantly reduced. Our results indicated that these three ncRNAs: (1) are able to regulate the bacterial chemotaxis pathway, and (2) play a key role in the adhesion process of V. alginolyticus. PMID:26217589

  20. In vivo characterization of an AHR-dependent long non-coding RNA required for proper Sox9b expression.

    PubMed

    Garcia, Gloria R; Goodale, Britton C; Wiley, Michelle W; La Du, Jane K; Hendrix, David A; Tanguay, Robert L

    2017-04-06

    Xenobiotic activation of the aryl hydrocarbon receptor (AHR) by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) prevents the proper formation of craniofacial cartilage and the heart in developing zebrafish. Downstream molecular targets responsible for AHR-dependent adverse effects remain largely unknown; however, in zebrafish sox9b has been identified as one of the most reduced transcripts in several target organs and is hypothesized to have a causal role in TCDD-induced toxicity. The reduction of sox9b expression in TCDD-exposed zebrafish embryos has been shown to contribute to heart and jaw malformation phenotypes. The mechanisms by which AHR2 (functional ortholog of mammalian AHR) activation leads to reduced sox9b expression levels and subsequent target organ toxicity are unknown. We have identified a novel long non-coding RNA (slincR) that is upregulated by strong AHR ligands and is located adjacent to the sox9b gene. We hypothesize that slincR is regulated by AHR2 and transcriptionally represses sox9b. The slincR transcript functions as an RNA macromolecule, and slincR expression is AHR2-dependent. Antisense knockdown of slincR results in an increase in sox9b expression during both normal development and AHR2 activation, which suggests a relief in repression. During development, slincR was expressed in tissues with sox9 essential functions, including the jaw/snout region, otic vesicle, eye, and brain. Reducing the levels of slincR resulted in altered neurological and/or locomotor behavioral responses. Our results place slincR as an intermediate between AHR2 activation and the reduction of sox9b mRNA in the AHR2 signaling pathway.

  1. Identification of Aedes aegypti Long Intergenic Non-coding RNAs and Their Association with Wolbachia and Dengue Virus Infection

    PubMed Central

    Etebari, Kayvan; Asad, Sultan; Zhang, Guangmei; Asgari, Sassan

    2016-01-01

    Long intergenic non-coding RNAs (lincRNAs) are appearing as an important class of regulatory RNAs with a variety of biological functions. The aim of this study was to identify the lincRNA profile in the dengue vector Aedes aegypti and evaluate their potential role in host-pathogen interaction. The majority of previous RNA-Seq transcriptome studies in Ae. aegypti have focused on the expression pattern of annotated protein coding genes under different biological conditions. Here, we used 35 publically available RNA-Seq datasets with relatively high depth to screen the Ae. aegypti genome for lincRNA discovery. This led to the identification of 3,482 putative lincRNAs. These lincRNA genes displayed a slightly lower GC content and shorter transcript lengths compared to protein-encoding genes. Ae. aegypti lincRNAs also demonstrate low evolutionary sequence conservation even among closely related species such as Culex quinquefasciatus and Anopheles gambiae. We examined their expression in dengue virus serotype 2 (DENV-2) and Wolbachia infected and non-infected adult mosquitoes and Aa20 cells. The results revealed that DENV-2 infection increased the abundance of a number of host lincRNAs, from which some suppress viral replication in mosquito cells. RNAi-mediated silencing of lincRNA_1317 led to enhancement in viral replication, which possibly indicates its potential involvement in the host anti-viral defense. A number of lincRNAs were also differentially expressed in Wolbachia-infected mosquitoes. The results will facilitate future studies to unravel the function of lncRNAs in insects and may prove to be beneficial in developing new ways to control vectors or inhibit replication of viruses in them. PMID:27760142

  2. Dysregulation of long non-coding RNA profiles in human colorectal cancer and its association with overall survival

    PubMed Central

    Yang, Lei; Xu, Lingling; Wang, Qian; Wang, Min; An, Guangyu

    2016-01-01

    Long non-coding RNAs (lncRNAs) emerged as key regulators of diverse roles during colorectal cancer (CRC) carcinogenesis, but their specific function still remains to be explored. The present study aimed to re-annotate the Affymetrix Human Exon 1.0 ST Array for defining differential lncRNAs in CRC. Their prognostic relevance was also developed for screening key regulators in CRC. The CRC datasets E-GEOD-31737, E-MATB-829, Affymetrix colon cancer dataset and E-GEOD-24550 were re-purposed for searching differential lncRNAs and exploring their association with overall survival (OS). The identified lncRNAs were validated in CRC tissues or cell lines. As a result, 462, 286 and 166 differential lncRNAs were identified, respectively, in three predictive datasets. Among them, 48 lncRNAs were commonly observed to exhibit differential expression in the three datasets. Notably, the overexpression of family with sequence similarity 83 member H (FAM83H)-antisense (AS) 1 (P=0.038) and VPS9 domain containing 1 (VPS9D1)-AS1 (P=0.020) indicated shorter OS time than lower expression. The overexpression of FAM83H-AS1 (P=0.033) and VPS9D1-AS1 (P=0.011) was validated in cancerous tissues. Thus, FAM83H-AS1 and VPS9D1-AS1 may potentially enhance carcinogenesis or may be developed as prognostic biomarkers for CRC. In conclusion, a total of 48 CRC-related lncRNAs were identified, the majority of which were confirmed to exhibit dysregulation. FAM83H-AS1 and VPS9D1-AS1 could have a potential use as prognostic biomarkers for CRC patients. PMID:27895773

  3. Bimodal expression of yeast GAL genes is controlled by a long non-coding RNA and a bifunctional galactokinase.

    PubMed

    Zacharioudakis, Ioannis; Tzamarias, Dimitris

    2017-04-22

    Bimodality in gene expression can generate phenotypic heterogeneity facilitating fitness and growth of isogenic cell populations in suboptimal environments. We investigated the mechanism by which, in conditions of limiting galactose, yeast cell populations activate GAL genes in a bimodal fashion with a cell fraction expressing GAL genes (ON), while the rest subpopulation is kept at the non-expressing (OFF) state. We show that a long non-coding RNA (GAL10-ncRNA) crossing the bidirectional GAL1-10 promoter, decreases the rate by which single cells commit transition to the ON state without affecting the rate of GAL transcription per se in ON cells. This is accomplished by repressing stochastic expression of the bifunctional Gal1p galactokinase, which besides its enzymatic activity acts as an essential inducer of the system under those conditions. We show that once single cells switch to the ON state, the GAL10-ncRNA effect is overridden by accumulating Gal1p levels sufficient to feedback positively on Gal4p, and not by the active transcription of GAL10 that occurs in opposite direction relative to that of GAL10-ncRNA. Conversely, GAL10-ncRNA does not influence transition of ON cells, where Gal4p is active, back to the OFF state. Our model suggests that the functional interplay between GAL10-ncRNA transcription, stochastic Gal1p expression and Gal1p positive feedback on Gal4p constitutes a novel molecular switch mechanism dictating the commitment of individual cells for either metabolic state.

  4. Characterization of long non-coding RNA expression profiles in lymph node metastasis of early-stage cervical cancer.

    PubMed

    Shang, Chunliang; Zhu, Wenhui; Liu, Tianyu; Wang, Wei; Huang, Guangxin; Huang, Jiaming; Zhao, Peizhen; Zhao, Yunhe; Yao, Shuzhong

    2016-06-01

    Pelvic lymph node metastasis (PLNM) is an independent prognostic parameter and determines the treatment strategies of cervical cancer. Increasing evidence indicates that long non-coding RNAs (lncRNAs) play a crucial role in the process of tumor biological functions. This study aimed to mine lymph node metastasis-associated lncRNAs and investigate their potential pathophysiological mechanism in cervical cancer lymph node metastasis. We applied the lncRNA-mining approach to identify lncRNA transcripts represented on Affymetrix human genome U133 plus 2.0 microarrays from Gene Expression Omnibus (GEO) and then by validation in clinical specimens. The biological role and molecular mechanism of these lncRNAs were predicted by bioinformatic analysis. Subsequently, a receiver operating characteristic (ROC) curve and survival curve were conducted to evaluate the diagnostic and prognostic value of candidate lncRNAs. In total, 234 differentially expressed lncRNAs were identified to significantly associate with pelvic lymph node metastasis in early-stage cervical cancer. Our qRT-PCR results were consistent with the mining analysis (P<0.05). The functional enrichment analysis suggested that these lncRNAs may be involved in the biological process of lymph node metastasis. The ROC curves demonstrated satisfactory discrimination power of MIR100HG and AC024560.2 with areas under the curve of 0.801 and 0.837, respectively. Survival curve also indicated that patients with high MIR100HG expression had a tendency of poor prognosis. This is the first study to successfully mine the lncRNA expression patterns in PLNM of early-stage cervical cancer. MIR100HG and AC024560.2 may be a potential biomarkers of PLNM and these lncRNAs may provide broader perspective for combating cervical cancer metastasis.

  5. Silencing nc886, a Non-Coding RNA, Induces Apoptosis of Human Endometrial Cancer Cells-1A In Vitro.

    PubMed

    Hu, Zhuoying; Zhang, Hongyu; Tang, Liangdan; Lou, Meng; Geng, Yanqing

    2017-03-16

    BACKGROUND The role that nc886, a non-coding microRNA, plays in human endometrial cancer is unknown. The present study aimed to describe the functional role of nc886 in human endometrial cancer-1A (HEC-1A) cell line, which may provide another target for human endometrial cancer treatment. MATERIAL AND METHODS The expression levels of nv886 in normal human endometrial tissue and the early phase and late phase of human endometrial cancer tissues were determined and compared by fluorescence in situ hybridization (FISH). Small interference RNA (siRNA) was used to inhibit nc886, and cell proliferation was evaluated with the MTT test. mRNA levels of PKR, NF-κB, vascular endothelial growth factor (VEGF), and caspase-3 were determined against glyceraldehyde 3-phosphate dehydrogenase (GAPDH between the HEC-1A control group and the silenced group (nc886 silenced with siRNA) by real-time reverse transcription polymerase chain reaction (RT-PCR). The protein levels of PKR (total and phosphorylated form), NF-κB, VEGF, and caspase-3 were determined against GAPDH by Western blotting, and cell apoptosis was determined by flow cytometry. RESULTS Our results indicated that a higher level of nc886 was expressed in the late phase of human endometrial cancer tissue, less than in the early phase but still higher than in normal human endometrial tissue. After nc886 was silenced, protein levels of p-PKR (phosphorylated PKR) and caspase-3 were increased, whereas NF-κB and VEGF were decreased. CONCLUSIONS The rate of apoptosis in the silenced group was increased and the rate of cell proliferation was slower in comparison to the control.

  6. Brassinosteriod Insensitive 2 (BIN2) acts as a downstream effector of the Target of Rapamycin (TOR) signaling pathway to regulate photoautotrophic growth in Arabidopsis.

    PubMed

    Xiong, Fangjie; Zhang, Rui; Meng, Zhigang; Deng, Kexuan; Que, Yumei; Zhuo, Fengping; Feng, Li; Guo, Sundui; Datla, Raju; Ren, Maozhi

    2017-01-01

    The components of the target of rapamycin (TOR) signaling pathway have been well characterized in heterotrophic organisms from yeast to humans. However, because of rapamycin insensitivity, embryonic lethality in tor null mutants and a lack of reliable ways of detecting TOR protein kinase in higher plants, the key players upstream and downstream of TOR remain largely unknown in plants. Using engineered rapamycin-sensitive Binding Protein 12-2 (BP12-2) plants, the present study showed that combined treatment with rapamycin and active-site TOR inhibitors (asTORis) results in synergistic inhibition of TOR activity and plant growth in Arabidopsis. Based on this system, we revealed that TOR signaling plays a crucial role in modulating the transition from heterotrophic to photoautotrophic growth in Arabidopsis. Ribosomal protein S6 kinase 2 (S6K2) was identified as a direct downstream target of TOR, and the growth of TOR-suppressed plants could be rescued by up-regulating S6K2. Systems, genetic, and biochemical analyses revealed that Brassinosteriod Insensitive 2 (BIN2) acts as a novel downstream effector of S6K2, and the phosphorylation of BIN2 depends on TOR-S6K2 signaling in Arabidopsis. By combining pharmacological with genetic and biochemical approaches, we determined that the TOR-S6K2-BIN2 signaling pathway plays important roles in regulating the photoautotrophic growth of Arabidopsis.

  7. Variation of photoautotrophic fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, with inorganic carbon over narrow ranges of pH.

    PubMed

    Ota, Masaki; Takenaka, Motohiro; Sato, Yoshiyuki; Smith, Richard L; Inomata, Hiroshi

    2015-01-01

    Photoautotrophic fatty acid production of a highly CO2 -tolerant green alga Chlorococcum littorale in the presence of inorganic carbon at 295 K and light intensity of 170 µmol-photon m(-2) s(-1) was investigated. CO2 concentration in the bubbling gas was adjusted by mixing pure gas components of CO2 and N2 to avoid photorespiration and β-oxidation of fatty acids under O2 surrounding conditions. Maximum content of total fatty acid showed pH-dependence after nitrate depletion of the culture media and increased with the corresponding inorganic carbon ratio. Namely, [HCO3 (-) ]/([CO2 ]+n[ CO32-]) ratio in the culture media was found to be a controlling factor for photoautotrophic fatty acid production after the nitrate limitation. At a CO2 concentration of 5% (vol/vol) and a pH of 6.7, the fatty acid content was 47.8 wt % (dry basis) at its maximum that is comparable with land plant seed oils.

  8. Long non-coding RNAs differentially expressed between normal versus primary breast tumor tissues disclose converse changes to breast cancer-related protein-coding genes.

    PubMed

    Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O

    2014-01-01

    Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the

  9. Long Non-Coding RNAs Differentially Expressed between Normal versus Primary Breast Tumor Tissues Disclose Converse Changes to Breast Cancer-Related Protein-Coding Genes

    PubMed Central

    Reiche, Kristin; Kasack, Katharina; Schreiber, Stephan; Lüders, Torben; Due, Eldri U.; Naume, Bjørn; Riis, Margit; Kristensen, Vessela N.; Horn, Friedemann; Børresen-Dale, Anne-Lise; Hackermüller, Jörg; Baumbusch, Lars O.

    2014-01-01

    Breast cancer, the second leading cause of cancer death in women, is a highly heterogeneous disease, characterized by distinct genomic and transcriptomic profiles. Transcriptome analyses prevalently assessed protein-coding genes; however, the majority of the mammalian genome is expressed in numerous non-coding transcripts. Emerging evidence supports that many of these non-coding RNAs are specifically expressed during development, tumorigenesis, and metastasis. The focus of this study was to investigate the expression features and molecular characteristics of long non-coding RNAs (lncRNAs) in breast cancer. We investigated 26 breast tumor and 5 normal tissue samples utilizing a custom expression microarray enclosing probes for mRNAs as well as novel and previously identified lncRNAs. We identified more than 19,000 unique regions significantly differentially expressed between normal versus breast tumor tissue, half of these regions were non-coding without any evidence for functional open reading frames or sequence similarity to known proteins. The identified non-coding regions were primarily located in introns (53%) or in the intergenic space (33%), frequently orientated in antisense-direction of protein-coding genes (14%), and commonly distributed at promoter-, transcription factor binding-, or enhancer-sites. Analyzing the most diverse mRNA breast cancer subtypes Basal-like versus Luminal A and B resulted in 3,025 significantly differentially expressed unique loci, including 682 (23%) for non-coding transcripts. A notable number of differentially expressed protein-coding genes displayed non-synonymous expression changes compared to their nearest differentially expressed lncRNA, including an antisense lncRNA strongly anticorrelated to the mRNA coding for histone deacetylase 3 (HDAC3), which was investigated in more detail. Previously identified chromatin-associated lncRNAs (CARs) were predominantly downregulated in breast tumor samples, including CARs located in the

  10. Identification of a RNA-Seq Based 8-Long Non-Coding RNA Signature Predicting Survival in Esophageal Cancer

    PubMed Central

    Fan, Qiaowei; Liu, Bingrong

    2016-01-01

    Background Accumulating evidence suggests the involvement of long non-coding RNAs (lncRNAs) as oncogenic or tumor suppressive regulators in the development of various cancers. In the present study, we aimed to identify a lncRNA signature based on RNA sequencing (RNA-seq) data to predict survival in esophageal cancer. Material/Methods The RNA-seq lncRNA expression data and clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. Differentially expressed lncRNAs were screened out between esophageal cancer and normal tissues. Univariate and multivariate Cox regression analysis were performed to establish a lncRNA-related prognostic model. Receiver operating characteristic (ROC) analysis was conducted to test the sensitivity and specificity of the model. GO (gene ontology) functional and KEGG pathway enrichment analyses were performed for mRNAs co-expressed with the lncRNAs to explore the potential functions of the prognostic lncRNAs. Results A total of 265 differentially expressed lncRNAs were identified between esophageal cancer and normal tissues. After univariate and multivariate Cox regression analysis, eight lncRNAs (GS1-600G8.5, LINC00365, CTD-2357A8.3, RP11-705O24.1, LINC01554, RP1-90J4.1, RP11-327J17.1, and LINC00176) were finally screened out to establish a predictive model by which patients could be classified into high-risk and low-risk groups with significantly different overall survival. Further analysis indicated independent prognostic capability of the 8-lncRNA signature from other clinicopathological factors. ROC curve analysis demonstrated good performance of the 8-lncRNA signature. Functional enrichment analysis showed that the prognostic lncRNAs were mainly associated with esophageal cancer related biological processes such as regulation of glucose metabolic process and amino acid and lipids metabolism. Conclusions Our study developed a novel candidate model providing additional and more powerful prognostic information

  11. Genome Wide Identification and Functional Prediction of Long Non-Coding RNAs Responsive to Sclerotinia sclerotiorum Infection in Brassica napus

    PubMed Central

    Joshi, Raj Kumar; Megha, Swati; Basu, Urmila; Rahman, Muhammad H.; Kav, Nat N. V.

    2016-01-01

    Sclerotinia stem rot caused by Sclerotinia sclerotiorum affects canola production worldwide. Emerging evidence suggests that long non-coding RNAs (lncRNAs) play important roles in the regulation of gene expression in plants, in response to both abiotic and biotic stress. So far, identification of lncRNAs has been limited to a few model plant species, and their roles in mediating responses to biotic stresses are yet to be characterized in Brassica napus. The present study reports the identification of novel lncRNAs responsive to S. sclerotiorum infection in B. napus at two time points after infection (24 hpi and 48 hpi) using a stranded RNA-Sequencing technique and a detection pipeline for lncRNAs. Of the total 3,181 lncRNA candidates, 2,821 lncRNAs were intergenic, 111 were natural antisense transcripts, 76 possessed exonic overlap with the reference coding transcripts while the remaining 173 represented novel lnc- isoforms. Forty one lncRNAs were identified as the precursors for microRNAs (miRNAs) including miR156, miR169 and miR394, with significant roles in mediating plant responses to fungal phytopathogens. A total of 931 differentially expressed lncRNAs were identified in response to S. sclerotiorum infection and the expression of 12 such lncRNAs was further validated using qRT-PCR. B. napus antisense lncRNA, TCONS_00000966, having 90% overlap with a plant defensin gene, showed significant induction at both infection stages, suggesting its involvement in the transcriptional regulation of defense responsive genes under S. sclerotiorum infection. Additionally, nine lncRNAs showed overlap with cis-regulatory regions of differentially expressed genes of B. napus. Quantitative RT-PCR verification of a set of S. sclerotiorum responsive sense/antisense transcript pairs revealed contrasting expression patterns, supporting the hypothesis that steric clashes of transcriptional machinery may lead to inactivation of sense promoter. Our findings highlight the potential

  12. Long Non-Coding RNA Profiling in a Non-Alcoholic Fatty Liver Disease Rodent Model: New Insight into Pathogenesis

    PubMed Central

    Chen, Yi; Huang, Haixiu; Xu, Chengfu; Yu, Chaohui; Li, Youming

    2017-01-01

    Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases worldwide with an unclear mechanism. Long non-coding RNAs (lncRNAs) have recently emerged as important regulatory molecules. To better understand NAFLD pathogenesis, lncRNA and messenger RNA (mRNA) microarrays were conducted in an NAFLD rodent model. Potential target genes of significantly changed lncRNA were predicted using cis/trans-regulatory algorithms. Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were then performed to explore their function. In the current analysis, 89 upregulated and 177 downregulated mRNAs were identified, together with 291 deregulated lncRNAs. Bioinformatic analysis of these RNAs has categorized these RNAs into pathways including arachidonic acid metabolism, circadian rhythm, linoleic acid metabolism, peroxisome proliferator-activated receptor (PPAR) signaling pathway, sphingolipid metabolism, steroid biosynthesis, tryptophan metabolism and tyrosine metabolism were compromised. Quantitative polymerase chain reaction (qPCR) of representative nine mRNAs and eight lncRNAs (named fatty liver-related lncRNA, FLRL) was conducted and this verified previous microarray results. Several lncRNAs, such as FLRL1, FLRL6 and FLRL2 demonstrated to be involved in circadian rhythm targeting period circadian clock 3 (Per3), Per2 and aryl hydrocarbon receptor nuclear translocator-like (Arntl), respectively. While FLRL8, FLRL3 and FLRL7 showed a potential role in PPAR signaling pathway through interaction with fatty acid binding protein 5 (Fabp5), lipoprotein lipase (Lpl) and fatty acid desaturase 2 (Fads2). Functional experiments showed that interfering of lncRNA FLRL2 expression affected the expression of predicted target, circadian rhythm gene Arntl. Moreover, both FLRL2 and Arntl were downregulated in the NAFLD cellular model. The current study identified lncRNA and corresponding mRNA in NAFLD

  13. BioCode: Two biologically compatible Algorithms for embedding data in non-coding and coding regions of DNA

    PubMed Central

    2013-01-01

    Background In recent times, the application of deoxyribonucleic acid (DNA) has diversified with the emergence of fields such as DNA computing and DNA data embedding. DNA data embedding, also known as DNA watermarking or DNA steganography, aims to develop robust algorithms for encoding non-genetic information in DNA. Inherently DNA is a digital medium whereby the nucleotide bases act as digital symbols, a fact which underpins all bioinformatics techniques, and which also makes trivial information encoding using DNA straightforward. However, the situation is more complex in methods which aim at embedding information in the genomes of living organisms. DNA is susceptible to mutations, which act as a noisy channel from the point of view of information encoded using DNA. This means that the DNA data embedding field is closely related to digital communications. Moreover it is a particularly unique digital communications area, because important biological constraints must be observed by all methods. Many DNA data embedding algorithms have been presented to date, all of which operate in one of two regions: non-coding DNA (ncDNA) or protein-coding DNA (pcDNA). Results This paper proposes two novel DNA data embedding algorithms jointly called BioCode, which operate in ncDNA and pcDNA, respectively, and which comply fully with stricter biological restrictions. Existing methods comply with some elementary biological constraints, such as preserving protein translation in pcDNA. However there exist further biological restrictions which no DNA data embedding methods to date account for. Observing these constraints is key to increasing the biocompatibility and in turn, the robustness of information encoded in DNA. Conclusion The algorithms encode information in near optimal ways from a coding point of view, as we demonstrate by means of theoretical and empirical (in silico) analyses. Also, they are shown to encode information in a robust way, such that mutations have isolated

  14. Long non-coding RNA profiling of human lymphoid progenitor cells reveals transcriptional divergence of B cell and T cell lineages.

    PubMed

    Casero, David; Sandoval, Salemiz; Seet, Christopher S; Scholes, Jessica; Zhu, Yuhua; Ha, Vi Luan; Luong, Annie; Parekh, Chintan; Crooks, Gay M

    2015-12-01

    To elucidate the transcriptional 'landscape' that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitor cells spanning the earliest stages of B lymphoid and T lymphoid specification. Over 3,000 genes encoding previously unknown long non-coding RNAs (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage specific and were more lineage specific than those of protein-coding genes. Protein-coding genes co-expressed with neighboring lncRNA genes showed enrichment for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships among the earliest progenitor cells in the human bone marrow and thymus.

  15. Long non-coding RNA XIST promotes cell growth by regulating miR-139-5p/PDK1/AKT axis in hepatocellular carcinoma.

    PubMed

    Mo, Yichao; Lu, Yaoyong; Wang, Peng; Huang, Simin; He, Longguang; Li, Dasheng; Li, Fuliang; Huang, Junwei; Lin, Xiaoxia; Li, Xueru; Che, Siyao; Chen, Qinshou

    2017-02-01

    Abnormal expression of long non-coding RNA often contributes to unrestricted growth of cancer cells. Long non-coding RNA XIST expression is upregulated in several cancers; however, its modulatory mechanisms have not been reported in hepatocellular carcinoma. In this study, we found that XIST expression was significantly increased in hepatocellular carcinoma tissues and cell lines. XIST promoted cell cycle progression from the G1 phase to the S phase and protected cells from apoptosis, which contributed to hepatocellular carcinoma cell growth. In addition, we revealed that there was reciprocal repression between XIST and miR-139-5p. PDK1 was identified as a direct target of miR-139-5p. We proposed that XIST was responsible for hepatocellular carcinoma cell proliferation, and XIST exerted its function through the miR-139-5p/PDK1 axis.

  16. Identification of novel non-coding RNA-based negative feedback regulating the expression of the oncogenic transcription factor GLI1.

    PubMed

    Villegas, Victoria E; Rahman, Mohammed Ferdous-Ur; Fernandez-Barrena, Maite G; Diao, Yumei; Liapi, Eleni; Sonkoly, Enikö; Ståhle, Mona; Pivarcsi, Andor; Annaratone, Laura; Sapino, Anna; Ramírez Clavijo, Sandra; Bürglin, Thomas R; Shimokawa, Takashi; Ramachandran, Saraswathi; Kapranov, Philipp; Fernandez-Zapico, Martin E; Zaphiropoulos, Peter G

    2014-07-01

    Non-coding RNAs are a complex class of nucleic acids, with growing evidence supporting regulatory roles in gene expression. Here we identify a non-coding RNA located head-to-head with the gene encoding the Glioma-associated oncogene 1 (GLI1), a transcriptional effector of multiple cancer-associated signaling pathways. The expression of this three-exon GLI1 antisense (GLI1AS) RNA in cancer cells was concordant with GLI1 levels. siRNAs knockdown of GLI1AS up-regulated GLI1 and increased cellular proliferation and tumor growth in a xenograft model system. Conversely, GLI1AS overexpression decreased the levels of GLI1, its target genes PTCH1 and PTCH2, and cellular proliferation. Additionally, we demonstrate that GLI1 knockdown reduced GLI1AS, while GLI1 overexpression increased GLI1AS, supporting the role of GLI1AS as a target gene of the GLI1 transcription factor. Activation of TGFβ and Hedgehog signaling, two known regulators of GLI1 expression, conferred a concordant up-regulation of GLI1 and GLI1AS in cancer cells. Finally, analysis of the mechanism underlying the interplay between GLI1 and GLI1AS indicates that the non-coding RNA elicits a local alteration of chromatin structure by increasing the silencing mark H3K27me3 and decreasing the recruitment of RNA polymerase II to this locus. Taken together, the data demonstrate the existence of a novel non-coding RNA-based negative feedback loop controlling GLI1 levels, thus expanding the repertoire of mechanisms regulating the expression of this oncogenic transcription factor.

  17. Genomic Editing of Non-Coding RNA Genes with CRISPR/Cas9 Ushers in a Potential Novel Approach to Study and Treat Schizophrenia.

    PubMed

    Zhuo, Chuanjun; Hou, Weihong; Hu, Lirong; Lin, Chongguang; Chen, Ce; Lin, Xiaodong

    2017-01-01

    Schizophrenia is a genetically related mental illness, in which the majority of genetic alterations occur in the non-coding regions of the human genome. In the past decade, a growing number of regulatory non-coding RNAs (ncRNAs) including microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) have been identified to be strongly associated with schizophrenia. However, the studies of these ncRNAs in the pathophysiology of schizophrenia and the reverting of their genetic defects in restoration of the normal phenotype have been hampered by insufficient technology to manipulate these ncRNA genes effectively as well as a lack of appropriate animal models. Most recently, a revolutionary gene editing technology known as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9; CRISPR/Cas9) has been developed that enable researchers to overcome these challenges. In this review article, we mainly focus on the schizophrenia-related ncRNAs and the use of CRISPR/Cas9-mediated editing on the non-coding regions of the genomic DNA in proving causal relationship between the genetic defects and the pathophysiology of schizophrenia. We subsequently discuss the potential of translating this advanced technology into a clinical therapy for schizophrenia, although the CRISPR/Cas9 technology is currently still in its infancy and immature to put into use in the treatment of diseases. Furthermore, we suggest strategies to accelerate the pace from the bench to the bedside. This review describes the application of the powerful and feasible CRISPR/Cas9 technology to manipulate schizophrenia-associated ncRNA genes. This technology could help researchers tackle this complex health problem and perhaps other genetically related mental disorders due to the overlapping genetic alterations of schizophrenia with other mental illnesses.

  18. Genomic Editing of Non-Coding RNA Genes with CRISPR/Cas9 Ushers in a Potential Novel Approach to Study and Treat Schizophrenia

    PubMed Central

    Zhuo, Chuanjun; Hou, Weihong; Hu, Lirong; Lin, Chongguang; Chen, Ce; Lin, Xiaodong