Sample records for minimal sample manipulation

  1. Sample Manipulation System for Sample Analysis at Mars

    NASA Technical Reports Server (NTRS)

    Mumm, Erik; Kennedy, Tom; Carlson, Lee; Roberts, Dustyn

    2008-01-01

    The Sample Analysis at Mars (SAM) instrument will analyze Martian samples collected by the Mars Science Laboratory Rover with a suite of spectrometers. This paper discusses the driving requirements, design, and lessons learned in the development of the Sample Manipulation System (SMS) within SAM. The SMS stores and manipulates 74 sample cups to be used for solid sample pyrolysis experiments. Focus is given to the unique mechanism architecture developed to deliver a high packing density of sample cups in a reliable, fault tolerant manner while minimizing system mass and control complexity. Lessons learned are presented on contamination control, launch restraint mechanisms for fragile sample cups, and mechanism test data.

  2. Manipulation of biological samples using micro and nano techniques.

    PubMed

    Castillo, Jaime; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    The constant interest in handling, integrating and understanding biological systems of interest for the biomedical field, the pharmaceutical industry and the biomaterial researchers demand the use of techniques that allow the manipulation of biological samples causing minimal or no damage to their natural structure. Thanks to the advances in micro- and nanofabrication during the last decades several manipulation techniques offer us the possibility to image, characterize and manipulate biological material in a controlled way. Using these techniques the integration of biomaterials with remarkable properties with physical transducers has been possible, giving rise to new and highly sensitive biosensing devices. This article reviews the different techniques available to manipulate and integrate biological materials in a controlled manner either by sliding them along a surface (2-D manipulation), by grapping them and moving them to a new position (3-D manipulation), or by manipulating and relocating them applying external forces. The advantages and drawbacks are mentioned together with examples that reflect the state of the art of manipulation techniques for biological samples (171 references).

  3. A global approach for using kinematic redundancy to minimize base reactions of manipulators

    NASA Technical Reports Server (NTRS)

    Chung, C. L.; Desa, S.

    1989-01-01

    An important consideration in the use of manipulators in microgravity environments is the minimization of the base reactions, i.e. the magnitude of the force and the moment exerted by the manipulator on its base as it performs its tasks. One approach which was proposed and implemented is to use the redundant degree of freedom in a kinematically redundant manipulator to plan manipulator trajectories to minimize base reactions. A global approach was developed for minimizing the magnitude of the base reactions for kinematically redundant manipulators which integrates the Partitioned Jacobian method of redundancy resolution, a 4-3-4 joint-trajectory representation and the minimization of a cost function which is the time-integral of the magnitude of the base reactions. The global approach was also compared with a local approach developed earlier for the case of point-to-point motion of a three degree-of-freedom planar manipulator with one redundant degree-of-freedom. The results show that the global approach is more effective in reducing and smoothing the base force while the local approach is superior in reducing the base moment.

  4. Analysis of Currently Available Analgesic Tablets by Modern Liquid Chromatography: An Undergraduate Laboratory Introduction to HPLC.

    ERIC Educational Resources Information Center

    Kagel, R. A.; Farwell, S. O.

    1983-01-01

    Background information, procedures, and results, are provided for an undergraduate experiment in which analgesic tablets are analyzed using liquid chromatography. The experiment, an improved, modified version of the Waters Associates Inc. experiment, is simple to prepare, requiring little glassware and minimal sample manipulation by students. (JN)

  5. 76 FR 51038 - Draft Guidance for Industry: Cell Selection Devices for Point of Care Production of Minimally...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ...; formerly Docket No. 2007D-0290] Draft Guidance for Industry: Cell Selection Devices for Point of Care Production of Minimally Manipulated Autologous Peripheral Blood Stem Cells; Withdrawal of Draft Guidance...: Cell Selection Devices for Point of Care Production of Minimally Manipulated Autologous Peripheral...

  6. Optimum sample size allocation to minimize cost or maximize power for the two-sample trimmed mean test.

    PubMed

    Guo, Jiin-Huarng; Luh, Wei-Ming

    2009-05-01

    When planning a study, sample size determination is one of the most important tasks facing the researcher. The size will depend on the purpose of the study, the cost limitations, and the nature of the data. By specifying the standard deviation ratio and/or the sample size ratio, the present study considers the problem of heterogeneous variances and non-normality for Yuen's two-group test and develops sample size formulas to minimize the total cost or maximize the power of the test. For a given power, the sample size allocation ratio can be manipulated so that the proposed formulas can minimize the total cost, the total sample size, or the sum of total sample size and total cost. On the other hand, for a given total cost, the optimum sample size allocation ratio can maximize the statistical power of the test. After the sample size is determined, the present simulation applies Yuen's test to the sample generated, and then the procedure is validated in terms of Type I errors and power. Simulation results show that the proposed formulas can control Type I errors and achieve the desired power under the various conditions specified. Finally, the implications for determining sample sizes in experimental studies and future research are discussed.

  7. Effects of tools inserted through snake-like surgical manipulators.

    PubMed

    Murphy, Ryan J; Otake, Yoshito; Wolfe, Kevin C; Taylor, Russell H; Armand, Mehran

    2014-01-01

    Snake-like manipulators with a large, open lumen can offer improved treatment alternatives for minimally-and less-invasive surgeries. In these procedures, surgeons use the manipulator to introduce and control flexible tools in the surgical environment. This paper describes a predictive algorithm for estimating manipulator configuration given tip position for nonconstant curvature, cable-driven manipulators using energy minimization. During experimental bending of the manipulator with and without a tool inserted in its lumen, images were recorded from an overhead camera in conjunction with actuation cable tension and length. To investigate the accuracy, the estimated manipulator configuration from the model and the ground-truth configuration measured from the image were compared. Additional analysis focused on the response differences for the manipulator with and without a tool inserted through the lumen. Results indicate that the energy minimization model predicts manipulator configuration with an error of 0.24 ± 0.22mm without tools in the lumen and 0.24 ± 0.19mm with tools in the lumen (no significant difference, p = 0.81). Moreover, tools did not introduce noticeable perturbations in the manipulator trajectory; however, there was an increase in requisite force required to reach a configuration. These results support the use of the proposed estimation method for calculating the shape of the manipulator with an tool inserted in its lumen when an accuracy range of at least 1mm is required.

  8. System for Packaging Planetary Samples for Return to Earth

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Bar-Cohen, Yoseph; Backes, paul G.; Sherrit, Stewart; Bao, Xiaoqi; Scott, James S.

    2010-01-01

    A system is proposed for packaging material samples on a remote planet (especially Mars) in sealed sample tubes in preparation for later return to Earth. The sample tubes (Figure 1) would comprise (1) tubes initially having open tops and closed bottoms; (2) small, bellows-like collapsible bodies inside the tubes at their bottoms; and (3) plugs to be eventually used to close the tops of the tubes. The top inner surface of each tube would be coated with solder. The side of each plug, which would fit snugly into a tube, would feature a solder-filled ring groove. The system would include equipment for storing, manipulating, filling, and sealing the tubes. The containerization system (see Figure 2) will be organized in stations and will include: the storage station, the loading station, and the heating station. These stations can be structured in circular or linear pattern to minimize the manipulator complexity, allowing for compact design and mass efficiency. The manipulation of the sample tube between stations is done by a simple manipulator arm. The storage station contains the unloaded sample tubes and the plugs before sealing as well as the sealed sample tubes with samples after loading and sealing. The chambers at the storage station also allow for plug insertion into the sample tube. At the loading station the sample is poured or inserted into the sample tube and then the tube is topped off. At the heating station the plug is heated so the solder ring melts and seals the plug to the sample tube. The process is performed as follows: Each tube is filled or slightly overfilled with sample material and the excess sample material is wiped off the top. Then, the plug is inserted into the top section of the tube packing the sample material against the collapsible bellowslike body allowing the accommodation of the sample volume. The plug and the top of the tube are heated momentarily to melt the solder in order to seal the tube.

  9. Base reaction optimization of redundant manipulators for space applications

    NASA Technical Reports Server (NTRS)

    Chung, C. L.; Desa, S.; Desilva, C. W.

    1988-01-01

    One of the problems associated with redundant manipulators which were proposed for space applications is that the reactions transmitted to the base of the manipulator as a result of the motion of the manipulator will cause undesirable effects on the dynamic behavior of the supporting space structure. It is therefore necessary to minimize the magnitudes of the forces and moments transmitted to the base. It is shown that kinematic redundancy can be used to solve the dynamic problem of minimizing the magnitude of the base reactions. The methodology described is applied to a four degree-of-freedom spatial manipulator with one redundant degree-of-freedom.

  10. Microorganism Response to Stressed Terrestrial Environments: A Raman Spectroscopic Perspective of Extremophilic Life Strategies

    NASA Astrophysics Data System (ADS)

    Jorge-Villar, Susana E.; Edwards, Howell G. M.

    2013-03-01

    Raman spectroscopy is a valuable analytical technique for the identification of biomolecules and minerals in natural samples, which involves little or minimal sample manipulation. In this paper, we evaluate the advantages and disadvantages of this technique applied to the study of extremophiles. Furthermore, we provide a review of the results published, up to the present point in time, of the bio- and geo-strategies adopted by different types of extremophile colonies of microorganisms. We also show the characteristic Raman signatures for the identification of pigments and minerals, which appear in those complex samples.

  11. Spatially resolved in vivo plant metabolomics by laser ablation-based mass spectrometry imaging (MSI) techniques: LDI-MSI and LAESI

    PubMed Central

    Bartels, Benjamin; Svatoš, Aleš

    2015-01-01

    This short review aims to summarize the current developments and applications of mass spectrometry-based methods for in situ profiling and imaging of plants with minimal or no sample pre-treatment or manipulation. Infrared-laser ablation electrospray ionization and UV-laser desorption/ionization methods are reviewed. The underlying mechanisms of the ionization techniques–namely, laser ablation of biological samples and electrospray ionization–as well as variations of the LAESI ion source for specific targets of interest are described. PMID:26217345

  12. Curation of Frozen Samples

    NASA Technical Reports Server (NTRS)

    Fletcher, L. A.; Allen, C. C.; Bastien, R.

    2008-01-01

    NASA's Johnson Space Center (JSC) and the Astromaterials Curator are charged by NPD 7100.10D with the curation of all of NASA s extraterrestrial samples, including those from future missions. This responsibility includes the development of new sample handling and preparation techniques; therefore, the Astromaterials Curator must begin developing procedures to preserve, prepare and ship samples at sub-freezing temperatures in order to enable future sample return missions. Such missions might include the return of future frozen samples from permanently-shadowed lunar craters, the nuclei of comets, the surface of Mars, etc. We are demonstrating the ability to curate samples under cold conditions by designing, installing and testing a cold curation glovebox. This glovebox will allow us to store, document, manipulate and subdivide frozen samples while quantifying and minimizing contamination throughout the curation process.

  13. In-Bore Prostate Transperineal Interventions with an MRI-guided Parallel Manipulator: System Development and Preliminary Evaluation

    PubMed Central

    Eslami, Sohrab; Shang, Weijian; Li, Gang; Patel, Nirav; Fischer, Gregory S.; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Iordachita, Iulian

    2015-01-01

    Background The robot-assisted minimally-invasive surgery is well recognized as a feasible solution for diagnosis and treatment of the prostate cancer in human. Methods In this paper the kinematics of a parallel 4 Degrees-of-Freedom (DOF) surgical manipulator designed for minimally invasive in-bore prostate percutaneous interventions through the patient's perineum. The proposed manipulator takes advantage of 4 sliders actuated by MRI-compatible piezoelectric motors and incremental rotary encoders. Errors, mostly originating from the design and manufacturing process, need to be identified and reduced before the robot is deployed in the clinical trials. Results The manipulator has undergone several experiments to evaluate the repeatability and accuracy of the needle placement which is an essential concern in percutaneous prostate interventions. Conclusion The acquired results endorse the sustainability, precision (about 1 mm in air (in x or y direction) at the needle's reference point) and reliability of the manipulator. PMID:26111458

  14. Different-Level Simultaneous Minimization Scheme for Fault Tolerance of Redundant Manipulator Aided with Discrete-Time Recurrent Neural Network

    PubMed Central

    Jin, Long; Liao, Bolin; Liu, Mei; Xiao, Lin; Guo, Dongsheng; Yan, Xiaogang

    2017-01-01

    By incorporating the physical constraints in joint space, a different-level simultaneous minimization scheme, which takes both the robot kinematics and robot dynamics into account, is presented and investigated for fault-tolerant motion planning of redundant manipulator in this paper. The scheme is reformulated as a quadratic program (QP) with equality and bound constraints, which is then solved by a discrete-time recurrent neural network. Simulative verifications based on a six-link planar redundant robot manipulator substantiate the efficacy and accuracy of the presented acceleration fault-tolerant scheme, the resultant QP and the corresponding discrete-time recurrent neural network. PMID:28955217

  15. Manipulation and handling processes off-line programming and optimization with use of K-Roset

    NASA Astrophysics Data System (ADS)

    Gołda, G.; Kampa, A.

    2017-08-01

    Contemporary trends in development of efficient, flexible manufacturing systems require practical implementation of modern “Lean production” concepts for maximizing customer value through minimizing all wastes in manufacturing and logistics processes. Every FMS is built on the basis of automated and robotized production cells. Except flexible CNC machine tools and other equipments, the industrial robots are primary elements of the system. In the studies, authors look for wastes of time and cost in real tasks of robots, during manipulation processes. According to aspiration for optimization of handling and manipulation processes with use of the robots, the application of modern off-line programming methods and computer simulation, is the best solution and it is only way to minimize unnecessary movements and other instructions. The modelling process of robotized production cell and offline programming of Kawasaki robots in AS-Language will be described. The simulation of robotized workstation will be realized with use of virtual reality software K-Roset. Authors show the process of industrial robot’s programs improvement and optimization in terms of minimizing the number of useless manipulator movements and unnecessary instructions. This is realized in order to shorten the time of production cycles. This will also reduce costs of handling, manipulations and technological process.

  16. A technical challenge for robot-assisted minimally invasive surgery: precision surgery on soft tissue.

    PubMed

    Stallkamp, J; Schraft, R D

    2005-01-01

    In minimally invasive surgery, a higher degree of accuracy is required by surgeons both for current and for future applications. This could be achieved using either a manipulator or a robot which would undertake selected tasks during surgery. However, a manually-controlled manipulator cannot fully exploit the maximum accuracy and feasibility of three-dimensional motion sequences. Therefore, apart from being used to perform simple positioning tasks, manipulators will probably be replaced by robot systems more and more in the future. However, in order to use a robot, accurate, up-to-date and extensive data is required which cannot yet be acquired by typical sensors such as CT, MRI, US or common x-ray machines. This paper deals with a new sensor and a concept for its application in robot-assisted minimally invasive surgery on soft tissue which could be a solution for data acquisition in future. Copyright 2005 Robotic Publications Ltd.

  17. Effects of VIE tagging and partial tissue sampling on the immune response of three-spined stickleback Gasterosteus aculeatus.

    PubMed

    Henrich, T; Hafer, N; Mobley, K B

    2014-09-01

    A 14 day experiment on effects of visible implant elastomer (VIE) tagging and spine-clipping of three-spined stickleback Gasterosteus aculeatus showed significant increases in immune response, particularly in the granulocyte:lymphocyte ratio, in both treatments and the sham control. A minimum two-week recovery after handling, anaesthesia, tagging and spine-clipping is recommended to minimize effect of manipulation on the immune system. © 2014 The Fisheries Society of the British Isles.

  18. Green coffee oil analysis by high-resolution nuclear magnetic resonance spectroscopy.

    PubMed

    D'Amelio, Nicola; De Angelis, Elisabetta; Navarini, Luciano; Schievano, Elisabetta; Mammi, Stefano

    2013-06-15

    In this work, we show how an extensive and fast quantification of the main components in green coffee oil can be achieved by NMR, with minimal sample manipulation and use of organic solvents. The approach is based on the integration of characteristic NMR signals, selected because of their similar relaxation properties and because they fall in similar spectral regions, which minimizes offset effects. Quantification of glycerides, together with their fatty acid components (oleic, linoleic, linolenic and saturated) and minor species (caffeine, cafestol, kahweol and 16-O-methylcafestol), is achieved in less than 1h making use of (1)H and (13)C spectroscopy. The compositional data obtained are in reasonable agreement with classical chromatographic analyses. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Singularity-free dynamic equations of spacecraft-manipulator systems

    NASA Astrophysics Data System (ADS)

    From, Pål J.; Ytterstad Pettersen, Kristin; Gravdahl, Jan T.

    2011-12-01

    In this paper we derive the singularity-free dynamic equations of spacecraft-manipulator systems using a minimal representation. Spacecraft are normally modeled using Euler angles, which leads to singularities, or Euler parameters, which is not a minimal representation and thus not suited for Lagrange's equations. We circumvent these issues by introducing quasi-coordinates which allows us to derive the dynamics using minimal and globally valid non-Euclidean configuration coordinates. This is a great advantage as the configuration space of a spacecraft is non-Euclidean. We thus obtain a computationally efficient and singularity-free formulation of the dynamic equations with the same complexity as the conventional Lagrangian approach. The closed form formulation makes the proposed approach well suited for system analysis and model-based control. This paper focuses on the dynamic properties of free-floating and free-flying spacecraft-manipulator systems and we show how to calculate the inertia and Coriolis matrices in such a way that this can be implemented for simulation and control purposes without extensive knowledge of the mathematical background. This paper represents the first detailed study of modeling of spacecraft-manipulator systems with a focus on a singularity free formulation using the proposed framework.

  20. Exclusive Liquid Repellency: An Open Multi-Liquid-Phase Technology for Rare Cell Culture and Single-Cell Processing.

    PubMed

    Li, Chao; Yu, Jiaquan; Schehr, Jennifer; Berry, Scott M; Leal, Ticiana A; Lang, Joshua M; Beebe, David J

    2018-05-23

    The concept of high liquid repellency in multi-liquid-phase systems (e.g., aqueous droplets in an oil background) has been applied to areas of biomedical research to realize intrinsic advantages not available in single-liquid-phase systems. Such advantages have included minimizing analyte loss, facile manipulation of single-cell samples, elimination of biofouling, and ease of use regarding loading and retrieving of the sample. In this paper, we present generalized design rules for predicting the wettability of solid-liquid-liquid systems (especially for discrimination between exclusive liquid repellency (ELR) and finite liquid repellency) to extend the applications of ELR. We then apply ELR to two model systems with open microfluidic design in cell biology: (1) in situ underoil culture and combinatorial coculture of mammalian cells in order to demonstrate directed single-cell multiencapsulation with minimal waste of samples as compared to stochastic cell seeding and (2) isolation of a pure population of circulating tumor cells, which is required for certain downstream analyses including sequencing and gene expression profiling.

  1. Optimizing Motion Planning for Hyper Dynamic Manipulator

    NASA Astrophysics Data System (ADS)

    Aboura, Souhila; Omari, Abdelhafid; Meguenni, Kadda Zemalache

    2012-01-01

    This paper investigates the optimal motion planning for an hyper dynamic manipulator. As case study, we consider a golf swing robot which is consisting with two actuated joint and a mechanical stoppers. Genetic Algorithm (GA) technique is proposed to solve the optimal golf swing motion which is generated by Fourier series approximation. The objective function for GA approach is to minimizing the intermediate and final state, minimizing the robot's energy consummation and maximizing the robot's speed. Obtained simulation results show the effectiveness of the proposed scheme.

  2. Fast batch injection analysis system for on-site determination of ethanol in gasohol and fuel ethanol.

    PubMed

    Pereira, Polyana F; Marra, Mariana C; Munoz, Rodrigo A A; Richter, Eduardo M

    2012-02-15

    A simple, accurate and fast (180 injections h(-1)) batch injection analysis (BIA) system with multiple-pulse amperometric detection has been developed for selective determination of ethanol in gasohol and fuel ethanol. A sample aliquot (100 μL) was directly injected onto a gold electrode immersed in 0.5 mol L(-1) NaOH solution (unique reagent). The proposed BIA method requires minimal sample manipulation and can be easily used for on-site analysis. The results obtained with the BIA method were compared to those obtained by gas-chromatography and similar results were obtained (at 95% of confidence level). Published by Elsevier B.V.

  3. Sample mounts for microcrystal crystallography

    NASA Technical Reports Server (NTRS)

    Thorne, Robert E. (Inventor); Kmetko, Jan (Inventor); Stum, Zachary (Inventor); O'Neill, Kevin (Inventor)

    2007-01-01

    Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tapered tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.

  4. Sample mounts for microcrystal crystallography

    NASA Technical Reports Server (NTRS)

    O'Neill, Kevin (Inventor); Kmetko, Jan (Inventor); Thorne, Robert E. (Inventor); Stum, Zachary (Inventor)

    2009-01-01

    Sample mounts (10) for mounting microcrystals of biological macromolecules for X-ray crystallography are prepared by using patterned thin polyimide films (12) that have curvature imparted thereto, for example, by being attached to a curved outer surface of a small metal rod (16). The patterned film (12) preferably includes a tip end (24) for holding a crystal. Preferably, a small sample aperture is disposed in the film for reception of the crystal. A second, larger aperture can also be provided that is connected to the sample aperture by a drainage channel, allowing removal of excess liquid and easier manipulation in viscous solutions. The curvature imparted to the film (12) increases the film's rigidity and allows a convenient scoop-like action for retrieving crystals. The polyimide contributes minimally to background and absorption, and can be treated to obtain desired hydrophobicity or hydrophilicity.

  5. Balanced identity in the minimal groups paradigm.

    PubMed

    Dunham, Yarrow

    2013-01-01

    Balanced Identity Theory [1] formalizes a set of relationships between group attitude, group identification, and self-esteem. While these relationships have been demonstrated for familiar and highly salient social categories, questions remain regarding the generality of the balance phenomenon and its causal versus descriptive status. Supporting the generality and rapidity of cognitive balance, four studies demonstrate that the central predictions of balance are supported even for previously unfamiliar "minimal" social groups to which participants have just been randomly assigned. Further, supporting a causal as opposed to merely descriptive interpretation, manipulating any one component of the balance model (group attitude, group identification, or self-esteem) affects at least one of the related components. Interestingly, the broader pattern of cognitive balance was preserved across such manipulations only when the manipulation strengthens as opposes to weakens the manipulated construct. Taken together, these findings indicate that Balanced Identity Theory has promise as a general theory of intergroup attitudes, and that it may be able to shed light on prior inconsistencies concerning the relationship between self-esteem and intergroup bias.

  6. DYMAFLEX: DYnamic Manipulation FLight EXperiment

    DTIC Science & Technology

    2013-09-03

    thrust per nozzle and minimize propellant mass and tank mass. This study compared carbon dioxide, nitrous oxide, and R134-A. These results were...equations of mo- tion of a space manipulator, showing their top- level, matrix- vector representation to be of iden- tical form to those of a fixed-base...the system inertia matrix, q is the po- sition state vector (consisting of the manipulator joint angles θ, spacecraft attitude quaternion, and

  7. 17 CFR 37.3 - Requirements for underlying commodities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... to minimize the threat of market abuses such as price manipulation and distortions, congestion, and... highly unlikely to be susceptible to the threat of manipulation; or (iii) No cash market; (2) Commodities... which the Commission has determined, based on the market characteristics and surveillance history, and...

  8. Faster the better: a reliable technique to sample anopluran lice in large hosts.

    PubMed

    Leonardi, María Soledad

    2014-06-01

    Among Anoplura, the family Echinophthiriidae includes those species that infest mainly the pinnipeds. Working with large hosts implies methodological considerations as the time spent in the sampling, and the way in that the animal is restrained. Previous works on echinophthiriids combined a diverse array of analyses including field counts of lice and in vitro observations. To collect lice, the authors used forceps, and each louse was collected individually. This implied a long manipulation time, i.e., ≈60 min and the need to physically and/or chemically immobilize the animal. The present work described and discussed for the first a sample technique that minimized the manipulation time and also avoiding the use of anesthesia. This methodology implied combing the host's pelage with a fine-tooth plastic comb, as used in the treatment of human pediculosis, and keeping the comb with the lice retained in a Ziploc® bag with ethanol. This technique was used successfully in studies of population dynamic, habitat selection, and transmission pattern, being a reliable methodology. Lice are collected entirely and are in a good condition to prepare them for mounting for studying under light or scanning electron microscopy. Moreover, the use of the plastic comb protects from damaging taxonomically important structures as spines being also recommended to reach taxonomic or morphological goals.

  9. Automated two-dimensional interface for capillary gas chromatography

    DOEpatents

    Strunk, M.R.; Bechtold, W.E.

    1996-02-20

    A multidimensional gas chromatograph (GC) system is disclosed which has wide bore capillary and narrow bore capillary GC columns in series and has a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration. 3 figs.

  10. Automated two-dimensional interface for capillary gas chromatography

    DOEpatents

    Strunk, Michael R.; Bechtold, William E.

    1996-02-20

    A multidimensional gas chromatograph (GC) system having wide bore capillary and narrow bore capillary GC columns in series and having a novel system interface. Heart cuts from a high flow rate sample, separated by a wide bore GC column, are collected and directed to a narrow bore GC column with carrier gas injected at a lower flow compatible with a mass spectrometer. A bimodal six-way valve is connected with the wide bore GC column outlet and a bimodal four-way valve is connected with the narrow bore GC column inlet. A trapping and retaining circuit with a cold trap is connected with the six-way valve and a transfer circuit interconnects the two valves. The six-way valve is manipulated between first and second mode positions to collect analyte, and the four-way valve is manipulated between third and fourth mode positions to allow carrier gas to sweep analyte from a deactivated cold trap, through the transfer circuit, and then to the narrow bore GC capillary column for separation and subsequent analysis by a mass spectrometer. Rotary valves have substantially the same bore width as their associated columns to minimize flow irregularities and resulting sample peak deterioration. The rotary valves are heated separately from the GC columns to avoid temperature lag and resulting sample deterioration.

  11. Compact teleoperated laparoendoscopic single-site robotic surgical system: Kinematics, control, and operation.

    PubMed

    Isaac-Lowry, Oran Jacob; Okamoto, Steele; Pedram, Sahba Aghajani; Woo, Russell; Berkelman, Peter

    2017-12-01

    To date a variety of teleoperated surgical robotic systems have been developed to improve a surgeon's ability to perform demanding single-port procedures. However typical large systems are bulky, expensive, and afford limited angular motion, while smaller designs suffer complications arising from limited motion range, speed, and force generation. This work was to develop and validate a simple, compact, low cost single site teleoperated laparoendoscopic surgical robotic system, with demonstrated capability to carry out basic surgical procedures. This system builds upon previous work done at the University of Hawaii at Manoa and includes instrument and endoscope manipulators as well as compact articulated instruments designed to overcome single incision geometry complications. A robotic endoscope holder was used for the base, with an added support frame for teleoperated manipulators and instruments fabricated mostly from 3D printed parts. Kinematics and control methods were formulated for the novel manipulator configuration. Trajectory following results from an optical motion tracker and sample task performance results are presented. Results indicate that the system has successfully met the goal of basic surgical functionality while minimizing physical size, complexity, and cost. Copyright © 2017 John Wiley & Sons, Ltd.

  12. Development of a versatile user-friendly IBA experimental chamber

    NASA Astrophysics Data System (ADS)

    Kakuee, Omidreza; Fathollahi, Vahid; Lamehi-Rachti, Mohammad

    2016-03-01

    Reliable performance of the Ion Beam Analysis (IBA) techniques is based on the accurate geometry of the experimental setup, employment of the reliable nuclear data and implementation of dedicated analysis software for each of the IBA techniques. It has already been shown that geometrical imperfections lead to significant uncertainties in quantifications of IBA measurements. To minimize these uncertainties, a user-friendly experimental chamber with a heuristic sample positioning system for IBA analysis was recently developed in the Van de Graaff laboratory in Tehran. This system enhances IBA capabilities and in particular Nuclear Reaction Analysis (NRA) and Elastic Recoil Detection Analysis (ERDA) techniques. The newly developed sample manipulator provides the possibility of both controlling the tilt angle of the sample and analyzing samples with different thicknesses. Moreover, a reasonable number of samples can be loaded in the sample wheel. A comparison of the measured cross section data of the 16O(d,p1)17O reaction with the data reported in the literature confirms the performance and capability of the newly developed experimental chamber.

  13. Manipulator for rotating and translating a sample holder

    DOEpatents

    van de Water, Jeroen [Breugel, NL; van den Oetelaar, Johannes [Eindhoven, NL; Wagner, Raymond [Gorinchem, NL; Slingerland, Hendrik Nicolaas [Venlo, NL; Bruggers, Jan Willem [Eindhoven, NL; Ottevanger, Adriaan Huibert Dirk [Malden, NL; Schmid, Andreas [Berkeley, CA; Olson, Eric A [Champaign, IL; Petrov, Ivan G [Champaign, IL; Donchev, Todor I [Urbana, IL; Duden, Thomas [Kensington, CA

    2011-02-08

    A manipulator for use in e.g. a Transmission Electron Microscope (TEM) is described, said manipulator capable of rotating and translating a sample holder (4). The manipulator clasps the round sample holder between two members (3A, 3B), said members mounted on actuators (2A, 2B). Moving the actuators in the same direction results in a translation of the sample holder, while moving the actuators in opposite directions results in a rotation of the sample holder.

  14. Tendon Reattachment to Bone in an Ovine Tendon Defect Model of Retraction Using Allogenic and Xenogenic Demineralised Bone Matrix Incorporated with Mesenchymal Stem Cells.

    PubMed

    Thangarajah, Tanujan; Shahbazi, Shirin; Pendegrass, Catherine J; Lambert, Simon; Alexander, Susan; Blunn, Gordon W

    2016-01-01

    Tendon-bone healing following rotator cuff repairs is mainly impaired by poor tissue quality. Demineralised bone matrix promotes healing of the tendon-bone interface but its role in the treatment of tendon tears with retraction has not been investigated. We hypothesized that cortical demineralised bone matrix used with minimally manipulated mesenchymal stem cells will result in improved function and restoration of the tendon-bone interface with no difference between xenogenic and allogenic scaffolds. In an ovine model, the patellar tendon was detached from the tibial tuberosity and a complete distal tendon transverse defect measuring 1 cm was created. Suture anchors were used to reattach the tendon and xenogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5), or allogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5) were used to bridge the defect. Graft incorporation into the tendon and its effect on regeneration of the enthesis was assessed using histomorphometry. Force plate analysis was used to assess functional recovery. Compared to the xenograft, the allograft was associated with significantly higher functional weight bearing at 6 (P = 0.047), 9 (P = 0.028), and 12 weeks (P = 0.009). In the allogenic group this was accompanied by greater remodeling of the demineralised bone matrix into tendon-like tissue in the region of the defect (p = 0.015), and a more direct type of enthesis characterized by significantly more fibrocartilage (p = 0.039). No failures of tendon-bone healing were noted in either group. Demineralised bone matrix used with minimally manipulated mesenchymal stem cells promotes healing of the tendon-bone interface in an ovine model of acute tendon retraction, with superior mechanical and histological results associated with use of an allograft.

  15. Minimal Groups Increase Young Children's Motivation and Learning on Group-Relevant Tasks

    ERIC Educational Resources Information Center

    Master, Allison; Walton, Gregory M.

    2013-01-01

    Three experiments ("N" = 130) used a minimal group manipulation to show that just perceived membership in a social group boosts young children's motivation for and learning from group-relevant tasks. In Experiment 1, 4-year-old children assigned to a minimal "puzzles group" persisted longer on a challenging puzzle than children identified as the…

  16. 78 FR 41149 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... designed to minimize the potential for mini- manipulation and for corners or squeezes of the underlying... mini manipulation as an attempt to influence, over a relatively small range, the price movement in a stock to benefit a previously established derivatives position. \\9\\ See note 8. With respect to...

  17. 77 FR 65600 - Self-Regulatory Organizations; Chicago Board Options Exchange, Incorporated; Order Granting...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... activity in both options and underlying stocks.\\23\\ In addition, the Exchange states that its surveillance... exercise limits are designed to minimize the potential for mini-manipulations and for corners or squeezes... believes that this liquidity would lessen the opportunity for manipulation of this product and disruption...

  18. An Oxidase-Based Electrochemical Fluidic Sensor with High-Sensitivity and Low-Interference by On-Chip Oxygen Manipulation

    PubMed Central

    Radhakrishnan, Nitin; Park, Jongwon; Kim, Chang-Soo

    2012-01-01

    Utilizing a simple fluidic structure, we demonstrate the improved performance of oxidase-based enzymatic biosensors. Electrolysis of water is utilized to generate bubbles to manipulate the oxygen microenvironment close to the biosensor in a fluidic channel. For the proper enzyme reactions to occur, a simple mechanical procedure of manipulating bubbles was developed to maximize the oxygen level while minimizing the pH change after electrolysis. The sensors show improved sensitivities based on the oxygen dependency of enzyme reaction. In addition, this oxygen-rich operation minimizes the ratio of electrochemical interference signal by ascorbic acid during sensor operation (i.e., amperometric detection of hydrogen peroxide). Although creatinine sensors have been used as the model system in this study, this method is applicable to many other biosensors that can use oxidase enzymes (e.g., glucose, alcohol, phenol, etc.) to implement a viable component for in-line fluidic sensor systems. PMID:23012527

  19. Microrobots: a new era in ocular drug delivery.

    PubMed

    Fusco, Stefano; Ullrich, Franziska; Pokki, Juho; Chatzipirpiridis, George; Özkale, Berna; Sivaraman, Kartik M; Ergeneman, Olgaç; Pané, Salvador; Nelson, Bradley J

    2014-11-01

    Ocular microrobots have the potential to change the way in which we treat a variety of diseases at the anterior and the posterior segments of the eye. Wireless manipulation and positioning of drug delivery magnetic millimeter and submillimeter platforms into the eye constitute a potential route for minimally invasive targeted therapy. However, the field is still in its infancy and faces challenges related to the fabrication, control an interaction with complex biological environments. This review briefly introduces the complex anatomy and physiology of the eye, which renders limitations to the current treatments of ocular diseases. The topical administration of eye drops, intravitreal injections and drug delivery implants is briefly mentioned together with their drawbacks. The authors also analyze the minimally invasive microrobotic approach as an alternative method and report the recent advancements in the fabrication, control, manipulation and drug delivery. Although microrobotics is a young field, a significant amount of work has been developed to face different challenges related to the minimally invasive manipulation of microdevices in the eye. Current research is already at the state of in vivo testing for systems and their biocompatibility. It is expected that the general concepts acquired will soon be applied for specific interventions, especially for posterior eye pathologies.

  20. Development of 3 DOF manipulator using ER fluid clutches for reduction of collision force

    NASA Astrophysics Data System (ADS)

    Boku, Kazuhiko; Nakamura, Taro

    2009-02-01

    .With robots and users more commonly sharing space such as in the fields of medicine and home automation, the possibility of a physical collision has increased, even though many robots use actuators with high-ratio gear trains to minimize the effects of impact. We developed a 3-DOF manipulator having a smart flexible joint using an ER fluid and a sensor-equipped pneumatic cushion. Results of position control and collision experiments using the manipulator demonstrated its effectiveness.

  1. Three combinations of manual therapy techniques within naprapathy in the treatment of neck and/or back pain: a randomized controlled trial.

    PubMed

    Paanalahti, Kari; Holm, Lena W; Nordin, Margareta; Höijer, Jonas; Lyander, Jessica; Asker, Martin; Skillgate, Eva

    2016-04-23

    Manual therapy as spinal manipulation, spinal mobilization, stretching and massage are common treatment methods for neck and back pain. The objective was to compare the treatment effect on pain intensity, pain related disability and perceived recovery from a) naprapathic manual therapy (spinal manipulation, spinal mobilization, stretching and massage) to b) naprapathic manual therapy without spinal manipulation and to c) naprapathic manual therapy without stretching for male and female patients seeking care for back and/or neck pain. Participants were recruited among patients, ages 18-65, seeking care at the educational clinic of Naprapathögskolan - the Scandinavian College of Naprapathic Manual Medicine in Stockholm. The patients (n = 1057) were randomized to one of three treatment arms a) manual therapy (i.e. spinal manipulation, spinal mobilization, stretching and massage), b) manual therapy excluding spinal manipulation and c) manual therapy excluding stretching. The primary outcomes were minimal clinically important improvement in pain intensity and pain related disability. Treatments were provided by naprapath students in the seventh semester of eight total semesters. Generalized estimating equations and logistic regression were used to examine the association between the treatments and the outcomes. At 12 weeks follow-up, 64% had a minimal clinically important improvement in pain intensity and 42% in pain related disability. The corresponding chances to be improved at the 52 weeks follow-up were 58% and 40% respectively. No systematic differences in effect when excluding spinal manipulation and stretching respectively from the treatment were found over 1 year follow-up, concerning minimal clinically important improvement in pain intensity (p = 0.41) and pain related disability (p = 0.85) and perceived recovery (p = 0.98). Neither were there disparities in effect when male and female patients were analyzed separately. The effect of manual therapy for male and female patients seeking care for neck and/or back pain at an educational clinic is similar regardless if spinal manipulation or if stretching is excluded from the treatment option. Current Controlled Trials ISRCTN92249294.

  2. An efficient approach for inverse kinematics and redundancy resolution scheme of hyper-redundant manipulators

    NASA Astrophysics Data System (ADS)

    Chembuly, V. V. M. J. Satish; Voruganti, Hari Kumar

    2018-04-01

    Hyper redundant manipulators have a large number of degrees of freedom (DOF) than the required to perform a given task. Additional DOF of manipulators provide the flexibility to work in highly cluttered environment and in constrained workspaces. Inverse kinematics (IK) of hyper-redundant manipulators is complicated due to large number of DOF and these manipulators have multiple IK solutions. The redundancy gives a choice of selecting best solution out of multiple solutions based on certain criteria such as obstacle avoidance, singularity avoidance, joint limit avoidance and joint torque minimization. This paper focuses on IK solution and redundancy resolution of hyper-redundant manipulator using classical optimization approach. Joint positions are computed by optimizing various criteria for a serial hyper redundant manipulators while traversing different paths in the workspace. Several cases are addressed using this scheme to obtain the inverse kinematic solution while optimizing the criteria like obstacle avoidance, joint limit avoidance.

  3. Introduction [Chapter 1

    Treesearch

    R. C. Musselman; D. G Fox; A. W. Schoettle; C. M. Regan

    1994-01-01

    Wilderness ecosystems in the United States are federally mandated and set aside by the Wilderness Act. They are managed to minimize human impact using methods that leave these systems, to the extent possible, in their natural state uninfluenced by manipulation or disruption by humans. Management often involves controlling or minimizing visual impact by enforcing strict...

  4. Manipulation under Anesthesia for Stiffness after Total Knee Arthroplasty

    PubMed Central

    Yoo, Ju-Hyung; Oh, Jin-Cheol; Park, Sang-Hoon

    2015-01-01

    Purpose This study evaluated the incidence of manipulation under anesthesia (MUA) for stiffness after total knee arthroplasty (TKA) and the degree of joint motion recovery after MUA. Materials and Methods A total of 4,449 TKAs (2,973 patients) were performed between March 2000 and August 2014. Cases that underwent MUA for stiffness after TKA were reviewed. TKAs were performed using the conventional procedure in 329 cases and using the minimally invasive procedure in 4,120 cases. The preoperative range of joint motion, timing of manipulation, diagnosis and the range of joint motion before and after MUA were retrospectively investigated. Results MUA was carried out in 22 cases (16 patients), resulting in the incidence of 0.5%. The incidence after the conventional procedure was 1.2% and 0.4% after the minimally invasive procedure. In the manipulated knees, the preoperative range of motion (ROM) was 102.5°±26.7°, and the preoperative diagnosis was osteoarthritis in 19 cases, rheumatoid arthritis in two, and infection sequela in one. MUA was performed 4.7±3.0 weeks after TKA. The average ROM was 64.5°±13.5° before manipulation. At an average of 64.3±41.3 months after manipulation, the ROM was recovered to 113.4°±31.2°, which was an additional 49.9° improvement in flexion. Conclusions The satisfactory recovery of joint movement was achieved when MUA for stiffness was performed relatively early after TKA. PMID:26676186

  5. XAS spectroelectrochemistry: reliable measurement of X-ray absorption spectra from redox manipulated solutions at room temperature.

    PubMed

    Best, Stephen P; Levina, Aviva; Glover, Chris; Johannessen, Bernt; Kappen, Peter; Lay, Peter A

    2016-05-01

    The design and operation of a low-volume spectroelectrochemical cell for X-ray absorption spectroscopy (XAS) of solutions at room temperature is described. Fluorescence XAS measurements are obtained from samples contained in the void space of a 50 µL reticulated vitreous carbon (sponge) working electrode. Both rapid electrosynthesis and control of the effects of photoreduction are achieved by control over the flow properties of the solution through the working electrode, where a good balance between the rate of consumption of sample and the minimization of decomposition was obtained by pulsing the flow of the solution by 1-2 µL with duty cycle of ∼3 s while maintaining a small net flow rate (26-100 µL h(-1)). The performance of the cell in terms of control of the redox state of the sample and minimization of the effects of photoreduction was demonstrated by XAS measurements of aqueous solutions of the photosensitive Fe(III) species, [Fe(C2O4)3](3-), together with that of the electrogenerated [Fe(C2O4)3](4-) product. The current response from the cell during the collection of XAS spectra provides an independent measure of the stability of the sample of the measurement. The suitability of the approach for the study of small volumes of mM concentrations of protein samples was demonstrated by the measurement of the oxidized and electrochemically reduced forms of cytochrome c.

  6. Environmental scanning electron microscopy in cell biology.

    PubMed

    McGregor, J E; Staniewicz, L T L; Guthrie Neé Kirk, S E; Donald, A M

    2013-01-01

    Environmental scanning electron microscopy (ESEM) (1) is an imaging technique which allows hydrated, insulating samples to be imaged under an electron beam. The resolution afforded by this technique is higher than conventional optical microscopy but lower than conventional scanning electron microscopy (CSEM). The major advantage of the technique is the minimal sample preparation needed, making ESEM quick to use and the images less susceptible to the artifacts that the extensive sample preparation usually required for CSEM may introduce. Careful manipulation of both the humidity in the microscope chamber and the beam energy are nevertheless essential to prevent dehydration and beam damage artifacts. In some circumstances it is possible to image live cells in the ESEM (2).In the following sections we introduce the fundamental principles of ESEM imaging before presenting imaging protocols for plant epidermis, mammalian cells, and bacteria. In the first two cases samples are imaged using the secondary electron (topographic) signal, whereas a transmission technique is employed to image bacteria.

  7. 21 CFR 640.22 - Collection of source material.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) BIOLOGICS ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Platelets § 640.22 Collection of source material. (a) Whole blood used as the source of Platelets shall be collected as prescribed in § 640.4. (b... uninterrupted venipuncture with minimal damage to, and minimal manipulation of, the donor's tissue. [40 FR 4304...

  8. The effects of type of knowledge upon human problem solving in a process control task

    NASA Technical Reports Server (NTRS)

    Morris, N. M.; Rouse, W. B.

    1985-01-01

    The question of what the operator of a dynamic system needs to know was investigated in an experiment using PLANT, a simulation of a generic dynamic production process. Knowledge of PLANT was manipulated via different types of instruction, so that four different groups were created: (1) minimal instructions only; (2) minimal instructions and guidelines for operation (procedures); (3) minimal instructions and dynamic relationships (principles); and (4) minimal instructions, and procedures, and principles. Subjects controlled PLANT in a variety of situations which required maintaining production while also diagnosing familiar and unfamiliar failures. Despite the fact that these manipulations resulted in differences in subjects' Knowledge, as assessed via a written test at the end of the experiment, instructions had no effect upon achievement of the primary goal of production, or upon subjects' ability to diagnose unfamiliar failures. However, those groups receiving procedures controlled the system in a more stable manner. Possible reasons for the failure to find an effect of principles are presented, and the implications of these results for operator training and aiding are discussed.

  9. The Minimal Control Principle Predicts Strategy Shifts in the Abstract Decision Making Task

    ERIC Educational Resources Information Center

    Taatgen, Niels A.

    2011-01-01

    The minimal control principle (Taatgen, 2007) predicts that people strive for problem-solving strategies that require as few internal control states as possible. In an experiment with the Abstract Decision Making task (ADM task; Joslyn & Hunt, 1998) the reward structure was manipulated to make either a low-control strategy or a high-strategy…

  10. Robotic Sample Manipulator for Handling Astromaterials Inside the Geolab Microgravity Glovebox

    NASA Technical Reports Server (NTRS)

    Bell, Mary S.; Calaway, M. J.; Evans, C. A.; Li,Z.; Tong, S.; Zhong, Y.; Dahiwala, R.; Wang, L.; Porter, F.

    2013-01-01

    Future human and robotic sample return missions will require isolation containment systems with strict protocols and procedures for reducing inorganic and organic contamination. Robotic handling and manipulation of astromaterials may be required for preliminary examination inside such an isolation containment system. In addition, examination of astromaterials in microgravity will require constant contact to secure samples during manipulation. The National Space Grant Foundation exploration habitat (XHab) academic innovative challenge 2012 administered through the NASA advanced exploration systems (AES) deep space habitat (DSH) project awarded funding to the University of Bridgeport team to develop an engineering design for tools to facilitate holding and handling geological samples for analysis in a microgravity glovebox environment. The Bridgeport XHab team developed a robotic arm system with a three-finger gripper that could manipulate geologic samples within the existing GeoLab glovebox integrated into NASA's DSH called the GeoLab Robotic Sample Manipulator (see fig. 1 and 2). This hardware was deployed and tested during the 2012 DSH mission operations tests [1].

  11. Optimization of Large Gel 2D Electrophoresis for Proteomic Studies of Skeletal Muscle

    PubMed Central

    Reed, Patrick W.; Densmore, Allison; Bloch, Robert J.

    2013-01-01

    We describe improved methods for large format, 2-dimensional gel electrophoresis (2-DE) that improve protein solubility and recovery, minimize proteolysis, and reduce the loss of resolution due to contaminants and manipulations of the gels, and thus enhance quantitative analysis of protein spots. Key modifications are: (i) the use of 7M urea + 2 M thiourea, instead of 9M urea, in sample preparation and in the tops of the gel tubes; (ii) standardized deionization of all solutions containing urea with a mixed bed ion exchange resin and removal of urea from the electrode solutions; and (iii) use of a new gel tank and cooling device that eliminate the need to run two separating gels in the SDS dimension. These changes make 2D-GE analysis more reproducible and sensitive, with minimal artifacts. Application of this method to the soluble fraction of muscle tissues reliably resolves ~1800 protein spots in adult human skeletal muscle and over 2800 spots in myotubes. PMID:22589104

  12. Evaluation of a Shape Memory Alloy Reinforced Annuloplasty Band for Minimally Invasive Mitral Valve Repair

    PubMed Central

    Purser, Molly F.; Richards, Andrew L.; Cook, Richard C.; Osborne, Jason A.; Cormier, Denis R.; Buckner, Gregory D.

    2013-01-01

    Purpose An in vitro study using explanted porcine hearts was conducted to evaluate a novel annuloplasty band, reinforced with a two-phase, shape memory alloy, designed specifically for minimally invasive mitral valve repair. Description In its rigid (austenitic) phase, this band provides the same mechanical properties as the commercial semi-rigid bands. In its compliant (martensitic) phase, this band is flexible enough to be introduced through an 8-mm trocar and is easily manipulated within the heart. Evaluation In its rigid phase, the prototype band displayed similar mechanical properties to commercially available semi-rigid rings. Dynamic flow testing demonstrated no statistical differences in the reduction of mitral valve regurgitation. In its flexible phase, the band was easily deployed through an 8-mm trocar, robotically manipulated and sutured into place. Conclusions Experimental results suggest that the shape memory alloy reinforced band could be a viable alternative to flexible and semi-rigid bands in minimally invasive mitral valve repair. PMID:19766827

  13. Safety and efficacy of phacoemulsification and intraocular lens implantation through a small pupil using minimal iris manipulation.

    PubMed

    Papaconstantinou, Dimitris; Kalantzis, George; Brouzas, Dimitris; Kontaxakis, Anastasios; Koutsandrea, Chryssanthi; Diagourtas, Andreas; Georgalas, Ilias

    2016-01-01

    The aim of this study was to compare the results of phacoemulsification through a small pupil using minimal iris manipulation versus phacoemulsification through a well-dilated pupil. This prospective randomized control (comparative) study comprised 78 patients (group I) with a maximally dilated pupil size of ≤4.00 mm and 45 patients (group II) with dilated pupil size of ≥7.00 mm. In group I patients, only viscodilation and minimal push-and-pull iris stretching with two collar-button iris-retractor hooks were utilized without iris manipulation. Phacoemulsification was performed by two senior surgeons and the technique used consisted of either stop and chop or quick chop, infusion/aspiration of lens cortex, capsular bag refill with ocular viscoelastic devices, and implantation of an acrylic foldable intraocular lens. Patients were examined on the first day and 1 month postoperatively. Forty-six eyes of group I patients had pseudoexfoliation syndrome, eleven eyes had previous glaucoma surgery, 14 eyes had angle-closure or open-angle glaucoma, and seven eyes had posterior synechiae with iritis. In group I patients, the mean pupil size measured under an operating microscope was 3.2 mm preoperatively, 4.3 mm after viscoelastic and mechanical pupil dilation, and 4.1 mm at the end of a surgical procedure. Rupture of the zonular fibers occurred in six patients of group I and the intraocular lens was implanted in the sulcus. Small iris-sphincter rupture and small hemorrhages occurred in four eyes during pupillary manipulation, but they were not evident at the end of the surgery. In group II patients, no intraoperative complications occurred. Signs of significant corneal edema and iritis were observed more frequently in group I eyes (26 eyes and 20 eyes, respectively) on the first postoperative day in comparison with group II eyes (ten eyes and six eyes, respectively). Intraocular pressure was <20 mmHg in all eyes of both groups. One month postoperatively, the pupil was round and reactive to light, the anterior chamber was quiet, and the cornea was clear in all eyes. The best-corrected visual acuity on Snellen chart was 20/40 (Monoyer's scale) or better in both groups. Phacoemulsification through a small pupil using minimal iris manipulation can be safe and exhibits the same results as those obtained with phacoemulsification through normal pupils.

  14. Design and evaluation of a slave manipulator with roll-pitch-roll wrist and automatic tool loading mechanism in telerobotic surgery.

    PubMed

    Kim, Ki-Young; Lee, Jung-Ju

    2012-12-01

    As there is a shortage of scrub nurses in many hospitals, automatic surgical tool exchanging mechanism without human labour has been studied. Minimally invasive robotic surgeries (MIRS) also require scrub nurses. A surgical tool loading mechanism without a scrub nurse's assistance for MIRS is proposed. Many researchers have developed minimally invasive surgical instruments with a wrist joint that can be movable inside the abdomen. However, implementation of a distal rolling joint on a gripper is rare. To implement surgical tool exchanging without a scrub nurse's assistance, a slave manipulator and a tool loader were developed to load and unload a surgical tool unit. A surgical tool unit with a roll-pitch-roll wrist was developed. Several experiments were performed to validate the effectiveness of the slave manipulator and the surgical tool unit. The slave manipulator and the tool loader were able to successfully unload and load the surgical tool unit without human assistance. The total duration of unloading and loading the surgical tool unit was 97 s. Motion tracking experiments of the distal rolling joint were performed. The maximum positioning error of the step input response was 2°. The advantage of the proposed slave manipulator and tool loader is that other robotic systems or human labour are not needed for surgical tool loading. The feasibility of the distal rolling joint in MIS is verified. Copyright © 2012 John Wiley & Sons, Ltd.

  15. Stabilized Acoustic Levitation of Dense Materials Using a High-Powered Siren

    NASA Technical Reports Server (NTRS)

    Gammell, P. M.; Croonquist, A.; Wang, T. G.

    1982-01-01

    Stabilized acoustic levitation and manipulation of dense (e.g., steel) objects of 1 cm diameter, using a high powered siren, was demonstrated in trials that investigated the harmonic content and spatial distribution of the acoustic field, as well as the effect of sample position and reflector geometries on the acoustic field. Although further optimization is possible, the most stable operation achieved is expected to be adequate for most containerless processing applications. Best stability was obtained with an open reflector system, using a flat lower reflector and a slightly concave upper one. Operation slightly below resonance enhances stability as this minimizes the second harmonic, which is suspected of being a particularly destabilizing influence.

  16. Multimodal optical phenotyping of cancer cells

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Budde, Björn; Isbach, Michael; Rommel, Christina; Kemper, Björn; Schnekenburger, Jürgen

    2015-03-01

    There is a growing interest in label-free, optical techniques like digital holographic microscopy (DHM) and optical cell stretching, since the interaction with samples is minimized. Because optical manipulation strongly depends on the optical and physiological properties of the investigated material, we combined the usage of these methods for the characterization of pancreatic tumor cells. Our results demonstrate that cells of distinct differentiation levels, or different expression in only one protein, show differences in their deformability. Additionally, the DHM results showed only few variations in the refractive index, indicating that it does not significantly influence the results of the optical cell stretching. Thus, the combined usage of the two technologies represents a promising new approach for tumor cell characterization.

  17. Improving training of laparoscopic tissue manipulation skills using various visual force feedback types.

    PubMed

    Smit, Daan; Spruit, Edward; Dankelman, Jenny; Tuijthof, Gabrielle; Hamming, Jaap; Horeman, Tim

    2017-01-01

    Visual force feedback allows trainees to learn laparoscopic tissue manipulation skills. The aim of this experimental study was to find the most efficient visual force feedback method to acquire these skills. Retention and transfer validity to an untrained task were assessed. Medical students without prior experience in laparoscopy were randomized in three groups: Constant Force Feedback (CFF) (N = 17), Bandwidth Force Feedback (BFF) (N = 16) and Fade-in Force Feedback (N = 18). All participants performed a pretest, training, post-test and follow-up test. The study involved two dissimilar tissue manipulation tasks, one for training and one to assess transferability. Participants performed six trials of the training task. A force platform was used to record several force parameters. A paired-sample t test showed overall lower force parameter outcomes in the post-test compared to the pretest (p < .001). A week later, the force parameter outcomes were still significantly lower than found in the pretest (p < .005). Participants also performed the transfer task in the post-test (p < .02) and follow-up (p < .05) test with lower force parameter outcomes compared to the pretest. A one-way MANOVA indicated that in the post-test the CFF group applied 50 % less Mean Absolute Nonzero Force (p = .005) than the BFF group. All visual force feedback methods showed to be effective in decreasing tissue manipulation force as no major differences were found between groups in the post and follow-up trials. The BFF method is preferred for it respects individual progress and minimizes distraction.

  18. From medical images to minimally invasive intervention: Computer assistance for robotic surgery.

    PubMed

    Lee, Su-Lin; Lerotic, Mirna; Vitiello, Valentina; Giannarou, Stamatia; Kwok, Ka-Wai; Visentini-Scarzanella, Marco; Yang, Guang-Zhong

    2010-01-01

    Minimally invasive surgery has been established as an important way forward in surgery for reducing patient trauma and hospitalization with improved prognosis. The introduction of robotic assistance enhances the manual dexterity and accuracy of instrument manipulation. Further development of the field in using pre- and intra-operative imaging guidance requires the integration of the general anatomy of the patient with clear pathologic indications and geometrical information for preoperative planning and intra-operative manipulation. It also requires effective visualization and the recreation of haptic and tactile sensing with dynamic active constraints to improve consistency and safety of the surgical procedures. This paper describes key technical considerations of tissue deformation tracking, 3D reconstruction, subject-specific modeling, image guidance and augmented reality for robotic assisted minimally invasive surgery. It highlights the importance of adapting preoperative surgical planning according to intra-operative data and illustrates how dynamic information such as tissue deformation can be incorporated into the surgical navigation framework. Some of the recent trends are discussed in terms of instrument design and the usage of dynamic active constraints and human-robot perceptual docking for robotic assisted minimally invasive surgery. Copyright 2009 Elsevier Ltd. All rights reserved.

  19. Small volume low mechanical stress cytometry using computer-controlled Braille display microfluidics.

    PubMed

    Tung, Yi-Chung; Torisawa, Yu-suke; Futai, Nobuyuki; Takayama, Shuichi

    2007-11-01

    This paper describes a micro flow cytometer system designed for efficient and non-damaging analysis of samples with small numbers of precious cells. The system utilizes actuation of Braille-display pins for micro-scale fluid manipulation and a fluorescence microscope with a CCD camera for optical detection. The microfluidic chip is fully disposable and is composed of a polydimethylsiloxane (PDMS) slab with microchannel features sealed against a thin deformable PDMS membrane. The channels are designed with diffusers to alleviate pulsatile flow behaviors inherent in pin actuator-based peristaltic pumping schemes to maximize hydrodynamic focusing of samples with minimal disturbances in the laminar streams within the channel. A funnel connected to the microfluidic channel is designed for efficient loading of samples with small number of cells and is also positioned on the chip to prevent physical damages of the samples by the squeezing actions of Braille pins during actuation. The sample loading scheme was characterized by both computational fluidic dynamics (CFD) simulation and experimental observation. A fluorescein solution was first used for flow field investigation, followed by use of fluorescence beads with known relative intensities for optical detection performance calibration. Murine myoblast cells (C2C12) were exploited to investigate cell viability for the sample loading scheme of the device. Furthermore, human promyelocytic leukemia (HL60) cells stained by hypotonic DNA staining buffer were also tested in the system for cell cycle analysis. The ability to efficiently analyze cellular samples where the number of cells is small was demonstrated by analyzing cells from a single embryoid body derived from mouse embryonic stem cells. Consequently, the designed microfluidic device reported in this paper is promising for easy-to-use, small sample size flow cytometric analysis, and has potential to be further integrated with other Braille display-based microfluidic devices to facilitate a multi-functional lab-on-a-chip for mammalian cell manipulations.

  20. Simultaneous determination of eight water-soluble vitamins in supplemented foods by liquid chromatography.

    PubMed

    Zafra-Gómez, Alberto; Garballo, Antonio; Morales, Juan C; García-Ayuso, Luis E

    2006-06-28

    A fast, simple, and reliable method for the isolation and determination of the vitamins thiamin, riboflavin, niacin, pantothenic acid, pyridoxine, folic acid, cyanocobalamin, and ascorbic acid in food samples is proposed. The most relevant advantages of the proposed method are the simultaneous determination of the eight more common vitamins in enriched food products and a reduction of the time required for quantitative extraction, because the method consists merely of the addition of a precipitation solution and centrifugation of the sample. Furthermore, this method saves a substantial amount of reagents as compared with official methods, and minimal sample manipulation is achieved due to the few steps required. The chromatographic separation is carried out on a reverse phase C18 column, and the vitamins are detected at different wavelengths by either fluorescence or UV-visible detection. The proposed method was applied to the determination of water-soluble vitamins in supplemented milk, infant nutrition products, and milk powder certified reference material (CRM 421, BCR) with recoveries ranging from 90 to 100%.

  1. Optical micromanipulation of active cells with minimal perturbations: direct and indirect pushing.

    PubMed

    Wang, Chenlu; Chowdhury, Sagar; Gupta, Satyandra K; Losert, Wolfgang

    2013-04-01

    The challenge to wide application of optical tweezers in biological micromanipulation is the photodamage caused by high-intensity laser exposure to the manipulated living systems. While direct exposure to infrared lasers is less likely to kill cells, it can affect cell behavior and signaling. Pushing cells with optically trapped objects has been introduced as a less invasive alternative, but the technique includes some exposure of the biological object to parts of the optical tweezer beam. To keep the cells farther away from the laser, we introduce an indirect pushing-based technique for noninvasive manipulation of sensitive cells. We compare how cells respond to three manipulation approaches: direct manipulation, pushing, and indirect pushing. We find that indirect manipulation techniques lessen the impact of manipulation on cell behavior. Cell survival increases, as does the ability of cells to maintain shape and wiggle. Our experiments also demonstrate that indirect pushing allows cell-cell contacts to be formed in a controllable way, while retaining the ability of cells to change shape and move.

  2. Kinematics Modelling of Tendon-Driven Continuum Manipulator with Crossed Notches

    NASA Astrophysics Data System (ADS)

    Yang, Z. X.; Yang, W. L.; Du, Z. J.

    2018-03-01

    Single port surgical robot (SPSR) is a giant leap in the development of minimally invasive surgical robot. An innovative manipulator with high control accuracy and good kinematic dexterity can reduce wound, expedite recovery, and improve the success rate. This paper presents a tendon-driven continuum manipulator with crossed notches. This manipulator has two degrees of freedom (DOF), which possesses good flexibility and high capacity. Then based on cantilever beam theory, a mechanics model is proposed, which connects external force and deformation of a single flexible ring (SFR). By calculating the deformation of each SFR, the manipulator is considered as a series robot whose joint numbers is equal to SFR numbers, and the kinematics model is established through Denavit-Hartenberg (D-H) procedure. In this paper, the total manipulator is described as a curve tube whose curvature is increased from tip to base. Experiments were conducted and the comparison between theoretical and actual results proved the rationality of the models.

  3. Automation of the targeting and reflective alignment concept

    NASA Technical Reports Server (NTRS)

    Redfield, Robin C.

    1992-01-01

    The automated alignment system, described herein, employs a reflective, passive (requiring no power) target and includes a PC-based imaging system and one camera mounted on a six degree of freedom robot manipulator. The system detects and corrects for manipulator misalignment in three translational and three rotational directions by employing the Targeting and Reflective Alignment Concept (TRAC), which simplifies alignment by decoupling translational and rotational alignment control. The concept uses information on the camera and the target's relative position based on video feedback from the camera. These relative positions are converted into alignment errors and minimized by motions of the robot. The system is robust to exogenous lighting by virtue of a subtraction algorithm which enables the camera to only see the target. These capabilities are realized with relatively minimal complexity and expense.

  4. Microfocusing at the PG1 beamline at FLASH

    DOE PAGES

    Dziarzhytski, Siarhei; Gerasimova, Natalia; Goderich, Rene; ...

    2016-01-01

    The Kirkpatrick–Baez (KB) refocusing mirror system installed at the PG1 branch of the plane-grating monochromator beamline at the soft X-ray/XUV free-electron laser in Hamburg (FLASH) is designed to provide tight aberration-free focusing down to 4 µm × 6 µm full width at half-maximum (FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate resolution and to guarantee best performance of the vacuum-ultraviolet (VUV) off-axis parabolic double-monochromator Raman spectrometer permanently installed at the PG1 beamline as an experimental end-station. The vertical beam size on the sample of the Raman spectrometer, which operates without entrance slit, defines andmore » limits the energy resolution of the instrument which has an unprecedented design value of 2 meV for photon energies below 70 eV and about 15 meV for higher energies up to 200 eV. In order to reach the designed focal spot size of 4 µm FWHM (vertically) and to hold the highest spectrometer resolution, special fully motorized in-vacuum manipulators for the KB mirror holders have been developed and the optics have been aligned employing wavefront-sensing techniques as well as ablative imprints analysis. Lastly, aberrations like astigmatism were minimized. In this article the design and layout of the KB mirror manipulators, the alignment procedure as well as microfocus optimization results are presented.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dziarzhytski, Siarhei; Gerasimova, Natalia; Goderich, Rene

    The Kirkpatrick–Baez (KB) refocusing mirror system installed at the PG1 branch of the plane-grating monochromator beamline at the soft X-ray/XUV free-electron laser in Hamburg (FLASH) is designed to provide tight aberration-free focusing down to 4 µm × 6 µm full width at half-maximum (FWHM) on the sample. Such a focal spot size is mandatory to achieve ultimate resolution and to guarantee best performance of the vacuum-ultraviolet (VUV) off-axis parabolic double-monochromator Raman spectrometer permanently installed at the PG1 beamline as an experimental end-station. The vertical beam size on the sample of the Raman spectrometer, which operates without entrance slit, defines andmore » limits the energy resolution of the instrument which has an unprecedented design value of 2 meV for photon energies below 70 eV and about 15 meV for higher energies up to 200 eV. In order to reach the designed focal spot size of 4 µm FWHM (vertically) and to hold the highest spectrometer resolution, special fully motorized in-vacuum manipulators for the KB mirror holders have been developed and the optics have been aligned employing wavefront-sensing techniques as well as ablative imprints analysis. Lastly, aberrations like astigmatism were minimized. In this article the design and layout of the KB mirror manipulators, the alignment procedure as well as microfocus optimization results are presented.« less

  6. Soft Robotic Manipulator for Improving Dexterity in Minimally Invasive Surgery.

    PubMed

    Diodato, Alessandro; Brancadoro, Margherita; De Rossi, Giacomo; Abidi, Haider; Dall'Alba, Diego; Muradore, Riccardo; Ciuti, Gastone; Fiorini, Paolo; Menciassi, Arianna; Cianchetti, Matteo

    2018-02-01

    Combining the strengths of surgical robotics and minimally invasive surgery (MIS) holds the potential to revolutionize surgical interventions. The MIS advantages for the patients are obvious, but the use of instrumentation suitable for MIS often translates in limiting the surgeon capabilities (eg, reduction of dexterity and maneuverability and demanding navigation around organs). To overcome these shortcomings, the application of soft robotics technologies and approaches can be beneficial. The use of devices based on soft materials is already demonstrating several advantages in all the exploitation areas where dexterity and safe interaction are needed. In this article, the authors demonstrate that soft robotics can be synergistically used with traditional rigid tools to improve the robotic system capabilities and without affecting the usability of the robotic platform. A bioinspired soft manipulator equipped with a miniaturized camera has been integrated with the Endoscopic Camera Manipulator arm of the da Vinci Research Kit both from hardware and software viewpoints. Usability of the integrated system has been evaluated with nonexpert users through a standard protocol to highlight difficulties in controlling the soft manipulator. This is the first time that an endoscopic tool based on soft materials has been integrated into a surgical robot. The soft endoscopic camera can be easily operated through the da Vinci Research Kit master console, thus increasing the workspace and the dexterity, and without limiting intuitive and friendly use.

  7. Environmental manipulation for edible insect procurement: a historical perspective.

    PubMed

    Van Itterbeeck, Joost; van Huis, Arnold

    2012-01-21

    Throughout history humans have manipulated their natural environment for an increased predictability and availability of plant and animal resources. Research on prehistoric diets increasingly includes small game, but edible insects receive minimal attention. Using the anthropological and archaeological literature we show and hypothesize about the existence of such environmental manipulations related to the procurement of edible insects. As examples we use eggs of aquatic Hemiptera in Mexico which are semi-cultivated by water management and by providing egg laying sites; palm weevil larvae in the Amazon Basin, tropical Africa, and New Guinea of which the collection is facilitated by manipulating host tree distribution and abundance and which are semi-cultivated by deliberately cutting palm trees at a chosen time at a chosen location; and arboreal, foliage consuming caterpillars in sub-Saharan Africa for which the collection is facilitated by manipulating host tree distribution and abundance, shifting cultivation, fire regimes, host tree preservation, and manually introducing caterpillars to a designated area. These manipulations improve insect exploitation by increasing their predictability and availability, and most likely have an ancient origin.

  8. Space robot simulator vehicle

    NASA Technical Reports Server (NTRS)

    Cannon, R. H., Jr.; Alexander, H.

    1985-01-01

    A Space Robot Simulator Vehicle (SRSV) was constructed to model a free-flying robot capable of doing construction, manipulation and repair work in space. The SRSV is intended as a test bed for development of dynamic and static control methods for space robots. The vehicle is built around a two-foot-diameter air-cushion vehicle that carries batteries, power supplies, gas tanks, computer, reaction jets and radio equipment. It is fitted with one or two two-link manipulators, which may be of many possible designs, including flexible-link versions. Both the vehicle body and its first arm are nearly complete. Inverse dynamic control of the robot's manipulator has been successfully simulated using equations generated by the dynamic simulation package SDEXACT. In this mode, the position of the manipulator tip is controlled not by fixing the vehicle base through thruster operation, but by controlling the manipulator joint torques to achieve the desired tip motion, while allowing for the free motion of the vehicle base. One of the primary goals is to minimize use of the thrusters in favor of intelligent control of the manipulator. Ways to reduce the computational burden of control are described.

  9. Environmental manipulation for edible insect procurement: a historical perspective

    PubMed Central

    2012-01-01

    Throughout history humans have manipulated their natural environment for an increased predictability and availability of plant and animal resources. Research on prehistoric diets increasingly includes small game, but edible insects receive minimal attention. Using the anthropological and archaeological literature we show and hypothesize about the existence of such environmental manipulations related to the procurement of edible insects. As examples we use eggs of aquatic Hemiptera in Mexico which are semi-cultivated by water management and by providing egg laying sites; palm weevil larvae in the Amazon Basin, tropical Africa, and New Guinea of which the collection is facilitated by manipulating host tree distribution and abundance and which are semi-cultivated by deliberately cutting palm trees at a chosen time at a chosen location; and arboreal, foliage consuming caterpillars in sub-Saharan Africa for which the collection is facilitated by manipulating host tree distribution and abundance, shifting cultivation, fire regimes, host tree preservation, and manually introducing caterpillars to a designated area. These manipulations improve insect exploitation by increasing their predictability and availability, and most likely have an ancient origin. PMID:22264307

  10. A Gas-Spring-Loaded X-Y-Z Stage System for X-ray Microdiffraction Sample Manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu Deming; Cai Zhonghou; Lai, Barry

    2007-01-19

    We have designed and constructed a gas-spring-loaded x-y-z stage system for x-ray microdiffraction sample manipulation at the Advanced Photon Source XOR 2-ID-D station. The stage system includes three DC-motor-driven linear stages and a gas-spring-based heavy preloading structure, which provides antigravity forces to ensure that the stage system keeps high-positioning performance under variable goniometer orientation. Microdiffraction experiments with this new stage system showed significant sample manipulation performance improvement.

  11. A Gas-Spring-Loaded X-Y-Z Stage System for X-ray Microdiffraction Sample Manipulation

    NASA Astrophysics Data System (ADS)

    Shu, Deming; Cai, Zhonghou; Lai, Barry

    2007-01-01

    We have designed and constructed a gas-spring-loaded x-y-z stage system for x-ray microdiffraction sample manipulation at the Advanced Photon Source XOR 2-ID-D station. The stage system includes three DC-motor-driven linear stages and a gas-spring-based heavy preloading structure, which provides antigravity forces to ensure that the stage system keeps high-positioning performance under variable goniometer orientation. Microdiffraction experiments with this new stage system showed significant sample manipulation performance improvement.

  12. SSSFD manipulator engineering using statistical experiment design techniques

    NASA Technical Reports Server (NTRS)

    Barnes, John

    1991-01-01

    The Satellite Servicer System Flight Demonstration (SSSFD) program is a series of Shuttle flights designed to verify major on-orbit satellite servicing capabilities, such as rendezvous and docking of free flyers, Orbital Replacement Unit (ORU) exchange, and fluid transfer. A major part of this system is the manipulator system that will perform the ORU exchange. The manipulator must possess adequate toolplate dexterity to maneuver a variety of EVA-type tools into position to interface with ORU fasteners, connectors, latches, and handles on the satellite, and to move workpieces and ORUs through 6 degree of freedom (dof) space from the Target Vehicle (TV) to the Support Module (SM) and back. Two cost efficient tools were combined to perform a study of robot manipulator design parameters. These tools are graphical computer simulations and Taguchi Design of Experiment methods. Using a graphics platform, an off-the-shelf robot simulation software package, and an experiment designed with Taguchi's approach, the sensitivities of various manipulator kinematic design parameters to performance characteristics are determined with minimal cost.

  13. SAMURAI: Polar AUV-Based Autonomous Dexterous Sampling

    NASA Astrophysics Data System (ADS)

    Akin, D. L.; Roberts, B. J.; Smith, W.; Roderick, S.; Reves-Sohn, R.; Singh, H.

    2006-12-01

    While autonomous undersea vehicles are increasingly being used for surveying and mapping missions, as of yet there has been little concerted effort to create a system capable of performing physical sampling or other manipulation of the local environment. This type of activity has typically been performed under teleoperated control from ROVs, which provides high-bandwidth real-time human direction of the manipulation activities. Manipulation from an AUV will require a completely autonomous sampling system, which implies both advanced technologies such as machine vision and autonomous target designation, but also dexterous robot manipulators to perform the actual sampling without human intervention. As part of the NASA Astrobiology Science and Technology for Exploring the Planets (ASTEP) program, the University of Maryland Space Systems Laboratory has been adapting and extending robotics technologies developed for spacecraft assembly and maintenance to the problem of autonomous sampling of biologicals and soil samples around hydrothermal vents. The Sub-polar ice Advanced Manipulator for Universal Sampling and Autonomous Intervention (SAMURAI) system is comprised of a 6000-meter capable six-degree-of-freedom dexterous manipulator, along with an autonomous vision system, multi-level control system, and sampling end effectors and storage mechanisms to allow collection of samples from vent fields. SAMURAI will be integrated onto the Woods Hole Oceanographic Institute (WHOI) Jaguar AUV, and used in Arctic during the fall of 2007 for autonomous vent field sampling on the Gakkel Ridge. Under the current operations concept, the JAGUAR and PUMA AUVs will survey the water column and localize on hydrothermal vents. Early mapping missions will create photomosaics of the vents and local surroundings, allowing scientists on the mission to designate desirable sampling targets. Based on physical characteristics such as size, shape, and coloration, the targets will be loaded into the SAMURAI control system, and JAGUAR (with SAMURAI mounted to the lower forward hull) will return to the designated target areas. Once on site, vehicle control will be turned over to the SAMURAI controller, which will perform vision-based guidance to the sampling site and will then ground the AUV to the sea bottom for stability. The SAMURAI manipulator will collect samples, such as sessile biologicals, geological samples, and (potentially) vent fluids, and store the samples for the return trip. After several hours of sampling operations on one or several sites, JAGUAR control will be returned to the WHOI onboard controller for the return to the support ship. (Operational details of AUV operations on the Gakkel Ridge mission are presented in other papers at this conference.) Between sorties, SAMURAI end effectors can be changed out on the surface for specific targets, such as push cores or larger biologicals such as tube worms. In addition to the obvious challenges in autonomous vision-based manipulator control from a free-flying support vehicle, significant development challenges have been the design of a highly capable robotic arm within the mass limitations (both wet and dry) of the JAGUAR vehicle, the development of a highly robust manipulator with modular maintenance units for extended polar operations, and the creation of a robot-based sample collection and holding system for multiple heterogeneous samples on a single extended sortie.

  14. Weed manipulation for insect pest management in corn

    NASA Astrophysics Data System (ADS)

    Altieri, M. A.; Whitcomb, W. H.

    1980-11-01

    Populations of insect pests and associated predaceous arthropods were sampled by direct observation and other relative methods in simple and diversified corn habitats at two sites in north Florida during 1978 and 1979. Through various cultural manipulations, characteristic weed communities were established selectively in alternate rows within corn plots. Fall armyworm ( Spodoptera frugiperda J. E. Smith) incidence was consistently higher in the weed-free habitats than in the corn habitats containing natural weed complexes or selected weed associations. Corn earworm ( Heliothis zea Boddie) damage was similar in all weed-free and weedy treatments, suggesting that this insect is not affected greatly by weed diversity. Only the diversification of corn with a strip of soybean significantly reduced corn earworm damage. In one site, distance between plots was reduced. Because predators moved freely between habitats, it was difficult to identify between-treatment differences in the composition of predator communities. In the other site, increased distances between plots minimized such migrations, resulting in greater population densities and diversity of common foliage insect predators in the weed-manipulated corn systems than in the weed-free plots. Trophic relationships in the weedy habitats were more complex than food webs in monocultures. Predator diversity (measured as mean number of species per area) and predator density was higher in com plots surrounded by mature, complex vegetation than at those surrounded by annual crops. This suggests that diverse adjacent areas to crops provide refuge for predators, thus acting as colonization sources.

  15. The impact of shifting vantage perspective when recalling and imagining positive events.

    PubMed

    Vella, Nicholas C; Moulds, Michelle L

    2014-01-01

    The vantage perspective from which memories are recalled influences their emotional impact. To date, however, the impact of vantage perspective on the emotions elicited by positive memories and images of positive future events has been minimally explored. We experimentally manipulated the vantage perspective from which a sample of undergraduate students (n =80) recalled positive memories and imagined positive future events. Participants who naturally recalled their positive memories from a field perspective reported decreased vividness and positive affect (i.e., happiness, optimism, hopefulness) when they were instructed to shift to an observer perspective. The same pattern of emotionality ratings was observed when participants' vantage perspective of imagined future events was manipulated. In contrast, shifting participants from observer to field perspective recall of positive memories did not result in changes in ratings of memory-related emotion, although we found an unexpected trend towards reduced vividness. For positive future events, shifting from an observer to a field perspective resulted in decreased vividness but did not lead to any changes in positive emotion. Our findings confirm that vantage perspective plays a key role in determining the emotional impact of positive memories, and demonstrate that this relationship is also evident for images of future positive events.

  16. The immediate effect of individual manipulation techniques on pulmonary function measures in persons with chronic obstructive pulmonary disease

    PubMed Central

    Noll, Donald R; Johnson, Jane C; Baer, Robert W; Snider, Eric J

    2009-01-01

    Background The use of manipulation has long been advocated in the treatment of chronic obstructive pulmonary disease (COPD), but few randomized controlled clinical trials have measured the effect of manipulation on pulmonary function. In addition, the effects of individual manipulative techniques on the pulmonary system are poorly understood. Therefore, the purpose of this study was to determine the immediate effects of four osteopathic techniques on pulmonary function measures in persons with COPD relative to a minimal-touch control protocol. Methods Persons with COPD aged 50 and over were recruited for the study. Subjects received five, single-technique treatment sessions: minimal-touch control, thoracic lymphatic pump (TLP) with activation, TLP without activation, rib raising, and myofascial release. There was a 4-week washout period between sessions. Protocols were given in random order until all five techniques had been administered. Pulmonary function measures were obtained at baseline and 30-minutes posttreatment. For the actual pulmonary function measures and percent predicted values, Wilcoxon signed rank tests were used to test within-technique changes from baseline. For the percent change from baseline, Friedman tests were used to test for between-technique differences. Results Twenty-five subjects were enrolled in the study. All four tested osteopathic techniques were associated with adverse posttreatment changes in pulmonary function measures; however, different techniques changed different measures. TLP with activation increased posttreatment residual volume compared to baseline, while TLP without activation did not. Side effects were mild, mostly posttreatment chest wall soreness. Surprisingly, the majority of subjects believed they could breathe better after receiving osteopathic manipulation. Conclusion In persons with COPD, TLP with activation, TLP without activation, rib raising, and myofascial release mildly worsened pulmonary function measures immediately posttreatment relative to baseline measurements. The activation component of the TLP technique appears to increase posttreatment residual volume. Despite adverse changes in pulmonary function measures, persons with COPD subjectively reported they benefited from osteopathic manipulation. PMID:19814829

  17. The immediate effect of individual manipulation techniques on pulmonary function measures in persons with chronic obstructive pulmonary disease.

    PubMed

    Noll, Donald R; Johnson, Jane C; Baer, Robert W; Snider, Eric J

    2009-10-08

    The use of manipulation has long been advocated in the treatment of chronic obstructive pulmonary disease (COPD), but few randomized controlled clinical trials have measured the effect of manipulation on pulmonary function. In addition, the effects of individual manipulative techniques on the pulmonary system are poorly understood. Therefore, the purpose of this study was to determine the immediate effects of four osteopathic techniques on pulmonary function measures in persons with COPD relative to a minimal-touch control protocol. Persons with COPD aged 50 and over were recruited for the study. Subjects received five, single-technique treatment sessions: minimal-touch control, thoracic lymphatic pump (TLP) with activation, TLP without activation, rib raising, and myofascial release. There was a 4-week washout period between sessions. Protocols were given in random order until all five techniques had been administered. Pulmonary function measures were obtained at baseline and 30-minutes posttreatment. For the actual pulmonary function measures and percent predicted values, Wilcoxon signed rank tests were used to test within-technique changes from baseline. For the percent change from baseline, Friedman tests were used to test for between-technique differences. Twenty-five subjects were enrolled in the study. All four tested osteopathic techniques were associated with adverse posttreatment changes in pulmonary function measures; however, different techniques changed different measures. TLP with activation increased posttreatment residual volume compared to baseline, while TLP without activation did not. Side effects were mild, mostly posttreatment chest wall soreness. Surprisingly, the majority of subjects believed they could breathe better after receiving osteopathic manipulation. In persons with COPD, TLP with activation, TLP without activation, rib raising, and myofascial release mildly worsened pulmonary function measures immediately posttreatment relative to baseline measurements. The activation component of the TLP technique appears to increase posttreatment residual volume. Despite adverse changes in pulmonary function measures, persons with COPD subjectively reported they benefited from osteopathic manipulation.

  18. 76 FR 50796 - Self-Regulatory Organizations; Financial Industry Regulatory Authority, Inc.; Notice of Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... designed to minimize the potential for mini-manipulations and for corners or squeezes of the underlying... movements by automated surveillance techniques to identify unusual activity in both options and underlying...

  19. A Concept for a Mobile Remote Manipulator System

    NASA Technical Reports Server (NTRS)

    Mikulus, M. M., Jr.; Bush, H. G.; Wallsom, R. E.; Jensen, J. K.

    1985-01-01

    A conceptual design for a Mobile Remote Manipulator System (MRMS) is presented. This concept does not require continuous rails for mobility (only guide pins at truss hardpoints) and is very compact, being only one bay square. The MRMS proposed is highly maneuverable and is able to move in any direction along the orthogonal guide pin array under complete control at all times. The proposed concept would greatly enhance the safety and operational capabilities of astronauts performing EVA functions such as structural assembly, payload transport and attachment, space station maintenance, repair or modification, and future spacecraft construction or servicing. The MRMS drive system conceptual design presented is a reasonably simple mechanical device which can be designed to exhibit high reliability. Developmentally, all components of the proposed MRMS either exist or are considered to be completely state of the art designs requiring minimal development, features which should enhance reliability and minimize costs.

  20. Rapid cell separation with minimal manipulation for autologous cell therapies

    NASA Astrophysics Data System (ADS)

    Smith, Alban J.; O'Rorke, Richard D.; Kale, Akshay; Rimsa, Roberts; Tomlinson, Matthew J.; Kirkham, Jennifer; Davies, A. Giles; Wälti, Christoph; Wood, Christopher D.

    2017-02-01

    The ability to isolate specific, viable cell populations from mixed ensembles with minimal manipulation and within intra-operative time would provide significant advantages for autologous, cell-based therapies in regenerative medicine. Current cell-enrichment technologies are either slow, lack specificity and/or require labelling. Thus a rapid, label-free separation technology that does not affect cell functionality, viability or phenotype is highly desirable. Here, we demonstrate separation of viable from non-viable human stromal cells using remote dielectrophoresis, in which an electric field is coupled into a microfluidic channel using shear-horizontal surface acoustic waves, producing an array of virtual electrodes within the channel. This allows high-throughput dielectrophoretic cell separation in high conductivity, physiological-like fluids, overcoming the limitations of conventional dielectrophoresis. We demonstrate viable/non-viable separation efficacy of >98% in pre-purified mesenchymal stromal cells, extracted from human dental pulp, with no adverse effects on cell viability, or on their subsequent osteogenic capabilities.

  1. Designing minimal space telerobotics systems for maximum performance

    NASA Technical Reports Server (NTRS)

    Backes, Paul G.; Long, Mark K.; Steele, Robert D.

    1992-01-01

    The design of the remote site of a local-remote telerobot control system is described which addresses the constraints of limited computational power available at the remote site control system while providing a large range of control capabilities. The Modular Telerobot Task Execution System (MOTES) provides supervised autonomous control, shared control and teleoperation for a redundant manipulator. The system is capable of nominal task execution as well as monitoring and reflex motion. The MOTES system is minimized while providing a large capability by limiting its functionality to only that which is necessary at the remote site and by utilizing a unified multi-sensor based impedance control scheme. A command interpreter similar to one used on robotic spacecraft is used to interpret commands received from the local site. The system is written in Ada and runs in a VME environment on 68020 processors and initially controls a Robotics Research K1207 7 degree of freedom manipulator.

  2. Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples: A Review

    PubMed Central

    Islas, Gabriela; Hernandez, Prisciliano

    2017-01-01

    To achieve analytical success, it is necessary to develop thorough clean-up procedures to extract analytes from the matrix. Dispersive solid phase extraction (DSPE) has been used as a pretreatment technique for the analysis of several compounds. This technique is based on the dispersion of a solid sorbent in liquid samples in the extraction isolation and clean-up of different analytes from complex matrices. DSPE has found a wide range of applications in several fields, and it is considered to be a selective, robust, and versatile technique. The applications of dispersive techniques in the analysis of veterinary drugs in different matrices involve magnetic sorbents, molecularly imprinted polymers, carbon-based nanomaterials, and the Quick, Easy, Cheap, Effective, Rugged, and Safe (QuEChERS) method. Techniques based on DSPE permit minimization of additional steps such as precipitation, centrifugation, and filtration, which decreases the manipulation of the sample. In this review, we describe the main procedures used for synthesis, characterization, and application of this pretreatment technique and how it has been applied to food analysis. PMID:29181027

  3. Soft, flexible micromanipulators comprising polypyrrole trilayer microactuators

    NASA Astrophysics Data System (ADS)

    Khaldi, Alexandre; Maziz, Ali; Alici, Gursel; Spinks, Geoffrey M.; Jager, Edwin W. H.

    2015-04-01

    Within the areas of cell biology, biomedicine and minimal invasive surgery, there is a need for soft, flexible and dextrous biocompatible manipulators for handling biological objects, such as single cells and tissues. Present day technologies are based on simple suction using micropipettes for grasping objects. The micropipettes lack the possibility of accurate force control, nor are they soft and compliant and may thus cause damage to the cells or tissue. Other micromanipulators use conventional electric motors however the further miniaturization of electrical motors and their associated gear boxes and/or push/pull wires has reached its limits. Therefore there is an urgent need for new technologies for micromanipulation of soft biological matter. We are developing soft, flexible micromanipulators such as micro- tweezers for the handling and manipulation of biological species including cells and surgical tools for minimal invasive surgery. Our aim is to produce tools with minimal dimensions of 100 μm to 1 mm in size, which is 1-2 orders of magnitude smaller than existing technology. We present newly developed patterning and microfabrication methods for polymer microactuators as well as the latest results to integrate these microactuators into easy to use manipulation tools. The outcomes of this study contribute to the realisation of low-foot print devices articulated with electroactive polymer actuators for which the physical interface with the power source has been a significant challenge limiting their application. Here, we present a new bottom-up microfabrication process. We show for the first time that such a bottom-up fabricated actuator performs a movement in air. This is a significant step towards widening the application areas of the soft microactuators.

  4. Anticipatory planning and control of grasp positions and forces for dexterous two-digit manipulation.

    PubMed

    Fu, Qiushi; Zhang, Wei; Santello, Marco

    2010-07-07

    Dexterous object manipulation requires anticipatory control of digit positions and forces. Despite extensive studies on sensorimotor learning of digit forces, how humans learn to coordinate digit positions and forces has never been addressed. Furthermore, the functional role of anticipatory modulation of digit placement to object properties remains to be investigated. We addressed these questions by asking human subjects (12 females, 12 males) to grasp and lift an inverted T-shaped object using precision grip at constrained or self-chosen locations. The task requirement was to minimize object roll during lift. When digit position was not constrained, subjects could have implemented many equally valid digit position-force coordination patterns. However, choice of digit placement might also have resulted in large trial-to-trial variability of digit position, hence challenging the extent to which the CNS could have relied on sensorimotor memories for anticipatory control of digit forces. We hypothesized that subjects would modulate digit placement for optimal force distribution and digit forces as a function of variable digit positions. All subjects learned to minimize object roll within the first three trials, and the unconstrained device was associated with significantly smaller grip forces but larger variability of digit positions. Importantly, however, digit load force modulation compensated for position variability, thus ensuring consistent object roll minimization on each trial. This indicates that subjects learned object manipulation by integrating sensorimotor memories with sensory feedback about digit positions. These results are discussed in the context of motor equivalence and sensorimotor integration of grasp kinematics and kinetics.

  5. Fast visual prediction and slow optimization of preferred walking speed.

    PubMed

    O'Connor, Shawn M; Donelan, J Maxwell

    2012-05-01

    People prefer walking speeds that minimize energetic cost. This may be accomplished by directly sensing metabolic rate and adapting gait to minimize it, but only slowly due to the compounded effects of sensing delays and iterative convergence. Visual and other sensory information is available more rapidly and could help predict which gait changes reduce energetic cost, but only approximately because it relies on prior experience and an indirect means to achieve economy. We used virtual reality to manipulate visually presented speed while 10 healthy subjects freely walked on a self-paced treadmill to test whether the nervous system beneficially combines these two mechanisms. Rather than manipulating the speed of visual flow directly, we coupled it to the walking speed selected by the subject and then manipulated the ratio between these two speeds. We then quantified the dynamics of walking speed adjustments in response to perturbations of the visual speed. For step changes in visual speed, subjects responded with rapid speed adjustments (lasting <2 s) and in a direction opposite to the perturbation and consistent with returning the visually presented speed toward their preferred walking speed, when visual speed was suddenly twice (one-half) the walking speed, subjects decreased (increased) their speed. Subjects did not maintain the new speed but instead gradually returned toward the speed preferred before the perturbation (lasting >300 s). The timing and direction of these responses strongly indicate that a rapid predictive process informed by visual feedback helps select preferred speed, perhaps to complement a slower optimization process that seeks to minimize energetic cost.

  6. Development of a 3D printed device to support long term intestinal culture as an alternative to hyperoxic chamber methods.

    PubMed

    Costa, Matheus O; Nosach, Roman; Harding, John C S

    2017-01-01

    Most interactions between pathogenic microorganisms and their target host occur on mucosal surfaces of internal organs such as the intestine. In vitro organ culture (IVOC) provides an unique tool for studying host-pathogen interactions in a controlled environment. However, this technique requires a complex laboratory setup and specialized apparatus. In addition, issues arise when anaerobic pathogens are exposed to the hyperoxic environment required for intestinal culture. The objective of this study was to develop an accessible 3D-printed device that would allow manipulation of the gas mixture used to supply the tissue culture media separately from the gas mixture exposed to the mucosal side of explants. Porcine colon explants from 2 pigs were prepared ( n  = 20) and cultured for 0h, 8h, 18h and 24h using the device. After the culture period, explants were fixed in formalin and H&E stained sections were evaluated for histological defects of the mucosa. At 8h, 66% of samples displayed no histological abnormalities, whereas samples collected at 18h and 24h displayed progressively increasing rates of superficial epithelial erosion and epithelial metaplasia. The 3D-design reported here allows investigators to setup intestinal culture explants while manipulating the gas media explants are exposed to, to support tissue viability for a minimal of 8h. The amount of media necessary and tissue contamination are potential issues associated with this apparatus.

  7. Manager's handbook for aspen in the north-central states.

    Treesearch

    Donald A. Perala

    1977-01-01

    Summarizes information on silvicultural practices to improve yields of timber, water, and wildlife, while minimizing unsightly manipulation of the landscape, for the aspen forest type. A management key outlines recommendations for given stand conditions and management objectives.

  8. Automation of a suturing device for minimally invasive surgery.

    PubMed

    Göpel, Tobias; Härtl, Felix; Schneider, Armin; Buss, Martin; Feussner, Hubertus

    2011-07-01

    In minimally invasive surgery, hand suturing is categorized as a challenge in technique as well as in its duration. This calls for an easily manageable tool, permitting an all-purpose, cost-efficient, and secure viscerosynthesis. Such a tool for this field already exists: the Autosuture EndoStitch(®). In a series of studies the potential for the EndoStitch to accelerate suturing has been proven. However, its ergonomics still limits its applicability. The goal of this study was twofold: propose an optimized and partially automated EndoStitch and compare the conventional EndoStitch to the optimized and partially automated EndoStitch with respect to the speed and precision of suturing. Based on the EndoStitch, a partially automated suturing tool has been developed. With the aid of a DC motor, triggered by a button, one can suture by one-fingered handling. Using the partially automated suturing manipulator, 20 surgeons with different levels of laparoscopic experience successfully completed a continuous suture with 10 stitches using the conventional and the partially automated suture manipulator. Before that, each participant was given 1 min of instruction and 1 min for training. Absolute suturing time and stitch accuracy were measured. The quality of the automated EndoStitch with respect to manipulation was tested with the aid of a standardized questionnaire. To compare the two instruments, t tests were used for suturing accuracy and time. Of the 20 surgeons with laparoscopic experience (fewer than 5 laparoscopic interventions, n=9; fewer than 20 laparoscopic interventions, n=7; more than 20 laparoscopic interventions, n=4), there was no significant difference between the two tested systems with respect to stitching accuracy. However, the suturing time was significantly shorter with the Autostitch (P=0.01). The difference in accuracy and speed was not statistically significant considering the laparoscopic experience of the surgeons. The weight and size of the Autostitch have been criticized as well as its cable. However, the comfortable handhold, automatic needle change, and ergonomic manipulation have been rated positive. Partially automated suturing in minimally invasive surgery offers advantages with respect to the speed of operation and ergonomics. Ongoing work in this field has to concentrate on minimization, implementation in robotic systems, and development of new operation methods (NOTES).

  9. A cable-driven soft robot surgical system for cardiothoracic endoscopic surgery: preclinical tests in animals.

    PubMed

    Wang, Hesheng; Zhang, Runxi; Chen, Weidong; Wang, Xiaozhou; Pfeifer, Rolf

    2017-08-01

    Minimally invasive surgery attracts more and more attention because of the advantages of minimal trauma, less bleeding and pain and low complication rate. However, minimally invasive surgery for beating hearts is still a challenge. Our goal is to develop a soft robot surgical system for single-port minimally invasive surgery on a beating heart. The soft robot described in this paper is inspired by the octopus arm. Although the octopus arm is soft and has more degrees of freedom (DOFs), it can be controlled flexibly. The soft robot is driven by cables that are embedded into the soft robot manipulator and can control the direction of the end and middle of the soft robot manipulator. The forward, backward and rotation movement of the soft robot is driven by a propulsion plant. The soft robot can move freely by properly controlling the cables and the propulsion plant. The soft surgical robot system can perform different thoracic operations by changing surgical instruments. To evaluate the flexibility, controllability and reachability of the designed soft robot surgical system, some testing experiments have been conducted in vivo on a swine. Through the subxiphoid, the soft robot manipulator could enter into the thoracic cavity and pericardial cavity smoothly and perform some operations such as biopsy, ligation and ablation. The operations were performed successfully and did not cause any damage to the surrounding soft tissues. From the experiments, the flexibility, controllability and reachability of the soft robot surgical system have been verified. Also, it has been shown that this system can be used in the thoracic and pericardial cavity for different operations. Compared with other endoscopy robots, the soft robot surgical system is safer, has more DOFs and is more flexible for control. When performing operations in a beating heart, this system maybe more suitable than traditional endoscopy robots.

  10. Whole arm manipulation planning based on feedback velocity fields and sampling-based techniques.

    PubMed

    Talaei, B; Abdollahi, F; Talebi, H A; Omidi Karkani, E

    2013-09-01

    Changing the configuration of a cooperative whole arm manipulator is not easy while enclosing an object. This difficulty is mainly because of risk of jamming caused by kinematic constraints. To reduce this risk, this paper proposes a feedback manipulation planning algorithm that takes grasp kinematics into account. The idea is based on a vector field that imposes perturbation in object motion inducing directions when the movement is considerably along manipulator redundant directions. Obstacle avoidance problem is then considered by combining the algorithm with sampling-based techniques. As experimental results confirm, the proposed algorithm is effective in avoiding jamming as well as obstacles for a 6-DOF dual arm whole arm manipulator. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Integrating laboratory robots with analytical instruments--must it really be so difficult?

    PubMed

    Kramer, G W

    1990-09-01

    Creating a reliable system from discrete laboratory instruments is often a task fraught with difficulties. While many modern analytical instruments are marvels of detection and data handling, attempts to create automated analytical systems incorporating such instruments are often frustrated by their human-oriented control structures and their egocentricity. The laboratory robot, while fully susceptible to these problems, extends such compatibility issues to the physical dimensions involving sample interchange, manipulation, and event timing. The workcell concept was conceived to describe the procedure and equipment necessary to carry out a single task during sample preparation. This notion can be extended to organize all operations in an automated system. Each workcell, no matter how complex its local repertoire of functions, must be minimally capable of accepting information (commands, data), returning information on demand (status, results), and being started, stopped, and reset by a higher level device. Even the system controller should have a mode where it can be directed by instructions from a higher level.

  12. Robotic surgery update.

    PubMed

    Jacobsen, G; Elli, F; Horgan, S

    2004-08-01

    Minimally invasive surgical techniques have revolutionized the field of surgery. Telesurgical manipulators (robots) and new information technologies strive to improve upon currently available minimally invasive techniques and create new possibilities. A retrospective review of all robotic cases at a single academic medical center from August 2000 until November 2002 was conducted. A comprehensive literature evaluation on robotic surgical technology was also performed. Robotic technology is safely and effectively being applied at our institution. Robotic and information technologies have improved upon minimally invasive surgical techniques and created new opportunities not attainable in open surgery. Robotic technology offers many benefits over traditional minimal access techniques and has been proven safe and effective. Further research is needed to better define the optimal application of this technology. Credentialing and educational requirements also need to be delineated.

  13. Data-driven methods towards learning the highly nonlinear inverse kinematics of tendon-driven surgical manipulators.

    PubMed

    Xu, Wenjun; Chen, Jie; Lau, Henry Y K; Ren, Hongliang

    2017-09-01

    Accurate motion control of flexible surgical manipulators is crucial in tissue manipulation tasks. The tendon-driven serpentine manipulator (TSM) is one of the most widely adopted flexible mechanisms in minimally invasive surgery because of its enhanced maneuverability in torturous environments. TSM, however, exhibits high nonlinearities and conventional analytical kinematics model is insufficient to achieve high accuracy. To account for the system nonlinearities, we applied a data driven approach to encode the system inverse kinematics. Three regression methods: extreme learning machine (ELM), Gaussian mixture regression (GMR) and K-nearest neighbors regression (KNNR) were implemented to learn a nonlinear mapping from the robot 3D position states to the control inputs. The performance of the three algorithms was evaluated both in simulation and physical trajectory tracking experiments. KNNR performed the best in the tracking experiments, with the lowest RMSE of 2.1275 mm. The proposed inverse kinematics learning methods provide an alternative and efficient way to accurately model the tendon driven flexible manipulator. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Kinematically Optimal Robust Control of Redundant Manipulators

    NASA Astrophysics Data System (ADS)

    Galicki, M.

    2017-12-01

    This work deals with the problem of the robust optimal task space trajectory tracking subject to finite-time convergence. Kinematic and dynamic equations of a redundant manipulator are assumed to be uncertain. Moreover, globally unbounded disturbances are allowed to act on the manipulator when tracking the trajectory by the endeffector. Furthermore, the movement is to be accomplished in such a way as to minimize both the manipulator torques and their oscillations thus eliminating the potential robot vibrations. Based on suitably defined task space non-singular terminal sliding vector variable and the Lyapunov stability theory, we derive a class of chattering-free robust kinematically optimal controllers, based on the estimation of transpose Jacobian, which seem to be effective in counteracting both uncertain kinematics and dynamics, unbounded disturbances and (possible) kinematic and/or algorithmic singularities met on the robot trajectory. The numerical simulations carried out for a redundant manipulator of a SCARA type consisting of the three revolute kinematic pairs and operating in a two-dimensional task space, illustrate performance of the proposed controllers as well as comparisons with other well known control schemes.

  15. Wanting to Maximize the Positive and Minimize the Negative: Implications for Mixed Affective Experience in American and Chinese Contexts

    PubMed Central

    Sims, Tamara; Tsai, Jeanne L.; Jiang, Da; Wang, Yaheng; Fung, Helene H.; Zhang, Xiulan

    2016-01-01

    Previous studies have demonstrated that European Americans have fewer mixed affective experiences (i.e., are less likely to experience the bad with the good) compared to Chinese. In this paper, we argue that these cultural differences are due to “ideal affect,” or how people ideally want to feel. Specifically, we predict that people from individualistic cultures want to maximize positive and minimize negative affect more than people from collectivistic cultures, and as a result, they are less likely to actually experience mixed emotions (reflected by a more negative within-person correlation between actual positive and negative affect). We find support for this prediction in two experience sampling studies conducted in the U.S. and China (Studies 1 and 2). In addition, we demonstrate that ideal affect is a distinct construct from dialectical view of the self, which has also been related to mixed affective experience (Study 3). Finally, in Study 4, we demonstrate that experimentally manipulating the desire to maximize the positive and minimize the negative alters participants' actual experience of mixed emotions during a pleasant (but not unpleasant or combined pleasant and unpleasant) television clip in the U.S. and Hong Kong. Together, these findings suggest that across cultures, how people want to feel shapes how they actually feel, particularly people's mixed affective experience. PMID:26121525

  16. Wanting to maximize the positive and minimize the negative: implications for mixed affective experience in American and Chinese contexts.

    PubMed

    Sims, Tamara; Tsai, Jeanne L; Jiang, Da; Wang, Yaheng; Fung, Helene H; Zhang, Xiulan

    2015-08-01

    Previous studies have demonstrated that European Americans have fewer mixed affective experiences (i.e., are less likely to experience the bad with the good) compared with Chinese. In this article, we argue that these cultural differences are due to "ideal affect," or how people ideally want to feel. Specifically, we predict that people from individualistic cultures want to maximize positive and minimize negative affect more than people from collectivistic cultures, and as a result, they are less likely to actually experience mixed emotions (reflected by a more negative within-person correlation between actual positive and negative affect). We find support for this prediction in 2 experience sampling studies conducted in the United States and China (Studies 1 and 2). In addition, we demonstrate that ideal affect is a distinct construct from dialectical view of the self, which has also been related to mixed affective experience (Study 3). Finally, in Study 4, we demonstrate that experimentally manipulating the desire to maximize the positive and minimize the negative alters participants' actual experience of mixed emotions during a pleasant (but not unpleasant or combined pleasant and unpleasant) TV clip in the United States and Hong Kong. Together, these findings suggest that across cultures, how people want to feel shapes how they actually feel, particularly people's experiences of mixed affect. (c) 2015 APA, all rights reserved.

  17. On the symbolic manipulation and code generation for elasto-plastic material matrices

    NASA Technical Reports Server (NTRS)

    Chang, T. Y.; Saleeb, A. F.; Wang, P. S.; Tan, H. Q.

    1991-01-01

    A computerized procedure for symbolic manipulations and FORTRAN code generation of an elasto-plastic material matrix for finite element applications is presented. Special emphasis is placed on expression simplifications during intermediate derivations, optimal code generation, and interface with the main program. A systematic procedure is outlined to avoid redundant algebraic manipulations. Symbolic expressions of the derived material stiffness matrix are automatically converted to RATFOR code which is then translated into FORTRAN statements through a preprocessor. To minimize the interface problem with the main program, a template file is prepared so that the translated FORTRAN statements can be merged into the file to form a subroutine (or a submodule). Three constitutive models; namely, von Mises plasticity, Drucker-Prager model, and a concrete plasticity model, are used as illustrative examples.

  18. Reversible structure manipulation by tuning carrier concentration in metastable Cu 2S

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tao, Jing; Chen, Jingyi; Li, Jun

    Harnessing a material’s functionality in applications and for fundamental studies often requires direct manipulation of its crystal symmetry. Here, we manipulate the crystal structure of Cu 2S nanoparticles in a controlled and reversible fashion via variation of the electron dose rate, observed by transmission electron microscopy. Our control method is in contrast to conventional chemical doping, which is irreversible and often introduces unwanted lattice distortions. Our study sheds light on the much-debated question of whether a change in electronic structure can facilitate a change of crystal symmetry, or whether vice versa is always the case. Finally, we show that amore » minimal perturbation to the electronic degree of freedom can drive the structural phase transition in Cu 2S, hence resolving this dilemma.« less

  19. Manipulating the magnetoelectric effect: Essence learned from Co4Nb2O9

    NASA Astrophysics Data System (ADS)

    Yanagi, Yuki; Hayami, Satoru; Kusunose, Hiroaki

    2018-01-01

    Recent experiments for linear magnetoelectric (ME) response in honeycomb antiferromagnet Co4Nb2O9 revealed that the electric polarization can be manipulated by the in-plane rotating magnetic field in a systematic way. We propose the minimal model by extracting essential ingredients of Co4Nb2O9 to exhibit such ME response. It is the three-orbital model with x y -type atomic spin-orbit coupling (SOC) on the single-layer honeycomb structure, and it is shown to reproduce qualitatively the observed field-angle dependence of the electric polarization. The obtained results can be understood by the perturbative calculation with respect to the atomic SOC. These findings could be useful to explore further ME materials having similar manipulability of the electric polarization.

  20. Reversible structure manipulation by tuning carrier concentration in metastable Cu 2S

    DOE PAGES

    Tao, Jing; Chen, Jingyi; Li, Jun; ...

    2017-08-30

    Harnessing a material’s functionality in applications and for fundamental studies often requires direct manipulation of its crystal symmetry. Here, we manipulate the crystal structure of Cu 2S nanoparticles in a controlled and reversible fashion via variation of the electron dose rate, observed by transmission electron microscopy. Our control method is in contrast to conventional chemical doping, which is irreversible and often introduces unwanted lattice distortions. Our study sheds light on the much-debated question of whether a change in electronic structure can facilitate a change of crystal symmetry, or whether vice versa is always the case. Finally, we show that amore » minimal perturbation to the electronic degree of freedom can drive the structural phase transition in Cu 2S, hence resolving this dilemma.« less

  1. Integration of gene expression biomarkers and whole sediment toxicity identification evaluations

    EPA Science Inventory

    Toxicity identification and evaluations (TIEs) use physical/chemical manipulation of a sample to isolate or change the potency of different groups of chemicals potentially toxic in a sample. Organisms are then exposed to these fractions pre- and post-manipulation to determine if ...

  2. Workshop to address gaps in regulation of minimally manipulated autologous cell therapies for homologous use in Canada.

    PubMed

    Chisholm, Jolene; von Tigerstrom, Barbara; Bedford, Patrick; Fradette, Julie; Viswanathan, Sowmya

    2017-12-01

    In Canada, minimally manipulated autologous cell therapies for homologous use (MMAC-H) are either regulated under the practice of medicine, or as drugs or devices under the Food and Drugs Act, Food and Drug Regulations (F&DR) or Medical Device Regulations (MDR). Cells, Tissues and Organs (CTO) Regulations in Canada are restricted to minimally manipulated allogeneic products for homologous use. This leaves an important gap in the interpretation of existing regulations. The purposes of this workshop co-organized by the Stem Cell Network and the Centre for Commercialization of Regenerative Medicine (CCRM) were to discuss the current state of regulation of MMAC-H therapies in Canada and compare it with other regulatory jurisdictions, with the intent of providing specific policy recommendations to Health Canada. Participants came to a consensus on the need for well-defined common terminology between regulators and stakeholders, a common source of confusion and misinformation. A need for a harmonized national approach to oversight of facilities providing MMAC-H therapies based on existing standards, such as Canadian Standards Association (CSA), was also voiced. Facilities providing MMAC-H therapies should also participate in collection of long-term data to ensure patient safety and efficacy of therapies. Harmonization across provinces of the procedures and practices involving administration of MMAC-H would be preferred. Participants felt that devices used to process MMAC-H are adequately regulated under existing MDR. Overly prescriptive regulation will stifle innovation, whereas insufficient regulation might allow unsafe or ineffective therapies to be offered. Until a clear, balanced and explicit approach is articulated, regulatory uncertainty remains a barrier. Copyright © 2017 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  3. New minimally access hydrocelectomy.

    PubMed

    Saber, Aly

    2011-02-01

    To ascertain the acceptability of minimally access hydrocelectomy through a 2-cm incision and the outcome in terms of morbidity reduction and recurrence rate. Although controversy exists regarding the treatment of hydrocele, hydrocelectomy remains the treatment of choice for hydroceles. However, the standard surgical procedures for hydrocele can cause postoperative discomfort and complications. A total of 42 adult patients, aged 18-56 years, underwent hydrocelectomy as an outpatient procedure using a 2-cm scrotal skin incision and excision of only a small disk of the parietal tunica vaginalis. The operative time was 12-18 minutes (mean 15). The outcome measures included patient satisfaction and postoperative complications. This procedure requires minor dissection and minimal manipulation during treatment. It also resulted in no recurrence and minimal complications and required a short operative time. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. A novel remote center of motion mechanism for the force-reflective master robot of haptic tele-surgery systems.

    PubMed

    Hadavand, Mostafa; Mirbagheri, Alireza; Behzadipour, Saeed; Farahmand, Farzam

    2014-06-01

    An effective master robot for haptic tele-surgery applications needs to provide a solution for the inversed movements of the surgical tool, in addition to sufficient workspace and manipulability, with minimal moving inertia. A novel 4 + 1-DOF mechanism was proposed, based on a triple parallelogram linkage, which provided a Remote Center of Motion (RCM) at the back of the user's hand. The kinematics of the robot was analyzed and a prototype was fabricated and evaluated by experimental tests. With a RCM at the back of the user's hand the actuators far from the end effector, the robot could produce the sensation of hand-inside surgery with minimal moving inertia. The target workspace was achieved with an acceptable manipulability. The trajectory tracking experiments revealed small errors, due to backlash at the joints. The proposed mechanism meets the basic requirements of an effective master robot for haptic tele-surgery applications. Copyright © 2013 John Wiley & Sons, Ltd.

  5. A master manipulator with a remote-center-of-motion kinematic structure for a minimally invasive robotic surgical system.

    PubMed

    Lee, Hyunyoung; Cheon, Byungsik; Hwang, Minho; Kang, Donghoon; Kwon, Dong-Soo

    2018-02-01

    In robotic surgical systems, commercial master devices have limitations owing to insufficient workspace and lack of intuitiveness. To overcome these limitations, a remote-center-of-motion (RCM) master manipulator was proposed. The feasibility of the proposed RCM structure was evaluated through kinematic analysis using a conventional serial structure. Two performance comparison experiments (peg transfer task and objective transfer task) were conducted for the developed master and Phantom Omni. The kinematic analysis results showed that compared with the serial structure, the proposed RCM structure has better performance in terms of design efficiency (19%) and workspace quality (59.08%). Further, in comparison with Phantom Omni, the developed master significantly increased task efficiency and significantly decreased workload in both experiments. The comparatively better performance in terms of intuitiveness, design efficiency, and operability of the proposed master for a robotic system for minimally invasive surgery was confirmed through kinematic and experimental analysis. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Development and characterization of hollow microprobe array as a potential tool for versatile and massively parallel manipulation of single cells.

    PubMed

    Nagai, Moeto; Oohara, Kiyotaka; Kato, Keita; Kawashima, Takahiro; Shibata, Takayuki

    2015-04-01

    Parallel manipulation of single cells is important for reconstructing in vivo cellular microenvironments and studying cell functions. To manipulate single cells and reconstruct their environments, development of a versatile manipulation tool is necessary. In this study, we developed an array of hollow probes using microelectromechanical systems fabrication technology and demonstrated the manipulation of single cells. We conducted a cell aspiration experiment with a glass pipette and modeled a cell using a standard linear solid model, which provided information for designing hollow stepped probes for minimally invasive single-cell manipulation. We etched a silicon wafer on both sides and formed through holes with stepped structures. The inner diameters of the holes were reduced by SiO2 deposition of plasma-enhanced chemical vapor deposition to trap cells on the tips. This fabrication process makes it possible to control the wall thickness, inner diameter, and outer diameter of the probes. With the fabricated probes, single cells were manipulated and placed in microwells at a single-cell level in a parallel manner. We studied the capture, release, and survival rates of cells at different suction and release pressures and found that the cell trapping rate was directly proportional to the suction pressure, whereas the release rate and viability decreased with increasing the suction pressure. The proposed manipulation system makes it possible to place cells in a well array and observe the adherence, spreading, culture, and death of the cells. This system has potential as a tool for massively parallel manipulation and for three-dimensional hetero cellular assays.

  7. How do we assign punishment? The impact of minimal and maximal standards on the evaluation of deviants.

    PubMed

    Kessler, Thomas; Neumann, Jörg; Mummendey, Amélie; Berthold, Anne; Schubert, Thomas; Waldzus, Sven

    2010-09-01

    To explain the determinants of negative behavior toward deviants (e.g., punishment), this article examines how people evaluate others on the basis of two types of standards: minimal and maximal. Minimal standards focus on an absolute cutoff point for appropriate behavior; accordingly, the evaluation of others varies dichotomously between acceptable or unacceptable. Maximal standards focus on the degree of deviation from that standard; accordingly, the evaluation of others varies gradually from positive to less positive. This framework leads to the prediction that violation of minimal standards should elicit punishment regardless of the degree of deviation, whereas punishment in response to violations of maximal standards should depend on the degree of deviation. Four studies assessed or manipulated the type of standard and degree of deviation displayed by a target. Results consistently showed the expected interaction between type of standard (minimal and maximal) and degree of deviation on punishment behavior.

  8. A C–H oxidation approach for streamlining synthesis of chiral polyoxygenated motifs

    PubMed Central

    Covell, Dustin J.; White, M. Christina

    2013-01-01

    Chiral oxygenated molecules are pervasive in natural products and medicinal agents; however, their chemical syntheses often necessitate numerous, wasteful steps involving functional group and oxidation state manipulations. Herein a strategy for synthesizing a readily diversifiable class of chiral building blocks, allylic alcohols, through sequential asymmetric C—H activation/resolution is evaluated against the state-of-the-art. The C—H oxidation routes’ capacity to strategically introduce oxygen into a sequence and thereby minimize non-productive manipulations is demonstrated to effect significant decreases in overall step-count and increases in yield and synthetic flexibility. PMID:25013239

  9. Manipulations of the features of standard video lottery terminal (VLT) games: effects in pathological and non-pathological gamblers.

    PubMed

    Loba, P; Stewart, S H; Klein, R M; Blackburn, J R

    2001-01-01

    The present study was conducted to identify game parameters that would reduce the risk of abuse of video lottery terminals (VLTs) by pathological gamblers, while exerting minimal effects on the behavior of non-pathological gamblers. Three manipulations of standard VLT game features were explored. Participants were exposed to: a counter which displayed a running total of money spent; a VLT spinning reels game where participants could no longer "stop" the reels by touching the screen; and sensory feature manipulations. In control conditions, participants were exposed to standard settings for either a spinning reels or a video poker game. Dependent variables were self-ratings of reactions to each set of parameters. A set of 2(3) x 2 x 2 (game manipulation [experimental condition(s) vs. control condition] x game [spinning reels vs. video poker] x gambler status [pathological vs. non-pathological]) repeated measures ANOVAs were conducted on all dependent variables. The findings suggest that the sensory manipulations (i.e., fast speed/sound or slow speed/no sound manipulations) produced the most robust reaction differences. Before advocating harm reduction policies such as lowering sensory features of VLT games to reduce potential harm to pathological gamblers, it is important to replicate findings in a more naturalistic setting, such as a real bar.

  10. Dissociations and Associations of Performance in Syntactic Comprehension in Aphasia and their Implications for the Nature of Aphasic Deficits

    PubMed Central

    Caplan, David; Michaud, Jennifer; Hufford, Rebecca

    2013-01-01

    Sixty one pwa were tested on syntactic comprehension in three tasks: sentence-picture matching, sentence-picture matching with auditory moving window presentation, and object manipulation. There were significant correlations of performances on sentences across tasks. First factors in unrotated factor analyses accounted for most of the variance on which all sentence types loaded in each task. Dissociations in performance between sentence types that differed minimally in their syntactic structures were not consistent across tasks. These results replicate previous results with smaller samples and provide important validation of basic aspects of aphasic performance in this area of language processing. They point to the role of a reduction in processing resources and of the interaction of task demands and parsing and interpretive abilities in the genesis of patient performance. PMID:24061104

  11. Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches.

    PubMed

    Almutairy, Meznah; Torng, Eric

    2018-01-01

    Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method.

  12. Comparing fixed sampling with minimizer sampling when using k-mer indexes to find maximal exact matches

    PubMed Central

    Torng, Eric

    2018-01-01

    Bioinformatics applications and pipelines increasingly use k-mer indexes to search for similar sequences. The major problem with k-mer indexes is that they require lots of memory. Sampling is often used to reduce index size and query time. Most applications use one of two major types of sampling: fixed sampling and minimizer sampling. It is well known that fixed sampling will produce a smaller index, typically by roughly a factor of two, whereas it is generally assumed that minimizer sampling will produce faster query times since query k-mers can also be sampled. However, no direct comparison of fixed and minimizer sampling has been performed to verify these assumptions. We systematically compare fixed and minimizer sampling using the human genome as our database. We use the resulting k-mer indexes for fixed sampling and minimizer sampling to find all maximal exact matches between our database, the human genome, and three separate query sets, the mouse genome, the chimp genome, and an NGS data set. We reach the following conclusions. First, using larger k-mers reduces query time for both fixed sampling and minimizer sampling at a cost of requiring more space. If we use the same k-mer size for both methods, fixed sampling requires typically half as much space whereas minimizer sampling processes queries only slightly faster. If we are allowed to use any k-mer size for each method, then we can choose a k-mer size such that fixed sampling both uses less space and processes queries faster than minimizer sampling. The reason is that although minimizer sampling is able to sample query k-mers, the number of shared k-mer occurrences that must be processed is much larger for minimizer sampling than fixed sampling. In conclusion, we argue that for any application where each shared k-mer occurrence must be processed, fixed sampling is the right sampling method. PMID:29389989

  13. An all-joint-control master device for single-port laparoscopic surgery robots.

    PubMed

    Shim, Seongbo; Kang, Taehun; Ji, Daekeun; Choi, Hyunseok; Joung, Sanghyun; Hong, Jaesung

    2016-08-01

    Robots for single-port laparoscopic surgery (SPLS) typically have all of their joints located inside abdomen during surgery, whereas with the da Vinci system, only the tip part of the robot arm is inserted and manipulated. A typical master device that controls only the tip with six degrees of freedom (DOFs) is not suitable for use with SPLS robots because of safety concerns. We designed an ergonomic six-DOF master device that can control all of the joints of an SPLS robot. We matched each joint of the master, the slave, and the human arm to decouple all-joint motions of the slave robot. Counterbalance masses were used to reduce operator fatigue. Mapping factors were determined based on kinematic analysis and were used to achieve all-joint control with minimal error at the tip of the slave robot. The proposed master device has two noteworthy features: efficient joint matching to the human arm to decouple each joint motion of the slave robot and accurate mapping factors, which can minimize the trajectory error of the tips between the master and the slave. We confirmed that the operator can manipulate the slave robot intuitively with the master device and that both tips have similar trajectories with minimal error.

  14. Small incision iris tumour biopsy using a cavernous sampling forceps.

    PubMed

    Chronopoulos, Argyrios; Kilic, Ergin; Joussen, Antonia M; Lipski, Andreas

    2014-11-01

    The aim of this retrospective report is to describe our experience with the Essen-23G biopsy forceps (Akgül forceps) for biopsies of pigmented iris tumours. In this retrospective study of cases between October 2012 and September 2013, patients with iris tumours and clinical signs for malignancy underwent biopsy to secure the diagnosis. The Essen-23G-forceps was used to grasp and extract tissue through a clear corneal incision. Eventual entry and bimanual manipulation with a 23G mini-scissors was achieved through a second incision. Tissue samples were fixed in a sterile tube for further histopathological and immunohistochemical evaluation. Seven eyes of seven patients underwent biopsy using the forceps. The average thickness of the iris tumours was 1.07±0.79 mm. A second corneal incision for scissoring in a bimanual technique was necessary in 5 cases (71%). In 6 cases (85%), a precise histological and immunohistochemical diagnosis was achieved. Complications were limited to minute bleeding at the biopsy site and one case of relative pupil enlargement (anisocoria) without further refractive issues. Iris tumour biopsies can be successfully approached using a cavernous 23G intraocular forceps with a low risk for procedure-related complications. The conical interior design allows for removal of whole tissue pieces with minimal manipulative artefacts. An optional bimanual access through a second corneal incision and use of a 23G scissors provides better efficacy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. Laser Nano-Neurosurgery from Gentle Manipulation to Nano-Incision of Neuronal Cells and Scaffolds: An Advanced Neurotechnology Tool.

    PubMed

    Soloperto, Alessandro; Palazzolo, Gemma; Tsushima, Hanako; Chieregatti, Evelina; Vassalli, Massimo; Difato, Francesco

    2016-01-01

    Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery.

  16. Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator

    PubMed Central

    Moses, Matthew S.; Murphy, Ryan J.; Kutzer, Michael D. M.; Armand, Mehran

    2016-01-01

    This paper presents several mechanical models of a high-strength cable-driven dexterous manipulator designed for surgical procedures. A stiffness model is presented that distinguishes between contributions from the cables and the backbone. A physics-based model incorporating cable friction is developed and its predictions are compared with experimental data. The data show that under high tension and high curvature, the shape of the manipulator deviates significantly from a circular arc. However, simple parametric models can fit the shape with good accuracy. The motivating application for this study is to develop a model so that shape can be predicted using easily measured quantities such as tension, so that real-time navigation may be performed, especially in minimally-invasive surgical procedures, while reducing the need for hazardous imaging methods such as fluoroscopy. PMID:27818607

  17. Laser Nano-Neurosurgery from Gentle Manipulation to Nano-Incision of Neuronal Cells and Scaffolds: An Advanced Neurotechnology Tool

    PubMed Central

    Soloperto, Alessandro; Palazzolo, Gemma; Tsushima, Hanako; Chieregatti, Evelina; Vassalli, Massimo; Difato, Francesco

    2016-01-01

    Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery. PMID:27013962

  18. Modeling Cable and Guide Channel Interaction in a High-Strength Cable-Driven Continuum Manipulator.

    PubMed

    Moses, Matthew S; Murphy, Ryan J; Kutzer, Michael D M; Armand, Mehran

    2015-12-01

    This paper presents several mechanical models of a high-strength cable-driven dexterous manipulator designed for surgical procedures. A stiffness model is presented that distinguishes between contributions from the cables and the backbone. A physics-based model incorporating cable friction is developed and its predictions are compared with experimental data. The data show that under high tension and high curvature, the shape of the manipulator deviates significantly from a circular arc. However, simple parametric models can fit the shape with good accuracy. The motivating application for this study is to develop a model so that shape can be predicted using easily measured quantities such as tension, so that real-time navigation may be performed, especially in minimally-invasive surgical procedures, while reducing the need for hazardous imaging methods such as fluoroscopy.

  19. High-sensitivity microfluidic calorimeters for biological and chemical applications.

    PubMed

    Lee, Wonhee; Fon, Warren; Axelrod, Blake W; Roukes, Michael L

    2009-09-08

    High-sensitivity microfluidic calorimeters raise the prospect of achieving high-throughput biochemical measurements with minimal sample consumption. However, it has been challenging to realize microchip-based calorimeters possessing both high sensitivity and precise sample-manipulation capabilities. Here, we report chip-based microfluidic calorimeters capable of characterizing the heat of reaction of 3.5-nL samples with 4.2-nW resolution. Our approach, based on a combination of hard- and soft-polymer microfluidics, provides both exceptional thermal response and the physical strength necessary to construct high-sensitivity calorimeters that can be scaled to automated, highly multiplexed array architectures. Polydimethylsiloxane microfluidic valves and pumps are interfaced to parylene channels and reaction chambers to automate the injection of analyte at 1 nL and below. We attained excellent thermal resolution via on-chip vacuum encapsulation, which provides unprecedented thermal isolation of the minute microfluidic reaction chambers. We demonstrate performance of these calorimeters by resolving measurements of the heat of reaction of urea hydrolysis and the enthalpy of mixing of water with methanol. The device structure can be adapted easily to enable a wide variety of other standard calorimeter operations; one example, a flow calorimeter, is described.

  20. Selective determination of semi-volatile thiophene compounds in water by molecularly imprinted polymer thin films with direct headspace gas chromatography sulfur chemiluminescence detection.

    PubMed

    Hijazi, Hassan Y; Bottaro, Christina S

    2018-02-26

    Water-compatible molecularly imprinted polymer (MIP) thin films are coupled with headspace gas chromatography sulfur chemiluminescence detection (HS-GC-SCD) to create a new approach for the determination of trace concentrations of thiophene compounds in water samples. Thiophene compounds are persistent, typically petrogenic, organic pollutants of concern due to their potential for biomagnification and bioaccumulation, mutagenicity, and carcinogenicity in terrestrial and aquatic fauna. Identification and quantitation in water, particularly following oil spills, is a priority. Following adsorption of the thiophenes to the MIPs, the MIP-bound analytes are analyzed directly by HS-GC-SCD, with minimal sample manipulation and virtually no organic solvent. Calibration curves of spiked seawater were linear from 5 μg L -1 to 100 μg L -1 and limits of detection (LOD) were in the range of 0.24-0.82 μg L -1 . Low matrix effects were observed in the analysis of thiophene compounds in seawater making the method suitable for use in fresh and saline waters without modification. Acceptable reproducibility was obtained for analysis of thiophene compounds from spiked seawater samples at RSDs ≤7.0% (n = 3).

  1. Radiological and Functional Outcome of Displaced Colles’ Fracture Managed with Closed Reduction and Percutaneous Pinning: A Prospective Study

    PubMed Central

    Khatri, Kishor; Kharel, Krishna; Byanjankar, Subin; Sharma, Jay R; Shrestha, Rahul; Vaishya, Raju; Agarwal, Amit Kumar; Vijay, Vipul

    2017-01-01

    Background: Displaced Colles’ fractures are treated by manipulation and below elbow cast application. Malunion is a common complication, resulting in pain, mid-carpal instability, and post-traumatic arthritis. Fracture stabilization by percutaneous pinning is a simple, minimally invasive technique that helps prevent displacement of the fracture, thereby minimizing complications. This study aims to assess the amount of collapse after closed manipulation and percutaneous pinning with Kirschner wires (K-wires) and its correlation with the functional outcome of the wrist after union. Methods: A prospective study was conducted from May 2015 to May 2016 in a tertiary orthopedic center. Ninety patients (60 females, 30 males) with an average age of 54.93 years with Type II fractures underwent closed manipulation and percutaneous pinning with crossed K-wires as the primary procedure. Serial radiographs were taken to document the amount of collapse. The functional outcome was assessed using the Cooney Wrist Score. Results: At the final follow-up at six months, the collapse in the mean dorsal angle was 0.94 and mean ulnar variance was 0.51. Functionally, 48 patients (53.33%) had an excellent outcome, 36 patients (40%) had a good outcome, and six patients (6.67%) had a fair outcome. Conclusions: Displaced Colles’ fractures should be reduced and stabilized with percutaneous K-wires to achieve an excellent functional outcome. PMID:28191366

  2. Radiological and Functional Outcome of Displaced Colles' Fracture Managed with Closed Reduction and Percutaneous Pinning: A Prospective Study.

    PubMed

    Panthi, Sagar; Khatri, Kishor; Kharel, Krishna; Byanjankar, Subin; Sharma, Jay R; Shrestha, Rahul; Vaishya, Raju; Agarwal, Amit Kumar; Vijay, Vipul

    2017-01-06

    Displaced Colles' fractures are treated by manipulation and below elbow cast application. Malunion is a common complication, resulting in pain, mid-carpal instability, and post-traumatic arthritis. Fracture stabilization by percutaneous pinning is a simple, minimally invasive technique that helps prevent displacement of the fracture, thereby minimizing complications. This study aims to assess the amount of collapse after closed manipulation and percutaneous pinning with Kirschner wires (K-wires) and its correlation with the functional outcome of the wrist after union. A prospective study was conducted from May 2015 to May 2016 in a tertiary orthopedic center. Ninety patients (60 females, 30 males) with an average age of 54.93 years with Type II fractures underwent closed manipulation and percutaneous pinning with crossed K-wires as the primary procedure. Serial radiographs were taken to document the amount of collapse. The functional outcome was assessed using the Cooney Wrist Score. At the final follow-up at six months, the collapse in the mean dorsal angle was 0.94 and mean ulnar variance was 0.51. Functionally, 48 patients (53.33%) had an excellent outcome, 36 patients (40%) had a good outcome, and six patients (6.67%) had a fair outcome. Displaced Colles' fractures should be reduced and stabilized with percutaneous K-wires to achieve an excellent functional outcome.

  3. 78 FR 36196 - Draft Guidance for Industry: Biologics License Applications for Minimally Manipulated, Unrelated...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-17

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2006-D-0157... Patients With Disorders Affecting the Hematopoietic System; Availability AGENCY: Food and Drug Administration, HHS. ACTION: Notice. SUMMARY: The Food and Drug Administration (FDA) is announcing the...

  4. A Visual Test for Visual "Literacy."

    ERIC Educational Resources Information Center

    Messaris, Paul

    Four different principles of visual manipulation constitute a minimal list of what a visually "literate" viewer should know about, but certain problems exist which are inherent in measuring viewers' awareness of each of them. The four principles are: (1) paraproxemics, or camera work which derives its effectiveness from an analogy to the…

  5. Minimal groups increase young children's motivation and learning on group-relevant tasks.

    PubMed

    Master, Allison; Walton, Gregory M

    2013-01-01

    Three experiments (N = 130) used a minimal group manipulation to show that just perceived membership in a social group boosts young children's motivation for and learning from group-relevant tasks. In Experiment 1, 4-year-old children assigned to a minimal "puzzles group" persisted longer on a challenging puzzle than children identified as the "puzzles child" or children in a control condition. Experiment 2 showed that this boost in motivation occurred only when the group was associated with the task. In Experiment 3, children assigned to a minimal group associated with word learning learned more words than children assigned an analogous individual identity. The studies demonstrate that fostering shared motivations may be a powerful means by which to shape young children's academic outcomes. © 2012 The Authors. Child Development © 2012 Society for Research in Child Development, Inc.

  6. BioWord: A sequence manipulation suite for Microsoft Word

    PubMed Central

    2012-01-01

    Background The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. Results BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. Conclusions BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms. PMID:22676326

  7. BioWord: a sequence manipulation suite for Microsoft Word.

    PubMed

    Anzaldi, Laura J; Muñoz-Fernández, Daniel; Erill, Ivan

    2012-06-07

    The ability to manipulate, edit and process DNA and protein sequences has rapidly become a necessary skill for practicing biologists across a wide swath of disciplines. In spite of this, most everyday sequence manipulation tools are distributed across several programs and web servers, sometimes requiring installation and typically involving frequent switching between applications. To address this problem, here we have developed BioWord, a macro-enabled self-installing template for Microsoft Word documents that integrates an extensive suite of DNA and protein sequence manipulation tools. BioWord is distributed as a single macro-enabled template that self-installs with a single click. After installation, BioWord will open as a tab in the Office ribbon. Biologists can then easily manipulate DNA and protein sequences using a familiar interface and minimize the need to switch between applications. Beyond simple sequence manipulation, BioWord integrates functionality ranging from dyad search and consensus logos to motif discovery and pair-wise alignment. Written in Visual Basic for Applications (VBA) as an open source, object-oriented project, BioWord allows users with varying programming experience to expand and customize the program to better meet their own needs. BioWord integrates a powerful set of tools for biological sequence manipulation within a handy, user-friendly tab in a widely used word processing software package. The use of a simple scripting language and an object-oriented scheme facilitates customization by users and provides a very accessible educational platform for introducing students to basic bioinformatics algorithms.

  8. I Am Right for Your Child! : Tactics for Manipulating Potential Parents-In-Law.

    PubMed

    Apostolou, Menelaos

    2015-12-01

    Parents and children have converging as well as diverging interests with respect to the latter's mate choices. Diverging interests frequently result in children choosing mates who do not gain the approval of their parents. Manipulation then arises wherein parents try to drive away undesirable prospective sons- and daughters-in-law, and the latter employ counter manipulation to make the former to change their minds. The present research aims to identify and measure the effectiveness of manipulation tactics that individuals employ to influence their partners' parents to accept them as mates for their daughters and sons. Study 1 recruited a sample of 106 Greek-Cypriots and, using open-ended questionnaires, identified 41 acts that individuals employ on their partners' parents. Using principal-components analysis, in a sample of 738 Greek-Cypriots, Study 2 classified these acts into seven broader manipulation tactics and identified the ones that are more and the ones that are less likely to be employed. Study 3 examined in a sample of 414 Greek-Cypriots the effectiveness of these tactics in altering parents' minds and finds a moderate effectiveness, with some tactics being more effective than others. The implications of these findings are discussed.

  9. Description of European Space Agency (ESA) Remote Manipulator (RM) System Breadboard Currently Under Development for Demonstration of Critical Technology Foreseen to be Used in the Mars Sample Receiving Facility (MSRF)

    NASA Astrophysics Data System (ADS)

    Vrublevskis, J.; Duncan, S.; Berthoud, L.; Bowman, P.; Hills, R.; McCulloch, Y.; Pisla, D.; Vaida, C.; Gherman, B.; Hofbaur, M.; Dieber, B.; Neythalath, N.; Smith, C.; van Winnendael, M.; Duvet, L.

    2018-04-01

    In order to avoid the use of 'double walled' gloves, a haptic feedback Remote Manipulation (RM) system rather than a gloved isolator is needed inside a Double Walled Isolator (DWI) to handle a sample returned from Mars.

  10. Robotic sampling system for an unmanned Mars mission

    NASA Technical Reports Server (NTRS)

    Chun, Wendell

    1989-01-01

    A major robotics opportunity for NASA will be the Mars Rover/Sample Return Mission which could be launched as early as the 1990s. The exploratory portion of this mission will include two autonomous subsystems: the rover vehicle and a sample handling system. The sample handling system is the key to the process of collecting Martian soils. This system could include a core drill, a general-purpose manipulator, tools, containers, a return canister, certification hardware and a labeling system. Integrated into a functional package, the sample handling system is analogous to a complex robotic workcell. Discussed here are the different components of the system, their interfaces, forseeable problem areas and many options based on the scientific goals of the mission. The various interfaces in the sample handling process (component to component and handling system to rover) will be a major engineering effort. Two critical evaluation criteria that will be imposed on the system are flexibility and reliability. It needs to be flexible enough to adapt to different scenarios and environments and acquire the most desirable specimens for return to Earth. Scientists may decide to change the distribution and ratio of core samples to rock samples in the canister. The long distance and duration of this planetary mission places a reliability burden on the hardware. The communication time delay between Earth and Mars minimizes operator interaction (teleoperation, supervisory modes) with the sample handler. An intelligent system will be required to plan the actions, make sample choices, interpret sensor inputs, and query unknown surroundings. A combination of autonomous functions and supervised movements will be integrated into the sample handling system.

  11. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.

    PubMed

    Moradi Dalvand, Mohsen; Shirinzadeh, Bijan; Nahavandi, Saeid; Smith, Julian

    2014-06-01

    Robotic assisted minimally invasive surgery systems not only have the advantages of traditional laparoscopic procedures but also restore the surgeon's hand-eye coordination and improve the surgeon's precision by filtering hand tremors. Unfortunately, these benefits have come at the expense of the surgeon's ability to feel. Several research efforts have already attempted to restore this feature and study the effects of force feedback in robotic systems. The proposed methods and studies have some shortcomings. The main focus of this research is to overcome some of these limitations and to study the effects of force feedback in palpation in a more realistic fashion. A parallel robot assisted minimally invasive surgery system (PRAMiSS) with force feedback capabilities was employed to study the effects of realistic force feedback in palpation of artificial tissue samples. PRAMiSS is capable of actually measuring the tip/tissue interaction forces directly from the surgery site. Four sets of experiments using only vision feedback, only force feedback, simultaneous force and vision feedback and direct manipulation were conducted to evaluate the role of sensory feedback from sideways tip/tissue interaction forces with a scale factor of 100% in characterising tissues of varying stiffness. Twenty human subjects were involved in the experiments for at least 1440 trials. Friedman and Wilcoxon signed-rank tests were employed to statistically analyse the experimental results. Providing realistic force feedback in robotic assisted surgery systems improves the quality of tissue characterization procedures. Force feedback capability also increases the certainty of characterizing soft tissues compared with direct palpation using the lateral sides of index fingers. The force feedback capability can improve the quality of palpation and characterization of soft tissues of varying stiffness by restoring sense of touch in robotic assisted minimally invasive surgery operations.

  12. Remote Manipulator System (RMS)-based Controls-Structures Interaction (CSI) flight experiment feasibility study

    NASA Technical Reports Server (NTRS)

    Demeo, Martha E.

    1990-01-01

    The feasibility of an experiment which will provide an on-orbit validation of Controls-Structures Interaction (CSI) technology, was investigated. The experiment will demonstrate the on-orbit characterization and flexible-body control of large flexible structure dynamics using the shuttle Remote Manipulator System (RMS) with an attached payload as a test article. By utilizing existing hardware as well as establishing integration, operation and safety algorithms, techniques and procedures, the experiment will minimize the costs and risks of implementing a flight experiment. The experiment will also offer spin-off enhancement to both the Shuttle RMS (SRMS) and the Space Station RMS (SSRMS).

  13. Technical note: Alternatives to reduce adipose tissue sampling bias.

    PubMed

    Cruz, G D; Wang, Y; Fadel, J G

    2014-10-01

    Understanding the mechanisms by which nutritional and pharmaceutical factors can manipulate adipose tissue growth and development in production animals has direct and indirect effects in the profitability of an enterprise. Adipocyte cellularity (number and size) is a key biological response that is commonly measured in animal science research. The variability and sampling of adipocyte cellularity within a muscle has been addressed in previous studies, but no attempt to critically investigate these issues has been proposed in the literature. The present study evaluated 2 sampling techniques (random and systematic) in an attempt to minimize sampling bias and to determine the minimum number of samples from 1 to 15 needed to represent the overall adipose tissue in the muscle. Both sampling procedures were applied on adipose tissue samples dissected from 30 longissimus muscles from cattle finished either on grass or grain. Briefly, adipose tissue samples were fixed with osmium tetroxide, and size and number of adipocytes were determined by a Coulter Counter. These results were then fit in a finite mixture model to obtain distribution parameters of each sample. To evaluate the benefits of increasing number of samples and the advantage of the new sampling technique, the concept of acceptance ratio was used; simply stated, the higher the acceptance ratio, the better the representation of the overall population. As expected, a great improvement on the estimation of the overall adipocyte cellularity parameters was observed using both sampling techniques when sample size number increased from 1 to 15 samples, considering both techniques' acceptance ratio increased from approximately 3 to 25%. When comparing sampling techniques, the systematic procedure slightly improved parameters estimation. The results suggest that more detailed research using other sampling techniques may provide better estimates for minimum sampling.

  14. An adaptive control scheme for a flexible manipulator

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Yang, J. C. S.; Kudva, P.

    1987-01-01

    The problem of controlling a single link flexible manipulator is considered. A self-tuning adaptive control scheme is proposed which consists of a least squares on-line parameter identification of an equivalent linear model followed by a tuning of the gains of a pole placement controller using the parameter estimates. Since the initial parameter values for this model are assumed unknown, the use of arbitrarily chosen initial parameter estimates in the adaptive controller would result in undesirable transient effects. Hence, the initial stage control is carried out with a PID controller. Once the identified parameters have converged, control is transferred to the adaptive controller. Naturally, the relevant issues in this scheme are tests for parameter convergence and minimization of overshoots during control switch-over. To demonstrate the effectiveness of the proposed scheme, simulation results are presented with an analytical nonlinear dynamic model of a single link flexible manipulator.

  15. Optogenetics: a new enlightenment age for zebrafish neurobiology.

    PubMed

    Del Bene, Filippo; Wyart, Claire

    2012-03-01

    Zebrafish became a model of choice for neurobiology because of the transparency of its brain and because of its amenability to genetic manipulation. In particular, at early stages of development the intact larva is an ideal system to apply optical techniques for deep imaging in the nervous system, as well as genetically encoded tools for targeting subsets of neurons and monitoring and manipulating their activity. For these applications,new genetically encoded optical tools, fluorescent sensors, and light-gated channels have been generated,creating the field of "optogenetics." It is now possible to monitor and control neuronal activity with minimal perturbation and unprecedented spatio-temporal resolution.We describe here the main achievements that have occurred in the last decade in imaging and manipulating neuronal activity in intact zebrafish larvae. We provide also examples of functional dissection of neuronal circuits achieved with the applications of these techniques in the visual and locomotor systems.

  16. Colorimetric-Solid Phase Extraction Technology for Water Quality Monitoring: Evaluation of C-SPE and Debubbling Methods in Microgravity

    NASA Technical Reports Server (NTRS)

    Hazen-Bosveld, April; Lipert, Robert J.; Nordling, John; Shih, Chien-Ju; Siperko, Lorraine; Porter, Marc D.; Gazda, Daniel B.; Rutz, Jeff A.; Straub, John E.; Schultz, John R.; hide

    2007-01-01

    Colorimetric-solid phase extraction (C-SPE) is being developed as a method for in-flight monitoring of spacecraft water quality. C-SPE is based on measuring the change in the diffuse reflectance spectrum of indicator disks following exposure to a water sample. Previous microgravity testing has shown that air bubbles suspended in water samples can cause uncertainty in the volume of liquid passed through the disks, leading to errors in the determination of water quality parameter concentrations. We report here the results of a recent series of C-9 microgravity experiments designed to evaluate manual manipulation as a means to collect bubble-free water samples of specified volumes from water sample bags containing up to 47% air. The effectiveness of manual manipulation was verified by comparing the results from C-SPE analyses of silver(I) and iodine performed in-flight using samples collected and debubbled in microgravity to those performed on-ground using bubble-free samples. The ground and flight results showed excellent agreement, demonstrating that manual manipulation is an effective means for collecting bubble-free water samples in microgravity.

  17. Balanced Identity in the Minimal Groups Paradigm

    PubMed Central

    Dunham, Yarrow

    2013-01-01

    Balanced Identity Theory [1] formalizes a set of relationships between group attitude, group identification, and self-esteem. While these relationships have been demonstrated for familiar and highly salient social categories, questions remain regarding the generality of the balance phenomenon and its causal versus descriptive status. Supporting the generality and rapidity of cognitive balance, four studies demonstrate that the central predictions of balance are supported even for previously unfamiliar “minimal” social groups to which participants have just been randomly assigned. Further, supporting a causal as opposed to merely descriptive interpretation, manipulating any one component of the balance model (group attitude, group identification, or self-esteem) affects at least one of the related components. Interestingly, the broader pattern of cognitive balance was preserved across such manipulations only when the manipulation strengthens as opposes to weakens the manipulated construct. Taken together, these findings indicate that Balanced Identity Theory has promise as a general theory of intergroup attitudes, and that it may be able to shed light on prior inconsistencies concerning the relationship between self-esteem and intergroup bias. PMID:24391912

  18. Estimation of personal exposure to asbestos of brake repair workers.

    PubMed

    Cely-García, María Fernanda; Curriero, Frank C; Sánchez-Silva, Mauricio; Breysse, Patrick N; Giraldo, Margarita; Méndez, Lorena; Torres-Duque, Carlos; Durán, Mauricio; González-García, Mauricio; Parada, Patricia; Ramos-Bonilla, Juan Pablo

    2017-07-01

    Exposure assessments are key tools to conduct epidemiological studies. Since 2010, 28 riveters from 18 brake repair shops with different characteristics and workloads were sampled for asbestos exposure in Bogotá, Colombia. Short-term personal samples collected during manipulation activities of brake products, and personal samples collected during non-manipulation activities were used to calculate 103 8-h TWA PCM-equivalent personal asbestos concentrations. The aims of this study are to identify exposure determinant variables associated with the 8-h TWA personal asbestos concentrations among brake mechanics, and propose different models to estimate potential asbestos exposure of brake mechanics in an 8-h work-shift. Longitudinal-based multivariate linear regression models were used to determine the association between personal asbestos concentrations in a work-shift with different variables related to work tasks and workload of the mechanics, and some characteristics of the shops. Monte Carlo simulations were used to estimate the 8-h TWA PCM-Eq personal asbestos concentration in work-shifts that had manipulations of brake products or cleaning activities of the manipulation area, using the results of the sampling campaigns. The simulations proposed could be applied for both current and retrospective studies to determine personal asbestos exposures of brake mechanics, without the need of sampling campaigns or historical data of air asbestos concentrations.

  19. Dissociations and associations of performance in syntactic comprehension in aphasia and their implications for the nature of aphasic deficits.

    PubMed

    Caplan, David; Michaud, Jennifer; Hufford, Rebecca

    2013-10-01

    Sixty-one pwa were tested on syntactic comprehension in three tasks: sentence-picture matching, sentence-picture matching with auditory moving window presentation, and object manipulation. There were significant correlations of performances on sentences across tasks. First factors on which all sentence types loaded in unrotated factor analyses accounted for most of the variance in each task. Dissociations in performance between sentence types that differed minimally in their syntactic structures were not consistent across tasks. These results replicate previous results with smaller samples and provide important validation of basic aspects of aphasic performance in this area of language processing. They point to the role of a reduction in processing resources and of the interaction of task demands and parsing and interpretive abilities in the genesis of patient performance. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Hedging Your Bets by Learning Reward Correlations in the Human Brain

    PubMed Central

    Wunderlich, Klaus; Symmonds, Mkael; Bossaerts, Peter; Dolan, Raymond J.

    2011-01-01

    Summary Human subjects are proficient at tracking the mean and variance of rewards and updating these via prediction errors. Here, we addressed whether humans can also learn about higher-order relationships between distinct environmental outcomes, a defining ecological feature of contexts where multiple sources of rewards are available. By manipulating the degree to which distinct outcomes are correlated, we show that subjects implemented an explicit model-based strategy to learn the associated outcome correlations and were adept in using that information to dynamically adjust their choices in a task that required a minimization of outcome variance. Importantly, the experimentally generated outcome correlations were explicitly represented neuronally in right midinsula with a learning prediction error signal expressed in rostral anterior cingulate cortex. Thus, our data show that the human brain represents higher-order correlation structures between rewards, a core adaptive ability whose immediate benefit is optimized sampling. PMID:21943609

  1. A Comparison of Concrete and Virtual Manipulative Use in Third- and Fourth-Grade Mathematics

    ERIC Educational Resources Information Center

    Burns, Barbara A.; Hamm, Ellen M.

    2011-01-01

    The primary purpose of this classroom experiment was to examine the effectiveness of concrete (hands-on) manipulatives as compared with virtual (computer-based) manipulatives on student review of fraction concepts in third grade and introduction of symmetry concepts in fourth grade. A pretest-posttest design was employed with a sample of 91…

  2. Assessing Changes in Amphibian Population Dynamics Following Experimental Manipulations of Introduced Fish

    Treesearch

    Karen L. Pope

    2008-01-01

    Sport-fish introductions are now recognized as an important cause of amphibian decline, but few researchers have quantified the demographic responses of amphibians to current options in fisheries management designed to minimize effects on sensitive amphibians. Demographic analyses with mark–recapture data allow researchers to assess the relative importance of...

  3. Role and Treatment of Mitochondrial DNA-Related Mitochondrial Dysfunction in Sporadic Neurodegenerative Diseases

    PubMed Central

    Swerdlow, Russell H.

    2012-01-01

    Several sporadic neurodegenerative diseases display phenomena that directly or indirectly relate to mitochondrial function. Data suggesting altered mitochondrial function in these diseases could arise from mitochondrial DNA (mtDNA) are reviewed. Approaches for manipulating mitochondrial function and minimizing the downstream consequences of mitochondrial dysfunction are discussed. PMID:21902672

  4. 17 CFR 150.5 - Exchange-set speculative position limits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... contracts, the spot month limit level must be no greater than one-quarter of the estimated spot month... spot month limit level must be no greater than necessary to minimize the potential for manipulation or... delivery contracts, the spot month limit level must be no greater than one-quarter of the estimated spot...

  5. 17 CFR 150.5 - Exchange-set speculative position limits.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... contracts, the spot month limit level must be no greater than one-quarter of the estimated spot month... spot month limit level must be no greater than necessary to minimize the potential for manipulation or... delivery contracts, the spot month limit level must be no greater than one-quarter of the estimated spot...

  6. 17 CFR 150.5 - Exchange-set speculative position limits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... contracts, the spot month limit level must be no greater than one-quarter of the estimated spot month... spot month limit level must be no greater than necessary to minimize the potential for manipulation or... delivery contracts, the spot month limit level must be no greater than one-quarter of the estimated spot...

  7. 17 CFR 150.5 - Exchange-set speculative position limits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... contracts, the spot month limit level must be no greater than one-quarter of the estimated spot month... spot month limit level must be no greater than necessary to minimize the potential for manipulation or... delivery contracts, the spot month limit level must be no greater than one-quarter of the estimated spot...

  8. 75 FR 168 - Self-Regulatory Organizations; NYSE Arca, Inc.; Order Approving Proposed Rule Change Amending...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-04

    ... lower the minimum component stock weight requirement from 90% to 70% of the weight of the underlying... component stock trading volumes are determined on a global basis. Finally, as an option for meeting the... minimize potential manipulation. The Commission also believes that the proposed use of minimum notional...

  9. Basics of Sterile Compounding: Manipulating Peptides and Proteins.

    PubMed

    Akers, Michael J

    2017-01-01

    Biopharmaceuticals contain primary and secondary structure, which offer few problems. It is the tertiary structure that causes problems, resulting in both physical and chemical stability issues. The thrust of this article is to share briefly what can be done to minimize these problems. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  10. Mobility experiments with microrobots for minimally invasive intraocular surgery.

    PubMed

    Ullrich, Franziska; Bergeles, Christos; Pokki, Juho; Ergeneman, Olgac; Erni, Sandro; Chatzipirpiridis, George; Pané, Salvador; Framme, Carsten; Nelson, Bradley J

    2013-04-23

    To investigate microrobots as an assistive tool for minimally invasive intraocular surgery and to demonstrate mobility and controllability inside the living rabbit eye. A system for wireless magnetic control of untethered microrobots was developed. Mobility and controllability of a microrobot are examined in different media, specifically vitreous, balanced salt solution (BSS), and silicone oil. This is demonstrated through ex vivo and in vivo animal experiments. The developed electromagnetic system enables precise control of magnetic microrobots over a workspace that covers the posterior eye segment. The system allows for rotation and translation of the microrobot in different media (vitreous, BSS, silicone oil) inside the eye. Intravitreal introduction of untethered mobile microrobots can enable sutureless and precise ophthalmic procedures. Ex vivo and in vivo experiments demonstrate that microrobots can be manipulated inside the eye. Potential applications are targeted drug delivery for maculopathies such as AMD, intravenous deployment of anticoagulation agents for retinal vein occlusion (RVO), and mechanical applications, such as manipulation of epiretinal membrane peeling (ERM). The technology has the potential to reduce the invasiveness of ophthalmic surgery and assist in the treatment of a variety of ophthalmic diseases.

  11. The Minimally Invasive Manipulator: an ergonomic and economic non-robotic alternative for endoscopy?

    PubMed

    Bosma, Jesse; Aarts, Sanne; Jaspers, Joris

    2015-02-01

    Since the da Vinci robotic system was introduced, it has been reported to have ergonomic advantages over conventional laparoscopy (COV). High investments associated with this system challenged us to design a more economical, mechanical alternative for improvement of laparoscopic ergonomics: the Minimally Invasive Manipulator (MIM). An earlier reported MIM prototype was investigated. Its shortcomings were input for the establishment of design criteria for a new prototype. A new prototype was developed, aiming at improved intuitiveness and ergonomics. The handle and instrument tip were redesigned and the parallelogram mechanism was converted from linear moving parts to mainly rotating parts. The new prototype was tested by a panel of experts and novices during an indicative ergonomic experiment. A major advantage of the MIM seems to be the possibility to perform laparoscopic surgery in a sitting position, in line with the working axis, instead of standing at the side of the patient. At an estimated cost level of 10% of the da Vinci system, the MIM can be an economical alternative for the enhancement of laparoscopy ergonomics. However, further development for clinical feasibility is necessary.

  12. Kinematic design considerations for minimally invasive surgical robots: an overview.

    PubMed

    Kuo, Chin-Hsing; Dai, Jian S; Dasgupta, Prokar

    2012-06-01

    Kinematic design is a predominant phase in the design of robotic manipulators for minimally invasive surgery (MIS). However, an extensive overview of the kinematic design issues for MIS robots is not yet available to both mechanisms and robotics communities. Hundreds of archival reports and articles on robotic systems for MIS are reviewed and studied. In particular, the kinematic design considerations and mechanism development described in the literature for existing robots are focused on. The general kinematic design goals, design requirements, and design preferences for MIS robots are defined. An MIS-specialized mechanism, namely the remote center-of-motion (RCM) mechanism, is revisited and studied. Accordingly, based on the RCM mechanism types, a classification for MIS robots is provided. A comparison between eight different RCM types is given. Finally, several open challenges for the kinematic design of MIS robotic manipulators are discussed. This work provides a detailed survey of the kinematic design of MIS robots, addresses the research opportunity in MIS robots for kinematicians, and clarifies the kinematic point of view to MIS robots as a reference for the medical community. Copyright © 2012 John Wiley & Sons, Ltd.

  13. Minimally invasive extravesical ureteral reimplantation for vesicoureteral reflux.

    PubMed

    Chen, Hsiao-Wen; Lin, Ghi-Jen; Lai, Ching-Horng; Chu, Sheng-Hsien; Chuang, Cheng-Keng

    2002-04-01

    We designed a new extravesical ureteral reimplantation technique with a minimally invasive approach from skin to ureterovesical junction with less perivesical tissue manipulation to avoid extensive bladder denervation. Between July 1996 and December 2000, 37 boys and 52 girls 1.2 to 10.8 years old (mean age plus or minus standard deviation 3.8 +/- 2.5) (113 ureters) were treated with minimally invasive extravesical ureteral reimplantation. Vesicoureteral reflux was graded I to V in 8, 12, 43, 29 and 21 cases, respectively. The technique involves an approximately 10 to 15 mm. incision passing through the small triangular gap of the aponeurosis of the external abdominal oblique muscle and transversalis fascia to the point of the ureterovesical junction. The surgical field was exposed with mini-retractors and fine dissecting instruments were used to avoid unnecessary tissue manipulation. At postoperative followup 1 patient had persistent grade II reflux and 2 had moderate hydronephrosis and hydroureter, which resolved after 18 months. No patient returned due to voiding inefficiency or for pain control after discharge from the outpatient setting. This new technique can be easily used for vesicoureteral reflux with the advantages of simple intervention for surgeons, especially those with inguinal herniorrhaphy and antireflux surgery experience, and less wound discomfort for patients. The whole procedure can be performed on an outpatient basis. However, the decision to use this technique should be based on individual consideration.

  14. Mobile locally operated detachable end-effector manipulator for endoscopic surgery.

    PubMed

    Kawai, Toshikazu; Shin, Myongyu; Nishizawa, Yuji; Horise, Yuki; Nishikawa, Atsushi; Nakamura, Tatsuo

    2015-02-01

    Local surgery is safer than remote surgery because emergencies can be more easily addressed. Although many locally operated surgical robots and devices have been developed, none can safely grasp organs and provide traction. A new manipulator with a detachable commercial forceps was developed that can act as a third arm for a surgeon situated in a sterile area near the patient. This mechanism can be disassembled into compact parts that enable mobile use. A mobile locally operated detachable end-effector manipulator (LODEM) was developed and tested. This device uses crank-slider and cable-rod mechanisms to achieve 5 degrees of freedom and an acting force of more than 5 N. The total mass is less than 15 kg. The positional accuracy and speed of the prototype device were evaluated while performing simulated in vivo surgery. The accuracy of the mobile LODEM was 0.4 mm, sufficient for handling organs. The manipulator could be assembled and disassembled in 8 min, making it highly mobile. The manipulator could successfully handle the target organs with the required level of dexterity during an in vivo laparoscopic surgical procedure. A mobile LODEM was designed that allows minimally invasive robotically assisted endoscopic surgery by a surgeon working near the patient. This device is highly promising for robotic surgery applications.

  15. Positive social behaviours are induced and retained after oxytocin manipulations mimicking endogenous concentrations in a wild mammal

    PubMed Central

    Twiss, Sean D.; Hazon, Neil; Moss, Simon; Pomeroy, Patrick P.

    2017-01-01

    The neuropeptide hormone oxytocin modulates numerous social and parental behaviours across a wide range of species, including humans. We conducted manipulation experiments on wild grey seals (Halichoerus grypus) to determine whether oxytocin increases proximity-seeking behaviour, which has previously been correlated with endogenous oxytocin concentrations in wild seal populations. Pairs of seals that had never met previously were given intravenous injections of 0.41 µg kg−1 oxytocin or saline and were observed for 1 h post-manipulation. The dose was designed to mimic endogenous oxytocin concentrations during the observation period, and is one of the lowest doses used to manipulate behaviour to date. Seals given oxytocin spent significantly more time in close proximity to each other, confirming that oxytocin causes conspecifics to seek others out and remain close to one another. Aggressive and investigative behaviours also significantly fell after oxytocin manipulations. Despite using a minimal oxytocin dose, pro-social behavioural changes unexpectedly persisted for 2 days despite rapid dose clearance from circulation post-injection. This study verifies that oxytocin promotes individuals staying together, demonstrating how the hormone can form positive feedback loops of oxytocin release following conspecific stimuli, increased motivation to remain in close proximity and additional oxytocin release from stimuli received while in close proximity. PMID:28539519

  16. Positive social behaviours are induced and retained after oxytocin manipulations mimicking endogenous concentrations in a wild mammal.

    PubMed

    Robinson, Kelly J; Twiss, Sean D; Hazon, Neil; Moss, Simon; Pomeroy, Patrick P

    2017-05-31

    The neuropeptide hormone oxytocin modulates numerous social and parental behaviours across a wide range of species, including humans. We conducted manipulation experiments on wild grey seals ( Halichoerus grypus ) to determine whether oxytocin increases proximity-seeking behaviour, which has previously been correlated with endogenous oxytocin concentrations in wild seal populations. Pairs of seals that had never met previously were given intravenous injections of 0.41 µg kg -1 oxytocin or saline and were observed for 1 h post-manipulation. The dose was designed to mimic endogenous oxytocin concentrations during the observation period, and is one of the lowest doses used to manipulate behaviour to date. Seals given oxytocin spent significantly more time in close proximity to each other, confirming that oxytocin causes conspecifics to seek others out and remain close to one another. Aggressive and investigative behaviours also significantly fell after oxytocin manipulations. Despite using a minimal oxytocin dose, pro-social behavioural changes unexpectedly persisted for 2 days despite rapid dose clearance from circulation post-injection. This study verifies that oxytocin promotes individuals staying together, demonstrating how the hormone can form positive feedback loops of oxytocin release following conspecific stimuli, increased motivation to remain in close proximity and additional oxytocin release from stimuli received while in close proximity. © 2017 The Authors.

  17. Toward automated formation of microsphere arrangements using multiplexed optical tweezers

    NASA Astrophysics Data System (ADS)

    Rajasekaran, Keshav; Bollavaram, Manasa; Banerjee, Ashis G.

    2016-09-01

    Optical tweezers offer certain advantages such as multiplexing using a programmable spatial light modulator, flexibility in the choice of the manipulated object and the manipulation medium, precise control, easy object release, and minimal object damage. However, automated manipulation of multiple objects in parallel, which is essential for efficient and reliable formation of micro-scale assembly structures, poses a difficult challenge. There are two primary research issues in addressing this challenge. First, the presence of stochastic Langevin force giving rise to Brownian motion requires motion control for all the manipulated objects at fast rates of several Hz. Second, the object dynamics is non-linear and even difficult to represent analytically due to the interaction of multiple optical traps that are manipulating neighboring objects. As a result, automated controllers have not been realized for tens of objects, particularly with three dimensional motions with guaranteed collision avoidances. In this paper, we model the effect of interacting optical traps on microspheres with significant Brownian motions in stationary fluid media, and develop simplified state-space representations. These representations are used to design a model predictive controller to coordinate the motions of several spheres in real time. Preliminary experiments demonstrate the utility of the controller in automatically forming desired arrangements of varying configurations starting with randomly dispersed microspheres.

  18. The Outcomes of Manipulation or Mobilization Therapy Compared with Physical Therapy or Exercise for Neck Pain: A Systematic Review

    PubMed Central

    Schroeder, Josh; Kaplan, Leon; Fischer, Dena J.; Skelly, Andrea C.

    2013-01-01

    Study Design Systematic review. Study Rationale Neck pain is a prevalent condition. Spinal manipulation and mobilization procedures are becoming an accepted treatment for neck pain. However, data on the effectiveness of these treatments have not been summarized. Objective To compare manipulation or mobilization of the cervical spine to physical therapy or exercise for symptom improvement in patients with neck pain. Methods A systematic review of the literature was performed using PubMed, the National Guideline Clearinghouse Database, and bibliographies of key articles, which compared spinal manipulation or mobilization therapy with physical therapy or exercise in patients with neck pain. Articles were included based on predetermined criteria and were appraised using a predefined quality rating scheme. Results From 197 citations, 7 articles met all inclusion and exclusion criteria. There were no differences in pain improvement when comparing spinal manipulation to exercise, and there were inconsistent reports of pain improvement in subjects who underwent mobilization therapy versus physical therapy. No disability improvement was reported between treatment groups in studies of acute or chronic neck pain patients. No functional improvement was found with manipulation therapy compared with exercise treatment or mobilization therapy compared with physical therapy groups in patients with acute pain. In chronic neck pain subjects who underwent spinal manipulation therapy compared to exercise treatment, results for short-term functional improvement were inconsistent. Conclusion The data available suggest that there are minimal short- and long-term treatment differences in pain, disability, patient-rated treatment improvement, treatment satisfaction, health status, or functional improvement when comparing manipulation or mobilization therapy to physical therapy or exercise in patients with neck pain. This systematic review is limited by the variability of treatment interventions and lack of standardized outcomes to assess treatment benefit. PMID:24436697

  19. Accuracy study of a robotic system for MRI-guided prostate needle placement.

    PubMed

    Seifabadi, Reza; Cho, Nathan B J; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M; Fichtinger, Gabor; Iordachita, Iulian

    2013-09-01

    Accurate needle placement is the first concern in percutaneous MRI-guided prostate interventions. In this phantom study, different sources contributing to the overall needle placement error of a MRI-guided robot for prostate biopsy have been identified, quantified and minimized to the possible extent. The overall needle placement error of the system was evaluated in a prostate phantom. This error was broken into two parts: the error associated with the robotic system (called 'before-insertion error') and the error associated with needle-tissue interaction (called 'due-to-insertion error'). Before-insertion error was measured directly in a soft phantom and different sources contributing into this part were identified and quantified. A calibration methodology was developed to minimize the 4-DOF manipulator's error. The due-to-insertion error was indirectly approximated by comparing the overall error and the before-insertion error. The effect of sterilization on the manipulator's accuracy and repeatability was also studied. The average overall system error in the phantom study was 2.5 mm (STD = 1.1 mm). The average robotic system error in the Super Soft plastic phantom was 1.3 mm (STD = 0.7 mm). Assuming orthogonal error components, the needle-tissue interaction error was found to be approximately 2.13 mm, thus making a larger contribution to the overall error. The average susceptibility artifact shift was 0.2 mm. The manipulator's targeting accuracy was 0.71 mm (STD = 0.21 mm) after robot calibration. The robot's repeatability was 0.13 mm. Sterilization had no noticeable influence on the robot's accuracy and repeatability. The experimental methodology presented in this paper may help researchers to identify, quantify and minimize different sources contributing into the overall needle placement error of an MRI-guided robotic system for prostate needle placement. In the robotic system analysed here, the overall error of the studied system remained within the acceptable range. Copyright © 2012 John Wiley & Sons, Ltd.

  20. Alcohol consumers' attention to warning labels and brand information on alcohol packaging: Findings from cross-sectional and experimental studies.

    PubMed

    Kersbergen, Inge; Field, Matt

    2017-01-26

    Alcohol warning labels have a limited effect on drinking behavior, potentially because people devote minimal attention to them. We report findings from two studies in which we measured the extent to which alcohol consumers attend to warning labels on alcohol packaging, and aimed to identify if increased attention to warning labels is associated with motivation to change drinking behavior. Study 1 (N = 60) was an exploratory cross-sectional study in which we used eye-tracking to measure visual attention to brand and health information on alcohol and soda containers. In study 2 (N = 120) we manipulated motivation to reduce drinking using an alcohol brief intervention (vs control intervention) and measured heavy drinkers' attention to branding and warning labels with the same eye-tracking paradigm as in study 1. Then, in a separate task we experimentally manipulated attention by drawing a brightly colored border around health (or brand) information before measuring participants' self-reported drinking intentions for the subsequent week. Study 1 showed that participants paid minimal attention to warning labels (7% of viewing time). Participants who were motivated to reduce drinking paid less attention to alcohol branding and alcohol warning labels. Results from study 2 showed that the alcohol brief intervention decreased attention to branding compared to the control condition, but it did not affect attention to warning labels. Furthermore, the experimental manipulation of attention to health or brand information did not influence drinking intentions for the subsequent week. Alcohol consumers allocate minimal attention to warning labels on alcohol packaging and even if their attention is directed to these warning labels, this has no impact on their drinking intentions. The lack of attention to warning labels, even among people who actively want to cut down, suggests that there is room for improvement in the content of health warnings on alcohol packaging.

  1. The effects of affective and cognitive empathy on adolescents' behavior and outcomes in conflicts with mothers.

    PubMed

    Van Lissa, Caspar J; Hawk, Skyler T; Meeus, Wim H J

    2017-06-01

    The current study investigated whether manipulations of affective and cognitive empathy have differential effects on observed behavior and self-reported outcomes in adolescent-mother conflict discussions. We further examined how these situational empathy inductions interact with preexisting empathic dispositions. To promote ecological validity, we conducted home visits to study conflict discussions about real disagreements in adolescent-mother relationships. We explored the roles of sex, age, and maternal support and power as covariates and moderators. Results indicated that the affective empathy manipulation had no significant effects on behavior, although a trend in the hypothesized direction suggested that affective empathy might promote active problem solving. The cognitive empathy manipulation led to lower conflict escalation and promoted other-oriented listening for adolescents low in dispositional cognitive empathy. State-trait interactions indicated that the empathy manipulations had significant effects on self-reported outcomes for adolescents lower in dispositional empathic concern. For these adolescents, both manipulations promoted outcome satisfaction, but only the cognitive manipulation promoted perceived fairness. This suggests that cognitive empathy, in particular, allows adolescents to distance themselves from the emotional heat of a conflict and listen to mothers' point of view, leading to outcomes perceived as both satisfying and fair. These findings are relevant for interventions and clinicians because they demonstrate unique effects of promoting affective versus cognitive empathy. Because even these minimal manipulations promoted significant effects on observed behavior and self-reported outcomes, particularly for low-empathy adolescents, stronger structural interventions are likely to have marked benefits. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Calibration strategies for the direct determination of Ca, K, and Mg in commercial samples of powdered milk and solid dietary supplements using laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Dos Santos Augusto, Amanda; Barsanelli, Paulo Lopes; Pereira, Fabiola Manhas Verbi; Pereira-Filho, Edenir Rodrigues

    2017-04-01

    This study describes the application of laser-induced breakdown spectroscopy (LIBS) for the direct determination of Ca, K and Mg in powdered milk and solid dietary supplements. The following two calibration strategies were applied: (i) use of the samples to calculate calibration models (milk) and (ii) use of sample mixtures (supplements) to obtain a calibration curve. In both cases, reference values obtained from inductively coupled plasma optical emission spectroscopy (ICP OES) after acid digestion were used. The emission line selection from LIBS spectra was accomplished by analysing the regression coefficients of partial least squares (PLS) regression models, and wavelengths of 534.947, 766.490 and 285.213nm were chosen for Ca, K and Mg, respectively. In the case of the determination of Ca in supplements, it was necessary to perform a dilution (10-fold) of the standards and samples to minimize matrix interference. The average accuracy for powdered milk ranged from 60% to 168% for Ca, 77% to 152% for K and 76% to 131% for Mg. In the case of dietary supplements, standard error of prediction (SEP) varied from 295 (Mg) to 3782mgkg -1 (Ca). The proposed method presented an analytical frequency of around 60 samples per hour and the step of sample manipulation was drastically reduced, with no generation of toxic chemical residues. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Interface Prostheses With Classifier-Feedback-Based User Training.

    PubMed

    Fang, Yinfeng; Zhou, Dalin; Li, Kairu; Liu, Honghai

    2017-11-01

    It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.It is evident that user training significantly affects performance of pattern-recognition-based myoelectric prosthetic device control. Despite plausible classification accuracy on offline datasets, online accuracy usually suffers from the changes in physiological conditions and electrode displacement. The user ability in generating consistent electromyographic (EMG) patterns can be enhanced via proper user training strategies in order to improve online performance. This study proposes a clustering-feedback strategy that provides real-time feedback to users by means of a visualized online EMG signal input as well as the centroids of the training samples, whose dimensionality is reduced to minimal number by dimension reduction. Clustering feedback provides a criterion that guides users to adjust motion gestures and muscle contraction forces intentionally. The experiment results have demonstrated that hand motion recognition accuracy increases steadily along the progress of the clustering-feedback-based user training, while conventional classifier-feedback methods, i.e., label feedback, hardly achieve any improvement. The result concludes that the use of proper classifier feedback can accelerate the process of user training, and implies prosperous future for the amputees with limited or no experience in pattern-recognition-based prosthetic device manipulation.

  4. A Method on Dynamic Path Planning for Robotic Manipulator Autonomous Obstacle Avoidance Based on an Improved RRT Algorithm.

    PubMed

    Wei, Kun; Ren, Bingyin

    2018-02-13

    In a future intelligent factory, a robotic manipulator must work efficiently and safely in a Human-Robot collaborative and dynamic unstructured environment. Autonomous path planning is the most important issue which must be resolved first in the process of improving robotic manipulator intelligence. Among the path-planning methods, the Rapidly Exploring Random Tree (RRT) algorithm based on random sampling has been widely applied in dynamic path planning for a high-dimensional robotic manipulator, especially in a complex environment because of its probability completeness, perfect expansion, and fast exploring speed over other planning methods. However, the existing RRT algorithm has a limitation in path planning for a robotic manipulator in a dynamic unstructured environment. Therefore, an autonomous obstacle avoidance dynamic path-planning method for a robotic manipulator based on an improved RRT algorithm, called Smoothly RRT (S-RRT), is proposed. This method that targets a directional node extends and can increase the sampling speed and efficiency of RRT dramatically. A path optimization strategy based on the maximum curvature constraint is presented to generate a smooth and curved continuous executable path for a robotic manipulator. Finally, the correctness, effectiveness, and practicability of the proposed method are demonstrated and validated via a MATLAB static simulation and a Robot Operating System (ROS) dynamic simulation environment as well as a real autonomous obstacle avoidance experiment in a dynamic unstructured environment for a robotic manipulator. The proposed method not only provides great practical engineering significance for a robotic manipulator's obstacle avoidance in an intelligent factory, but also theoretical reference value for other type of robots' path planning.

  5. Nanoliter microfluidic hybrid method for simultaneous screening and optimization validated with crystallization of membrane proteins

    PubMed Central

    Li, Liang; Mustafi, Debarshi; Fu, Qiang; Tereshko, Valentina; Chen, Delai L.; Tice, Joshua D.; Ismagilov, Rustem F.

    2006-01-01

    High-throughput screening and optimization experiments are critical to a number of fields, including chemistry and structural and molecular biology. The separation of these two steps may introduce false negatives and a time delay between initial screening and subsequent optimization. Although a hybrid method combining both steps may address these problems, miniaturization is required to minimize sample consumption. This article reports a “hybrid” droplet-based microfluidic approach that combines the steps of screening and optimization into one simple experiment and uses nanoliter-sized plugs to minimize sample consumption. Many distinct reagents were sequentially introduced as ≈140-nl plugs into a microfluidic device and combined with a substrate and a diluting buffer. Tests were conducted in ≈10-nl plugs containing different concentrations of a reagent. Methods were developed to form plugs of controlled concentrations, index concentrations, and incubate thousands of plugs inexpensively and without evaporation. To validate the hybrid method and demonstrate its applicability to challenging problems, crystallization of model membrane proteins and handling of solutions of detergents and viscous precipitants were demonstrated. By using 10 μl of protein solution, ≈1,300 crystallization trials were set up within 20 min by one researcher. This method was compatible with growth, manipulation, and extraction of high-quality crystals of membrane proteins, demonstrated by obtaining high-resolution diffraction images and solving a crystal structure. This robust method requires inexpensive equipment and supplies, should be especially suitable for use in individual laboratories, and could find applications in a number of areas that require chemical, biochemical, and biological screening and optimization. PMID:17159147

  6. A hydrophobic ionic liquid compartmentalized sampling/labeling and its separation techniques in polydimethylsiloxane microchip capillary electrophoresis.

    PubMed

    Quan, Hong Hua; Li, Ming; Huang, Yan; Hahn, Jong Hoon

    2017-01-01

    This paper demonstrates a novel compartmentalized sampling/labeling method and its separation techniques using a hydrophobic ionic liquid (IL)-1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)-imidate (BmimNTf 2 )-as the immiscible phase, which is capable of minimizing signal losses during microchip capillary electrophoresis (MCE). The MCE device consists of a silica tube connected to a straight polydimethylsiloxane (PDMS) separation channel. Poly(diallyldimethylammonium chloride) (PDDAC) was coated on the inner surface of channel to ease the introduction of IL plugs and enhance the IL wetting on the PDMS surface for sample releasing. Electroosmotic flow (EOF)-based sample compartmentalization was carried out through a sequenced injection into sampling tubes with the following order: leading IL plug/sample segment/terminal IL plug. The movement of the sample segment was easily controlled by applying an electrical voltage across both ends of the chip without a sample volume change. This approach effectively prevented analyte diffusion before injection into MCE channels. When the sample segment was manipulated to the PDDAC-modified PDMS channel, the sample plug then was released from isolation under EOF while IL plugs adsorbed onto channel surfaces owing to strong adhesion. A mixture of flavin adenine nucleotides (FAD) and flavin mononucleotides (FMN) was successfully separated on a 2.5 cm long separation channel, for which the theoretical numbers of plates were 15 000 and 17 000, respectively. The obtained peak intensity was increased 6.3-fold over the corresponding value from conventional electrokinetic injection with the same sampling time. Furthermore, based on the compartmented sample segment serving as an interim reactor, an on-chip fluorescence labeling is demonstrated. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Self-Alining Quick-Connect Joint

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1983-01-01

    Quick connect tapered joint used with minimum manipulation and force. Split ring retainer holds locking ring in place. Minimal force required to position male in female joint, at which time split-ring retainers are triggered to release split locking rings. Originally developed to assemble large space structures, joint is simple, compact, strong, lightweight, self alining, and has no loose parts.

  8. Debt-Repaying Mechanism in Chinese Relationships: An Exploration of the Folk Concepts of "Pao" and Human Emotional Debt.

    ERIC Educational Resources Information Center

    Chang, Hui-Ching; Holt, G. Richard

    1994-01-01

    Explores the mechanisms of "pao" and human emotional debt underlying Chinese human relationships through interviews with 55 Chinese in Taiwan. The definition, recompensation, minimization, and manipulation of human emotional debt and the linguistic code by which relations can be made closer or more distant following the principles of…

  9. Students' Ability in Science: Results from a Test Development Study

    ERIC Educational Resources Information Center

    Akkanat, Cigdem; Gokdere, Murat

    2017-01-01

    Student's ability to use and manipulate scientific concepts has been widely explored; however there is still a need to define the characteristics and nature of science ability. Also, the tests and performance scales that require minimal conceptual knowledge to measure this ability are relatively less common. The aim of this study was to develop an…

  10. Using acoustic levitation in synchrotron based laser pump hard x-ray probe experiments

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Lerch, Jason; Suthar, Kamlesh; Dichiara, Anthony

    Acoustic levitation provides a platform to trap and hold a small amount of material by using standing pressure waves without a container. The technique has a potential to be used for laser pump x-ray probe experiments; x-ray scattering and laser distortion from the container can be avoided, sample consumption can be minimized, and unwanted chemistry that may occur at the container interface can be avoided. The method has been used at synchrotron sources for studying protein and pharmaceutical solutions using x-ray diffraction (XRD) and small angle x-ray scattering (SAXS). However, pump-probe experiments require homogeneously excited samples, smaller than the absorption depth of the material that must be held stably at the intersection of both the laser and x-ray beams. We discuss 1) the role of oscillations in acoustic levitation and the optimal acoustic trapping conditions for x-ray/laser experiments, 2) opportunities to automate acoustic levitation for fast sample loading and manipulation, and 3) our experimental results using SAXS to monitor laser induced thermal expansion in gold nanoparticles solution. We also performed Finite Element Analysis to optimize the trapping performance and stability of droplets ranging from 0.4 mm to 2 mm. Our early x-ray/laser demonstrated the potential of the technique for time-resolved X-ray science.

  11. Robust and effective methodologies for cryopreservation and DNA extraction from anaerobic gut fungi.

    PubMed

    Solomon, Kevin V; Henske, John K; Theodorou, Michael K; O'Malley, Michelle A

    2016-04-01

    Cell storage and DNA isolation are essential to developing an expanded suite of microorganisms for biotechnology. However, many features of non-model microbes, such as an anaerobic lifestyle and rigid cell wall, present formidable challenges to creating strain repositories and extracting high quality genomic DNA. Here, we establish accessible, high efficiency, and robust techniques to store lignocellulolytic anaerobic gut fungi long term without specialized equipment. Using glycerol as a cryoprotectant, gut fungal isolates were preserved for a minimum of 23 months at -80 °C. Unlike previously reported approaches, this improved protocol is non-toxic and rapid, with samples surviving twice as long with negligible growth impact. Genomic DNA extraction for these isolates was optimized to yield samples compatible with next generation sequencing platforms (e.g. Illumina, PacBio). Popular DNA isolation kits and precipitation protocols yielded preps that were unsuitable for sequencing due to carbohydrate contaminants from the chitin-rich cell wall and extensive energy reserves of gut fungi. To address this, we identified a proprietary method optimized for hardy plant samples that rapidly yielded DNA fragments in excess of 10 kb with minimal RNA, protein or carbohydrate contamination. Collectively, these techniques serve as fundamental tools to manipulate powerful biomass-degrading gut fungi and improve their accessibility among researchers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. An Advanced Preclinical Mouse Model for Acute Myeloid Leukemia Using Patients' Cells of Various Genetic Subgroups and In Vivo Bioluminescence Imaging

    PubMed Central

    Vick, Binje; Rothenberg, Maja; Sandhöfer, Nadine; Carlet, Michela; Finkenzeller, Cornelia; Krupka, Christina; Grunert, Michaela; Trumpp, Andreas; Corbacioglu, Selim; Ebinger, Martin; André, Maya C.; Hiddemann, Wolfgang; Schneider, Stephanie; Subklewe, Marion; Metzeler, Klaus H.; Spiekermann, Karsten; Jeremias, Irmela

    2015-01-01

    Acute myeloid leukemia (AML) is a clinically and molecularly heterogeneous disease with poor outcome. Adequate model systems are required for preclinical studies to improve understanding of AML biology and to develop novel, rational treatment approaches. Xenografts in immunodeficient mice allow performing functional studies on patient-derived AML cells. We have established an improved model system that integrates serial retransplantation of patient-derived xenograft (PDX) cells in mice, genetic manipulation by lentiviral transduction, and essential quality controls by immunophenotyping and targeted resequencing of driver genes. 17/29 samples showed primary engraftment, 10/17 samples could be retransplanted and some of them allowed virtually indefinite serial transplantation. 5/6 samples were successfully transduced using lentiviruses. Neither serial transplantation nor genetic engineering markedly altered sample characteristics analyzed. Transgene expression was stable in PDX AML cells. Example given, recombinant luciferase enabled bioluminescence in vivo imaging and highly sensitive and reliable disease monitoring; imaging visualized minimal disease at 1 PDX cell in 10000 mouse bone marrow cells and facilitated quantifying leukemia initiating cells. We conclude that serial expansion, genetic engineering and imaging represent valuable tools to improve the individualized xenograft mouse model of AML. Prospectively, these advancements enable repetitive, clinically relevant studies on AML biology and preclinical treatment trials on genetically defined and heterogeneous subgroups. PMID:25793878

  13. Simultaneous determination of V, Ni and Fe in fuel fly ash using solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry.

    PubMed

    Cárdenas Valdivia, A; Vereda Alonso, E; López Guerrero, M M; Gonzalez-Rodriguez, J; Cano Pavón, J M; García de Torres, A

    2018-03-01

    A green and simple method has been proposed in this work for the simultaneous determination of V, Ni and Fe in fuel ash samples by solid sampling high resolution continuum source graphite furnace atomic absorption spectrometry (SS HR CS GFAAS). The application of fast programs in combination with direct solid sampling allows eliminating pretreatment steps, involving minimal manipulation of sample. Iridium treated platforms were applied throughout the present study, enabling the use of aqueous standards for calibration. Correlation coefficients for the calibration curves were typically better than 0.9931. The concentrations found in the fuel ash samples analysed ranged from 0.66% to 4.2% for V, 0.23-0.7% for Ni and 0.10-0.60% for Fe. Precision (%RSD) were 5.2%, 10.0% and 9.8% for V, Ni and Fe, respectively, obtained as the average of the %RSD of six replicates of each fuel ash sample. The optimum conditions established were applied to the determination of the target analytes in fuel ash samples. In order to test the accuracy and applicability of the proposed method in the analysis of samples, five ash samples from the combustion of fuel in power stations, were analysed. The method accuracy was evaluated by comparing the results obtained using the proposed method with the results obtained by ICP OES previous acid digestion. The results showed good agreement between them. The goal of this work has been to develop a fast and simple methodology that permits the use of aqueous standards for straightforward calibration and the simultaneous determination of V, Ni and Fe in fuel ash samples by direct SS HR CS GFAAS. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Motion patterns in acupuncture needle manipulation.

    PubMed

    Seo, Yoonjeong; Lee, In-Seon; Jung, Won-Mo; Ryu, Ho-Sun; Lim, Jinwoong; Ryu, Yeon-Hee; Kang, Jung-Won; Chae, Younbyoung

    2014-10-01

    In clinical practice, acupuncture manipulation is highly individualised for each practitioner. Before we establish a standard for acupuncture manipulation, it is important to understand completely the manifestations of acupuncture manipulation in the actual clinic. To examine motion patterns during acupuncture manipulation, we generated a fitted model of practitioners' motion patterns and evaluated their consistencies in acupuncture manipulation. Using a motion sensor, we obtained real-time motion data from eight experienced practitioners while they conducted acupuncture manipulation using their own techniques. We calculated the average amplitude and duration of a sampled motion unit for each practitioner and, after normalisation, we generated a true regression curve of motion patterns for each practitioner using a generalised additive mixed modelling (GAMM). We observed significant differences in rotation amplitude and duration in motion samples among practitioners. GAMM showed marked variations in average regression curves of motion patterns among practitioners but there was strong consistency in motion parameters for individual practitioners. The fitted regression model showed that the true regression curve accounted for an average of 50.2% of variance in the motion pattern for each practitioner. Our findings suggest that there is great inter-individual variability between practitioners, but remarkable intra-individual consistency within each practitioner. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  15. A sequential sampling account of response bias and speed-accuracy tradeoffs in a conflict detection task.

    PubMed

    Vuckovic, Anita; Kwantes, Peter J; Humphreys, Michael; Neal, Andrew

    2014-03-01

    Signal Detection Theory (SDT; Green & Swets, 1966) is a popular tool for understanding decision making. However, it does not account for the time taken to make a decision, nor why response bias might change over time. Sequential sampling models provide a way of accounting for speed-accuracy trade-offs and response bias shifts. In this study, we test the validity of a sequential sampling model of conflict detection in a simulated air traffic control task by assessing whether two of its key parameters respond to experimental manipulations in a theoretically consistent way. Through experimental instructions, we manipulated participants' response bias and the relative speed or accuracy of their responses. The sequential sampling model was able to replicate the trends in the conflict responses as well as response time across all conditions. Consistent with our predictions, manipulating response bias was associated primarily with changes in the model's Criterion parameter, whereas manipulating speed-accuracy instructions was associated with changes in the Threshold parameter. The success of the model in replicating the human data suggests we can use the parameters of the model to gain an insight into the underlying response bias and speed-accuracy preferences common to dynamic decision-making tasks. © 2013 American Psychological Association

  16. A magnetic micro-manipulator for application of three dimensional forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punyabrahma, P.; Jayanth, G. R.

    2015-02-15

    Magnetic manipulation finds diverse applications in actuation, characterization, and manipulation of micro- and nano-scale samples. This paper presents the design and development of a novel magnetic micro-manipulator for application of three-dimensional forces on a magnetic micro-bead. A simple analytical model is proposed to obtain the forces of interaction between the magnetic micro-manipulator and a magnetic micro-bead. Subsequently, guidelines are proposed to perform systematic design and analysis of the micro-manipulator. The designed micro-manipulator is fabricated and evaluated. The manipulator is experimentally demonstrated to possess an electrical bandwidth of about 1 MHz. The ability of the micro-manipulator to apply both in-plane andmore » out-of-plane forces is demonstrated by actuating permanent-magnet micro-beads attached to micro-cantilever beams. The deformations of the micro-cantilevers are also employed to calibrate the dependence of in-plane and out-of-plane forces on the position of the micro-bead relative to the micro-manipulator. The experimentally obtained dependences are found to agree well with theory.« less

  17. Sample manipulation and data assembly for robust microcrystal synchrotron crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Gongrui; Fuchs, Martin R.; Shi, Wuxian

    With the recent developments in microcrystal handling, synchrotron microdiffraction beamline instrumentation and data analysis, microcrystal crystallography with crystal sizes of less than 10 µm is appealing at synchrotrons. However, challenges remain in sample manipulation and data assembly for robust microcrystal synchrotron crystallography. Here, the development of micro-sized polyimide well-mounts for the manipulation of microcrystals of a few micrometres in size and the implementation of a robust data-analysis method for the assembly of rotational microdiffraction data sets from many microcrystals are described. Here, the method demonstrates that microcrystals may be routinely utilized for the acquisition and assembly of complete data setsmore » from synchrotron microdiffraction beamlines.« less

  18. Sample manipulation and data assembly for robust microcrystal synchrotron crystallography

    DOE PAGES

    Guo, Gongrui; Fuchs, Martin R.; Shi, Wuxian; ...

    2018-04-19

    With the recent developments in microcrystal handling, synchrotron microdiffraction beamline instrumentation and data analysis, microcrystal crystallography with crystal sizes of less than 10 µm is appealing at synchrotrons. However, challenges remain in sample manipulation and data assembly for robust microcrystal synchrotron crystallography. Here, the development of micro-sized polyimide well-mounts for the manipulation of microcrystals of a few micrometres in size and the implementation of a robust data-analysis method for the assembly of rotational microdiffraction data sets from many microcrystals are described. Here, the method demonstrates that microcrystals may be routinely utilized for the acquisition and assembly of complete data setsmore » from synchrotron microdiffraction beamlines.« less

  19. High accuracy indirect optical manipulation of live cells with functionalized microtools

    NASA Astrophysics Data System (ADS)

    Vizsnyiczai, Gaszton; Aekbote, Badri L.; Buzás, András.; Grexa, István.; Ormos, Pál.; Kelemen, Lóránd

    2016-09-01

    Optical micro manipulation of live cells has been extensively used to study a wide range of cellular phenomena with relevance in basic research or in diagnostics. The approaches span from manipulation of many cells for high throughput measurement or sorting, to more elaborated studies of intracellular events on trapped single cells when coupled with modern imaging techniques. In case of direct cell trapping the damaging effects of light-cell interaction must be minimized, for instance with the choice of proper laser wavelength. Microbeads have already been used for trapping cells indirectly thereby reducing the irradiation damage and increasing trapping efficiency with their high refractive index contrast. We show here that such intermediate objects can be tailor-made for indirect cell trapping to further increase cell-to-focal spot distance while maintaining their free and fast maneuverability. Carefully designed structures were produced with two-photon polymerization with shapes optimized for effective manipulation and cell attachment. Functionalization of the microstructures is also presented that enables cell attachment to them within a few seconds with strength much higher that the optical forces. Fast cell actuation in 6 degrees of freedom is demonstrated with the outlook to possible applications in cell imaging.

  20. Bariatric manipulation of gastric arteries: A systematic review on the potential concept for treatment of obesity.

    PubMed

    Shoar, Saeed; Saber, Alan A; Aladdin, Mohammaed; Bashah, Moataz M; AlKuwari, Mohammed J; Rizwan, Mohamed; Rosenthal, Raul J

    2016-12-01

    Gastric artery embolization (GAE) has recently received attention as a minimally invasive intervention in bariatric setting. The current systematic review aimed to gather and categorizes the existing data in the literature regarding bariatric gastric artery manipulation. This will highlight the importance of this potential concept as a therapeutic modality. A PubMed/Medline search was conducted to identify animal and human studies investigating the effect of gastric artery manipulation on weight, ghrelin, obesity, and tissue adiposity. A total of 9 studies including 6 animal experiments with 71 subjects and 3 human studies with a total of 25 patients were retrieved. Animal subjects underwent chemical embolization while particle embolization was only used in human subjects. Five animal studies and 1 human study reported decreased ghrelin concentration. Three animal experiments and 2 human studies showed a significant weight change following GAE. There was no report regarding a serious adverse event requiring surgical or interventional management. Currently, data regarding the potential role of gastric artery manipulation in decreasing the ghrelin and potential weight loss is scarce. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  1. Personal exposures to asbestos fibers during brake maintenance of passenger vehicles.

    PubMed

    Cely-García, María Fernanda; Sánchez, Mauricio; Breysse, Patrick N; Ramos-Bonilla, Juan P

    2012-11-01

    Brake linings and brake pads are among the asbestos-containing products that are readily available in Colombia. When sold separated from their support, brake linings require extensive manipulation involving several steps that include drilling, countersinking, riveting, bonding, cutting, beveling, and grinding. Without this manipulation, brake linings cannot be installed in a vehicle. The manipulation process may release asbestos fibers, which may expose brake mechanics to the fibers. Three brake repair shops located in Bogotá (Colombia) were sampled for 3 or 4 consecutive days using US National Institute for Occupational Safety and Health (NIOSH) methods 7400 and 7402. Standard procedures for quality control were followed during the sampling process, and asbestos samples were analyzed by an American Industrial Hygiene Association accredited laboratory. Personal samples were collected to assess full-shift and short-term exposures. Area samples were also collected close to the brake-lining manipulation equipment and within office facilities. Activities were documented during the sampling process. Using Phase Contrast Microscopy Equivalent counts to estimate air asbestos concentrations, all personal samples [i.e. 8-h time-weighted averages (TWAs) and 30-min personal samples] were in compliance with the US Occupational Safety and Health Administration standards. Personal asbestos concentrations based on transmission electron microscopy counts were extremely high, ranging from 0.006 to 3.493 f cm(-3) for 8-h TWA and from 0.015 to 8.835 f cm(-3) for 30-min samples. All asbestos fibers detected were chrysotile. Cleaning facilities and grinding linings resulted in the highest asbestos exposures based on transmission electron microscopy counts. There were also some samples that did not comply with the NIOSH's recommended exposure limits. The results indicate that the brake mechanics sampled are exposed to extremely high asbestos concentrations (i.e. based on transmission electron microscopy counts), suggesting that this occupational group could be at excess risk of asbestos-related diseases.

  2. 77 FR 51818 - Agency Information Collection Activities; Application and Approval To Manipulate, Examine, Sample...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... automated, electronic, mechanical, or other technological techniques or other forms of information. Title... year for continuous or repetitive manipulation. CBP Form 3499 is provided for by 19 CFR 19.8 and is...

  3. Advanced Curation Protocols for Mars Returned Sample Handling

    NASA Astrophysics Data System (ADS)

    Bell, M.; Mickelson, E.; Lindstrom, D.; Allton, J.

    Introduction: Johnson Space Center has over 30 years experience handling precious samples which include Lunar rocks and Antarctic meteorites. However, we recognize that future curation of samples from such missions as Genesis, Stardust, and Mars S mple Return, will require a high degree of biosafety combined witha extremely low levels of inorganic, organic, and biological contamination. To satisfy these requirements, research in the JSC Advanced Curation Lab is currently focused toward two major areas: preliminary examination techniques and cleaning and verification techniques . Preliminary Examination Techniques : In order to minimize the number of paths for contamination we are exploring the synergy between human &robotic sample handling in a controlled environment to help determine the limits of clean curation. Within the Advanced Curation Laboratory is a prototype, next-generation glovebox, which contains a robotic micromanipulator. The remotely operated manipulator has six degrees-of- freedom and can be programmed to perform repetitive sample handling tasks. Protocols are being tested and developed to perform curation tasks such as rock splitting, weighing, imaging, and storing. Techniques for sample transfer enabling more detailed remote examination without compromising the integrity of sample science are also being developed . The glovebox is equipped with a rapid transfer port through which samples can be passed without exposure. The transfer is accomplished by using a unique seal and engagement system which allows passage between containers while maintaining a first seal to the outside environment and a second seal to prevent the outside of the container cover and port door from becoming contaminated by the material being transferred. Cleaning and Verification Techniques: As part of the contamination control effort, innovative cleaning techniques are being identified and evaluated in conjunction with sensitive cleanliness verification methods. Towards this end, cleaning techniques such as ultrasonication in ultra -pure water (UPW), oxygen (O2) plasma, and carbon dioxide (CO2) "snow" are being used to clean a variety of different contaminants on a variety of different surfaces. Additionally, once cleaned, techniques to directly verify the s rface cleanliness are being developed. Theseu include X ray photoelectron spectroscopy (XPS) quantification, and screening with- contact angle measure ments , which can be correlated with XPS standards. Methods developed in the Advanced Curation Laboratory will determine the extent to which inorganic and biological contamination can be controlled and minimized.

  4. A perception and manipulation system for collecting rock samples

    NASA Technical Reports Server (NTRS)

    Choi, T.; Delingette, H.; Deluise, M.; Hsin, Y.; Hebert, M.; Ikeuchi, Katsushi

    1991-01-01

    An important part of a planetary exploration mission is to collect and analyze surface samples. As part of the Carnegie Mellon University Ambler Project, researchers are investigating techniques for collecting samples using a robot arm and a range sensor. The aim of this work is to make the sample collection operation fully autonomous. Described here are the components of the experimental system, including a perception module that extracts objects of interest from range images and produces models of their shapes, and a manipulation module that enables the system to pick up the objects identified by the perception module. The system was tested on a small testbed using natural terrain.

  5. Determination of the forces imposed by micro and nanopipettes during DOPC: DOPS liposome manipulation.

    PubMed

    Allen, Kathleen B; Layton, Bradley E

    2009-11-01

    Using micropipette-based probing methods and an image processing algorithm for measuring deformation, the bending energies of aspirated DOPC:DOPS liposomes were estimated both before and during manipulation with an injection pipette. We found that unlike cells, which are penetrable with pipettes as large as 2mum in diameter and at speeds as slow as 4mum/s, liposomes, without a cytoskeleton to resist deformation, are impenetrable with pipettes as small as 25nm in diameter and at speeds as great as 4000mum/s. Using energy calculations and the previously published mechanical properties of DOPC:DOPS liposomes, the forces that injection pipettes of various sizes can exert onto liposomes during probing were estimated. Forces ranged from approximately 1pN to 6pN, and the forces exerted onto these liposomes increased as pipette size diminished. The quantification of the amount of force exerted on liposomes or cells during manipulation can assist in minimizing the damage during single-liposome, single-cell, or single-organelle injections and surgeries.

  6. Theoretical neutron damage calculations in industrial robotic manipulators used for non-destructive imaging applications

    DOE PAGES

    Hashem, Joseph; Schneider, Erich; Pryor, Mitch; ...

    2017-01-01

    Our paper describes how to use MCNP to evaluate the rate of material damage in a robot incurred by exposure to a neutron flux. The example used in this work is that of a robotic manipulator installed in a high intensity, fast, and collimated neutron radiography beam port at the University of Texas at Austin's TRIGA Mark II research reactor. Our effort includes taking robotic technologies and using them to automate non-destructive imaging tasks in nuclear facilities where the robotic manipulator acts as the motion control system for neutron imaging tasks. Simulated radiation tests are used to analyze the radiationmore » damage to the robot. Once the neutron damage is calculated using MCNP, several possible shielding materials are analyzed to determine the most effective way of minimizing the neutron damage. Furthermore, neutron damage predictions provide users the means to simulate geometrical and material changes, thus saving time, money, and energy in determining the optimal setup for a robotic system installed in a radiation environment.« less

  7. Theoretical neutron damage calculations in industrial robotic manipulators used for non-destructive imaging applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hashem, Joseph; Schneider, Erich; Pryor, Mitch

    Our paper describes how to use MCNP to evaluate the rate of material damage in a robot incurred by exposure to a neutron flux. The example used in this work is that of a robotic manipulator installed in a high intensity, fast, and collimated neutron radiography beam port at the University of Texas at Austin's TRIGA Mark II research reactor. Our effort includes taking robotic technologies and using them to automate non-destructive imaging tasks in nuclear facilities where the robotic manipulator acts as the motion control system for neutron imaging tasks. Simulated radiation tests are used to analyze the radiationmore » damage to the robot. Once the neutron damage is calculated using MCNP, several possible shielding materials are analyzed to determine the most effective way of minimizing the neutron damage. Furthermore, neutron damage predictions provide users the means to simulate geometrical and material changes, thus saving time, money, and energy in determining the optimal setup for a robotic system installed in a radiation environment.« less

  8. Manipulation of a neutral and nonpolar nanoparticle in water using a nonuniform electric field

    NASA Astrophysics Data System (ADS)

    Xu, Zhen; Wang, Chunlei; Sheng, Nan; Hu, Guohui; Zhou, Zhewei; Fang, Haiping

    2016-01-01

    The manipulation of nanoparticles in water is of essential importance in chemical physics, nanotechnology, medical technology, and biotechnology applications. Generally, a particle with net charges or charge polarity can be driven by an electric field. However, many practical particles only have weak and even negligible charge and polarity, which hinders the electric field to exert a force large enough to drive these nanoparticles directly. Here, we use molecular dynamics simulations to show that a neutral and nonpolar nanoparticle in liquid water can be driven directionally by an external electric field. The directed motion benefits from a nonuniform water environment produced by a nonuniform external electric field, since lower water energies exist under a higher intensity electric field. The nanoparticle spontaneously moves toward locations with a weaker electric field intensity to minimize the energy of the whole system. Considering that the distance between adjacent regions of nonuniform field intensity can reach the micrometer scale, this finding provides a new mechanism of manipulating nanoparticles from the nanoscale to the microscale.

  9. Label-Free Alignment of Nonmagnetic Particles in a Small Uniform Magnetic Field.

    PubMed

    Wang, Zhaomeng; Wang, Ying; Wu, Rui Ge; Wang, Z P; Ramanujan, R V

    2018-01-01

    Label-free manipulation of biological entities can minimize damage, increase viability and improve efficiency of subsequent analysis. Understanding the mechanism of interaction between magnetic and nonmagnetic particles in an inverse ferrofluid can provide a mechanism of label-free manipulation of such entities in a uniform magnetic field. The magnetic force, induced by relative magnetic susceptibility difference between nonmagnetic particles and surrounding magnetic particles as well as particle-particle interaction were studied. Label-free alignment of nonmagnetic particles can be achieved by higher magnetic field strength (Ba), smaller particle spacing (R), larger particle size (rp1), and higher relative magnetic permeability difference between particle and the surrounding fluid (Rμr). Rμr can be used to predict the direction of the magnetic force between both magnetic and nonmagnetic particles. A sandwich structure, containing alternate layers of magnetic and nonmagnetic particle chains, was studied. This work can be used for manipulation of nonmagnetic particles in lab-on-a-chip applications.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    March-Leuba, S.; Jansen, J.F.; Kress, R.L.

    A new program package, Symbolic Manipulator Laboratory (SML), for the automatic generation of both kinematic and static manipulator models in symbolic form is presented. Critical design parameters may be identified and optimized using symbolic models as shown in the sample application presented for the Future Armor Rearm System (FARS) arm. The computer-aided development of the symbolic models yields equations with reduced numerical complexity. Important considerations have been placed on the closed form solutions simplification and on the user friendly operation. The main emphasis of this research is the development of a methodology which is implemented in a computer program capablemore » of generating symbolic kinematic and static forces models of manipulators. The fact that the models are obtained trigonometrically reduced is among the most significant results of this work and the most difficult to implement. Mathematica, a commercial program that allows symbolic manipulation, is used to implement the program package. SML is written such that the user can change any of the subroutines or create new ones easily. To assist the user, an on-line help has been written to make of SML a user friendly package. Some sample applications are presented. The design and optimization of the 5-degrees-of-freedom (DOF) FARS manipulator using SML is discussed. Finally, the kinematic and static models of two different 7-DOF manipulators are calculated symbolically.« less

  11. Greenstick fracture of the mandible: a case report.

    PubMed

    Kalia, V; Singh, A P

    2008-03-01

    This case report is an insight in to pediatric traumatology whereby bilateral greenstick fracture of condyle is used as a means to discuss the incidence and anatomic considerations for the management of the same, highlighting the fact that dental surgeons require a unique understanding of the anatomy, growth considerations, healing pattern and operative management involving minimal manipulation while managing pediatric facial fractures.

  12. Response of ground-dwelling spider assemblages to prescribed fire following stand structure manipulation in the southern Cascade Range

    Treesearch

    Nancy E. Gillette; Richard S. Vetter; Sylvia R. Mori; Carline R. Rudolph; Dessa R. Welty

    2008-01-01

    We assessed spider (Arachnida: Araneae) responses to prescribed fire following stand s tructure treatments in ponderosa pine (Pinus ponderosa Dougl. ex P. & C. Laws.) stands in the Cascade Range of California. Stands were logged or left untreated to create three levels of structural diversity. We logged one treatment to minimize old-growth...

  13. Hydration and blood volume effects on human thermoregulation in the heat: Space applications

    NASA Technical Reports Server (NTRS)

    Sawka, Michael N.; Gonzalez, Richard R.; Pandolf, Kent B.

    1994-01-01

    Astronauts exposed to prolonged weightlessness will experience deconditioning, dehydration, and hypovolemia which all adversely affect thermoregulation. These thermoregulatory problems can be minimized by several countermeasures that manipulate body water and vascular volumes. USARIEM scientists have extensively studied dehydration effects and several possible countermeasures including hyperhydration, plasma and erythrocyte volume expansion. This paper reviews USARIEM research into these areas.

  14. Raster Metafile And Raster Metafile Translator Programs

    NASA Technical Reports Server (NTRS)

    Randall, Donald P.; Gates, Raymond L.; Skeens, Kristi M.

    1994-01-01

    Raster Metafile (RM) computer program is generic raster-image-format program, and Raster Metafile Translator (RMT) program is assortment of software tools for processing images prepared in this format. Processing includes reading, writing, and displaying RM images. Such other image-manipulation features as minimal compositing operator and resizing option available under RMT command structure. RMT written in FORTRAN 77 and C language.

  15. Neutral buoyancy is optimal to minimize the cost of transport in horizontally swimming seals

    PubMed Central

    Sato, Katsufumi; Aoki, Kagari; Watanabe, Yuuki Y.; Miller, Patrick J. O.

    2013-01-01

    Flying and terrestrial animals should spend energy to move while supporting their weight against gravity. On the other hand, supported by buoyancy, aquatic animals can minimize the energy cost for supporting their body weight and neutral buoyancy has been considered advantageous for aquatic animals. However, some studies suggested that aquatic animals might use non-neutral buoyancy for gliding and thereby save energy cost for locomotion. We manipulated the body density of seals using detachable weights and floats, and compared stroke efforts of horizontally swimming seals under natural conditions using animal-borne recorders. The results indicated that seals had smaller stroke efforts to swim a given speed when they were closer to neutral buoyancy. We conclude that neutral buoyancy is likely the best body density to minimize the cost of transport in horizontal swimming by seals. PMID:23857645

  16. Neutral buoyancy is optimal to minimize the cost of transport in horizontally swimming seals.

    PubMed

    Sato, Katsufumi; Aoki, Kagari; Watanabe, Yuuki Y; Miller, Patrick J O

    2013-01-01

    Flying and terrestrial animals should spend energy to move while supporting their weight against gravity. On the other hand, supported by buoyancy, aquatic animals can minimize the energy cost for supporting their body weight and neutral buoyancy has been considered advantageous for aquatic animals. However, some studies suggested that aquatic animals might use non-neutral buoyancy for gliding and thereby save energy cost for locomotion. We manipulated the body density of seals using detachable weights and floats, and compared stroke efforts of horizontally swimming seals under natural conditions using animal-borne recorders. The results indicated that seals had smaller stroke efforts to swim a given speed when they were closer to neutral buoyancy. We conclude that neutral buoyancy is likely the best body density to minimize the cost of transport in horizontal swimming by seals.

  17. Chiral metabonomics: 1H NMR-based enantiospecific differentiation of metabolites in human urine via direct cosolvation with β-cyclodextrin.

    PubMed

    Pérez-Trujillo, Míriam; Lindon, John C; Parella, Teodor; Keun, Hector C; Nicholson, Jeremy K; Athersuch, Toby J

    2012-03-20

    Differences in molecular chirality remain an important issue in drug metabolism and pharmacokinetics for the pharmaceutical industry and regulatory authorities, and chirality is an important feature of many endogenous metabolites. We present a method for the rapid, direct differentiation and identification of chiral drug enantiomers in human urine without pretreatment of any kind. Using the well-known anti-inflammatory chemical ibuprofen as one example, we demonstrate that the enantiomers of ibuprofen and the diastereoisomers of one of its main metabolites, the glucuronidated carboxylate derivative, can be resolved by (1)H NMR spectroscopy as a consequence of direct addition of the chiral cosolvating agent (CSA) β-cyclodextrin (βCD). This approach is simple, rapid, and robust, involves minimal sample manipulation, and does not require derivatization or purification of the sample. In addition, the method should allow the enantiodifferentiation of endogenous chiral metabolites, and this has potential value for differentiating metabolites from mammalian and microbial sources in biofluids. From these initial findings, we propose that more extensive and detailed enantiospecific metabolic profiling could be possible using CSA-NMR spectroscopy than has been previously reported.

  18. Microfluidic-integrated biosensors: prospects for point-of-care diagnostics.

    PubMed

    Kumar, Suveen; Kumar, Saurabh; Ali, Md Azahar; Anand, Pinki; Agrawal, Ved Varun; John, Renu; Maji, Sagar; Malhotra, Bansi D

    2013-11-01

    There is a growing demand to integrate biosensors with microfluidics to provide miniaturized platforms with many favorable properties, such as reduced sample volume, decreased processing time, low cost analysis and low reagent consumption. These microfluidics-integrated biosensors would also have numerous advantages such as laminar flow, minimal handling of hazardous materials, multiple sample detection in parallel, portability and versatility in design. Microfluidics involves the science and technology of manipulation of fluids at the micro- to nano-liter level. It is predicted that combining biosensors with microfluidic chips will yield enhanced analytical capability, and widen the possibilities for applications in clinical diagnostics. The recent developments in microfluidics have helped researchers working in industries and educational institutes to adopt some of these platforms for point-of-care (POC) diagnostics. This review focuses on the latest advancements in the fields of microfluidic biosensing technologies, and on the challenges and possible solutions for translation of this technology for POC diagnostic applications. We also discuss the fabrication techniques required for developing microfluidic-integrated biosensors, recently reported biomarkers, and the prospects of POC diagnostics in the medical industry. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Comparison of joint space versus task force load distribution optimization for a multiarm manipulator system

    NASA Technical Reports Server (NTRS)

    Soloway, Donald I.; Alberts, Thomas E.

    1989-01-01

    It is often proposed that the redundancy in choosing a force distribution for multiple arms grasping a single object should be handled by minimizing a quadratic performance index. The performance index may be formulated in terms of joint torques or in terms of the Cartesian space force/torque applied to the body by the grippers. The former seeks to minimize power consumption while the latter minimizes body stresses. Because the cost functions are related to each other by a joint angle dependent transformation on the weight matrix, it might be argued that either method tends to reduce power consumption, but clearly the joint space minimization is optimal. A comparison of these two options is presented with consideration given to computational cost and power consumption. Simulation results using a two arm robot system are presented to show the savings realized by employing the joint space optimization. These savings are offset by additional complexity, computation time and in some cases processor power consumption.

  20. Development of the Symbolic Manipulator Laboratory modeling package for the kinematic design and optimization of the Future Armor Rearm System robot. Ammunition Logistics Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    March-Leuba, S.; Jansen, J.F.; Kress, R.L.

    1992-08-01

    A new program package, Symbolic Manipulator Laboratory (SML), for the automatic generation of both kinematic and static manipulator models in symbolic form is presented. Critical design parameters may be identified and optimized using symbolic models as shown in the sample application presented for the Future Armor Rearm System (FARS) arm. The computer-aided development of the symbolic models yields equations with reduced numerical complexity. Important considerations have been placed on the closed form solutions simplification and on the user friendly operation. The main emphasis of this research is the development of a methodology which is implemented in a computer program capablemore » of generating symbolic kinematic and static forces models of manipulators. The fact that the models are obtained trigonometrically reduced is among the most significant results of this work and the most difficult to implement. Mathematica, a commercial program that allows symbolic manipulation, is used to implement the program package. SML is written such that the user can change any of the subroutines or create new ones easily. To assist the user, an on-line help has been written to make of SML a user friendly package. Some sample applications are presented. The design and optimization of the 5-degrees-of-freedom (DOF) FARS manipulator using SML is discussed. Finally, the kinematic and static models of two different 7-DOF manipulators are calculated symbolically.« less

  1. Distinct soil bacterial communities revealed under a diversely managed agroecosystem

    USDA-ARS?s Scientific Manuscript database

    Land-use change and management are normally enacted to manipulate environments to improve conditions that relate to production, remediation, and accommodation. However, soil microbial community complexity after manipulations is still difficult to quantify. In this study, replicate soil samples we...

  2. Apparatus and method for centrifugation and robotic manipulation of samples

    NASA Technical Reports Server (NTRS)

    Ormsby, Rachel A. (Inventor); Kurk, Michael A. (Inventor); Vellinger, John C. (Inventor); Metz, George W. (Inventor); Kennedy, David J. (Inventor); Thomas, Nathan A. (Inventor); Shulthise, Leo A. (Inventor)

    2007-01-01

    A device for centrifugation and robotic manipulation of specimen samples, including incubating eggs, and uses thereof are provided. The device may advantageously be used for the incubation of avian, reptilian or any type of vertebrate eggs. The apparatus comprises a mechanism for holding samples individually, rotating them individually, rotating them on a centrifuge collectively, injecting them individually with a fixative or other chemical reagent, and maintaining them at controlled temperature, relative humidity and atmospheric composition. The device is applicable to experiments involving entities other than eggs, such as invertebrate specimens, plants, microorganisms and molecular systems.

  3. Dielectrophoretic manipulation of particles for use in microfluidic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belgrader, P; Bettencourt, K; Hamilton, J

    1999-06-23

    Amplification and hybridization of DNA are commonly used techniques to verify the presence of a specific DNA sequence in a test sample. Automatic sample handling to concentrate and purify sample prior to amplification is desirable both from the cost standpoint and from the standpoint of reducing the possibility of sample contamination. This paper explores the use of the dielectrophoretic force to manipulate DNA, Bacillus globigii spores, and Erwinia herbicola bacteria to provide concentration and purification as part of the sample handling functions in biological monitoring equipment. It was found that for what would be considered a typical microfabricated structure withmore » electrode gaps at 30 {micro}m operating at 5V, that concentration of the particles is very effective.« less

  4. Common data manipulations with R in biological researches

    PubMed Central

    Liu, Qin

    2017-01-01

    R is a computer language and has been widely used in science community due to the powerful capability in data analysis and visualization; and these functions are mainly provided by the developed packages. Because every package has strict format definitions on the inputted data, it is always required to appropriately manipulate the original data in advance. Unfortunately, users, especially for the beginners, are always confused by the extreme flexibility with R in data manipulation. In the present paper, we roughly categorize the common manipulations with R for biological data into four classes, including overview of data, transformation, summarization, and reshaping. Subsequently, these manipulations are exemplified in a sample data of clinical records of diabetic patients. Our main purpose is to provide a better landscape on the data manipulation with R and hence facilitate the practical applications in biological researches. PMID:28840022

  5. Beliefs and Practice Patterns in Spinal Manipulation and Spinal Motion Palpation Reported by Canadian Manipulative Physiotherapists

    PubMed Central

    Macdermid, Joy C.; Santaguida, P. Lina; Thabane, Lehana; Giulekas, Kevin; Larocque, Leo; Millard, James; Williams, Caitlin; Miller, Jack; Chesworth, Bert M.

    2013-01-01

    ABSTRACT Purpose: This practice survey describes how Fellows of the Canadian Academy of Manipulative Physiotherapy (FCAMPT) use spinal manipulation and mobilization and how they perceive their competence in performing spinal assessment; it also quantifies relationships between clinical experience and use of spinal manipulation. Methods: A cross-sectional survey was designed based on input from experts and the literature was administered to a random sample of the FCAMPT mailing list. Descriptive (including frequencies) and inferential statistical analyses (including linear regression) were performed. Results: The response rate was 82% (278/338 eligible FCAMPTs). Most (99%) used spinal manipulation. Two-thirds (62%) used clinical presentation as a factor when deciding to mobilize or manipulate. The least frequently manipulated spinal region was the cervical spine (2% of patients); 60% felt that cervical manipulation generated more adverse events. Increased experience was associated with increased use of upper cervical manipulation among male respondents (14% more often for every 10 years after certification; β, 95% CI=1.37, 0.89–1.85, p<0.001) but not among female respondents. Confidence in palpation accuracy decreased in lower regions of the spine. Conclusion: The use of spinal manipulation/mobilization is prevalent among FCAMPTs, but is less commonly used in the neck because of a perceived association with adverse events. PMID:24403681

  6. Living cell manipulation, manageable sampling, and shotgun picoliter electrospray mass spectrometry for profiling metabolites.

    PubMed

    Gholipour, Yousef; Erra-Balsells, Rosa; Hiraoka, Kenzo; Nonami, Hiroshi

    2013-02-01

    A modified cell pressure probe and an online Orbitrap mass spectrometer were used to sample in situ plant single cells without any additional manipulation. The cell pressure probe, a quartz capillary tip filled with an oil mixture, was penetrated to various depths into parenchyma cells of tulip bulb scale, followed by a hydraulic continuity test to determine the exact location of the tip inside target cells. The operation was conducted under a digital microscope, and the capillary tip was photographed to calculate the volume of the cell sap sucked. The cell sap sample was then directly nebulized/ionized under high-voltage conditions at the entrance of the mass spectrometer. Several sugars, amino acids, organic acids, vitamins, fatty acids, and secondary metabolites were detected. Because picoliter solutions can be accurately handled and measured, known volumes of standard solutions can be added to cell sap samples inside the capillary tip to be used as references for metabolite characterization and relative quantitation. The high precision and sensitivity of the cell pressure probe and Orbitrap mass spectrometer allow for the manipulation and analysis of both femtoliter cell sap samples and standard solutions. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Substitution of human for horse urine disproves an accusation of doping*.

    PubMed

    Díaz, Silvina; Kienast, Mariana E; Villegas-Castagnasso, Egle E; Pena, Natalia L; Manganare, Marcos M; Posik, Diego; Peral-García, Pilar; Giovambattista, Guillermo

    2008-09-01

    In order to detect switching and/or manipulation of samples, the owner of a stallion asked our lab to perform a DNA test on a positive doping urine sample. The objective was to compare the urine DNA profile versus blood and hair DNA profiles from the same stallion. At first, 10 microsatellite markers were investigated to determine the horse identity. No results were obtained when horse specific markers were typed in the urine sample. In order to confirm the species origin of this sample we analyzed the mitochondrial cytochrome b gene. This analysis from blood and hair samples produced reproducible and clear PCR-RFLP patterns and DNA sequence match with those expected for horse, while the urine sample results were coincident with human. These results allowed us to exclude the urine sample from the questioned stallion and determine its human species origin, confirming the manipulation of urine sample.

  8. Low-Latency Telerobotics from Mars Orbit: The Case for Synergy Between Science and Human Exploration

    NASA Technical Reports Server (NTRS)

    Valinia, A.; Garvin, J. B.; Vondrak, R.; Thronson, H.; Lester, D.; Schmidt, G.; Fong, T.; Wilcox, B.; Sellers, P.; White, N.

    2012-01-01

    Initial, science-directed human exploration of Mars will benefit from capabilities in which human explorers remain in orbit to control telerobotic systems on the surface (Figure 1). Low-latency, high-bandwidth telerobotics (LLT) from Mars orbit offers opportunities for what the terrestrial robotics community considers to be high-quality telepresence. Such telepresence would provide high quality sensory perception and situation awareness, and even capabilities for dexterous manipulation as required for adaptive, informed selection of scientific samples [1]. Astronauts on orbit in close communication proximity to a surface exploration site (in order to minimize communication latency) represent a capability that would extend human cognition to Mars (and potentially for other bodies such as asteroids, Venus, the Moon, etc.) without the challenges, expense, and risk of putting those humans on hazardous surfaces or within deep gravity wells. Such a strategy may be consistent with goals for a human space flight program that, are currently being developed within NASA.

  9. Response of forest soil Acari to prescribed fire following stand structure manipulation in the southern Cascade Range.Can

    Treesearch

    Michael A. Camann; Nancy E. Gillette; Karen L. Lamoncha; Sylvia R. Mori

    2008-01-01

    We studied responses of Acari, especially oribatid mites, to prescribed low-intensity fire in an east side pine site in the southern Cascade Range in California. We compared oribatid population and assemblage responses to prescribed fire in stands that had been selectively logged to enhance old growth characteristics, in logged stands to minimize old growth...

  10. Apparatus and method for performing microfluidic manipulations for chemical analysis

    DOEpatents

    Ramsey, J. Michael

    1999-01-01

    A microchip apparatus and method provide fluidic manipulations for a variety of applications, including sample injection for microchip liquid chromatography. The microchip is fabricated using standard photolithographic procedures and chemical wet etching, with the substrate and cover plate joined using direct bonding. Capillary electrophoresis is performed in channels formed in the substrate. Injections are made by electro-osmotically pumping sample through the injection channel that crosses the separation channel, followed by a switching of the potentials to force a plug into the separation channel.

  11. Apparatus and method for performing microfluidic manipulations for chemical analysis

    DOEpatents

    Ramsey, J. Michael

    2002-01-01

    A microchip apparatus and method provide fluidic manipulations for a variety of applications, including sample injection for microchip liquid chromatography. The microchip is fabricated using standard photolitographic procedures and chemical wet etching, with the substrate and cover plate joined using direct bonding. Capillary electrophoresis is performed in channels formed in the substrate. Injections are made by electro-osmotically pumping sample through the injection channel that crosses the separation channel, followed by a switching of the potentials to force a plug into the separation channel.

  12. A Minimally Invasive Method for Retrieving Single Adherent Cells of Different Types from Cultures

    PubMed Central

    Zeng, Jia; Mohammadreza, Aida; Gao, Weimin; Merza, Saeed; Smith, Dean; Kelbauskas, Laimonas; Meldrum, Deirdre R.

    2014-01-01

    The field of single-cell analysis has gained a significant momentum over the last decade. Separation and isolation of individual cells is an indispensable step in almost all currently available single-cell analysis technologies. However, stress levels introduced by such manipulations remain largely unstudied. We present a method for minimally invasive retrieval of selected individual adherent cells of different types from cell cultures. The method is based on a combination of mechanical (shear flow) force and biochemical (trypsin digestion) treatment. We quantified alterations in the transcription levels of stress response genes in individual cells exposed to varying levels of shear flow and trypsinization. We report optimal temperature, RNA preservation reagents, shear force and trypsinization conditions necessary to minimize changes in the stress-related gene expression levels. The method and experimental findings are broadly applicable and can be used by a broad research community working in the field of single cell analysis. PMID:24957932

  13. Minimally invasive computer-assisted stereotactic fenestration of an aqueductal cyst: case report.

    PubMed

    Fonoff, E T; Gentil, A F; Padilha, P M; Teixeira, M J

    2010-02-01

    Current advances in frame modeling and computer software allow stereotactic procedures to be performed with great accuracy and minimal risk of neural tissue or vascular injury. In this report we associate a previously described minimally invasive stereotactic technique with state-of-the-art 3D computer guidance technology to successfully treat a 55-year-old patient with an arachnoidal cyst obstructing the aqueduct of Sylvius. We provide detailed technical information and discuss how this technique deals with previous limitations for stereotactic manipulation of the aqueductal region. We further discuss current advances in neuroendoscopy for treating obstructive hydrocephalus and make comparisons with our proposed technique. We advocate that this technique is not only capable of treating this pathology but it also has the advantages to enable reestablishment of physiological CSF flow thus preventing future brainstem compression by cyst enlargement. (c) Georg Thieme Verlag KG Stuttgart . New York.

  14. Nonlinear dynamic analysis and optimal trajectory planning of a high-speed macro-micro manipulator

    NASA Astrophysics Data System (ADS)

    Yang, Yi-ling; Wei, Yan-ding; Lou, Jun-qiang; Fu, Lei; Zhao, Xiao-wei

    2017-09-01

    This paper reports the nonlinear dynamic modeling and the optimal trajectory planning for a flexure-based macro-micro manipulator, which is dedicated to the large-scale and high-speed tasks. In particular, a macro- micro manipulator composed of a servo motor, a rigid arm and a compliant microgripper is focused. Moreover, both flexure hinges and flexible beams are considered. By combining the pseudorigid-body-model method, the assumed mode method and the Lagrange equation, the overall dynamic model is derived. Then, the rigid-flexible-coupling characteristics are analyzed by numerical simulations. After that, the microscopic scale vibration excited by the large-scale motion is reduced through the trajectory planning approach. Especially, a fitness function regards the comprehensive excitation torque of the compliant microgripper is proposed. The reference curve and the interpolation curve using the quintic polynomial trajectories are adopted. Afterwards, an improved genetic algorithm is used to identify the optimal trajectory by minimizing the fitness function. Finally, the numerical simulations and experiments validate the feasibility and the effectiveness of the established dynamic model and the trajectory planning approach. The amplitude of the residual vibration reduces approximately 54.9%, and the settling time decreases 57.1%. Therefore, the operation efficiency and manipulation stability are significantly improved.

  15. Denial of risk: The effects of positive impression management on risk assessments for psychopathic and nonpsychopathic offenders.

    PubMed

    Gillard, Nathan D; Rogers, Richard

    2015-01-01

    Risk assessments for offenders often combine past records with current clinical findings from observations, interviews, and test data. Conclusions based on these risk assessments are highly consequential, sometimes resulting in increased criminal sentences or prolonged hospitalization. Therefore, many offenders are motivated to intentionally minimize risk factors and their negative consequences. Positive impression management (PIM) is especially likely to occur in offenders with high psychopathic traits because goal-directed deception is reflected in several of psychopathy's core traits of the disorder, such as manipulativeness, glibness, and superficial charm. However, this connection appears to be based on the conceptual understanding of psychopathy, and has rarely been examined empirically for either frequency of or success at deception. The current study examined the ability of a jail sample to intentionally minimize risk factors and related criminal attributes using a repeated measures, simulation design. In general, offenders were able to effectively use PIM to lower scores on the HCR-20 and the Self-Appraisal Questionnaire (SAQ), while the Psychological Inventory of Criminal Thinking Styles (PICTS), as a measure of cognitive styles, was more resistant to such minimization. Psychopathic traits, especially high Factor 1 scores (i.e., affective/interpersonal), were associated with greater PIM. Important differences in the willingness and ability to use deception were found based on the (a) mode of administration (i.e., interview vs. self-report) and (b) level of psychopathy as measured by the Psychopathy Checklist - Revised (PCL-R). The important implications of this research are discussed for risk assessment procedures regarding likely areas of deception and its detection. The current research also informs the growing literature on the connection between psychopathic traits and deception. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Development of an online SPE-UHPLC-MS/MS method for the multiresidue analysis of the 17 compounds from the EU "Watch list".

    PubMed

    Gusmaroli, Lucia; Insa, Sara; Petrovic, Mira

    2018-04-24

    During the last decades, the quality of aquatic ecosystems has been threatened by increasing levels of pollutions, caused by the discharge of man-made chemicals, both via accidental release of pollutants as well as a consequence of the constant outflow of inadequately treated wastewater effluents. For this reason, the European Union is updating its legislations with the aim of limiting the release of emerging contaminants. The Commission Implementing Decision (EU) 2015/495 published in March 2015 drafts a "Watch list" of compounds to be monitored Europe-wide. In this study, a methodology based on online solid-phase extraction (SPE) ultra-high-performance liquid chromatography coupled to a triple-quadrupole mass spectrometer (UHPLC-MS/MS) was developed for the simultaneous determination of the 17 compounds listed therein. The proposed method offers advantages over already available methods, such as versatility (all 17 compounds can be analyzed simultaneously), shorter time required for analysis, robustness, and sensitivity. The employment of online sample preparation minimized sample manipulation and reduced dramatically the sample volume needed and time required, dramatically the sample volume needed and time required, thus making the analysis fast and reliable. The method was successfully validated in surface water and influent and effluent wastewater. Limits of detection ranged from sub- to low-nanogram per liter levels, in compliance with the EU limits, with the only exception of EE2. Graphical abstract Schematic of the workflow for the analysis of the Watch list compounds.

  17. LATE EVALUATION OF PATIENTS UNDERGOING MANIPULATION OF THE KNEE AFTER TOTAL ARTHROPLASTY.

    PubMed

    DE Sousa, Pedro Guilme Teixeira; Chisté, Yuri Lubiana; Albuquerque, Rodrigo Sattamini Pires E; Cobra, Hugo Alexandre DE Araújo Barros; Barretto, João Maurício; Cavanellas, Naasson Trindade

    2017-01-01

    We compared gains in range of motion in patients who underwent manipulation within 12 weeks of total knee arthroplasty (TKA) and after this period. We also evaluated maintenance of the arc obtained from knee manipulation in late follow-up, along with factors associated with poorer outcomes. The study was divided into two groups according to the time after TKA; the surgeries took place between January 2008 and December 2014. When comparing the range of motion between early and late manipulations, the group that underwent manipulation within 12 weeks of the TKA exhibited better outcomes, but these were not statistically significant. We observed that 14.3% of cases retained the same range attained at the time of manipulation. In late evaluation after manipulation, 47.7% of the sample had a range of less than 90 degrees. The significant risk factors for recurrence of knee stiffness in the long term are poor range of motion before TKA and before manipulation, female sex, and secondary arthritis. Women previously diagnosed with secondary osteoarthritis and poor range of motion before TKA or manipulation are at higher risk for late stiffness. Level of Evidence III, Retrospective Comparative Study.

  18. Effect of selective growth media on the differentiation of Salmonella enterica serovars by Fourier-Transform Mid-Infrared Spectroscopy.

    PubMed

    Baldauf, Nathan A; Rodriguez-Romo, Luis A; Männig, Annegret; Yousef, Ahmed E; Rodriguez-Saona, Luis E

    2007-01-01

    Salmonella enterica serovars are prevalent foodborne pathogens responsible for high numbers of salmonellosis each year. Complex Fourier-transform infrared (FTIR) spectra offer unique biochemical fingerprints of bacteria with bands due to major cellular components. Growth media effects on discrimination of Salmonella serovars by FTIR spectroscopy were investigated and a novel sample preparation technique was developed. S. enterica strains from six serovars were grown on xylose lysine desoxycholate (XLD), Miller-Mallinson (MM), and plate count (PCA) agar as a control (37 degrees C, 24 h). Isolated colonies were suspended in 50% acetonitrile and centrifuged; the remaining pellet was placed on an AMTIR (attenuated total reflectance) crystal and dried under vacuum. Classification models (Soft Independent Modeling of Class Analogy, SIMCA), generated from derivatized infrared spectra (1300-900 cm-1 or 1200-900 cm-1), successfully discriminated among Salmonella strains with major discrimination from 1000-970 cm-1 associated to stretching modes of O-specific polysaccharide chains of lipopolysaccharides. Sample treatment with acetonitrile enhanced safe handling of the bacteria, removed interfering signals and improved the discriminating ability of SIMCA. All media were able to discriminate the S. enterica strains studied, varying in discriminating peaks and class distances in SIMCA classification. This methodology, with the production of large libraries of pathogenic bacteria, could be applied for the rapid monitoring of bacterial contamination in food with minimal sample manipulation.

  19. [Why is cytology a profession (branch), not a method? Ten rules for success of the cytology profession].

    PubMed

    Kardum-Skelin, Ika

    2011-09-01

    Clinical cytology is an interdisciplinary medical diagnostic profession that integrates clinical, laboratory and analytical fields along with final cytologist's expert opinion. Cytology involves nonaggressive, minimally invasive and simple for use procedures that are fully acceptable for the patient. Cytology offers rapid orientation, while in combination with additional technologies on cytologic smear analysis (cytochemistry, immunocytochemistry for cell marker analysis, computer image analysis) or sophisticated methods on cytologic samples (flow cytometry, molecular and cytogenetic analysis) it plays a major role in the diagnosis, subtyping and prognosis of malignant tumors. Ten rules for successful performance in cytology are as follows: 1) due knowledge of overall cytology (general cytologist); 2) inclusion in all stages of cytologic sample manipulation from sampling through reporting; 3) due knowledge of additional technologies to provide appropriate interpretation and/or rational advice in dubious cases; 4) to preserve dignity of the profession because every profession has its advantages, shortcomings and limitations; 5) to insist on quality control of the performance, individual cytologists and cytology team; 6) knowledge transfer to young professionals; 7) assisting fellow professionals in dubious cases irrespective of the time needed and fee because it implies helping the patient and the profession itself; 8) experience exchange with other related professionals to upgrade mutual understanding; 9) to prefer the interest of the profession over one's own interest; and 10) to love cytology.

  20. Manipulating the optical properties of dual implanted Au and Zn nanoparticles in sapphire

    NASA Astrophysics Data System (ADS)

    Epie, E. N.; Scott, D.; Chu, W. K.

    2017-11-01

    We have synthesized and manipulated the optical properties of metallic nanoparticles (NPs) by using a combination of low-energy high-fluence dual implantation and thermal annealing. We demonstrated that by implanting Zn before Au, the resulting absorption peak is enormously blue-shifted by 120 nm with respect to that of Au-only implanted samples. This magnitude of optical shift is not characteristic of unalloyed Au and to the best of our knowledge cannot be attributed to NP size change alone. On the other hand, the absorption peak for samples implanted with Au followed by Zn is blue-shifted about 20 nm. Additionally, by carefully annealing all implanted samples, both NP size distribution and corresponding optical properties can be further modified in a controlled manner. We attribute these behaviours to nanoalloy formation. This work provides a direct method for synthesizing and manipulating both the plasmonic and structural properties of metallic alloy NP in various transparent dielectrics for diverse applications.

  1. CASE STUDY 6.26: UNSUCCESSFUL TOXICITY IDENTIFICATION AND EVALUATIONS MANIPULATIONS: SEAWATER BUFFERS AND STERILIZATION METHODS

    EPA Science Inventory

    This paper summarizes several unsuccessful attempts to develop Toxicity Identification and Evaluation (TIE) manipulations for aqueous samples during the first 5 years of our research. The first part of the paper explores irradiation as a sterilization technique to discern if sam...

  2. ROBITOM-robot for biopsy and therapy of the mamma.

    PubMed

    Felden, A; Vagner, J; Hinz, A; Fischer, H; Pfleiderer, S O R; Reichenbach, J R; Kaiser, W A

    2002-01-01

    MR-Mammography reaches a high sensitivity in detecting breast carcinomas of 3 mm in size at least. In cooperation with the Institute of Diagnostic and Interventional Radiology of the Friedrich-Schiller-University of Jena, a manipulator has been developed by the IMB, which combines the advantages of MRM imaging with a minimal invasive biopsy and a possible subsequent therapy. Referring to this ROBITOM I was introduced in November 1999 as worldwide first, precise operating manipulator system in the ISO center of a closed MR, at RSNA in Chicago. Clinical trials started at 22. November 2000. The experiences and results of these tests were brought into the following prototype ROBITOM II, that is currently developed at the IMB. The completion of this Prototype is planned at the end of 2002.

  3. Real time control for NASA robotic gripper

    NASA Technical Reports Server (NTRS)

    Salter, Carole A.; Baras, John S.

    1990-01-01

    The ability to easily manipulate objects in a zero gravity environment will pay a key role in future space activities. Emphasis will be placed on robotic manipulation. This will serve to increase astronaut safety and utility in addition to several other benefits. The aim is to develop control laws for the zero gravity robotic end effectors. A hybrid force/position controller will be used. Sensory data available to the controller are obtained from an array of strain gauges and a linear potentiometer. Applying well known optimal control theoretical principles, the control which minimizes the transition time between positions is obtained. A robust force control scheme is developed which allows the desired holding force to be achieved smoothly without oscillation. In addition, an algorithm is found to determine contact force and contact location.

  4. Modern 'junk food' and minimally-processed 'natural food' cafeteria diets alter the response to sweet taste but do not impair flavor-nutrient learning in rats.

    PubMed

    Palframan, Kristen M; Myers, Kevin P

    2016-04-01

    Animals learn to prefer and increase consumption of flavors paired with postingestive nutrient sensing. Analogous effects have been difficult to observe in human studies. One possibility is experience with the modern, processed diet impairs learning. Food processing manipulates flavor, texture, sweetness, and nutrition, obscuring ordinary correspondences between sensory cues and postingestive consequences. Over time, a diet of these processed 'junk' foods may impair flavor-nutrient learning. This 'flavor-confusion' hypothesis was tested by providing rats long-term exposure to cafeteria diets of unusual breadth (2 or 3 foods per day, 96 different foods over 3 months, plus ad libitum chow). One group was fed processed foods (PF) with added sugars/fats and manipulated flavors, to mimic the sensory-nutrient properties of the modern processed diet. Another group was fed only 'natural' foods (NF) meaning minimally-processed foods without manipulated flavors or added sugars/fats (e.g., fresh fruits, vegetables, whole grains) ostensibly preserving the ordinary correspondence between flavors and nutrition. A CON group was fed chow only. In subsequent tests of flavor-nutrient learning, PF and NF rats consistently acquired strong preferences for novel nutrient-paired flavors and PF rats exhibited enhanced learned acceptance, contradicting the 'flavor-confusion' hypothesis. An unexpected finding was PF and NF diets both caused lasting reduction in ad lib sweet solution intake. Groups did not differ in reinforcing value of sugar in a progressive ratio task. In lick microstructure analysis the NF group paradoxically showed increased sucrose palatability relative to PF and CON, suggesting the diets have different effects on sweet taste evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Modeling the trade-off between diet costs and methane emissions: A goal programming approach.

    PubMed

    Moraes, L E; Fadel, J G; Castillo, A R; Casper, D P; Tricarico, J M; Kebreab, E

    2015-08-01

    Enteric methane emission is a major greenhouse gas from livestock production systems worldwide. Dietary manipulation may be an effective emission-reduction tool; however, the associated costs may preclude its use as a mitigation strategy. Several studies have identified dietary manipulation strategies for the mitigation of emissions, but studies examining the costs of reducing methane by manipulating diets are scarce. Furthermore, the trade-off between increase in dietary costs and reduction in methane emissions has only been determined for a limited number of production scenarios. The objective of this study was to develop an optimization framework for the joint minimization of dietary costs and methane emissions based on the identification of a set of feasible solutions for various levels of trade-off between emissions and costs. Such a set of solutions was created by the specification of a systematic grid of goal programming weights, enabling the decision maker to choose the solution that achieves the desired trade-off level. Moreover, the model enables the calculation of emission-mitigation costs imputing a trading value for methane emissions. Emission imputed costs can be used in emission-unit trading schemes, such as cap-and-trade policy designs. An application of the model using data from lactating cows from dairies in the California Central Valley is presented to illustrate the use of model-generated results in the identification of optimal diets when reducing emissions. The optimization framework is flexible and can be adapted to jointly minimize diet costs and other potential environmental impacts (e.g., nitrogen excretion). It is also flexible so that dietary costs, feed nutrient composition, and animal nutrient requirements can be altered to accommodate various production systems. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  6. 7 CFR 75.40 - Protecting samples.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Protecting samples. 75.40 Section 75.40 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... § 75.40 Protecting samples. Inspection personnel shall protect each sample from manipulation...

  7. 7 CFR 75.40 - Protecting samples.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Protecting samples. 75.40 Section 75.40 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... § 75.40 Protecting samples. Inspection personnel shall protect each sample from manipulation...

  8. Acoustic levitation and manipulation for space applications

    NASA Technical Reports Server (NTRS)

    Wang, T. G.

    1979-01-01

    A wide spectrum of experiments to be performed in space in a microgravity environment require levitation and manipulation of liquid or molten samples. A novel acoustic method has been developed at JPL for controlling liquid samples without physical contacts. This method utilizes the static pressure generated by three orthogonal acoustic standing waves excited within an enclosure. Furthermore, this method will allow the sample to be rotated and/or oscillated by modifying the phase angles and/or the amplitude of the acoustic field. This technique has been proven both in our laboratory and in a microgravity environment provided by KC-135 flights. Samples placed within our chamber driven at (1,0,0), (0,1,0), and (0,0,1), modes were indeed levitated, rotated, and oscillated.

  9. Asbestos exposure among transmission mechanics in automotive repair shops.

    PubMed

    Salazar, Natalia; Cely-García, María Fernanda; Breysse, Patrick N; Ramos-Bonilla, Juan Pablo

    2015-04-01

    Asbestos has been used in a broad variety of industrial products, including clutch discs of the transmission system of vehicles. Studies conducted in high-income countries that have analyzed personal asbestos exposures of transmission mechanics have concluded that these workers are exposed to asbestos concentrations in compliance with the US Occupational Safety and Health Administration (US OSHA) occupational standards. Clutch facings are the friction component of clutch discs. If clutch facings are sold separated from the support, they require manipulation before installation in the vehicle. The manipulation of asbestos containing clutch facings is performed by a group of mechanics known as riveters, and includes drilling, countersinking, riveting, sanding, and occasionally grinding, tasks that can potentially release asbestos fibers, exposing the mechanics. These manipulation activities are not reported in studies conducted in high-income countries. This study analyzes personal asbestos exposures of transmission mechanics that manipulate clutch facings. Air sampling campaigns in two transmission repair shops (TRS) were conducted in November 2012 and July 2013 in Bogotá, Colombia. Four workers employed in these TRS were sampled (i.e. three riveters and one supervisor). Personal samples (n = 39), short-term personal samples (n = 49), area samples (n = 52), blank samples (n = 8), and background samples (n = 2) were collected in both TRS during 3-5 consecutive days, following US National Institute for Occupational Safety and Health (US NIOSH) methods 7400 and 7402. Asbestos samples were analyzed by an American Industrial Hygiene Association accredited laboratory. On at least one of the days sampled, all riveters were exposed to asbestos concentrations that exceeded the US OSHA permissible exposure limit or the Colombian permissible limit value. Additionally, from the forty-seven 30-min short-term personal samples collected, two (4.3%) exceeded the US OSHA excursion limit of 1 f cm(-3). In this study, we identified that the working conditions and use of asbestos containing transmission products expose transmission mechanics to asbestos concentrations that exceed both the Colombian and OSHA standards. The potential consequences for the health of these workers are of great concern. © The Author 2014. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  10. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons

    PubMed Central

    Wang, W.; Wildes, C. P.; Pattarabanjird, T.; Sanchez, M. I.; Glober, G.F.; Matthews, G. A.; Tye, K. M.; Ting, A. Y

    2017-01-01

    Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically-encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally-applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high-to-low calcium signal ratio of 10 after 10 minutes of stimulation. Channelrhodopsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- and motor activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium. PMID:28650461

  11. Investigation of interactions between limb-manipulator dynamics and effective vehicle roll control characteristics

    NASA Technical Reports Server (NTRS)

    Johnston, D. E.; Mcruer, D. T.

    1986-01-01

    A fixed-base simulation was performed to identify and quantify interactions between the pilot's hand/arm neuromuscular subsystem and such features of typical modern fighter aircraft roll rate command control system mechanization as: (1) force sensing side-stick type manipulator; (2) vehicle effective role time constant; and (3) flight control system effective time delay. The simulation results provide insight to high frequency pilot induced oscillations (PIO) (roll ratchet), low frequency PIO, and roll-to-right control and handling problems previously observed in experimental and production fly-by-wire control systems. The simulation configurations encompass and/or duplicate actual flight situations, reproduce control problems observed in flight, and validate the concept that the high frequency nuisance mode known as roll ratchet derives primarily from the pilot's neuromuscular subsystem. The simulations show that force-sensing side-stick manipulator force/displacement/command gradients, command prefilters, and flight control system time delays need to be carefully adjusted to minimize neuromuscular mode amplitude peaking (roll ratchet tendency) without restricting roll control bandwidth (with resulting sluggish or PIO prone control).

  12. Preliminary analysis of force-torque measurements for robot-assisted fracture surgery.

    PubMed

    Georgilas, Ioannis; Dagnino, Giulio; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2015-08-01

    Our group at Bristol Robotics Laboratory has been working on a new robotic system for fracture surgery that has been previously reported [1]. The robotic system is being developed for distal femur fractures and features a robot that manipulates the small fracture fragments through small percutaneous incisions and a robot that re-aligns the long bones. The robots controller design relies on accurate and bounded force and position parameters for which we require real surgical data. This paper reports preliminary findings of forces and torques applied during bone and soft tissue manipulation in typical orthopaedic surgery procedures. Using customised orthopaedic surgical tools we have collected data from a range of orthopaedic surgical procedures at Bristol Royal Infirmary, UK. Maximum forces and torques encountered during fracture manipulation which involved proximal femur and soft tissue distraction around it and reduction of neck of femur fractures have been recorded and further analysed in conjunction with accompanying image recordings. Using this data we are establishing a set of technical requirements for creating safe and dynamically stable minimally invasive robot-assisted fracture surgery (RAFS) systems.

  13. Kinematics, controls, and path planning results for a redundant manipulator

    NASA Technical Reports Server (NTRS)

    Gretz, Bruce; Tilley, Scott W.

    1989-01-01

    The inverse kinematics solution, a modal position control algorithm, and path planning results for a 7 degree of freedom manipulator are presented. The redundant arm consists of two links with shoulder and elbow joints and a spherical wrist. The inverse kinematics problem for tip position is solved and the redundant joint is identified. It is also shown that a locus of tip positions exists in which there are kinematic limitations on self-motion. A computationally simple modal position control algorithm has been developed which guarantees a nearly constant closed-loop dynamic response throughout the workspace. If all closed-loop poles are assigned to the same location, the algorithm can be implemented with very little computation. To further reduce the required computation, the modal gains are updated only at discrete time intervals. Criteria are developed for the frequency of these updates. For commanding manipulator movements, a 5th-order spline which minimizes jerk provides a smooth tip-space path. Schemes for deriving a corresponding joint-space trajectory are discussed. Modifying the trajectory to avoid joint torque saturation when a tip payload is added is also considered. Simulation results are presented.

  14. A light- and calcium-gated transcription factor for imaging and manipulating activated neurons.

    PubMed

    Wang, Wenjing; Wildes, Craig P; Pattarabanjird, Tanyaporn; Sanchez, Mateo I; Glober, Gordon F; Matthews, Gillian A; Tye, Kay M; Ting, Alice Y

    2017-09-01

    Activity remodels neurons, altering their molecular, structural, and electrical characteristics. To enable the selective characterization and manipulation of these neurons, we present FLARE, an engineered transcription factor that drives expression of fluorescent proteins, opsins, and other genetically encoded tools only in the subset of neurons that experienced activity during a user-defined time window. FLARE senses the coincidence of elevated cytosolic calcium and externally applied blue light, which together produce translocation of a membrane-anchored transcription factor to the nucleus to drive expression of any transgene. In cultured rat neurons, FLARE gives a light-to-dark signal ratio of 120 and a high- to low-calcium signal ratio of 10 after 10 min of stimulation. Opsin expression permitted functional manipulation of FLARE-marked neurons. In adult mice, FLARE also gave light- and motor-activity-dependent transcription in the cortex. Due to its modular design, minute-scale temporal resolution, and minimal dark-state leak, FLARE should be useful for the study of activity-dependent processes in neurons and other cells that signal with calcium.

  15. Chiropractic management of a patient with lumbar spine pain due to synovial cyst: a case report

    PubMed Central

    Cox, James M.

    2012-01-01

    Introduction The purpose of this study is to report the findings resulting from chiropractic care using flexion distraction spinal manipulation for a patient with low back and radicular pain due to spinal stenosis caused by a synovial cyst. Case Report A 75-year-old man presented with low back pain radiating to the right anterior thigh and down the left posterior leg of 3 years' duration. Physical and imaging examinations showed a synovial cyst–induced spinal stenosis at the right L3-L4 level and bilateral L4-L5 spinal stenosis. Intervention and Outcomes Flexion distraction spinal manipulation and physiological therapeutics were applied at the levels of stenosis. After 4 visits, the patient noted total absence of the right and left lower extremity pain and no adverse reaction to treatment. After 3 months of treatment and 16 visits, his low back and buttock pain were minimal; and he had no leg pain. Conclusion Lumbar synovial cyst and stenosis–generated low back and radicular pain was 80% relieved in a 75-year-old man following Cox flexion distraction spinal manipulation. PMID:22942836

  16. A force-controllable macro-micro manipulator and its application to medical robots

    NASA Technical Reports Server (NTRS)

    Marzwell, Neville I.; Uecker, Darrin R.; Wang, Yulun

    1994-01-01

    This paper describes an 8-degrees-of-freedom macro-micro robot. This robot is capable of performing tasks that require accurate force control, such as polishing, finishing, grinding, deburring, and cleaning. The design of the macro-micro mechanism, the control algorithms, and the hardware/software implementation of the algorithms are described in this paper. Initial experimental results are reported. In addition, this paper includes a discussion of medical surgery and the role that force control may play. We introduce a new class of robotic systems collectively called Robotic Enhancement Technology (RET). RET systems introduce the combination of robotic manipulation with human control to perform manipulation tasks beyond the individual capability of either human or machine. The RET class of robotic systems offers new challenges in mechanism design, control-law development, and man/machine interface design. We believe force-controllable mechanisms such as the macro-micro structure we have developed are a necessary part of RET. Work in progress in the area of RET systems and their application to minimally invasive surgery is presented, along with future research directions.

  17. Innovative Robot Archetypes for In-Space Construction and Maintenance

    NASA Technical Reports Server (NTRS)

    Rehnmark, Fredrik; Ambrose, Robert O.; Kennedy, Brett; Diftler, Myron; Mehling Joshua; Brigwater, Lyndon; Radford, Nicolaus; Goza, S. Michael; Culbert, Christopher

    2005-01-01

    The space environment presents unique challenges and opportunities in the assembly, inspection and maintenance of orbital and transit spaceflight systems. While conventional Extra-Vehicular Activity (EVA) technology, out of necessity, addresses each of the challenges, relatively few of the opportunities have been exploited due to crew safety and reliability considerations. Extra-Vehicular Robotics (EVR) is one of the least-explored design spaces but offers many exciting innovations transcending the crane-like Space Shuttle and International Space Station Remote Manipulator System (RMS) robots used for berthing, coarse positioning and stabilization. Microgravity environments can support new robotic archetypes with locomotion and manipulation capabilities analogous to undersea creatures. Such diversification could enable the next generation of space science platforms and vehicles that are too large and fragile to launch and deploy as self-contained payloads. Sinuous manipulators for minimally invasive inspection and repair in confined spaces, soft-stepping climbers with expansive leg reach envelopes and free-flying nanosatellite cameras can access EVA worksites generally not accessible to humans in spacesuits. These and other novel robotic archetypes are presented along with functionality concepts

  18. The U.S. Footprint on the Arabian Peninsula: Can We Avoid a Repeat of the Pullout from Saudi Arabia?

    DTIC Science & Technology

    2009-12-01

    respective GCC country. Centrally located power is defined as the government of a GCC country that allows minimal or no political liberalization ...exercise more political liberalization , and carefully balance religious entities with secular foreign policy requirements are far less easily manipulated...Command and Defense Security Cooperation Agency staff, and conference material related to EU -GCC security. Other national security strategy

  19. A Saturation Balancing Control Method for Enhancing Dynamic Vehicle Stability (PREPRINT)

    DTIC Science & Technology

    2011-03-01

    force estimation; axle saturation level; independent drive; torque biasing; 1. Introduction Vehicle stability control ( VSC ) systems have widely been...shown to reduce accidents by minimizing driver’s loss of control during aggressive emergency maneuvers. VSC systems manipulate one or more of the... VSC (also referred to as vehicle dynamics control (VDC)) systems available on the market today are brake-based systems which extend the functionality

  20. Development of a medical robot system for minimally invasive surgery.

    PubMed

    Feng, Mei; Fu, Yili; Pan, Bo; Liu, Chang

    2012-03-01

    Robot-assisted systems have been widely used in minimally invasive surgery (MIS) practice, and with them the precision and accuracy of surgical procedures can be significantly improved. Promoting the development of robot technology in MIS will improve robot performance and help in tackling problems from complex surgical procedures. A medical robot system with a new mechanism for MIS was proposed to achieve a two-dimensional (2D) remote centre of motion (RCM). An improved surgical instrument was designed to enhance manipulability and eliminate the coupling motion between the wrist and the grippers. The control subsystem adopted a master-slave control mode, upon which a new method with error compensation of repetitive feedback can be based for the inverse kinematics solution. A unique solution with less computation and higher satisfactory accuracy was also obtained. Tremor filtration and trajectory planning were also addressed with regard to the smoothness of the surgical instrument movement. The robot system was tested on pigs weighing 30-45 kg. The experimental results show that the robot can successfully complete a cholecystectomy and meet the demands of MIS. The results of the animal experiments were excellent, indicating a promising clinical application of the robot with high manipulability. Copyright © 2011 John Wiley & Sons, Ltd.

  1. Design of an integrated master-slave robotic system for minimally invasive surgery.

    PubMed

    Li, Jianmin; Zhou, Ningxin; Wang, Shuxin; Gao, Yuanqian; Liu, Dongchun

    2012-03-01

    Minimally invasive surgery (MIS) robots are commonly used in hospitals and medical centres. However, currently available robotic systems are very complicated and huge, greatly raising system costs and the requirements of operating rooms. These disadvantages have become the major impediments to the expansion of MIS robots. An integrated MIS robotic system is proposed based on the analysis of advantages and disadvantages of different MIS robots. In the proposed system, the master manipulators, slave manipulators, image display device and control system have been designed as a whole. Modular design is adopted for the control system for easy maintenance and upgrade. The kinematic relations between the master and the slave are also investigated and embedded in software to realize intuitive movements of hand and instrument. Finally, animal experiments were designed to test the effectiveness of the robot. The robot realizes natural hand-eye movements between the master and the slave to facilitate MIS operations. The experimental results show that the robot can realize similar functions to those of current commercialized robots. The integrated design simplifies the robotic system and facilitates use of the robot. Compared with the commercialized robots, the proposed MIS robot achieves similar functions and features but with a smaller size and less weight. Copyright © 2011 John Wiley & Sons, Ltd.

  2. 7 CFR 800.99 - Checkweighing sacked grain.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the instructions. (c) Protecting samples and data. Official personnel and other employees of an agency or the Service shall protect official weight samples and data from manipulation, substitution, and improper and careless handling which might deprive the samples and sample data of their representativeness...

  3. 7 CFR 800.99 - Checkweighing sacked grain.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... the instructions. (c) Protecting samples and data. Official personnel and other employees of an agency or the Service shall protect official weight samples and data from manipulation, substitution, and improper and careless handling which might deprive the samples and sample data of their representativeness...

  4. Sample mounting and transfer for coupling an ultrahigh vacuum variable temperature beetle scanning tunneling microscope with conventional surface probes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nafisi, Kourosh; Ranau, Werner; Hemminger, John C.

    2001-01-01

    We present a new ultrahigh vacuum (UHV) chamber for surface analysis and microscopy at controlled, variable temperatures. The new instrument allows surface analysis with Auger electron spectroscopy, low energy electron diffraction, quadrupole mass spectrometer, argon ion sputtering gun, and a variable temperature scanning tunneling microscope (VT-STM). In this system, we introduce a novel procedure for transferring a sample off a conventional UHV manipulator and onto a scanning tunneling microscope in the conventional ''beetle'' geometry, without disconnecting the heating or thermocouple wires. The microscope, a modified version of the Besocke beetle microscope, is mounted on a 2.75 in. outer diameter UHVmore » flange and is directly attached to the base of the chamber. The sample is attached to a tripod sample holder that is held by the main manipulator. Under UHV conditions the tripod sample holder can be removed from the main manipulator and placed onto the STM. The VT-STM has the capability of acquiring images between the temperature range of 180--500 K. The performance of the chamber is demonstrated here by producing an ordered array of island vacancy defects on a Pt(111) surface and obtaining STM images of these defects.« less

  5. The Use of Manipulatives in Mathematics Education

    ERIC Educational Resources Information Center

    Larbi, Ernest; Mavis, Okyere

    2016-01-01

    The study was designed to investigate the efficacy of using algebra tile manipulatives in junior high school students' performance. The study sample comprised 56 students from two schools purposely selected from two towns within the Komenda Edina Eguafo Abirem municipality. The students were made up of two groups; the experimental and the control…

  6. Manipulation complexity in primates coevolved with brain size and terrestriality

    PubMed Central

    Heldstab, Sandra A.; Kosonen, Zaida K.; Koski, Sonja E.; Burkart, Judith M.; van Schaik, Carel P.; Isler, Karin

    2016-01-01

    Humans occupy by far the most complex foraging niche of all mammals, built around sophisticated technology, and at the same time exhibit unusually large brains. To examine the evolutionary processes underlying these features, we investigated how manipulation complexity is related to brain size, cognitive test performance, terrestriality, and diet quality in a sample of 36 non-human primate species. We categorized manipulation bouts in food-related contexts into unimanual and bimanual actions, and asynchronous or synchronous hand and finger use, and established levels of manipulative complexity using Guttman scaling. Manipulation categories followed a cumulative ranking. They were particularly high in species that use cognitively challenging food acquisition techniques, such as extractive foraging and tool use. Manipulation complexity was also consistently positively correlated with brain size and cognitive test performance. Terrestriality had a positive effect on this relationship, but diet quality did not affect it. Unlike a previous study on carnivores, we found that, among primates, brain size and complex manipulations to acquire food underwent correlated evolution, which may have been influenced by terrestriality. Accordingly, our results support the idea of an evolutionary feedback loop between manipulation complexity and cognition in the human lineage, which may have been enhanced by increasingly terrestrial habits. PMID:27075921

  7. Noise and complexity in human postural control: interpreting the different estimations of entropy.

    PubMed

    Rhea, Christopher K; Silver, Tobin A; Hong, S Lee; Ryu, Joong Hyun; Studenka, Breanna E; Hughes, Charmayne M L; Haddad, Jeffrey M

    2011-03-17

    Over the last two decades, various measures of entropy have been used to examine the complexity of human postural control. In general, entropy measures provide information regarding the health, stability and adaptability of the postural system that is not captured when using more traditional analytical techniques. The purpose of this study was to examine how noise, sampling frequency and time series length influence various measures of entropy when applied to human center of pressure (CoP) data, as well as in synthetic signals with known properties. Such a comparison is necessary to interpret data between and within studies that use different entropy measures, equipment, sampling frequencies or data collection durations. The complexity of synthetic signals with known properties and standing CoP data was calculated using Approximate Entropy (ApEn), Sample Entropy (SampEn) and Recurrence Quantification Analysis Entropy (RQAEn). All signals were examined at varying sampling frequencies and with varying amounts of added noise. Additionally, an increment time series of the original CoP data was examined to remove long-range correlations. Of the three measures examined, ApEn was the least robust to sampling frequency and noise manipulations. Additionally, increased noise led to an increase in SampEn, but a decrease in RQAEn. Thus, noise can yield inconsistent results between the various entropy measures. Finally, the differences between the entropy measures were minimized in the increment CoP data, suggesting that long-range correlations should be removed from CoP data prior to calculating entropy. The various algorithms typically used to quantify the complexity (entropy) of CoP may yield very different results, particularly when sampling frequency and noise are different. The results of this study are discussed within the context of the neural noise and loss of complexity hypotheses.

  8. Soft Robotic Grippers for Biological Sampling on Deep Reefs.

    PubMed

    Galloway, Kevin C; Becker, Kaitlyn P; Phillips, Brennan; Kirby, Jordan; Licht, Stephen; Tchernov, Dan; Wood, Robert J; Gruber, David F

    2016-03-01

    This article presents the development of an underwater gripper that utilizes soft robotics technology to delicately manipulate and sample fragile species on the deep reef. Existing solutions for deep sea robotic manipulation have historically been driven by the oil industry, resulting in destructive interactions with undersea life. Soft material robotics relies on compliant materials that are inherently impedance matched to natural environments and to soft or fragile organisms. We demonstrate design principles for soft robot end effectors, bench-top characterization of their grasping performance, and conclude by describing in situ testing at mesophotic depths. The result is the first use of soft robotics in the deep sea for the nondestructive sampling of benthic fauna.

  9. Soft Robotic Grippers for Biological Sampling on Deep Reefs

    PubMed Central

    Galloway, Kevin C.; Becker, Kaitlyn P.; Phillips, Brennan; Kirby, Jordan; Licht, Stephen; Tchernov, Dan; Gruber, David F.

    2016-01-01

    Abstract This article presents the development of an underwater gripper that utilizes soft robotics technology to delicately manipulate and sample fragile species on the deep reef. Existing solutions for deep sea robotic manipulation have historically been driven by the oil industry, resulting in destructive interactions with undersea life. Soft material robotics relies on compliant materials that are inherently impedance matched to natural environments and to soft or fragile organisms. We demonstrate design principles for soft robot end effectors, bench-top characterization of their grasping performance, and conclude by describing in situ testing at mesophotic depths. The result is the first use of soft robotics in the deep sea for the nondestructive sampling of benthic fauna. PMID:27625917

  10. Estimating thumb–index finger precision grip and manipulation potential in extant and fossil primates

    PubMed Central

    Feix, Thomas; Kivell, Tracy L.; Pouydebat, Emmanuelle; Dollar, Aaron M.

    2015-01-01

    Primates, and particularly humans, are characterized by superior manual dexterity compared with other mammals. However, drawing the biomechanical link between hand morphology/behaviour and functional capabilities in non-human primates and fossil taxa has been challenging. We present a kinematic model of thumb–index precision grip and manipulative movement based on bony hand morphology in a broad sample of extant primates and fossil hominins. The model reveals that both joint mobility and digit proportions (scaled to hand size) are critical for determining precision grip and manipulation potential, but that having either a long thumb or great joint mobility alone does not necessarily yield high precision manipulation. The results suggest even the oldest available fossil hominins may have shared comparable precision grip manipulation with modern humans. In particular, the predicted human-like precision manipulation of Australopithecus afarensis, approximately one million years before the first stone tools, supports controversial archaeological evidence of tool-use in this taxon. PMID:25878134

  11. Estimating thumb-index finger precision grip and manipulation potential in extant and fossil primates.

    PubMed

    Feix, Thomas; Kivell, Tracy L; Pouydebat, Emmanuelle; Dollar, Aaron M

    2015-05-06

    Primates, and particularly humans, are characterized by superior manual dexterity compared with other mammals. However, drawing the biomechanical link between hand morphology/behaviour and functional capabilities in non-human primates and fossil taxa has been challenging. We present a kinematic model of thumb-index precision grip and manipulative movement based on bony hand morphology in a broad sample of extant primates and fossil hominins. The model reveals that both joint mobility and digit proportions (scaled to hand size) are critical for determining precision grip and manipulation potential, but that having either a long thumb or great joint mobility alone does not necessarily yield high precision manipulation. The results suggest even the oldest available fossil hominins may have shared comparable precision grip manipulation with modern humans. In particular, the predicted human-like precision manipulation of Australopithecus afarensis, approximately one million years before the first stone tools, supports controversial archaeological evidence of tool-use in this taxon. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  12. An Astronaut Assistant Rover for Martian Surface Exploration

    NASA Astrophysics Data System (ADS)

    1999-01-01

    Lunar exploration, recent field tests, and even on-orbit operations suggest the need for a robotic assistant for an astronaut during extravehicular activity (EVA) tasks. The focus of this paper is the design of a 300-kg, 2 cubic meter, semi-autonomous robotic rover to assist astronauts during Mars surface exploration. General uses of this rover include remote teleoperated control, local EVA astronaut control, and autonomous control. Rover size, speed, sample capacity, scientific payload and dexterous fidelity were based on known Martian environmental parameters,- established National Aeronautics and Space Administration (NASA) standards, the NASA Mars Exploration Reference Mission, and lessons learned from lunar and on-orbit sorties. An assumed protocol of a geological, two astronaut EVA performed during daylight hours with a maximum duration of tour hour dictated the following design requirements: (1) autonomously follow the EVA team over astronaut traversable Martian terrain for four hours; (2) retrieve, catalog, and carry 12 kg of samples; (3) carry tools and minimal in-field scientific equipment; (4) provide contingency life support; (5) compile and store a detailed map of surrounding terrain and estimate current position with respect to base camp; (6) provide supplemental communications systems; and (7) carry and support the use of a 7 degree - of- freedom dexterous manipulator.

  13. Multipotent Mesenchymal Stromal Stem Cell Expansion by Plating Whole Bone Marrow at a Low Cellular Density: A More Advantageous Method for Clinical Use

    PubMed Central

    Mareschi, Katia; Rustichelli, Deborah; Calabrese, Roberto; Gunetti, Monica; Sanavio, Fiorella; Castiglia, Sara; Risso, Alessandra; Ferrero, Ivana; Tarella, Corrado; Fagioli, Franca

    2012-01-01

    Mesenchymal stem cells (MSCs) are a promising source for cell therapy due to their pluripotency and immunomodulant proprieties. As the identification of “optimal” conditions is important to identify a standard procedure for clinical use. Percoll, Ficoll and whole bone marrow directly plated were tested from the same sample as separation methods. The cells were seeded at the following densities: 100 000, 10 000, 1000, 100, 10 cells/cm2. After reaching confluence, the cells were detached, pooled and re-plated at 1000, 500, 100, and 10 cells/cm2. Statistical analyses were performed. Cumulative Population Doublings (PD) did not show significant differences for the separation methods and seeding densities but only for the plating density. Some small quantity samples plated in T25 flasks at plating densities of 10 and 100 cells/cm2 did not produce any expansion. However, directly plated whole bone marrow resulted in a more advantageous method in terms of CFU-F number, cellular growth and minimal manipulation. No differences were observed in terms of gross morphology, differentiation potential or immunophenotype. These data suggest that plating whole bone marrow at a low cellular density may represent a good procedure for MSC expansion for clinical use. PMID:23715383

  14. Cavity Mediated Manipulation of Distant Spin Currents Using a Cavity-Magnon-Polariton.

    PubMed

    Bai, Lihui; Harder, Michael; Hyde, Paul; Zhang, Zhaohui; Hu, Can-Ming; Chen, Y P; Xiao, John Q

    2017-05-26

    Using electrical detection of a strongly coupled spin-photon system comprised of a microwave cavity mode and two magnetic samples, we demonstrate the long distance manipulation of spin currents. This distant control is not limited by the spin diffusion length, instead depending on the interplay between the local and global properties of the coupled system, enabling systematic spin current control over large distance scales (several centimeters in this work). This flexibility opens the door to improved spin current generation and manipulation for cavity spintronic devices.

  15. Demographic Responses To Climate Manipulations Across a Species Range

    NASA Astrophysics Data System (ADS)

    Oldfather, M. F.

    2016-12-01

    Species biogeographic responses to climate change will occur through the local extinction and establishment of populations. The overall performance of populations across a species range is shaped by the idiosyncratic sensitivities of demographic rates to the changing climate conditions. Heterogeneous topography partially decouples temperature and soil moisture presenting an opportunity to disentangle demographic sensitivity to multiple local climate variables and refine range shift predictions in response to complex climate change. Since 2013, I have monitored 16 populations of a long-lived alpine plant, Ivesia lycopodioides var. scandularis (Rosaceae) across the entirety of its altitudinal range in the arid White Mountains, CA (3350 - 4420m). I quantified microclimatic soil moisture and temperature, and the demographic rates of over 4,000 individuals. Demographic rates exhibited sensitivity to accumulated degree-days (ex. reproduction), soil volumetric water content (ex. germination), or the interaction between these climate variables (ex. survival). These observations motivated an experimental test of the relationship between demography and local climate with manipulations of increased summertime temperature and precipitation in nine populations. All demographic rates were sensitive to the climate manipulations and the magnitude of the demographic response depended on the population's location within the range. However, the modeled population growth rate was only minimally affected by the manipulations in most populations. The inverse responses of many of the demographic rates may allow populations to demographically buffer against the climate manipulations. However, in one low elevation edge population the negative effect of heating on survival overwhelmed the positive effect on germination, indicating that the capacity of populations to demographically buffer may have a limit.

  16. Approaches to chemical synthetic biology.

    PubMed

    Chiarabelli, Cristiano; Stano, Pasquale; Anella, Fabrizio; Carrara, Paolo; Luisi, Pier Luigi

    2012-07-16

    Synthetic biology is first represented in terms of two complementary aspects, the bio-engineering one, based on the genetic manipulation of extant microbial forms in order to obtain forms of life which do not exist in nature; and the chemical synthetic biology, an approach mostly based on chemical manipulation for the laboratory synthesis of biological structures that do not exist in nature. The paper is mostly devoted to shortly review chemical synthetic biology projects currently carried out in our laboratory. In particular, we describe: the minimal cell project, then the "Never Born Proteins" and lastly the Never Born RNAs. We describe and critically analyze the main results, emphasizing the possible relevance of chemical synthetic biology for the progress in basic science and biotechnology. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  17. Remote control for motor vehicle

    NASA Technical Reports Server (NTRS)

    Johnson, Dale R. (Inventor); Ciciora, John A. (Inventor)

    1984-01-01

    A remote controller is disclosed for controlling the throttle, brake and steering mechanism of a conventional motor vehicle, with the remote controller being particularly advantageous for use by severely handicapped individuals. The controller includes a remote manipulator which controls a plurality of actuators through interfacing electronics. The remote manipulator is a two-axis joystick which controls a pair of linear actuators and a rotary actuator, with the actuators being powered by electric motors to effect throttle, brake and steering control of a motor vehicle adapted to include the controller. The controller enables the driver to control the adapted vehicle from anywhere in the vehicle with one hand with minimal control force and range of motion. In addition, even though a conventional vehicle is adapted for use with the remote controller, the vehicle may still be operated in the normal manner.

  18. Microminiaturized minimally invasive intravascular micro-mechanical systems powered and controlled via fiber-optic cable

    DOEpatents

    Fitch, Joseph P.; Hagans, Karla; Clough, Robert; Matthews, Dennis L.; Lee, Abraham P.; Krulevitch, Peter A.; Benett, William J.; Da Silva, Luiz; Celliers, Peter M.

    1998-01-01

    A micro-mechanical system for medical procedures is constructed in the basic form of a catheter having a distal end for insertion into and manipulation within a body and a near end providing for a user to control the manipulation of the distal end within the body. A fiberoptic cable is disposed within the catheter and having a distal end proximate to the distal end of the catheter and a near end for external coupling of laser light energy. A microgripper is attached to the distal end of the catheter and providing for the gripping or releasing of an object within the body. A laser-light-to-mechanical-power converter is connected to receive laser light from the distal end of the fiberoptic cable and connected to mechanically actuate the microgripper.

  19. Microminiaturized minimally invasive intravascular micro-mechanical systems powered and controlled via fiber-optic cable

    DOEpatents

    Fitch, J.P.; Hagans, K.; Clough, R.; Matthews, D.L.; Lee, A.P.; Krulevitch, P.A.; Benett, W.J.; Silva, L. Da; Celliers, P.M.

    1998-03-03

    A micro-mechanical system for medical procedures is constructed in the basic form of a catheter having a distal end for insertion into and manipulation within a body and a near end providing for a user to control the manipulation of the distal end within the body. A fiber-optic cable is disposed within the catheter and having a distal end proximate to the distal end of the catheter and a near end for external coupling of laser light energy. A microgripper is attached to the distal end of the catheter and providing for the gripping or releasing of an object within the body. A laser-light-to-mechanical-power converter is connected to receive laser light from the distal end of the fiber-optic cable and connected to mechanically actuate the microgripper. 22 figs.

  20. Light Weight MP3 Watermarking Method for Mobile Terminals

    NASA Astrophysics Data System (ADS)

    Takagi, Koichi; Sakazawa, Shigeyuki; Takishima, Yasuhiro

    This paper proposes a novel MP3 watermarking method which is applicable to a mobile terminal with limited computational resources. Considering that in most cases the embedded information is copyright information or metadata, which should be extracted before playing back audio contents, the watermark detection process should be executed at high speed. However, when conventional methods are used with a mobile terminal, it takes a considerable amount of time to detect a digital watermark. This paper focuses on scalefactor manipulation to enable high speed watermark embedding/detection for MP3 audio and also proposes the manipulation method which minimizes audio quality degradation adaptively. Evaluation tests showed that the proposed method is capable of embedding 3 bits/frame information without degrading audio quality and detecting it at very high speed. Finally, this paper describes application examples for authentication with a digital signature.

  1. Syntactic analysis in sentence comprehension: effects of dependency types and grammatical constraints.

    PubMed

    De Vincenzi, M

    1996-01-01

    This paper presents three experiments on the parsing of Italian wh-questions that manipulate the wh-type (who vs. which-N) and the wh extraction site (main clause, dependent clause with or without complementizer). The aim of these manipulations is to see whether the parser is sensitive to the type of dependencies being processed and whether the processing effects can be explained by a unique processing principle, the minimal chain principle (MCP; De Vincenzi, 1991). The results show that the parser, following the MCP, prefers structures with fewer and less complex chains. In particular: (1) There is a processing advantage for the wh-subject extractions, the structures with less complex chains; (2) there is a processing dissociation between the who and which questions; (3) the parser respects the principle that governs the well-formedness of the empty categories (ECP).

  2. Solving Inverse Kinematics of Robot Manipulators by Means of Meta-Heuristic Optimisation

    NASA Astrophysics Data System (ADS)

    Wichapong, Kritsada; Bureerat, Sujin; Pholdee, Nantiwat

    2018-05-01

    This paper presents the use of meta-heuristic algorithms (MHs) for solving inverse kinematics of robot manipulators based on using forward kinematic. Design variables are joint angular displacements used to move a robot end-effector to the target in the Cartesian space while the design problem is posed to minimize error between target points and the positions of the robot end-effector. The problem is said to be a dynamic problem as the target points always changed by a robot user. Several well established MHs are used to solve the problem and the results obtained from using different meta-heuristics are compared based on the end-effector error and searching speed of the algorithms. From the study, the best performer will be obtained for setting as the baseline for future development of MH-based inverse kinematic solving.

  3. Support for context effects on segmentation and segments depends on the context.

    PubMed

    Heffner, Christopher C; Newman, Rochelle S; Idsardi, William J

    2017-04-01

    Listeners must adapt to differences in speech rate across talkers and situations. Speech rate adaptation effects are strong for adjacent syllables (i.e., proximal syllables). For studies that have assessed adaptation effects on speech rate information more than one syllable removed from a point of ambiguity in speech (i.e., distal syllables), the difference in strength between different types of ambiguity is stark. Studies of word segmentation have shown large shifts in perception as a result of distal rate manipulations, while studies of segmental perception have shown only weak, or even nonexistent, effects. However, no study has standardized methods and materials to study context effects for both types of ambiguity simultaneously. Here, a set of sentences was created that differed as minimally as possible except for whether the sentences were ambiguous to the voicing of a consonant or ambiguous to the location of a word boundary. The sentences were then rate-modified to slow down the distal context speech rate to various extents, dependent on three different definitions of distal context that were adapted from previous experiments, along with a manipulation of proximal context to assess whether proximal effects were comparable across ambiguity types. The results indicate that the definition of distal influenced the extent of distal rate effects strongly for both segments and segmentation. They also establish the presence of distal rate effects on word-final segments for the first time. These results were replicated, with some caveats regarding the perception of individual segments, in an Internet-based sample recruited from Mechanical Turk.

  4. Multifunctional picoliter droplet manipulation platform and its application in single cell analysis.

    PubMed

    Gu, Shu-Qing; Zhang, Yun-Xia; Zhu, Ying; Du, Wen-Bin; Yao, Bo; Fang, Qun

    2011-10-01

    We developed an automated and multifunctional microfluidic platform based on DropLab to perform flexible generation and complex manipulations of picoliter-scale droplets. Multiple manipulations including precise droplet generation, sequential reagent merging, and multistep solid-phase extraction for picoliter-scale droplets could be achieved in the present platform. The system precision in generating picoliter-scale droplets was significantly improved by minimizing the thermo-induced fluctuation of flow rate. A novel droplet fusion technique based on the difference of droplet interfacial tensions was developed without the need of special microchannel networks or external devices. It enabled sequential addition of reagents to droplets on demand for multistep reactions. We also developed an effective picoliter-scale droplet splitting technique with magnetic actuation. The difficulty in phase separation of magnetic beads from picoliter-scale droplets due to the high interfacial tension was overcome using ferromagnetic particles to carry the magnetic beads to pass through the phase interface. With this technique, multistep solid-phase extraction was achieved among picoliter-scale droplets. The present platform had the ability to perform complex multistep manipulations to picoliter-scale droplets, which is particularly required for single cell analysis. Its utility and potentials in single cell analysis were preliminarily demonstrated in achieving high-efficiency single-cell encapsulation, enzyme activity assay at the single cell level, and especially, single cell DNA purification based on solid-phase extraction.

  5. Multilateral haptics-based immersive teleoperation for improvised explosive device disposal

    NASA Astrophysics Data System (ADS)

    Erickson, David; Lacheray, Hervé; Daly, John

    2013-05-01

    Of great interest to police and military organizations is the development of effective improvised explosive device (IED) disposal (IEDD) technology to aid in activities such as mine field clearing, and bomb disposal. At the same time minimizing risk to personnel. This paper presents new results in the research and development of a next generation mobile immersive teleoperated explosive ordnance disposal system. This system incorporates elements of 3D vision, multilateral teleoperation for high transparency haptic feedback, immersive augmented reality operator control interfaces, and a realistic hardware-in-the-loop (HIL) 3D simulation environment incorporating vehicle and manipulator dynamics for both operator training and algorithm development. In the past year, new algorithms have been developed to facilitate incorporating commercial off-the-shelf (COTS) robotic hardware into the teleoperation system. In particular, a real-time numerical inverse position kinematics algorithm that can be applied to a wide range of manipulators has been implemented, an inertial measurement unit (IMU) attitude stabilization system for manipulators has been developed and experimentally validated, and a voice­operated manipulator control system has been developed and integrated into the operator control station. The integration of these components into a vehicle simulation environment with half-car vehicle dynamics has also been successfully carried out. A physical half-car plant is currently being constructed for HIL integration with the simulation environment.

  6. Control of Advanced Reactor-Coupled Heat Exchanger System: Incorporation of Reactor Dynamics in System Response to Load Disturbances

    DOE PAGES

    Skavdahl, Isaac; Utgikar, Vivek; Christensen, Richard; ...

    2016-05-24

    We present an alternative control schemes for an Advanced High Temperature Reactor system consisting of a reactor, an intermediate heat exchanger, and a secondary heat exchanger (SHX) in this paper. One scheme is designed to control the cold outlet temperature of the SHX (T co) and the hot outlet temperature of the intermediate heat exchanger (T ho2) by manipulating the hot-side flow rates of the heat exchangers (F h/F h2) responding to the flow rate and temperature disturbances. The flow rate disturbances typically require a larger manipulation of the flow rates than temperature disturbances. An alternate strategy examines the controlmore » of the cold outlet temperature of the SHX (T co) only, since this temperature provides the driving force for energy production in the power conversion unit or the process application. The control can be achieved by three options: (1) flow rate manipulation; (2) reactor power manipulation; or (3) a combination of the two. The first option has a quicker response but requires a large flow rate change. The second option is the slowest but does not involve any change in the flow rates of streams. The final option appears preferable as it has an intermediate response time and requires only a minimal flow rate change.« less

  7. Modelling the Shuttle Remote Manipulator System: Another flexible model

    NASA Technical Reports Server (NTRS)

    Barhorst, Alan A.

    1993-01-01

    High fidelity elastic system modeling algorithms are discussed. The particular system studied is the Space Shuttle Remote Manipulator System (RMS) undergoing full articulated motion. The model incorporates flexibility via a methodology the author has been developing. The technique is based in variational principles, so rigorous boundary condition generation and weak formulations for the associated partial differential equations are realized, yet the analyst need not integrate by parts. The methodology is formulated using vector-dyad notation with minimal use of tensor notation, therefore the technique is believed to be affable to practicing engineers. The objectives of this work are as follows: (1) determine the efficacy of the modeling method; and (2) determine if the method affords an analyst advantages in the overall modeling and simulation task. Generated out of necessity were Mathematica algorithms that quasi-automate the modeling procedure and simulation development. The project was divided into sections as follows: (1) model development of a simplified manipulator; (2) model development of the full-freedom RMS including a flexible movable base on a six degree of freedom orbiter (a rigid-body is attached to the manipulator end-effector); (3) simulation development for item 2; and (4) comparison to the currently used model of the flexible RMS in the Structures and Mechanics Division of NASA JSC. At the time of the writing of this report, items 3 and 4 above were not complete.

  8. Examining Computational Skills in Prekindergarteners: The Effects of Traditional and Digital Manipulatives in a Prekindergarten Classroom

    ERIC Educational Resources Information Center

    Mattoon, Cassandra; Bates, Alan; Shifflet, Rena; Latham, Nancy; Ennis, Sarah

    2015-01-01

    The authors investigated benefits of digital technology compared with traditional manipulatives in relation to preschoolers' development and learning of computational skills. The sample consisted of twenty four 4-and 5-year old children who attended a half-day prekindergarten program five times a week in a university laboratory school in the…

  9. Dialysis Extraction for Chromatography

    NASA Technical Reports Server (NTRS)

    Jahnsen, V. J.

    1985-01-01

    Chromatographic-sample pretreatment by dialysis detects traces of organic contaminants in water samples analyzed in field with minimal analysis equipment and minimal quantities of solvent. Technique also of value wherever aqueous sample and solvent must not make direct contact.

  10. Environmental Assessment Aerial Application of Pesticide for Mosquito Control at Tyndall Air Force Base and Vicinity

    DTIC Science & Technology

    2008-10-27

    near the proposed treatment area. d. The pesticides used will not negatively affect parklands, farmlands, wetlands , wild and scenic rivers, or...alternative, application over human populated areas and residences would be minimal. Wild or culti vate-d bee colonies would not be affected and...proposed treatment area; 2) MechanicaJJ y manipulate marshland/ wetland breeding areas through drainage or open marsh management activities. The

  11. Automated, Ultra-Sterile Solid Sample Handling and Analysis on a Chip

    NASA Technical Reports Server (NTRS)

    Mora, Maria F.; Stockton, Amanda M.; Willis, Peter A.

    2013-01-01

    There are no existing ultra-sterile lab-on-a-chip systems that can accept solid samples and perform complete chemical analyses without human intervention. The proposed solution is to demonstrate completely automated lab-on-a-chip manipulation of powdered solid samples, followed by on-chip liquid extraction and chemical analysis. This technology utilizes a newly invented glass micro-device for solid manipulation, which mates with existing lab-on-a-chip instrumentation. Devices are fabricated in a Class 10 cleanroom at the JPL MicroDevices Lab, and are plasma-cleaned before and after assembly. Solid samples enter the device through a drilled hole in the top. Existing micro-pumping technology is used to transfer milligrams of powdered sample into an extraction chamber where it is mixed with liquids to extract organic material. Subsequent chemical analysis is performed using portable microchip capillary electrophoresis systems (CE). These instruments have been used for ultra-highly sensitive (parts-per-trillion, pptr) analysis of organic compounds including amines, amino acids, aldehydes, ketones, carboxylic acids, and thiols. Fully autonomous amino acid analyses in liquids were demonstrated; however, to date there have been no reports of completely automated analysis of solid samples on chip. This approach utilizes an existing portable instrument that houses optics, high-voltage power supplies, and solenoids for fully autonomous microfluidic sample processing and CE analysis with laser-induced fluorescence (LIF) detection. Furthermore, the entire system can be sterilized and placed in a cleanroom environment for analyzing samples returned from extraterrestrial targets, if desired. This is an entirely new capability never demonstrated before. The ability to manipulate solid samples, coupled with lab-on-a-chip analysis technology, will enable ultraclean and ultrasensitive end-to-end analysis of samples that is orders of magnitude more sensitive than the ppb goal given in the Science Instruments.

  12. Precise Manipulation and Patterning of Protein Crystals for Macromolecular Crystallography Using Surface Acoustic Waves.

    PubMed

    Guo, Feng; Zhou, Weijie; Li, Peng; Mao, Zhangming; Yennawar, Neela H; French, Jarrod B; Huang, Tony Jun

    2015-06-01

    Advances in modern X-ray sources and detector technology have made it possible for crystallographers to collect usable data on crystals of only a few micrometers or less in size. Despite these developments, sample handling techniques have significantly lagged behind and often prevent the full realization of current beamline capabilities. In order to address this shortcoming, a surface acoustic wave-based method for manipulating and patterning crystals is developed. This method, which does not damage the fragile protein crystals, can precisely manipulate and pattern micrometer and submicrometer-sized crystals for data collection and screening. The technique is robust, inexpensive, and easy to implement. This method not only promises to significantly increase efficiency and throughput of both conventional and serial crystallography experiments, but will also make it possible to collect data on samples that were previously intractable. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Apparatus and Methods for Manipulation and Optimization of Biological Systems

    NASA Technical Reports Server (NTRS)

    Sun, Ren (Inventor); Ho, Chih-Ming (Inventor); Wong, Pak Kin (Inventor); Yu, Fuqu (Inventor)

    2014-01-01

    The invention provides systems and methods for manipulating biological systems, for example to elicit a more desired biological response from a biological sample, such as a tissue, organ, and/or a cell. In one aspect, the invention operates by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The invention can be used, e.g., to optimize any biological system, e.g., bioreactors for proteins, and the like, small molecules, polysaccharides, lipids, and the like. Another use of the apparatus and methods includes is for the discovery of key parameters in complex biological systems.

  14. The response of an individual vortex to local mechanical contact

    NASA Astrophysics Data System (ADS)

    Kremen, Anna; Wissberg, Shai; Shperber, Yishai; Kalisky, Beena

    2016-05-01

    Recently we reported a new way to manipulate vortices in thin superconducting films by local mechanical contact without magnetic field, current or altering the pinning landscape [1]. We use scanning superconducting interference device (SQUID) microscopy to image the vortices, and a piezo element to push the tip of a silicon chip into contact with the sample. As a result of the stress applied at the contact point, vortices in the proximity of the contact point change their location. Here we study the characteristics of this vortex manipulation, by following the response of individual vortices to single contact events. Mechanical manipulation of vortices provides local view of the interaction between strain and nanomagnetic objects, as well as controllable, effective, localized, and reproducible manipulation technique.

  15. Choice of rating scale labels: implication for minimizing patient satisfaction response ceiling effect in telemedicine surveys.

    PubMed

    Masino, Caterina; Lam, Tony C M

    2014-12-01

    Lack of response variability is problematic in surveys because of its detrimental effects on sensitivity and consequently reliability of the responses. In satisfaction surveys, this problem is caused by the ceiling effect resulting from high satisfaction ratings. A potential solution strategy is to manipulate the labels of the rating scale to create greater discrimination of responses on the high end of the response continuum. This study examined the effects of a positive-centered scale on the distribution and reliability of telemedicine satisfaction responses in a highly positive respondent population. In total, 216 telemedicine participants were randomly assigned to one of three experimental conditions as defined by the form of Likert scale: (1) 5-point Balanced Equal-Interval, (2) 5-point Positive-Packed, and (3) 5-point Positive-Centered Equal-Interval. Although the study findings were not statistically significant, partially because of sample size, the distribution and internal consistency reliability of responses occurred in the direction hypothesized. Loading the rating scale with more positive labels appears to be a useful strategy for reducing the ceiling effect and increases the discrimination ability of survey responses. The current research provides a survey design strategy to minimize ceiling effects. Although the findings provide some evidence suggesting the benefit of using rating scales loaded with positive labels, more research is needed to confirm this, as well as extend it to examine other types of rating scales and the interaction between rating scale formats and respondent characteristics.

  16. C-Terminal Protein Characterization by Mass Spectrometry: Isolation of C-Terminal Fragments from Cyanogen Bromide-Cleaved Protein

    PubMed Central

    Nika, Heinz; Hawke, David H.; Angeletti, Ruth Hogue

    2014-01-01

    A sample preparation method for protein C-terminal peptide isolation from cyanogen bromide (CNBr) digests has been developed. In this strategy, the analyte was reduced and carboxyamidomethylated, followed by CNBr cleavage in a one-pot reaction scheme. The digest was then adsorbed on ZipTipC18 pipette tips for conjugation of the homoserine lactone-terminated peptides with 2,2′-dithiobis (ethylamine) dihydrochloride, followed by reductive release of 2-aminoethanethiol from the derivatives. The thiol-functionalized internal and N-terminal peptides were scavenged on activated thiol sepharose, leaving the C-terminal peptide in the flow-through fraction. The use of reversed-phase supports as a venue for peptide derivatization enabled facile optimization of the individual reaction steps for throughput and completeness of reaction. Reagents were replaced directly on the support, allowing the reactions to proceed at minimal sample loss. By this sequence of solid-phase reactions, the C-terminal peptide could be recognized uniquely in mass spectra of unfractionated digests by its unaltered mass signature. The use of the sample preparation method was demonstrated with low-level amounts of a whole, intact model protein. The C-terminal fragments were retrieved selectively and efficiently from the affinity support. The use of covalent chromatography for C-terminal peptide purification enabled recovery of the depleted material for further chemical and/or enzymatic manipulation. The sample preparation method provides for robustness and simplicity of operation and is anticipated to be expanded to gel-separated proteins and in a scaled-up format to high-throughput protein profiling in complex biological mixtures. PMID:24688319

  17. Minimally invasive periodontal therapy

    PubMed Central

    Dannan, Aous

    2011-01-01

    Minimally invasive dentistry is a concept that preserves dentition and supporting structures. However, minimally invasive procedures in periodontal treatment are supposed to be limited within periodontal surgery, the aim of which is to represent alternative approaches developed to allow less extensive manipulation of surrounding tissues than conventional procedures, while accomplishing the same objectives. In this review, the concept of minimally invasive periodontal surgery (MIPS) is firstly explained. An electronic search for all studies regarding efficacy and effectiveness of MIPS between 2001 and 2009 was conducted. For this purpose, suitable key words from Medical Subject Headings on PubMed were used to extract the required studies. All studies are demonstrated and important results are concluded. Preliminary data from case cohorts and from many studies reveal that the microsurgical access flap, in terms of MIPS, has a high potential to seal the healing wound from the contaminated oral environment by achieving and maintaining primary closure. Soft tissues are mostly preserved and minimal gingival recession is observed, an important feature to meet the demands of the patient and the clinician in the esthetic zone. However, although the potential efficacy of MIPS in the treatment of deep intrabony defects has been proved, larger studies are required to confirm and extend the reported positive preliminary outcomes. PMID:22368356

  18. A Novel Shape Memory Alloy Annuloplasty Ring for Minimally Invasive Surgery: Design, Fabrication, and Evaluation

    PubMed Central

    Purser, Molly F.; Richards, Andrew L.; Cook, Richard C.; Osborne, Jason A.; Cormier, Denis R.; Buckner, Gregory D.

    2013-01-01

    A novel annuloplasty ring with a shape memory alloy core has been developed to facilitate minimally invasive mitral valve repair. In its activated (austenitic) phase, this prototype ring has comparable mechanical properties to commercial semi-rigid rings. In its pre-activated (martensitic) phase, this ring is flexible enough to be introduced through an 8-mm trocar and easily manipulated with robotic instruments within the confines of a left atrial model. The core is constructed of 0.50 mm diameter NiTi, which is maintained below its martensitic transition temperature (24 °C) during deployment and suturing. After suturing, the ring is heated above its austenitic transition temperature (37 °C, normal human body temperature) enabling the NiTi core to attain its optimal geometry and stiffness characteristics indefinitely. This article summarizes the design, fabrication, and evaluation of this prototype ring. Experimental results suggest that the NiTi core ring could be a viable alternative to flexible bands in robot-assisted minimally invasive mitral valve repair. PMID:20652747

  19. Manipulating mesoscopic multipartite entanglement with atom-light interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stasinska, J.; Rodo, C.; Paganelli, S.

    2009-12-15

    Entanglement between two macroscopic atomic ensembles induced by measurement on an ancillary light system has proven to be a powerful method for engineering quantum memories and quantum state transfer. Here we investigate the feasibility of such methods for generation, manipulation, and detection of genuine multipartite entanglement (Greenberger-Horne-Zeilinger and clusterlike states) between mesoscopic atomic ensembles without the need of individual addressing of the samples. Our results extend in a nontrivial way the Einstein-Podolsky-Rosen entanglement between two macroscopic gas samples reported experimentally in [B. Julsgaard, A. Kozhekin, and E. Polzik, Nature (London) 413, 400 (2001)]. We find that under realistic conditions, amore » second orthogonal light pulse interacting with the atomic samples, can modify and even reverse the entangling action of the first one leaving the samples in a separable state.« less

  20. Apparatus and methods for manipulation and optimization of biological systems

    NASA Technical Reports Server (NTRS)

    Sun, Ren (Inventor); Ho, Chih-Ming (Inventor); Wong, Pak Kin (Inventor); Yu, Fuqu (Inventor)

    2012-01-01

    The invention provides systems and methods for manipulating, e.g., optimizing and controlling, biological systems, e.g., for eliciting a more desired biological response of biological sample, such as a tissue, organ, and/or a cell. In one aspect, systems and methods of the invention operate by efficiently searching through a large parametric space of stimuli and system parameters to manipulate, control, and optimize the response of biological samples sustained in the system, e.g., a bioreactor. In alternative aspects, systems include a device for sustaining cells or tissue samples, one or more actuators for stimulating the samples via biochemical, electromagnetic, thermal, mechanical, and/or optical stimulation, one or more sensors for measuring a biological response signal of the samples resulting from the stimulation of the sample. In one aspect, the systems and methods of the invention use at least one optimization algorithm to modify the actuator's control inputs for stimulation, responsive to the sensor's output of response signals. The compositions and methods of the invention can be used, e.g., to for systems optimization of any biological manufacturing or experimental system, e.g., bioreactors for proteins, e.g., therapeutic proteins, polypeptides or peptides for vaccines, and the like, small molecules (e.g., antibiotics), polysaccharides, lipids, and the like. Another use of the apparatus and methods includes combination drug therapy, e.g. optimal drug cocktail, directed cell proliferations and differentiations, e.g. in tissue engineering, e.g. neural progenitor cells differentiation, and discovery of key parameters in complex biological systems.

  1. Immediate effects of manipulation of the talocrural joint on stabilometry and baropodometry in patients with ankle sprain.

    PubMed

    López-Rodríguez, Sandra; Fernández de-Las-Peñas, César; Alburquerque-Sendín, Francisco; Rodríguez-Blanco, Cleofás; Palomeque-del-Cerro, Luis

    2007-01-01

    This study assessed the immediate effects of talocrural joint manipulation on stabilometric and baropodometric outcomes in patients with grade II ankle sprain. Fifty-two field hockey players (35 men and 17 women) between 18 and 40 years old (mean = 22.5 years, SD = 3.6 years) were included in this study. A simple blind, intrapatient, placebo-controlled, and repeated-measures study was carried out. All the patients underwent a baropodometric study performed with a Foot Work force platform (4 times; pre-post placebo group and pre-post intervention group). The sample was subjected to two techniques of manipulative treatment: (a) talocrural joint manipulation and (b) posterior gliding manipulation over the talus. In a second instance, placebo manipulation was applied. Unilateral analysis of variance and multivariate analysis of variance were used for statistical analysis. The results in the intervention group revealed significant differences in the percentage of posterior load on the foot (P = .015) and the percentage of bilateral anterior load (P = .02) before and after the manipulation. The placebo group did not show any change in any of the variables except for area (P = .045). Intergroup comparison revealed statistically significant differences in the increase in percentage of posterior load on the manipulated foot, percentage of bilateral posterior load, percentage of anterior load on the manipulated foot, and percentage of bilateral anterior load (with the exception of the total load on the foot). The application of caudal talocrural joint manipulation, as compared with placebo manipulation, in athletic patients with grade II ankle sprain redistributed the load supports at the level of the foot.

  2. The Effect of Dynamic Geometry Software and Physical Manipulatives on Candidate Teachers' Transformational Geometry Success

    ERIC Educational Resources Information Center

    Yilmaz, Gül Kaleli

    2015-01-01

    This study aims to investigate the effects of using Dynamic Geometry Software (DGS) Cabri II Plus and physical manipulatives on the transformational geometry achievement of candidate teachers. In this study, the semi-experimental method was used, consisting of two experimental and one control groups. The samples of this study were 117 students. A…

  3. Molecular Modeling of Nucleic Acid Structure: Electrostatics and Solvation

    PubMed Central

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E.

    2014-01-01

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand the structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as means to sample conformational space for a better understanding of the relevance of a given model. From this discussion, the major limitations with modeling, in general, were highlighted. These are the difficult issues in sampling conformational space effectively—the multiple minima or conformational sampling problems—and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These are discussed in detail in this unit. PMID:18428877

  4. Molecular modeling of nucleic Acid structure: electrostatics and solvation.

    PubMed

    Bergonzo, Christina; Galindo-Murillo, Rodrigo; Cheatham, Thomas E

    2014-12-19

    This unit presents an overview of computer simulation techniques as applied to nucleic acid systems, ranging from simple in vacuo molecular modeling techniques to more complete all-atom molecular dynamics treatments that include an explicit representation of the environment. The third in a series of four units, this unit focuses on critical issues in solvation and the treatment of electrostatics. UNITS 7.5 & 7.8 introduced the modeling of nucleic acid structure at the molecular level. This included a discussion of how to generate an initial model, how to evaluate the utility or reliability of a given model, and ultimately how to manipulate this model to better understand its structure, dynamics, and interactions. Subject to an appropriate representation of the energy, such as a specifically parameterized empirical force field, the techniques of minimization and Monte Carlo simulation, as well as molecular dynamics (MD) methods, were introduced as a way of sampling conformational space for a better understanding of the relevance of a given model. This discussion highlighted the major limitations with modeling in general. When sampling conformational space effectively, difficult issues are encountered, such as multiple minima or conformational sampling problems, and accurately representing the underlying energy of interaction. In order to provide a realistic model of the underlying energetics for nucleic acids in their native environments, it is crucial to include some representation of solvation (by water) and also to properly treat the electrostatic interactions. These subjects are discussed in detail in this unit. Copyright © 2014 John Wiley & Sons, Inc.

  5. Management of Dupuytren contracture with ultrasound-guided lidocaine injection and needle aponeurotomy coupled with osteopathic manipulative treatment.

    PubMed

    Sampson, Steven; Meng, Michael; Schulte, Adam; Trainor, Drew; Montenegro, Roberto; Aufiero, Danielle

    2011-02-01

    Dupuytren contracture is a debilitating disease that characteristically presents as a firm nodularity on the palmar surface of the hand with coalescing cords of soft tissue on the webs and digits. With few nonsurgical modalities providing clinical benefits, open surgical procedures are the standard of care for patients with this condition. However, recent studies have associated surgical intervention with many complications, necessitating further exploration of nonsurgical treatment options. We describe the case of a 64-year-old woman who presented with decreased extension of the fourth and fifth digits on the upper extremities bilaterally; previous conservative treatment regimens had been unsuccessful. After a diagnostic ultrasound, the patient was diagnosed as having Dupuytren contracture and underwent 5 treatments consisting of ultrasound-guided dry-needle aponeurotomy, lidocaine injections, and osteopathic manipulative treatment. During the fifth treatment session, the patient experienced dramatic relief of her symptoms after a palpable release during the manual manipulation portion of her therapeutic regimen. At 2-week follow-up, the patient was symptom-free. Based on this desirable outcome, the authors suggest future research be directed at minimally invasive therapeutic options in the management of Dupuytren contracture.

  6. Laser nano-surgery for neuronal manipulation (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sarker, Hori Pada; Chudal, Lalit; Mahapatra, Vasu; Kim, Young-tae; Mohanty, Samarendra K.

    2016-03-01

    Optical manipulation has enabled study of bio-chemical and bio-mechanical properties of the cells. Laser nanosurgery by ultrafast laser beam with appropriate laser parameters provides spatially-targeted manipulation of neurons in a minimal invasiveness manner with high efficiency. We utilized femto-second laser nano-surgery for both axotomy and sub-axotomy of rat cortical neurons. Degeneration and regeneration after axotomy was studied with and without external growth-factor(s) and biochemical(s). Further, axonal injury was studied as a function of pulse energy, exposure and site of injury. The ability to study the response of neurons to localized injury opens up opportunities for screening potential molecules for repair and regeneration after nerve injury. Sub-axotomy enabled transient opening of axonal membrane for optical delivery of impermeable molecules to the axoplasm. Fast resealing of the axonal membrane after sub-axotomy without significant long-term damage to axon (monitored by its growth) was observed. We will present these experimental results along with theoretical simulation of injury due to laser nano-surgery and delivery via the transient pore. Targeted delivery of proteins such as antibodies, genes encoding reporter proteins, ion-channels and voltage indicators will allow visualization, activation and detection of the neuronal structure and function.

  7. Children's metacognitive judgments in an eyewitness identification task.

    PubMed

    Keast, Amber; Brewer, Neil; Wells, Gary L

    2007-08-01

    Two experiments examined children's metacognitive monitoring of recognition judgments within an eyewitness identification paradigm. A confidence-accuracy (CA) calibration approach was used to examine patterns of calibration, over-/underconfidence, and resolution. In Experiment 1, children (n=619, mean age=11 years 10 months) and adults (n=600) viewed a simulated crime and attempted two separate identifications from 8-person target-present or target-absent lineups given lineup instructions that manipulated witnesses choosing patterns by varying the degree of social pressure. For choosers, but not nonchoosers, meaningful CA relations were observed for adults but not for children. Experiment 2 tested a guided hypothesis disconfirmation manipulation designed to improve the realism of children's metacognitive judgments. Children (N=796, mean age=11 years 11 months) in experimental and control conditions viewed a crime and attempted two separate identifications. The manipulation had minimal impact on the CA relation for choosers and nonchoosers. In contrast to adults, children's identification confidence provides no useful guide for investigators about the likely guilt or innocence of a suspect. These experiments revealed limitations in children's metacognitive monitoring processes that have not been apparent in previous research on recall and recognition with younger children.

  8. An approach to multivariable control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    The paper presents simple schemes for multivariable control of multiple-joint robot manipulators in joint and Cartesian coordinates. The joint control scheme consists of two independent multivariable feedforward and feedback controllers. The feedforward controller is the minimal inverse of the linearized model of robot dynamics and contains only proportional-double-derivative (PD2) terms - implying feedforward from the desired position, velocity and acceleration. This controller ensures that the manipulator joint angles track any reference trajectories. The feedback controller is of proportional-integral-derivative (PID) type and is designed to achieve pole placement. This controller reduces any initial tracking error to zero as desired and also ensures that robust steady-state tracking of step-plus-exponential trajectories is achieved by the joint angles. Simple and explicit expressions of computation of the feedforward and feedback gains are obtained based on the linearized model of robot dynamics. This leads to computationally efficient schemes for either on-line gain computation or off-line gain scheduling to account for variations in the linearized robot model due to changes in the operating point. The joint control scheme is extended to direct control of the end-effector motion in Cartesian space. Simulation results are given for illustration.

  9. Two-Time Scale Virtual Sensor Design for Vibration Observation of a Translational Flexible-Link Manipulator Based on Singular Perturbation and Differential Games

    PubMed Central

    Ju, Jinyong; Li, Wei; Wang, Yuqiao; Fan, Mengbao; Yang, Xuefeng

    2016-01-01

    Effective feedback control requires all state variable information of the system. However, in the translational flexible-link manipulator (TFM) system, it is unrealistic to measure the vibration signals and their time derivative of any points of the TFM by infinite sensors. With the rigid-flexible coupling between the global motion of the rigid base and the elastic vibration of the flexible-link manipulator considered, a two-time scale virtual sensor, which includes the speed observer and the vibration observer, is designed to achieve the estimation for the vibration signals and their time derivative of the TFM, as well as the speed observer and the vibration observer are separately designed for the slow and fast subsystems, which are decomposed from the dynamic model of the TFM by the singular perturbation. Additionally, based on the linear-quadratic differential games, the observer gains of the two-time scale virtual sensor are optimized, which aims to minimize the estimation error while keeping the observer stable. Finally, the numerical calculation and experiment verify the efficiency of the designed two-time scale virtual sensor. PMID:27801840

  10. A laser primer for orthopaedic nurses.

    PubMed

    Michelson, S A

    1990-01-01

    Laser therapy is an efficient surgical intervention that minimizes tissue manipulation and destruction; however meticulous nursing care is required to safeguard the patient from potential hazards inherent in the procedure. A solid grounding in basic laser concepts including biophysics, correct operation of the equipment, safety, and maintenance will assist the nurse in providing comprehensive, high quality care. The emphasis of nursing practice should be oriented toward comprehensive patient education, psychosocial support, and safeguarding the patient from potential laser hazards.

  11. Minimized Capillary End Effect During CO2 Displacement in 2-D Micromodel by Manipulating Capillary Pressure at the Outlet Boundary in Lattice Boltzmann Method

    NASA Astrophysics Data System (ADS)

    Kang, Dong Hun; Yun, Tae Sup

    2018-02-01

    We propose a new outflow boundary condition to minimize the capillary end effect for a pore-scale CO2 displacement simulation. The Rothman-Keller lattice Boltzmann method with multi-relaxation time is implemented to manipulate a nonflat wall and inflow-outflow boundaries with physically acceptable fluid properties in 2-D microfluidic chip domain. Introducing a mean capillary pressure acting at CO2-water interface to the nonwetting fluid at the outlet effectively prevents CO2 injection pressure from suddenly dropping upon CO2 breakthrough such that the continuous CO2 invasion and the increase of CO2 saturation are allowed. This phenomenon becomes most pronounced at capillary number of logCa = -5.5, while capillary fingering and massive displacement of CO2 prevail at low and high capillary numbers, respectively. Simulations with different domain length in homogeneous and heterogeneous domains reveal that capillary pressure and CO2 saturation near the inlet are reproducible compared with those with a proposed boundary condition. The residual CO2 saturation uniquely follows the increasing tendency with increasing capillary number, corroborated by experimental evidences. The determination of the mean capillary pressure and its sensitivity are also discussed. The proposed boundary condition is commonly applicable to other pore-scale simulations to accurately capture the spatial distribution of nonwetting fluid and corresponding displacement ratio.

  12. OptForce: An Optimization Procedure for Identifying All Genetic Manipulations Leading to Targeted Overproductions

    PubMed Central

    Ranganathan, Sridhar; Suthers, Patrick F.; Maranas, Costas D.

    2010-01-01

    Computational procedures for predicting metabolic interventions leading to the overproduction of biochemicals in microbial strains are widely in use. However, these methods rely on surrogate biological objectives (e.g., maximize growth rate or minimize metabolic adjustments) and do not make use of flux measurements often available for the wild-type strain. In this work, we introduce the OptForce procedure that identifies all possible engineering interventions by classifying reactions in the metabolic model depending upon whether their flux values must increase, decrease or become equal to zero to meet a pre-specified overproduction target. We hierarchically apply this classification rule for pairs, triples, quadruples, etc. of reactions. This leads to the identification of a sufficient and non-redundant set of fluxes that must change (i.e., MUST set) to meet a pre-specified overproduction target. Starting with this set we subsequently extract a minimal set of fluxes that must actively be forced through genetic manipulations (i.e., FORCE set) to ensure that all fluxes in the network are consistent with the overproduction objective. We demonstrate our OptForce framework for succinate production in Escherichia coli using the most recent in silico E. coli model, iAF1260. The method not only recapitulates existing engineering strategies but also reveals non-intuitive ones that boost succinate production by performing coordinated changes on pathways distant from the last steps of succinate synthesis. PMID:20419153

  13. Quantitative Mapping of the Spatial Distribution of Nanoparticles in Endo-Lysosomes by Local pH.

    PubMed

    Wang, Jing; MacEwan, Sarah R; Chilkoti, Ashutosh

    2017-02-08

    Understanding the intracellular distribution and trafficking of nanoparticle drug carriers is necessary to elucidate their mechanisms of drug delivery and is helpful in the rational design of novel nanoparticle drug delivery systems. The traditional immunofluorescence method to study intracellular distribution of nanoparticles using organelle-specific antibodies is laborious and subject to artifacts. As an alternative, we developed a new method that exploits ratiometric fluorescence imaging of a pH-sensitive Lysosensor dye to visualize and quantify the spatial distribution of nanoparticles in the endosomes and lysosomes of live cells. Using this method, we compared the endolysosomal distribution of cell-penetrating peptide (CPP)-functionalized micelles to unfunctionalized micelles and found that CPP-functionalized micelles exhibited faster endosome-to-lysosome trafficking than unfunctionalized micelles. Ratiometric fluorescence imaging of pH-sensitive Lysosensor dye allows rapid quantitative mapping of nanoparticle distribution in endolysosomes in live cells while minimizing artifacts caused by extensive sample manipulation typical of alternative approaches. This new method can thus serve as an alternative to traditional immunofluorescence approaches to study the intracellular distribution and trafficking of nanoparticles within endosomes and lysosomes.

  14. Producing a superhydrophobic paper and altering its repellency through ink-jet printing.

    PubMed

    Barona, David; Amirfazli, A

    2011-03-07

    A new method for making superhydrophobic (SH) paper based on spraying a nanocomposite film is developed. Furthermore, manipulating the wetting characteristics of SH paper has been demonstrated through a new method, i.e. printing solid grey patterns of different intensities with simple printing technology (home or office grade ink-jet and laser printers). It has been found that for a range of ink intensities (0-85%), water drop mobility can be changed at a different rate (almost independently) from repellency. The repellency of water decreases minimally up to 85% ink intensity with a sharp decrease up to 100% ink intensity. Drop mobility remains constant up to 30% ink intensity with a steady decrease up to 100% ink intensity. It was observed that using ink-jet or laser printing would yield different results for the change of mobility or repellency with higher amounts of ink/toner used. Being able to achieve almost independent control of water drop mobility over water drop repellency on SH paper would allow inexpensive lab-on-paper devices to be used for sampling, mixing and transport of liquids.

  15. Fish intestinal microbiome: diversity and symbiosis unravelled by metagenomics.

    PubMed

    Tarnecki, A M; Burgos, F A; Ray, C L; Arias, C R

    2017-02-07

    The gut microbiome of vertebrates plays an integral role in host health by stimulating development of the immune system, aiding in nutrient acquisition and outcompeting opportunistic pathogens. Development of next-generation sequencing technologies allows researchers to survey complex communities of microorganisms within the microbiome at great depth with minimal costs, resulting in a surge of studies investigating bacterial diversity of fishes. Many of these studies have focused on the microbial structure of economically significant aquaculture species with the goal of manipulating the microbes to increase feed efficiency and decrease disease susceptibility. The unravelling of intricate host-microbe symbioses and identification of core microbiome functions is essential to our ability to use the benefits of a healthy microbiome to our advantage in fish culture, as well as gain deeper understanding of bacterial roles in vertebrate health. This review aims to summarize the available knowledge on fish gastrointestinal communities obtained from metagenomics, including biases from sample processing, factors influencing assemblage structure, intestinal microbiology of important aquaculture species and description of the teleostean core microbiome. Journal of Applied Microbiology © 2017 The Society for Applied Microbiology.

  16. Contractile recovery of microtissues after giant shear events

    NASA Astrophysics Data System (ADS)

    Morley, Cameron; Bhattacharjee, Tapomoy; Ellison, Sarah; Sawyer, W.; Angelini, Thomas

    Cells are often dispersed in extracellular matrix (ECM) gels like collagen and Matrigel as minimal tissue models. Generally, large-scale contraction of these constructs is observed, in which the degree of contraction of the entire system correlates with cell density and ECM concentration. The freedom to perform diverse mechanical experiments on these contracting constructs is limited by the challenges of handling and supporting these delicate samples. Here, we present a method to create simple cell-ECM constructs that can be manipulated with significantly reduced experimental limitations. We 3D print mixtures of MCF10A cells and ECM (collagen-I and Matrigel) into a 3D growth medium made from jammed microgels. With this approach, we are able to apply shear stresses to the cell constructs times after printing and observe the collective response. Preliminary results reveal that, following shear deformations that exceed 300% and dramatically smear cells and matrix in space, the cells actively re-contract the construct toward the un-sheared construct. These results suggest that new principles of collective recovery can be employed for tissue engineering applications using jammed microgels as a re-configurable support medium.

  17. Efficacy of the Stonehenge Technique for Minimally Invasive Aortic Valve Replacement via Right Infraaxillary Thoracotomy.

    PubMed

    Yamazaki, Masataka; Kin, Hajime; Kitamoto, Shohei; Yamanaka, Shota; Nishida, Hidefumi; Nishigawa, Kosaku; Takanashi, Shuichiro

    2017-02-20

    Minimally invasive cardiac surgeries for aortic valve replacement (AVR) are still a technical challenge for surgeons because these procedures are undertaken through small incisions and deep surgical fields. Although AVR via vertical infraaxillary thoracotomy can be a cosmetically superior option, a disadvantage of this approach is the distance between the thoracotomy incision and the ascending aorta. Therefore, we devised a technique to perform all manipulations using the fingertips without the aid of a knot pusher or long-shafted surgical instruments. This was achieved by particular placement of several retracted sutures to the right chest wall. We named placement of these sutures the "Stonehenge technique." In conclusion, AVR via vertical infraaxillary thoracotomy with our Stonehenge technique can be safely and simply performed with superior cosmetic advantages.

  18. Tissue characterization using electrical impedance spectroscopy data: a linear algebra approach.

    PubMed

    Laufer, Shlomi; Solomon, Stephen B; Rubinsky, Boris

    2012-06-01

    In this study, we use a new linear algebra manipulation on electrical impedance spectroscopy measurements to provide real-time information regarding the nature of the tissue surrounding the needle in minimal invasive procedures. Using a Comsol Multiphysics three-dimensional model, a phantom based on ex vivo animal tissue and in vivo animal data, we demonstrate how tissue inhomogeneity can be characterized without any previous knowledge of the electrical properties of the different tissues, except that they should not be linearly dependent on a certain frequency range. This method may have applications in needle biopsies, radiation seeds, or minimally invasive surgery and can reduce the number of computer tomography or magnetic resonance imaging images. We conclude by demonstrating how this mathematical approach can be useful in other applications.

  19. From Loschmidt daemons to time-reversed waves.

    PubMed

    Fink, Mathias

    2016-06-13

    Time-reversal invariance can be exploited in wave physics to control wave propagation in complex media. Because time and space play a similar role in wave propagation, time-reversed waves can be obtained by manipulating spatial boundaries or by manipulating time boundaries. The two dual approaches will be discussed in this paper. The first approach uses 'time-reversal mirrors' with a wave manipulation along a spatial boundary sampled by a finite number of antennas. Related to this method, the role of the spatio-temporal degrees of freedom of the wavefield will be emphasized. In a second approach, waves are manipulated from a time boundary and we show that 'instantaneous time mirrors', mimicking the Loschmidt point of view, simultaneously acting in the entire space at once can also radiate time-reversed waves. © 2016 The Author(s).

  20. Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey.

    PubMed

    Shi, Chaoyang; Luo, Xiongbiao; Qi, Peng; Li, Tianliang; Song, Shuang; Najdovski, Zoran; Fukuda, Toshio; Ren, Hongliang

    2017-08-01

    Continuum robots provide inherent structural compliance with high dexterity to access the surgical target sites along tortuous anatomical paths under constrained environments and enable to perform complex and delicate operations through small incisions in minimally invasive surgery. These advantages enable their broad applications with minimal trauma and make challenging clinical procedures possible with miniaturized instrumentation and high curvilinear access capabilities. However, their inherent deformable designs make it difficult to realize 3-D intraoperative real-time shape sensing to accurately model their shape. Solutions to this limitation can lead themselves to further develop closely associated techniques of closed-loop control, path planning, human-robot interaction, and surgical manipulation safety concerns in minimally invasive surgery. Although extensive model-based research that relies on kinematics and mechanics has been performed, accurate shape sensing of continuum robots remains challenging, particularly in cases of unknown and dynamic payloads. This survey investigates the recent advances in alternative emerging techniques for 3-D shape sensing in this field and focuses on the following categories: fiber-optic-sensor-based, electromagnetic-tracking-based, and intraoperative imaging modality-based shape-reconstruction methods. The limitations of existing technologies and prospects of new technologies are also discussed.

  1. Engineered Biosynthesis of a Novel Amidated Polyketide, Using the Malonamyl-Specific Initiation Module from the Oxytetracycline Polyketide Synthase

    PubMed Central

    Zhang, Wenjun; Ames, Brian D.; Tsai, Shiou-Chuan; Tang, Yi

    2006-01-01

    Tetracyclines are aromatic polyketides biosynthesized by bacterial type II polyketide synthases (PKSs). Understanding the biochemistry of tetracycline PKSs is an important step toward the rational and combinatorial manipulation of tetracycline biosynthesis. To this end, we have sequenced the gene cluster of oxytetracycline (oxy and otc genes) PKS genes from Streptomyces rimosus. Sequence analysis revealed a total of 21 genes between the otrA and otrB resistance genes. We hypothesized that an amidotransferase, OxyD, synthesizes the malonamate starter unit that is a universal building block for tetracycline compounds. In vivo reconstitution using strain CH999 revealed that the minimal PKS and OxyD are necessary and sufficient for the biosynthesis of amidated polyketides. A novel alkaloid (WJ35, or compound 2) was synthesized as the major product when the oxy-encoded minimal PKS, the C-9 ketoreductase (OxyJ), and OxyD were coexpressed in CH999. WJ35 is an isoquinolone compound derived from an amidated decaketide backbone and cyclized with novel regioselectivity. The expression of OxyD with a heterologous minimal PKS did not afford similarly amidated polyketides, suggesting that the oxy-encoded minimal PKS possesses novel starter unit specificity. PMID:16597959

  2. View-Dependent Streamline Deformation and Exploration

    PubMed Central

    Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R.; Wong, Pak Chung

    2016-01-01

    Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely. PMID:26600061

  3. Reactivated Memories Compete for Expression After Pavlovian Extinction

    PubMed Central

    Laborda, Mario A.; Miller, Ralph R.

    2012-01-01

    We view the response decrement resulting from extinction treatment as an interference effect, in which the reactivated memory from acquisition competes with the reactivated memory from extinction for behavioral expression. For each of these memories, reactivation is proportional to both the strength of the stimulus-outcome association and the quality of the facilitatory cues for that association which are present at test. Here we review basic extinction and recovery-from-extinction phenomena, showing how these effects are explicable in this associative interference framework. Moreover, this orientation has and continues to dictate efficient manipulations for minimizing recovery from extinction. This in turn suggests procedures that might reduce relapse from exposure therapy for a number of psychological disorders. Some of these manipulations enhance the facilitatory cues from extinction that are present at test, others strengthen the extinction association (i.e., CS-no outcome), and yet others seem to work by a combination of these two processes. PMID:22326812

  4. View-Dependent Streamline Deformation and Exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tong, Xin; Edwards, John; Chen, Chun-Ming

    Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual cluttering for visualizing 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures.more » Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.« less

  5. The role of ants, birds and bats for ecosystem functions and yield in oil palm plantations.

    PubMed

    Denmead, Lisa H; Darras, Kevin; Clough, Yann; Diaz, Patrick; Grass, Ingo; Hoffmann, Munir P; Nurdiansyah, Fuad; Fardiansah, Rico; Tscharntke, Teja

    2017-07-01

    One of the world's most important and rapidly expanding crops, oil palm, is associated with low levels of biodiversity. Changes in predator communities might alter ecosystem services and subsequently sustainable management but these links have received little attention to date. Here, for the first time, we manipulated ant and flying vertebrate (birds and bats) access to oil palms in six smallholder plantations in Sumatra (Indonesia) and measured effects on arthropod communities, related ecosystem functions (herbivory, predation, decomposition and pollination) and crop yield. Arthropod predators increased in response to reductions in ant and bird access, but the overall effect of experimental manipulations on ecosystem functions was minimal. Similarly, effects on yield were not significant. We conclude that ecosystem functions and productivity in oil palm are, under current levels of low pest pressure and large pollinator populations, robust to large reductions of major predators. © 2017 by the Ecological Society of America.

  6. View-Dependent Streamline Deformation and Exploration.

    PubMed

    Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R; Wong, Pak Chung

    2016-07-01

    Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual clutter in 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.

  7. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice

    PubMed Central

    Montgomery, Kate L; Yeh, Alexander J; Ho, John S; Tsao, Vivien; Iyer, Shrivats Mohan; Grosenick, Logan; Ferenczi, Emily A; Tanabe, Yuji; Deisseroth, Karl; Delp, Scott L; Poon, Ada S Y

    2017-01-01

    To enable sophisticated optogenetic manipulation of neural circuits throughout the nervous system with limited disruption of animal behavior, light-delivery systems beyond fiber optic tethering and large, head-mounted wireless receivers are desirable. We report the development of an easy-to-construct, implantable wireless optogenetic device. Our smallest version (20 mg, 10 mm3) is two orders of magnitude smaller than previously reported wireless optogenetic systems, allowing the entire device to be implanted subcutaneously. With a radio-frequency (RF) power source and controller, this implant produces sufficient light power for optogenetic stimulation with minimal tissue heating (<1 °C). We show how three adaptations of the implant allow for untethered optogenetic control throughout the nervous system (brain, spinal cord and peripheral nerve endings) of behaving mice. This technology opens the door for optogenetic experiments in which animals are able to behave naturally with optogenetic manipulation of both central and peripheral targets. PMID:26280330

  8. A three-degree-of-freedom parallel manipulator for concentrated solar power towers: Modeling, simulation and design

    NASA Astrophysics Data System (ADS)

    Ghosal, Ashitava; Shyam, R. B. Ashith

    2016-05-01

    There is an increased thrust to harvest solar energy in India to meet increasing energy requirements and to minimize imported fossil fuels. In a solar power tower system, an array of tracking mirrors or heliostats are used to concentrate the incident solar energy on an elevated stationary receiver and then the thermal energy converted to electricity using a heat engine. The conventional method of tracking are the Azimuth-Elevation (Az-El) or Target-Aligned (T-A) mount. In both the cases, the mirror is rotated about two mutually perpendicular axes and is supported at the center using a pedestal which is fixed to the ground. In this paper, a three degree-of-freedom parallel manipulator, namely the 3-RPS, is proposed for tracking the sun in a solar power tower system. We present modeling, simulation and design of the 3-RPS parallel manipulator and show its advantages over conventional Az-El and T-A mounts. The 3-RPS manipulator consists of three rotary (R), three prismatic (P) and three spherical (S) joints and the mirror assembly is mounted at three points in contrast to the Az-El and T-A mounts. The kinematic equations for sun tracking are derived for the 3-RPS manipulator and from the simulations, we obtain the range of motion of the rotary, prismatic and spherical joints. Since the mirror assembly is mounted at three points, the wind load and self-weight are distributed and as a consequence, the deflections due to loading are smaller than in conventional mounts. It is shown that the weight of the supporting structure is between 15% and 65% less than that of conventional systems. Hence, even though one additional actuator is used, the larger area mirrors can be used and costs can be reduced.

  9. Learned Manipulation at Unconstrained Contacts Does Not Transfer across Hands

    PubMed Central

    Fu, Qiushi; Choi, Jason Y.; Gordon, Andrew M.; Jesunathadas, Mark; Santello, Marco

    2014-01-01

    Recent studies about sensorimotor control of the human hand have focused on how dexterous manipulation is learned and generalized. Here we address this question by testing the extent to which learned manipulation can be transferred when the contralateral hand is used and/or object orientation is reversed. We asked subjects to use a precision grip to lift a grip device with an asymmetrical mass distribution while minimizing object roll during lifting by generating a compensatory torque. Subjects were allowed to grasp anywhere on the object’s vertical surfaces, and were therefore able to modulate both digit positions and forces. After every block of eight trials performed in one manipulation context (i.e., using the right hand and at a given object orientation), subjects had to lift the same object in the second context for one trial (transfer trial). Context changes were made by asking subjects to switch the hand used to lift the object and/or rotate the object 180° about a vertical axis. Therefore, three transfer conditions, hand switch (HS), object rotation (OR), and both hand switch and object rotation (HS+OR), were tested and compared with hand matched control groups who did not experience context changes. We found that subjects in all transfer conditions adapted digit positions across multiple transfer trials similar to the learning of control groups, regardless of different changes of contexts. Moreover, subjects in both HS and HS+OR group also adapted digit forces similar to the control group, suggesting independent learning of the left hand. In contrast, the OR group showed significant negative transfer of the compensatory torque due to an inability to adapt digit forces. Our results indicate that internal representations of dexterous manipulation tasks may be primarily built through the hand used for learning and cannot be transferred across hands. PMID:25233091

  10. Effectiveness of radiation processing for elimination of Salmonella Typhimurium from minimally processed pineapple (Ananas comosus Merr.).

    PubMed

    Shashidhar, Ravindranath; Dhokane, Varsha S; Hajare, Sachin N; Sharma, Arun; Bandekar, Jayant R

    2007-04-01

    The microbiological quality of market samples of minimally processed (MP) pineapple was examined. The effectiveness of radiation treatment in eliminating Salmonella Typhimurium from laboratory inoculated ready-to-eat pineapple slices was also studied. Microbiological quality of minimally processed pineapple samples from Mumbai market was poor; 8.8% of the samples were positive for Salmonella. D(10) (the radiation dose required to reduce bacterial population by 90%) value for S. Typhimurium inoculated in pineapple was 0.242 kGy. Inoculated pack studies in minimally processed pineapple showed that the treatment with a 2-kGy dose of gamma radiation could eliminate 5 log CFU/g of S. Typhimurium. The pathogen was not detected from radiation-processed samples up to 12 d during storage at 4 and 10 degrees C. The processing of market samples with 1 and 2 kGy was effective in improving the microbiological quality of these products.

  11. Do Countries Consistently Engage in Misinforming the International Community about Their Efforts to Combat Money Laundering? Evidence Using Benford’s Law

    PubMed Central

    2017-01-01

    Indicators of compliance and efficiency in combatting money laundering, collected by EUROSTAT, are plagued with shortcomings. In this paper, I have carried out a forensic analysis on a 2003–2010 dataset of indicators of compliance and efficiency in combatting money laundering, that European Union member states self-reported to EUROSTAT, and on the basis of which, their efforts were evaluated. I used Benford’s law to detect any anomalous statistical patterns and found that statistical anomalies were also consistent with strategic manipulation. According to Benford’s law, if we pick a random sample of numbers representing natural processes, and look at the distribution of the first digits of these numbers, we see that, contrary to popular belief, digit 1 occurs most often, then digit 2, and so on, with digit 9 occurring in less than 5% of the sample. Without prior knowledge of Benford’s law, since people are not intuitively good at creating truly random numbers, deviations thereof can capture strategic alterations. In order to eliminate other sources of deviation, I have compared deviations in situations where incentives and opportunities for manipulation existed and in situations where they did not. While my results are not a conclusive proof of strategic manipulation, they signal that countries that faced incentives and opportunities to misinform the international community about their efforts to combat money laundering may have manipulated these indicators. Finally, my analysis points to the high potential for disruption that the manipulation of national statistics has, and calls for the acknowledgment that strategic manipulation can be an unintended consequence of the international community’s pressure on countries to put combatting money laundering on the top of their national agenda. PMID:28122058

  12. Do Countries Consistently Engage in Misinforming the International Community about Their Efforts to Combat Money Laundering? Evidence Using Benford's Law.

    PubMed

    Deleanu, Ioana Sorina

    2017-01-01

    Indicators of compliance and efficiency in combatting money laundering, collected by EUROSTAT, are plagued with shortcomings. In this paper, I have carried out a forensic analysis on a 2003-2010 dataset of indicators of compliance and efficiency in combatting money laundering, that European Union member states self-reported to EUROSTAT, and on the basis of which, their efforts were evaluated. I used Benford's law to detect any anomalous statistical patterns and found that statistical anomalies were also consistent with strategic manipulation. According to Benford's law, if we pick a random sample of numbers representing natural processes, and look at the distribution of the first digits of these numbers, we see that, contrary to popular belief, digit 1 occurs most often, then digit 2, and so on, with digit 9 occurring in less than 5% of the sample. Without prior knowledge of Benford's law, since people are not intuitively good at creating truly random numbers, deviations thereof can capture strategic alterations. In order to eliminate other sources of deviation, I have compared deviations in situations where incentives and opportunities for manipulation existed and in situations where they did not. While my results are not a conclusive proof of strategic manipulation, they signal that countries that faced incentives and opportunities to misinform the international community about their efforts to combat money laundering may have manipulated these indicators. Finally, my analysis points to the high potential for disruption that the manipulation of national statistics has, and calls for the acknowledgment that strategic manipulation can be an unintended consequence of the international community's pressure on countries to put combatting money laundering on the top of their national agenda.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fong, Erika J.; Huang, Chao; Hamilton, Julie

    Here, a major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection,more » system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.« less

  14. Exposure to criminal environment and criminal social identity in a sample of adult prisoners: The moderating role of psychopathic traits.

    PubMed

    Sherretts, Nicole; Boduszek, Daniel; Debowska, Agata

    2016-08-01

    The purpose of this study was to investigate the role of period of incarceration, criminal friend index (a retrospective measure intended to quantify criminal associations before 1st incarceration), and 4 psychopathy factors (interpersonal manipulation, callous affect, erratic lifestyle, and antisocial behavior) in criminal social identity (CSI) while controlling for age and gender. Participants were a sample of 501 incarcerated offenders (male n = 293; female n = 208) from 3 prisons located in Pennsylvania State. Moderated regression analyses indicated no significant direct association between period of incarceration and CSI or between criminal friend index and Measure of Criminal Social Identity (MCSI). However, a significant moderating effect of interpersonal manipulation on the relationship between period of incarceration and MCSI was observed. Period of incarceration was significantly positively correlated with MCSI (particularly with the in-group ties subscale) for only those offenders who scored high (1 SD above the mean) on interpersonal manipulation and significantly negatively correlated for those who scored low (1 SD below the mean) on interpersonal manipulation. Also, criminal friend index was positively significantly associated with in-group ties for high levels (1 SD above the mean) of callous affect. The main findings provide evidence for the claim that prisoners are likely to simulate changes in identity through the formation of bonds with other offenders and that this can be achieved using interpersonal manipulation skills. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  15. Acupuncture, chiropractic and osteopathy use in Australia: a national population survey

    PubMed Central

    Xue, Charlie CL; Zhang, Anthony L; Lin, Vivian; Myers, Ray; Polus, Barbara; Story, David F

    2008-01-01

    Background There have been no published national studies on the use in Australia of the manipulative therapies, acupuncture, chiropractic or osteopathy, or on matters including the purposes for which these therapies are used, treatment outcomes and the socio-demographic characteristics of users. Methods This study on the three manipulative therapies was a component of a broader investigation on the use of complementary and alternative therapies. For this we conducted a cross-sectional, population survey on a representative sample of 1,067 adults from the six states and two territories of Australia in 2005 by computer-assisted telephone interviews. The sample was recruited by random digit dialling. Results Over a 12-month period, approximately one in four adult Australians used either acupuncture (9.2%), chiropractic (16.1%) or osteopathy (4.6%) at least once. It is estimated that, adult Australians made 32.3 million visits to acupuncturists, chiropractors and osteopaths, incurring personal expenditure estimated to be A$1.58 billion in total. The most common conditions treated were back pain and related problems and over 90% of the users of each therapy considered their treatment to be very or somewhat helpful. Adverse events are reported. Nearly one fifth of users were referred to manipulative therapy practitioners by medical practitioners. Conclusion There is substantial use of manipulative therapies by adult Australians, especially for back-related problems. Treatments incur considerable personal expenditure. In general, patient experience is positive. Referral by medical practitioners is a major determinant of use of these manipulative therapies. PMID:18377663

  16. Vortex manipulation in a superconducting matrix with view on applications

    NASA Astrophysics Data System (ADS)

    Milošević, M. V.; Peeters, F. M.

    2010-05-01

    We show how a single flux quantum can be effectively manipulated in a superconducting film with a matrix of blind holes. Such a sample can serve as a basic memory element, where the position of the vortex in a k ×l matrix of pinning sites defines the desired combination of n bits of information (2n=k×l). Vortex placement is achieved by strategically applied current and the resulting position is read out via generated voltage between metallic contacts on the sample. Such a device can also act as a controllable source of a nanoengineered local magnetic field for, e.g., spintronics applications.

  17. Great apes select tools on the basis of their rigidity.

    PubMed

    Manrique, Héctor Marín; Gross, Alexandra Nam-Mi; Call, Josep

    2010-10-01

    Wild chimpanzees select tools according to their rigidity. However, little is known about whether choices are solely based on familiarity with the materials or knowledge about tool properties. Furthermore, it is unclear whether tool manipulation is required prior to selection or whether observation alone can suffice. We investigated whether chimpanzees (Pan troglodytes) (n = 9), bonobos (Pan paniscus) (n = 4), orangutans (Pongo pygmaeus) (n = 6), and gorillas (Gorilla gorilla) (n = 2) selected new tools on the basis of their rigidity. Subjects faced an out-of-reach reward and a choice of three tools differing in color, diameter, material, and rigidity. We used 10 different 3-tool sets (1 rigid, 2 flexible). Subjects were unfamiliar with the tools and needed to select and use the rigid tool to retrieve the reward. Experiment 1 showed that subjects chose the rigid tool from the first trial with a 90% success rate. Experiments 2a and 2b addressed the role of manipulation and observation in tool selection. Subjects performed equally well in conditions in which they could manipulate the tools themselves or saw the experimenter manipulate the tools but decreased their performance if they could only visually inspect the tools. Experiment 3 showed that subjects could select flexible tools (as opposed to rigid ones) to meet new task demands. We conclude that great apes spontaneously selected unfamiliar rigid or flexible tools even after gathering minimal observational information. 2010 APA, all rights reserved

  18. Low COST surgery setting for one-operational port laparoscopic hysterectomy surgery with ordinary laparoscopic instruments: preliminary results.

    PubMed

    Limberger, Leo Francisco; Campos, Luciana Silveira; da Alves, Nilton Jacinto Rosa; Pedrini, Daniel Siqueira; de Limberger, Andiara Souza

    2013-10-02

    Hysterectomy dates back to 120BC and is the second most commonly performed gynecological surgery in the world. Cosmetic demands and the necessity of rapid return to work have contributed to the minimally invasive laparoscopic approach for hysterectomy. The majority of reports describe the use of three or four incisions to perform the surgery (two or three for manipulation and one for optics). This work describes our experience with using only two ports for 11 patients who underwent video-laparoscopic hysterectomy surgery. One port was used for the optical system, and the second was used for manipulation. Early and late surgery complications, as well as the time to return to work and daily activities, were assessed. The mean age of the patients was 41.4 years old (range 16 to 52 years) and the mean uterine weight was 133.54 g, ranging from 35 g and 291 g. The operative time ranged from 30 to 60 minutes (average 46.4 minutes) and the hospital stay ranged between 24 and 48 hrs. No intraoperative complications occurred, and no early or late postoperative complications were recorded. Patients reported minimal pain during the first 24-48 hrs in the hospital. Patients returned to their daily activities within seven days after surgery. Clinical care follow-up continued until the 40th postoperative day. The laparoscopic hysterectomy technique with a single port for manipulation is a feasible procedure when the uterine weight is not greater than 400 mg with little postoperative pain. The patients had an early return-to-work and daily activities and a better cosmetic outcome. These preliminary data led us to make the one-operative port laparoscopic hysterectomy the procedure of choice for patients with a low uterine weight.

  19. A universal sample manipulator with 50 kV negative bias

    NASA Astrophysics Data System (ADS)

    Kenny, M. J.; Wielunski, L. S.; Scott, M. D.; Clissold, R. A.; Stevenson, D.; Baxter, G.

    1991-04-01

    A manipulator incorporating a number of novel features has been built for a research ion implanter. The system is designed to enable uniform dose implantation of both planar and nonplanar surfaces by incorporating one translational and two rotational degrees of freedom. Negative target bias of up to 50 kV may be applied to the target, thus increasing the ion energy by this amount. The target chamber and all external manipulator controls are grounded. With the exception of the high voltage power supply, cable and feedthrough, all high voltage components are within the vacuum system. A secondary electron suppression cage which can be held at a negative bias of up to 60 kV relative to the chamber (i.e. 10 kV relative to the manipulator) surrounds the manipulator. Performance has been evaluated using 15N ions and nuclear reaction analysis through 15N(p,α) 12C to profile ion concentrations for dose uniformity and for ion depth at elevated target potentials.

  20. Pneumatic artificial muscle actuators for compliant robotic manipulators

    NASA Astrophysics Data System (ADS)

    Robinson, Ryan Michael

    Robotic systems are increasingly being utilized in applications that require interaction with humans. In order to enable safe physical human-robot interaction, light weight and compliant manipulation are desirable. These requirements are problematic for many conventional actuation systems, which are often heavy, and typically use high stiffness to achieve high performance, leading to large impact forces upon collision. However, pneumatic artificial muscles (PAMs) are actuators that can satisfy these safety requirements while offering power-to-weight ratios comparable to those of conventional actuators. PAMs are extremely lightweight actuators that produce force in response to pressurization. These muscles demonstrate natural compliance, but have a nonlinear force-contraction profile that complicates modeling and control. This body of research presents solutions to the challenges associated with the implementation of PAMs as actuators in robotic manipulators, particularly with regard to modeling, design, and control. An existing PAM force balance model was modified to incorporate elliptic end geometry and a hyper-elastic constitutive relationship, dramatically improving predictions of PAM behavior at high contraction. Utilizing this improved model, two proof-of-concept PAM-driven manipulators were designed and constructed; design features included parallel placement of actuators and a tendon-link joint design. Genetic algorithm search heuristics were employed to determine an optimal joint geometry; allowing a manipulator to achieve a desired torque profile while minimizing the required PAM pressure. Performance of the manipulators was evaluated in both simulation and experiment employing various linear and nonlinear control strategies. These included output feedback techniques, such as proportional-integral-derivative (PID) and fuzzy logic, a model-based control for computed torque, and more advanced controllers, such as sliding mode, adaptive sliding mode, and adaptive neural network control. Results demonstrated the benefits of an accurate model in model-based control, and the advantages of adaptive neural network control when a model is unavailable or variations in payload are expected. Lastly, a variable recruitment strategy was applied to a group of parallel muscles actuating a common joint. Increased manipulator efficiency was observed when fewer PAMs were activated, justifying the use of variable recruitment strategies. Overall, this research demonstrates the benefits of pneumatic artificial muscles as actuators in robotics applications. It demonstrates that PAM-based manipulators can be well-modeled and can achieve high tracking accuracy over a wide range of payloads and inputs while maintaining natural compliance.

  1. Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps

    NASA Astrophysics Data System (ADS)

    Kim, Kyoohyun; Park, Yongkeun

    2017-05-01

    Optical trapping can manipulate the three-dimensional (3D) motion of spherical particles based on the simple prediction of optical forces and the responding motion of samples. However, controlling the 3D behaviour of non-spherical particles with arbitrary orientations is extremely challenging, due to experimental difficulties and extensive computations. Here, we achieve the real-time optical control of arbitrarily shaped particles by combining the wavefront shaping of a trapping beam and measurements of the 3D refractive index distribution of samples. Engineering the 3D light field distribution of a trapping beam based on the measured 3D refractive index map of samples generates a light mould, which can manipulate colloidal and biological samples with arbitrary orientations and/or shapes. The present method provides stable control of the orientation and assembly of arbitrarily shaped particles without knowing a priori information about the sample geometry. The proposed method can be directly applied in biophotonics and soft matter physics.

  2. Spinal Manipulative Therapy for Adolescent Idiopathic Scoliosis: A Systematic Review.

    PubMed

    Théroux, Jean; Stomski, Norman; Losco, Christine Dominique; Khadra, Christelle; Labelle, Hubert; Le May, Sylvie

    The purpose of this study was to perform a systematic review of clinical trials of spinal manipulative therapy for adolescent idiopathic scoliosis. Search strategies were developed for PubMed, CINHAL, and CENTRAL databases. Studies were included through June 2016 if they were prospective trials that evaluated spinal manipulative therapy (eg, chiropractic, osteopathic, physical therapy) for adolescent idiopathic scoliosis. Data were extracted and assessed by 2 independent reviewers. Cochrane risk of bias tools were used to assess the quality of the included studies. Data were reported qualitatively because heterogeneity prevented statistical pooling. Four studies satisfied the inclusion criteria and were critically appraised. The findings of the included studies indicated that spinal manipulative therapy might be effective for preventing curve progression or reducing Cobb angle. However, the lack of controls and small sample sizes precluded robust estimation of the interventions' effect sizes. There is currently insufficient evidence to establish whether spinal manipulative therapy may be beneficial for adolescent idiopathic scoliosis. The results of the included studies suggest that spinal manipulative therapy may be a promising treatment, but these studies were all at substantial risk of bias. Further high-quality studies are warranted to conclusively determine if spinal manipulative therapy may be effective in the management of adolescent idiopathic scoliosis. Copyright © 2017. Published by Elsevier Inc.

  3. Operational experience and design recommendations for teleoperated flight hardware

    NASA Technical Reports Server (NTRS)

    Burgess, T. W.; Kuban, D. P.; Hankins, W. W.; Mixon, R. W.

    1988-01-01

    Teleoperation (remote manipulation) will someday supplement/minimize astronaut extravehicular activity in space to perform such tasks as satellite servicing and repair, and space station construction and servicing. This technology is being investigated by NASA with teleoperation of two space-related tasks having been demonstrated at the Oak Ridge National Lab. The teleoperator experiments are discussed and the results of these experiments are summarized. The related equipment design recommendations are also presented. In addition, a general discussion of equipment design for teleoperation is also presented.

  4. Behavior-based multi-robot collaboration for autonomous construction tasks

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghazarian, Hrand; Robinson, Matthew

    2005-01-01

    The Robot Construction Crew (RCC) is a heterogeneous multi-robot system for autonomous construction of a structure through assembly of Long components. The two robot team demonstrates component placement into an existing structure in a realistic environment. The task requires component acquisition, cooperative transport, and cooperative precision manipulation. A behavior-based architecture provides adaptability. The RCC approach minimizes computation, power, communication, and sensing for applicability to space-related construction efforts, but the techniques are applicable to terrestrial construction tasks.

  5. Behavior-Based Multi-Robot Collaboration for Autonomous Construction Tasks

    NASA Technical Reports Server (NTRS)

    Stroupe, Ashley; Huntsberger, Terry; Okon, Avi; Aghazarian, Hrand; Robinson, Matthew

    2005-01-01

    We present a heterogeneous multi-robot system for autonomous construction of a structure through assembly of long components. Placement of a component within an existing structure in a realistic environment is demonstrated on a two-robot team. The task requires component acquisition, cooperative transport, and cooperative precision manipulation. Far adaptability, the system is designed as a behavior-based architecture. Far applicability to space-related construction efforts, computation, power, communication, and sensing are minimized, though the techniques developed are also applicable to terrestrial construction tasks.

  6. Invariant-Based Inverse Engineering of Crane Control Parameters

    NASA Astrophysics Data System (ADS)

    González-Resines, S.; Guéry-Odelin, D.; Tobalina, A.; Lizuain, I.; Torrontegui, E.; Muga, J. G.

    2017-11-01

    By applying invariant-based inverse engineering in the small-oscillation regime, we design the time dependence of the control parameters of an overhead crane (trolley displacement and rope length) to transport a load between two positions at different heights with minimal final-energy excitation for a microcanonical ensemble of initial conditions. The analogy between ion transport in multisegmented traps or neutral-atom transport in moving optical lattices and load manipulation by cranes opens a route for a useful transfer of techniques among very different fields.

  7. Specificity of Good Manufacturing Practice (GMP) for Biomedical Cell Products.

    PubMed

    Tulina, M A; Pyatigorskaya, N V

    2018-03-01

    The article describes special aspects of Good Manufacturing Practice (GMP) for biomedical cell products (BMCP) that imply high standards of aseptics throughout the entire productio process, strict requirements to donors and to the procedure of biomaterial isolation, guaranty of tracing BMCP products, defining processing procedures which allow to identify BMCP as minimally manipulated; continuous quality control and automation of the control process at all stages of manufacturing, which will ensure product release simultaneously with completion of technological operations.

  8. Theory for controlling individual self-propelled micro-swimmers by photon nudging II: confinement.

    PubMed

    Selmke, Markus; Khadka, Utsab; Bregulla, Andreas P; Cichos, Frank; Yang, Haw

    2018-04-18

    Photon nudging allows the manipulation and confinement of individual self-propelled micro-swimmers in 2D and 3D environments using feedback controls. Presented in this second part of a two-part contribution are theoretical models that afford the characterization for the positioning distribution associated with active localization. A derivation for the optimal nudging speed and acceptance angle is given for minimal placement uncertainty. The analytical solutions allow for a discussion on the physical underpinning that underlies controllability and optimality.

  9. Neurogenesis-mediated forgetting minimizes proactive interference.

    PubMed

    Epp, Jonathan R; Silva Mera, Rudy; Köhler, Stefan; Josselyn, Sheena A; Frankland, Paul W

    2016-02-26

    Established memories may interfere with the encoding of new memories, particularly when existing and new memories overlap in content. By manipulating levels of hippocampal neurogenesis, here we show that neurogenesis regulates this form of proactive interference. Increasing hippocampal neurogenesis weakens existing memories and, in doing so, facilitates the encoding of new, conflicting (but not non-conflicting) information in mice. Conversely, decreasing neurogenesis stabilizes existing memories, and impedes the encoding of new, conflicting information. These results suggest that reduced proactive interference is an adaptive benefit of neurogenesis-induced forgetting.

  10. An IRT Analysis of the Reading the Mind in the Eyes Test.

    PubMed

    Black, Jessica E

    2018-04-03

    The Reading the Mind in the Eyes Test (RMET; Baron-Cohen, Wheelwright, Hill, Raste, & Plumb, 2001 ), originally designed for use in clinical populations, has been used with increasing frequency as a measure of advanced social cognition in nonclinical samples (e.g., Domes, Heinriches, Michel, Berger, & Herpertz, 2007 ; Kidd & Castano, 2013 ; Mar, Oatley, Hirsh, de la Paz, & Peterson, 2006 ). The purpose of this research was to use item response theory to assess the ability of the RMET to detect differences at the high levels of theory of mind to be expected in neurotypical adults. Results indicate that the RMET is an easy test that fails to discriminate between individuals exhibiting high ability. As such, it is unlikely that it could adequately or reliably capture the expected effects of manipulations designed to boost ability in samples of neurotypical populations. Reported effects and noneffects from such manipulations might reflect noise introduced by inaccurate measurement; a more sensitive instrument is needed to verify the effects of manipulations to enhance theory of mind.

  11. Digital images are data: and should be treated as such.

    PubMed

    Cromey, Douglas W

    2013-01-01

    The scientific community has become very concerned about inappropriate image manipulation. In journals that check figures after acceptance, 20-25% of the papers contained at least one figure that did not comply with the journal's instructions to authors. The scientific press continues to report a small, but steady stream of cases of fraudulent image manipulation. Inappropriate image manipulation taints the scientific record, damages trust within science, and degrades science's reputation with the general public. Scientists can learn from historians and photojournalists, who have provided a number of examples of attempts to alter or misrepresent the historical record. Scientists must remember that digital images are numerically sampled data that represent the state of a specific sample when examined with a specific instrument. These data should be carefully managed. Changes made to the original data need to be tracked like the protocols used for other experimental procedures. To avoid pitfalls, unexpected artifacts, and unintentional misrepresentation of the image data, a number of image processing guidelines are offered.

  12. Digital Images Are Data: And Should Be Treated as Such

    PubMed Central

    Cromey, Douglas W.

    2014-01-01

    The scientific community has become very concerned about inappropriate image manipulation. In journals that check figures after acceptance, 20–25% of the papers contained at least one figure that did not comply with the journal’s instructions to authors. The scientific press continues to report a small, but steady stream of cases of fraudulent image manipulation. Inappropriate image manipulation taints the scientific record, damages trust within science, and degrades science’s reputation with the general public. Scientists can learn from historians and photojournalists, who have provided a number of examples of attempts to alter or misrepresent the historical record. Scientists must remember that digital images are numerically sampled data that represent the state of a specific sample when examined with a specific instrument. These data should be carefully managed. Changes made to the original data need to be tracked like the protocols used for other experimental procedures. To avoid pitfalls, unexpected artifacts, and unintentional misrepresentation of the image data, a number of image processing guidelines are offered. PMID:23026995

  13. Minimally processed vegetable salads: microbial quality evaluation.

    PubMed

    Fröder, Hans; Martins, Cecília Geraldes; De Souza, Katia Leani Oliveira; Landgraf, Mariza; Franco, Bernadette D G M; Destro, Maria Teresa

    2007-05-01

    The increasing demand for fresh fruits and vegetables and for convenience foods is causing an expansion of the market share for minimally processed vegetables. Among the more common pathogenic microorganisms that can be transmitted to humans by these products are Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella. The aim of this study was to evaluate the microbial quality of a selection of minimally processed vegetables. A total of 181 samples of minimally processed leafy salads were collected from retailers in the city of Sao Paulo, Brazil. Counts of total coliforms, fecal coliforms, Enterobacteriaceae, psychrotrophic microorganisms, and Salmonella were conducted for 133 samples. L. monocytogenes was assessed in 181 samples using the BAX System and by plating the enrichment broth onto Palcam and Oxford agars. Suspected Listeria colonies were submitted to classical biochemical tests. Populations of psychrotrophic microorganisms >10(6) CFU/g were found in 51% of the 133 samples, and Enterobacteriaceae populations between 10(5) and 106 CFU/g were found in 42% of the samples. Fecal coliform concentrations higher than 10(2) CFU/g (Brazilian standard) were found in 97 (73%) of the samples, and Salmonella was detected in 4 (3%) of the samples. Two of the Salmonella-positive samples had <10(2) CFU/g concentrations of fecal coliforms. L. monocytogenes was detected in only 1 (0.6%) of the 181 samples examined. This positive sample was simultaneously detected by both methods. The other Listeria species identified by plating were L. welshimeri (one sample of curly lettuce) and L. innocua (2 samples of watercress). The results indicate that minimally processed vegetables had poor microbiological quality, and these products could be a vehicle for pathogens such as Salmonella and L. monocytogenes.

  14. Strategies for "minimal growth maintenance" of cell cultures: a perspective on management for extended duration experimentation in the microgravity environment of a Space station

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.

    1996-01-01

    How cells manage without gravity and how they change in the absence of gravity are basic questions that only prolonged life on a Space station will enable us to answer. We know from investigations carried out on various kinds of Space vehicles and stations that profound physiological effects can and often to occur. We need to know more of the basic biochemistry and biophysics both of cells and of whole organisms in conditions of reduced gravity. The unique environment of Space affords plant scientists an unusual opportunity to carry out experiments in microgravity, but some major challenges must be faced before this can be done with confidence. Various laboratory activities that are routine on Earth take on special significance and offer problems that need imaginative resolution before even a relatively simple experiment can be reliably executed on a Space station. For example, scientists might wish to investigate whether adaptive or other changes that have occurred in the environment of Space are retained after return to Earth-normal conditions. Investigators seeking to carry out experiments in the low-gravity environment of Space using cultured cells will need to solve the problem of keeping cultures quiescent for protracted periods before an experiment is initiated, after periodic sampling is carried out, and after the experiment is completed. This review gives an evaluation of a range of strategies that can enable one to manipulate cell physiology and curtail growth dramatically toward this end. These strategies include cryopreservation, chilling, reduced oxygen, gel entrapment strategies, osmotic adjustment, nutrient starvation, pH manipulation, and the use of mitotic inhibitors and growth-retarding chemicals. Cells not only need to be rendered quiescent for protracted periods but they also must be recoverable and further grown if it is so desired. Elaboration of satisfactory procedures for management of cells and tissues at "near zero or minimal growth" will have great value and practical consequences for experimentation on Earth as well as in Space. All of the parameters and conditions and procedural details needed to meet all the specific objectives will be the basis of the design and fabrication of cell culture units for use in the Space environment. It is expected that this will be an evolutionary process.

  15. Prevalence and level of Listeria monocytogenes and other Listeria sp. in ready-to-eat minimally processed and refrigerated vegetables.

    PubMed

    Kovačević, Mira; Burazin, Jelena; Pavlović, Hrvoje; Kopjar, Mirela; Piližota, Vlasta

    2013-04-01

    Minimally processed and refrigerated vegetables can be contaminated with Listeria species bacteria including Listeria monocytogenes due to extensive handling during processing or by cross contamination from the processing environment. The objective of this study was to examine the microbiological quality of ready-to-eat minimally processed and refrigerated vegetables from supermarkets in Osijek, Croatia. 100 samples of ready-to-eat vegetables collected from different supermarkets in Osijek, Croatia, were analyzed for presence of Listeria species and Listeria monocytogenes. The collected samples were cut iceberg lettuces (24 samples), other leafy vegetables (11 samples), delicatessen salads (23 samples), cabbage salads (19 samples), salads from mixed (17 samples) and root vegetables (6 samples). Listeria species was found in 20 samples (20 %) and Listeria monocytogenes was detected in only 1 sample (1 %) of cut red cabbage (less than 100 CFU/g). According to Croatian and EU microbiological criteria these results are satisfactory. However, the presence of Listeria species and Listeria monocytogenes indicates poor hygiene quality. The study showed that these products are often improperly labeled, since 24 % of analyzed samples lacked information about shelf life, and 60 % of samples lacked information about storage conditions. With regard to these facts, cold chain abruption with extended use after expiration date is a probable scenario. Therefore, the microbiological risk for consumers of ready-to-eat minimally processed and refrigerated vegetables is not completely eliminated.

  16. Mobile camera-space manipulation

    NASA Technical Reports Server (NTRS)

    Seelinger, Michael J. (Inventor); Yoder, John-David S. (Inventor); Skaar, Steven B. (Inventor)

    2001-01-01

    The invention is a method of using computer vision to control systems consisting of a combination of holonomic and nonholonomic degrees of freedom such as a wheeled rover equipped with a robotic arm, a forklift, and earth-moving equipment such as a backhoe or a front-loader. Using vision sensors mounted on the mobile system and the manipulator, the system establishes a relationship between the internal joint configuration of the holonomic degrees of freedom of the manipulator and the appearance of features on the manipulator in the reference frames of the vision sensors. Then, the system, perhaps with the assistance of an operator, identifies the locations of the target object in the reference frames of the vision sensors. Using this target information, along with the relationship described above, the system determines a suitable trajectory for the nonholonomic degrees of freedom of the base to follow towards the target object. The system also determines a suitable pose or series of poses for the holonomic degrees of freedom of the manipulator. With additional visual samples, the system automatically updates the trajectory and final pose of the manipulator so as to allow for greater precision in the overall final position of the system.

  17. Renal surgery in the new millennium.

    PubMed

    Delvecchio, F C; Preminger, G M

    2000-11-01

    In the not too distant future, the minimally invasive renal surgeon will be able to practice an operation on a difficult case on a three-dimensional virtual reality simulator, providing all attributes of the real procedure. The patient's imaging studies will be imported into the simulator to better mimic particular anatomy. When confident enough of his or her skills, the surgeon will start operating on the patient using the same virtual reality simulator/telepresence surgery console system, which will permit the live surgery to be conducted by robots hundreds of miles away. The robots will manipulate miniature endoscopes or control minimally or noninvasive ablative technologies. Endoscopic/laparoscopic footage of the surgical procedure will be stored digitally in optical disks to be used later in telementoring of a surgery resident. All this and more will be possible in the not so distant third millennium.

  18. Gravitational decoupled anisotropies in compact stars

    NASA Astrophysics Data System (ADS)

    Gabbanelli, Luciano; Rincón, Ángel; Rubio, Carlos

    2018-05-01

    Simple generic extensions of isotropic Durgapal-Fuloria stars to the anisotropic domain are presented. These anisotropic solutions are obtained by guided minimal deformations over the isotropic system. When the anisotropic sector interacts in a purely gravitational manner, the conditions to decouple both sectors by means of the minimal geometric deformation approach are satisfied. Hence the anisotropic field equations are isolated resulting a more treatable set. The simplicity of the equations allows one to manipulate the anisotropies that can be implemented in a systematic way to obtain different realistic models for anisotropic configurations. Later on, observational effects of such anisotropies when measuring the surface redshift are discussed. To conclude, the consistency of the application of the method over the obtained anisotropic configurations is shown. In this manner, different anisotropic sectors can be isolated of each other and modeled in a simple and systematic way.

  19. Integrated immunoassay using tuneable surface acoustic waves and lensfree detection.

    PubMed

    Bourquin, Yannyk; Reboud, Julien; Wilson, Rab; Zhang, Yi; Cooper, Jonathan M

    2011-08-21

    The diagnosis of infectious diseases in the Developing World is technologically challenging requiring complex biological assays with a high analytical performance, at minimal cost. By using an opto-acoustic immunoassay technology, integrating components commonly used in mobile phone technologies, including surface acoustic wave (SAW) transducers to provide pressure driven flow and a CMOS camera to enable lensfree detection technique, we demonstrate the potential to produce such an assay. To achieve this, antibody functionalised microparticles were manipulated on a low-cost disposable cartridge using the surface acoustic waves and were then detected optically. Our results show that the biomarker, interferon-γ, used for the diagnosis of diseases such as latent tuberculosis, can be detected at pM concentrations, within a few minutes (giving high sensitivity at a minimal cost). This journal is © The Royal Society of Chemistry 2011

  20. The Mouse Forced Swim Test

    PubMed Central

    Can, Adem; Dao, David T.; Arad, Michal; Terrillion, Chantelle E.; Piantadosi, Sean C.; Gould, Todd D.

    2012-01-01

    The forced swim test is a rodent behavioral test used for evaluation of antidepressant drugs, antidepressant efficacy of new compounds, and experimental manipulations that are aimed at rendering or preventing depressive-like states. Mice are placed in an inescapable transparent tank that is filled with water and their escape related mobility behavior is measured. The forced swim test is straightforward to conduct reliably and it requires minimal specialized equipment. Successful implementation of the forced swim test requires adherence to certain procedural details and minimization of unwarranted stress to the mice. In the protocol description and the accompanying video, we explain how to conduct the mouse version of this test with emphasis on potential pitfalls that may be detrimental to interpretation of results and how to avoid them. Additionally, we explain how the behaviors manifested in the test are assessed. PMID:22314943

  1. Efficacy of the Stonehenge Technique for Minimally Invasive Aortic Valve Replacement via Right Infraaxillary Thoracotomy

    PubMed Central

    Kin, Hajime; Kitamoto, Shohei; Yamanaka, Shota; Nishida, Hidefumi; Nishigawa, Kosaku; Takanashi, Shuichiro

    2017-01-01

    Minimally invasive cardiac surgeries for aortic valve replacement (AVR) are still a technical challenge for surgeons because these procedures are undertaken through small incisions and deep surgical fields. Although AVR via vertical infraaxillary thoracotomy can be a cosmetically superior option, a disadvantage of this approach is the distance between the thoracotomy incision and the ascending aorta. Therefore, we devised a technique to perform all manipulations using the fingertips without the aid of a knot pusher or long-shafted surgical instruments. This was achieved by particular placement of several retracted sutures to the right chest wall. We named placement of these sutures the “Stonehenge technique.” In conclusion, AVR via vertical infraaxillary thoracotomy with our Stonehenge technique can be safely and simply performed with superior cosmetic advantages. PMID:28123153

  2. Minimal infectious doses and prepatent periods in Giardia muris, Spironucleus muris and Tritrichomonas muris.

    PubMed

    Stachan, R; Kunstýr, I

    1983-12-01

    The minimal infectious doses (MID) of Giardia muris cysts, Spironucleus muris cysts and Tritrichomonas muris pseudocysts for athymic mice were determined. A novel micromanipulator-aided technique was developed for selecting small exact numbers of specified fresh or old cysts/pseudocysts from a faecal homogenate. This technique can also be of value in manipulating protozoan parasites of any particular species. Only fresh cysts/pseudocysts, which appeared bright under phase contrast optics, were infectious. Older cysts and pseudocysts which appeared dark in phase contrast were not infectious. The MID for three murine intestinal flagellates addressed above were: 10 (between 5 and 20), 1 and 5 cysts/pseudocysts respectively. Corresponding prepatent periods (PP) were 8, 5 and 10 days. A relation was evident between the infectious dose and the PP: The prepatent period shortened with an increased infectious dose.

  3. Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures.

    PubMed

    Urich, A; Maier, R R J; Yu, Fei; Knight, J C; Hand, D P; Shephard, J D

    2013-02-01

    We present the delivery of high energy microsecond pulses through a hollow-core negative-curvature fiber at 2.94 µm. The energy densities delivered far exceed those required for biological tissue manipulation and are of the order of 2300 J/cm(2). Tissue ablation was demonstrated on hard and soft tissue in dry and aqueous conditions with no detrimental effects to the fiber or catastrophic damage to the end facets. The energy is guided in a well confined single mode allowing for a small and controllable focused spot delivered flexibly to the point of operation. Hence, a mechanically and chemically robust alternative to the existing Er:YAG delivery systems is proposed which paves the way for new routes for minimally invasive surgical laser procedures.

  4. Parallel manipulation of individual magnetic microbeads for lab-on-a-chip applications

    NASA Astrophysics Data System (ADS)

    Peng, Zhengchun

    Many scientists and engineers are turning to lab-on-a-chip systems for faster and cheaper analysis of chemical reactions and biomolecular interactions. A common approach that facilitates the handling of reagents and biomolecules in these systems utilizes micro/nano beads as the solid carrier. Physical manipulation, such as assembly, transport, sorting, and tweezing, of beads on a chip represents an essential step for fully utilizing their potentials in a wide spectrum of bead-based analysis. Previous work demonstrated manipulation of either an ensemble of beads without individual control, or single beads but lacks the capability for parallel operation. Parallel manipulation of individual beads is required to meet the demand for high-throughput and location-specific analysis. In this work, we introduced two methods for parallel manipulation of individual magnetic microbeads, which can serve as effective lab-on-a-chip platforms and/or efficient analytic tools. The first method employs arrays of soft ferromagnetic patterns fabricated inside a microfluidic channel and subjected to an external magnetic field. We demonstrated that the system can be used to assemble individual beads (1-3 mum) from a flow of suspended beads into a regular array on the chip, hence improving the integrated electrochemical detection of biomolecules bound to the bead surface. By rotating the external field, the assembled microbeads can be remotely controlled with synchronized, high-speed circular motion around individual soft magnets on the chip. We employed this manipulation mode for efficient sample mixing in continuous microflow. Furthermore, we discovered a simple but effective way of transporting the microbeads on the chip by varying the strength of the local bias field within a revolution of the external field. In addition, selective transport of microbeads with different size was realized, providing a platform for effective on-chip sample separation and offering the potential for multiplexing capability. The second method integrates magnetic and dielectrophoretic manipulations of the same microbeads. The device combines tapered conducting wires and fingered electrodes to generate desirable magnetic and electric fields, respectively. By externally programming the magnetic attraction and dielectrophoretic repulsion forces, out-of-plane oscillation of the microbeads across the channel height was realized. This manipulation mode can facilitate the interaction between the beads with multiple layers of sample fluid inside the channel. We further demonstrated the tweezing of microbeads in liquid with high spatial resolutions, i.e., from submicrometer to nanometer range, by fine-tuning the net force from magnetic attraction and dielectrophoretic repulsion of the beads. The highresolution control of the out-of-plane motion of the microbeads led to the invention of massively parallel biomolecular tweezers. We believe the maturation of bead-based microtweezers will revolutionize the state-of-art tools currently used for single cell and single molecule studies.

  5. Nanofluidic interfaces in microfluidic networks

    DOE PAGES

    Millet, Larry J.; Doktycz, Mitchel John; Retterer, Scott T.

    2015-09-24

    The integration of nano- and microfluidic technologies enables the construction of tunable interfaces to physical and biological systems across relevant length scales. The ability to perform chemical manipulations of miniscule sample volumes is greatly enhanced through these technologies and extends the ability to manipulate and sample the local fluidic environments at subcellular, cellular and community or tissue scales. Here we describe the development of a flexible surface micromachining process for the creation of nanofluidic channel arrays integrated within SU-8 microfluidic networks. The use of a semi-porous, silicon rich, silicon nitride structural layer allows rapid release of the sacrificial silicon dioxidemore » during the nanochannel fabrication. Nanochannel openings that form the interface to biological samples are customized using focused ion beam milling. The compatibility of these interfaces with on-chip microbial culture is demonstrated.« less

  6. Multimode Acoustic Research

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1985-01-01

    There is a need for high temperature containerless processing facilities that can efficiently position and manipulate molten samples in the reduced gravity environment of space. The goal of the research is to develop sophisticated high temperature manipulation capabilities such as selection of arbitrary axes rotation and rapid sample cooling. This program will investigate new classes of acoustic levitation in rectangular, cylindrical and spherical geometries. The program tasks include calculating theoretical expressions of the acoustic forces in these geometries for the excitation of up to three acoustic modes (multimodes). These calculations are used to: (1) determine those acoustic modes that produce stable levitation, (2) isolate the levitation and rotation capabilities to produce more than one axis of rotation, and (3) develop methods to translate samples down long tube cylindrical chambers. Experimental levitators will then be constructed to verify the stable levitation and rotation predictions of the models.

  7. Pilot study of the impact sacroiliac joint manipulation has on walking kinematics using motion analysis technology

    PubMed Central

    Ward, John S.; Coats, Jesse; Sorrels, Kenneth; Walters, Mathew; Williams, Trevor

    2013-01-01

    Objective The purpose of this study was to evaluate the feasibility of engaging in a series of larger studies measuring the effect of sacroiliac joint manipulation on walking kinematics using motion analysis technology. Methods Twelve college students engaged in a baseline 90-second gait analysis at 1.5 mph using infrared VICON cameras. Following this, they underwent a prone heel comparison test for functional leg length inequality. Upon examination, participants were then classified as follows: left short leg, right short leg, or no short leg. Participants in each of the 2 short leg branches of this study were then randomized to receive either chiropractic manipulative therapy to the posterior superior iliac spine on the short limb side or no manipulation. Recruitment was ongoing for this pilot study until 1 participant was recruited in each of the following 5 comparative study groups: left short leg—manipulation, left short leg—no manipulation (control 1), right short leg—manipulation, right short leg—no manipulation (control 2), and no short leg (control 3). All participants then underwent another 90-second gait analysis. Data were then grouped and submitted to a blinded biomechanist to determine if there were any unique biomechanical differences between the groups. Results No statistically significant differences were measured because of this being a pilot study with a small sample size. Conclusions The data from this study indicate that a series of larger studies with this design is feasible. PMID:24396314

  8. A portable and integrated instrument for cell manipulation by dielectrophoresis.

    PubMed

    Burgarella, Sarah; Di Bari, Marco

    2015-07-01

    The physical manipulation of biological cells is a key point in the development of miniaturized systems for point-of-care analyses. Dielectrophoresis (DEP) has been reported by several laboratories as a promising method in biomedical research for label-free cell manipulation without physical contact, by exploiting the dielectric properties of cells suspended in a microfluidic sample, under the action of high-gradient electric fields. In view of a more extended use of DEP phenomena in lab-on-chip devices for point-of-care settings, we have developed a portable instrument, integrating on the same device the microfluidic biochip for cell manipulation and all the laboratory functions (i.e., DEP electric signal generation, microscopic observation of the biological sample under test and image acquisition) that are normally obtained by combining different nonportable standard laboratory instruments. The nonuniform electric field for cell manipulation on the biochip is generated by microelectrodes, patterned on the silicon substrate of microfluidic channels, using standard microfabrication techniques. Numerical modeling was performed to simulate the electric field distribution, quantify the DEP force, and optimize the geometry of the microelectrodes. The developed instrument includes an electronic board, which allows the control of the electric signal applied to electrodes necessary for DEP, and a miniaturized optical microscope system that allows visual inspection and eventually cell counting, as well as image and video recording. The system also includes the control software. The portable and integrated platform described in this work therefore represents a complete and innovative solution of applied research, suitable for many biological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. The effect of arousal and eye gaze direction on trust evaluations of stranger's faces: A potential pathway to paranoid thinking.

    PubMed

    Abbott, Jennie; Middlemiss, Megan; Bruce, Vicki; Smailes, David; Dudley, Robert

    2018-09-01

    When asked to evaluate faces of strangers, people with paranoia show a tendency to rate others as less trustworthy. The present study investigated the impact of arousal on this interpersonal bias, and whether this bias was specific to evaluations of trust or additionally affected other trait judgements. The study also examined the impact of eye gaze direction, as direct eye gaze has been shown to heighten arousal. In two experiments, non-clinical participants completed face rating tasks before and after either an arousal manipulation or control manipulation. Experiment one examined the effects of heightened arousal on judgements of trustworthiness. Experiment two examined the specificity of the bias, and the impact of gaze direction. Experiment one indicated that the arousal manipulation led to lower trustworthiness ratings. Experiment two showed that heightened arousal reduced trust evaluations of trustworthy faces, particularly trustworthy faces with averted gaze. The control group rated trustworthy faces with direct gaze as more trustworthy post-manipulation. There was some evidence that attractiveness ratings were affected similarly to the trust judgements, whereas judgements of intelligence were not affected by higher arousal. In both studies, participants reported low levels of arousal even after the manipulation and the use of a non-clinical sample limits the generalisability to clinical samples. There is a complex interplay between arousal, evaluations of trustworthiness and gaze direction. Heightened arousal influences judgements of trustworthiness, but within the context of face type and gaze direction. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Integration of genomic endpoints into toxicity identification evaluations

    EPA Science Inventory

    Toxicity identification and evaluations (TIEs) use physical/chemical manipulation of a sample to isolate or change the potency of different groups of toxicants potentially present in a sample. Organisms are then exposed to these fractions to determine if their toxicity has change...

  11. Design and Fabrication of an Elastomeric Unit for Soft Modular Robots in Minimally Invasive Surgery

    PubMed Central

    De Falco, Iris; Gerboni, Giada; Cianchetti, Matteo; Menciassi, Arianna

    2015-01-01

    In recent years, soft robotics technologies have aroused increasing interest in the medical field due to their intrinsically safe interaction in unstructured environments. At the same time, new procedures and techniques have been developed to reduce the invasiveness of surgical operations. Minimally Invasive Surgery (MIS) has been successfully employed for abdominal interventions, however standard MIS procedures are mainly based on rigid or semi-rigid tools that limit the dexterity of the clinician. This paper presents a soft and high dexterous manipulator for MIS. The manipulator was inspired by the biological capabilities of the octopus arm, and is designed with a modular approach. Each module presents the same functional characteristics, thus achieving high dexterity and versatility when more modules are integrated. The paper details the design, fabrication process and the materials necessary for the development of a single unit, which is fabricated by casting silicone inside specific molds. The result consists in an elastomeric cylinder including three flexible pneumatic actuators that enable elongation and omni-directional bending of the unit. An external braided sheath improves the motion of the module. In the center of each module a granular jamming-based mechanism varies the stiffness of the structure during the tasks. Tests demonstrate that the module is able to bend up to 120° and to elongate up to 66% of the initial length. The module generates a maximum force of 47 N, and its stiffness can increase up to 36%. PMID:26650236

  12. Design and Fabrication of an Elastomeric Unit for Soft Modular Robots in Minimally Invasive Surgery.

    PubMed

    De Falco, Iris; Gerboni, Giada; Cianchetti, Matteo; Menciassi, Arianna

    2015-11-14

    In recent years, soft robotics technologies have aroused increasing interest in the medical field due to their intrinsically safe interaction in unstructured environments. At the same time, new procedures and techniques have been developed to reduce the invasiveness of surgical operations. Minimally Invasive Surgery (MIS) has been successfully employed for abdominal interventions, however standard MIS procedures are mainly based on rigid or semi-rigid tools that limit the dexterity of the clinician. This paper presents a soft and high dexterous manipulator for MIS. The manipulator was inspired by the biological capabilities of the octopus arm, and is designed with a modular approach. Each module presents the same functional characteristics, thus achieving high dexterity and versatility when more modules are integrated. The paper details the design, fabrication process and the materials necessary for the development of a single unit, which is fabricated by casting silicone inside specific molds. The result consists in an elastomeric cylinder including three flexible pneumatic actuators that enable elongation and omni-directional bending of the unit. An external braided sheath improves the motion of the module. In the center of each module a granular jamming-based mechanism varies the stiffness of the structure during the tasks. Tests demonstrate that the module is able to bend up to 120° and to elongate up to 66% of the initial length. The module generates a maximum force of 47 N, and its stiffness can increase up to 36%.

  13. Sub-diffraction nano manipulation using STED AFM.

    PubMed

    Chacko, Jenu Varghese; Canale, Claudio; Harke, Benjamin; Diaspro, Alberto

    2013-01-01

    In the last two decades, nano manipulation has been recognized as a potential tool of scientific interest especially in nanotechnology and nano-robotics. Contemporary optical microscopy (super resolution) techniques have also reached the nanometer scale resolution to visualize this and hence a combination of super resolution aided nano manipulation ineluctably gives a new perspective to the scenario. Here we demonstrate how specificity and rapid determination of structures provided by stimulated emission depletion (STED) microscope can aid another microscopic tool with capability of mechanical manoeuvring, like an atomic force microscope (AFM) to get topological information or to target nano scaled materials. We also give proof of principle on how high-resolution real time visualization can improve nano manipulation capability within a dense sample, and how STED-AFM is an optimal combination for this job. With these evidences, this article points to future precise nano dissections and maybe even to a nano-snooker game with an AFM tip and fluorospheres.

  14. Telescience testbed experiments for biomedical studies: fertilization potential recording of amphibian eggs using tele-manipulation under stereoscopic vision.

    PubMed

    Watanabe, S; Tanaka, M; Wada, Y; Suzuki, H; Takagi, S; Mori, S; Fukai, K; Kanazawa, Y; Takagi, M; Hirakawa, K; Ogasawara, K; Tsumura, K; Ogawa, K; Matsumoto, K; Nagaoka, S; Suzuki, T; Shimura, D; Yamashita, M; Nishio, S

    1994-07-01

    The telescience testbed experiments were carried out to test and investigate the tele-manipulation techniques in the intracellular potential recording of amphibian eggs. Implementation of telescience testbed was set up in the two separated laboratories of the Tsukuba Space center of NASDA, which were connected by tele-communication links. Manipulators respective for a microelectrode and a sample stage of microscope were moved by computers, of which command signals were transmitted from a computer in a remote control room. The computer in the control room was operated by an investigator (PI) who controlled the movement of each manipulator remotely. A stereoscopic vision of the microscope image were prepared by using a head mounted display (HMD) and were indispensable to the intracellular single cell recording. The fertilization potential of amphibian eggs was successfully obtained through the remote operating system.

  15. Rotational manipulation of single cells and organisms using acoustic waves

    PubMed Central

    Ahmed, Daniel; Ozcelik, Adem; Bojanala, Nagagireesh; Nama, Nitesh; Upadhyay, Awani; Chen, Yuchao; Hanna-Rose, Wendy; Huang, Tony Jun

    2016-01-01

    The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation. PMID:27004764

  16. Rotational manipulation of single cells and organisms using acoustic waves.

    PubMed

    Ahmed, Daniel; Ozcelik, Adem; Bojanala, Nagagireesh; Nama, Nitesh; Upadhyay, Awani; Chen, Yuchao; Hanna-Rose, Wendy; Huang, Tony Jun

    2016-03-23

    The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation.

  17. Advanced control schemes and kinematic analysis for a kinematically redundant 7 DOF manipulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Zhou, Zhen-Lei

    1990-01-01

    The kinematic analysis and control of a kinematically redundant manipulator is addressed. The manipulator is the slave arm of a telerobot system recently built at Goddard Space Flight Center (GSFC) to serve as a testbed for investigating research issues in telerobotics. A forward kinematic transformation is developed in its most simplified form, suitable for real-time control applications, and the manipulator Jacobian is derived using the vector cross product method. Using the developed forward kinematic transformation and quaternion representation of orientation matrices, we perform computer simulation to evaluate the efficiency of the Jacobian in converting joint velocities into Cartesian velocities and to investigate the accuracy of Jacobian pseudo-inverse for various sampling times. The equivalence between Cartesian velocities and quaternion is also verified using computer simulation. Three control schemes are proposed and discussed for controlling the motion of the slave arm end-effector.

  18. A manipulator arm for zero-g simulations

    NASA Technical Reports Server (NTRS)

    Brodie, S. B.; Grant, C.; Lazar, J. J.

    1975-01-01

    A 12-ft counterbalanced Slave Manipulator Arm (SMA) was designed and fabricated to be used for resolving the questions of operational applications, capabilities, and limitations for such remote manned systems as the Payload Deployment and Retrieval Mechanism (PDRM) for the shuttle, the Free-Flying Teleoperator System, the Advanced Space Tug, and Planetary Rovers. As a developmental tool for the shuttle manipulator system (or PDRM), the SMA represents an approximate one-quarter scale working model for simulating and demonstrating payload handling, docking assistance, and satellite servicing. For the Free-Flying Teleoperator System and the Advanced Tug, the SMA provides a near full-scale developmental tool for satellite servicing, docking, and deployment/retrieval procedures, techniques, and support equipment requirements. For the Planetary Rovers, it provides an oversize developmental tool for sample handling and soil mechanics investigations. The design of the SMA was based on concepts developed for a 40-ft NASA technology arm to be used for zero-g shuttle manipulator simulations.

  19. Direct manipulation of tool-like masters for controlling a master-slave surgical robotic system.

    PubMed

    Zhang, Linan; Zhou, Ningxin; Wang, Shuxin

    2014-12-01

    Robotic-assisted minimally invasive surgery (MIS) can benefit both patients and surgeons. However, the learning curve for robotically assisted procedures can be long and the total system costs are high. Therefore, there is considerable interest in new methods and lower cost controllers for a surgical robotic system. In this study, a knife-master and a forceps-master, shaped similarly to a surgical knife and forceps, were developed as input devices for control of a master-slave surgical robotic system. In addition, a safety strategy was developed to eliminate the master-slave orientation difference and stabilize the surgical system. Master-slave tracking experiments and a ring-and-bar experiment showed that the safety tracking strategy could ensure that the robot system moved stably without any tremor in the tracking motion. Subjects could manipulate the surgical tool to achieve the master-slave operation with less training compared to a mechanical master. Direct manipulation of the small, light and low-cost surgical tools to control a robotic system is a possible operating mode. Surgeons can operate the robotic system in their own familiar way, without long training. The main potential safety issues can be solved by the proposed safety control strategy. Copyright © 2013 John Wiley & Sons, Ltd.

  20. Interaction Junk: User Interaction-Based Evaluation of Visual Analytic Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Endert, Alexander; North, Chris

    2012-10-14

    With the growing need for visualization to aid users in understanding large, complex datasets, the ability for users to interact and explore these datasets is critical. As visual analytic systems have advanced to leverage powerful computational models and data analytics capabilities, the modes by which users engage and interact with the information are limited. Often, users are taxed with directly manipulating parameters of these models through traditional GUIs (e.g., using sliders to directly manipulate the value of a parameter). However, the purpose of user interaction in visual analytic systems is to enable visual data exploration – where users can focusmore » on their task, as opposed to the tool or system. As a result, users can engage freely in data exploration and decision-making, for the purpose of gaining insight. In this position paper, we discuss how evaluating visual analytic systems can be approached through user interaction analysis, where the goal is to minimize the cognitive translation between the visual metaphor and the mode of interaction (i.e., reducing the “Interactionjunk”). We motivate this concept through a discussion of traditional GUIs used in visual analytics for direct manipulation of model parameters, and the importance of designing interactions the support visual data exploration.« less

  1. Non-perturbative manipulation through a 3D microfluidic treadmill

    NASA Astrophysics Data System (ADS)

    Gonzalez, Jeremias; Liu, Bin

    2017-11-01

    Our capabilities of micromanipulation have evolved with advances in contact-free trapping techniques under various disciplines, such as optical, magnetic, and microfluidic traps. In these techniques, a microscale particle is held in place under compression due to electromagnetic or hydrodynamic forces. In this work, we present a trap-free design of a microfluidic ``treadmill'' (MFC), realized by a uniform flow along arbitrary directions in a 3D microfluidic device, which is composed of a central chamber and pairs of x - and y - channels at different elevations. Through boundary element simulations, we demonstrate that 3D background flows along any direction can be generated in the middle of the chamber, controlled by a set of syringe pumps. By tuning the detailed geometry of the MFC, we show the optimized shape of the device that leads to minimized strain rate, allowing for manipulation of the suspended particles with negligible perturbations. We also show an experimental realization of the MFC device, using laser stereolithography. The x - , y - , and z - manipulation modes are obtained independently by a syringe pump with push/pull mechanisms, and are compared with the above simulation results. The authors thank the support of National Science Foundation CREST: Center for Cellular and Biomolecular Machines at UC Merced (NSF-HRD-1547848).

  2. Engineering a future for amphibians under climate change

    USGS Publications Warehouse

    Shoo, L.P.; Olson, D.H.; Mcmenamin, S.K.; Murray, K.A.; Van Sluys, M.; Donnelly, M.A.; Stratford, D.; Terhivuo, J.; Merino-Viteri, A.; Herbert, S.M.; Bishop, P.J.; Corn, P.S.; Dovey, L.; Griffiths, R.A.; Lowe, K.; Mahony, M.; McCallum, H.; Shuker, J.D.; Simpkins, C.; Skerratt, L.F.; Williams, S.E.; Hero, J.-M.

    2011-01-01

    1. Altered global climates in the 21st century pose serious threats for biological systems and practical actions are needed to mount a response for species at risk. 2. We identify management actions from across the world and from diverse disciplines that are applicable to minimizing loss of amphibian biodiversity under climate change. Actions were grouped under three thematic areas of intervention: (i) installation of microclimate and microhabitat refuges; (ii) enhancement and restoration of breeding sites; and (iii) manipulation of hydroperiod or water levels at breeding sites. 3. Synthesis and applications. There are currently few meaningful management actions that will tangibly impact the pervasive threat of climate change on amphibians. A host of potentially useful but poorly tested actions could be incorporated into local or regional management plans, programmes and activities for amphibians. Examples include: installation of irrigation sprayers to manipulate water potentials at breeding sites; retention or supplementation of natural and artificial shelters (e.g. logs, cover boards) to reduce desiccation and thermal stress; manipulation of canopy cover over ponds to reduce water temperature; and, creation of hydrologoically diverse wetland habitats capable of supporting larval development under variable rainfall regimes. We encourage researchers and managers to design, test and scale up new initiatives to respond to this emerging crisis.

  3. Highly hydrogen-sensitive thermal desorption spectroscopy system for quantitative analysis of low hydrogen concentration (˜1 × 1016 atoms/cm3) in thin-film samples

    NASA Astrophysics Data System (ADS)

    Hanna, Taku; Hiramatsu, Hidenori; Sakaguchi, Isao; Hosono, Hideo

    2017-05-01

    We developed a highly hydrogen-sensitive thermal desorption spectroscopy (HHS-TDS) system to detect and quantitatively analyze low hydrogen concentrations in thin films. The system was connected to an in situ sample-transfer chamber system, manipulators, and an rf magnetron sputtering thin-film deposition chamber under an ultra-high-vacuum (UHV) atmosphere of ˜10-8 Pa. The following key requirements were proposed in developing the HHS-TDS: (i) a low hydrogen residual partial pressure, (ii) a low hydrogen exhaust velocity, and (iii) minimization of hydrogen thermal desorption except from the bulk region of the thin films. To satisfy these requirements, appropriate materials and components were selected, and the system was constructed to extract the maximum performance from each component. Consequently, ˜2000 times higher sensitivity to hydrogen than that of a commercially available UHV-TDS system was achieved using H+-implanted Si samples. Quantitative analysis of an amorphous oxide semiconductor InGaZnO4 thin film (1 cm × 1 cm × 1 μm thickness, hydrogen concentration of 4.5 × 1017 atoms/cm3) was demonstrated using the HHS-TDS system. This concentration level cannot be detected using UHV-TDS or secondary ion mass spectroscopy (SIMS) systems. The hydrogen detection limit of the HHS-TDS system was estimated to be ˜1 × 1016 atoms/cm3, which implies ˜2 orders of magnitude higher sensitivity than that of SIMS and resonance nuclear reaction systems (˜1018 atoms/cm3).

  4. The correlation between gelatin macroscale differences and nanoparticle properties: providing insight into biopolymer variability.

    PubMed

    Stevenson, André T; Jankus, Danny J; Tarshis, Max A; Whittington, Abby R

    2018-05-21

    From therapeutic delivery to sustainable packaging, manipulation of biopolymers into nanostructures imparts biocompatibility to numerous materials with minimal environmental pollution during processing. While biopolymers are appealing natural based materials, the lack of nanoparticle (NP) physicochemical consistency has decreased their nanoscale translation into actual products. Insights regarding the macroscale and nanoscale property variation of gelatin, one of the most common biopolymers already utilized in its bulk form, are presented. Novel correlations between macroscale and nanoscale properties were made by characterizing similar gelatin rigidities obtained from different manufacturers. Samples with significant differences in clarity, indicating sample purity, obtained the largest deviations in NP diameter. Furthermore, a statistically significant positive correlation between macroscale molecular weight dispersity and NP diameter was determined. New theoretical calculations proposing the limited number of gelatin chains that can aggregate and subsequently get crosslinked for NP formation were presented as one possible reason to substantiate the correlation analysis. NP charge and crosslinking extent were also related to diameter. Lower gelatin sample molecular weight dispersities produced statistically smaller average diameters (<75 nm), and higher average electrostatic charges (∼30 mV) and crosslinking extents (∼95%), which were independent of gelatin rigidity, conclusions not shown in the literature. This study demonstrates that the molecular weight composition of the starting material is one significant factor affecting gelatin nanoscale properties and must be characterized prior to NP preparation. Identifying gelatin macroscale and nanoscale correlations offers a route toward greater physicochemical property control and reproducibility of new NP formulations for translation to industry.

  5. Autonomous manipulation on a robot: Summary of manipulator software functions

    NASA Technical Reports Server (NTRS)

    Lewis, R. A.

    1974-01-01

    A six degree-of-freedom computer-controlled manipulator is examined, and the relationships between the arm's joint variables and 3-space are derived. Arm trajectories using sequences of third-degree polynomials to describe the time history of each joint variable are presented and two approaches to the avoidance of obstacles are given. The equations of motion for the arm are derived and then decomposed into time-dependent factors and time-independent coefficients. Several new and simplifying relationships among the coefficients are proven. Two sample trajectories are analyzed in detail for purposes of determining the most important contributions to total force in order that relatively simple approximations to the equations of motion can be used.

  6. Simulation of minimally invasive vascular interventions for training purposes.

    PubMed

    Alderliesten, Tanja; Konings, Maurits K; Niessen, Wiro J

    2004-01-01

    To master the skills required to perform minimally invasive vascular interventions, proper training is essential. A computer simulation environment has been developed to provide such training. The simulation is based on an algorithm specifically developed to simulate the motion of a guide wire--the main instrument used during these interventions--in the human vasculature. In this paper, the design and model of the computer simulation environment is described and first results obtained with phantom and patient data are presented. To simulate minimally invasive vascular interventions, a discrete representation of a guide wire is used which allows modeling of guide wires with different physical properties. An algorithm for simulating the propagation of a guide wire within a vascular system, on the basis of the principle of minimization of energy, has been developed. Both longitudinal translation and rotation are incorporated as possibilities for manipulating the guide wire. The simulation is based on quasi-static mechanics. Two types of energy are introduced: internal energy related to the bending of the guide wire, and external energy resulting from the elastic deformation of the vessel wall. A series of experiments were performed on phantom and patient data. Simulation results are qualitatively compared with 3D rotational angiography data. The results indicate plausible behavior of the simulation.

  7. Noise and Complexity in Human Postural Control: Interpreting the Different Estimations of Entropy

    PubMed Central

    Rhea, Christopher K.; Silver, Tobin A.; Hong, S. Lee; Ryu, Joong Hyun; Studenka, Breanna E.; Hughes, Charmayne M. L.; Haddad, Jeffrey M.

    2011-01-01

    Background Over the last two decades, various measures of entropy have been used to examine the complexity of human postural control. In general, entropy measures provide information regarding the health, stability and adaptability of the postural system that is not captured when using more traditional analytical techniques. The purpose of this study was to examine how noise, sampling frequency and time series length influence various measures of entropy when applied to human center of pressure (CoP) data, as well as in synthetic signals with known properties. Such a comparison is necessary to interpret data between and within studies that use different entropy measures, equipment, sampling frequencies or data collection durations. Methods and Findings The complexity of synthetic signals with known properties and standing CoP data was calculated using Approximate Entropy (ApEn), Sample Entropy (SampEn) and Recurrence Quantification Analysis Entropy (RQAEn). All signals were examined at varying sampling frequencies and with varying amounts of added noise. Additionally, an increment time series of the original CoP data was examined to remove long-range correlations. Of the three measures examined, ApEn was the least robust to sampling frequency and noise manipulations. Additionally, increased noise led to an increase in SampEn, but a decrease in RQAEn. Thus, noise can yield inconsistent results between the various entropy measures. Finally, the differences between the entropy measures were minimized in the increment CoP data, suggesting that long-range correlations should be removed from CoP data prior to calculating entropy. Conclusions The various algorithms typically used to quantify the complexity (entropy) of CoP may yield very different results, particularly when sampling frequency and noise are different. The results of this study are discussed within the context of the neural noise and loss of complexity hypotheses. PMID:21437281

  8. Universal Solid-phase Reversible Sample-Prep for Concurrent Proteome and N-glycome Characterization

    PubMed Central

    Zhou, Hui; Morley, Samantha; Kostel, Stephen; Freeman, Michael R.; Joshi, Vivek; Brewster, David; Lee, Richard S.

    2017-01-01

    SUMMARY We describe a novel Solid-phase Reversible Sample-Prep (SRS) platform, which enables rapid sample preparation for concurrent proteome and N-glycome characterization by mass spectrometry. SRS utilizes a uniquely functionalized, silica-based bead that has strong affinity toward proteins with minimal-to-no affinity for peptides and other small molecules. By leveraging the inherent size difference between, SRS permits high-capacity binding of proteins, rapid removal of small molecules (detergents, metabolites, salts, etc.), extensive manipulation including enzymatic and chemical treatments on beads-bound proteins, and easy recovery of N-glycans and peptides. The efficacy of SRS was evaluated in a wide range of biological samples including single glycoprotein, whole cell lysate, murine tissues, and human urine. To further demonstrate the SRS platform, we coupled a quantitative strategy to SRS to investigate the differences between DU145 prostate cancer cells and its DIAPH3-silenced counterpart. Our previous studies suggested that DIAPH3 silencing in DU145 prostate cancer cells induced transition to an amoeboid phenotype that correlated with tumor progression and metastasis. In this analysis we identified distinct proteomic and N-glycomic alterations between the two cells. Intriguingly, a metastasis-associated tyrosine kinase receptor ephrin-type-A receptor (EPHA2) was highly upregulated in DIAPH3-silenced cells, indicating underling connection between EPHA2 and DIAPH3. Moreover, distinct alterations in the N-glycome were identified, suggesting a cross-link between DIAPH3 and glycosyltransferase networks. Overall, SRS is an enabling universal sample preparation strategy that is not size limited and has the capability to efficiently prepare and clean peptides and N-glycans concurrently from nearly all sample types. Conceptually, SRS can be utilized for the analysis of other posttranslational modifications, and the unique surface chemistry can be further transformed for high-throughput automation. The technical simplicity, robustness, and modularity of SRS make it a highly promising technology with great potential in proteomic-based research. PMID:26791391

  9. Development of a revolute-joint robot for the precision positioning of an x-ray detector

    NASA Astrophysics Data System (ADS)

    Preissner, Curt A.; Royston, Thomas J.; Shu, Deming

    2003-10-01

    This paper profiles the initial phase in the development of a six degree-of-freedom robot, with 1 μm dynamic positioning uncertainty, for the manipulation of x-ray detectors or test specimens at the Advanced Photon Source (APS). While revolute-joint robot manipulators exhibit a smaller footprint along with increased positioning flexibility compared to Cartesian manipulators, commercially available revolute-joint manipulators do not meet our size, positioning, or environmental specifications. Currently, a robot with 20 μm dynamic positioning uncertainty is functioning at the APS for cryogenic crystallography sample pick-and-place operation. Theoretical, computational and experimental procedures are being used to (1) identify and (2) simulate the dynamics of the present robot system using a multibody approach, including the mechanics and control architecture, and eventually to (3) design an improved version with a 1 μm dynamic positioning uncertainty. We expect that the preceding experimental and theoretical techniques will be useful design and analysis tools as multi-degree-of-freedom manipulators become more prevalent on synchrotron beamlines.

  10. 19 CFR 151.68 - Merchandise to be sampled and tested by Customs.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Hair § 151.68 Merchandise to be sampled and tested by Customs. The following shall be weighed, sampled... wool or hair subject to duty at a rate per clean kilogram, except importations entered directly for... imported wool or hair manipulated under the provisions of section 562, Tariff Act of 1930, as amended (19 U...

  11. 19 CFR 151.68 - Merchandise to be sampled and tested by Customs.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Hair § 151.68 Merchandise to be sampled and tested by Customs. The following shall be weighed, sampled... wool or hair subject to duty at a rate per clean kilogram, except importations entered directly for... imported wool or hair manipulated under the provisions of section 562, Tariff Act of 1930, as amended (19 U...

  12. 19 CFR 151.68 - Merchandise to be sampled and tested by Customs.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Hair § 151.68 Merchandise to be sampled and tested by Customs. The following shall be weighed, sampled... wool or hair subject to duty at a rate per clean kilogram, except importations entered directly for... imported wool or hair manipulated under the provisions of section 562, Tariff Act of 1930, as amended (19 U...

  13. 19 CFR 151.68 - Merchandise to be sampled and tested by Customs.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Hair § 151.68 Merchandise to be sampled and tested by Customs. The following shall be weighed, sampled... wool or hair subject to duty at a rate per clean kilogram, except importations entered directly for... imported wool or hair manipulated under the provisions of section 562, Tariff Act of 1930, as amended (19 U...

  14. 19 CFR 151.68 - Merchandise to be sampled and tested by Customs.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Hair § 151.68 Merchandise to be sampled and tested by Customs. The following shall be weighed, sampled... wool or hair subject to duty at a rate per clean kilogram, except importations entered directly for... imported wool or hair manipulated under the provisions of section 562, Tariff Act of 1930, as amended (19 U...

  15. Novel Approaches to Manipulating Bacterial Pathogen Biofilms: Whole-Systems Design Philosophy and Steering Microbial Evolution.

    PubMed

    Penn, Alexandra S

    2016-01-01

    Understanding and manipulating bacterial biofilms is crucial in medicine, ecology and agriculture and has potential applications in bioproduction, bioremediation and bioenergy. Biofilms often resist standard therapies and the need to develop new means of intervention provides an opportunity to fundamentally rethink our strategies. Conventional approaches to working with biological systems are, for the most part, "brute force", attempting to effect control in an input and effort intensive manner and are often insufficient when dealing with the inherent non-linearity and complexity of living systems. Biological systems, by their very nature, are dynamic, adaptive and resilient and require management tools that interact with dynamic processes rather than inert artefacts. I present an overview of a novel engineering philosophy which aims to exploit rather than fight those properties, and hence provide a more efficient and robust alternative. Based on a combination of evolutionary theory and whole-systems design, its essence is what I will call systems aikido; the basic principle of aikido being to interact with the momentum of an attacker and redirect it with minimal energy expenditure, using the opponent's energy rather than one's own. In more conventional terms, this translates to a philosophy of equilibrium engineering, manipulating systems' own self-organisation and evolution so that the evolutionarily or dynamically stable state corresponds to a function which we require. I illustrate these ideas with a description of a proposed manipulation of environmental conditions to alter the stability of co-operation in the context of Pseudomonas aeruginosa biofilm infection of the cystic fibrosis lung.

  16. Evidence for higher reaction time variability for children with ADHD on a range of cognitive tasks including reward and event rate manipulations

    PubMed Central

    Epstein, Jeffery N.; Langberg, Joshua M.; Rosen, Paul J.; Graham, Amanda; Narad, Megan E.; Antonini, Tanya N.; Brinkman, William B.; Froehlich, Tanya; Simon, John O.; Altaye, Mekibib

    2012-01-01

    Objective The purpose of the research study was to examine the manifestation of variability in reaction times (RT) in children with Attention Deficit Hyperactivity Disorder (ADHD) and to examine whether RT variability presented differently across a variety of neuropsychological tasks, was present across the two most common ADHD subtypes, and whether it was affected by reward and event rate (ER) manipulations. Method Children with ADHD-Combined Type (n=51), ADHD-Predominantly Inattentive Type (n=53) and 47 controls completed five neuropsychological tasks (Choice Discrimination Task, Child Attentional Network Task, Go/No-Go task, Stop Signal Task, and N-back task), each allowing trial-by-trial assessment of reaction times. Multiple indicators of RT variability including RT standard deviation, coefficient of variation and ex-Gaussian tau were used. Results Children with ADHD demonstrated greater RT variability than controls across all five tasks as measured by the ex-Gaussian indicator tau. There were minimal differences in RT variability across the ADHD subtypes. Children with ADHD also had poorer task accuracy than controls across all tasks except the Choice Discrimination task. Although ER and reward manipulations did affect children’s RT variability and task accuracy, these manipulations largely did not differentially affect children with ADHD compared to controls. RT variability and task accuracy were highly correlated across tasks. Removing variance attributable to RT variability from task accuracy did not appreciably affect between-group differences in task accuracy. Conclusions High RT variability is a ubiquitous and robust phenomenon in children with ADHD. PMID:21463041

  17. Improved sample management in the cylindrical-tube microelectrophoresis method

    NASA Technical Reports Server (NTRS)

    Smolka, A. J. K.

    1980-01-01

    A modification to an analytical microelectrophoresis system is described that improves the manipulation of the sample particles and fluid. The apparatus modification and improved operational procedure should yield more accurate measurements of particle mobilities and permit less skilled operators to use the apparatus.

  18. Manipulation of Foot Strike and Footwear Increases Achilles Tendon Loading During Running.

    PubMed

    Rice, Hannah; Patel, Mubarak

    2017-08-01

    The Achilles tendon is the most common site of tendon overuse injury in humans. Running with a forefoot strike pattern and in minimal shoes is a topic of recent interest, yet evidence is currently limited regarding the combined influence of foot strike and footwear on Achilles tendon loading. To investigate the influence of both foot strike and footwear on Achilles tendon loading in habitual rearfoot strike runners. Controlled laboratory study. Synchronized kinematic and force data were collected from 22 habitual rearfoot strikers (11 male), who habitually ran in nonminimal running shoes, during overground running at 3.6 m·s -1 . Participants ran in 3 different footwear conditions (standard running shoe, minimal running shoe, and barefoot) with both a rearfoot strike (RFS) and an imposed forefoot strike (FFS) in each footwear condition. Achilles tendon loading was estimated by use of inverse dynamics, where the Achilles tendon moment arm was determined with a regression equation. A 2-way, repeated-measures analysis of variance was used to compare conditions. Achilles tendon impulse was greater when subjects ran with an FFS rather than an RFS in minimal shoes. Achilles tendon loading rates were higher when subjects ran either in minimal shoes or barefoot than in standard shoes, regardless of foot strike. In runners who habitually rearfoot strike in standard running shoes, running in minimal shoes or barefoot increased the rate of tendon loading, and running with a forefoot strike in minimal shoes increased the magnitude of tendon loading. Transitioning to these running conditions may increase the risk of tendinopathy.

  19. A microfluidic platform for precision small-volume sample processing and its use to size separate biological particles with an acoustic microdevice [Precision size separation of biological particles in small-volume samples by an acoustic microfluidic system

    DOE PAGES

    Fong, Erika J.; Huang, Chao; Hamilton, Julie; ...

    2015-11-23

    Here, a major advantage of microfluidic devices is the ability to manipulate small sample volumes, thus reducing reagent waste and preserving precious sample. However, to achieve robust sample manipulation it is necessary to address device integration with the macroscale environment. To realize repeatable, sensitive particle separation with microfluidic devices, this protocol presents a complete automated and integrated microfluidic platform that enables precise processing of 0.15–1.5 ml samples using microfluidic devices. Important aspects of this system include modular device layout and robust fixtures resulting in reliable and flexible world to chip connections, and fully-automated fluid handling which accomplishes closed-loop sample collection,more » system cleaning and priming steps to ensure repeatable operation. Different microfluidic devices can be used interchangeably with this architecture. Here we incorporate an acoustofluidic device, detail its characterization, performance optimization, and demonstrate its use for size-separation of biological samples. By using real-time feedback during separation experiments, sample collection is optimized to conserve and concentrate sample. Although requiring the integration of multiple pieces of equipment, advantages of this architecture include the ability to process unknown samples with no additional system optimization, ease of device replacement, and precise, robust sample processing.« less

  20. Preliminary Assessment/Site Inspection Work Plan for Granite Mountain Radio Relay System

    DTIC Science & Technology

    1994-09-01

    represent field conditions, and (3) sampling results are repeatable. Final (04 WV---,,1-, ,W•, S 2, mbr . 19W4 13 RyCWed 1.5.2 Sample Handling Sample...procedures specified in Section 2.1.3. Samples collected from shallow depths will be obtained by submerging a stainless- steel, Teflon, or glass... submerged in a manner that minimizes agitation of sediment and the water sample. If a seep or spring has minimal discharge flow, gravel, boulders, and soil

  1. A review on optical actuators for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Yang, Tie; Chen, Yue; Minzioni, Paolo

    2017-12-01

    During the last few decades microfluidic systems have become more and more popular and their relevance in different fields is continually growing. In fact, the use of microchannels allows a significant reduction of the required sample-volume and opens the way to a completely new set of possible investigations, including the study of the properties of cells, the development of new cells’ separation techniques and the analysis of single-cell proteins. One of the main differences between microscopic and macroscopic systems is obviously dictated by the need for suitable actuation mechanisms, which should allow precise control of microscopic fluid volumes and of micro-samples inside the fluid. Even if both syringe-pump and pneumatic-pump technologies significantly evolved and they currently enable sub-μL samples control, completely new approaches were recently developed for the manipulation of samples inside the microchannel. This review is dedicated to describing different kinds of optical actuators that can be applied in microfluidic systems for sample manipulation as well as for pumping. The basic principles underlying the optical actuation mechanisms will be described first, and then several experimental demonstrations will be reviewed and compared.

  2. Nanoscale electron manipulation in metals with intense THz electric fields

    NASA Astrophysics Data System (ADS)

    Takeda, Jun; Yoshioka, Katsumasa; Minami, Yasuo; Katayama, Ikufumi

    2018-03-01

    Improved control over the electromagnetic properties of metals on a nanoscale is crucial for the development of next-generation nanoelectronics and plasmonic devices. Harnessing the terahertz (THz)-electric-field-induced nonlinearity for the motion of electrons is a promising method of manipulating the local electromagnetic properties of metals, while avoiding undesirable thermal effects and electronic transitions. In this review, we demonstrate the manipulation of electron delocalization in ultrathin gold (Au) films with nanostructures, by intense THz electric-field transients. On increasing the electric-field strength of the THz pulses, the transmittance in the THz-frequency region abruptly decreases around the percolation threshold. The observed THz-electric-field-induced nonlinearity is analysed, based on the Drude-Smith model. The results suggest that ultrafast electron delocalization occurs by electron tunnelling across the narrow insulating bridge between the Au nanostructures, without material breakdown. In order to quantitatively discuss the tunnelling process, we perform scanning tunnelling microscopy with carrier-envelope phase (CEP)-controlled single-cycle THz electric fields. By applying CEP-controlled THz electric fields to the 1 nm nanogap between a metal nanotip and graphite sample, many electrons could be coherently driven through the quantum tunnelling process, either from the nanotip to the sample or vice versa. The presented concept, namely, electron tunnelling mediated by CEP-controlled single-cycle THz electric fields, can facilitate the development of nanoscale electron manipulation, applicable to next-generation ultrafast nanoelectronics and plasmonic devices.

  3. Direct and efficient transfection of mouse neural stem cells and mature neurons by in vivo mRNA electroporation.

    PubMed

    Bugeon, Stéphane; de Chevigny, Antoine; Boutin, Camille; Coré, Nathalie; Wild, Stefan; Bosio, Andreas; Cremer, Harold; Beclin, Christophe

    2017-11-01

    In vivo brain electroporation of DNA expression vectors is a widely used method for lineage and gene function studies in the developing and postnatal brain. However, transfection efficiency of DNA is limited and adult brain tissue is refractory to electroporation. Here, we present a systematic study of mRNA as a vector for acute genetic manipulation in the developing and adult brain. We demonstrate that mRNA electroporation is far more efficient than DNA electroporation, and leads to faster and more homogeneous protein expression in vivo Importantly, mRNA electroporation allows the manipulation of neural stem cells and postmitotic neurons in the adult brain using minimally invasive procedures. Finally, we show that this approach can be efficiently used for functional studies, as exemplified by transient overexpression of the neurogenic factor Myt1l and by stably inactivating Dicer nuclease in vivo in adult born olfactory bulb interneurons and in fully integrated cortical projection neurons. © 2017. Published by The Company of Biologists Ltd.

  4. Dynamic Modelling Of A SCARA Robot

    NASA Astrophysics Data System (ADS)

    Turiel, J. Perez; Calleja, R. Grossi; Diez, V. Gutierrez

    1987-10-01

    This paper describes a method for modelling industrial robots that considers dynamic approach to manipulation systems motion generation, obtaining the complete dynamic model for the mechanic part of the robot and taking into account the dynamic effect of actuators acting at the joints. For a four degree of freedom SCARA robot we obtain the dynamic model for the basic (minimal) configuration, that is, the three degrees of freedom that allow us to place the robot end effector in a desired point, using the Lagrange Method to obtain the dynamic equations in matrix form. The manipulator is considered to be a set of rigid bodies inter-connected by joints in the form of simple kinematic pairs. Then, the state space model is obtained for the actuators that move the robot joints, uniting the models of the single actuators, that is, two DC permanent magnet servomotors and an electrohydraulic actuator. Finally, using a computer simulation program written in FORTRAN language, we can compute the matrices of the complete model.

  5. New Crop Selection

    NASA Technical Reports Server (NTRS)

    Bhuiyan, Ruqayah H.; Spencer, Lashelle; Wheeler, Ray; Romeyn, Matthew

    2018-01-01

    For extended space flight, reliable food supplies are a necessity. Most of the food products consumed by astronauts today are stored for flight via freeze drying. Fresh food is needed to supplement known national deficiencies in the stored food diet (Cooper et al.). This is so because stored foods can lose nutritional value. Fresh food is the answer to the nutritional demands of space flight. Kennedy Space Center's Utilization and Life Sciences Office (UB-A), under the Exploration Research and Technology Program (UB), conducts research on plant growth and development under International Space Station (ISS) conditions. UB-A analyzes the growth responses of leafy greens in microgravity and through the manipulation of environmental conditions (CO2 levels, light intensity, relative humidity, and water delivery). By manipulating growing conditions researchers can optimize food production using minimal/restricted resources. The New Crop Selection experiments are testing the suitability of leafy crops to ISS conditions. Results from this study showed that 'Dragoon' Lettuce and 'Red Russian' Kale have the largest fresh mass.

  6. Construction and manipulation of functional three-dimensional droplet networks.

    PubMed

    Wauer, Tobias; Gerlach, Holger; Mantri, Shiksha; Hill, Jamie; Bayley, Hagan; Sapra, K Tanuj

    2014-01-28

    Previously, we reported the manual assembly of lipid-coated aqueous droplets in oil to form two-dimensional (2D) networks in which the droplets are connected through single lipid bilayers. Here we assemble lipid-coated droplets in robust, freestanding 3D geometries: for example, a 14-droplet pyramidal assembly. The networks are designed, and each droplet is placed in a designated position. When protein pores are inserted in the bilayers between specific constituent droplets, electrical and chemical communication pathways are generated. We further describe an improved means to construct 3D droplet networks with defined organizations by the manipulation of aqueous droplets containing encapsulated magnetic beads. The droplets are maneuvered in a magnetic field to form simple construction modules, which are then used to form larger 2D and 3D structures including a 10-droplet pyramid. A methodology to construct freestanding, functional 3D droplet networks is an important step toward the programmed and automated manufacture of synthetic minimal tissues.

  7. The influence of discrimination and fairness on collective self-esteem.

    PubMed

    Scheepers, Daan; Spears, Russell; Manstead, Antony S R; Doosje, Bertjan

    2009-04-01

    This article examines the influence of discrimination and fairness on collective self-esteem. Whereas social identity theory's self-esteem hypothesis emphasizes that discrimination can enhance self-esteem, the authors contend that this self-esteem advantage will actually reverse when groups are primed with the idea of engaging in a fair intergroup competition. They measured (Study 1) and manipulated (Study 2) discrimination and fairness in real (Study 1) and minimal (Study 2) groups, after which they manipulated the presence of an intergroup competition in both studies. Collective self-esteem served as the main dependent measure. Results indicated that when an intergroup competition was present or impending, previously expressed fairness (or less discrimination) was positively related to self-esteem, whereas discrimination was positively related to collective self-esteem in the absence of an intergroup competition. Results are discussed in terms of social identity theory and the importance of the broader social context for examining the relationship between discrimination and self-esteem.

  8. “Five on a dice” port placement for robot-assisted thoracoscopic right upper lobectomy using robotic stapler

    PubMed Central

    Chan, Edward Y.

    2017-01-01

    Early versions of the da Vinci robot system (S and Si) have been used to perform pulmonary lung resection with severe limitations. The lack of a vascular robot stapler required the presence of a trained bedside assistant whose role was to place, manipulate and fire the stapler around major vascular structures. Thus, the techniques developed for the Si robot required a skilled bedside assistant to perform stapling of the hilar structure and manipulation of the lung. With the advent of the da Vinci Xi system with a vascular robot stapler, we postulated that we could develop a new port placement and technique to provide total control for the surgeon during the pulmonary lung resection. We found that the “five on a dice” port placement and technique allows for minimal assistance during the lobectomy with full control by the surgeon. This technique uses the full capability of the Xi robot to make the robot-assisted lobectomy a safe and ergonomic operation. PMID:29312746

  9. "Five on a dice" port placement for robot-assisted thoracoscopic right upper lobectomy using robotic stapler.

    PubMed

    Kim, Min P; Chan, Edward Y

    2017-12-01

    Early versions of the da Vinci robot system (S and Si) have been used to perform pulmonary lung resection with severe limitations. The lack of a vascular robot stapler required the presence of a trained bedside assistant whose role was to place, manipulate and fire the stapler around major vascular structures. Thus, the techniques developed for the Si robot required a skilled bedside assistant to perform stapling of the hilar structure and manipulation of the lung. With the advent of the da Vinci Xi system with a vascular robot stapler, we postulated that we could develop a new port placement and technique to provide total control for the surgeon during the pulmonary lung resection. We found that the "five on a dice" port placement and technique allows for minimal assistance during the lobectomy with full control by the surgeon. This technique uses the full capability of the Xi robot to make the robot-assisted lobectomy a safe and ergonomic operation.

  10. Light Manipulation in Organic Photovoltaics

    PubMed Central

    Ou, Qing‐Dong

    2016-01-01

    Organic photovoltaics (OPVs) hold great promise for next‐generation photovoltaics in renewable energy because of the potential to realize low‐cost mass production via large‐area roll‐to‐roll printing technologies on flexible substrates. To achieve high‐efficiency OPVs, one key issue is to overcome the insufficient photon absorption in organic photoactive layers, since their low carrier mobility limits the film thickness for minimized charge recombination loss. To solve the inherent trade‐off between photon absorption and charge transport in OPVs, the optical manipulation of light with novel micro/nano‐structures has become an increasingly popular strategy to boost the light harvesting efficiency. In this Review, we make an attempt to capture the recent advances in this area. A survey of light trapping schemes implemented to various functional components and interfaces in OPVs is given and discussed from the viewpoint of plasmonic and photonic resonances, addressing the external antireflection coatings, substrate geometry‐induced trapping, the role of electrode design in optical enhancement, as well as optically modifying charge extraction and photoactive layers. PMID:27840805

  11. Tele-surgery simulation with a patient organ model for robotic surgery training.

    PubMed

    Suzuki, S; Suzuki, N; Hattori, A; Hayashibe, M; Konishi, K; Kakeji, Y; Hashizume, M

    2005-12-01

    Robotic systems are increasingly being incorporated into general laparoscopic and thoracoscopic surgery to perform procedures such as cholecystectomy and prostatectomy. Robotic assisted surgery allows the surgeon to conduct minimally invasive surgery with increased accuracy and with potential benefits for patients. However, current robotic systems have their limitations. These include the narrow operative field of view, which can make instrument manipulation difficult. Current robotic applications are also tailored to specific surgical procedures. For these reasons, there is an increasing demand on surgeons to master the skills of instrument manipulation and their surgical application within a controlled environment. This study describes the development of a surgical simulator for training and mastering procedures performed with the da Vinci surgical system. The development of a tele-surgery simulator and the construction of a training center are also described, which will enable surgeons to simulate surgery from or in remote places, to collaborate over long distances, and for off-site expert assistance. Copyright 2005 John Wiley & Sons, Ltd.

  12. A template model of embodiment while dreaming: Proposal of a mini-me.

    PubMed

    Koppehele-Gossel, Judith; Klimke, Ansgar; Schermelleh-Engel, Karin; Voss, Ursula

    2016-11-01

    Dreams are usually centered around a dream self capable of tasks generally impossible in waking, e.g. flying or walking through walls. Moreover, the bodily dream self appears relatively stable and insensitive to changes of the embodied wake self, raising the question of whether and to what extent the dream self is embodied. To further explore its determinants, we tested whether the dream self would be affected by either pre-sleep focused attention to a body part or by its experimental alteration during the day. Choosing a repeated-measures design, we analyzed how often key words reflecting the experimental manipulations appeared in the dream reports. Results suggest that the dream self is not affected by these manipulations, strengthening the hypothesis that, in the majority of dreams, the dream self is only weakly embodied, utilizing a standard template of embodiment akin to a prototype of self operating independently from the physical waking self. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Keyhole concept in cerebral aneurysm clipping and tumor removal by the supraciliary lateral supraorbital approach

    PubMed Central

    Mori, Kentaro

    2014-01-01

    The keyhole concept in neurosurgery is designed to minimize the craniotomy needed for the access route to deep intracranial pathologies. Such keyhole surgeries cause less trauma and can be less invasive than conventional surgical techniques. Among the various types of keyhole mini-craniotomy, supraorbital or lateral supraorbital mini-craniotomy is the standard and basic keyhole approaches. The lateral supraorbital keyhole provides adequate working space in the suprasellar to parasellar areas and planum sphenoidale area including the anterior communicating artery complex. Despite the development of neuro-endoscopic techniques and intra-operative assistant methods, the limited working angle to manipulate and observe deeply situated pathologies is a major disadvantage of the keyhole approaches. Neurosurgeons should understand that keyhole mini-craniotomy surgeries aim at “minimally invasive neurosurgery” but still carry the risks of malpractice unless we understand the advantages and disadvantages of these keyhole concepts and strategies. PMID:24891885

  14. Large Angle Reorientation of a Solar Sail Using Gimballed Mass Control

    NASA Astrophysics Data System (ADS)

    Sperber, E.; Fu, B.; Eke, F. O.

    2016-06-01

    This paper proposes a control strategy for the large angle reorientation of a solar sail equipped with a gimballed mass. The algorithm consists of a first stage that manipulates the gimbal angle in order to minimize the attitude error about a single principal axis. Once certain termination conditions are reached, a regulator is employed that selects a single gimbal angle for minimizing both the residual attitude error concomitantly with the body rate. Because the force due to the specular reflection of radiation is always directed along a reflector's surface normal, this form of thrust vector control cannot generate torques about an axis normal to the plane of the sail. Thus, in order to achieve three-axis control authority a 1-2-1 or 2-1-2 sequence of rotations about principal axes is performed. The control algorithm is implemented directly in-line with the nonlinear equations of motion and key performance characteristics are identified.

  15. Assessment of in vivo 3D kinematics of cervical spine manipulation: Influence of practitioner experience and occurrence of cavitation noise.

    PubMed

    Van Geyt, Bernard; Dugailly, Pierre-Michel; Klein, Paul; Lepers, Yves; Beyer, Benoît; Feipel, Véronique

    2017-04-01

    Investigations on 3D kinematics during spinal manipulation are widely reported for assessing motion data, task reliability and clinical effects. However the link between cavitation occurrence and specific kinematics remains questionable. This paper investigates the 3D head-trunk kinematics during high velocity low amplitude (HVLA) manipulation for different practitioners with respect to the occurrence of cavitation. Head-trunk 3D motions were sampled during HVLA manipulation in twenty asymptomatic volunteers manipulated by four practitioners with different seniority (years of experience). Four target levels were selected, C3 and C5 on each side, and were randomly allocated to the different practitioners. The data was recorded before, during and after each set of trial in each anatomical plane. The number of trials with cavitation occurrence was collected for each practitioner. The manipulation task was performed using extension, ipsilateral side bending and contra-lateral axial rotation independent of side or target level. The displayed angular motion magnitudes did not exceed normal active ROM. Regardless cavitation occurrence, wide variations were observed between practitioners, especially in terms of velocity and acceleration. Cavitation occurrence was related to several kinematics features (i.e. frontal ROM and velocity, sagittal acceleration) and practitioner experience. In addition, multilevel cavitation was observed regularly. Kinematics of cervical manipulation is dependent on practitioner and years of experience. Cavitation occurrence could be related to particular kinematics features. These aspects should be further investigated in order to improve teaching and learning of cervical manipulation technique. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Efficacy of thrust and nonthrust manipulation and exercise with or without the addition of myofascial therapy for the management of acute inversion ankle sprain: a randomized clinical trial.

    PubMed

    Truyols-Domí Nguez, Sebastián; Salom-Moreno, Jaime; Abian-Vicen, Javier; Cleland, Joshua A; Fernández-de-Las-Peñas, César

    2013-05-01

    Randomized clinical trial. To compare the effects of thrust and nonthrust manipulation and exercises with and without the addition of myofascial therapy for the treatment of acute inversion ankle sprain. Studies have reported that thrust and nonthrust manipulations of the ankle joint are effective for the management of patients post-ankle sprain. However, it is not known whether the inclusion of soft tissue myofascial therapy could further improve clinical and functional outcomes. Fifty patients (37 men and 13 women; mean ± SD age, 33 ± 10 years) post-acute inversion ankle sprain were randomly assigned to 2 groups: a comparison group that received a thrust and nonthrust manipulation and exercise intervention, and an experimental group that received the same protocol and myofascial therapy. The primary outcomes were ankle pain at rest and functional ability. Additionally, ankle mobility and pressure pain threshold over the ankle were assessed by a clinician who was blinded to the treatment allocation. Outcomes of interest were captured at baseline, immediately after the treatment period, and at a 1-month follow-up. The primary analysis was the group-by-time interaction. The 2-by-3 mixed-model analyses of variance revealed a significant group-by-time interaction for ankle pain (P<.001) and functional score (P = .002), with the patients who received the combination of nonthrust and thrust manipulation and myofascial intervention experiencing a greater improvement in pain and function than those who received the nonthrust and thrust manipulation intervention alone. Significant group-by-time interactions were also observed for ankle mobility (P<.001) and pressure pain thresholds (all, P<.01), with those in the experimental group experiencing greater increases in ankle mobility and pressure pain thresholds. Between-group effect sizes were large (d>0.85) for all outcomes. This study provides evidence that, in the treatment of individuals post-inversion ankle sprain, the addition of myofascial therapy to a plan of care consisting of thrust and nonthrust manipulation and exercise may further improve outcomes compared to a plan of care solely consisting of thrust and nonthrust manipulation and exercise. However, though statistically significant, the difference in improvement in the primary outcome between groups was not greater than what would be considered a minimal clinically important difference. Future studies should examine the long-term effects of these interventions in this population. Therapy, level 1b-.

  17. Short-term effects of kinesio taping versus cervical thrust manipulation in patients with mechanical neck pain: a randomized clinical trial.

    PubMed

    Saavedra-Hernández, Manuel; Castro-Sánchez, Adelaida M; Arroyo-Morales, Manuel; Cleland, Joshua A; Lara-Palomo, Inmaculada C; Fernández-de-Las-Peñas, César

    2012-08-01

    Randomized clinical trial. To compare the effectiveness of cervical spine thrust manipulation to that of Kinesio Taping applied to the neck in individuals with mechanical neck pain, using self-reported pain and disability and cervical range of motion as measures. The effectiveness of cervical manipulation has received considerable attention in the literature. However, because some patients cannot tolerate cervical thrust manipulation, alternative therapeutic options should be investigated. Eighty patients (36 women) were randomly assigned to 1 of 2 groups: the manipulation group, which received 2 cervical thrust manipulations, and the tape group, which received Kinesio Taping applied to the neck. Neck pain (11-point numeric pain rating scale), disability (Neck Disability Index), and cervical-range-of-motion data were collected at baseline and 1 week after the intervention by an assessor blinded to the treatment allocation of the patients. Mixed-model analyses of variance were used to examine the effects of the treatment on each outcome variable, with group as the between-subjects variable and time as the within-subjects variable. The primary analysis was the group-by-time interaction. No significant group-by-time interactions were found for pain (F = 1.892, P = .447) or disability (F = 0.115, P = .736). The group-by-time interaction was statistically significant for right (F = 7.317, P = .008) and left (F = 9.525, P = .003) cervical rotation range of motion, with the patients who received the cervical thrust manipulation having experienced greater improvement in cervical rotation than those treated with Kinesio Tape (P<.01). No significant group-by-time interactions were found for cervical spine range of motion for flexion (F = 0.944, P = .334), extension (F = 0.122, P = .728), and right (F = 0.220, P = .650) and left (F = 0.389, P = .535) lateral flexion. Patients with mechanical neck pain who received cervical thrust manipulation or Kinesio Taping exhibited similar reductions in neck pain intensity and disability and similar changes in active cervical range of motion, except for rotation. Changes in neck pain surpassed the minimal clinically important difference, whereas changes in disability did not. Changes in cervical range of motion were small and not clinically meaningful. Because we did not include a control or placebo group in this study, we cannot rule out a placebo effect or natural changes over time as potential reasons for the improvements measured in both groups. Therapy, level 1b.

  18. Singularity-robustness and task-prioritization in configuration control of redundant robots

    NASA Technical Reports Server (NTRS)

    Seraji, H.; Colbaugh, R.

    1990-01-01

    The authors present a singularity-robust task-prioritized reformulation of the configuration control for redundant robot manipulators. This reformation suppresses large joint velocities to induce minimal errors in the task performance by modifying the task trajectories. Furthermore, the same framework provides a means for assignment of priorities between the basic task of end-effector motion and the user-defined additional task for utilizing redundancy. This allows automatic relaxation of the additional task constraints in favor of the desired end-effector motion when both cannot be achieved exactly.

  19. Optimal trajectory generation for mechanical arms. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Iemenschot, J. A.

    1972-01-01

    A general method of generating optimal trajectories between an initial and a final position of an n degree of freedom manipulator arm with nonlinear equations of motion is proposed. The method is based on the assumption that the time history of each of the coordinates can be expanded in a series of simple time functions. By searching over the coefficients of the terms in the expansion, trajectories which minimize the value of a given cost function can be obtained. The method has been applied to a planar three degree of freedom arm.

  20. Neurogenesis-mediated forgetting minimizes proactive interference

    PubMed Central

    Epp, Jonathan R.; Silva Mera, Rudy; Köhler, Stefan; Josselyn, Sheena A.; Frankland, Paul W.

    2016-01-01

    Established memories may interfere with the encoding of new memories, particularly when existing and new memories overlap in content. By manipulating levels of hippocampal neurogenesis, here we show that neurogenesis regulates this form of proactive interference. Increasing hippocampal neurogenesis weakens existing memories and, in doing so, facilitates the encoding of new, conflicting (but not non-conflicting) information in mice. Conversely, decreasing neurogenesis stabilizes existing memories, and impedes the encoding of new, conflicting information. These results suggest that reduced proactive interference is an adaptive benefit of neurogenesis-induced forgetting. PMID:26917323

  1. Compact scanning tunneling microscope for spin polarization measurements.

    PubMed

    Kim, Seong Heon; de Lozanne, Alex

    2012-10-01

    We present a design for a scanning tunneling microscope that operates in ultrahigh vacuum down to liquid helium temperatures in magnetic fields up to 8 T. The main design philosophy is to keep everything compact in order to minimize the consumption of cryogens for initial cool-down and for extended operation. In order to achieve this, new ideas were implemented in the design of the microscope body, dewars, vacuum chamber, manipulators, support frame, and vibration isolation. After a brief description of these designs, the results of initial tests are presented.

  2. A new electrowetting lab-on-a-chip platform based on programmable and virtual wall-less channels

    NASA Astrophysics Data System (ADS)

    Banerjee, Ananda; Kreit, Eric; Dhindsa, Manjeet; Heikenfeld, Jason; Papautsky, Ian

    2011-02-01

    Microscale liquid handling based on electrowetting has been previously demonstrated by several groups. Such liquid manipulation however is limited to control of individual droplets, aptly termed digital microfluidics. The inability to form continuous channels thus prevents conventional microfluidic sample manipulation and analysis approaches, such as electroosmosis and electrophoresis. In this paper, we discuss our recent progress on the development of electrowettingbased virtual channels. These channels can be created and reconfigured on-demand and preserve their shape without external stimulus. We also discuss recent progress towards demonstrating electroosmotic flows in such microchannels for fluid transport. This would permit a variety of basic functionalities in this new platform including sample transport and mixing between various functional areas of the chip.

  3. Field Geology/Processes

    NASA Technical Reports Server (NTRS)

    Allen, Carlton; Jakes, Petr; Jaumann, Ralf; Marshall, John; Moses, Stewart; Ryder, Graham; Saunders, Stephen; Singer, Robert

    1996-01-01

    The field geology/process group examined the basic operations of a terrestrial field geologist and the manner in which these operations could be transferred to a planetary lander. Four basic requirements for robotic field geology were determined: geologic content; surface vision; mobility; and manipulation. Geologic content requires a combination of orbital and descent imaging. Surface vision requirements include range, resolution, stereo, and multispectral imaging. The minimum mobility for useful field geology depends on the scale of orbital imagery. Manipulation requirements include exposing unweathered surfaces, screening samples, and bringing samples in contact with analytical instruments. To support these requirements, several advanced capabilities for future development are recommended. Capabilities include near-infrared reflectance spectroscopy, hyper-spectral imaging, multispectral microscopy, artificial intelligence in support of imaging, x ray diffraction, x ray fluorescence, and rock chipping.

  4. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  5. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  6. CAVITATION SOUNDS DURING CERVICOTHORACIC SPINAL MANIPULATION.

    PubMed

    Dunning, James; Mourad, Firas; Zingoni, Andrea; Iorio, Raffaele; Perreault, Thomas; Zacharko, Noah; de Las Peñas, César Fernández; Butts, Raymond; Cleland, Joshua A

    2017-08-01

    No study has previously investigated the side, duration or number of audible cavitation sounds during high-velocity low-amplitude (HVLA) thrust manipulation to the cervicothoracic spine. The primary purpose was to determine which side of the spine cavitates during cervicothoracic junction (CTJ) HVLA thrust manipulation. Secondary aims were to calculate the average number of cavitations, the duration of cervicothoracic thrust manipulation, and the duration of a single cavitation. Quasi-experimental study. Thirty-two patients with upper trapezius myalgia received two cervicothoracic HVLA thrust manipulations targeting the right and left T1-2 articulation, respectively. Two high sampling rate accelerometers were secured bilaterally 25 mm lateral to midline of the T1-2 interspace. For each manipulation, two audio signals were extracted using Short-Time Fourier Transformation (STFT) and singularly processed via spectrogram calculation in order to evaluate the frequency content and number of instantaneous energy bursts of both signals over time for each side of the CTJ. Unilateral cavitation sounds were detected in 53 (91.4%) of 58 cervicothoracic HVLA thrust manipulations and bilateral cavitation sounds were detected in just five (8.6%) of the 58 thrust manipulations; that is, cavitation was significantly (p<0.001) more likely to occur unilaterally than bilaterally. In addition, cavitation was significantly (p<0.0001) more likely to occur on the side contralateral to the clinician's short-lever applicator. The mean number of audible cavitations per manipulation was 4.35 (95% CI 2.88, 5.76). The mean duration of a single manipulation was 60.77 ms (95% CI 28.25, 97.42) and the mean duration of a single audible cavitation was 4.13 ms (95% CI 0.82, 7.46). In addition to single-peak and multi-peak energy bursts, spectrogram analysis also demonstrated high frequency sounds, low frequency sounds, and sounds of multiple frequencies for all 58 manipulations. Cavitation was significantly more likely to occur unilaterally, and on the side contralateral to the short-lever applicator contact, during cervicothoracic HVLA thrust manipulation. Clinicians should expect multiple cavitation sounds when performing HVLA thrust manipulation to the CTJ. Due to the presence of multi-peak energy bursts and sounds of multiple frequencies, the cavitation hypothesis (i.e. intra-articular gas bubble collapse) alone appears unable to explain all of the audible sounds during HVLA thrust manipulation, and the possibility remains that several phenomena may be occurring simultaneously. 2b.

  7. Neuroinformatics Database (NiDB) – A Modular, Portable Database for the Storage, Analysis, and Sharing of Neuroimaging Data

    PubMed Central

    Anderson, Beth M.; Stevens, Michael C.; Glahn, David C.; Assaf, Michal; Pearlson, Godfrey D.

    2013-01-01

    We present a modular, high performance, open-source database system that incorporates popular neuroimaging database features with novel peer-to-peer sharing, and a simple installation. An increasing number of imaging centers have created a massive amount of neuroimaging data since fMRI became popular more than 20 years ago, with much of that data unshared. The Neuroinformatics Database (NiDB) provides a stable platform to store and manipulate neuroimaging data and addresses several of the impediments to data sharing presented by the INCF Task Force on Neuroimaging Datasharing, including 1) motivation to share data, 2) technical issues, and 3) standards development. NiDB solves these problems by 1) minimizing PHI use, providing a cost effective simple locally stored platform, 2) storing and associating all data (including genome) with a subject and creating a peer-to-peer sharing model, and 3) defining a sample, normalized definition of a data storage structure that is used in NiDB. NiDB not only simplifies the local storage and analysis of neuroimaging data, but also enables simple sharing of raw data and analysis methods, which may encourage further sharing. PMID:23912507

  8. Portable automated imaging in complex ceramics with a microwave interference scanning system

    NASA Astrophysics Data System (ADS)

    Goitia, Ryan M.; Schmidt, Karl F.; Little, Jack R.; Ellingson, William A.; Green, William; Franks, Lisa P.

    2013-01-01

    An improved portable microwave interferometry system has been automated to permit rapid examination of components with minimal operator attendance. Functionalities include stereo and multiplexed, frequency-modulated at multiple frequencies, producing layered volumetric images of complex ceramic structures. The technique has been used to image composite ceramic armor and ceramic matrix composite components, as well as other complex dielectric materials. The system utilizes Evisive Scan microwave interference scanning technique. Validation tests include artificial and in-service damage of ceramic armor, surrogates and ceramic matrix composite samples. Validation techniques include micro-focus x-ray and computed tomography imaging. The microwave interference scanning technique has demonstrated detection of cracks, interior laminar features and variations in material properties such as density. The image yields depth information through phase angle manipulation, and shows extent of feature and relative dielectric property information. It requires access to only one surface, and no coupling medium. Data are not affected by separation of layers of dielectric material, such as outer over-wrap. Test panels were provided by the US Army Research Laboratory, and the US Army Tank Automotive Research, Development and Engineering Center (TARDEC), who with the US Air Force Research Laboratory have supported this work.

  9. Advances in research on structural characterisation of agricultural products using atomic force microscopy.

    PubMed

    Liu, Dongli; Cheng, Fang

    2011-03-30

    Atomic force microscopy (AFM) has many unique features compared with other conventional microscopies, such as high magnification with high resolution, minimal sample preparation, acquiring 2D and 3D images at the same time, observing ongoing processes directly, the possibility of manipulating macromolecules, etc. As a nanotechnology tool, AFM has been used to investigate the nanostructure of materials in many fields. This mini-review focuses mainly on its latest application to characterise the macromolecular nanostructure and surface topography of agricultural products. First the fundamentals of AFM are briefly explained. Then the macromolecular nanostructure information on agricultural products from AFM images is introduced by exploring the structure-function relationship in three aspects: agricultural product processing, agricultural product ripening and storage, and genetic and environmental factors. The surface topography characterisation of agricultural products using AFM is also discussed. The results reveal that AFM could be a powerful nanotechnology tool to acquire a deeper understanding of the mechanisms of structure and quality variations of agricultural products, which could be instructive in improving processing and storage technologies, and AFM is also helpful to reveal the essential nature of a product at nanoscale. Copyright © 2011 Society of Chemical Industry.

  10. Fluorogen-Activating-Proteins as Universal Affinity Biosensors for Immunodetection

    PubMed Central

    Gallo, Eugenio; Vasilev, Kalin V.; Jarvik, Jonathan

    2014-01-01

    Fluorogen-activating-proteins (FAPs) are a novel platform of fluorescence biosensors utilized for protein discovery. The technology currently demands molecular manipulation methods that limit its application and adaptability. Here, we highlight an alternative approach based on universal affinity reagents for protein detection. The affinity reagents were engineered as bi-partite fusion proteins, where the specificity moiety is derived from IgG-binding proteins –Protein-A or Protein-G – and the signaling element is a FAP. In this manner, primary antibodies provide the antigenic selectivity against a desired protein in biological samples, while FAP affinity reagents target the constant region (Fc) of antibodies and provide the biosensor component of detection. Fluorescence results using various techniques indicate minimal background and high target specificity for exogenous and endogenous proteins in mammalian cells. Additionally, FAP-based affinity reagents provide enhanced properties of detection previously absent using conventional affinity systems. Distinct features explored in this report include: (1) unfixed signal wavelengths (excitation and emission) determined by the particular fluorogen chosen, (2) real-time user controlled fluorescence on-set and off-set, (3) signal wavelength substitution while performing live analysis, and (4) enhanced resistance to photobleaching. PMID:24122476

  11. Haptic Feedback Manipulation During Botulinum Toxin Injection Therapy for Focal Hand Dystonia Patients: A Possible New Assistive Strategy.

    PubMed

    Atashzar, Seyed Farokh; Shahbazi, Mahya; Ward, Christopher; Samotus, Olivia; Delrobaei, Mehdi; Rahimi, Fariborz; Lee, Jack; Jackman, Mallory; Jog, Mandar S; Patel, Rajni V

    2016-01-01

    Abnormality of sensorimotor integration in the basal ganglia and cortex has been reported in the literature for patients with task-specific focal hand dystonia (FHD). In this study, we investigate the effect of manipulation of kinesthetic input in people living with writer's cramp disorder (a major form of FHD). For this purpose, severity of dystonia is studied for 11 participants while the symptoms of seven participants have been tracked during five sessions of assessment and Botulinum toxin injection (BoNT-A) therapy (one of the current suggested therapies for dystonia). BoNT-A therapy is delivered in the first and the third session. The goal is to analyze the effect of haptic manipulation as a potential assistive technique during BoNT-A therapy. The trial includes writing, hovering, and spiral/sinusoidal drawing subtasks. In each session, the subtasks are repeated twice when (a) a participant uses a normal pen, and (b) when the participant uses a robotics-assisted system (supporting the pen) which provides a compliant virtual writing surface and manipulates the kinesthetic sensory input. The results show (p-value using one-sample t-tests) that reducing the writing surface rigidity significantly decreases the severity of dystonia and results in better control of grip pressure (an indicator of dystonic cramping). It is also shown that (p-value based on paired-samples t-test) using the proposed haptic manipulation strategy, it is possible to augment the effectiveness of BoNT-A therapy. The outcome of this study is then used in the design of an actuated pen as a writing-assistance tool that can provide compliant haptic interaction during writing for FHD patients.

  12. Maskless direct laser writing with visible light: Breaking through the optical resolving limit with cooperative manipulations of nonlinear reverse saturation absorption and thermal diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Jingsong, E-mail: weijingsong@siom.ac.cn; Wang, Rui; University of Chinese Academy of Sciences, Beijing 100049

    In this work, the resolving limit of maskless direct laser writing is overcome by cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion, where the nonlinear reverse saturation absorption can induce the formation of below diffraction-limited energy absorption spot, and the thermal diffusion manipulation can make the heat quantity at the central region of energy absorption spot propagate along the thin film thickness direction. The temperature at the central region of energy absorption spot transiently reaches up to melting point and realizes nanolithography. The sample “glass substrate/AgInSbTe” is prepared, where AgInSbTe is taken as nonlinear reverse saturation absorption thinmore » film. The below diffraction-limited energy absorption spot is simulated theoretically and verified experimentally by near-field spot scanning method. The “glass substrate/Al/AgInSbTe” sample is prepared, where the Al is used as thermal conductive layer to manipulate the thermal diffusion channel because the thermal diffusivity coefficient of Al is much larger than that of AgInSbTe. The direct laser writing is conducted by a setup with a laser wavelength of 650 nm and a converging lens of NA=0.85, the lithographic marks with a size of about 100 nm are obtained, and the size is only about 1/10 the incident focused spot. The experimental results indicate that the cooperative manipulation from nonlinear reverse saturation absorption and thermal diffusion is a good method to realize nanolithography in maskless direct laser writing with visible light.« less

  13. Evolution of the Space Station Robotic Manipulator

    NASA Technical Reports Server (NTRS)

    Razvi, Shakeel; Burns, Susan H.

    2007-01-01

    The Space Station Remote Manipulator System (SSRMS), Canadarm2, was launched in 2001 and deployed on the International Space Station (ISS). The Canadarm2 has been instrumental in ISS assembly and maintenance. Canadarm2 shares its heritage with the Space Shuttle Arm (Canadarm). This article explores the evolution from the Shuttle Canadarm to the Space Station Canadarm2 design, which incorporates a 7 degree of freedom design, larger joints, and changeable operating base. This article also addresses phased design, redundancy, life and maintainability requirements. The design of Canadarm2 meets unique ISS requirements, including expanded handling capability and the ability to be maintained on orbit. The size of ISS necessitated a mobile manipulator, resulting in the unique capability of Canadarm2 to relocate by performing a walk off to base points located along the Station, and interchanging the tip and base of the manipulator. This provides the manipulator with reach and access to a large part of the Station, enabling on-orbit assembly of the Station and providing support to Extra-Vehicular Activity (EVA). Canadarm2 is evolving based on on-orbit operational experience and new functionality requirements. SSRMS functionality is being developed in phases to support evolving ISS assembly and operation as modules are added and the Station becomes more complex. Changes to sustaining software, hardware architecture, and operations have significantly enhanced SSRMS capability to support ISS mission requirements. As a result of operational experience, SSRMS changes have been implemented for Degraded Joint Operations, Force Moment Sensor Thermal Protection, Enabling Ground Controlled Operations, and Software Commutation. Planned Canadarm2 design modifications include: Force Moment Accommodation, Smart Safing, Separate Safing, and Hot Backup. In summary, Canadarm2 continues to evolve in support of new ISS requirements and improved operations. It is a tribute to the design that this evolution can be accomplished while conducting critical on-orbit operations with minimal hardware changes.

  14. Behavioral asymmetries of psychomotor performance in rhesus monkeys (Macaca mulatta) - A dissociation between hand preference and skill

    NASA Technical Reports Server (NTRS)

    Hopkins, William D.; Washburn, David A.; Berke, Leslie; Williams, Mary

    1992-01-01

    Hand preferences were recorded for 35 rhesus monkeys (Macaca mulatta) as they manipulated a joystick in response to 2 computerized tasks. These preferences were then used to contrast 8 left- and 10 right-handed subjects on performance measures of hand skill. Individual hand preferences were found, but no significant population asymmetry was observed across the sample. However, the performance data reveal substantial benefits of right-handedness for joystick manipulation, as this group of monkeys mastered the 2 psychomotor tasks significantly faster than did their left-handed counterparts. The data support earlier reports of a right-hand advantage for joystick manipulation and also support the importance of distinguishing between hand preference and manual performance in research on functional asymmetries.

  15. TEQUEL: The query language of SADDLE

    NASA Technical Reports Server (NTRS)

    Rajan, S. D.

    1984-01-01

    A relational database management system is presented that is tailored for engineering applications. A wide variety of engineering data types are supported and the data definition language (DDL) and data manipulation language (DML) are extended to handle matrices. The system can be used either in the standalone mode or through a FORTRAN or PASCAL application program. The query language is of the relational calculus type and allows the user to store, retrieve, update and delete tuples from relations. The relational operations including union, intersect and differ facilitate creation of temporary relations that can be used for manipulating information in a powerful manner. Sample applications are shown to illustrate the creation of data through a FORTRAN program and data manipulation using the TEQUEL DML.

  16. Acceptability of Functional Behavioral Assessment Procedures to Special Educators and School Psychologists

    ERIC Educational Resources Information Center

    O'Neill, Robert E.; Bundock, Kaitlin; Kladis, Kristin; Hawken, Leanne S.

    2015-01-01

    This survey study assessed the acceptability of a variety of functional behavioral assessment (FBA) procedures (i.e., functional assessment interviews, rating scales/questionnaires, systematic direct observations, functional analysis manipulations) to a national sample of 123 special educators and a state sample of 140 school psychologists.…

  17. Adolescent Psychopathy and the Big Five: Results from Two Samples

    ERIC Educational Resources Information Center

    Lynam, Donald R.; Caspi, Avshalom; Moffitt, Terrie E.; Raine, Adrian; Loeber, Rolf; Stouthamer-Loeber, Magda

    2005-01-01

    The present study examines the relation between psychopathy and the Big Five dimensions of personality in two samples of adolescents. Specifically, the study tests the hypothesis that the aspect of psychopathy representing selfishness, callousness, and interpersonal manipulation (Factor 1) is most strongly associated with low Agreeableness,…

  18. Species-specific ant brain manipulation by a specialized fungal parasite.

    PubMed

    de Bekker, Charissa; Quevillon, Lauren E; Smith, Philip B; Fleming, Kimberly R; Ghosh, Debashis; Patterson, Andrew D; Hughes, David P

    2014-08-29

    A compelling demonstration of adaptation by natural selection is the ability of parasites to manipulate host behavior. One dramatic example involves fungal species from the genus Ophiocordyceps that control their ant hosts by inducing a biting behavior. Intensive sampling across the globe of ants that died after being manipulated by Ophiocordyceps suggests that this phenomenon is highly species-specific. We advance our understanding of this system by reconstructing host manipulation by Ophiocordyceps parasites under controlled laboratory conditions and combining this with field observations of infection rates and a metabolomics survey. We report on a newly discovered species of Ophiocordyceps unilateralis sensu lato from North America that we use to address the species-specificity of Ophiocordyceps-induced manipulation of ant behavior. We show that the fungus can kill all ant species tested, but only manipulates the behavior of those it infects in nature. To investigate if this could be explained at the molecular level, we used ex vivo culturing assays to measure the metabolites that are secreted by the fungus to mediate fungus-ant tissue interactions. We show the fungus reacts heterogeneously to brains of different ant species by secreting a different array of metabolites. By determining which ion peaks are significantly enriched when the fungus is grown alongside brains of its naturally occurring host, we discovered candidate compounds that could be involved in behavioral manipulation by O. unilateralis s.l.. Two of these candidates are known to be involved in neurological diseases and cancer. The integrative work presented here shows that ant brain manipulation by O. unilateralis s.l. is species-specific seemingly because the fungus produces a specific array of compounds as a reaction to the presence of the host brain it has evolved to manipulate. These studies have resulted in the discovery of candidate compounds involved in establishing behavioral manipulation by this specialized fungus and therefore represent a major advancement towards an understanding of the molecular mechanisms underlying this phenomenon.

  19. Gene expression during zombie ant biting behavior reflects the complexity underlying fungal parasitic behavioral manipulation.

    PubMed

    de Bekker, Charissa; Ohm, Robin A; Loreto, Raquel G; Sebastian, Aswathy; Albert, Istvan; Merrow, Martha; Brachmann, Andreas; Hughes, David P

    2015-08-19

    Adaptive manipulation of animal behavior by parasites functions to increase parasite transmission through changes in host behavior. These changes can range from slight alterations in existing behaviors of the host to the establishment of wholly novel behaviors. The biting behavior observed in Carpenter ants infected by the specialized fungus Ophiocordyceps unilateralis s.l. is an example of the latter. Though parasitic manipulation of host behavior is generally assumed to be due to the parasite's gene expression, few studies have set out to test this. We experimentally infected Carpenter ants to collect tissue from both parasite and host during the time period when manipulated biting behavior is experienced. Upon observation of synchronized biting, samples were collected and subjected to mixed RNA-Seq analysis. We also sequenced and annotated the O. unilateralis s.l. genome as a reference for the fungal sequencing reads. Our mixed transcriptomics approach, together with a comparative genomics study, shows that the majority of the fungal genes that are up-regulated during manipulated biting behavior are unique to the O. unilateralis s.l. genome. This study furthermore reveals that the fungal parasite might be regulating immune- and neuronal stress responses in the host during manipulated biting, as well as impairing its chemosensory communication and causing apoptosis. Moreover, we found genes up-regulated during manipulation that putatively encode for proteins with reported effects on behavioral outputs, proteins involved in various neuropathologies and proteins involved in the biosynthesis of secondary metabolites such as alkaloids.

  20. Street characteristics preferred for transportation walking among older adults: a choice-based conjoint analysis with manipulated photographs.

    PubMed

    Van Cauwenberg, Jelle; De Bourdeaudhuij, Ilse; Clarys, Peter; Nasar, Jack; Salmon, Jo; Goubert, Liesbet; Deforche, Benedicte

    2016-01-16

    Knowledge about the relationships between micro-scale environmental factors and older adults' walking for transport is limited and inconsistent. This is probably due to methodological limitations, such as absence of an accurate neighborhood definition, lack of environmental heterogeneity, environmental co-variation, and recall bias. Furthermore, most previous studies are observational in nature. We aimed to address these limitations by investigating the effects of manipulating photographs on micro-scale environmental factors on the appeal of a street for older adults' transportation walking. Secondly, we used latent class analysis to examine whether subgroups could be identified that have different environmental preferences for transportation walking. Thirdly, we investigated whether these subgroups differed in socio-demographic, functional and psychosocial characteristics, current level of walking and environmental perceptions of their own street. Data were collected among 1131 Flemish older adults through an online (n = 940) or an interview version of the questionnaire (n = 191). This questionnaire included a choice-based conjoint exercise with manipulated photographs of a street. These manipulated photographs originated from one panoramic photograph of an existing street that was manipulated on nine environmental attributes. Participants chose which of two presented streets they would prefer to walk for transport. In the total sample, sidewalk evenness had by far the greatest appeal for transportation walking. The other environmental attributes were less important. Four subgroups that differed in their environmental preferences for transportation walking were identified. In the two largest subgroups (representing 86% of the sample) sidewalk evenness was the most important environmental attribute. In the two smaller subgroups (each comprising 7% of the sample), traffic volume and speed limit were the most important environmental attributes for one, and the presence of vegetation and a bench were the most important environmental attributes for the other. This latter subgroup included a higher percentage of service flat residents than the other subgroups. Our results suggest that the provision of even sidewalks should be considered a priority when developing environmental interventions aiming to stimulate older adults' transportation walking. Natural experiments are needed to confirm whether our findings can be translated to real environments and actual transportation walking behavior.

  1. [Advantages and disadvantages of minimally invasive surgery in colorectal cancer surgery].

    PubMed

    Zheng, Minhua; Ma, Junjun

    2017-06-25

    Since the emergence of minimally invasive technology twenty years ago, as a surgical concept and surgical technique for colorectal cancer surgery, its obvious advantages have been recognized. Laparoscopic technology, as one of the most important technology platform, has got a lot of evidence-based support for the oncological safety and effectiveness in colorectal cancer surgery Laparoscopic technique has advantages in terms of identification of anatomic plane and autonomic nerve, protection of pelvic structure, and fine dissection of vessels. But because of the limitation of laparoscopic technology there are still some deficiencies and shortcomings, including lack of touch and lack of stereo vision problems, in addition to the low rectal cancer, especially male, obese, narrow pelvis, larger tumors, it is difficult to get better view and manipulating triangle in laparoscopy. However, the emergence of a series of new minimally invasive technology platform is to make up for the defects and deficiencies. The robotic surgical system possesses advantages, such as stereo vision, higher magnification, manipulator wrist with high freedom degree, filtering of tremor and higher stability, but still has disadvantages, such as lack of haptic feedback, longer operation time, high operation cost and expensive price. 3D system of laparoscopic surgery has similar visual experience and feelings as robotic surgery in the 3D view, the same operating skills as 2D laparoscopy and a short learning curve. The price of 3D laparoscopy is also moderate, which makes the 3D laparoscopy more popular in China. Transanal total mesorectal excision (taTME) by changing the traditional laparoscopic pelvic surgery approach, may have certain advantages for male cases with narrow pelvic and patients with large tumor, and it is in accordance with the technical concept of natural orifice, with less minimally invasive and better cosmetics, which can be regarded as a supplemental technique of the traditional laparoscopic TME surgery for rectal carcinoma. However, this technology also has its own shortcomings, including difficulty getting a high ligation of vessels, difficulty exploring the abdominal cavity, and longer learning curve than laparoscopy. We believe that with the continuous progress and development of technology, continuous improvement and innovation of equipment platform, more organ functions will be protected in laparoscopic surgery for rectal cancer without compromising the safety and oncological effectiveness.

  2. Using noise to shape motor learning

    PubMed Central

    Kording, Konrad P.; Mussa-Ivaldi, Ferdinando A.

    2016-01-01

    Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces. NEW & NOTEWORTHY Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control. PMID:27881721

  3. Using noise to shape motor learning.

    PubMed

    Thorp, Elias B; Kording, Konrad P; Mussa-Ivaldi, Ferdinando A

    2017-02-01

    Each of our movements is selected from any number of alternative movements. Some studies have shown evidence that the central nervous system (CNS) chooses to make the specific movements that are least affected by motor noise. Previous results showing that the CNS has a natural tendency to minimize the effects of noise make the direct prediction that if the relationship between movements and noise were to change, the specific movements people learn to make would also change in a predictable manner. Indeed, this has been shown for well-practiced movements such as reaching. Here, we artificially manipulated the relationship between movements and visuomotor noise by adding noise to a motor task in a novel redundant geometry such that there arose a single control policy that minimized the noise. This allowed us to see whether, for a novel motor task, people could learn the specific control policy that minimized noise or would need to employ other compensation strategies to overcome the added noise. As predicted, subjects were able to learn movements that were biased toward the specific ones that minimized the noise, suggesting not only that the CNS can learn to minimize the effects of noise in a novel motor task but also that artificial visuomotor noise can be a useful tool for teaching people to make specific movements. Using noise as a teaching signal promises to be useful for rehabilitative therapies and movement training with human-machine interfaces. Many theories argue that we choose to make the specific movements that minimize motor noise. Here, by changing the relationship between movements and noise, we show that people actively learn to make movements that minimize noise. This not only provides direct evidence for the theories of noise minimization but presents a way to use noise to teach specific movements to improve rehabilitative therapies and human-machine interface control. Copyright © 2017 the American Physiological Society.

  4. Chi-squared and C statistic minimization for low count per bin data. [sampling in X ray astronomy

    NASA Technical Reports Server (NTRS)

    Nousek, John A.; Shue, David R.

    1989-01-01

    Results are presented from a computer simulation comparing two statistical fitting techniques on data samples with large and small counts per bin; the results are then related specifically to X-ray astronomy. The Marquardt and Powell minimization techniques are compared by using both to minimize the chi-squared statistic. In addition, Cash's C statistic is applied, with Powell's method, and it is shown that the C statistic produces better fits in the low-count regime than chi-squared.

  5. On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics

    PubMed Central

    Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Liu, Jiangwei; Tao, Ye; Jiang, Hongyuan; Ding, Yucheng

    2016-01-01

    By imposing a biased gate voltage to a center metal strip, arbitrary symmetry breaking in induced-charge electroosmotic flow occurs on the surface of this planar gate electrode, a phenomenon termed as AC-flow field effect transistor (AC-FFET). In this work, the potential of AC-FFET with a shiftable flow stagnation line to flexibly manipulate micro-nano particle samples in both a static and continuous flow condition is demonstrated via theoretical analysis and experimental validation. The effect of finite Debye length of induced double-layer and applied field frequency on the manipulating flexibility factor for static condition is investigated, which indicates AC-FFET turns out to be more effective for achieving a position-controllable concentrating of target nanoparticle samples in nanofluidics compared to the previous trial in microfluidics. Besides, a continuous microfluidics-based particle concentrator/director is developed to deal with incoming analytes in dynamic condition, which exploits a design of tandem electrode configuration to consecutively flow focus and divert incoming particle samples to a desired downstream branch channel, as prerequisite for a following biochemical analysis. Our physical demonstrations with AC-FFET prove valuable for innovative designs of flexible electrokinetic frameworks, which can be conveniently integrated with other microfluidic or nanofluidic components into a complete lab-on-chip diagnostic platform due to a simple electrode structure. PMID:27190570

  6. On utilizing alternating current-flow field effect transistor for flexibly manipulating particles in microfluidics and nanofluidics.

    PubMed

    Liu, Weiyu; Shao, Jinyou; Ren, Yukun; Liu, Jiangwei; Tao, Ye; Jiang, Hongyuan; Ding, Yucheng

    2016-05-01

    By imposing a biased gate voltage to a center metal strip, arbitrary symmetry breaking in induced-charge electroosmotic flow occurs on the surface of this planar gate electrode, a phenomenon termed as AC-flow field effect transistor (AC-FFET). In this work, the potential of AC-FFET with a shiftable flow stagnation line to flexibly manipulate micro-nano particle samples in both a static and continuous flow condition is demonstrated via theoretical analysis and experimental validation. The effect of finite Debye length of induced double-layer and applied field frequency on the manipulating flexibility factor for static condition is investigated, which indicates AC-FFET turns out to be more effective for achieving a position-controllable concentrating of target nanoparticle samples in nanofluidics compared to the previous trial in microfluidics. Besides, a continuous microfluidics-based particle concentrator/director is developed to deal with incoming analytes in dynamic condition, which exploits a design of tandem electrode configuration to consecutively flow focus and divert incoming particle samples to a desired downstream branch channel, as prerequisite for a following biochemical analysis. Our physical demonstrations with AC-FFET prove valuable for innovative designs of flexible electrokinetic frameworks, which can be conveniently integrated with other microfluidic or nanofluidic components into a complete lab-on-chip diagnostic platform due to a simple electrode structure.

  7. Students’ Mathematical Creative Thinking through Problem Posing Learning

    NASA Astrophysics Data System (ADS)

    Ulfah, U.; Prabawanto, S.; Jupri, A.

    2017-09-01

    The research aims to investigate the differences in enhancement of students’ mathematical creative thinking ability of those who received problem posing approach assisted by manipulative media and students who received problem posing approach without manipulative media. This study was a quasi experimental research with non-equivalent control group design. Population of this research was third-grade students of a primary school in Bandung city in 2016/2017 academic year. Sample of this research was two classes as experiment class and control class. The instrument used is a test of mathematical creative thinking ability. Based on the results of the research, it is known that the enhancement of the students’ mathematical creative thinking ability of those who received problem posing approach with manipulative media aid is higher than the ability of those who received problem posing approach without manipulative media aid. Students who get learning problem posing learning accustomed in arranging mathematical sentence become matter of story so it can facilitate students to comprehend about story

  8. Manipulating motions of targeted single cells in solution by an integrated double-ring magnetic tweezers imaging microscope.

    PubMed

    Wu, Meiling; Yadav, Rajeev; Pal, Nibedita; Lu, H Peter

    2017-07-01

    Controlling and manipulating living cell motions in solution hold a high promise in developing new biotechnology and biological science. Here, we developed a magnetic tweezers device that employs a combination of two permanent magnets in up-down double-ring configuration axially fitting with a microscopic objective, allowing a picoNewton (pN) bidirectional force and motion control on the sample beyond a single upward pulling direction. The experimental force calibration and magnetic field simulation using finite element method magnetics demonstrate that the designed magnetic tweezers covers a linear-combined pN force with positive-negative polarization changes in a tenability of sub-pN scale, which can be utilized to further achieve motion manipulation by shifting the force balance. We demonstrate an application of the up-down double-ring magnetic tweezers for single cell manipulation, showing that the cells with internalized paramagnetic beads can be selectively picked up and guided in a controlled fine motion.

  9. Manipulating motions of targeted single cells in solution by an integrated double-ring magnetic tweezers imaging microscope

    NASA Astrophysics Data System (ADS)

    Wu, Meiling; Yadav, Rajeev; Pal, Nibedita; Lu, H. Peter

    2017-07-01

    Controlling and manipulating living cell motions in solution hold a high promise in developing new biotechnology and biological science. Here, we developed a magnetic tweezers device that employs a combination of two permanent magnets in up-down double-ring configuration axially fitting with a microscopic objective, allowing a picoNewton (pN) bidirectional force and motion control on the sample beyond a single upward pulling direction. The experimental force calibration and magnetic field simulation using finite element method magnetics demonstrate that the designed magnetic tweezers covers a linear-combined pN force with positive-negative polarization changes in a tenability of sub-pN scale, which can be utilized to further achieve motion manipulation by shifting the force balance. We demonstrate an application of the up-down double-ring magnetic tweezers for single cell manipulation, showing that the cells with internalized paramagnetic beads can be selectively picked up and guided in a controlled fine motion.

  10. Nanophotonic Trapping for Precise Manipulation of Biomolecular Arrays

    PubMed Central

    Soltani, Mohammad; Lin, Jun; Forties, Robert A.; Inman, James T.; Saraf, Summer N.; Fulbright, Robert M.; Lipson, Michal; Wang, Michelle D.

    2014-01-01

    Optical trapping is a powerful manipulation and measurement technique widely employed in the biological and materials sciences1–8. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high throughput lab-on-chip applications9–16. However, a persistent challenge with existing optofluidic devices has been controlled and precise manipulation of trapped particles. Here we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (~ 30 kHz) with nanometer precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential for high-throughput precision measurements on chip. PMID:24776649

  11. Nanophotonic trapping for precise manipulation of biomolecular arrays.

    PubMed

    Soltani, Mohammad; Lin, Jun; Forties, Robert A; Inman, James T; Saraf, Summer N; Fulbright, Robert M; Lipson, Michal; Wang, Michelle D

    2014-06-01

    Optical trapping is a powerful manipulation and measurement technique widely used in the biological and materials sciences. Miniaturizing optical trap instruments onto optofluidic platforms holds promise for high-throughput lab-on-a-chip applications. However, a persistent challenge with existing optofluidic devices has been achieving controlled and precise manipulation of trapped particles. Here, we report a new class of on-chip optical trapping devices. Using photonic interference functionalities, an array of stable, three-dimensional on-chip optical traps is formed at the antinodes of a standing-wave evanescent field on a nanophotonic waveguide. By employing the thermo-optic effect via integrated electric microheaters, the traps can be repositioned at high speed (∼30 kHz) with nanometre precision. We demonstrate sorting and manipulation of individual DNA molecules. In conjunction with laminar flows and fluorescence, we also show precise control of the chemical environment of a sample with simultaneous monitoring. Such a controllable trapping device has the potential to achieve high-throughput precision measurements on chip.

  12. Probe manipulators for Wendelstein 7-X and their interaction with the magnetic topology

    NASA Astrophysics Data System (ADS)

    M, RACK; D, HÖSCHEN; D, REITER; B, UNTERBERG; J, W. COENEN; S, BREZINSEK; O, NEUBAUER; S, BOZHENKOV; G, CZYMEK; Y, LIANG; M, HUBENY; Ch, LINSMEIER; the Wendelstein 7-X Team

    2018-05-01

    Probe manipulators are a versatile addition to typical plasma edge diagnostics. Equipped with material samples they allow for detailed investigation of plasma–wall interaction processes, such as material erosion, deposition or impurity transport pathways. When combined with electrical probes, a study of scrape-off layer and plasma edge density, temperature and flow profiles as well as magnetic topologies is possible. A mid-plane manipulator is already in operation on Wendelstein 7-X. A system in the divertor region is currently under development. In the present paper we discuss the critical issue of heat and power loads, power redistribution and experimental access to the complex magnetic topology of Wendelstein 7-X. All the aforementioned aspects are of relevance for the design and operation of a probe manipulator in a device like Wendelstein 7-X. A focus is put on the topological region that is accessible for the different coil current configurations at Wendelstein 7-X and the power load on the manipulator with respect to the resulting different magnetic configurations. Qualitative analysis of power loads on plasma-facing components is performed using a numerical tracer particle diffusion tool provided via the Wendelstein 7-X Webservices.

  13. Impact of managed care on physicians' decisions to manipulate reimbursement rules: an explanatory model.

    PubMed

    VanGeest, Jonathan; Weiner, Saul; Johnson, Timothy; Cummins, Deborah

    2007-07-01

    To develop and test an explanatory model of the impact of managed care on physicians' decisions to manipulate reimbursement rules for patients. A self-administered mailed questionnaire of a national random sample of 1124 practicing physicians in the USA. Structural equation modelling was used. The main outcome measure assessed whether or not physicians had manipulated reimbursement rules (such as exaggerated the severity of patients conditions, changed billing diagnoses, or reported signs or symptoms that the patients did not have) to help patients secure coverage for needed treatment or services. The response rate was 64% (n = 720). Physicians' decisions to manipulate reimbursement rules for patients are directly driven not only by ethical beliefs about gaming the system but also by requests from patients, the perception of insufficient time to deliver care, and the proportion of Medicaid patients. Covert advocacy is also the indirect result of utilization review hassles, primary care specialty, and practice environment. Managed care is not just a set of rules that physicians choose to follow or disobey, but an environment of competing pressures from patients, purchasers, and high workload. Reimbursement manipulation is a response to that environment, rather than simply a reflection of individual physicians' values.

  14. Manipulation after object rotation reveals independent sensorimotor memory representations of digit positions and forces.

    PubMed

    Zhang, Wei; Gordon, Andrew M; Fu, Qiushi; Santello, Marco

    2010-06-01

    Planning of object manipulations is dependent on the ability to generate, store, and retrieve sensorimotor memories of previous actions associated with grasped objects. However, the sensorimotor memory representations linking object properties to the planning of grasp are not well understood. Here we use an object rotation task to gain insight into the mechanisms underlying the nature of these sensorimotor memories. We asked subjects to grasp a grip device with an asymmetrical center of mass (CM) anywhere on its vertical surfaces and lift it while minimizing object roll. After subjects learned to minimize object roll by generating a compensatory moment, they were asked to rotate the object 180 degrees about a vertical axis and lift it again. The rotation resulted in changing the direction of external moment opposite to that experienced during the prerotation block. Anticipatory grasp control was quantified by measuring the compensatory moment generated at object lift onset by thumb and index finger forces through their respective application points. On the first postrotation trial, subjects failed to generate a compensatory moment to counter the external moment caused by the new CM location, thus resulting in a large object roll. Nevertheless, after several object rotations subjects reduced object roll on the initial postrotation trials by anticipating the new CM location through the modulation of digit placement but not tangential forces. The differential improvement in modulating these two variables supports the notion of independent memory representations of kinematics and kinetics and is discussed in relation to neural mechanisms underlying visuomotor transformations.

  15. Primary culture of human Schwann and schwannoma cells: improved and simplified protocol.

    PubMed

    Dilwali, Sonam; Patel, Pratik B; Roberts, Daniel S; Basinsky, Gina M; Harris, Gordon J; Emerick, Kevin S; Stankovic, Konstantina M

    2014-09-01

    Primary culture of human Schwann cells (SCs) and vestibular schwannoma (VS) cells are invaluable tools to investigate SC physiology and VS pathobiology, and to devise effective pharmacotherapies against VS, which are sorely needed. However, existing culture protocols, in aiming to create robust, pure cultures, employ methods that can lead to loss of biological characteristics of the original cells, potentially resulting in misleading biological findings. We have developed a minimally manipulative method to culture primary human SC and VS cells, without the use of selective mitogens, toxins, or time-consuming and potentially transformative laboratory techniques. Schwann cell purity was quantified longitudinally using S100 staining in SC cultures derived from the great auricular nerve and VS cultures followed for 7 and 12 weeks, respectively. SC cultures retained approximately ≥85% purity for 2 weeks. VS cultures retained approximately ≥80% purity for the majority of the span of 12 weeks, with maximal purity of 87% at 2 weeks. The VS cultures showed high level of biological similarity (68% on average) to their respective parent tumors, as assessed using a protein array featuring 41 growth factors and receptors. Apoptosis rate in vitro negatively correlated with tumor volume. Our results, obtained using a faster, simplified culturing method than previously utilized, indicate that highly pure, primary human SC and VS cultures can be established with minimal manipulation, reaching maximal purity at 2 weeks of culture. The VS cultures recapitulate the parent tumors' biology to a great degree, making them relevant models to investigate VS pathobiology. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Primary culture of human Schwann and schwannoma cells: Improved and simplified protocol

    PubMed Central

    Dilwali, Sonam; Patel, Pratik B.; Roberts, Daniel S.; Basinsky, Gina M.; Harris, Gordon J.; Emerick, Kevin; Stankovic, Konstantina M.

    2014-01-01

    Primary culture of human Schwann cells (SCs) and vestibular schwannoma (VS) cells are invaluable tools to investigate SC physiology and VS pathobiology, and to devise effective pharmacotherapies against VS, which are sorely needed. However, existing culture protocols, in aiming to create robust, pure cultures, employ methods that can lead to loss of biological characteristics of the original cells, potentially resulting in misleading biological findings. We have developed a minimally manipulative method to culture primary human SC and VS cells, without the use of selective mitogens, toxins, or time-consuming and potentially transformative laboratory techniques. Schwann cell purity was quantified longitudinally using S100 staining in SC cultures derived from the great auricular nerve and VS cultures followed for 7 and 12 weeks, respectively. SC cultures retained approximately ≥85% purity for 2 weeks. VS cultures retained approximately ≥80% purity for the majority of the span of 12 weeks, with maximal purity of 87% at 2 weeks. The VS cultures showed high level of biological similarity (68% on average) to their respective parent tumors, as assessed using a protein array featuring 41 growth factors and receptors. Apoptosis rate in vitro negatively correlated with tumor volume. Our results, obtained using a faster, simplified culturing method than previously utilized, indicate that highly pure, primary human SC and VS cultures can be established with minimal manipulation, reaching maximal purity at 2 weeks of culture. The VS cultures recapitulate the parent tumors' biology to a great degree, making them relevant models to investigate VS pathobiology. PMID:24910344

  17. Biomechanics-machine learning system for surgical gesture analysis and development of technologies for minimal access surgery.

    PubMed

    Cavallo, Filippo; Sinigaglia, Stefano; Megali, Giuseppe; Pietrabissa, Andrea; Dario, Paolo; Mosca, Franco; Cuschieri, Alfred

    2014-10-01

    The uptake of minimal access surgery (MAS) has by virtue of its clinical benefits become widespread across the surgical specialties. However, despite its advantages in reducing traumatic insult to the patient, it imposes significant ergonomic restriction on the operating surgeons who require training for the safe execution. Recent progress in manipulator technologies (robotic or mechanical) have certainly reduced the level of difficulty, however it requires information for a complete gesture analysis of surgical performance. This article reports on the development and evaluation of such a system capable of full biomechanical and machine learning. The system for gesture analysis comprises 5 principal modules, which permit synchronous acquisition of multimodal surgical gesture signals from different sources and settings. The acquired signals are used to perform a biomechanical analysis for investigation of kinematics, dynamics, and muscle parameters of surgical gestures and a machine learning model for segmentation and recognition of principal phases of surgical gesture. The biomechanical system is able to estimate the level of expertise of subjects and the ergonomics in using different instruments. The machine learning approach is able to ascertain the level of expertise of subjects and has the potential for automatic recognition of surgical gesture for surgeon-robot interactions. Preliminary tests have confirmed the efficacy of the system for surgical gesture analysis, providing an objective evaluation of progress during training of surgeons in their acquisition of proficiency in MAS approach and highlighting useful information for the design and evaluation of master-slave manipulator systems. © The Author(s) 2013.

  18. Dual-learning systems during speech category learning

    PubMed Central

    Chandrasekaran, Bharath; Yi, Han-Gyol; Maddox, W. Todd

    2013-01-01

    Dual-systems models of visual category learning posit the existence of an explicit, hypothesis-testing ‘reflective’ system, as well as an implicit, procedural-based ‘reflexive’ system. The reflective and reflexive learning systems are competitive and neurally dissociable. Relatively little is known about the role of these domain-general learning systems in speech category learning. Given the multidimensional, redundant, and variable nature of acoustic cues in speech categories, our working hypothesis is that speech categories are learned reflexively. To this end, we examined the relative contribution of these learning systems to speech learning in adults. Native English speakers learned to categorize Mandarin tone categories over 480 trials. The training protocol involved trial-by-trial feedback and multiple talkers. Experiment 1 and 2 examined the effect of manipulating the timing (immediate vs. delayed) and information content (full vs. minimal) of feedback. Dual-systems models of visual category learning predict that delayed feedback and providing rich, informational feedback enhance reflective learning, while immediate and minimally informative feedback enhance reflexive learning. Across the two experiments, our results show feedback manipulations that targeted reflexive learning enhanced category learning success. In Experiment 3, we examined the role of trial-to-trial talker information (mixed vs. blocked presentation) on speech category learning success. We hypothesized that the mixed condition would enhance reflexive learning by not allowing an association between talker-related acoustic cues and speech categories. Our results show that the mixed talker condition led to relatively greater accuracies. Our experiments demonstrate that speech categories are optimally learned by training methods that target the reflexive learning system. PMID:24002965

  19. Manipulation After Object Rotation Reveals Independent Sensorimotor Memory Representations of Digit Positions and Forces

    PubMed Central

    Zhang, Wei; Gordon, Andrew M.; Fu, Qiushi

    2010-01-01

    Planning of object manipulations is dependent on the ability to generate, store, and retrieve sensorimotor memories of previous actions associated with grasped objects. However, the sensorimotor memory representations linking object properties to the planning of grasp are not well understood. Here we use an object rotation task to gain insight into the mechanisms underlying the nature of these sensorimotor memories. We asked subjects to grasp a grip device with an asymmetrical center of mass (CM) anywhere on its vertical surfaces and lift it while minimizing object roll. After subjects learned to minimize object roll by generating a compensatory moment, they were asked to rotate the object 180° about a vertical axis and lift it again. The rotation resulted in changing the direction of external moment opposite to that experienced during the prerotation block. Anticipatory grasp control was quantified by measuring the compensatory moment generated at object lift onset by thumb and index finger forces through their respective application points. On the first postrotation trial, subjects failed to generate a compensatory moment to counter the external moment caused by the new CM location, thus resulting in a large object roll. Nevertheless, after several object rotations subjects reduced object roll on the initial postrotation trials by anticipating the new CM location through the modulation of digit placement but not tangential forces. The differential improvement in modulating these two variables supports the notion of independent memory representations of kinematics and kinetics and is discussed in relation to neural mechanisms underlying visuomotor transformations. PMID:20357064

  20. Modular architectures for quantum networks

    NASA Astrophysics Data System (ADS)

    Pirker, A.; Wallnöfer, J.; Dür, W.

    2018-05-01

    We consider the problem of generating multipartite entangled states in a quantum network upon request. We follow a top-down approach, where the required entanglement is initially present in the network in form of network states shared between network devices, and then manipulated in such a way that the desired target state is generated. This minimizes generation times, and allows for network structures that are in principle independent of physical links. We present a modular and flexible architecture, where a multi-layer network consists of devices of varying complexity, including quantum network routers, switches and clients, that share certain resource states. We concentrate on the generation of graph states among clients, which are resources for numerous distributed quantum tasks. We assume minimal functionality for clients, i.e. they do not participate in the complex and distributed generation process of the target state. We present architectures based on shared multipartite entangled Greenberger–Horne–Zeilinger states of different size, and fully connected decorated graph states, respectively. We compare the features of these architectures to an approach that is based on bipartite entanglement, and identify advantages of the multipartite approach in terms of memory requirements and complexity of state manipulation. The architectures can handle parallel requests, and are designed in such a way that the network state can be dynamically extended if new clients or devices join the network. For generation or dynamical extension of the network states, we propose a quantum network configuration protocol, where entanglement purification is used to establish high fidelity states. The latter also allows one to show that the entanglement generated among clients is private, i.e. the network is secure.

  1. Controlled soil warming powered by alternative energy for remote field sites.

    PubMed

    Johnstone, Jill F; Henkelman, Jonathan; Allen, Kirsten; Helgason, Warren; Bedard-Haughn, Angela

    2013-01-01

    Experiments using controlled manipulation of climate variables in the field are critical for developing and testing mechanistic models of ecosystem responses to climate change. Despite rapid changes in climate observed in many high latitude and high altitude environments, controlled manipulations in these remote regions have largely been limited to passive experimental methods with variable effects on environmental factors. In this study, we tested a method of controlled soil warming suitable for remote field locations that can be powered using alternative energy sources. The design was tested in high latitude, alpine tundra of southern Yukon Territory, Canada, in 2010 and 2011. Electrical warming probes were inserted vertically in the near-surface soil and powered with photovoltaics attached to a monitoring and control system. The warming manipulation achieved a stable target warming of 1.3 to 2 °C in 1 m(2) plots while minimizing disturbance to soil and vegetation. Active control of power output in the warming plots allowed the treatment to closely match spatial and temporal variations in soil temperature while optimizing system performance during periods of low power supply. Active soil heating with vertical electric probes powered by alternative energy is a viable option for remote sites and presents a low-disturbance option for soil warming experiments. This active heating design provides a valuable tool for examining the impacts of soil warming on ecosystem processes.

  2. Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures.

    PubMed

    Dagnino, Giulio; Georgilas, Ioannis; Morad, Samir; Gibbons, Peter; Tarassoli, Payam; Atkins, Roger; Dogramadzi, Sanja

    2017-11-01

    Complex joint fractures often require an open surgical procedure, which is associated with extensive soft tissue damages and longer hospitalization and rehabilitation time. Percutaneous techniques can potentially mitigate these risks but their application to joint fractures is limited by the current sub-optimal 2D intra-operative imaging (fluoroscopy) and by the high forces involved in the fragment manipulation (due to the presence of soft tissue, e.g., muscles) which might result in fracture malreduction. Integration of robotic assistance and 3D image guidance can potentially overcome these issues. The authors propose an image-guided surgical robotic system for the percutaneous treatment of knee joint fractures, i.e., the robot-assisted fracture surgery (RAFS) system. It allows simultaneous manipulation of two bone fragments, safer robot-bone fixation system, and a traction performing robotic manipulator. This system has led to a novel clinical workflow and has been tested both in laboratory and in clinically relevant cadaveric trials. The RAFS system was tested on 9 cadaver specimens and was able to reduce 7 out of 9 distal femur fractures (T- and Y-shape 33-C1) with acceptable accuracy (≈1 mm, ≈5°), demonstrating its applicability to fix knee joint fractures. This study paved the way to develop novel technologies for percutaneous treatment of complex fractures including hip, ankle, and shoulder, thus representing a step toward minimally-invasive fracture surgeries.

  3. Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design

    NASA Technical Reports Server (NTRS)

    Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian

    2012-01-01

    We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools.

  4. Chiropractic Management Using Multimodal Therapies on 2 Pediatric Patients With Constipation.

    PubMed

    Iyer, Madhu Mia; Skokos, Evangelia; Piombo, Denise

    2017-12-01

    The purpose of this case report is to describe chiropractic management of 7-month-old male twins who had had constipation since birth. Identical male twins presented with the chief complaint of constipation and bloating. Both patients were born premature after 29 weeks of gestation and had invasive abdominal surgeries in the right lower quadrant resulting in healed postsurgical scars. Patient A underwent ileostomy for a perforation in his ileum. Patient B underwent surgery to repair an inguinal hernia. Motion palpation restrictions indicated bilateral sacroiliac, cervical, and thoracic joint restrictions. The treatment plan included chiropractic manipulation, acupressure stimulation, and dynamic neuromuscular stabilization. Manipulation of the sacroiliac, cervical, and thoracic spine joint restrictions was performed using minimal force. Cross-frictional massage and myofascial manipulation and scar tissue mobilization of the abdominal scar in the right lower quadrant were performed. Acupressure stimulation was performed on both patients' feet. Both patients had improved bowel movements after the first treatment. Patient A had 5 weeks of treatment (2 visits per week). Patient B had 4 weeks of treatment (2 visits per week). The patients' clinical progress improved, and once the goal of regular bowel movements was reached, as confirmed by their mother, follow-up visits were reduced to once a week and gradually to once a month. Both pediatric patients with constipation responded to chiropractic care using multimodal therapies.

  5. Altered brain activity for phonological manipulation in dyslexic Japanese children.

    PubMed

    Kita, Yosuke; Yamamoto, Hisako; Oba, Kentaro; Terasawa, Yuri; Moriguchi, Yoshiya; Uchiyama, Hitoshi; Seki, Ayumi; Koeda, Tatsuya; Inagaki, Masumi

    2013-12-01

    Because of unique linguistic characteristics, the prevalence rate of developmental dyslexia is relatively low in the Japanese language. Paradoxically, Japanese children have serious difficulty analysing phonological processes when they have dyslexia. Neurobiological deficits in Japanese dyslexia remain unclear and need to be identified, and may lead to better understanding of the commonality and diversity in the disorder among different linguistic systems. The present study investigated brain activity that underlies deficits in phonological awareness in Japanese dyslexic children using functional magnetic resonance imaging. We developed and conducted a phonological manipulation task to extract phonological processing skills and to minimize the influence of auditory working memory on healthy adults, typically developing children, and dyslexic children. Current experiments revealed that several brain regions participated in manipulating the phonological information including left inferior and middle frontal gyrus, left superior temporal gyrus, and bilateral basal ganglia. Moreover, dyslexic children showed altered activity in two brain regions. They showed hyperactivity in the basal ganglia compared with the two other groups, which reflects inefficient phonological processing. Hypoactivity in the left superior temporal gyrus was also found, suggesting difficulty in composing and processing phonological information. The altered brain activity shares similarity with those of dyslexic children in countries speaking alphabetical languages, but disparity also occurs between these two populations. These are initial findings concerning the neurobiological impairments in dyslexic Japanese children.

  6. Altered brain activity for phonological manipulation in dyslexic Japanese children

    PubMed Central

    Yamamoto, Hisako; Oba, Kentaro; Terasawa, Yuri; Moriguchi, Yoshiya; Uchiyama, Hitoshi; Seki, Ayumi; Koeda, Tatsuya; Inagaki, Masumi

    2013-01-01

    Because of unique linguistic characteristics, the prevalence rate of developmental dyslexia is relatively low in the Japanese language. Paradoxically, Japanese children have serious difficulty analysing phonological processes when they have dyslexia. Neurobiological deficits in Japanese dyslexia remain unclear and need to be identified, and may lead to better understanding of the commonality and diversity in the disorder among different linguistic systems. The present study investigated brain activity that underlies deficits in phonological awareness in Japanese dyslexic children using functional magnetic resonance imaging. We developed and conducted a phonological manipulation task to extract phonological processing skills and to minimize the influence of auditory working memory on healthy adults, typically developing children, and dyslexic children. Current experiments revealed that several brain regions participated in manipulating the phonological information including left inferior and middle frontal gyrus, left superior temporal gyrus, and bilateral basal ganglia. Moreover, dyslexic children showed altered activity in two brain regions. They showed hyperactivity in the basal ganglia compared with the two other groups, which reflects inefficient phonological processing. Hypoactivity in the left superior temporal gyrus was also found, suggesting difficulty in composing and processing phonological information. The altered brain activity shares similarity with those of dyslexic children in countries speaking alphabetical languages, but disparity also occurs between these two populations. These are initial findings concerning the neurobiological impairments in dyslexic Japanese children. PMID:24052613

  7. Telemanipulator design and optimization software

    NASA Astrophysics Data System (ADS)

    Cote, Jean; Pelletier, Michel

    1995-12-01

    For many years, industrial robots have been used to execute specific repetitive tasks. In those cases, the optimal configuration and location of the manipulator only has to be found once. The optimal configuration or position where often found empirically according to the tasks to be performed. In telemanipulation, the nature of the tasks to be executed is much wider and can be very demanding in terms of dexterity and workspace. The position/orientation of the robot's base could be required to move during the execution of a task. At present, the choice of the initial position of the teleoperator is usually found empirically which can be sufficient in the case of an easy or repetitive task. In the converse situation, the amount of time wasted to move the teleoperator support platform has to be taken into account during the execution of the task. Automatic optimization of the position/orientation of the platform or a better designed robot configuration could minimize these movements and save time. This paper will present two algorithms. The first algorithm is used to optimize the position and orientation of a given manipulator (or manipulators) with respect to the environment on which a task has to be executed. The second algorithm is used to optimize the position or the kinematic configuration of a robot. For this purpose, the tasks to be executed are digitized using a position/orientation measurement system and a compact representation based on special octrees. Given a digitized task, the optimal position or Denavit-Hartenberg configuration of the manipulator can be obtained numerically. Constraints on the robot design can also be taken into account. A graphical interface has been designed to facilitate the use of the two optimization algorithms.

  8. From bioseparation to artificial micro-organs: microfluidic chip based particle manipulation techniques

    NASA Astrophysics Data System (ADS)

    Stelzle, Martin

    2010-02-01

    Microfluidic device technology provides unique physical phenomena which are not available in the macroscopic world. These may be exploited towards a diverse array of applications in biotechnology and biomedicine ranging from bioseparation of particulate samples to the assembly of cells into structures that resemble the smallest functional unit of an organ. In this paper a general overview of chip-based particle manipulation and separation is given. In the state of the art electric, magnetic, optical and gravitational field effects are utilized. Also, mechanical obstacles often in combination with force fields and laminar flow are employed to achieve separation of particles or molecules. In addition, three applications based on dielectrophoretic forces for particle manipulation in microfluidic systems are discussed in more detail. Firstly, a virus assay is demonstrated. There, antibody-loaded microbeads are used to bind virus particles from a sample and subsequently are accumulated to form a pico-liter sized aggregate located at a predefined position in the chip thus enabling highly sensitive fluorescence detection. Secondly, subcellular fractionation of mitochondria from cell homogenate yields pure samples as was demonstrated by Western Blot and 2D PAGE analysis. Robust long-term operation with complex cell homogenate samples while avoiding electrode fouling is achieved by a set of dedicated technical means. Finally, a chip intended for the dielectrophoretic assembly of hepatocytes and endothelial cells into a structure resembling a liver sinusoid is presented. Such "artificial micro organs" are envisioned as substance screening test systems providing significantly higher predictability with respect to the in vivo response towards a substance under test.

  9. Counterfeit analysis strategy illustrated by a case study.

    PubMed

    Dégardin, Klara; Roggo, Yves

    2016-01-01

    Medicine counterfeiting is a current problem that the whole pharmaceutical field has to deal with. In 2014, counterfeits entered the legitimate supply chain in Europe. Quick and efficient action had to be taken. The aim of this paper is to explain which analytical strategy was chosen to deal with six of the cases concerned and which criteria have to be considered to provide quick and thorough information about the counterfeits. The evaluation of the packaging was performed in a first step, based on a comparison with genuine samples and evaluation of manipulation signs. Chemical methods were then used, consisting of near infrared and infrared spectroscopy, capillary zone electrophoresis and ultraviolet-visible spectrophotometry, in order to authenticate the samples and provide the chemical composition of the confirmed counterfeits. Among the 20 samples analyzed, 17 were confirmed as counterfeits. The counterfeits were the results of the manipulation of genuine samples, and one contained totally counterfeited parts. Several manipulation signs were asserted, like the addition of glue on the boxes and the vials. Genuine stolen goods had been diluted with water, while for an isolated case, a different active ingredient had been introduced in a vial. The analytical data generated were further investigated from a forensic intelligence perspective. Links could be revealed between the analyzed counterfeits, together with some interesting information about the modus operandi of the counterfeiters. The study was performed on a limited number of cases, and therefore encourages chemical and packaging profiling of counterfeits at a bigger scale. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  10. Voluntarily controlled but not merely observed visual feedback affects postural sway

    PubMed Central

    Asai, Tomohisa; Hiromitsu, Kentaro; Imamizu, Hiroshi

    2018-01-01

    Online stabilization of human standing posture utilizes multisensory afferences (e.g., vision). Whereas visual feedback of spontaneous postural sway can stabilize postural control especially when observers concentrate on their body and intend to minimize postural sway, the effect of intentional control of visual feedback on postural sway itself remains unclear. This study assessed quiet standing posture in healthy adults voluntarily controlling or merely observing visual feedback. The visual feedback (moving square) had either low or high gain and was either horizontally flipped or not. Participants in the voluntary-control group were instructed to minimize their postural sway while voluntarily controlling visual feedback, whereas those in the observation group were instructed to minimize their postural sway while merely observing visual feedback. As a result, magnified and flipped visual feedback increased postural sway only in the voluntary-control group. Furthermore, regardless of the instructions and feedback manipulations, the experienced sense of control over visual feedback positively correlated with the magnitude of postural sway. We suggest that voluntarily controlled, but not merely observed, visual feedback is incorporated into the feedback control system for posture and begins to affect postural sway. PMID:29682421

  11. Minimally Invasive Supraorbital Key-hole Approach for the Treatment of Anterior Cranial Fossa Meningiomas

    PubMed Central

    IACOANGELI, Maurizio; NOCCHI, Niccolò; NASI, Davide; DI RIENZO, Alessandro; DOBRAN, Mauro; GLADI, Maurizio; COLASANTI, Roberto; ALVARO, Lorenzo; POLONARA, Gabriele; SCERRATI, Massimo

    2016-01-01

    The most important target of minimally invasive surgery is to obtain the best therapeutic effect with the least iatrogenic injury. In this background, a pivotal role in contemporary neurosurgery is played by the supraorbital key-hole approach proposed by Perneczky for anterior cranial base surgery. In this article, it is presented as a possible valid alternative to the traditional craniotomies in anterior cranial fossa meningiomas removal. From January 2008 to January 2012 at our department 56 patients underwent anterior cranial base meningiomas removal. Thirty-three patients were submitted to traditional approaches while 23 to supraorbital key-hole technique. A clinical and neuroradiological pre- and postoperative evaluation were performed, with attention to eventual complications, length of surgical procedure, and hospitalization. Compared to traditional approaches the supraorbital key-hole approach was associated neither to a greater range of postoperative complications nor to a longer surgical procedure and hospitalization while permitting the same lesion control. With this technique, minimization of brain exposition and manipulation with reduction of unwanted iatrogenic injuries, neurovascular structures preservation, and a better aesthetic result are possible. The supraorbital key-hole approach according to Perneckzy could represent a valid alternative to traditional approaches in anterior cranial base meningiomas surgery. PMID:26804334

  12. The sadistic trait predicts minimization of intention and causal responsibility in moral judgment.

    PubMed

    Trémolière, Bastien; Djeriouat, Hakim

    2016-01-01

    The present research tests the hypothesis that specific socially aversive traits-subclinical sadism in particular-are associated with an impaired judgment of moral wrongness, guilt, and punishment in various moral scenarios manipulating intent, cause and consequence of harm. In three online studies (total N=1069), participants completed a battery of tests scaled to assess sadism and the Dark Triad constructs, then faced different situations involving moral issues (attempted harm, intentional harm, accidental harm). Study 1 revealed that a sadistic personality trait was associated with minimization of the importance of harmful intent in moral judgment. Study 2 showed that a sadistic personality trait predicted minimization of the importance of causal mechanisms to harmful consequences in moral judgment. Study 3 showed that these effects were mediated by enjoyment of cruelty, a characteristic unique to sadists. In the light of Cushman's (2008) two-process model of moral judgment, this set of studies provides the first evidence that deficits in the integration of the theory of mind and causality can be observed in personality traits. The independent predictive value of sadism highlights that features other than emotional deficits are essential in explaining impaired moral evaluations. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. The Applications of NASA Mission Technologies to the Greening of Human Impact

    NASA Technical Reports Server (NTRS)

    Sims, Michael H.

    2009-01-01

    I will give an overview talk about flight software systems, robotics technologies and modeling for energy minimization as applied to vehicles and buildings infrastructures. A dominant issue in both design and operations of robotic spacecraft is the minimization of energy use. In the design and building of spacecraft increased power is acquired only at the cost of additional mass and volumes and ultimately cost. Consequently, interplanetary spacecrafts are designed to have the minimum essential power and those designs often incorporate careful timing of all power use. Operationally, the availability of power is the most influential constraint for the use of planetary surface robots, such as the Mars Exploration Rovers. The amount of driving done, the amount of science accomplished and indeed the survivability of the spacecraft itself is determined by the power available for use. For the Mars Exploration Rovers there are four tools which are used: (1) models of the rover and it s thermal and power use (2) predictive environmental models of power input and thermal environment (3) fine grained manipulation of power use (4) optimization modeling and planning tools. In this talk I will discuss possible applications of this methodology to minimizing power use on Earth, especially in buildings.

  14. Design of a piezoelectric inchworm actuator and compliant end effector for minimally invasive surgery

    NASA Astrophysics Data System (ADS)

    Canfield, Shawn; Edinger, Ben; Frecker, Mary I.; Koopmann, Gary H.

    1999-06-01

    Recent advances in robotics, tele-robotics, smart material actuators, and mechatronics raise new possibilities for innovative developments in millimeter-scale robotics capable of manipulating objects only fractions of a millimeter in size. These advances can have a wide range of applications in the biomedical community. A potential application of this technology is in minimally invasive surgery (MIS). The focus of this paper is the development of a single degree of freedom prototype to demonstrate the viability of smart materials, force feedback and compliant mechanisms for minimally invasive surgery. The prototype is a compliant gripper that is 7-mm by 17-mm, made from a single piece of titanium that is designed to function as a needle driver for small scale suturing. A custom designed piezoelectric `inchworm' actuator drives the gripper. The integrated system is computer controlled providing a user interface device capable of force feedback. The design methodology described draws from recent advances in three emerging fields in engineering: design of innovative tools for MIS, design of compliant mechanisms, and design of smart materials and actuators. The focus of this paper is on the design of a millimeter-scale inchworm actuator for use with a compliant end effector in MIS.

  15. Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: Optimal parameters for exogenous material delivery, and the laser's effect on short- and long-term development

    PubMed Central

    Kohli, Vikram; Elezzabi, Abdulhakem Y

    2008-01-01

    Background Femtosecond (fs) laser pulses have recently received wide interest as an alternative tool for manipulating living biological systems. In various model organisms the excision of cellular components and the intracellular delivery of foreign exogenous materials have been reported. However, the effect of the applied fs laser pulses on cell viability and development has yet to be determined. Using the zebrafish (Danio rerio) as our animal model system, we address both the short- and long-term developmental changes following laser surgery on zebrafish embryonic cells. Results An exogenous fluorescent probe, fluorescein isothiocyanate (FITC), was successfully introduced into blastomere cells and found to diffuse throughout all developing cells. Using the reported manipulation tool, we addressed whether the applied fs laser pulses induced any short- or long-term developmental effects in embryos reared to 2 and 7 days post-fertilization (dpf). Using light microscopy and scanning electron microscopy we compared key developmental features of laser-manipulated and control samples, including the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. Conclusion In our study, no significant differences in hatching rates and developmental morphologies were observed in laser-manipulated samples relative to controls. This tool represents an effective non-destructive technique for potential medical and biological applications. PMID:18230185

  16. Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns

    Treesearch

    Sarah C. Elmendorf; Gregory H.R. Henry; Robert D. Hollisterd; Anna Maria Fosaa; William A. Gould; Luise Hermanutz; Annika Hofgaard; Ingibjorg I. Jonsdottir; Janet C. Jorgenson; Esther Levesque; Borgbor Magnusson; Ulf Molau; Isla H. Myers-Smith; Steven F. Oberbauer; Christian Rixen; Craig E. Tweedie; Marilyn Walkers

    2015-01-01

    Inference about future climate change impacts typically relies on one of three approaches: manipulative experiments, historical comparisons (broadly defined to include monitoring the response to ambient climate fluctuations using repeat sampling of plots, dendroecology, and paleoecology techniques), and space-for-time substitutions derived from sampling along...

  17. SAMPLING DISTRIBUTIONS OF ERROR IN MULTIDIMENSIONAL SCALING.

    ERIC Educational Resources Information Center

    STAKE, ROBERT E.; AND OTHERS

    AN EMPIRICAL STUDY WAS MADE OF THE ERROR FACTORS IN MULTIDIMENSIONAL SCALING (MDS) TO REFINE THE USE OF MDS FOR MORE EXPERT MANIPULATION OF SCALES USED IN EDUCATIONAL MEASUREMENT. THE PURPOSE OF THE RESEARCH WAS TO GENERATE TABLES OF THE SAMPLING DISTRIBUTIONS THAT ARE NECESSARY FOR DISCRIMINATING BETWEEN ERROR AND NONERROR MDS DIMENSIONS. THE…

  18. The Precision Efficacy Analysis for Regression Sample Size Method.

    ERIC Educational Resources Information Center

    Brooks, Gordon P.; Barcikowski, Robert S.

    The general purpose of this study was to examine the efficiency of the Precision Efficacy Analysis for Regression (PEAR) method for choosing appropriate sample sizes in regression studies used for precision. The PEAR method, which is based on the algebraic manipulation of an accepted cross-validity formula, essentially uses an effect size to…

  19. Numerical consideration on trapping and guiding of nanoparticles in a flow using scattering field of laser light

    NASA Astrophysics Data System (ADS)

    Yokoi, Naomichi; Aizu, Yoshihisa

    2017-04-01

    Optical manipulation techniques proposed so far almost depend on carefully fabricated setups and samples. Similar conditions can be fixed in laboratories, however, it is still a challenging work to manipulate nanoparticles when the environment is not well controlled and is unknown in advance. Nonetheless, coherent light scattered by rough object generates speckles which are random interference patterns with well-defined statistical properties. In the present study, we numerically investigate the motion of a particle in a flow under the illumination of a speckle pattern that is at rest or in motion. Trajectory of the particle is simulated in relation to a flow velocity and a speckle contrast to confirm the feasibility of the present method for performing optical manipulation tasks such as trapping and guiding.

  20. Numerical considerations on control of motion of nanoparticles using scattering field of laser light

    NASA Astrophysics Data System (ADS)

    Yokoi, Naomichi; Aizu, Yoshihisa

    2017-05-01

    Most of optical manipulation techniques proposed so far depend on carefully fabricated setups and samples. Similar conditions can be fixed in laboratories; however, it is still challenging to manipulate nanoparticles when the environment is not well controlled and is unknown in advance. Nonetheless, coherent light scattered by rough object generates a speckle pattern which consists of random interference speckle grains with well-defined statistical properties. In the present study, we numerically investigate the motion of a Brownian particle suspended in water under the illumination of a speckle pattern. Particle-captured time and size of particle-captured area are quantitatively estimated in relation to an optical force and a speckle diameter to confirm the feasibility of the present method for performing optical manipulation tasks such as trapping and guiding.

  1. Determination of N,N-dimethyltryptamine in beverages consumed in religious practices by headspace solid-phase microextraction followed by gas chromatography ion trap mass spectrometry.

    PubMed

    Gaujac, Alain; Dempster, Nicola; Navickiene, Sandro; Brandt, Simon D; de Andrade, Jailson Bittencourt

    2013-03-15

    A novel analytical approach combining solid-phase microextraction (SPME)/gas chromatography ion trap mass spectrometry (GC-IT-MS) was developed for the detection and quantification N,N-dimethyltryptamine (DMT), a powerful psychoactive indole alkaloid present in a variety of South American indigenous beverages, such as ayahuasca and vinho da jurema. These particular plant products, often used within a religious context, are increasingly consumed throughout the world following an expansion of religious groups and the availability of plant material over the Internet and high street shops. The method described in the present study included the use of SPME in headspace mode combined GC-IT-MS and included the optimization of the SPME procedure using multivariate techniques. The method was performed with a polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber in headspace mode (70 min at 60 °C) which resulted in good precision (RSD<8.6%) and accuracy values (71-109%). Detection and quantification limits obtained for DMT were 0.78 and 9.5 mg L(-1), respectively and good linearity (1.56-300 mg L(-1), r(2)=0.9975) was also observed. In addition, the proposed method showed good robustness and allowed for the minimization of sample manipulation. Five jurema beverage samples were prepared in the laboratory in order to study the impact of temperature, pH and ethanol on the ability to extract DMT into solution. The developed method was then applied to the analysis of twelve real ayahuasca and vinho da jurema samples, obtained from Brazilian religious groups, which revealed DMT concentration levels between 0.10 and 1.81 g L(-1). Copyright © 2013 Elsevier B.V. All rights reserved.

  2. L-Phenylalanine concentration in blood of phenylketonuria patients: a modified enzyme colorimetric assay compared with amino acid analysis, tandem mass spectrometry, and HPLC methods.

    PubMed

    De Silva, Veronica; Oldham, Charlie D; May, Sheldon W

    2010-09-01

    Phenylketonuria (PKU) is an autosomal recessive disorder caused by an impaired conversion of L-phenylalanine (Phe) to L-tyrosine, typically resulting from a deficiency in activity of a hepatic and renal enzyme L-phenylalanine hydroxylase. The disease is characterized by an increased concentration of Phe and its metabolites in body fluids. A modified assay based on an enzymatic-colorimetric methodology was developed for measuring blood Phe levels in PKU patients; this method is designed for use with undeproteinized samples and avoids the use of solvents or amphiphilic agents. Thus, the method could be suitable for incorporation into a simple home-monitoring device. We report here on a comparison of blood Phe concentrations in PKU patients measured in undeproteinized plasma using this enzyme colorimetric assay (ECA), with values determined by amino acid analysis (AAA) of deproteinized samples, and HPLC and tandem mass spectrometry (MS/MS) analyses of dried blood spot (DBS) eluates. Pearson correlation coefficients of 0.951, 0.976 and 0.988 were obtained when AAA-measured Phe concentrations were compared with the ECA-, HPLC- or MS/MS-measured values, respectively. A Bland-Altman analysis revealed that mean Phe concentrations determined using AAA were on average 65 μmol/L lower than values measured by our ECA. These results may be the result of minimizing the manipulations performed on the patient sample compared with AAA, HPLC, and MS/MS methods, which involve plasma deproteinization or DBS elution and derivatization. The results reported here confirm that Phe concentrations determined by our ECA method are comparable to those determined by other widely used methods for a broad range of plasma Phe concentrations.

  3. Characterization of the mechanical and thermal interface of copper films on carbon substrates modified by boron based interlayers

    PubMed Central

    Schäfer, D.; Eisenmenger-Sittner, C.; Chirtoc, Mihai; Kijamnajsuk, P.; Kornfeind, N.; Hutter, H.; Neubauer, E.; Kitzmantel, M.

    2011-01-01

    The manipulation of mechanical and thermal interfaces is essential for the design of modern composites. Amongst these are copper carbon composites which can exhibit excellent heat conductivities if the Cu/C interface is affected by a suitable interlayer to minimize the Thermal Contact Resistance (TCR) and to maximize the adhesion strength between Cu and C. In this paper we report on the effect of boron based interlayers on wetting, mechanical adhesion and on the TCR of Cu coatings deposited on glassy carbon substrates by magnetron sputtering. The interlayers were 5 nm thick and consisted of pure B and B with additions of the carbide forming metals Mo, Ti and Cr in the range of 5 at.% relative to B. The interlayers were deposited by RF magnetron sputtering from either a pure B target or from a composite target. The interlayer composition was checked by Auger Electron Spectroscopy and found to be homogenous within the whole film. The system C-substrate/interlayer/Cu coating was characterized in as deposited samples and samples heat treated for 30 min at 800 °C under High Vacuum (HV), which mimics typical hot pressing parameters during composite formation. Material transport during heat treatment was investigated by Secondary Ion Mass Spectroscopy (SIMS). The de-wetting and hole formation in the Cu coating upon heat treatment were studied by Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). The adhesion of the Cu coating was evaluated by mechanical pull-off testing. The TCR was assessed by infrared photothermal radiometry (PTR). A correlation between the adhesion strength and the value of the TCR which was measured by PTR was determined for as deposited as well as for heat treated samples. PMID:22241938

  4. CAVITATION SOUNDS DURING CERVICOTHORACIC SPINAL MANIPULATION

    PubMed Central

    Mourad, Firas; Zingoni, Andrea; Iorio, Raffaele; Perreault, Thomas; Zacharko, Noah; de las Peñas, César Fernández; Butts, Raymond; Cleland, Joshua A.

    2017-01-01

    Background No study has previously investigated the side, duration or number of audible cavitation sounds during high-velocity low-amplitude (HVLA) thrust manipulation to the cervicothoracic spine. Purpose The primary purpose was to determine which side of the spine cavitates during cervicothoracic junction (CTJ) HVLA thrust manipulation. Secondary aims were to calculate the average number of cavitations, the duration of cervicothoracic thrust manipulation, and the duration of a single cavitation. Study Design Quasi-experimental study Methods Thirty-two patients with upper trapezius myalgia received two cervicothoracic HVLA thrust manipulations targeting the right and left T1-2 articulation, respectively. Two high sampling rate accelerometers were secured bilaterally 25 mm lateral to midline of the T1-2 interspace. For each manipulation, two audio signals were extracted using Short-Time Fourier Transformation (STFT) and singularly processed via spectrogram calculation in order to evaluate the frequency content and number of instantaneous energy bursts of both signals over time for each side of the CTJ. Result Unilateral cavitation sounds were detected in 53 (91.4%) of 58 cervicothoracic HVLA thrust manipulations and bilateral cavitation sounds were detected in just five (8.6%) of the 58 thrust manipulations; that is, cavitation was significantly (p<0.001) more likely to occur unilaterally than bilaterally. In addition, cavitation was significantly (p<0.0001) more likely to occur on the side contralateral to the clinician's short-lever applicator. The mean number of audible cavitations per manipulation was 4.35 (95% CI 2.88, 5.76). The mean duration of a single manipulation was 60.77 ms (95% CI 28.25, 97.42) and the mean duration of a single audible cavitation was 4.13 ms (95% CI 0.82, 7.46). In addition to single-peak and multi-peak energy bursts, spectrogram analysis also demonstrated high frequency sounds, low frequency sounds, and sounds of multiple frequencies for all 58 manipulations. Discussion Cavitation was significantly more likely to occur unilaterally, and on the side contralateral to the short-lever applicator contact, during cervicothoracic HVLA thrust manipulation. Clinicians should expect multiple cavitation sounds when performing HVLA thrust manipulation to the CTJ. Due to the presence of multi-peak energy bursts and sounds of multiple frequencies, the cavitation hypothesis (i.e. intra-articular gas bubble collapse) alone appears unable to explain all of the audible sounds during HVLA thrust manipulation, and the possibility remains that several phenomena may be occurring simultaneously. Level of Evidence 2b PMID:28900571

  5. A general framework for the manual teleoperation of kinematically redundant space-based manipulators

    NASA Astrophysics Data System (ADS)

    Dupuis, Erick

    This thesis provides a general framework for the manual teleoperation of kinematically redundant space-based manipulators. It is proposed to break down the task of controlling the motion of a redundant manipulator into a sequence of manageable sub-tasks of lower dimension by imposing constraints on the motion of intermediate bodies of the manipulator. This implies that the manipulator then becomes a non-redundant kinematic chain and the operator only controls a reduced number of degrees of freedom at any time. However, by appropriately changing the imposed constraints, the operator can use the full capability of the manipulator throughout the task. Also, by not restricting the point of teleoperation to the end effector but effectively allowing direct control of intermediate bodies of the robot, it is possible to teleoperate a redundant robot of arbitrary kinematic architecture over its entire configuration space in a predictable and natural fashion. It is rigourously proven that this approach will always work for any kinematically redundant serial manipulator regardless of its topology, geometry and of the number of its excess degrees-of-freedom. Furthermore, a methodology is provided for the selection of task and constraint coordinates to ensure the absence of algorithmic rank-deficiencies. Two novel algorithms are provided for the symbolic determination of the rank-deficiency locus of rectangular Jacobian matrices: the Singular Vector Algorithm and the Recursive Sub-Determinant Algorithm. These algorithms are complementary to each other: the former being more computationally efficient and the latter more robust. The application of the methodology to sample cases of varying complexity has demonstrated its power and limitations: It has been shown to be powerful enough to generate complete sets of task/constraint coordinate pairs for realistic examples such as the Space Station Remote Manipulator System and a simplified version of the Special Purpose Dexterous Manipulator.

  6. Consistent Performance Differences between Children and Adults Despite Manipulation of Cue-Target Variables

    PubMed Central

    Bauer, Jessie-Raye; Martinez, Joel E.; Roe, Mary Abbe; Church, Jessica A.

    2017-01-01

    Two behavioral experiments assessed the plasticity and short-term improvement of task switching in 215 children and adults. Specifically, we studied manipulations of cued attention to different features of a target stimulus as a way to assess the development of cognitive flexibility. Each experiment had multiple levels of difficulty via manipulation of number of cued features (2–4) and number of response options (2 or 4). Working memory demand was manipulated across the two experiments. Impact of memory demand and task level manipulations on task accuracy and response times were measured. There were three overall goals: First, these task manipulations (number of cued features, response choices, and working memory load) were tested to assess the stability of group differences in performance between children ages 6–16 years and adults 18–27 years, with the goal of reducing age group differences. Second, age-related transitions to adult-level performance were examined within subgroups of the child sample. Third, short-term improvement from the beginning to the end of the study session was measured to probe whether children can improve with task experience. Attempts to use task manipulations to reduce age differences in cued task switching performance were unsuccessful: children performed consistently worse and were more susceptible to task manipulations than adults. However, across both studies, adult-like performance was observed around mid-adolescence, by ages 13-16 years. Certain task manipulations, especially increasing number of response options when working memory demand was low, produced differences from adults even in the oldest children. Interestingly, there was similar performance improvement with practice for both child and adult groups. The higher memory demand version of the task (Experiment 2) prompted greater short-term improvement in accuracy and response times than the lower memory demand version (Experiment 1). These results reveal stable differences in cued switching performance over development, but also relative flexibility within a given individual over time. PMID:28824489

  7. Upper airway stabilization by osteopathic manipulation of the sphenopalatine ganglion versus sham manipulation in OSAS patients: a proof-of-concept, randomized, crossover, double-blind, controlled study.

    PubMed

    Jacq, Olivier; Arnulf, Isabelle; Similowski, Thomas; Attali, Valérie

    2017-12-20

    Osteopathic manipulative treatment (OMT) of the sphenopalatine ganglion (SPG) is used empirically for the treatment of rhinitis and snoring and is thought to increase pharyngeal stability. This trial was designed to study the effects of this treatment on pharyngeal stability evaluated by critical closing pressure in obstructive sleep apnoea syndrome. This single-centre, randomized, crossover, double-blind study compared active manipulation and sham manipulation of the SPG. Randomization was computer-generated. Patients each received one active manipulation and one sham manipulation at an interval of 21 days and were evaluated 30 min and 48 h after each session administered by a qualified osteopath. Neither the patients, nor the investigator performing the evaluations were informed about the order of the two techniques (double-blind). The primary endpoint was the percentage of responding patients presenting increased pharyngeal stability defined by a variation of critical closing pressure (Pcrit) of at least -4 cmH 2 O at 30 min. Secondary endpoints were the variation of Pcrit in absolute values, sleepiness and snoring. Others endpoints were lacrimation (Schirmer's test), induced pain, sensations experienced during OMT. Ten patients were included and nine (57 [50; 58] years, comprising 7 men, with an apnoea-hypopnoea index of 31.0 [25.5; 33.2]/h; (values are median [quartiles])) were analysed. Seven patients were analysed for the primary endpoint and nine patients were analysed for secondary endpoints. Five patients responded after active manipulation versus no patients after sham manipulation (p = 0.0209). Active manipulation induced more intense pain (p = 0.0089), increased lacrimation (ns) and more tactile, nociceptive and gustatory sensations (13 versus 1) compared to sham manipulation. No significant difference was observed for the other endpoints. Osteopathic manipulative treatment of the SPG may improve pharyngeal stability in obstructive sleep apnoea syndrome. This trial validates the feasibility of the randomized, controlled, double-blind methodology for evaluation of this osteopathic treatment. Studies on a larger sample size must specify the efficacy on the apnoea-hypopnoea index. The study was retrospectively registered in the clinicaltrial.gov registry under reference NCT01193738 on 1st September 2010 (first inclusion May 19, 2010).

  8. Where do the Field Plots Belong? A Multiple-Constraint Sampling Design for the BigFoot Project

    NASA Astrophysics Data System (ADS)

    Kennedy, R. E.; Cohen, W. B.; Kirschbaum, A. A.; Gower, S. T.

    2002-12-01

    A key component of a MODIS validation project is effective characterization of biophysical measures on the ground. Fine-grain ecological field measurements must be placed strategically to capture variability at the scale of the MODIS imagery. Here we describe the BigFoot project's revised sampling scheme, designed to simultaneously meet three important goals: capture landscape variability, avoid spatial autocorrelation between field plots, and minimize time and expense of field sampling. A stochastic process places plots in clumped constellations to reduce field sampling costs, while minimizing spatial autocorrelation. This stochastic process is repeated, creating several hundred realizations of plot constellations. Each constellation is scored and ranked according to its ability to match landscape variability in several Landsat-based spectral indices, and its ability to minimize field sampling costs. We show how this approach has recently been used to place sample plots at the BigFoot project's two newest study areas, one in a desert system and one in a tundra system. We also contrast this sampling approach to that already used at the four prior BigFoot project sites.

  9. X-ray-generated heralded macroscopical quantum entanglement of two nuclear ensembles.

    PubMed

    Liao, Wen-Te; Keitel, Christoph H; Pálffy, Adriana

    2016-09-19

    Heralded entanglement between macroscopical samples is an important resource for present quantum technology protocols, allowing quantum communication over large distances. In such protocols, optical photons are typically used as information and entanglement carriers between macroscopic quantum memories placed in remote locations. Here we investigate theoretically a new implementation which employs more robust x-ray quanta to generate heralded entanglement between two crystal-hosted macroscopical nuclear ensembles. Mössbauer nuclei in the two crystals interact collectively with an x-ray spontaneous parametric down conversion photon that generates heralded macroscopical entanglement with coherence times of approximately 100 ns at room temperature. The quantum phase between the entangled crystals can be conveniently manipulated by magnetic field rotations at the samples. The inherent long nuclear coherence times allow also for mechanical manipulations of the samples, for instance to check the stability of entanglement in the x-ray setup. Our results pave the way for first quantum communication protocols that use x-ray qubits.

  10. Expanded Endoscopic Endonasal Approaches to Skull Base Meningiomas

    PubMed Central

    Prosser, J. Drew; Vender, John R.; Alleyne, Cargill H.; Solares, C. Arturo

    2012-01-01

    Anterior cranial base meningiomas have traditionally been addressed via frontal or frontolateral approaches. However, with the advances in endoscopic endonasal treatment of pituitary lesions, the transphenoidal approach is being expanded to address lesions of the petrous ridge, anterior clinoid, clivus, sella, parasellar region, tuberculum, planum, olfactory groove, and crista galli regions. The expanded endoscopic endonasal approach (EEEA) has the advantage of limiting brain retraction and resultant brain edema, as well as minimizing manipulation of neural structures. Herein, we describe the techniques of transclival, transphenoidal, transplanum, and transcribiform resections of anterior skull base meningiomas. Selected cases are presented. PMID:23730542

  11. Sensory Interactive Teleoperator Robotic Grasping

    NASA Technical Reports Server (NTRS)

    Alark, Keli; Lumia, Ron

    1997-01-01

    As the technological world strives for efficiency, the need for economical equipment that increases operator proficiency in minimal time is fundamental. This system links a CCD camera, a controller and a robotic arm to a computer vision system to provide an alternative method of image analysis. The machine vision system which was employed possesses software tools for acquiring and analyzing images which are received through a CCD camera. After feature extraction on the object in the image was performed, information about the object's location, orientation and distance from the robotic gripper is sent to the robot controller so that the robot can manipulate the object.

  12. Tainted love: content analysis of documents written by accused spousal abusers to their victims.

    PubMed

    Dukes, Richard L; Borega, Karoline N; Clayton, Stephanie L; Dukes, Cynthia K; Fox, Carol; McCombs, Jerry; Miller, Thomas L; Rodgers, Susan E

    2002-04-01

    This study analyzed themes in documents written by 22 male accused spousal abusers to their female victims. Using Pence's Power and Equity model (1998), 86% of the themes denied equity and expressed power and control in the relation. Of these, 28% minimized or denied the abuse, 24% used the children to manipulate the victim, 16% showed disrespect for the victim, and 14% invoked male privilege (including God's ordination of the abusive relation). These hallmarks of tainted love are rooted in the desire of the accused abuser to maintain power and control over the victim.

  13. The simplest possible design for a KB microfocus mirror system?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, S. P., E-mail: steve.collins@diamond.ac.uk; Scott, S. M.; Hawkins, D. M.

    2016-07-27

    We report a design for a Kirkpatrick-Baez (KB) microfocussing mirror system. The main components are described, with emphasis on a ‘tripod’ manipulator, where we outline the required coordinate transformation calculations. The merit of this device lies in its simplicity of design, minimal degrees of freedom, and speed and ease of setup on a beamline. Test results and an example of the mirrors in use on Diamond Beamline I16, showing a high-resolution polar domain map of KTiOPO{sub 4} with a spot size of 1.25 µm × 1.5 µm, are presented.

  14. Animal cloning by somatic cell nuclear transfer.

    PubMed

    Smith, Lawrence C; Yoo, Jae-Gyu

    2009-01-01

    Animal cloning is becoming increasingly useful for its applications in biological inquiry and for its potential use in pharmaceutical, medical, and agricultural fields. Due to the complexity of the numerous steps required in reconstructing oocytes by nuclear transfer, detailed protocols are required to minimize the developmental damages inflicted during these manipulations and to standardize procedures across laboratories. Moreover, because oogenesis and early embryogenesis differ widely among mammalian species, it is essential that protocols be adapted according to each species concerned. Our objective here is to detail the protocols that have been most successful in producing laboratory and domestic animal clones.

  15. Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis

    DOEpatents

    Ramsey, J. Michael

    2000-01-01

    A microchip laboratory system and method provide fluid manipulations for a variety of applications, including sample injection for microchip chemical separations. The microchip is fabricated using standard photolithographic procedures and chemical wet etching, with the substrate and cover plate joined using direct bonding. Capillary electrophoresis and electrochromatography are performed in channels formed in the substrate. Analytes are loaded into a four-way intersection of channels by electrokinetically pumping the analyte through the intersection, followed by switching of the potentials to force an analyte plug into the separation channel.

  16. Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis

    DOEpatents

    Ramsey, J. Michael

    2000-01-01

    A microchip laboratory system and method proved fluid manipulations for a variety of applications, including sample injection for microchip chemical separations. The microchip is fabricated using standard photolithographic procedures and chemical wet etching, with the substrate and cover plate joined using direct bonding. Capillary electrophoresis and electrochromatography are performed in channels formed in the substrate. Analytes are loaded into a four-way intersection of channels by electrokinetically pumping the analyte through the intersection, followed by switching of the potentials to force an analyte plug into the separation channel.

  17. Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis

    DOEpatents

    Ramsey, J. Michael

    2002-01-01

    A microchip laboratory system and method provide fluid manipulations for a variety of applications, including sample injection for microchip chemical separations. The microchip is fabricated using standard photolithographic procedures and chemical wet etching, with the substrate and cover plate joined using direct bonding. Capillary electrophoresis and electrochromatography are performed in channels formed in the substrate. Analytes are loaded into a four-way intersection of channels by electrokinetically pumping the analyte through the intersection, followed by switching of the potentials to force an analyte plug into the separation channel.

  18. Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis

    DOEpatents

    Ramsey, J. Michael

    1999-01-01

    A microchip laboratory system and method provide fluid manipulations for a variety of applications, including sample injection for microchip chemical separations. The microchip is fabricated using standard photolithographic procedures and chemical wet etching, with the substrate and cover plate joined using direct bonding. Capillary electrophoresis and electrochromatography are performed in channels formed in the substrate. Analytes are loaded into a four-way intersection of channels by electrokinetically pumping the analyte through the intersection, followed by switching of the potentials to force an analyte plug into the separation channel.

  19. New drugs and methods of doping and manipulation.

    PubMed

    Thevis, Mario; Kohler, Maxie; Schänzer, Wilhelm

    2008-01-01

    The issue of doping in sport is multifaceted. New drugs not only with anabolic properties such as selective androgen receptor modulators, synthetic insulins, blood doping with erythropoietins or homologous and autologous blood transfusions but also with sample manipulation have necessitated sensitive, comprehensive and specific detection assays allowing for the identification of cheats. New methods based on mass spectrometry, flow cytometry and immunological techniques have been introduced and improved in the past years to support and enhance the antidoping fight. Although numerous approaches are successful and promising, these methods still have some shortcomings.

  20. Apparatus and method for performing microfluidic manipulations for chemical analysis and synthesis

    DOEpatents

    Ramsey, J.M.

    1999-01-12

    A microchip laboratory system and method provide fluid manipulations for a variety of applications, including sample injection for microchip chemical separations. The microchip is fabricated using standard photolithographic procedures and chemical wet etching, with the substrate and cover plate joined using direct bonding. Capillary electrophoresis and electrochromatography are performed in channels formed in the substrate. Analytes are loaded into a four-way intersection of channels by electrokinetically pumping the analyte through the intersection, followed by switching of the potentials to force an analyte plug into the separation channel. 46 figs.

  1. ARC Cell Science Validation (CS-V) Payload Overview

    NASA Technical Reports Server (NTRS)

    Gilkerson, Nikita

    2017-01-01

    Automated cell biology system for laboratory and International Space Station (ISS) National Laboratory research. Enhanced cell culture platform that provides undisturbed culture maintenance, including feedback temperature control, medical grade gas supply, perfusion nutrient delivery and removal of waste, and automated experiment manipulations. Programmable manipulations include: media feeds change out, injections, fraction collections, fixation, flow rate, and temperature modification within a one-piece sterile barrier flow path. Cassette provides 3 levels of containment and allows Crew access to the bioculture chamber and flow path assembly for experiment initiation, refurbishment, or sample retrieval and preservation.

  2. 10 CFR 55.31 - How to apply.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... the applicant will be employed that the written examination and operating test be administered to the... a representative sampling of the control manipulations and plant evolutions described in § 55.59(c...

  3. Immediate changes in widespread pressure pain sensitivity, neck pain, and cervical range of motion after cervical or thoracic thrust manipulation in patients with bilateral chronic mechanical neck pain: a randomized clinical trial.

    PubMed

    Martínez-Segura, Raquel; De-la-Llave-Rincón, Ana I; Ortega-Santiago, Ricardo; Cleland, Joshua A; Fernández-de-Las-Peñas, César

    2012-09-01

    Randomized clinical trial. To compare the effects of cervical versus thoracic thrust manipulation in patients with bilateral chronic mechanical neck pain on pressure pain sensitivity, neck pain, and cervical range of motion (CROM). Evidence suggests that spinal interventions can stimulate descending inhibitory pain pathways. To our knowledge, no study has investigated the neurophysiological effects of thoracic thrust manipulation in individuals with bilateral chronic mechanical neck pain, including widespread changes on pressure sensitivity. Ninety patients (51% female) were randomly assigned to 1 of 3 groups: cervical thrust manipulation on the right, cervical thrust manipulation on the left, or thoracic thrust manipulation. Pressure pain thresholds (PPTs) over the C5-6 zygapophyseal joint, lateral epicondyle, and tibialis anterior muscle, neck pain (11-point numeric pain rating scale), and cervical spine range of motion (CROM) were collected at baseline and 10 minutes after the intervention by an assessor blinded to the treatment allocation of the patients. Mixed-model analyses of covariance were used to examine the effects of the treatment on each outcome variable, with group as the between-subjects variable, time and side as the within-subject variables, and gender as the covariate. The primary analysis was the group-by-time interaction. No significant interactions were found with the mixed-model analyses of covariance for PPT level (C5-6, P>.210; lateral epicondyle, P>.186; tibialis anterior muscle, P>.268), neck pain intensity (P = .923), or CROM (flexion, P = .700; extension, P = .387; lateral flexion, P>.672; rotation, P>.192) as dependent variables. All groups exhibited similar changes in PPT, neck pain, and CROM (all, P<.001). Gender did not influence the main effects or the interaction effects in the analyses of the outcomes (P>.10). The results of the current randomized clinical trial suggest that cervical and thoracic thrust manipulation induce similar changes in PPT, neck pain intensity, and CROM in individuals with bilateral chronic mechanical neck pain. However, changes in PPT and CROM were small and did not surpass their respective minimal detectable change values. Further, because we did not include a control group, we cannot rule out a placebo effect of the thrust interventions on the outcomes. Therapy, level 1b.J Orthop Sports Phys Ther 2012;42(9):806-814, Epub 18 June 2012. doi:10.2519/jospt.2012.4151.

  4. Why minimally invasive skin sampling techniques? A bright scientific future.

    PubMed

    Wang, Christina Y; Maibach, Howard I

    2011-03-01

    There is increasing interest in minimally invasive skin sampling techniques to assay markers of molecular biology and biochemical processes. This overview examines methodology strengths and limitations, and exciting developments pending in the scientific community. Publications were searched via PubMed, the U.S. Patent and Trademark Office Website, the DermTech Website and the CuDerm Website. The keywords used were noninvasive skin sampling, skin stripping, skin taping, detergent method, ring method, mechanical scrub, reverse iontophoresis, glucose monitoring, buccal smear, hair root sampling, mRNA, DNA, RNA, and amino acid. There is strong interest in finding methods to access internal biochemical, molecular, and genetic processes through noninvasive and minimally invasive external means. Minimally invasive techniques include the widely used skin tape stripping, the abrasion method that includes scraping and detergent, and reverse iontophoresis. The first 2 methods harvest largely the stratum corneum. Hair root sampling (material deeper than the epidermis), buccal smear, shave biopsy, punch biopsy, and suction blistering are also methods used to obtain cellular material for analysis, but involve some degree of increased invasiveness and thus are only briefly mentioned. Existing and new sampling methods are being refined and validated, offering exciting, different noninvasive means of quickly and efficiently obtaining molecular material with which to monitor bodily functions and responses, assess drug levels, and follow disease processes without subjecting patients to unnecessary discomfort and risk.

  5. The simulated early learning of cervical spine manipulation technique utilising mannequins.

    PubMed

    Chapman, Peter D; Stomski, Norman J; Losco, Barrett; Walker, Bruce F

    2015-01-01

    Trivial pain or minor soreness commonly follows neck manipulation and has been estimated at one in three treatments. In addition, rare catastrophic events can occur. Some of these incidents have been ascribed to poor technique where the neck is rotated too far. The aims of this study were to design an instrument to measure competency of neck manipulation in beginning students when using a simulation mannequin, and then examine the suitability of using a simulation mannequin to teach the early psychomotor skills for neck chiropractic manipulative therapy. We developed an initial set of questionnaire items and then used an expert panel to assess an instrument for neck manipulation competency among chiropractic students. The study sample comprised all 41 fourth year 2014 chiropractic students at Murdoch University. Students were randomly allocated into either a usual learning or mannequin group. All participants crossed over to undertake the alternative learning method after four weeks. A chi-square test was used to examine differences between groups in the proportion of students achieving an overall pass mark at baseline, four weeks, and eight weeks. This study was conducted between January and March 2014. We successfully developed an instrument of measurement to assess neck manipulation competency in chiropractic students. We then randomised 41 participants to first undertake either "usual learning" (n = 19) or "mannequin learning" (n = 22) for early neck manipulation training. There were no significant differences between groups in the overall pass rate at baseline (χ(2) = 0.10, p = 0.75), four weeks (χ(2) = 0.40, p = 0.53), and eight weeks (χ(2) = 0.07, p = 0.79). This study demonstrates that the use of a mannequin does not affect the manipulation competency grades of early learning students at short term follow up. Our findings have potentially important safety implications as the results indicate that students could initially gain competence in neck manipulation by using mannequins before proceeding to perform neck manipulation on each other.

  6. Bias and Precision of Measures of Association for a Fixed-Effect Multivariate Analysis of Variance Model

    ERIC Educational Resources Information Center

    Kim, Soyoung; Olejnik, Stephen

    2005-01-01

    The sampling distributions of five popular measures of association with and without two bias adjusting methods were examined for the single factor fixed-effects multivariate analysis of variance model. The number of groups, sample sizes, number of outcomes, and the strength of association were manipulated. The results indicate that all five…

  7. An innovative ultrasound assisted extraction micro-scale cell combined with gas chromatography/mass spectrometry in negative chemical ionization to determine persistent organic pollutants in air particulate matter.

    PubMed

    Beristain-Montiel, E; Villalobos-Pietrini, R; Arias-Loaiza, G E; Gómez-Arroyo, S L; Amador-Muñoz, O

    2016-12-16

    New clean technologies are needed to determine concentration of organic pollutants without generating more pollution. A method to extract Persistent Organic Pollutants (POPs) from airborne particulate matter was developed using a novel technology recently patented called ultrasound assisted extraction micro-scale cell (UAE-MSC). This technology extracts, filters, collects the sample, and evaporates the solvent, on-line. No sample transfer is needed. The cell minimizes sample manipulation, solvent consumption, waste generation, time, and energy; fulfilling most of the analytical green chemistry protocol. The methodology was optimized applying a centred 2 3 factorial experimental design. Optimum conditions were used to validate and determine concentration of 16 organochlorine pesticides (OCls) and 6 polybrominated diphenyl ethers (PBDEs). The best conditions achieved were 2 extractions with 5mL (each) of dichloromethane over 5min (each) at 60°C and 80% ultrasound potency. POPs were determined by gas chromatography/mass spectrometry in negative chemical ionization (GC/MS-NCI). Analytical method validation was carried out on airborne particles spiked with POPs at seven concentration levels between 0.5 and 26.9pgm -3 . This procedure was done by triplicate (N=21). Recovery, ranged between 65.5±2.3% and 107.5±3.0% for OCls and between 79.1±6.5% and 105.2±3.8% for PBDEs. Linearity (r 2 ) was ≥0.94 for all compounds. Method detection limits, ranged from 0.5 to 2.7pgm -3 , while limits of quantification (LOQ), ranged from 1.7 to 9.0pgm -3 . A Bias from -18.6% to 9% for PBDEs was observed in the Standard Reference Material (SRM) 2787. SRM 2787 did not contain OCls. OCls recoveries were equivalent by UAE-MSC and Soxhlet methods UAE-MSC optimized extraction conditions reduced 30 times less solvent and decreased the extraction time from several hours to ten minutes, respect to Soxhlet. UAE-MSC was applied to 15 samples of particles less than 2.5μm (PM 2.5 ) from three seasons (warm dry, rainy, and cold dry) collected in five sites around Mexico City. OCls (4,4'-DDE and endrin aldehyde) concentrations ranged from

  8. Minimal T-wave representation and its use in the assessment of drug arrhythmogenicity.

    PubMed

    Shakibfar, Saeed; Graff, Claus; Kanters, Jørgen K; Nielsen, Jimmi; Schmidt, Samuel; Struijk, Johannes J

    2017-05-01

    Recently, numerous models and techniques have been developed for analyzing and extracting features from the T wave which could be used as biomarkers for drug-induced abnormalities. The majority of these techniques and algorithms use features that determine readily apparent characteristics of the T wave, such as duration, area, amplitude, and slopes. In the present work the T wave was down-sampled to a minimal rate, such that a good reconstruction was still possible. The entire T wave was then used as a feature vector to assess drug-induced repolarization effects. The ability of the samples or combinations of samples obtained from the minimal T-wave representation to correctly classify a group of subjects before and after receiving d,l-sotalol 160 mg and 320 mg was evaluated using a linear discriminant analysis (LDA). The results showed that a combination of eight samples from the minimal T-wave representation can be used to identify normal from abnormal repolarization significantly better compared to the heart rate-corrected QT interval (QTc). It was further indicated that the interval from the peak of the T wave to the end of the T wave (Tpe) becomes relatively shorter after I K r inhibition by d,l-sotalol and that the most pronounced repolarization changes were present in the ascending segment of the minimal T-wave representation. The minimal T-wave representation can potentially be used as a new tool to identify normal from abnormal repolarization in drug safety studies. © 2016 Wiley Periodicals, Inc.

  9. Decelerating and Trapping Large Polar Molecules.

    PubMed

    Patterson, David

    2016-11-18

    Manipulating the motion of large polyatomic molecules, such as benzonitrile (C 6 H 5 CN), presents significant difficulties compared to the manipulation of diatomic molecules. Although recent impressive results have demonstrated manipulation, trapping, and cooling of molecules as large as CH 3 F, no general technique for trapping such molecules has been demonstrated, and cold neutral molecules larger than 5 atoms have not been trapped (M. Zeppenfeld, B. G. U. Englert, R. Glöckner, A. Prehn, M. Mielenz, C. Sommer, L. D. van Buuren, M. Motsch, G. Rempe, Nature 2012, 491, 570-573). In particular, extending Stark deceleration and electrostatic trapping to such species remains challenging. Here, we propose to combine a novel "asymmetric doublet state" Stark decelerator with recently demonstrated slow, cold, buffer-gas-cooled beams of closed-shell volatile molecules to realize a general system for decelerating and trapping samples of a broad range of volatile neutral polar prolate asymmetric top molecules. The technique is applicable to most stable volatile molecules in the 100-500 AMU range, and would be capable of producing trapped samples in a single rotational state and at a motional temperature of hundreds of mK. Such samples would immediately allow for spectroscopy of unprecedented resolution, and extensions would allow for further cooling and direct observation of slow intramolecular processes such as vibrational relaxation and Hertz-level tunneling dynamics. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. IRMS detection of testosterone manipulated with 13C labeled standards in human urine by removing the labeled 13C.

    PubMed

    Wang, Jingzhu; Yang, Rui; Yang, Wenning; Liu, Xin; Xing, Yanyi; Xu, Youxuan

    2014-12-10

    Isotope ratio mass spectrometry (IRMS) is applied to confirm testosterone (T) abuse by determining the carbon isotope ratios (δ(13)C value). However, (13)C labeled standards can be used to control the δ(13)C value and produce manipulated T which cannot be detected by the current method. A method was explored to remove the (13)C labeled atom at C-3 from the molecule of androsterone (Andro), the metabolite of T in urine, to produce the resultant (A-nor-5α-androstane-2,17-dione, ANAD). The difference in δ(13)C values between Andro and ANAD (Δδ(13)CAndro-ANAD, ‰) would change significantly in case manipulated T is abused. Twenty-one volunteers administered T manipulated with different (13)C labeled standards. The collected urine samples were analyzed with the established method, and the maximum value of Δδ(13)CAndro-ANAD post ingestion ranged from 3.0‰ to 8.8‰. Based on the population reference, the cut-off value of Δδ(13)CAndro-ANAD for positive result was suggested as 1.2‰. The developed method could be used to detect T manipulated with 3-(13)C labeled standards. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Method for Hot Real-Time Sampling of Gasification Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pomeroy, Marc D

    The Thermochemical Process Development Unit (TCPDU) at the National Renewable Energy Laboratory (NREL) is a highly instrumented half-ton/day pilot scale plant capable of demonstrating industrially relevant thermochemical technologies from lignocellulosic biomass conversion, including gasification. Gasification creates primarily Syngas (a mixture of Hydrogen and Carbon Monoxide) that can be utilized with synthesis catalysts to form transportation fuels and other valuable chemicals. Biomass derived gasification products are a very complex mixture of chemical components that typically contain Sulfur and Nitrogen species that can act as catalysis poisons for tar reforming and synthesis catalysts. Real-time hot online sampling techniques, such as Molecular Beammore » Mass Spectrometry (MBMS), and Gas Chromatographs with Sulfur and Nitrogen specific detectors can provide real-time analysis providing operational indicators for performance. Sampling typically requires coated sampling lines to minimize trace sulfur interactions with steel surfaces. Other materials used inline have also shown conversion of sulfur species into new components and must be minimized. Sample line Residence time within the sampling lines must also be kept to a minimum to reduce further reaction chemistries. Solids from ash and char contribute to plugging and must be filtered at temperature. Experience at NREL has shown several key factors to consider when designing and installing an analytical sampling system for biomass gasification products. They include minimizing sampling distance, effective filtering as close to source as possible, proper line sizing, proper line materials or coatings, even heating of all components, minimizing pressure drops, and additional filtering or traps after pressure drops.« less

  12. Adaptive hybrid control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    Simple methods for the design of adaptive force and position controllers for robot manipulators within the hybrid control architecuture is presented. The force controller is composed of an adaptive PID feedback controller, an auxiliary signal and a force feedforward term, and it achieves tracking of desired force setpoints in the constraint directions. The position controller consists of adaptive feedback and feedforward controllers and an auxiliary signal, and it accomplishes tracking of desired position trajectories in the free directions. The controllers are capable of compensating for dynamic cross-couplings that exist between the position and force control loops in the hybrid control architecture. The adaptive controllers do not require knowledge of the complex dynamic model or parameter values of the manipulator or the environment. The proposed control schemes are computationally fast and suitable for implementation in on-line control with high sampling rates.

  13. MicrofluIdic circuit designs for performing electrokinetic manipulations that reduce the number of voltage sources and fluid reservoirs

    DOEpatents

    Jacobson, Stephen C.; Ramsey, J. Michael

    2000-01-01

    A microfabricated device and method for proportioning and mixing electrokinetically manipulated biological or chemical materials is disclosed. The microfabricated device mixes a plurality of materials in volumetric proportions controlled by the electrical resistances of tributary reagent channels through which the materials are transported. The microchip includes two or more tributary reagent channels combining at one or more junctions to form one or more mixing channels. By varying the geometries of the channels (length, cross section, etc.), a plurality of reagent materials can be mixed at a junction such that the proportions of the reagent materials in the mixing channel depend on a ratio of the channel geometries and material properties. Such an approach facilitates voltage division on the microchip without relying on external wiring schemes and voltage division techniques external to the microchip. Microchannel designs that provide the necessary voltage division to accomplish electrokinetic valving operations using a single voltage source and a switch are also described. In addition, microchannel designs that accomplish fluidic operation utilizing a minimal number of fluidic reservoirs are disclosed.

  14. Fishing for ecosystem services.

    PubMed

    Pope, Kevin L; Pegg, Mark A; Cole, Nicholas W; Siddons, Stephen F; Fedele, Alexis D; Harmon, Brian S; Ruskamp, Ryan L; Turner, Dylan R; Uerling, Caleb C

    2016-12-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships. Published by Elsevier Ltd.

  15. Fishing for ecosystem services

    USGS Publications Warehouse

    Pope, Kevin L.; Pegg, Mark A.; Cole, Nicholas W.; Siddons, Stephen F.; Fedele, Alexis D.; Harmon, Brian S.; Ruskamp, Ryan L.; Turner, Dylan R.; Uerling, Caleb C.

    2016-01-01

    Ecosystems are commonly exploited and manipulated to maximize certain human benefits. Such changes can degrade systems, leading to cascading negative effects that may be initially undetected, yet ultimately result in a reduction, or complete loss, of certain valuable ecosystem services. Ecosystem-based management is intended to maintain ecosystem quality and minimize the risk of irreversible change to natural assemblages of species and to ecosystem processes while obtaining and maintaining long-term socioeconomic benefits. We discuss policy decisions in fishery management related to commonly manipulated environments with a focus on influences to ecosystem services. By focusing on broader scales, managing for ecosystem services, and taking a more proactive approach, we expect sustainable, quality fisheries that are resilient to future disturbances. To that end, we contend that: (1) management always involves tradeoffs; (2) explicit management of fisheries for ecosystem services could facilitate a transition from reactive to proactive management; and (3) adaptive co-management is a process that could enhance management for ecosystem services. We propose adaptive co-management with an ecosystem service framework where actions are implemented within ecosystem boundaries, rather than political boundaries, through strong interjurisdictional relationships.

  16. Report of the Microbial Development Working Group

    NASA Technical Reports Server (NTRS)

    Nelson, G.

    1985-01-01

    In formulating ideas on the relationship of gravity to the development, growth, and reproduction of microorganisms, a rather liberal definition of microorganisms is used which includes bacteria, yeasts, protists, filamentous fungi, and single cells in culture. A principal advantage of microorganisms as experimental subjects is the rigor with which they can be defined and controlled. As single cells, each cell may be regarded as identical to the others in the population. This property applies to the morphology, physiology, and genetic parameters of the cells. The growth and development of the population is subject to precise manipulation as the nutritional requirements are known and minimal media formulations have been developed. Growth and differentiation can be manipulated in a variety of ways, such as alteration of the culture temperature and food supply, or by use of mutants. Finally, the short generation times of microorganisms provide the opportunity to conduct multigenerational studies within practical time limits and, in a similar vein, cellular responses to various stimuli or stresses are conveniently monitored because of the rapid response times of single cells.

  17. Intertrial interval duration and learning in autistic children.

    PubMed Central

    Koegel, R L; Dunlap, G; Dyer, K

    1980-01-01

    This study investigated the influence of intertrial interval duration on the performance of autistic children during teaching situations. The children were taught under the same conditions existing in their regular programs, except that the length of time between trials was systematically manipulated. With both multiple baseline and repeated reversal designs, two lengths of intertrial interval were employed; short intervals with the SD for any given trial presented approximately one second following the reinforcer for the previous trial versus long intervals with the SD presented four or more seconds following the reinforcer for the previous trial. The results showed that: (1) the short intertrial intervals always produced higher levels of correct responding than the long intervals; and (2) there were improving trends in performance and rapid acquisition with the short intertrial intervals, in contrast to minimal or no change with the long intervals. The results are discussed in terms of utilizing information about child and task characteristics in terms of selecting optimal intervals. The data suggest that manipulations made between trials have a large influence on autistic children's learning. PMID:7364701

  18. Vision and Task Assistance using Modular Wireless In Vivo Surgical Robots

    PubMed Central

    Platt, Stephen R.; Hawks, Jeff A.; Rentschler, Mark E.

    2009-01-01

    Minimally invasive abdominal surgery (laparoscopy) results in superior patient outcomes compared to conventional open surgery. However, the difficulty of manipulating traditional laparoscopic tools from outside the body of the patient generally limits these benefits to patients undergoing relatively low complexity procedures. The use of tools that fit entirely inside the peritoneal cavity represents a novel approach to laparoscopic surgery. Our previous work demonstrated that miniature mobile and fixed-based in vivo robots using tethers for power and data transmission can successfully operate within the abdominal cavity. This paper describes the development of a modular wireless mobile platform for in vivo sensing and manipulation applications. Design details and results of ex vivo and in vivo tests of robots with biopsy grasper, staple/clamp, video, and physiological sensor payloads are presented. These types of self-contained surgical devices are significantly more transportable and lower in cost than current robotic surgical assistants. They could ultimately be carried and deployed by non-medical personnel at the site of an injury to allow a remotely located surgeon to provide critical first response medical intervention irrespective of the location of the patient. PMID:19237337

  19. Design of a TW-SLIM Module for Dual Polarity Confinement, Transport, and Reactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garimella, Sandilya V. B.; Webb, Ian K.; Prabhakaran, Aneesh

    2017-05-30

    Here we describe instrumental approaches for performing dual polarity ion confinement, transport, ion mobility separations and reactions in Structures for Lossless Ion Manipulations (SLIM). Previous means of ion confinement in SLIM based upon rf- generated pseudopotentials and dc fields for lateral confinement cannot trap ions of opposite polarity simultaneously. Here we explore alternative approaches to provide lateral confinement of both ion polarities. Traveling wave ion mobility (IM) separations experienced by both polarities in such SLIM cause ions of both polarities migrate in the same directions and exhibit similar separations. The ion motion (and relative motion of the two polarities) undermore » both surfing and IM separation conditions are discussed. Strategies to separate the two populations to minimize reactive losses during transport are presented. A theoretical treatment of the time scales over which two populations (injected into a dc field-free region of the dual polarity SLIM device) interact is considered, and SLIM designs for allowing ion/ion interactions and other manipulations with dual polarities at 4 torr are presented.« less

  20. Comprehensive Analysis of Transcription Dynamics from Brain Samples Following Behavioral Experience

    PubMed Central

    Turm, Hagit; Mukherjee, Diptendu; Haritan, Doron; Tahor, Maayan; Citri, Ami

    2014-01-01

    The encoding of experiences in the brain and the consolidation of long-term memories depend on gene transcription. Identifying the function of specific genes in encoding experience is one of the main objectives of molecular neuroscience. Furthermore, the functional association of defined genes with specific behaviors has implications for understanding the basis of neuropsychiatric disorders. Induction of robust transcription programs has been observed in the brains of mice following various behavioral manipulations. While some genetic elements are utilized recurrently following different behavioral manipulations and in different brain nuclei, transcriptional programs are overall unique to the inducing stimuli and the structure in which they are studied1,2. In this publication, a protocol is described for robust and comprehensive transcriptional profiling from brain nuclei of mice in response to behavioral manipulation. The protocol is demonstrated in the context of analysis of gene expression dynamics in the nucleus accumbens following acute cocaine experience. Subsequent to a defined in vivo experience, the target neural tissue is dissected; followed by RNA purification, reverse transcription and utilization of microfluidic arrays for comprehensive qPCR analysis of multiple target genes. This protocol is geared towards comprehensive analysis (addressing 50-500 genes) of limiting quantities of starting material, such as small brain samples or even single cells. The protocol is most advantageous for parallel analysis of multiple samples (e.g. single cells, dynamic analysis following pharmaceutical, viral or behavioral perturbations). However, the protocol could also serve for the characterization and quality assurance of samples prior to whole-genome studies by microarrays or RNAseq, as well as validation of data obtained from whole-genome studies. PMID:25225819

Top