Science.gov

Sample records for minimal surface contributions

  1. Periodic minimal surfaces

    NASA Astrophysics Data System (ADS)

    Mackay, Alan L.

    1985-04-01

    A minimal surface is one for which, like a soap film with the same pressure on each side, the mean curvature is zero and, thus, is one where the two principal curvatures are equal and opposite at every point. For every closed circuit in the surface, the area is a minimum. Schwarz1 and Neovius2 showed that elements of such surfaces could be put together to give surfaces periodic in three dimensions. These periodic minimal surfaces are geometrical invariants, as are the regular polyhedra, but the former are curved. Minimal surfaces are appropriate for the description of various structures where internal surfaces are prominent and seek to adopt a minimum area or a zero mean curvature subject to their topology; thus they merit more complete numerical characterization. There seem to be at least 18 such surfaces3, with various symmetries and topologies, related to the crystallographic space groups. Recently, glyceryl mono-oleate (GMO) was shown by Longley and McIntosh4 to take the shape of the F-surface. The structure postulated is shown here to be in good agreement with an analysis of the fundamental geometry of periodic minimal surfaces.

  2. Discrete Minimal Surface Algebras

    NASA Astrophysics Data System (ADS)

    Arnlind, Joakim; Hoppe, Jens

    2010-05-01

    We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.

  3. The minimal power spectrum: Higher order contributions

    NASA Technical Reports Server (NTRS)

    Fry, J. N.

    1994-01-01

    It has been an accepted belief for some time that gravity induces a minimal tail P(k) approximately k(exp 4) in the power spectrum as k approaches 0 for distributions with no initial power on large scales. In a recent numerical experiment with initial power confined to a restricted range in k, Shandarin and Melott (1990) found a k approaches 0 tail that at early stages of evolution behaves as k(exp 4) and grows with time as a(exp 4)(t), where a(t) is the cosmological expansion factor, and at late times depends on scale as k(exp 3) and grows with time as a(exp 2)(t). I compute analytically several contributions to the power spectrum of higher order than those included in earlier work, and I apply the results to the particular case of initial power restricted to a finite range of k. As expected, in the perturbative regime P(k) approximately a(exp 4)k(exp 4) from the first correction to linear perturbation theory is the dominant term as k approaches 0. Numerical investigations show that the higher order contributions go as k(exp 4) also. However, perturbation theory alone cannot tell whether the P approximately a(exp 2)k(exp 3) result is 'nonperturbative' or a numerical artifact.

  4. Analysis of lipid flow on minimal surfaces

    NASA Astrophysics Data System (ADS)

    Bahmani, Fatemeh; Christenson, Joel; Rangamani, Padmini

    2016-03-01

    Interaction between the bilayer shape and surface flow is important for capturing the flow of lipids in many biological membranes. Recent microscopy evidence has shown that minimal surfaces (planes, catenoids, and helicoids) occur often in cellular membranes. In this study, we explore lipid flow in these geometries using a `stream function' formulation for viscoelastic lipid bilayers. Using this formulation, we derive two-dimensional lipid flow equations for the commonly occurring minimal surfaces in lipid bilayers. We show that for three minimal surfaces (planes, catenoids, and helicoids), the surface flow equations satisfy Stokes flow equations. In helicoids and catenoids, we show that the tangential velocity field is a Killing vector field. Thus, our analysis provides fundamental insight into the flow patterns of lipids on intracellular organelle membranes that are characterized by fixed shapes reminiscent of minimal surfaces.

  5. Blackfolds, plane waves and minimal surfaces

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  6. Quasistatic Cracks and Minimal Energy Surfaces

    SciTech Connect

    Raeisaenen, V.I.; Seppala, E.T.; Alava, M.J.; Raeisaenen, V.I.; Alava, M.J.; Alava, M.J.; Duxbury, P.M.

    1998-01-01

    We compare the roughness of minimal energy (ME) surfaces and scalar quasistatic fracture (SQF) surfaces. Two-dimensional ME and SQF surfaces have {ital the same roughness scaling,} w{approximately}L{sup {zeta}} (L is the system size) with {zeta}=(2)/(3). The 3{ital d} ME and SQF results at strong disorder are consistent with the random-bond Ising exponent {zeta}(d{ge}3){approx}0.21(5{minus}d) (d is the bulk dimension). However, 3{ital d} SQF surfaces are {ital rougher} than ME surfaces due to a larger prefactor. ME surfaces undergo a weakly rough to algebraically rough{close_quotes} transition in 3{ital d}, suggesting a similar behavior in fracture. {copyright} {ital 1998} {ital The American Physical Society}

  7. Minimal model for spoof acoustoelastic surface states

    SciTech Connect

    Christensen, J. Willatzen, M.; Liang, Z.

    2014-12-15

    Similar to textured perfect electric conductors for electromagnetic waves sustaining artificial or spoof surface plasmons we present an equivalent phenomena for the case of sound. Aided by a minimal model that is able to capture the complex wave interaction of elastic cavity modes and airborne sound radiation in perfect rigid panels, we construct designer acoustoelastic surface waves that are entirely controlled by the geometrical environment. Comparisons to results obtained by full-wave simulations confirm the feasibility of the model and we demonstrate illustrative examples such as resonant transmissions and waveguiding to show a few examples of many where spoof elastic surface waves are useful.

  8. Smooth surfaces from bilinear patches: Discrete affine minimal surfaces.

    PubMed

    Käferböck, Florian; Pottmann, Helmut

    2013-06-01

    Motivated by applications in freeform architecture, we study surfaces which are composed of smoothly joined bilinear patches. These surfaces turn out to be discrete versions of negatively curved affine minimal surfaces and share many properties with their classical smooth counterparts. We present computational design approaches and study special cases which should be interesting for the architectural application.

  9. Reflections concerning triply-periodic minimal surfaces.

    PubMed

    Schoen, Alan H

    2012-10-01

    In recent decades, there has been an explosion in the number and variety of embedded triply-periodic minimal surfaces (TPMS) identified by mathematicians and materials scientists. Only the rare examples of low genus, however, are commonly invoked as shape templates in scientific applications. Exact analytic solutions are now known for many of the low genus examples. The more complex surfaces are readily defined with numerical tools such as Surface Evolver software or the Landau-Ginzburg model. Even though table-top versions of several TPMS have been placed within easy reach by rapid prototyping methods, the inherent complexity of many of these surfaces makes it challenging to grasp their structure. The problem of distinguishing TPMS, which is now acute because of the proliferation of examples, has been addressed by Lord & Mackay (Lord & Mackay 2003 Curr. Sci. 85, 346-362).

  10. Reflections concerning triply-periodic minimal surfaces

    PubMed Central

    Schoen, Alan H.

    2012-01-01

    In recent decades, there has been an explosion in the number and variety of embedded triply-periodic minimal surfaces (TPMS) identified by mathematicians and materials scientists. Only the rare examples of low genus, however, are commonly invoked as shape templates in scientific applications. Exact analytic solutions are now known for many of the low genus examples. The more complex surfaces are readily defined with numerical tools such as Surface Evolver software or the Landau–Ginzburg model. Even though table-top versions of several TPMS have been placed within easy reach by rapid prototyping methods, the inherent complexity of many of these surfaces makes it challenging to grasp their structure. The problem of distinguishing TPMS, which is now acute because of the proliferation of examples, has been addressed by Lord & Mackay (Lord & Mackay 2003 Curr. Sci. 85, 346–362). PMID:24098851

  11. Bibliometric analysis of scientific contributions in minimally invasive general surgery.

    PubMed

    Antoniou, Stavros A; Lasithiotakis, Konstantinos; Koch, Oliver O; Antoniou, George A; Pointner, Rudolph; Granderath, Frank A

    2014-02-01

    Publication of scientific articles in peer-reviewed medical journals is considered as a measure of research productivity. The aim of the present study was to quantify the research contributions of different countries in minimally invasive surgery and to critically discuss the results under the prism of recent socioeconomic developments. The electronical archives of 4 major surgical journals (Annals of Surgery, British Journal of Surgery, Journal of the American College of Surgeons, and Surgical Endoscopy) were searched between 2009 and 2012. Publications on minimally invasive general surgery were assessed according to the country. A total of 6595 records were identified; 2160 articles were related to minimally invasive surgery. The volume of publication activity was evenly distributed in North America (34%) and Europe (39%). The United States (31%), the United Kingdom (7.6%), and Japan (6.7%) were the most productive countries. When adjusted for country population, the Netherlands (7.7/10), Denmark (4.4/10), and Switzerland (4.1/10) occupied the highest ranks. Although the United States dominates in terms of absolute number of publications, several smaller countries were more prolific, when the number of inhabitants was taken into account. The recent financial crisis is expected to undermine international collaborative conditions in the field of minimally invasive surgery. The need for a stepped-up international scientific collaboration is hereto highlighted.

  12. Elliptic surface grid generation on minimal and parmetrized surfaces

    NASA Technical Reports Server (NTRS)

    Spekreijse, S. P.; Nijhuis, G. H.; Boerstoel, J. W.

    1995-01-01

    An elliptic grid generation method is presented which generates excellent boundary conforming grids in domains in 2D physical space. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the familiar Poisson grid generation system with control functions specified by the algebraic transformation. New expressions are given for the control functions. Grid orthogonality at the boundary is achieved by modification of the algebraic transformation. It is shown that grid generation on a minimal surface in 3D physical space is in fact equivalent to grid generation in a domain in 2D physical space. A second elliptic grid generation method is presented which generates excellent boundary conforming grids on smooth surfaces. It is assumed that the surfaces are parametrized and that the grid only depends on the shape of the surface and is independent of the parametrization. Concerning surface modeling, it is shown that bicubic Hermite interpolation is an excellent method to generate a smooth surface which is passing through a given discrete set of control points. In contrast to bicubic spline interpolation, there is extra freedom to model the tangent and twist vectors such that spurious oscillations are prevented.

  13. CORTICAL SURFACE PARAMETERIZATION BY P-HARMONIC ENERGY MINIMIZATION

    PubMed Central

    JOSHI, ANAND A.; SHATTUCK, DAVID W.; THOMPSON, PAUL M.; LEAHY, RICHARD M.

    2010-01-01

    Cortical surface parameterization has several applications in visualization and analysis of the brain surface. Here we propose a scheme for parameterizing the surface of the cerebral cortex. The parameterization is formulated as the minimization of an energy functional in the pth norm. A numerical method for obtaining the solution is also presented. Brain surfaces from multiple subjects are brought into common parameter space using the scheme. 3D spatial averages of the cortical surfaces are generated by using the correspondences induced by common parameter space. PMID:20721316

  14. Minimal adhesion surface area in tangentially loaded digital contacts.

    PubMed

    Terekhov, Alexander V; Hayward, Vincent

    2011-09-01

    The stick-to-slip transition of a fingertip in contact with a planar surface does not occur instantaneously. As the tangential load increases, portions of the skin adhere while others slip, giving rise to an evolution of the contact state, termed partial slip. We develop a quasi-static model that predicts that if the coefficient of kinetic friction is larger than the coefficient of static friction, then the stuck surface area diminishes as the tangential load increases until reaching a 'minimal adhesion surface area' where it vanishes abruptly. This phenomenon was observed in recently measured finger-slip image data (André et al., 2011) that were processed by an optic flow detection algorithm. We examined the results of 10 trials. Four of them exhibited the minimal adhesion surface area phenomenon, four of them did not, and two were inconclusive.

  15. Minimal adhesion surface area in tangentially loaded digital contacts.

    PubMed

    Terekhov, Alexander V; Hayward, Vincent

    2011-09-01

    The stick-to-slip transition of a fingertip in contact with a planar surface does not occur instantaneously. As the tangential load increases, portions of the skin adhere while others slip, giving rise to an evolution of the contact state, termed partial slip. We develop a quasi-static model that predicts that if the coefficient of kinetic friction is larger than the coefficient of static friction, then the stuck surface area diminishes as the tangential load increases until reaching a 'minimal adhesion surface area' where it vanishes abruptly. This phenomenon was observed in recently measured finger-slip image data (André et al., 2011) that were processed by an optic flow detection algorithm. We examined the results of 10 trials. Four of them exhibited the minimal adhesion surface area phenomenon, four of them did not, and two were inconclusive. PMID:21774936

  16. Minimizing Emissions From Soil Fumigation By Surface Seal Methods.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil fumigation is an important management practice for controlling soil pests in many high value crops. Reducing atmospheric emissions can minimize the impact of soil fumigation on the environment. Water seals (sprinkling water on the soil surface) to reduce fumigant emissions is more cost-effecti...

  17. Optimized 3D watermarking for minimal surface distortion.

    PubMed

    Bors, Adrian G; Luo, Ming

    2013-05-01

    This paper proposes a new approach to 3D watermarking by ensuring the optimal preservation of mesh surfaces. A new 3D surface preservation function metric is defined consisting of the distance of a vertex displaced by watermarking to the original surface, to the watermarked object surface as well as the actual vertex displacement. The proposed method is statistical, blind, and robust. Minimal surface distortion according to the proposed function metric is enforced during the statistical watermark embedding stage using Levenberg-Marquardt optimization method. A study of the watermark code crypto-security is provided for the proposed methodology. According to the experimental results, the proposed methodology has high robustness against the common mesh attacks while preserving the original object surface during watermarking.

  18. Tensorial Minkowski functionals of triply periodic minimal surfaces

    PubMed Central

    Mickel, Walter; Schröder-Turk, Gerd E.; Mecke, Klaus

    2012-01-01

    A fundamental understanding of the formation and properties of a complex spatial structure relies on robust quantitative tools to characterize morphology. A systematic approach to the characterization of average properties of anisotropic complex interfacial geometries is provided by integral geometry which furnishes a family of morphological descriptors known as tensorial Minkowski functionals. These functionals are curvature-weighted integrals of tensor products of position vectors and surface normal vectors over the interfacial surface. We here demonstrate their use by application to non-cubic triply periodic minimal surface model geometries, whose Weierstrass parametrizations allow for accurate numerical computation of the Minkowski tensors. PMID:24098847

  19. Null-polygonal minimal surfaces in AdS4 from perturbed W minimal models

    NASA Astrophysics Data System (ADS)

    Hatsuda, Yasuyuki; Ito, Katsushi; Satoh, Yuji

    2013-02-01

    We study the null-polygonal minimal surfaces in AdS4, which correspond to the gluon scattering amplitudes/Wilson loops in {N} = 4 super Yang-Mills theory at strong coupling. The area of the minimal surfaces with n cusps is characterized by the thermodynamic Bethe ansatz (TBA) integral equations or the Y-system of the homogeneous sine-Gordon model, which is regarded as the SU( n - 4)4 /U(1) n-5 generalized parafermion theory perturbed by the weight-zero adjoint operators. Based on the relation to the TBA systems of the perturbed W minimal models, we solve the TBA equations by using the conformal perturbation theory, and obtain the analytic expansion of the remainder function around the UV/regular-polygonal limit for n = 6 and 7. We compare the rescaled remainder function for n = 6 with the two-loop one, to observe that they are close to each other similarly to the AdS3 case.

  20. Surface contributions to radiated sound power.

    PubMed

    Marburg, Steffen; Lösche, Eric; Peters, Herwig; Kessissoglou, Nicole

    2013-06-01

    This paper presents a method to identify the surface areas of a vibrating structure that contribute to the radiated sound power. The surface contributions of the structure are based on the acoustic radiation modes and are computed for all boundaries of the acoustic domain. The surface contributions are compared to the acoustic intensity, which is a common measure for near-field acoustic energy. Sound intensity usually has positive and negative values that correspond to energy sources and sinks on the surface of the radiating structure. Sound from source and sink areas partially cancel each other and only a fraction of the near-field acoustic energy reaches the far-field. In contrast to the sound intensity, the surface contributions are always positive and no cancelation effects exist. The technique presented here provides a method to localize the relevant radiating surface areas on a vibrating structure. To illustrate the method, the radiated sound power from a baffled square plate is presented. PMID:23742325

  1. Minimal backside surface changes observed in retrieved acetabular liners.

    PubMed

    Akbari, Abtin; Roy, Marcel E; Whiteside, Leo A; Katerberg, Brian J; Schnettgoecke, Daniel J

    2011-08-01

    Modular polyethylene liners offer versatility in total hip arthroplasty, but the locking mechanism may allow micromotion and backside wear. We evaluated the backside surface of 56 retrieved acetabular liners (mean 5.54 years in vivo, range 0.003-13.1 years) to determine whether damage correlated with liner age in vivo, patient factors associated with higher activity, and polyethylene quality. Half of the liners exhibited minimal damage, half exhibited no damage and none exhibited severe damage. Backside damage significantly correlated only to liner age in vivo. Ten of the 28 liners revised for osteolysis exhibited no backside damage, but the osteolytic cysts were peripheral and did not originate from screw holes. The results suggest that modular polyethylene liners in a porous titanium-coated shell with screw holes can be designed such that clinically significant backside wear is minimal. PMID:20875939

  2. Modeling liquid crystal bilayer structures with minimal surfaces.

    PubMed

    Enlow, J D; Enlow, R L; McGrath, K M; Tate, M W

    2004-01-22

    This paper describes a new convenient and accurate method of calculating x-ray diffraction integrated intensities from detailed cubic bilayer structures. The method is employed to investigate the structure of a particular surfactant system (didodecyldimethylammonium bromide in a solution of oil and heavy water), for which single-crystal experimental data have recently been collected. The diffracted peak intensities correlate well with theoretical structures based on mathematical minimal surfaces. Optimized electron density profiles of the bilayer are presented, providing new insight into key features of the bilayer structure.

  3. Hot-rolling nanowire transparent electrodes for surface roughness minimization.

    PubMed

    Hosseinzadeh Khaligh, Hadi; Goldthorpe, Irene A

    2014-01-01

    Silver nanowire transparent electrodes are a promising alternative to transparent conductive oxides. However, their surface roughness presents a problem for their integration into devices with thin layers such as organic electronic devices. In this paper, hot rollers are used to soften plastic substrates with heat and mechanically press the nanowires into the substrate surface. By doing so, the root-mean-square surface roughness is reduced to 7 nm and the maximum peak-to-valley value is 30 nm, making the electrodes suitable for typical organic devices. This simple process requires no additional materials, which results in a higher transparency, and is compatible with roll-to-roll fabrication processes. In addition, the adhesion of the nanowires to the substrate significantly increases.

  4. Minimizing Cache Misses Using Minimum-Surface Bodies

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; VanderWijngaart, Rob; Biegel, Bryan (Technical Monitor)

    2002-01-01

    A number of known techniques for improving cache performance in scientific computations involve the reordering of the iteration space. Some of these reorderings can be considered as coverings of the iteration space with the sets having good surface-to-volume ratio. Use of such sets reduces the number of cache misses in computations of local operators having the iteration space as a domain. First, we derive lower bounds which any algorithm must suffer while computing a local operator on a grid. Then we explore coverings of iteration spaces represented by structured and unstructured grids which allow us to approach these lower bounds. For structured grids we introduce a covering by successive minima tiles of the interference lattice of the grid. We show that the covering has low surface-to-volume ratio and present a computer experiment showing actual reduction of the cache misses achieved by using these tiles. For planar unstructured grids we show existence of a covering which reduces the number of cache misses to the level of structured grids. On the other hand, we present a triangulation of a 3-dimensional cube such that any local operator on the corresponding grid has significantly larger number of cache misses than a similar operator on a structured grid.

  5. Surface Contour Radar (SCR) contributions to FASINEX

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.

    1988-01-01

    The SCR was asked to participate in the Frontal Air-Sea Interaction Experiment (FASINEX) to provide directional wave spectra. The NASA P-3 carrying the SCR, the Radar Ocean Wave Spectrometer, and the Airborne Oceanographic Lidar was one of five aircrafts and two ocean research ships participating in this coordinated study of the air sea interaction in the vicinity of a sea surface temperature front near 28 deg N, 70 deg W. Analysis of data from the February 1986 experiment is still ongoing, but results already submitted for publication strengthen the hypothesis that off-nadir radar backscatter is closely correlated to wind stress. The SCR provided valuable information on the directional wave spectrum and its spatial variation.

  6. Construction of Minimal Catmull-Clark's Subdivision Surfaces with Given Boundaries

    NASA Astrophysics Data System (ADS)

    Pan, Qing; Xu, Guoliang

    Minimal surface is an important class of surfaces. They are widely used in the areas such as architecture, art and natural science etc.. On the other hand, subdivision technology has always been active in computer aided design since its invention. The flexibility and high quality of the subdivision surface makes them a powerful tool in geometry modeling and surface designing. In this paper, we combine these two ingredients together aiming at constructing minimal subdivision surfaces. We use the mean curvature flow, a second order geometric partial differential equation, to construct minimal Catmull-Clark's subdivision surfaces with specified B-spline boundary curves. The mean curvature flow is solved by a finite element method where the finite element space is spanned by the limit functions of the modified Catmull-Clark's subdivision scheme.

  7. Minimization of deviations of gear real tooth surfaces determined by coordinate measurements

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Kuan, C.; Wang, J.-C.; Handschuh, R. F.; Masseth, J.; Maruyama, N.

    1992-01-01

    The deviations of a gear's real tooth surface from the theoretical surface are determined by coordinate measurements at the grid of the surface. A method was developed to transform the deviations from Cartesian coordinates to those along the normal at the measurement locations. Equations are derived that relate the first order deviations with the adjustment to the manufacturing machine-tool settings. The deviations of the entire surface are minimized. The minimization is achieved by application of the least-square method for an overdetermined system of linear equations. The proposed method is illustrated with a numerical example for hypoid gear and pinion.

  8. Surface and bulk contribution to Cu(111) quantum efficiency

    SciTech Connect

    Pedersoli, Emanuele; Greaves, Corin Michael Ricardo; Wan, Weishi; Coleman-Smith, Christopher; Padmore, Howard A.; Pagliara, Stefania; Cartella, Andrea; Lamarca, Fabrizio; Ferrini, Gabriele; Galimberti, Gianluca; Montagnese, Matteo; dal Conte, Stefano; Parmigiani, Fulvio

    2008-11-04

    The quantum efficiency (QE) of Cu(111) is measured for different impinging light angles with photon energies just above the work function. We observe that the vectorial photoelectric effect, an enhancement of the QE due to illumination with light with an electric vector perpendicular to the sample surface, is stronger in the more surface sensitive regime. This can be explained by a contribution to photoemission due to the variation in the electromagnetic potential at the surface. The contributions of bulk and surface electrons can then be determined.

  9. Renormalized Area and Properly Embedded Minimal Surfaces in Hyperbolic 3-Manifolds

    NASA Astrophysics Data System (ADS)

    Alexakis, Spyridon; Mazzeo, Rafe

    2010-08-01

    We study the renormalized area functional {mathcal{A}} in the AdS/CFT correspondence, specifically for properly embedded minimal surfaces in convex cocompact hyperbolic 3-manifolds (and somewhat more broadly, Poincaré-Einstein spaces). Our main results include an explicit formula for the renormalized area of such a minimal surface Y as an integral of local geometric quantities, as well as formulæ for the first and second variations of {mathcal{A}} which are given by integrals of global quantities over the asymptotic boundary loop γ of Y. All of these formulæ are also obtained for a broader class of nonminimal surfaces. The proper setting for the study of this functional (when the ambient space is hyperbolic) requires an understanding of the moduli space of all properly embedded minimal surfaces with smoothly embedded asymptotic boundary. We show that this moduli space is a smooth Banach manifold and develop a {mathbb{Z}} -valued degree theory for the natural map taking a minimal surface to its boundary curve. We characterize the nondegenerate critical points of {mathcal{A}} for minimal surfaces in {mathbb{H}^3} , and finally, discuss the relationship of {mathcal{A}} to the Willmore functional.

  10. Level set methods to compute minimal surfaces in a medium with exclusions (voids).

    SciTech Connect

    Walsh, Timothy Francis; Chopp, David; Torres, Monica

    2003-06-01

    In T1, periodic minimal surfaces in a medium with exclusions (voids) are constructed and in this paper we present two algorithms for computing these minimal surfaces. The two algorithms use evolution of level sets by mean curvature. The first algorithm solves the governing nonlinear PDE directly and enforces numerically an orthogonality condition that the surfaces satisfy when they meet the boundaries of the exclusions. The second algorithm involves h-adaptive finite element approximations of a linear convection-diffusion equation, which has been shown to linearize the governing nonlinear PDE for weighted mean curvature flow.

  11. Determination of real machine-tool settings and minimization of real surface deviation by computerized inspection

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Kuan, Chihping; Zhang, YI

    1991-01-01

    A numerical method is developed for the minimization of deviations of real tooth surfaces from the theoretical ones. The deviations are caused by errors of manufacturing, errors of installment of machine-tool settings and distortion of surfaces by heat-treatment. The deviations are determined by coordinate measurements of gear tooth surfaces. The minimization of deviations is based on the proper correction of initially applied machine-tool settings. The contents of accomplished research project cover the following topics: (1) Descriptions of the principle of coordinate measurements of gear tooth surfaces; (2) Deviation of theoretical tooth surfaces (with examples of surfaces of hypoid gears and references for spiral bevel gears); (3) Determination of the reference point and the grid; (4) Determination of the deviations of real tooth surfaces at the points of the grid; and (5) Determination of required corrections of machine-tool settings for minimization of deviations. The procedure for minimization of deviations is based on numerical solution of an overdetermined system of n linear equations in m unknowns (m much less than n ), where n is the number of points of measurements and m is the number of parameters of applied machine-tool settings to be corrected. The developed approach is illustrated with numerical examples.

  12. Chemical Contribution to Surface-Enahanced Raman Scattering

    SciTech Connect

    Persson, Bo Nils J; Zhao, Ke; Zhang, Zhenyu

    2006-01-01

    We present a new mechanism for the chemical contribution to surface-enhanced Raman scattering (SERS). The theory considers the modulation of the polarizability of a metal nanocluster or a flat metal surface by the vibrational motion of an adsorbed molecule. The modulated polarization of the substrate coupled with the incident light will contribute to the Raman scattering enhancement. We show that for a metal cluster and for a flat metal surface this new chemical contribution may enhance the Raman scattering intensity by a factor of {approx} 10{sup 2} and {approx}10{sup 4}, respectively. The new SERS process is determined by the electric field parallel to the surface of the metal substrate at the molecular binding site.

  13. The topological molecule: Its finite fluxes, exchange stability and minimal surfaces

    NASA Astrophysics Data System (ADS)

    Thomas, Gerald F.

    2016-03-01

    Molecules have at least one nontrivial topological property in common: their minimal surfaces of finite flux. This is why they are stable aggregates of atoms mutually engaged to varying degrees via Coulombic and exchange interactions in fealty to quantum mechanics on otherwise passive nuclear scaffolds. Isolated atoms do not have minimal surfaces but they do undergo exchange interactions. All surfaces implicitly defined by a molecule’s charge density are shown to have zero mean curvature and are consequently minimal surfaces. This finding extends to any potential of a molecule. The minimal surface is of importance in that it is indicative of a vanishing mean curvature whose measurement serves as a way of gauging the charge density or electrostatic potential’s local reliability, a quality assurance protocol absent in conventional crystallography but available to scanning force microscopy. The smaller the mean curvature of an atom, the more bonded is that atom in a molecule. The basis for this discovery is that implicit surfaces admit finite flux to cross them regardless of atomic affiliation, thus engendering exchange, correlation, and chemical bonding between the atoms in the underlying nuclear framework of a molecule. Finite flux in the charge density is a necessary condition for chemical bonding and the stability of molecules and is what makes the electron localization function (ELF) and the exchange-correlation functional (BLYP) useful.

  14. Minimal intervention dentistry II: part 1. Contribution of the operating microscope to dentistry.

    PubMed

    Sitbon, Y; Attathom, T; St-Georges, A J

    2014-02-01

    The different aspects of treatment of periodontal disease and mucogingival defects all require an accurate diagnosis in addition to good control and precision during therapeutic procedures. Magnification aids and microsurgery, combined with minimally invasive techniques, can best meet these requirements. The suitability of treatment, the healing time, pain levels and postoperative scarring are all improved and the patient benefits. PMID:24504295

  15. Minimal surfaces in q-deformed AdS5xS5

    NASA Astrophysics Data System (ADS)

    Kameyama, Takashi

    2016-01-01

    We study minimal surfaces in q-deformed AdS5×S5. For this purpose, it is convenient to introduce a coordinate system which describes the spacetime only inside the singularity surface and treat the singularity surface as the holographic screen. In particular, we consider minimal surfaces whose boundary shapes are 1) a straight line and 2) a circle. In the q → 1 limit, the solutions correspond to a 1/2 BPS straight line Wilson loop and a 1/2 BPS circular one, respectively. A remarkable point is that the classical Euclidean actions have no linear divergence unlike the original ones. This finiteness indicates that the q-deformation may be regarded as a UV regularization.

  16. Deep Groundwater Contributions to Surface Water in a Mountainous Watershed

    NASA Astrophysics Data System (ADS)

    Tolley, D. G.; Harding, J. J.; Wilson, J. L.; Frisbee, M. D.

    2012-12-01

    With growing concerns about declining snowpack, warmer temperatures, and land use changes, it is becoming increasingly important to determine the sources that contribute to surface water. In western states, such as New Mexico, most of the surface water is derived from mountainous watersheds. However, the interaction between the groundwater and the surface water within these mountain systems is poorly understood. Geochemical data collected from a mesoscale (~200 km2) watershed in northern New Mexico indicate there may be significant groundwater contributions to the surface water that have largely been ignored in previous studies. Stable isotopic analysis of δ18O and δ2H and Piper diagrams for surface water, groundwater, and spring water are not geochemically distinct. Surface water solute concentrations for most constituents increase as a function of the drainage area while the stable isotopic signature remains constant, suggesting that the water is sourced from similar areas but has undergone differing degrees of geochemical evolution along different flow paths. Plots of SiO2 vs Ca2+, Na+, Mg2+, and K+ show evidence of spatial evolution of groundwater with solute concentrations from the headwaters to the watershed outlet. We hypothesize that the increasing solute concentrations in the surface water are controlled by inputs from deep, more geochemically evolved groundwater. This is similar to what Frisbee et al. (2011) saw in the Saguache Watershed, though our watershed is significantly smaller and has a different geological setting. Due to the chemical kinetics involved, this more geochemically evolved groundwater would require longer residence time along a given flow path to achieve the observed chemical compositions. Significant contributions of old groundwater to surface water could result in the surface water system having increased buffering capacity against climate change. This deep groundwater component in watersheds has largely been unexplored. Our

  17. Minimal area surfaces dual to Wilson loops and the Mathieu equation

    NASA Astrophysics Data System (ADS)

    Huang, Changyu; He, Yifei; Kruczenski, Martin

    2016-08-01

    The AdS/CFT correspondence relates Wilson loops in {N}=4 SYM to minimal area surfaces in AdS 5 × S 5 space. Recently, a new approach to study minimal area surfaces in AdS 3 ⊂ AdS 5 was discussed based on a Schroedinger equation with a periodic potential determined by the Schwarzian derivative of the shape of the Wilson loop. Here we use the Mathieu equation, a standard example of a periodic potential, to obtain a class of Wilson loops such that the area of the dual minimal area surface can be computed analytically in terms of eigenvalues of such equation. As opposed to previous examples, these minimal surfaces have an umbilical point (where the principal curvatures are equal) and are invariant under λ-deformations. In various limits they reduce to the single and multiple wound circular Wilson loop and to the regular light-like polygons studied by Alday and Maldacena. In this last limit, the periodic potential becomes a series of deep wells each related to a light-like segment. Small corrections are described by a tight-binding approximation. In the circular limit they are well approximated by an expansion developed by A. Dekel. In the particular case of no umbilical points they reduce to a previous solution proposed by J. Toledo. The construction works both in Euclidean and Minkowski signature of AdS 3.

  18. Contribution of sunflecks is minimal in expanding shrub thickets compared to temperate forest.

    PubMed

    Brantley, Steven T; Young, Donald R

    2009-04-01

    Ecological consequences of shrub encroachment are emerging as a key issue in the study of global change. In mesic grasslands, shrub encroachment can result in a fivefold increase in ecosystem leaf area index (LAI) and a concurrent reduction in understory light and herbaceous diversity. LAI and light attenuation are often higher for shrub thickets than for forest communities in the same region, yet little is known about the contribution of sunflecks in shrub-dominated systems. Our objective was to compare fine-scale spatial and temporal dynamics of understory light in shrub thickets to the light environment in typical forest communities. We used an array of quantum sensors to examine variation in diffuse and direct light and determined the relative contribution of sunflecks during midday in Morella cerifera shrub thickets, a 30-yr-old abandoned Pinus taeda plantation, and a mature, second-growth, deciduous forest. Instantaneous photosynthetic photon flux density (PPFD) was measured at 1-s intervals at five sites in each community during midday. In summer, understory light during midday in shrub thickets was approximately 0.8% of above-canopy light, compared to 1.9% and 5.4% in pine and deciduous forests, respectively. During summer, PPFD was uncorrelated between sensors as close as 0.075 m in shrub thickets compared to 0.175 m and 0.900 m in pine and deciduous forests, respectively, indicating that sunflecks in shrub thickets were generally small compared to sunflecks in the two forests. Sunflecks in shrub thickets were generally short (all <30 s) and relatively low in intensity (<150 micromol photons x m(-2) x s(-1)) and contributed only 5% of understory light during midday. Sunflecks were longer (up to 6 minutes) and more intense (up to 350 micromol photons x m(-2) x s(-1)) in the two forest communities and Contributed 31% and 22% of understory light during midday in pine and deciduous forest, respectively. The combination of high LAI and relatively short

  19. Instability of a Möbius Strip Minimal Surface and a Link with Systolic Geometry

    NASA Astrophysics Data System (ADS)

    Pesci, Adriana I.; Goldstein, Raymond E.; Alexander, Gareth P.; Moffatt, H. Keith

    2015-03-01

    We describe the first analytically tractable example of an instability of a nonorientable minimal surface under parametric variation of its boundary. A one-parameter family of incomplete Meeks Möbius surfaces is defined and shown to exhibit an instability threshold as the bounding curve is opened up from a double-covering of the circle. Numerical and analytical methods are used to determine the instability threshold by solution of the Jacobi equation on the double covering of the surface. The unstable eigenmode shows excellent qualitative agreement with that found experimentally for a closely related surface. A connection is proposed between systolic geometry and the instability by showing that the shortest noncontractable closed geodesic on the surface (the systolic curve) passes near the maximum of the unstable eigenmode.

  20. Instability of a Möbius strip minimal surface and a link with systolic geometry.

    PubMed

    Pesci, Adriana I; Goldstein, Raymond E; Alexander, Gareth P; Moffatt, H Keith

    2015-03-27

    We describe the first analytically tractable example of an instability of a nonorientable minimal surface under parametric variation of its boundary. A one-parameter family of incomplete Meeks Möbius surfaces is defined and shown to exhibit an instability threshold as the bounding curve is opened up from a double-covering of the circle. Numerical and analytical methods are used to determine the instability threshold by solution of the Jacobi equation on the double covering of the surface. The unstable eigenmode shows excellent qualitative agreement with that found experimentally for a closely related surface. A connection is proposed between systolic geometry and the instability by showing that the shortest noncontractable closed geodesic on the surface (the systolic curve) passes near the maximum of the unstable eigenmode. PMID:25860771

  1. New calculation of surface wave contributions associated with mie backscattering.

    PubMed

    Inada, H

    1973-07-01

    Diffracted field contributions to backscattering of an electromagnetic plane wave by a spherical particle are calculated. The diffracted fields give rise to surface waves in the shadow region and can be evaluated by finding surface wave poles and computing their residues. In order to compute the residues the valid range of the Schobe and Debye asymptotic expansion formulas for the Hankel function is examined. With these asymptotic formulas numerical values of the surface wave complex poles are tabulated. Curves for backscattering cross section due to the first six surface waves are presented as a function of the size parameter kappaa between 5 and 60 for absorbing spheres of refractive index m = 1.61-i0.0025 as well as nonabsorbing spheres with m = 1.60.

  2. Deformations of the gyroid and Lidinoid minimal surfaces using flat structures

    NASA Astrophysics Data System (ADS)

    Weyhaupt, Adam

    2015-03-01

    Mathematically, the challenge in proving the existence of a purported triply periodic minimal surface is in computing parameter values that depend on a system of equations defined by elliptic integrals. This is generally very difficult. In the presence of some symmetry, however, a technique developed by Weber and Wolf can reduce these elliptic integrals to basic algebra and geometry of polygons. These techniques can easily prove the existence of some surfaces and the presence of a family of solutions. Families of surfaces are important mathematically, but recent work by Seddon, et. al., experimentally confirms that these families of surfaces can occur physically as well. In this talk, we give a brief overview of the technique and show how it can be applied to prove the existence of several families of surfaces, including lower symmetry variants of the gyroid and Lidinoid such as the rG, rPD, tG, and rL. We also conjecture a map of the moduli space of triply periodic minimal surfaces of genus 3.

  3. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Johnson, Benjamin T.

    2010-01-01

    Physically-based passive microwave precipitation retrieval algorithms require a set of relationships between satellite observed brightness temperatures (TB) and the physical state of the underlying atmosphere and surface. These relationships are typically non-linear, such that inversions are ill-posed especially over variable land surfaces. In order to better understand these relationships, this work presents a theoretical analysis using brightness temperature weighting functions to quantify the percentage of the TB resulting from absorption/emission/reflection from the surface, absorption/emission/scattering by liquid and frozen hydrometeors in the cloud, the emission from atmospheric water vapor, and other contributors. The results are presented for frequencies from 10 to 874 GHz and for several individual precipitation profiles as well as for three cloud resolving model simulations of falling snow. As expected, low frequency channels (<89 GHz) respond to liquid hydrometeors and the surface, while the higher frequency channels become increasingly sensitive to ice hydrometeors and the water vapor sounding channels react to water vapor in the atmosphere. Low emissivity surfaces (water and snow-covered land) permit energy downwelling from clouds to be reflected at the surface thereby increasing the percentage of the TB resulting from the hydrometeors. The slant path at a 53deg viewing angle increases the hydrometeor contributions relative to nadir viewing channels and show sensitivity to surface polarization effects. The TB percentage information presented in this paper answers questions about the relative contributions to the brightness temperatures and provides a key piece of information required to develop and improve precipitation retrievals over land surfaces.

  4. Selective labelling of cell-surface proteins using CyDye DIGE Fluor minimal dyes.

    PubMed

    Hagner-McWhirter, Asa; Winkvist, Maria; Bourin, Stephanie; Marouga, Rita

    2008-01-01

    Surface proteins are central to the cell's ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods.

  5. Iridescent flowers? Contribution of surface structures to optical signaling.

    PubMed

    van der Kooi, Casper J; Wilts, Bodo D; Leertouwer, Hein L; Staal, Marten; Elzenga, J Theo M; Stavenga, Doekele G

    2014-07-01

    The color of natural objects depends on how they are structured and pigmented. In flowers, both the surface structure of the petals and the pigments they contain determine coloration. The aim of the present study was to assess the contribution of structural coloration, including iridescence, to overall floral coloration. We studied the reflection characteristics of flower petals of various plant species with an imaging scatterometer, which allows direct visualization of the angle dependence of the reflected light in the hemisphere above the petal. To separate the light reflected by the flower surface from the light backscattered by the components inside (e.g. the vacuoles), we also investigated surface casts. A survey among angiosperms revealed three different types of floral surface structure, each with distinct reflections. Petals with a smooth and very flat surface had mirror-like reflections and petal surfaces with cones yielded diffuse reflections. Petals with striations yielded diffraction patterns when single cells were illuminated. The iridescent signal, however, vanished when illumination similar to that found in natural conditions was applied. Pigmentary rather than structural coloration determines the optical appearance of flowers. Therefore, the hypothesized signaling by flowers with striated surfaces to attract potential pollinators presently seems untenable.

  6. Iridescent flowers? Contribution of surface structures to optical signaling.

    PubMed

    van der Kooi, Casper J; Wilts, Bodo D; Leertouwer, Hein L; Staal, Marten; Elzenga, J Theo M; Stavenga, Doekele G

    2014-07-01

    The color of natural objects depends on how they are structured and pigmented. In flowers, both the surface structure of the petals and the pigments they contain determine coloration. The aim of the present study was to assess the contribution of structural coloration, including iridescence, to overall floral coloration. We studied the reflection characteristics of flower petals of various plant species with an imaging scatterometer, which allows direct visualization of the angle dependence of the reflected light in the hemisphere above the petal. To separate the light reflected by the flower surface from the light backscattered by the components inside (e.g. the vacuoles), we also investigated surface casts. A survey among angiosperms revealed three different types of floral surface structure, each with distinct reflections. Petals with a smooth and very flat surface had mirror-like reflections and petal surfaces with cones yielded diffuse reflections. Petals with striations yielded diffraction patterns when single cells were illuminated. The iridescent signal, however, vanished when illumination similar to that found in natural conditions was applied. Pigmentary rather than structural coloration determines the optical appearance of flowers. Therefore, the hypothesized signaling by flowers with striated surfaces to attract potential pollinators presently seems untenable. PMID:24713039

  7. Birds and their ticks in northwestern California: minimal contribution to Borrelia burgdorferi enzootiology.

    PubMed

    Slowik, T J; Lane, R S

    2001-08-01

    Birds and their attendant ticks were surveyed for infection with the Lyme disease spirochete Borrelia burgdorferi, in chaparral and woodland-grass habitats in northwestern California from March to July, 1998 to 1999. In total, 234 birds were captured and recaptured (15%); nearly 2.5 times more birds were captured in chaparral than in woodland-grass. Overall, 34 species representing 15 families were collected during this study; of these, 24 species were caught in chaparral, 19 in woodland-grass, and 9 in both vegetational types. The most frequently captured birds were sage sparrows (Amphispiza belli) in chaparral, and American robins (Turdus migratorius) and oak titmice (Baelophus inornatus) in woodland-grass. Birds hosted 35 Ixodes pacificus (15 larvae, 20 nymphs) and 9 Haemaphysalis leporispalustris (3 larvae, 5 nymphs, 1 adult) ticks, of which 32 were removed from chaparral birds and 12 from woodland birds. The prevalence of tick infestation was 13% (21/167) in chaparral and 5% (3/67) in woodland-grass, but the relative and mean tick intensities of 0.19 and 1.5 for chaparral birds, and 0.18 and 4.0 for woodland birds, respectively, did not differ significantly by habitat. Spirochetes were not detected in either bird-blood or tick-tissue samples when tested by culture, immunofluorescence, or Giemsa-staining. In contrast, over 90% (86/94) of western fence lizards (Sceloporus occidentalis) collected in June or July were infested with an average of 6.9 and 8.9 immature I. pacificus in chaparral and woodland-grass, respectively. We conclude that birds contribute little to the enzootiology of B. burgdorferi in chaparral and woodland-grass habitats in northwestern California because of their limited parasitism by tick vectors and lack of detectable spirochetemias. PMID:11534638

  8. Birds and their ticks in northwestern California: minimal contribution to Borrelia burgdorferi enzootiology.

    PubMed

    Slowik, T J; Lane, R S

    2001-08-01

    Birds and their attendant ticks were surveyed for infection with the Lyme disease spirochete Borrelia burgdorferi, in chaparral and woodland-grass habitats in northwestern California from March to July, 1998 to 1999. In total, 234 birds were captured and recaptured (15%); nearly 2.5 times more birds were captured in chaparral than in woodland-grass. Overall, 34 species representing 15 families were collected during this study; of these, 24 species were caught in chaparral, 19 in woodland-grass, and 9 in both vegetational types. The most frequently captured birds were sage sparrows (Amphispiza belli) in chaparral, and American robins (Turdus migratorius) and oak titmice (Baelophus inornatus) in woodland-grass. Birds hosted 35 Ixodes pacificus (15 larvae, 20 nymphs) and 9 Haemaphysalis leporispalustris (3 larvae, 5 nymphs, 1 adult) ticks, of which 32 were removed from chaparral birds and 12 from woodland birds. The prevalence of tick infestation was 13% (21/167) in chaparral and 5% (3/67) in woodland-grass, but the relative and mean tick intensities of 0.19 and 1.5 for chaparral birds, and 0.18 and 4.0 for woodland birds, respectively, did not differ significantly by habitat. Spirochetes were not detected in either bird-blood or tick-tissue samples when tested by culture, immunofluorescence, or Giemsa-staining. In contrast, over 90% (86/94) of western fence lizards (Sceloporus occidentalis) collected in June or July were infested with an average of 6.9 and 8.9 immature I. pacificus in chaparral and woodland-grass, respectively. We conclude that birds contribute little to the enzootiology of B. burgdorferi in chaparral and woodland-grass habitats in northwestern California because of their limited parasitism by tick vectors and lack of detectable spirochetemias.

  9. Quasi-minimal Lorentz surfaces with pointwise 1-type Gauss map in pseudo-Euclidean 4-space

    NASA Astrophysics Data System (ADS)

    Milousheva, Velichka; Turgay, Nurettin Cenk

    2016-08-01

    A Lorentz surface in the four-dimensional pseudo-Euclidean space with neutral metric is called quasi-minimal if its mean curvature vector is lightlike at each point. In the present paper we obtain the complete classification of quasi-minimal Lorentz surfaces with pointwise 1-type Gauss map.

  10. Minimally Invasive Holographic Surface Scanning for Soft-Tissue Image Registration

    PubMed Central

    Hackworth, Douglas M.; Webster, Robert J.

    2014-01-01

    Recent advances in registration have extended intra-surgical image guidance from its origins in bone-based procedures to new applications in soft tissues, thus enabling visualization of spatial relationships between surgical instruments and subsurface structures before incisions begin. Preoperative images are generally registered to soft tissues through aligning segmented volumetric image data with an intraoperatively sensed cloud of organ surface points. However, there is currently no viable noncontact minimally invasive scanning technology that can collect these points through a single laparoscopic port, which limits wider adoption of soft-tissue image guidance. In this paper, we describe a system based on conoscopic holography that is capable of minimally invasive surface scanning. We present the results of several validation experiments scanning ex vivo biological and phantom tissues with a system consisting of a tracked, off-the-shelf, relatively inexpensive conoscopic holography unit. These experiments indicate that conoscopic holography is suitable for use with biological tissues, and can provide surface scans of comparable quality to existing clinically used laser range scanning systems that require open surgery. We demonstrate experimentally that conoscopic holography can be used to guide a surgical needle to desired subsurface targets with an average tip error of less than 3 mm. PMID:20659823

  11. BV supersolutions to equations of 1-Laplace and minimal surface type

    NASA Astrophysics Data System (ADS)

    Scheven, Christoph; Schmidt, Thomas

    2016-08-01

    We propose notions of BV supersolutions to (the Dirichlet problem for) the 1-Laplace equation, the minimal surface equation, and equations of similar type. We then establish some related compactness and consistency results. Our main technical tool is a generalized product of L∞ divergence-measure fields and gradient measures of BV functions. This product crucially depends on the choice of a representative of the BV function, and the proofs of its basic properties involve results on one-sided approximation and fine (semi)continuity in the BV context.

  12. Scattering Amplitudes, the AdS/CFT Correspondence, Minimal Surfaces, and Integrability

    DOE PAGES

    Alday, Luis F.

    2010-01-01

    We focus on the computation of scattering amplitudes of planar maximally supersymmetric Yang-Mill in four dimensions at strong coupling by means of the AdS/CFT correspondence and explain how the problem boils down to the computation of minimal surfaces in AdS in the first part of this paper. In the second part of this review we explain how integrability allows to give a solution to the problem in terms of a set of integral equations. The intention of the review is to give a pedagogical, rather than very detailed, exposition.

  13. Contribution of Microchemical Surface Analysis of Archaeological Artefacts

    NASA Astrophysics Data System (ADS)

    Mousser, H.; Madani, A.; Amri, R.; Mousser, A.; Darchen, A.

    2009-11-01

    Museum CIRTA of the town of Constantine has a collection of more than 35000 coins and statuettes going back to Numide, Roman, Republican, Vandal and Byzantine times and is struck in the name of the cities, of the kingdoms and the empires. Surface analysis of these coins gives information about the chemical composition and leads to recommendations for restoration and preservations. This work is a contribution of microchemical surface study of coin with the effigy of the Numide King Massinissa (Constantine between 3rd and 2nd century before Jesus Christ). The photographic and scanning electron microscopy coupled with energy dispersive spectrometry (SEM + EDS) and diffraction of X-ray (DRX) was used. The optic microscopy (OMP) and SEM pictures of coins showed heterogeneous surface. Scanning electron microscopy coupled with energy dispersive spectrometry identified three basic metals copper (46.06%), antimony (17.74%) and lead (12.06%), (Weight Percentage). The DRX identifies stages (copper and lead) and their crystalline oxides Bindheimite (Pb2Sb2O7) and Bystromite (MgSb2O6) on the coin's surface.

  14. Deformation patterns and surface morphology in a minimal model of amorphous plasticity

    NASA Astrophysics Data System (ADS)

    Sandfeld, Stefan; Zaiser, Michael

    2014-03-01

    We investigate a minimal model of the plastic deformation of amorphous materials. The material elements are assumed to exhibit ideally plastic behavior (J2 plasticity). Structural disorder is considered in terms of random variations of the local yield stresses. Using a finite element implementation of this simple model, we simulate the plane strain deformation of long thin rods loaded in tension. The resulting strain patterns are statistically characterized in terms of their spatial correlation functions. Studies of the corresponding surface morphology reveal a non-trivial Hurst exponent H ≈ 0.8, indicating the presence of long-range correlations in the deformation patterns. The simulated deformation patterns and surface morphology exhibit persistent features which emerge already at the very onset of plastic deformation, while subsequent evolution is characterized by growth in amplitude without major morphology changes. The findings are compared to experimental observations.

  15. Potential contribution of microbial degradation to natural attenuation of MTBE in surface water systems

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2001-01-01

    The potential contribution of in situ biodegradation as a mechanism for natural attenuation of MTBE in surface water was studied. Surface water sediments from streams and lakes at 11 sites throughout the US. Microbial degradation of [U-14C] MTBE was observed in surface-water-sediment microcosms under anaerobic conditions, but the efficiency and products of anaerobic MTBE biodegradation were strongly dependent on the predominant terminal electron accepting conditions. In the presence of substantial methanogenic activity, MTBE biodegradation was nominal and involved reduction of MTBE to t-butanol (TBA). Under more oxidizing conditions, minimal accumulation of 14C-TBA and significant mineralization of [U-14C] MTBE to 14CO2 were observed. Microorganisms inhabiting the bed sediments of streams and lakes could degrade MTBE effectively under a range of anaerobic terminal electron accepting conditions. Thus, anaerobic bed sediment microbial processes also might contribute to natural attenuation of MTBE in surface water systems throughout the US. This is an abstract of a paper presented at the 222nd ACS National Meting (Chicago, IL 8/26-30/2001).

  16. Contribution of the ocular surface to visual optics.

    PubMed

    Courville, C B; Smolek, M K; Klyce, S D

    2004-03-01

    The air/tear interface contributes 70% of the vergence in the eye and, because of this, even minor variations in its shape can produce significant visual deficit. Placido disc-based corneal topographers measure the precise characteristics of the corneal surface, transforming shape into color-coded dioptric power maps and topography indexes related to optical quality and specific patterns associated with pathology. Artificial intelligence-based methods are used to classify corneal topography and these are used as screening tools. Coupling corneal topography measurements with aberrometry measurements permits the display of the internal aberrations of the eye. Together, these data provide the opportunity to extend refractive correction beyond sphere and cylinder to the higher order aberrations as well.

  17. Heart wall myofibers are arranged in minimal surfaces to optimize organ function

    PubMed Central

    Savadjiev, Peter; Strijkers, Gustav J.; Bakermans, Adrianus J.; Piuze, Emmanuel; Zucker, Steven W.; Siddiqi, Kaleem

    2012-01-01

    Heart wall myofibers wind as helices around the ventricles, strengthening them in a manner analogous to the reinforcement of concrete cylindrical columns by spiral steel cables [Richart FE, et al. (1929) Univ of Illinois, Eng Exp Stn Bull 190]. A multitude of such fibers, arranged smoothly and regularly, contract and relax as an integrated functional unit as the heart beats. To orchestrate this motion, fiber tangling must be avoided and pumping should be efficient. Current models of myofiber orientation across the heart wall suggest groupings into sheets or bands, but the precise geometry of bundles of myofibers is unknown. Here we show that this arrangement takes the form of a special minimal surface, the generalized helicoid [Blair DE, Vanstone JR (1978) Minimal Submanifolds and Geodesics 13–16], closing the gap between individual myofibers and their collective wall structure. The model holds across species, with a smooth variation in its three curvature parameters within the myocardial wall providing tight fits to diffusion magnetic resonance images from the rat, the dog, and the human. Mathematically it explains how myofibers are bundled in the heart wall while economizing fiber length and optimizing ventricular ejection volume as they contract. The generalized helicoid provides a unique foundation for analyzing the fibrous composite of the heart wall and should therefore find applications in heart tissue engineering and in the study of heart muscle diseases. PMID:22645368

  18. Weight minimization of structures for fixed flutter speed via an optimality criterion. [algorithm for lifting surfaces

    NASA Technical Reports Server (NTRS)

    Segenreich, S. A.; Mcintosh, S. C., Jr.

    1975-01-01

    A rigorous optimality criterion is derived and a hybrid weight-reduction algorithm developed for the weight minimization of lifting surfaces with a constraint on flutter speed. The weight-reduction algorithm incorporates a simple recursion formula derived from the optimality criterion. Monotonic weight reduction is accomplished by dynamically adjusting a parameter in the recursion formula so as to achieve a predetermined weight decrease. The algorithm thus combines the simplicity of optimality-criterion methods with the convergence characteristics of mathematical-programming methods. The imposition of the flutter constraint is simplified by forcing to zero the imaginary part of the flutter eigenvalue, with the airspeed fixed. Four examples are discussed. The results suggest that significant improvements in efficiency are possible, in comparison with techniques based purely on mathematical programming.

  19. Visual contribution to human standing balance during support surface tilts

    PubMed Central

    Assländer, Lorenz; Hettich, Georg; Mergner, Thomas

    2015-01-01

    Visual position and velocity cues improve human standing balance, reducing sway responses to external disturbances and sway variability. Previous work suggested that human balancing is based on sensory estimates of external disturbances and their compensation using feedback mechanisms (Disturbance Estimation and Compensation, DEC model). This study investigates the visual effects on sway responses to pseudo-random support surface tilts, assuming that improvements result from lowering the velocity threshold in a tilt estimate and the position threshold in an estimate of the gravity disturbance. Center of mass (COM) sway was measured with four different tilt amplitudes, separating the effect of visual cues across the conditions ‘Eyes closed’ (no visual cues), ‘4 Hz stroboscopic illumination’ (visual position cues), and ‘continuous illumination’ (visual position and velocity cues). In a model based approach, parameters of disturbance estimators were identified. The model reproduced experimental results and showed a specific reduction of the position and velocity threshold when adding visual position and velocity cues, respectively. Sway variability was analyzed to explore a hypothesized relation between estimator thresholds and internal noise. Results suggest that adding the visual cues reduces the contribution of vestibular noise, thereby reducing sway variability and allowing for lower thresholds, which improves the disturbance compensation. PMID:25816794

  20. Visual contribution to human standing balance during support surface tilts.

    PubMed

    Assländer, Lorenz; Hettich, Georg; Mergner, Thomas

    2015-06-01

    Visual position and velocity cues improve human standing balance, reducing sway responses to external disturbances and sway variability. Previous work suggested that human balancing is based on sensory estimates of external disturbances and their compensation using feedback mechanisms (Disturbance Estimation and Compensation, DEC model). This study investigates the visual effects on sway responses to pseudo-random support surface tilts, assuming that improvements result from lowering the velocity threshold in a tilt estimate and the position threshold in an estimate of the gravity disturbance. Center of mass (COM) sway was measured with four different tilt amplitudes, separating the effect of visual cues across the conditions 'Eyes closed' (no visual cues), '4Hz stroboscopic illumination' (visual position cues), and 'continuous illumination' (visual position and velocity cues). In a model based approach, parameters of disturbance estimators were identified. The model reproduced experimental results and showed a specific reduction of the position and velocity threshold when adding visual position and velocity cues, respectively. Sway variability was analyzed to explore a hypothesized relation between estimator thresholds and internal noise. Results suggest that adding the visual cues reduces the contribution of vestibular noise, thereby reducing sway variability and allowing for lower thresholds, which improves the disturbance compensation.

  1. Aqueous dispersions of oligomer-grafted carbon nanomaterials with controlled surface charge and minimal framework damage

    PubMed Central

    Hu, Sheng; Chen, Shu; Menzel, Robert; Goode, Angela D.; Ryan, Mary P.; Porter, Alexandra E.; Shaffer, Milo S. P.

    2015-01-01

    Functionalised carbon nanomaterials (CNMs), with an undamaged carbon framework and controlled physiochemical properties, are desirable for a wide range of scientific studies and commercial applications. The use of a thermochemical grafting approach provides a versatile means to functionalise both multi-walled carbon nanotubes (MWCNTs) and carbon black (CB) nanoparticles without altering their inherent structure. The functionalisation process was investigated by employing various types of grafting monomers; to improve water solubility, reagents were chosen that introduced ionic character either intrinsically or after further chemical reaction. The degree of grafting for both MWCNTs and CB ranged from 3 to 27 wt%, as established by thermal gravimetric analysis (TGA). Raman spectroscopy confirmed that the structural framework of the MWNTs was unaffected by the thermochemical treatment. The effectiveness of the surface modification was demonstrated by significantly improved dispersibility and stability in water, and further quantified by zeta-potential analysis. The concentration of stable, individualised, grafted MWNTs in water ranged from 30 to 80 µg mL−1, whereas functionalised CB (CB) in water showed improved dispersibility up to ~460 µg mL−1 after centrifugation at 10, 000 g for 15 minutes. The successful preparation of structurally identical but differently functionalised nanoparticles panels, with high water compatibility and minimal framework damage, are useful for controlled experiments. For example, they can be used to explore the relationship between toxicological effects and specific physiochemical properties, such as surface charge and geometry. PMID:25254653

  2. Aqueous dispersions of oligomer-grafted carbon nanomaterials with controlled surface charge and minimal framework damage.

    PubMed

    Hu, Sheng; Chen, Shu; Menzel, Robert; Goode, Angela D; Ryan, Mary P; Porter, Alexandra E; Shaffer, Milo S P

    2014-01-01

    Functionalised carbon nanomaterials (CNMs), with an undamaged carbon framework and controlled physiochemical properties, are desirable for a wide range of scientific studies and commercial applications. The use of a thermochemical grafting approach provides a versatile means to functionalise both multi-walled carbon nanotubes (MWCNTs) and carbon black (CB) nanoparticles without altering their inherent structures. The functionalisation process was investigated by employing various types of grafting monomers; to improve water solubility, reagents were chosen that introduced an ionic character either intrinsically or after further chemical reactions. The degree of grafting for both MWCNTs and CB ranged from 3-27 wt%, as established by thermal gravimetric analysis (TGA). Raman spectroscopy confirmed that the structural framework of the MWCNTs was unaffected by the thermochemical treatment. The effectiveness of the surface modification was demonstrated by significantly improved dispersibility and stability in water, and further quantified by zeta-potential analysis. The concentration of stable, individualised and grafted MWCNTs in water ranged from ∼30 to 80 μg mL(-1) after centrifugation at 10 000 g for 15 min, whereas functionalised CB in water showed improved dispersibility up to ∼460 μg mL(-1). The successful preparation of structurally identical but differently functionalised nanoparticle panels, with high water compatibility and minimal framework damage, is useful for controlled experiments. For example, they can be used to explore the relationship between toxicological effects and specific physiochemical properties, such as surface charge and geometry.

  3. Minimal alterations on the enamel surface by micro-abrasion: in vitro roughness and wear assessments

    PubMed Central

    RODRIGUES, Marcela Charantola; MONDELLI, Rafael Francisco Lia; OLIVEIRA, Gabriela Ulian; FRANCO, Eduardo Batista; BASEGGIO, Wagner; WANG, Linda

    2013-01-01

    Objective: To evaluate the in vitro changes on the enamel surface after a micro-abrasion treatment promoted by different products. Material and Methods: Fifty (50) fragments of bovine enamel (15 mm x 5 mm) were randomly assigned to five groups (n=10) according to the product utilized: G1 (control)= silicone polisher (TDV), G2= 37% phosphoric acid (3M/ESPE) + pumice stone (SS White), G3= Micropol (DMC Equipment), G4= Opalustre (Ultradent) and G5= Whiteness RM (FGM Dental Products). Roughness and wear were the responsible variables used to analyze these surfaces in four stages: baseline, 60 s and 120 s after the micro-abrasion and after polishing, using a Hommel Tester T1000 device. After the tests, a normal distribution of data was verified, with repeated ANOVA analyses (p≤0.05) which were used to compare each product in different stages. One-way ANOVA and Tukey tests were applied for individual comparisons between the products in each stage (p≤0.05). Results: Means and standard deviations of roughness and wear (mm) after all the promoted stages were: G1=7.26(1.81)/13.16(2.67), G2=2.02(0.62)/37.44(3.33), G3=1.81(0.91)/34.93(6.92), G4=1.92(0.29)/38.42(0.65) and G5=1.98(0.53)/33.45(2.66). At 60 seconds, all products tended to produce less surface roughness with a variable gradual decrease over time. After polishing, there were no statistically significant differences between the groups, except for G1. Independent of the product utilized, the enamel wear occurred after the micro-abrasion. Conclusions: In this in vitro study, enamel micro-abrasion presented itself as a conservative approach, regardless of the type of the paste compound utilized. These products promoted minor roughness alterations and minimal wear. The use of phosphoric acid and pumice stone showed similar results to commercial products for the micro-abrasion with regard to the surface roughness and wear. PMID:23739863

  4. Minimizing nonspecific cellular binding of quantum dots with hydroxyl-derivatized surface coatings.

    PubMed

    Kairdolf, Brad A; Mancini, Michael C; Smith, Andrew M; Nie, Shuming

    2008-04-15

    Quantum-dot (QD) nanocrystals are promising fluorescent probes for multiplexed staining assays in biological applications. However, nonspecific QD binding to cellular membranes and proteins remains a limiting factor in detection sensitivity and specificity. Here we report a new class of hydroxyl (-OH)-coated QDs for minimizing nonspecific cellular binding and for overcoming the bulky size problems encountered with previous surface coatings. The hydroxylated QDs are prepared from carboxylated (-COOH) dots via a hydroxylation and cross-linking process. With a compact hydrodynamic size of 13-14 nm (diameter), they are highly fluorescent (>60% quantum yields) and stable under both basic and acidic conditions. By using human cancer cells, we have evaluated their superior nonspecific binding properties against that of carboxylated, protein-coated, and poly(ethylene glycol) (PEG)-coated QDs. Quantitative cellular staining data indicate that the hydroxylated QDs result in a dramatic 140-fold reduction in nonspecific binding relative to that of carboxylated dots and a still significant 10-20-fold reduction relative to that of PEG- and protein-coated dots.

  5. Vessels as 4-D curves: global minimal 4-D paths to extract 3-D tubular surfaces and centerlines.

    PubMed

    Li, Hua; Yezzi, Anthony

    2007-09-01

    In this paper, we propose an innovative approach to the segmentation of tubular structures. This approach combines all of the benefits of minimal path techniques such as global minimizers, fast computation, and powerful incorporation of user input, while also having the capability to represent and detect vessel surfaces directly which so far has been a feature restricted to active contour and surface techniques. The key is to represent the trajectory of a tubular structure not as a 3-D curve but to go up a dimension and represent the entire structure as a 4-D curve. Then we are able to fully exploit minimal path techniques to obtain global minimizing trajectories between two user supplied endpoints in order to reconstruct tubular structures from noisy or low contrast 3-D data without the sensitivity to local minima inherent in most active surface techniques. In contrast to standard purely spatial 3-D minimal path techniques, however, we are able to represent a full tubular surface rather than just a curve which runs through its interior. Our representation also yields a natural notion of a tube's "central curve." We demonstrate and validate the utility of this approach on magnetic resonance (MR) angiography and computed tomography (CT) images of coronary arteries. PMID:17896594

  6. Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions

    NASA Astrophysics Data System (ADS)

    Oh, Dongyeop X.; Cha, Yun Jeong; Nguyen, Hoang-Linh; Je, Hwa Heon; Jho, Yong Seok; Hwang, Dong Soo; Yoon, Dong Ki

    2016-03-01

    Chitin is one of the most abundant biomaterials in nature, with 1010 tons produced annually as hierarchically organized nanofibril fillers to reinforce the exoskeletons of arthropods. This green and cheap biomaterial has attracted great attention due to its potential application to reinforce biomedical materials. Despite that, its practical use is limited since the extraction of chitin nanofibrils requires surface modification involving harsh chemical treatments, leading to difficulties in reproducing their natural prototypal hierarchical structure, i.e. chiral nematic phase. Here, we develop a chemical etching-free approach using calcium ions, called “natural way”, to disintegrate the chitin nanofibrils while keeping the essential moiety for the self-assembly, ultimately resulting in the reproduction of chitin’s natural chiral structure in a polymeric matrix. This chiral chitin nanostructure exceptionally toughens the composite. Our resultant chiral nematic phase of chitin materials can contribute to the understanding and use of the reinforcing strategy in nature.

  7. Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions

    PubMed Central

    Oh, Dongyeop X.; Cha, Yun Jeong; Nguyen, Hoang-Linh; Je, Hwa Heon; Jho, Yong Seok; Hwang, Dong Soo; Yoon, Dong Ki

    2016-01-01

    Chitin is one of the most abundant biomaterials in nature, with 1010 tons produced annually as hierarchically organized nanofibril fillers to reinforce the exoskeletons of arthropods. This green and cheap biomaterial has attracted great attention due to its potential application to reinforce biomedical materials. Despite that, its practical use is limited since the extraction of chitin nanofibrils requires surface modification involving harsh chemical treatments, leading to difficulties in reproducing their natural prototypal hierarchical structure, i.e. chiral nematic phase. Here, we develop a chemical etching-free approach using calcium ions, called “natural way”, to disintegrate the chitin nanofibrils while keeping the essential moiety for the self-assembly, ultimately resulting in the reproduction of chitin’s natural chiral structure in a polymeric matrix. This chiral chitin nanostructure exceptionally toughens the composite. Our resultant chiral nematic phase of chitin materials can contribute to the understanding and use of the reinforcing strategy in nature. PMID:26988392

  8. Myosin II controls cellular branching morphogenesis and migration in three dimensions by minimizing cell-surface curvature.

    PubMed

    Elliott, Hunter; Fischer, Robert S; Myers, Kenneth A; Desai, Ravi A; Gao, Lin; Chen, Christopher S; Adelstein, Robert S; Waterman, Clare M; Danuser, Gaudenz

    2015-02-01

    In many cases, cell function is intimately linked to cell shape control. We used endothelial cell branching morphogenesis as a model to understand the role of myosin II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell-surface curvature. We find that Rho/ROCK-stimulated myosin II contractility minimizes cell-scale branching by recognizing and minimizing local cell-surface curvature. Using microfabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin II cortical association, where it acts to maintain minimal curvature. The feedback between regulation of myosin II by curvature and control of curvature by myosin II drives cycles of localized cortical myosin II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration.

  9. Mechanical work makes important contributions to surface chemistry at steps.

    PubMed

    Francis, M F; Curtin, W A

    2015-02-13

    The effect of mechanical strain on the binding energy of adsorbates to late transition metals is believed to be entirely controlled by electronic factors, with tensile stress inducing stronger binding. Here we show, via computation, that mechanical strain of late transition metals can modify binding at stepped surfaces opposite to well-established trends on flat surfaces. The mechanism driving the trend is mechanical, arising from the relaxation of stored mechanical energy. The mechanical energy change can be larger than, and of opposite sign than, the energy changes due to electronic effects and leads to a violation of trends predicted by the widely accepted electronic 'd-band' model. This trend has a direct impact on catalytic activity, which is demonstrated here for methanation, where biaxial tension is predicted to shift the activity of nickel significantly, reaching the peak of the volcano plot and comparable to cobalt and ruthenium.

  10. Mechanical work makes important contributions to surface chemistry at steps

    PubMed Central

    Francis, M. F.; Curtin, W. A.

    2015-01-01

    The effect of mechanical strain on the binding energy of adsorbates to late transition metals is believed to be entirely controlled by electronic factors, with tensile stress inducing stronger binding. Here we show, via computation, that mechanical strain of late transition metals can modify binding at stepped surfaces opposite to well-established trends on flat surfaces. The mechanism driving the trend is mechanical, arising from the relaxation of stored mechanical energy. The mechanical energy change can be larger than, and of opposite sign than, the energy changes due to electronic effects and leads to a violation of trends predicted by the widely accepted electronic ‘d-band’ model. This trend has a direct impact on catalytic activity, which is demonstrated here for methanation, where biaxial tension is predicted to shift the activity of nickel significantly, reaching the peak of the volcano plot and comparable to cobalt and ruthenium. PMID:25677075

  11. Multispectral remote sensing contribution to land surface evaporation

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1990-01-01

    The global water cycle is perhaps the most important of all the biogeochemical cycles and evaporation, which is a significant component of the water cycle, is also linked with the energy and carbon cycles. Long-term evaporation over large areas has generally been computed as the difference of precipitation and river runoff. Analysis of short-term evaporation rate and its spatial pattern, however, is extremely complex, and multispectral remotely sensed data could aid in such analysis. Multispectral data considered here are visible and near-infrared reflectances, infrared surface temperature and the 37 GHz brightness temperatures. These observations are found to be not totally independent of each other. A few of their relationships are established and discussed considering physically-based models.

  12. Sea surface temperature contributes to marine crocodylomorph evolution.

    PubMed

    Martin, Jeremy E; Amiot, Romain; Lécuyer, Christophe; Benton, Michael J

    2014-01-01

    During the Mesozoic and Cenozoic, four distinct crocodylomorph lineages colonized the marine environment. They were conspicuously absent from high latitudes, which in the Mesozoic were occupied by warm-blooded ichthyosaurs and plesiosaurs. Despite a relatively well-constrained stratigraphic distribution, the varying diversities of marine crocodylomorphs are poorly understood, because their extinctions neither coincided with any major biological crises nor with the advent of potential competitors. Here we test the potential link between their evolutionary history in terms of taxic diversity and two abiotic factors, sea level variations and sea surface temperatures (SST). Excluding Metriorhynchoidea, which may have had a peculiar ecology, significant correlations obtained between generic diversity and estimated Tethyan SST suggest that water temperature was a driver of marine crocodylomorph diversity. Being most probably ectothermic reptiles, these lineages colonized the marine realm and diversified during warm periods, then declined or became extinct during cold intervals. PMID:25130564

  13. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation.

    PubMed

    Delviks-Frankenberry, Krista A; Nikolaitchik, Olga A; Burdick, Ryan C; Gorelick, Robert J; Keele, Brandon F; Hu, Wei-Shau; Pathak, Vinay K

    2016-05-01

    Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic

  14. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation

    PubMed Central

    Nikolaitchik, Olga A.; Burdick, Ryan C.; Gorelick, Robert J.; Keele, Brandon F.; Hu, Wei-Shau; Pathak, Vinay K.

    2016-01-01

    Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10−5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10−21 and1 × 10−11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic

  15. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation.

    PubMed

    Delviks-Frankenberry, Krista A; Nikolaitchik, Olga A; Burdick, Ryan C; Gorelick, Robert J; Keele, Brandon F; Hu, Wei-Shau; Pathak, Vinay K

    2016-05-01

    Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic

  16. Optimal dispersion with minimized Poisson equations for non-hydrostatic free surface flows

    NASA Astrophysics Data System (ADS)

    Cui, Haiyang; Pietrzak, J. D.; Stelling, G. S.

    2014-09-01

    A non-hydrostatic shallow-water model is proposed to simulate the wave propagation in situations where the ratio of the wave length to the water depth is small. It exploits the reduced-size stencil in the Poisson pressure solver to make the model less expensive in terms of memory and CPU time. We refer to this new technique as the minimized Poisson equations formulation. In the simplest case when the method applied to a two-layer model, the new model requires the same computational effort as depth-integrated non-hydrostatic models, but can provide a much better description of dispersive waves. To allow an easy implementation of the new method in depth-integrated models, the governing equations are transformed into a depth-integrated system, in which the velocity difference serves as an extra variable. The non-hydrostatic shallow-water model with minimized Poisson equations formulation produces good results in a series of numerical experiments, including a standing wave in a basin, a non-linear wave test, solitary wave propagation in a channel and a wave propagation over a submerged bar.

  17. Myosin-II controls cellular branching morphogenesis and migration in 3D by minimizing cell surface curvature

    PubMed Central

    Elliott, Hunter; Fischer, Robert A.; Myers, Kenneth A.; Desai, Ravi A.; Gao, Lin; Chen, Christopher S.; Adelstein, Robert; Waterman, Clare M.; Danuser, Gaudenz

    2014-01-01

    In many cases cell function is intimately linked to cell shape control. We utilized endothelial cell branching morphogenesis as a model to understand the role of myosin-II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell surface curvature. We find that Rho/ROCK-stimulated myosin-II contractility minimizes cell-scale branching by recognizing and minimizing local cell surface curvature. Utilizing micro-fabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin-II cortical association, where it acts to maintain minimal curvature. The feedback between myosin-II regulation by and control of curvature drives cycles of localized cortical myosin-II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration. PMID:25621949

  18. Elimination or Minimization of Oscillation Marks: A Path To Improved Cast Surface Quality

    SciTech Connect

    Dr. Alan W. Cramb

    2007-12-17

    Oscillation marks are the most recognizable feature of continuous casting and can be related to the subsurface defects that can be found on product rolled from continuous cast slabs. The purpose of this work was to develop strategies that can be used on industrial continuous casters to reduce oscillation mark depth and, in particular, to minimize the formation of hook type defects that are prevalent on ultra low carbon grades. The major focus of the work was on developing a technique to allow heat transfer in the meniscus region of the continuous caster to be measured and the effect of mold slag chemistry and chrystallization to be documented. A new experimental technique was developed that allowed the effect of mold flux chemistry and chrystallization on the radiation heat transfer rate to be measured dynamically.

  19. Minimal contribution of severe hypertriglyceridemia in L-asparaginase-associated pancreatitis developed in a child with acute lymphocytic leukemia.

    PubMed

    Goto, Yoshinori; Nishimura, Ryosei; Nohara, Atsushi; Mase, Shintaro; Fujiki, Toshihiro; Irabu, Hitoshi; Kuroda, Rie; Araki, Raita; Ikawa, Yasuhiro; Maeba, Hideaki; Yachie, Akihiro

    2016-08-01

    A 10-year-old girl developed L-asparaginase (ASP)-associated pancreatitis during chemotherapy for acute lymphocytic leukemia. Her symptoms showed alleviation with continuous regional arterial infusion of protease inhibitor and systemic somatostatin analog therapy. She had intermittent and marked hypertriglyceridemia, an initial trigger for pancreatitis, probably as a side effect of ASP and steroids. However, we considered the pancreatitis to have developed mainly because of factors other than hypertriglyceridemia as lipoprotein analysis confirmed chylomicron levels to be nearly undetectable. Extremely large chylomicrons contribute directly to the onset of pancreatitis by causing blockage of small vessels. Although it is necessary to examine patients for dyslipidemia developing as a side effect of ASP, therapeutic intervention for hypertriglyceridemia is not considered to prevent the onset of ASP-associated pancreatitis.

  20. Minimal contribution of severe hypertriglyceridemia in L-asparaginase-associated pancreatitis developed in a child with acute lymphocytic leukemia.

    PubMed

    Goto, Yoshinori; Nishimura, Ryosei; Nohara, Atsushi; Mase, Shintaro; Fujiki, Toshihiro; Irabu, Hitoshi; Kuroda, Rie; Araki, Raita; Ikawa, Yasuhiro; Maeba, Hideaki; Yachie, Akihiro

    2016-08-01

    A 10-year-old girl developed L-asparaginase (ASP)-associated pancreatitis during chemotherapy for acute lymphocytic leukemia. Her symptoms showed alleviation with continuous regional arterial infusion of protease inhibitor and systemic somatostatin analog therapy. She had intermittent and marked hypertriglyceridemia, an initial trigger for pancreatitis, probably as a side effect of ASP and steroids. However, we considered the pancreatitis to have developed mainly because of factors other than hypertriglyceridemia as lipoprotein analysis confirmed chylomicron levels to be nearly undetectable. Extremely large chylomicrons contribute directly to the onset of pancreatitis by causing blockage of small vessels. Although it is necessary to examine patients for dyslipidemia developing as a side effect of ASP, therapeutic intervention for hypertriglyceridemia is not considered to prevent the onset of ASP-associated pancreatitis. PMID:27599414

  1. An orbital-overlap model for minimal work functions of cesiated metal surfaces.

    PubMed

    Chou, Sharon H; Voss, Johannes; Bargatin, Igor; Vojvodic, Aleksandra; Howe, Roger T; Abild-Pedersen, Frank

    2012-11-01

    We introduce a model for the effect of cesium adsorbates on the work function of transition metal surfaces. The model builds on the classical point-dipole equation by adding exponential terms that characterize the degree of orbital overlap between the 6s states of neighboring cesium adsorbates and its effect on the strength and orientation of electric dipoles along the adsorbate-substrate interface. The new model improves upon earlier models in terms of agreement with the work function-coverage curves obtained via first-principles calculations based on density functional theory. All the cesiated metal surfaces have optimal coverages between 0.6 and 0.8 monolayers, in accordance with experimental data. Of all the cesiated metal surfaces that we have considered, tungsten has the lowest minimum work function, also in accordance with experiments.

  2. Surface Modification of Poly(dimethylsiloxane) Using Ionic Complementary Peptides to Minimize Nonspecific Protein Adsorption.

    PubMed

    Yu, Xiaoling; Xiao, Junzhu; Dang, Fuquan

    2015-06-01

    Poly(dimethylsiloxane) (PDMS) has become a widely used material for microfluidic and biological applications. However, PDMS has unacceptably high levels of nonspecific protein adsorption, which significantly lowers the performance of PDMS-based microfluidic chips. Most existing methods to reduce protein fouling of PDMS are to make the surface more hydrophilic by surface oxidization, polymer grafting, and physisorbed coatings. These methods suffer from the relatively short-term stability, the multistep complex treatment procedure, or the insufficient adsorption reduction. Herein, we developed a novel and facile modification method based on self-assembled peptides with well-tailored amino acid composition and sequence, which can also interact strongly with the PDMS surface in the same way as proteins, for suppressing the nonspecific protein fouling and improving the biocompatibility of PDMS-based microfluidic chips. We first demonstrated that an ionic complementary peptide, EAR16-II with a sequence of [(Ala-Glu-Ala-Glu-Ala-Arg-Ala-Arg)2], can readily self-assemble into an amphipathic film predominantly composed of tightly packed β-sheets on the native hydrophobic and plasma-oxidized hydrophilic PDMS surfaces upon low concentrations of carbohydrates. The self-assembled EAR16-II amphipathic film exposed its hydrophobic side to the solution and thus rendered the PDMS surface hydrophobic with water contact angles (WCAs) of around 110.0°. However, the self-assembled EAR16-II amphipathic film exhibited excellent protein-repelling and blood compatibility properties comparable to or better than those obtained with previously reported methods. A schematic model has been proposed to explain the interactions of EAR16-II with the PDMS surface and the antifouling capability of EAR16-II coatings at a molecular level. The current work will pave the way to the development of novel coating materials to address the nonspecific protein adsorption on PDMS, thereby broadening the

  3. Glutathione-coated luminescent gold nanoparticles: a surface ligand for minimizing serum protein adsorption.

    PubMed

    Vinluan, Rodrigo D; Liu, Jinbin; Zhou, Chen; Yu, Mengxiao; Yang, Shengyang; Kumar, Amit; Sun, Shasha; Dean, Andrew; Sun, Xiankai; Zheng, Jie

    2014-08-13

    Ultrasmall glutathione-coated luminescent gold nanoparticles (GS-AuNPs) are known for their high resistance to serum protein adsorption. Our studies show that these NPs can serve as surface ligands to significantly enhance the physiological stability and lower the serum protein adsorption of superparamagnetic iron oxide nanoparticles (SPIONs), in addition to rendering the NPs the luminescence property. After the incorporation of GS-AuNPs onto the surface of SPIONs to form the hybrid nanoparticles (HBNPs), these SPIONs' protein adsorption was about 10-fold lower than those of the pure glutathione-coated SPIONs suggesting that GS-AuNPs are capable of providing a stealth effect against serum proteins.

  4. Minimal Topographic Surfaces for Directed Self-assembly of Cylinder-forming Block Copolymer Thin films with Lateral Order

    NASA Astrophysics Data System (ADS)

    Choi, Jaewon; Carter, Kenneth; Russell, Thomas

    2015-03-01

    Controlling the orientation of cylinder-forming block copolymer microdomains in thin films is important for block copolymer applications such as lithographic masks and bit patterned media. However, it is still challenging to produce perfectly ordered cylindrical microdomains with perpendicular orientation over very large areas by using topographical surfaces. Here, we investigate the generation of a single hexagonal array of cylindrical poly(styrene-b-ethylene oxide) (PS-b-PEO) microdomains with perpendicular orientation on minimally patterned surfaces over large areas by thermal annealing without a brush layer. Key factors, such as pattern dimension and film thickness, emerge as being critical for inducing a single grain of perpendicular orientation of PS-b-PEO microdomains over large areas. We systematically investigated the effect of pattern dimension on the generation of perpendicular cylindrical PS-b-PEO microdomains. Furthermore, by solvent vapor annealing, we produced a single grain of parallel cylindrical PS-b-PEO microdomains over large areas on the same minimally patterned surfaces. This simple approach can be an alternative route to achieve the desired orientation of cylinder-forming block copolymer microdomains over large areas.

  5. Registration of liver images to minimally invasive intraoperative surface and subsurface data

    NASA Astrophysics Data System (ADS)

    Wu, Yifei; Rucker, D. C.; Conley, Rebekah H.; Pheiffer, Thomas S.; Simpson, Amber L.; Geevarghese, Sunil K.; Miga, Michael I.

    2014-03-01

    Laparoscopic liver resection is increasingly being performed with results comparable to open cases while incurring less trauma and reducing recovery time. The tradeoff is increased difficulty due to limited visibility and restricted freedom of movement. Image-guided surgical navigation systems have the potential to help localize anatomical features to improve procedural safety and achieve better surgical resection outcome. Previous research has demonstrated that intraoperative surface data can be used to drive a finite element tissue mechanics organ model such that high resolution preoperative scans are registered and visualized in the context of the current surgical pose. In this paper we present an investigation of using sparse data as imposed by laparoscopic limitations to drive a registration model. Non-contact laparoscopicallyacquired surface swabbing and mock-ultrasound subsurface data were used within the context of a nonrigid registration methodology to align mock deformed intraoperative surface data to the corresponding preoperative liver model as derived from pre-operative image segmentations. The mock testing setup to validate the potential of this approach used a tissue-mimicking liver phantom with a realistic abdomen-port patient configuration. Experimental results demonstrates a range of target registration errors (TRE) on the order of 5mm were achieving using only surface swab data, while use of only subsurface data yielded errors on the order of 6mm. Registrations using a combination of both datasets achieved TRE on the order of 2.5mm and represent a sizeable improvement over either dataset alone.

  6. Application of radiometric surface temperature for surface energy balance estimation: John Monteith's contributions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Over 25 years ago, Huband and Monteith paper’s investigating the radiative surface temperature and the surface energy balance of a wheat canopy, highlighted the key issues in computing fluxes with radiometric surface temperature. These included the relationship between radiometric and aerodynamic s...

  7. Glutathione-Coated Luminescent Gold Nanoparticles: A Surface Ligand for Minimizing Serum Protein Adsorption

    PubMed Central

    2015-01-01

    Ultrasmall glutathione-coated luminescent gold nanoparticles (GS-AuNPs) are known for their high resistance to serum protein adsorption. Our studies show that these NPs can serve as surface ligands to significantly enhance the physiological stability and lower the serum protein adsorption of superparamagnetic iron oxide nanoparticles (SPIONs), in addition to rendering the NPs the luminescence property. After the incorporation of GS-AuNPs onto the surface of SPIONs to form the hybrid nanoparticles (HBNPs), these SPIONs’ protein adsorption was about 10-fold lower than those of the pure glutathione-coated SPIONs suggesting that GS-AuNPs are capable of providing a stealth effect against serum proteins. PMID:25029478

  8. Glutathione-coated luminescent gold nanoparticles: a surface ligand for minimizing serum protein adsorption.

    PubMed

    Vinluan, Rodrigo D; Liu, Jinbin; Zhou, Chen; Yu, Mengxiao; Yang, Shengyang; Kumar, Amit; Sun, Shasha; Dean, Andrew; Sun, Xiankai; Zheng, Jie

    2014-08-13

    Ultrasmall glutathione-coated luminescent gold nanoparticles (GS-AuNPs) are known for their high resistance to serum protein adsorption. Our studies show that these NPs can serve as surface ligands to significantly enhance the physiological stability and lower the serum protein adsorption of superparamagnetic iron oxide nanoparticles (SPIONs), in addition to rendering the NPs the luminescence property. After the incorporation of GS-AuNPs onto the surface of SPIONs to form the hybrid nanoparticles (HBNPs), these SPIONs' protein adsorption was about 10-fold lower than those of the pure glutathione-coated SPIONs suggesting that GS-AuNPs are capable of providing a stealth effect against serum proteins. PMID:25029478

  9. Nonpharmacologic Approach to Minimizing Shivering During Surface Cooling: A Proof of Principle Study1

    PubMed Central

    Shah, Nirav G.; Cowan, Mark J.; Pickering, Edward; Sareh, Houtan; Afshar, Majid; Fox, Dawn; Marron, Jennifer; Davis, Jennifer; Herold, Keith; Shanholtz, Carl B.; Hasday, Jeffrey D.

    2012-01-01

    Purpose This study had two objectives: (1) to quantify the metabolic response to physical cooling in febrile patients with Systemic Inflammatory Response Syndrome (SIRS); and (2) to provide proof for the hypothesis that the efficiency of external cooling and the subsequent shivering response are influenced by site and temperature of surface cooling pads. Methods To quantify shivering thermogenesis during surface cooling for fever, we monitored oxygen consumption (VO2) in six febrile patients with SIRS during conventional cooling with cooling blankets and ice packs. To begin to determine how location and temperature of surface cooling influences shivering, we compared 5 cooling protocols for inducing mild hypothermia in six healthy volunteers. Results In the SIRS patients, core temperature decreased 0.67°C per hour, all patients shivered, VO2 increased 57.6% and blood pressure increased 15% during cooling. In healthy subjects, cooling with the 10°C vest was most comfortable and removed heat most efficiently without shivering or VO2 increase. Cooling with combined vest and thigh pads stimulated the most shivering and highest VO2, and increased core temperature. Reducing vest temperature from 10°C to 5°C failed to increase heat removal secondary to cutaneous vasoconstriction. Capsaicin, an agonist for TRPV1 warm-sensing channels, partially reversed this effect in 5 subjects. Conclusions Our results identify the hazards of surface cooling in febrile critically ill patients and support the concept that optimization of cooling pad temperature and position may improve cooling efficiency and reduce shivering. PMID:22762936

  10. Reproducible Construction of Surface Tension-Mediated Honeycomb Concave Microwell Arrays for Engineering of 3D Microtissues with Minimal Cell Loss

    PubMed Central

    Lee, GeonHui; Lee, JaeSeo; Oh, HyunJik; Lee, SangHoon

    2016-01-01

    The creation of engineered 3D microtissues has attracted prodigious interest because of the fact that this microtissue structure is able to mimic in vivo environments. Such microtissues can be applied extensively in the fields of regenerative medicine and tissue engineering, as well as in drug and toxicity screening. Here, we develop a novel method of fabricating a large number of dense honeycomb concave microwells via surface tension-mediated self-construction. More specifically, in order to control the curvature and shape of the concavity in a precise and reproducible manner, a custom-made jig system was designed and fabricated. By applying a pre-set force using the jig system, the shape of the honeycomb concave well was precisely and uniformly controlled, despite the fact that wells were densely packed. The thin wall between the honeycomb wells enables the minimization of cell loss during the cell-seeding process. To evaluate the performance of the honeycomb microwell array, rat hepatocytes were seeded, and spheroids were successfully formed with uniform shape and size. Liver-specific functions such as albumin secretion and cytochrome P450 were subsequently analyzed. The proposed method of fabricating honeycomb concave wells is cost-effective, simple, and reproducible. The honeycomb well array can produce multiple spheroids with minimal cell loss, and can lead to significant contributions in tissue engineering and organ regeneration. PMID:27513567

  11. Reproducible Construction of Surface Tension-Mediated Honeycomb Concave Microwell Arrays for Engineering of 3D Microtissues with Minimal Cell Loss.

    PubMed

    Lee, GeonHui; Lee, JaeSeo; Oh, HyunJik; Lee, SangHoon

    2016-01-01

    The creation of engineered 3D microtissues has attracted prodigious interest because of the fact that this microtissue structure is able to mimic in vivo environments. Such microtissues can be applied extensively in the fields of regenerative medicine and tissue engineering, as well as in drug and toxicity screening. Here, we develop a novel method of fabricating a large number of dense honeycomb concave microwells via surface tension-mediated self-construction. More specifically, in order to control the curvature and shape of the concavity in a precise and reproducible manner, a custom-made jig system was designed and fabricated. By applying a pre-set force using the jig system, the shape of the honeycomb concave well was precisely and uniformly controlled, despite the fact that wells were densely packed. The thin wall between the honeycomb wells enables the minimization of cell loss during the cell-seeding process. To evaluate the performance of the honeycomb microwell array, rat hepatocytes were seeded, and spheroids were successfully formed with uniform shape and size. Liver-specific functions such as albumin secretion and cytochrome P450 were subsequently analyzed. The proposed method of fabricating honeycomb concave wells is cost-effective, simple, and reproducible. The honeycomb well array can produce multiple spheroids with minimal cell loss, and can lead to significant contributions in tissue engineering and organ regeneration. PMID:27513567

  12. Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures.

    PubMed

    Afshar, M; Anaraki, A Pourkamali; Montazerian, H; Kadkhodapour, J

    2016-09-01

    Since the advent of additive manufacturing techniques, triply periodic minimal surfaces have emerged as a novel tool for designing porous scaffolds. Whereas scaffolds are expected to provide multifunctional performance, spatially changing pore patterns have been a promising approach to integrate mechanical characteristics of different architectures into a unique scaffold. Smooth morphological variations are also frequently seen in nature particularly in bone and cartilage structures and can be inspiring for designing of artificial tissues. In this study, we carried out experimental and numerical procedures to uncover the mechanical properties and deformation mechanisms of linearly graded porosity scaffolds for two different mathematically defined pore structures. Among TPMS-based scaffolds, P and D surfaces were subjected to gradient modeling to explore the mechanical responses for stretching and bending dominated deformations, respectively. Moreover, the results were compared to their corresponding uniform porosity structures. Mechanical properties were found to be by far greater for the stretching dominated structure (P-Surface). For bending dominated architecture (D-Surface), although there was no global fracture for uniform structures, graded structure showed a brittle fracture at 0.08 strain. A layer by layer deformation mechanism for stretching dominated structure was observed. For bending dominated scaffolds, deformation was accompanied by development of 45° shearing bands. Finite element simulations were also performed and the results showed a good agreement with the experimental observations.

  13. Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures.

    PubMed

    Afshar, M; Anaraki, A Pourkamali; Montazerian, H; Kadkhodapour, J

    2016-09-01

    Since the advent of additive manufacturing techniques, triply periodic minimal surfaces have emerged as a novel tool for designing porous scaffolds. Whereas scaffolds are expected to provide multifunctional performance, spatially changing pore patterns have been a promising approach to integrate mechanical characteristics of different architectures into a unique scaffold. Smooth morphological variations are also frequently seen in nature particularly in bone and cartilage structures and can be inspiring for designing of artificial tissues. In this study, we carried out experimental and numerical procedures to uncover the mechanical properties and deformation mechanisms of linearly graded porosity scaffolds for two different mathematically defined pore structures. Among TPMS-based scaffolds, P and D surfaces were subjected to gradient modeling to explore the mechanical responses for stretching and bending dominated deformations, respectively. Moreover, the results were compared to their corresponding uniform porosity structures. Mechanical properties were found to be by far greater for the stretching dominated structure (P-Surface). For bending dominated architecture (D-Surface), although there was no global fracture for uniform structures, graded structure showed a brittle fracture at 0.08 strain. A layer by layer deformation mechanism for stretching dominated structure was observed. For bending dominated scaffolds, deformation was accompanied by development of 45° shearing bands. Finite element simulations were also performed and the results showed a good agreement with the experimental observations. PMID:27281165

  14. Enhanced light out-coupling from surface plasmonic loss minimized transparent organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Sei-Yong; Kim, Jang-Joo

    2013-09-01

    We report extremely high light out-coupling efficiency from a transparent organic light-emitting diode (OLED) integrated with microstructures on both sides of the device.[1] The OLED having a metal free structure offers dramatically reduced surface plasmonic loss and absorption loss. To extract the confined light inside the device, a high refractive index light extraction pattern was directly fabricated on the top side transparent conducting oxide electrode using a simple evaporation method, and a micro lens array sheet was simultaneously attached on the bottom side of the glass substrate. As a result, the external quantum efficiency of the device increased from 18.2% to 47.3% by using the microstructures, and was additionally enhanced to 62.9% by attaching an index-matched hemisphere lens instead of the micro lens array on the glass side in order to reduce additional light guiding loss inside of the device. These values showed very good agreement with the simulation performed by a combination of the dipole model and a 3-dimensional geometrical simulation.

  15. From surface to subsurface and back again: the contribution of subsurface particle motion to surface armoring

    NASA Astrophysics Data System (ADS)

    Ferdowsi, B.; Jerolmack, D. J.; Ortiz, C. P.; Houssais, M.

    2015-12-01

    Armoring is the development of a coarse surface layer of sediments on a river bed, which overlies a smaller and typically more heterogeneous substrate. All existing models for this phenomenon are predicated on the idea that armoring develops due to size-selective transport and kinetic sieving at the surface of the granular bed. Here examine the development of armoring in the absence of size-selective surface transport, and demonstrate that subsurface particle movement can create an armored surface layer. We first conduct experiments in a laminar and annular flume, over a range of Shields stresses, with bimodal and refractive index-matched spherical sediments; this allows us to image the internal motion of the granular bed that is sheared from above by a viscous oil. Fluid-driven particle motion of the surface layer results in granular shear, that drives motion deep into the bed. This subsurface motion causes an upward migration of coarser particles, at a rate that is proportional to the granular shear rate. Comparison of experimental results to an existing continuum-granular flow model suggest that armoring in our bed-load exeriments is entirely consistent with shear-induced segregation in dry avalanches - but is slower. There is no size-selective transport at the surface in the experiments, as the annular flume is mass conserving and all particles move as bed load; this was confirmed by observation. To probe the granular physics of armor development further, we perform numerical simulations using a discrete element model (DEM) of granular flow, with and without damping. Simulations reproduce salient features of the experiments, and indicate that armoring is robust but that the rate of segregation is related to the degree of viscous damping. We posit that subsurface granular flow is an important and perhaps dominant contributor to surface armoring in rivers. More generally, this work shows how information is transferred from the surface to the subsurface and back

  16. Induction of an Infinite Periodic Minimal Surface by Endowing An Amphiphilic Zwitterion with Halogen‐Bond Ability

    PubMed Central

    Okafuji, Akiyoshi; Kato, Takashi

    2016-01-01

    Abstract We have designed an amphiphilic zwitterion with an iodine‐substituted imidazolium cation. Although it forms a layered assembly with flat interfaces, the addition of an equimolar amount of bis(trifluoromethane)sulfonimide results in the formation of a bicontinuous cubic liquid‐crystalline assembly with a primitive‐type infinite periodic minimal surface, where its zwitterionic headgroup sits regularly. IR measurements revealed that halogen bond between the iodine atoms on the imidazolium cation and the anions is involved in its molecular‐assembly behavior. The present results clearly indicate the potential utility of halogen bonding to control the dimensionality and continuity of the ionic/nonionic interface of amphiphiles in bulk and consequent mesophase patterns, which may be a significant new molecular technology for precisely arranging functional molecules on a 3D continuous interfaces. PMID:27777835

  17. The relative contributions of facial shape and surface information to perceptions of attractiveness and dominance.

    PubMed

    Torrance, Jaimie S; Wincenciak, Joanna; Hahn, Amanda C; DeBruine, Lisa M; Jones, Benedict C

    2014-01-01

    Although many studies have investigated the facial characteristics that influence perceptions of others' attractiveness and dominance, the majority of these studies have focused on either the effects of shape information or surface information alone. Consequently, the relative contributions of facial shape and surface characteristics to attractiveness and dominance perceptions are unclear. To address this issue, we investigated the relationships between ratings of original versions of faces and ratings of versions in which either surface information had been standardized (i.e., shape-only versions) or shape information had been standardized (i.e., surface-only versions). For attractiveness and dominance judgments of both male and female faces, ratings of shape-only and surface-only versions independently predicted ratings of the original versions of faces. The correlations between ratings of original and shape-only versions and between ratings of original and surface-only versions differed only in two instances. For male attractiveness, ratings of original versions were more strongly related to ratings of surface-only than shape-only versions, suggesting that surface information is particularly important for men's facial attractiveness. The opposite was true for female physical dominance, suggesting that shape information is particularly important for women's facial physical dominance. In summary, our results indicate that both facial shape and surface information contribute to judgments of others' attractiveness and dominance, suggesting that it may be important to consider both sources of information in research on these topics.

  18. The relative contributions of facial shape and surface information to perceptions of attractiveness and dominance.

    PubMed

    Torrance, Jaimie S; Wincenciak, Joanna; Hahn, Amanda C; DeBruine, Lisa M; Jones, Benedict C

    2014-01-01

    Although many studies have investigated the facial characteristics that influence perceptions of others' attractiveness and dominance, the majority of these studies have focused on either the effects of shape information or surface information alone. Consequently, the relative contributions of facial shape and surface characteristics to attractiveness and dominance perceptions are unclear. To address this issue, we investigated the relationships between ratings of original versions of faces and ratings of versions in which either surface information had been standardized (i.e., shape-only versions) or shape information had been standardized (i.e., surface-only versions). For attractiveness and dominance judgments of both male and female faces, ratings of shape-only and surface-only versions independently predicted ratings of the original versions of faces. The correlations between ratings of original and shape-only versions and between ratings of original and surface-only versions differed only in two instances. For male attractiveness, ratings of original versions were more strongly related to ratings of surface-only than shape-only versions, suggesting that surface information is particularly important for men's facial attractiveness. The opposite was true for female physical dominance, suggesting that shape information is particularly important for women's facial physical dominance. In summary, our results indicate that both facial shape and surface information contribute to judgments of others' attractiveness and dominance, suggesting that it may be important to consider both sources of information in research on these topics. PMID:25349994

  19. A structured light-based laparoscope with real-time organs' surface reconstruction for minimally invasive surgery.

    PubMed

    Maurice, Xavier; Albitar, Chadi; Doignon, Christophe; de Mathelin, Michel

    2012-01-01

    In this paper we present a new 3-D laparoscopic device based on structured light for minimally invasive surgery. Real-time reconstruction of internal organs' surfaces is very challenging as the numerous geometric and photometric variabilities and disturbances (bloody parts, specularities, smokes,...) often occur during the surgical operation, sometimes with manipulations by several assistants. We then conceived a structured light vision system to illuminate a coded pattern by means of an external video projector device or miniaturized diffractive optical elements and a laser source. Among the structured light techniques, the spatial neighbourhood scheme is the most relevant class of approaches to deal with moving and deformable surfaces, then to capture the depth map with only one shot. Each neighbourhood (a (3 × 3) window) is representing a codeword of length 9, and is unique in the whole pattern, even if there is a lack of information. To do so, a monochromatic subperfect map-based pattern is computed, driven by a desired minimal Hamming distance, H(min), between any couple of codewords. This provides patterns with high correction capabilities (H(min) > 1). For practical considerations, each numerical codeword symbol is associated to a unique visual feature embedding the local orientation of the pattern, which is helpful for the neighbourhood retrieval during the decoding process. Together with the endoscopic device, in vivo real-time reconstructions (in mini-invasive surgical conditions) are presented to assess both the efficiency of the proposed pattern design, the decoding process and the 3-D laparoscope setup realized in the lab.

  20. A structured light-based laparoscope with real-time organs' surface reconstruction for minimally invasive surgery.

    PubMed

    Maurice, Xavier; Albitar, Chadi; Doignon, Christophe; de Mathelin, Michel

    2012-01-01

    In this paper we present a new 3-D laparoscopic device based on structured light for minimally invasive surgery. Real-time reconstruction of internal organs' surfaces is very challenging as the numerous geometric and photometric variabilities and disturbances (bloody parts, specularities, smokes,...) often occur during the surgical operation, sometimes with manipulations by several assistants. We then conceived a structured light vision system to illuminate a coded pattern by means of an external video projector device or miniaturized diffractive optical elements and a laser source. Among the structured light techniques, the spatial neighbourhood scheme is the most relevant class of approaches to deal with moving and deformable surfaces, then to capture the depth map with only one shot. Each neighbourhood (a (3 × 3) window) is representing a codeword of length 9, and is unique in the whole pattern, even if there is a lack of information. To do so, a monochromatic subperfect map-based pattern is computed, driven by a desired minimal Hamming distance, H(min), between any couple of codewords. This provides patterns with high correction capabilities (H(min) > 1). For practical considerations, each numerical codeword symbol is associated to a unique visual feature embedding the local orientation of the pattern, which is helpful for the neighbourhood retrieval during the decoding process. Together with the endoscopic device, in vivo real-time reconstructions (in mini-invasive surgical conditions) are presented to assess both the efficiency of the proposed pattern design, the decoding process and the 3-D laparoscope setup realized in the lab. PMID:23367240

  1. Contributions of feature shapes and surface cues to the recognition of facial expressions.

    PubMed

    Sormaz, Mladen; Young, Andrew W; Andrews, Timothy J

    2016-10-01

    Theoretical accounts of face processing often emphasise feature shapes as the primary visual cue to the recognition of facial expressions. However, changes in facial expression also affect the surface properties of the face. In this study, we investigated whether this surface information can also be used in the recognition of facial expression. First, participants identified facial expressions (fear, anger, disgust, sadness, happiness) from images that were manipulated such that they varied mainly in shape or mainly in surface properties. We found that the categorization of facial expression is possible in either type of image, but that different expressions are relatively dependent on surface or shape properties. Next, we investigated the relative contributions of shape and surface information to the categorization of facial expressions. This employed a complementary method that involved combining the surface properties of one expression with the shape properties from a different expression. Our results showed that the categorization of facial expressions in these hybrid images was equally dependent on the surface and shape properties of the image. Together, these findings provide a direct demonstration that both feature shape and surface information make significant contributions to the recognition of facial expressions. PMID:27425385

  2. Contributions of feature shapes and surface cues to the recognition of facial expressions.

    PubMed

    Sormaz, Mladen; Young, Andrew W; Andrews, Timothy J

    2016-10-01

    Theoretical accounts of face processing often emphasise feature shapes as the primary visual cue to the recognition of facial expressions. However, changes in facial expression also affect the surface properties of the face. In this study, we investigated whether this surface information can also be used in the recognition of facial expression. First, participants identified facial expressions (fear, anger, disgust, sadness, happiness) from images that were manipulated such that they varied mainly in shape or mainly in surface properties. We found that the categorization of facial expression is possible in either type of image, but that different expressions are relatively dependent on surface or shape properties. Next, we investigated the relative contributions of shape and surface information to the categorization of facial expressions. This employed a complementary method that involved combining the surface properties of one expression with the shape properties from a different expression. Our results showed that the categorization of facial expressions in these hybrid images was equally dependent on the surface and shape properties of the image. Together, these findings provide a direct demonstration that both feature shape and surface information make significant contributions to the recognition of facial expressions.

  3. Large contribution of sea surface warming to recent increase in Atlantic hurricane activity.

    PubMed

    Saunders, Mark A; Lea, Adam S

    2008-01-31

    Atlantic hurricane activity has increased significantly since 1995 (refs 1-4), but the underlying causes of this increase remain uncertain. It is widely thought that rising Atlantic sea surface temperatures have had a role in this, but the magnitude of this contribution is not known. Here we quantify this contribution for storms that formed in the tropical North Atlantic, Caribbean Sea and Gulf of Mexico; these regions together account for most of the hurricanes that make landfall in the United States. We show that a statistical model based on two environmental variables--local sea surface temperature and an atmospheric wind field--can replicate a large proportion of the variance in tropical Atlantic hurricane frequency and activity between 1965 and 2005. We then remove the influence of the atmospheric wind field to assess the contribution of sea surface temperature. Our results indicate that the sensitivity of tropical Atlantic hurricane activity to August-September sea surface temperature over the period we consider is such that a 0.5 degrees C increase in sea surface temperature is associated with a approximately 40% increase in hurricane frequency and activity. The results also indicate that local sea surface warming was responsible for approximately 40% of the increase in hurricane activity relative to the 1950-2000 average between 1996 and 2005. Our analysis does not identify whether warming induced by greenhouse gases contributed to the increase in hurricane activity, but the ability of climate models to reproduce the observed relationship between hurricanes and sea surface temperature will serve as a useful means of assessing whether they are likely to provide reliable projections of future changes in Atlantic hurricane activity.

  4. Strong Surface Contribution to the Nonlinear Meissner Effect in d-Wave Superconductors

    NASA Astrophysics Data System (ADS)

    Zare, A.; Dahm, T.; Schopohl, N.

    2010-06-01

    We demonstrate that in a d-wave superconductor the bulk nonlinear Meissner effect is dominated by a surface effect due to Andreev bound states at low temperatures. The contribution of this surface effect to the nonlinear response coefficient follows a 1/T3 law with the opposite sign compared to the bulk 1/T behavior. The crossover from bulk dominated behavior to surface dominated behavior occurs at a temperature of T/Tc˜1/κ. We present an approximate analytical calculation, which supports our numerical calculations and provides a qualitative understanding of the effect. The effect can be probed by intermodulation distortion experiments.

  5. Strong surface contribution to the nonlinear Meissner effect in d-wave superconductors.

    PubMed

    Zare, A; Dahm, T; Schopohl, N

    2010-06-11

    We demonstrate that in a d-wave superconductor the bulk nonlinear Meissner effect is dominated by a surface effect due to Andreev bound states at low temperatures. The contribution of this surface effect to the nonlinear response coefficient follows a 1/T3 law with the opposite sign compared to the bulk 1/T behavior. The crossover from bulk dominated behavior to surface dominated behavior occurs at a temperature of T/Tc∼1/square root(κ). We present an approximate analytical calculation, which supports our numerical calculations and provides a qualitative understanding of the effect. The effect can be probed by intermodulation distortion experiments. PMID:20867262

  6. Volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model

    NASA Astrophysics Data System (ADS)

    Antonov, A. N.; Gaidarov, M. K.; Sarriguren, P.; Moya de Guerra, E.

    2016-07-01

    The volume and surface components of the nuclear symmetry energy (NSE) and their ratio are calculated within the coherent density fluctuation model (CDFM). The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner energy-density functional for nuclear matter. In addition, we present results for the NSE and its volume and surface contributions obtained by using the Skyrme energy-density functional. The CDFM weight function is obtained using the proton and neutron densities from the self-consistent HF+BCS method with Skyrme interactions. We present and discuss the values of the volume and surface contributions to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains, studying their isotopic sensitivity. The results are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, excitation energies to isobaric analog states (IAS), and also with results of other theoretical methods.

  7. A survey of state-of-the-art surface chemistries to minimize fouling from human and animal biofluids.

    PubMed

    Blaszykowski, Christophe; Sheikh, Sonia; Thompson, Michael

    2015-10-15

    Upon contact with bodily fluids, synthetic materials spontaneously acquire a layer of various species (most notably proteins) on their surface. The concern with respect to biomedical equipment, implants or devices resides in the possibility for biological processes with potentially harmful effects to ensue. In biosensor technology, the issue with this natural fouling phenomenon is that of non-specific adsorption to sensing platforms, which generates an often overwhelming interference signal that prevents the detection, not to mention the quantification, of target analytes present at considerably lower concentration. To alleviate this ubiquitous, recurrent problem - this genuine biotechnological plague - considerable research efforts have been devoted over the last few decades to engineer antifouling coatings. Extensive literature now exists that describes stealth organic adlayers capable of reducing fouling surface coverage Γ down to a few ng cm(-2)- however from biotechnologically irrelevant buffered solutions free or nearly depleted of any potentially interfering species. Regrettably indeed, few coatings are known to display/retain such level of performance when exposed to otherwise more complex, real-life biosamples (even diluted). Herein, we comprehensively review the state-of-the-art surface chemistries developed to date (January 2015) to minimize fouling from 8 such uncomparatively more challenging biological media (blood plasma, blood serum, cell lysate, cerebrospinal fluid, egg, milk, saliva, and urine) - whether of human or animal origin. Literature search for another 25 biological milieux generated no (exploitable) hit. Also discussed in this Review are the identification of the species responsible for fouling, and the dependence of antifouling properties on biosample source variability.

  8. A survey of state-of-the-art surface chemistries to minimize fouling from human and animal biofluids.

    PubMed

    Blaszykowski, Christophe; Sheikh, Sonia; Thompson, Michael

    2015-10-15

    Upon contact with bodily fluids, synthetic materials spontaneously acquire a layer of various species (most notably proteins) on their surface. The concern with respect to biomedical equipment, implants or devices resides in the possibility for biological processes with potentially harmful effects to ensue. In biosensor technology, the issue with this natural fouling phenomenon is that of non-specific adsorption to sensing platforms, which generates an often overwhelming interference signal that prevents the detection, not to mention the quantification, of target analytes present at considerably lower concentration. To alleviate this ubiquitous, recurrent problem - this genuine biotechnological plague - considerable research efforts have been devoted over the last few decades to engineer antifouling coatings. Extensive literature now exists that describes stealth organic adlayers capable of reducing fouling surface coverage Γ down to a few ng cm(-2)- however from biotechnologically irrelevant buffered solutions free or nearly depleted of any potentially interfering species. Regrettably indeed, few coatings are known to display/retain such level of performance when exposed to otherwise more complex, real-life biosamples (even diluted). Herein, we comprehensively review the state-of-the-art surface chemistries developed to date (January 2015) to minimize fouling from 8 such uncomparatively more challenging biological media (blood plasma, blood serum, cell lysate, cerebrospinal fluid, egg, milk, saliva, and urine) - whether of human or animal origin. Literature search for another 25 biological milieux generated no (exploitable) hit. Also discussed in this Review are the identification of the species responsible for fouling, and the dependence of antifouling properties on biosample source variability. PMID:26215763

  9. Phytoestrogens and mycoestrogens in surface waters--Their sources, occurrence, and potential contribution to estrogenic activity.

    PubMed

    Jarošová, Barbora; Javůrek, Jakub; Adamovský, Ondřej; Hilscherová, Klára

    2015-08-01

    This review discusses the potential contribution of phytoestrogens and mycoestrogens to in vitro estrogenic activities occurring in surface waters and in vivo estrogenic effects in fish. Main types, sources, and pathways of entry into aquatic environment of these detected compounds were summarized. Reviewed concentrations of phyto/mycoestrogens in surface waters were mostly undetectable or in low ng/L ranges, but exceeded tens of μg/L for the flavonoids biochanin A, daidzein and genistein at some sites. While a few phytosterols were reported to occur at relatively high concentrations in surface waters, information about their potencies in in vitro systems is very limited, and contradictory in some cases. The relative estrogenic activities of compounds (compared to standard estrogen 17β-estradiol) by various in vitro assays were included, and found to differ by orders of magnitude. These potencies were used to estimate total potential estrogenic activities based on chemical analyses of phyto/mycoestrogens. In vivo effective concentrations of waterborne phyto/mycoestrogens were available only for biochanin A, daidzein, formononetin, genistein, equol, sitosterol, and zearalenone. The lowest observable effect concentrations in vivo were reported for the mycoestrogen zearalenone. This compound and especially its metabolites also elicited the highest in vitro estrogenic potencies. Despite the limited information available, the review documents low contribution of phyto/mycoestrogens to estrogenic activity in vast majority of surface waters, but significant contribution to in vitro responses and potentially also to in vivo effects in areas with high concentrations.

  10. Ultrafast magneto-photocurrents in GaAs: Separation of surface and bulk contributions

    SciTech Connect

    Schmidt, Christian B. Priyadarshi, Shekhar; Bieler, Mark; Tarasenko, Sergey A.

    2015-04-06

    We induce ultrafast magneto-photocurrents in a GaAs crystal employing interband excitation with femtosecond laser pulses at room temperature and non-invasively separate surface and bulk contributions to the overall current response. The separation between the different symmetry contributions is achieved by measuring the simultaneously emitted terahertz radiation for different sample orientations. Excitation intensity and photon energy dependences of the magneto-photocurrents for linearly and circularly polarized excitations reveal an involvement of different microscopic origins, one of which is the inverse spin Hall effect. Our experiments are important for a better understanding of the complex momentum-space carrier dynamics in magnetic fields.

  11. Contribution of Cell Surface Hydrophobicity in the Resistance of Staphylococcus aureus against Antimicrobial Agents

    PubMed Central

    Lather, Puja; Mohanty, A. K.; Jha, Pankaj; Garsa, Anita Kumari

    2016-01-01

    Staphylococcus aureus is found in a wide variety of habitats, including human skin, where many strains are commensals that may be clinically significant or contaminants of food. To determine the physiological characteristics of resistant strain of Staphylococcus aureus against pediocin, a class IIa bacteriocin, a resistant strain was compared with wild type in order to investigate the contribution of hydrophobicity to this resistance. Additional clumping of resistant strain relative to wild type in light microscopy was considered as an elementary evidence of resistance attainment. A delay in log phase attainment was observed in resistant strain compared to the wild type strain. A significant increase in cell surface hydrophobicity was detected for resistant strain in both hexadecane and xylene indicating the contribution of cell surface hydrophobicity as adaptive reaction against antimicrobial agents. PMID:26966577

  12. Octasaccharide is the minimal length unit required for efficient binding of cyclophilin B to heparin and cell surface heparan sulphate.

    PubMed

    Vanpouille, Christophe; Denys, Agnès; Carpentier, Mathieu; Pakula, Rachel; Mazurier, Joël; Allain, Fabrice

    2004-09-01

    Cyclophilin B (CyPB) is a heparin-binding protein first identified as a receptor for cyclosporin A. In previous studies, we reported that CyPB triggers chemotaxis and integrin-mediated adhesion of T-lymphocytes by way of interaction with two types of binding sites. The first site corresponds to a signalling receptor; the second site has been identified as heparan sulphate (HS) and appears crucial to induce cell adhesion. Characterization of the HS-binding unit is critical to understand the requirement of HS in pro-adhesive activity of CyPB. By using a strategy based on gel mobility shift assays with fluorophore-labelled oligosaccharides, we demonstrated that the minimal heparin unit required for efficient binding of CyPB is an octasaccharide. The mutants CyPB(KKK-) [where KKK- refers to the substitutions K3A(Lys3-->Ala)/K4A/K5A] and CyPB(DeltaYFD) (where Tyr14-Phe-Asp16 has been deleted) failed to interact with octasaccharides, confirming that the Y14FD16 and K3KK5 clusters are required for CyPB binding. Molecular modelling revealed that both clusters are spatially arranged so that they may act synergistically to form a binding site for the octasaccharide. We then demonstrated that heparin-derived octasaccharides and higher degree of polymerization oligosaccharides inhibited the interaction between CyPB and fluorophore-labelled HS chains purified from T-lymphocytes, and strongly reduced the HS-dependent pro-adhesive activity of CyPB. However, oligosaccharides or heparin were unable to restore adhesion of heparinase-treated T-lymphocytes, indicating that HS has to be present on the cell membrane to support the pro-adhesive activity of CyPB. Altogether, these results demonstrate that the octasaccharide is likely to be the minimal length unit required for efficient binding of CyPB to cell surface HS and consequent HS-dependent cell responses.

  13. Contributions of feature shapes and surface cues to the recognition and neural representation of facial identity.

    PubMed

    Andrews, Timothy J; Baseler, Heidi; Jenkins, Rob; Burton, A Mike; Young, Andrew W

    2016-10-01

    A full understanding of face recognition will involve identifying the visual information that is used to discriminate different identities and how this is represented in the brain. The aim of this study was to explore the importance of shape and surface properties in the recognition and neural representation of familiar faces. We used image morphing techniques to generate hybrid faces that mixed shape properties (more specifically, second order spatial configural information as defined by feature positions in the 2D-image) from one identity and surface properties from a different identity. Behavioural responses showed that recognition and matching of these hybrid faces was primarily based on their surface properties. These behavioural findings contrasted with neural responses recorded using a block design fMRI adaptation paradigm to test the sensitivity of Haxby et al.'s (2000) core face-selective regions in the human brain to the shape or surface properties of the face. The fusiform face area (FFA) and occipital face area (OFA) showed a lower response (adaptation) to repeated images of the same face (same shape, same surface) compared to different faces (different shapes, different surfaces). From the behavioural data indicating the critical contribution of surface properties to the recognition of identity, we predicted that brain regions responsible for familiar face recognition should continue to adapt to faces that vary in shape but not surface properties, but show a release from adaptation to faces that vary in surface properties but not shape. However, we found that the FFA and OFA showed an equivalent release from adaptation to changes in both shape and surface properties. The dissociation between the neural and perceptual responses suggests that, although they may play a role in the process, these core face regions are not solely responsible for the recognition of facial identity.

  14. Contributions of gas-phase plasma chemistry to surface modifications and gas-surface interactions: investigations of fluorocarbon rf plasmas

    NASA Astrophysics Data System (ADS)

    Cuddy, Michael F., II

    The fundamental aspects of inductively coupled fluorocarbon (FC) plasma chemistry were examined, with special emphasis on the contributions of gas-phase species to surface modifications. Characterization of the gas-phase constituents of single-source CF4-, C2F6-, C3F 8-, and C3F6-based plasmas was performed using spectroscopic and mass spectrometric techniques. The effects of varying plasma parameters, including applied rf power (P) and system pressure (p) were examined. Optical emission spectroscopy (OES) and laser-induced fluorescence (LIF) spectroscopy were employed to monitor the behavior of excited and ground CFx (x = 1,2) radicals, respectively. Mass spectrometric techniques, including ion energy analyses, elucidated behaviors of nascent ions in the FC plasmas. These gas-phase data were correlated with the net effect of substrate processing for Si and ZrO2 surfaces. Surface-specific analyses were performed for post-processed substrates via x-ray photoelectron spectroscopy (XPS) and contact angle goniometry. Generally, precursors with lower F/C ratios tended to deposit robust FC films of high surface energy. Precursors of higher F/C ratio, such as CF4, were associated with etching or removal of material from surfaces. Nonetheless, a net balance between deposition of FC moieties and etching of material exists for each plasma system. The imaging of radicals interacting with surfaces (IRIS) technique provided insight into the phenomena occurring at the interface of the plasma gas-phase and substrate of interest. IRIS results demonstrate that CFx radicals scatter copiously, with surface scatter coefficients, S, generally greater than unity under most experimental conditions. Such considerable S values imply surface-mediated production of the CFx radicals at FC-passivated sites. It is inferred that the primary route to surface production of CFx arises from energetic ion bombardment and ablation of surface FC films. Other factors which may influence the observed CFx

  15. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures for Falling Snow Events

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Johnson, Benjamin T.

    2011-01-01

    Physically based passive microwave precipitation retrieval algorithms require a set of relationships between satellite -observed brightness temperatures (TBs) and the physical state of the underlying atmosphere and surface. These relationships are nonlinear, such that inversions are ill ]posed especially over variable land surfaces. In order to elucidate these relationships, this work presents a theoretical analysis using TB weighting functions to quantify the percentage influence of the TB resulting from absorption, emission, and/or reflection from the surface, as well as from frozen hydrometeors in clouds, from atmospheric water vapor, and from other contributors. The percentage analysis was also compared to Jacobians. The results are presented for frequencies from 10 to 874 GHz, for individual snow profiles, and for averages over three cloud-resolving model simulations of falling snow. The bulk structure (e.g., ice water path and cloud depth) of the underlying cloud scene was found to affect the resultant TB and percentages, producing different values for blizzard, lake effect, and synoptic snow events. The slant path at a 53 viewing angle increases the hydrometeor contributions relative to nadir viewing channels. Jacobians provide the magnitude and direction of change in the TB values due to a change in the underlying scene; however, the percentage analysis provides detailed information on how that change affected contributions to the TB from the surface, hydrometeors, and water vapor. The TB percentage information presented in this paper provides information about the relative contributions to the TB and supplies key pieces of information required to develop and improve precipitation retrievals over land surfaces.

  16. A QTL Study for Regions Contributing to Arabidopsis thaliana Root Skewing on Tilted Surfaces.

    PubMed

    Vaughn, Laura M; Masson, Patrick H

    2011-07-01

    Plant root systems must grow in a manner that is dictated by endogenous genetic pathways, yet sensitive to environmental input. This allows them to provide the plant with water and nutrients while navigating a heterogeneous soil environment filled with obstacles, toxins, and pests. Gravity and touch, which constitute important cues for roots growing in soil, have been shown to modulate root architecture by altering growth patterns. This is illustrated by Arabidopsis thaliana roots growing on tilted hard agar surfaces. Under these conditions, the roots are exposed to both gravity and touch stimulation. Consequently, they tend to skew their growth away from the vertical and wave along the surface. This complex growth behavior is believed to help roots avoid obstacles in nature. Interestingly, A. thaliana accessions display distinct growth patterns under these conditions, suggesting the possibility of using this variation as a tool to identify the molecular mechanisms that modulate root behavior in response to their mechanical environment. We have used the Cvi/Ler recombinant inbred line population to identify quantitative trait loci that contribute to root skewing on tilted hard agar surfaces. A combination of fine mapping for one of these QTL and microarray analysis of expression differences between Cvi and Ler root tips identifies a region on chromosome 2 as contributing to root skewing on tilted surfaces, potentially by modulating cell wall composition.

  17. Potential contribution of microbial degradation to natural attenuation of MTBE in surface water systems

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2001-01-01

    To evaluate the potential contribution of in situ biodegradation as a mechanism for natural attenuation of MTBE in surface water, surface water sediments were collected from streams and lakes at 11 sites throughout the US and the ability of the indigenous microorganisms to mineralize [U-14C] MTBE to 14CO2 under aerobic conditions was examined. Mineralization of [U-14C] MTBE to 14CO2 ranged from 15 to 66% over 50 days and did not differ significantly between sediments collected from MTBE contaminated sites and from sites with no history of MTBE exposure. The microorganisms, which inhabit the bed sediments of streams and lakes could degrade MTBE efficiently and this capability is widespread in the environment. Microbial degradation of [U-14C] MTBE was observed in surface-water-sediment microcosms under anaerobic conditions, but the efficiency and products of anaerobic MTBE biodegradation were strongly dependent on the predominant terminal electron accepting conditions. Microorganisms inhabiting the bed sediments of streams and lakes could degrade MTBE effectively under a range of anaerobic terminal electron accepting conditions. Thus, anaerobic bed sediment microbial processes also might contribute to natural attenuation of MTBE in surface water systems throughout the US.

  18. Contribution of material's surface layer on charge state distribution in laser ablation plasma.

    PubMed

    Kumaki, Masafumi; Steski, Dannie; Ikeda, Shunsuke; Kanesue, Takeshi; Okamura, Masahiro; Washio, Masakazu

    2016-02-01

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C(6+) ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation. PMID:26931982

  19. Contribution to Surface Water Contamination Understanding by Pesticides and Pharmaceuticals, at a Watershed Scale

    PubMed Central

    Piel, Stéphanie; Baurès, Estelle; Thomas, Olivier

    2012-01-01

    This study aims at understanding the presence of regulated and emerging micropollutants, particularly pesticides and pharmaceuticals, in surface water, regarding spatial and temporal influences at a watershed scale. The study of relations between micropollutants and other water quality and hydroclimatic parameters was carried out from a statistical analysis on historical and experimental data of different sampling sites from the main watershed of Brittany, western France. The outcomes point out the influence of urban and rural areas of the watershed as well as the impact of seasons on contamination variations. This work contributes to health risk assessment related to surface water contamination by micropollutants. This approach is particularly interesting in the case of agricultural watersheds such as the one studied, where more than 80% of surface water is used to produce drinking water. PMID:23211608

  20. Can internal heat contribute to the high surface temperature of Venus

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1976-01-01

    It is shown that current observational data on conditions at the Venusian surface are adequate to exclude the possibility that thermal energy from a hot interior contributes to the high surface temperature of the planet. The maximum energy flux conducted from the interior is estimated by assigning a maximum thermal conductivity and a minimum thickness to the crust. It is found that the crust must be at least 10 km thick and that the maximum thermal flux for this thickness is about 6 millionths of a calorie per sq cm/sec. The relative importance of this internal energy source is assessed by comparing it with the amount of solar energy deposited at the surface. The result demonstrates that the absorbed solar energy is at least one and probably two orders of magnitude higher than the minimum flux conducted from the interior. It is concluded that a very efficient atmospheric trapping mechanism (the greenhouse effect) is operating on Venus.

  1. Contribution to surface water contamination understanding by pesticides and pharmaceuticals, at a watershed scale.

    PubMed

    Piel, Stéphanie; Baurès, Estelle; Thomas, Olivier

    2012-12-01

    This study aims at understanding the presence of regulated and emerging micropollutants, particularly pesticides and pharmaceuticals, in surface water, regarding spatial and temporal influences at a watershed scale. The study of relations between micropollutants and other water quality and hydroclimatic parameters was carried out from a statistical analysis on historical and experimental data of different sampling sites from the main watershed of Brittany, western France. The outcomes point out the influence of urban and rural areas of the watershed as well as the impact of seasons on contamination variations. This work contributes to health risk assessment related to surface water contamination by micropollutants. This approach is particularly interesting in the case of agricultural watersheds such as the one studied, where more than 80% of surface water is used to produce drinking water. PMID:23211608

  2. Contribution of material's surface layer on charge state distribution in laser ablation plasma

    NASA Astrophysics Data System (ADS)

    Kumaki, Masafumi; Steski, Dannie; Ikeda, Shunsuke; Kanesue, Takeshi; Okamura, Masahiro; Washio, Masakazu

    2016-02-01

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C6+ ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation.

  3. Surface contributions to scattered sound power using non-negative intensity.

    PubMed

    Liu, Daipei; Peters, Herwig; Marburg, Steffen; Kessissoglou, Nicole

    2016-08-01

    Non-negative intensity is used to identify the surface areas of a structure that contributes to the scattered sound power. In the acoustic near field, the scattered sound power is predicted using non-negative intensity, as well as the scattered acoustic intensity integrated directly over the scatterer's surface area. In the acoustic far field, the scattered acoustic intensity and the scattered sound power are evaluated for three different receiver surface areas, corresponding to a sphere representing a far-field area that fully circumscribes the scatterer, and two hemispherical surfaces that correspond to partial far-field areas that do not fully circumscribe the scatterer. Back-calculated non-negative intensity that defines the sound scattered from the full or partial far-field receiver surface areas is also calculated and compared to the non-negative intensity obtained directly from the surface of the scatterer. To illustrate the numerical technique, the scattered acoustic intensity and scattered sound power of a rigid sphere, a rigid cylinder, and a rigid hemispherical shell are examined. PMID:27586749

  4. Decoupling the contribution of dispersive and acid-base components of surface energy on the cohesion of pharmaceutical powders.

    PubMed

    Shah, Umang V; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2014-11-20

    This study reports an experimental approach to determine the contribution from two different components of surface energy on cohesion. A method to tailor the surface chemistry of mefenamic acid via silanization is established and the role of surface energy on cohesion is investigated. Silanization was used as a method to functionalize mefenamic acid surfaces with four different functional end groups resulting in an ascending order of the dispersive component of surface energy. Furthermore, four haloalkane functional end groups were grafted on to the surface of mefenamic acid, resulting in varying levels of acid-base component of surface energy, while maintaining constant dispersive component of surface energy. A proportional increase in cohesion was observed with increases in both dispersive as well as acid-base components of surface energy. Contributions from dispersive and acid-base surface energy on cohesion were determined using an iterative approach. Due to the contribution from acid-base surface energy, cohesion was found to increase ∼11.7× compared to the contribution from dispersive surface energy. Here, we provide an approach to deconvolute the contribution from two different components of surface energy on cohesion, which has the potential of predicting powder flow behavior and ultimately controlling powder cohesion.

  5. Contribution of Long Fibrils and Peptides to Surface and Foaming Behavior of Soy Protein Fibril System.

    PubMed

    Wan, Zhili; Yang, Xiaoquan; Sagis, Leonard M C

    2016-08-16

    When soy glycinin (11S) is heated for a prolonged time at pH 2 (20 h at 85 °C), a mixture is formed consisting of long semiflexible 11S fibrils and small peptides. The surface and foaming properties of this mixture were investigated at different pHs, and compared to the behavior of pure fibrils and pure peptides, to determine the individual contributions of these two factions to the behavior of the mixture. The adsorption of these three systems at air-water interfaces and the resulting surface rheological properties were studied by combining drop shape analysis tensiometry, ellipsometry, and surface large amplitude oscillatory dilatational (LAOD) rheology. Lissajous plots of surface pressure versus deformation were used to analyze the surface rheological response in terms of interfacial microstructure. Our results show that the adsorption kinetics, dilatational rheological properties, and the foaming behavior of the mixture were mainly dominated by the small peptides in the fibril system. Compared to pH 2, the fibril mixture at pH 5 and 7 provides much better foam stability and appears to be a very promising protein material to make stable foams, even at low protein concentration (0.1 wt %). The presence of fibril clusters and peptide aggregates at pH 5 and 7 contributed to foam stability of the mixture. In contrast, pure fibril formed an interface with a highly pH-responsive adsorption and rheological behavior, and the foamability and foam stability of the pure fibrils were very poor. PMID:27452662

  6. Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters.

    PubMed

    Smith, Jason M; Casciotti, Karen L; Chavez, Francisco P; Francis, Christopher A

    2014-08-01

    The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity--ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts--varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification.

  7. Modelling atmospheric and induced non-tidal oceanic loading contributions to surface gravity and tilt measurements

    NASA Astrophysics Data System (ADS)

    Boy, Jean-Paul; Longuevergne, Laurent; Boudin, Frédéric; Jacob, Thomas; Lyard, Florent; Llubes, Muriel; Florsch, Nicolas; Esnoult, Marie-France

    2009-12-01

    We investigate the contribution of atmospheric and its induced non-tidal oceanic loading effects on surface time-varying gravity and tilt measurements for several stations in Western Europe. The ocean response to pressure forcing can be modelled accordingly to the inverted barometer, i.e. assuming that air pressure variations are fully compensated by static sea height changes, or using ocean general circulation models. We validate two runs of the HUGO-m barotropic ocean model by comparing predicted sea surface height variations with hundred tide-gauge measurements along the European coasts. We then show that global surface pressure field, as well as a barotropic high-resolution ocean model forced by air pressure and winds allow in most cases a significant reduction of the variance of gravity residuals and, to a smaller extends tilt residuals. We finally show that precise gravity measurements with superconducting gravimeters allow the observation of large storm surges, occurring in the North Sea, even for inland stations. However, we also confirm that the continental hydrology contribution cannot be neglected. Thanks to their specific sensitivity feature, only tiltmeters closest to the coast can clearly detect the loading due to these storm surges.

  8. Contributions of increased agricultural abandonment area to recent surface warming trend in Shikoku Island, Japan

    NASA Astrophysics Data System (ADS)

    Yoshida, R.; Nishimori, M.; Iizumi, T.; Osawa, T.

    2012-04-01

    A remarkable increasing trend in abandoned cropland has already been observed in hilly and mountainous areas, Japan. Changes to abandoned areas from cropland (typically, paddy fields) could have impacts on surface air temperatures and their trends. We evaluated contributions of land surface change, specifically, the recently reported increases in abandoned cropland on daily maximum, mean, and minimum temperature with Shikoku Island, Japan where croplands have been significantly decreasing taken as an example. Land use change was expressed by the modifications of physical land surface parameters, i.e., surface albedo, evaporative efficiency, roughness length, heat capacity, and thermal conductivity. The sensitivity of the air temperatures to each land surface parameter was then derived from the numerical experiments using three-dimensional regional atmospheric model (JMA-NHM) and artificially modified land surface conditions. An accurate estimation of the contributions is expected as the JMA-NHM model allows us to consider three-dimensional land-atmosphere interactions that are impossible for one-dimensional land surface model alone. We set the five land surface parameters and calculated a sensitivity of temperatures in regard to each land surface parameter change for the periods of 15th June to 15th August 1985, 1990, 1995, 2000, and 2005 when cropland area are presented in Japan. The experiment result showed that surface albedo and evaporative efficiency had significant sensitivity on the daily maximum and mean temperatures whereas heat capacity and thermal conductivity were impactful on the daily minimum temperature. Roughness length was less impactful for any temperatures. Parameter sensitivity showed geographical distribution, such as significant impact in inland area rather than coastal area for the response of daily mean temperature by surface albedo and evaporative efficiency changes. Lower sensitivity in coastal area was attributed to thermal advection from

  9. Percentage Contributions from Atmospheric and Surface Features to Computed Brightness Temperatures

    NASA Astrophysics Data System (ADS)

    Jackson, G. S.

    2006-12-01

    Over the past few years, there has become an increasing interest in the use of millimeter-wave (mm-wave) and sub-millimeter-wave (submm-wave) radiometer observations to investigate the properties of ice particles in clouds. Passive radiometric channels respond to both the integrated particle mass throughout the volume and field of view, and to the amount, location, and size distribution of the frozen (and liquid) particles with the sensitivity varying for different frequencies and hydrometeor types. One methodology used since the 1960's to discern the relationship between the physical state observed and the brightness temperature (TB) is through the temperature weighting function profile. In this research, the temperature weighting function concept is exploited to analyze the sensitivity of various characteristics of the cloud profile, such as relative humidity, ice water path, liquid water path, and surface emissivity. In our numerical analysis, we compute the contribution (in Kelvin) from each of these cloud and surface characteristics, so that the sum of these various parts equals the computed TB. Furthermore, the percentage contribution from each of these characteristics is assessed. There is some intermingling/contamination of the contributions from various components due to the integrated nature of passive observations and the absorption and scattering between the vertical layers, but all in all the knowledge gained is useful. This investigation probes the sensitivity over several cloud classifications, such as cirrus, blizzards, light snow, anvil clouds, and heavy rain. The focus is on mm-wave and submm-wave frequencies, however discussions of the effects of cloud variations to frequencies as low as 10 GHz and up to 874 GHz will also be presented. The results show that nearly 60% of the TB value at 89 GHz comes from the earth's surface for even the heaviest blizzard snow rates. On the other hand, a significant percentage of the TB value comes from the snow

  10. Percentage Contributions from Atmospheric and Surface Features to Computed Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick

    2006-01-01

    Over the past few years, there has become an increasing interest in the use of millimeter-wave (mm-wave) and sub-millimeter-wave (submm-wave) radiometer observations to investigate the properties of ice particles in clouds. Passive radiometric channels respond to both the integrated particle mass throughout the volume and field of view, and to the amount, location, and size distribution of the frozen (and liquid) particles with the sensitivity varying for different frequencies and hydrometeor types. One methodology used since the 1960's to discern the relationship between the physical state observed and the brightness temperature (TB) is through the temperature weighting function profile. In this research, the temperature weighting function concept is exploited to analyze the sensitivity of various characteristics of the cloud profile, such as relative humidity, ice water path, liquid water path, and surface emissivity. In our numerical analysis, we compute the contribution (in Kelvin) from each of these cloud and surface characteristics, so that the sum of these various parts equals the computed TB. Furthermore, the percentage contribution from each of these characteristics is assessed. There is some intermingling/contamination of the contributions from various components due to the integrated nature of passive observations and the absorption and scattering between the vertical layers, but all in all the knowledge gained is useful. This investigation probes the sensitivity over several cloud classifications, such as cirrus, blizzards, light snow, anvil clouds, and heavy rain. The focus is on mm-wave and submm-wave frequencies, however discussions of the effects of cloud variations to frequencies as low as 10 GHz and up to 874 GHz will also be presented. The results show that nearly 60% of the TB value at 89 GHz comes from the earth's surface for even the heaviest blizzard snow rates. On the other hand, a significant percentage of the TB value comes from the snow

  11. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting.

    PubMed

    Yan, Chunze; Hao, Liang; Hussein, Ahmed; Young, Philippe

    2015-11-01

    Triply periodic minimal surface (TPMS) structures have already been shown to be a versatile source of biomorphic scaffold designs. Therefore, in this work, Ti-6Al-4V Gyroid and Diamond TPMS lattices having an interconnected high porosity of 80-95% and pore sizes in the range of 560-1600 μm and 480-1450 μm respectively were manufactured by selective laser melting (SLM) for bone implants. The manufacturability, microstructure and mechanical properties of the Ti-6Al-4V TPMS lattices were evaluated. Comparison between 3D micro-CT reconstructed models and original CAD models of the Ti-6Al-4V TPMS lattices shows excellent reproduction of the designs. The as-built Ti-6Al-4V struts exhibit the microstructure of columnar grains filled with very fine and orthogonally oriented α' martensitic laths with the width of 100-300 nm and have the microhardness of 4.01 ± 0.34 GPa. After heat treatment at 680°C for 4h, the α' martensite was converted to a mixture of α and β, in which the α phase being the dominant fraction is present as fine laths with the width of 500-800 nm and separated by a small amount of narrow, interphase regions of dark β phase. Also, the microhardness is decreased to 3.71 ± 0.35 GPa due to the coarsening of the microstructure. The 80-95% porosity TPMS lattices exhibit a comparable porosity with trabecular bone, and the modulus is in the range of 0.12-1.25 GPa and thus can be adjusted to the modulus of trabecular bone. At the same range of porosity of 5-10%, the moduli of cortical bone and of the Ti-6Al-4V TPMS lattices are in a similar range. Therefore, the modulus and porosity of Ti-6Al-4V TPMS lattices can be tailored to the levels of human bones and thus reduce or avoid "stress shielding" and increase longevity of implants. Due to the biomorphic designs, and high interconnected porosity and stiffness comparable to human bones, SLM-made Ti-6Al-4V TPMS lattices can be a promising material for load bearing bone implants.

  12. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting.

    PubMed

    Yan, Chunze; Hao, Liang; Hussein, Ahmed; Young, Philippe

    2015-11-01

    Triply periodic minimal surface (TPMS) structures have already been shown to be a versatile source of biomorphic scaffold designs. Therefore, in this work, Ti-6Al-4V Gyroid and Diamond TPMS lattices having an interconnected high porosity of 80-95% and pore sizes in the range of 560-1600 μm and 480-1450 μm respectively were manufactured by selective laser melting (SLM) for bone implants. The manufacturability, microstructure and mechanical properties of the Ti-6Al-4V TPMS lattices were evaluated. Comparison between 3D micro-CT reconstructed models and original CAD models of the Ti-6Al-4V TPMS lattices shows excellent reproduction of the designs. The as-built Ti-6Al-4V struts exhibit the microstructure of columnar grains filled with very fine and orthogonally oriented α' martensitic laths with the width of 100-300 nm and have the microhardness of 4.01 ± 0.34 GPa. After heat treatment at 680°C for 4h, the α' martensite was converted to a mixture of α and β, in which the α phase being the dominant fraction is present as fine laths with the width of 500-800 nm and separated by a small amount of narrow, interphase regions of dark β phase. Also, the microhardness is decreased to 3.71 ± 0.35 GPa due to the coarsening of the microstructure. The 80-95% porosity TPMS lattices exhibit a comparable porosity with trabecular bone, and the modulus is in the range of 0.12-1.25 GPa and thus can be adjusted to the modulus of trabecular bone. At the same range of porosity of 5-10%, the moduli of cortical bone and of the Ti-6Al-4V TPMS lattices are in a similar range. Therefore, the modulus and porosity of Ti-6Al-4V TPMS lattices can be tailored to the levels of human bones and thus reduce or avoid "stress shielding" and increase longevity of implants. Due to the biomorphic designs, and high interconnected porosity and stiffness comparable to human bones, SLM-made Ti-6Al-4V TPMS lattices can be a promising material for load bearing bone implants. PMID:26210549

  13. Contribution of the highly conserved EaeH surface protein to enterotoxigenic Escherichia coli pathogenesis.

    PubMed

    Sheikh, Alaullah; Luo, Qingwei; Roy, Koushik; Shabaan, Salwa; Kumar, Pardeep; Qadri, Firdausi; Fleckenstein, James M

    2014-09-01

    Enterotoxigenic Escherichia coli (ETEC) strains are among the most common causes of diarrheal illness worldwide. These pathogens disproportionately afflict children in developing countries, where they cause substantial morbidity and are responsible for hundreds of thousands of deaths each year. Although these organisms are important targets for enteric vaccines, most development efforts to date have centered on a subset of plasmid-encoded fimbrial adhesins known as colonization factors and heat-labile toxin (LT). Emerging data suggest that ETEC undergoes considerable changes in its surface architecture, sequentially deploying a number of putative adhesins during its interactions with the host. We demonstrate here that one putative highly conserved, chromosomally encoded adhesin, EaeH, engages the surfaces of intestinal epithelial cells and contributes to bacterial adhesion, LT delivery, and colonization of the small intestine. PMID:24935979

  14. Fermi level pinning and the charge transfer contribution to the energy of adsorption at semiconducting surfaces

    SciTech Connect

    Krukowski, Stanisław; Kempisty, Paweł; Strak, Paweł; Sakowski, Konrad

    2014-01-28

    It is shown that charge transfer, the process analogous to formation of semiconductor p-n junction, contributes significantly to adsorption energy at semiconductor surfaces. For the processes without the charge transfer, such as molecular adsorption of closed shell systems, the adsorption energy is determined by the bonding only. In the case involving charge transfer, such as open shell systems like metal atoms or the dissociating molecules, the energy attains different value for the Fermi level differently pinned. The Density Functional Theory (DFT) simulation of species adsorption at different surfaces, such as SiC(0001) or GaN(0001) confirms these predictions: the molecular adsorption is independent on the coverage, while the dissociative process adsorption energy varies by several electronvolts.

  15. Organic matter on the early surface of Mars: an assessment of the contribution by interplanetary dust

    NASA Astrophysics Data System (ADS)

    Flynn, G. J.

    1993-03-01

    Calculations by Anders and Chyba et al. have recently revived interest in the suggestion that organic compounds important to the development of life were delivered to the primitive surface of the Earth by comets, asteroids or the interplanetary dust derived from these two sources. Anders has shown that the major post-accretion contribution of extraterrestrial organic matter to the surface of the Earth is from interplanetary dust. Since Mars is a much more favorable site for the gentle deceleration of interplanetary dust particles than is Earth, model calculations show that biologically important organic compounds are likely to have been delivered to the early surface of Mars by the interplanetary dust in an order-of-magnitude higher surface density than onto the early Earth. Using the method described by Flynn and McKay, the size frequency distribution, and the atmospheric entry velocity distribution of IDP's at Mars were calculated. The entry velocity distribution, coupled with the atmospheric entry heating model developed by Whipple and extended by Fraundorf was used to calculate the fraction of the particles in each mass decade which survives atmospheric entry without melting (i.e., those not heated above 1600K). The incident mass and surviving mass in each mass decade are shown for both Earth and Mars.

  16. RKKY-like contributions to the magnetic anisotropy energy: 3 d adatoms on Pt(111) surface

    NASA Astrophysics Data System (ADS)

    Bouhassoune, Mohammmed; Dias, Manuel dos Santos; Zimmermann, Bernd; Dederichs, Peter H.; Lounis, Samir

    2016-09-01

    The magnetic anisotropy energy defines the energy barrier that stabilizes a magnetic moment. Utilizing density-functional-theory-based simulations and analytical formulations, we establish that this barrier is strongly modified by long-range contributions very similar to Friedel oscillations and Rudermann-Kittel-Kasuya-Yosida interactions. Thus, oscillations are expected and observed, with different decaying factors and highly anisotropic in realistic materials, which can switch nontrivially the sign of the magnetic anisotropy energy. This behavior is general, and for illustration we address the transition-metal adatoms, Cr, Mn, Fe, and Co deposited on a Pt(111) surface. We explain, in particular, the mechanisms leading to the strong site dependence of the magnetic anisotropy energy observed for Fe adatoms on a Pt(111) surface as revealed previously via first-principles-based simulations and inelastic scanning tunneling spectroscopy [A. A. Khajetoorians et al., Phys. Rev. Lett. 111, 157204 (2013), 10.1103/PhysRevLett.111.157204]. The same mechanisms are probably active for the site dependence of the magnetic anisotropy energy obtained for Fe adatoms on Pd or Rh(111) surfaces and for Co adatoms on a Rh(111) surface [P. Blonski et al., Phys. Rev. B 81, 104426 (2010), 10.1103/PhysRevB.81.104426].

  17. Factors contributing to the off-target transport of pyrethroid insecticides from urban surfaces.

    PubMed

    Jorgenson, Brant C; Wissel-Tyson, Christopher; Young, Thomas M

    2012-08-01

    Pyrethroid insecticides used in urban and suburban contexts have been found in urban creek sediments and associated with toxicity in aquatic bioassays. The objectives of this study were to evaluate the main factors contributing to the off-target transport of pyrethroid insecticides from surfaces typical of residential landscapes. Controlled rainfall simulations over concrete, bare soil, and turf plots treated individually with pyrethroid insecticides in a suspension concentrate, an emulsifiable concentrate, or a granule formulation were conducted at different rainfall intensities and different product set-time intervals. Pyrethroid mass washoff varied by several orders of magnitude between experimental treatments. Suspension concentrate product application to concrete yielded significantly greater washoff than any other treatment; granule product application to turf yielded the least washoff. Fractional losses at 10 L of runoff ranged from 25.9 to 0.011% of pyrethroid mass applied, and 10 L nominal mass losses ranged from 3970 to 0.18 μg. Mass washoff depended principally on formulation and surface type combination and, to a lesser degree, on set-time interval and rainfall intensity. Treatment effects were analyzed by ANOVA on main factors of formulation, surface type, and set time. Factor effects were not purely additive; a significant interaction between formulation and surface type was noted.

  18. Factors Contributing to the Off-Target Transport of Pyrethroid Insecticides From Urban Surfaces

    PubMed Central

    Jorgenson, Brant C.; Wissel-Tyson, Christopher; Young, Thomas M.

    2013-01-01

    Pyrethroid insecticides used in an urban and suburban context have been found in urban creek sediments and associated with toxicity in aquatic bioassays. The objectives of this study were to evaluate the main factors contributing to the off-target transport of pyrethroid insecticides from surfaces typical of residential landscapes. Controlled rainfall simulations over concrete, bare soil, and turf plots treated individually with pyrethroid insecticides in a suspension concentrate, an emulsifiable concentrate, or a granule formulation were conducted at different rainfall intensities and different product set-time intervals. Pyrethroid mass washoff varied by several orders of magnitude between experimental treatments. Suspension concentrate product application to concrete yielded significantly greater washoff than any other treatment; granule product application to turf yielded the least washoff. Fractional losses at 10 L of runoff ranged from 25.9% to 0.011% of pyrethroid mass applied and 10 L nominal mass losses ranged from 3,970 to 0.18 μg. Mass washoff depended principally on formulation and surface type combination and to a lesser degree set-time interval and rainfall intensity. Treatment effects were analyzed by ANOVA on main factors of formulation, surface type, and set time. Factor effects were not purely additive; a significant interaction between formulation and surface type was noted. PMID:22784034

  19. Organic matter on the early surface of Mars: An assessment of the contribution by interplanetary dust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.

    1993-01-01

    Calculations by Anders and Chyba et al. have recently revived interest in the suggestion that organic compounds important to the development of life were delivered to the primitive surface of the Earth by comets, asteroids or the interplanetary dust derived from these two sources. Anders has shown that the major post-accretion contribution of extraterrestrial organic matter to the surface of the Earth is from interplanetary dust. Since Mars is a much more favorable site for the gentle deceleration of interplanetary dust particles than is Earth, model calculations show that biologically important organic compounds are likely to have been delivered to the early surface of Mars by the interplanetary dust in an order-of-magnitude higher surface density than onto the early Earth. Using the method described by Flynn and McKay, the size frequency distribution, and the atmospheric entry velocity distribution of IDP's at Mars were calculated. The entry velocity distribution, coupled with the atmospheric entry heating model developed by Whipple and extended by Fraundorf was used to calculate the fraction of the particles in each mass decade which survives atmospheric entry without melting (i.e., those not heated above 1600K). The incident mass and surviving mass in each mass decade are shown for both Earth and Mars.

  20. Surface Mass Balance Contributions to Acceleration of Antarctic Ice Mass Loss during 2003- 2013

    NASA Astrophysics Data System (ADS)

    Seo, K. W.; Wilson, C. R.; Scambos, T. A.; Kim, B. M.; Waliser, D. E.; Tian, B.; Kim, B.; Eom, J.

    2015-12-01

    Recent observations from satellite gravimetry (the GRACE mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6±7.2 GTon/yr2. Of this total, we find that the surface mass balance component is -8.2±2.0 GTon/yr2. However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8±5.8 GTon/yr2. Correcting for this yields an ice discharge acceleration of -15.1±6.5 GTon/yr2.

  1. Balance control under different passive contributions of the ankle extensors: quiet standing on inclined surfaces.

    PubMed

    Sasagawa, Shun; Ushiyama, Junichi; Masani, Kei; Kouzaki, Motoki; Kanehisa, Hiroaki

    2009-07-01

    Human bipedal stance is often modeled as a single inverted pendulum that pivots at the ankle joints in the sagittal plane. Because the center of body mass is usually maintained in front of the ankle joints, ankle extensor torque is continuously required to prevent the body from falling. During quiet standing, both passive and active mechanisms contribute to generate the ankle extensor torque counteracting gravity. This study aimed to investigate the active stabilization mechanism in more detail. Eight healthy subjects were requested to stand quietly on three different surfaces of 1) toes-up, 2) level, and 3) toes-down. Surface electromyogram (EMG) was recorded from the medial head of the gastrocnemius (MG), soleus (SOL), and tibialis anterior muscles. Inclination angle of the body was simultaneously measured. As a result, we found that EMG activities of MG and SOL were lowest during the toes-up standing and highest during the toes-down, indicating that increased (decreased) passive contribution required less (more) extensor torque generated by active muscle contraction. Frequency domain analysis also revealed that sway-related modulation of the ankle extensor activity (0.12-4.03 Hz) was unchanged among the three foot inclinations. On the other hand, isometric contraction strength of these muscles increased as the slope declined (toes-up < level < toes-down). These results support the idea that by regulating the isometric contraction strength, the CNS maintains a constant level of muscle tone and resultant ankle stiffness irrespective of the passive contribution. Such control scheme would be crucial when we consider the low bandwidth of the intermittent controller.

  2. Contribution of non-agricultural pesticides to pesticide load in surface water.

    PubMed

    Skark, Christian; Zullei-Seibert, Ninette; Willme, Uwe; Gatzemann, Ulrich; Schlett, Claus

    2004-06-01

    Two small creeks, tributaries of the River Ruhr near Schwerte, Federal Republic of Germany, were investigated to reveal the regional agricultural and non-agricultural sources of pesticide inputs and the main pathways to surface water. In addition, the receiving water was monitored for pesticides. The watersheds are situated at the northern margin of the Rhenian Schiefergebirge, a highland landscape in North-Rhine-Westphalia. Solid carboniferous shale is covered by a shallow layer of quaternary unconsolidated rock (porous aquifer thickness <5 m). Occurrence of herbicides such as chlortoluron, isoproturon and terbuthylazine in surface water could be due to their broad agricultural application in regional dominant crops, such as barley, wheat and maize. Occurrence of diuron and glyphosate results from their use in residential settlements and industrial areas as well as from weed control on railway tracks. Atrazine concentrations up to 0.8 microg litre(-1) indicated recent use of this herbicide, which has been banned since 1991, and was also the result of non-agricultural applications. Pathways for pesticide input to the receiving waters were related to both surface run-off and underground passage. Two-thirds of the observed diuron load in the surface water resulted from an input by run-off. This was expected as a result of total herbicide application targets to sealed surfaces infringing current regulations and recommendations. Diuron load varied between 0.6 and 1.2% of the estimated amount applied annually in the investigated catchments. Non-agricultural pesticide use contributed more than two-thirds of the whole observed pesticide load in the tributaries and at least one-third in the River Ruhr.

  3. Sources contributing to background surface ozone in the US Intermountain West

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Jacob, D. J.; Yue, X.; Downey, N. V.; Wood, D. A.; Blewitt, D.

    2014-06-01

    We quantify the sources contributing to background surface ozone concentrations in the US Intermountain West by using the GEOS-Chem chemical transport model with 1 / 2° × 2 / 3° horizontal resolution to interpret the Clean Air Status and Trends Network (CASTNet) ozone monitoring data for 2006-2008. We isolate contributions from lightning, wildfires, the stratosphere, and California pollution. Lightning emissions are constrained by observations and wildfire emissions are estimated from daily fire reports. We find that lightning increases mean surface ozone in summer by 10 ppbv in the Intermountain West, with moderate variability. Wildfire plumes generate high-ozone events in excess of 80 ppbv in GEOS-Chem, but CASTNet ozone observations in the Intermountain West show no enhancements during these events nor do they show evidence of regional fire influence. Models may overestimate ozone production in fresh fire plumes because of inadequate chemistry and grid-scale resolution. The highest ozone concentrations observed in the Intermountain West (> 75 ppbv) in spring are associated with stratospheric intrusions. The model captures the timing of these intrusions but not their magnitude, reflecting numerical diffusion intrinsic to Eulerian models. This can be corrected statistically through a relationship between model bias and the model-diagnosed magnitude of stratospheric influence; with this correction, models may still be useful to forecast and interpret high-ozone events from stratospheric intrusions. We show that discrepancy between models in diagnosing stratospheric influence is due in part to differences in definition, i.e., whether stratospheric ozone is diagnosed as produced in the stratosphere (GEOS-Chem definition) or as transported from above the tropopause. The latter definition can double the diagnosed stratospheric influence in surface air by labeling as "stratospheric" any ozone produced in the troposphere and temporarily transported to the stratosphere

  4. Sources contributing to background surface ozone in the US Intermountain West

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Jacob, D. J.; Yue, X.; Downey, N. V.; Wood, D. A.; Blewitt, D.

    2013-10-01

    We quantify the sources contributing to background surface ozone concentrations in the US Intermountain West by using the GEOS-Chem chemical transport model with 1/2° × 2/3° horizontal resolution to interpret CASTNet ozone monitoring data for 2006-2008. We isolate contributions from lightning, wildfires, the stratosphere, and California pollution. Lightning increases mean surface ozone in summer by 10 ppbv in the Intermountain West, with moderate variability; constraining the model source with flash rate observations is important. Using a daily wildfire inventory compiled from fire reports in the western US generates high-ozone events in excess of 80 ppbv in GEOS-Chem. The CASTNet observations show no evidence of such events. Models in general may overestimate ozone concentrations in fresh plumes because of inadequate fire plume chemistry. The highest ozone concentrations observed in the Intermountain West (>75 ppbv) in spring are associated with stratospheric intrusions. The model captures the timing of these intrusions but not their magnitude, reflecting numerical diffusion intrinsic to Eulerian models. This can be corrected statistically through a relationship between model bias and the model-diagnosed magnitude of stratospheric influence; with this correction, models may still be useful to forecast and interpret high-ozone events from stratospheric intrusions. We show that discrepancy between models in diagnosing stratospheric influence is due in part to differences in definition, i.e., whether stratospheric ozone is diagnosed as produced in the stratosphere (GEOS-Chem definition) or as transported from above the tropopause. The latter definition can double the diagnosed stratospheric influence in surface air by labeling as "stratospheric" any ozone produced in the troposphere and temporarily transported to the stratosphere. California pollution influence in the Intermountain West frequently exceeds 10 ppbv but is generally not correlated with the highest

  5. Surface Gravity Data Contribution to the Puerto Rico and U.S. Virgin Islands Geoid Model

    NASA Astrophysics Data System (ADS)

    Li, X.; Gerhards, C.; Holmes, S. A.; Saleh, J.; Shaw, B.

    2015-12-01

    The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project provides updated local gravity field information for the XGEOID15 models. In particular, its airborne gravity data in the area of Puerto Rico and U.S. Virgin Islands (PRVI) made substantial improvements (~60%) on the precision of the geoid models at the local GNSS/Leveling bench marks in the target area. Fortunately, PRVI is free of the huge systematic error in the North American Vertical Datum of 1988 (NAVD88). Thus, the airborne contribution was evaluated more realistically. In addition, the airborne data picked up more detailed gravity field information in the medium wavelength band (spherical harmonic degree 200 to 600) that are largely beyond the resolution of the current satellite missions, especially along the nearby ocean trench areas. Under this circumstance (significant airborne contributions in the medium band), local surface gravity data need to be examined more carefully than before during merging with the satellite and airborne information for local geoid improvement, especially considering the well-known systematic problems in the NGS historical gravity holdings (Saleh et al 2013 JoG). Initial tests showed that it is very important to maintain high consistency between the surface data sets and the airborne enhanced reference model. In addition, a new aggregation method (Gerhards 2014, Inverse Problems) will also be tested to optimally combine the local surface data with the reference model. The data cleaning and combining procedures in the target area will be summarized here as reference for future applications.

  6. Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters

    PubMed Central

    Smith, Jason M; Casciotti, Karen L; Chavez, Francisco P; Francis, Christopher A

    2014-01-01

    The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity—ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts—varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification. PMID:24553472

  7. Contributions of regional and intercontinental transport to surface ozone in Tokyo

    NASA Astrophysics Data System (ADS)

    Yoshitomi, M.; Wild, O.; Akimoto, H.

    2011-04-01

    Japan lies downwind of the Asian continent and for much of the year air quality is directly influenced by emissions of ozone precursors over these heavily-populated and rapidly-industrializing regions. This study examines the extent to which oxidant transport from regional and distant anthropogenic sources influences air quality in Japan in springtime, when these contributions are largest. We find that European and North American contributions to surface ozone over Japan in spring are persistent, averaging 3.5±1.1 ppb and 2.8±0.5 ppb respectively, and are greatest in cold continental outflow conditions following the passage of cold fronts. Contributions from China are larger, 4.0±2.8 ppb, and more variable, as expected for a closer source region, and are generally highest near cold fronts preceding the influence of more distant sources. The stratosphere provides a varying but ever-present background of ozone of about 11.2±2.5 ppb during spring. Local sources over Japan and Korea have a relatively small impact on mean ozone, 2.4±7.6 ppb, but this masks a strong diurnal signal, and local sources clearly dominate during episodes of high daytime ozone. By examining the meteorological mechanisms that favour transport from different source regions, we demonstrate that while maximum foreign influence generally does not occur at the same time as the greatest buildup of oxidants from local sources, it retains a significant influence under these conditions. It is thus clear that while meteorological boundaries provide some protection from foreign influence during oxidant outbreaks in Tokyo, these distant sources still make a substantial contribution to exceedance of the Japanese ozone air quality standard in springtime.

  8. Contributions of regional and intercontinental transport to surface ozone in the Tokyo area

    NASA Astrophysics Data System (ADS)

    Yoshitomi, M.; Wild, O.; Akimoto, H.

    2011-08-01

    Japan lies downwind of the Asian continent and for much of the year air quality is directly influenced by emissions of ozone precursors over these heavily-populated and rapidly-industrializing regions. This study examines the extent to which oxidant transport from regional and distant anthropogenic sources influences air quality in Japan in springtime, when these contributions are largest. We find that European and North American contributions to surface ozone over Japan in spring are persistent, averaging 3.5±1.1 ppb and 2.8±0.5 ppb respectively, and are greatest in cold continental outflow conditions following the passage of cold fronts. Contributions from China are larger, 4.0±2.8 ppb, and more variable, as expected for a closer source region, and are generally highest near cold fronts preceding the influence of more distant sources. The stratosphere provides a varying but ever-present background of ozone of about 11.2±2.5 ppb during spring. Local sources over Japan and Korea have a relatively small impact on mean ozone, 2.4±7.6 ppb, but this masks a strong diurnal signal, and local sources clearly dominate during episodes of high daytime ozone. By examining the meteorological mechanisms that favour transport from different source regions, we demonstrate that while maximum foreign influence generally does not occur at the same time as the greatest buildup of oxidants from local sources, it retains a significant influence under these conditions. It is thus clear that while meteorological boundaries provide some protection from foreign influence during oxidant outbreaks in Tokyo, these distant sources still make a substantial contribution to exceedance of the Japanese ozone air quality standard in springtime.

  9. Probing the contribution of different intermolecular forces to the adsorption of spheroproteins onto hydrophilic surfaces.

    PubMed

    Borges, João; Campiña, José M; Silva, A Fernando

    2013-12-27

    Protein adsorption is a delicate process, which results from the balance between the properties of proteins and their solid supports. Although the relevance of some of these parameters has been already unveiled, the precise involvement of electrostatics and other weaker intermolecular forces requires further comprehension. Aiming to contribute to this task, this work explores the attachment, rearrangement, and surface aggregation of a model spheroprotein, such as bovine β-lactoglobulin (β-LG), onto hydrophilic substrates prefunctionalized with different alkylthiol films. Thereby, a variety of electrostatic scenarios for the adsorption of β-LG could be recreated through the variation of the pH and the functional chemistry of the surfaces. The changes in surface mass density (plus associated water) and film flexibility were followed in situ with quartz crystal microbalance with dissipation monitoring. Film packing and aggregation were assessed by faradaic electrochemical measurements and ex situ atomic force microscopy and field effect scanning electron microscopy. In contrast to previous hypotheses arguing that electrostatic interactions between charged substrates and proteins would be the only driving force, a complex interplay between Coulombic and non-Coulombic intermolecular forces (which would depend upon the experimental conditions) has been suggested to explain the results.

  10. Genes ycfR, sirA and yigG contribute to the surface attachment of Salmonella enterica Typhimurium and Saintpaul to fresh produce.

    PubMed

    Salazar, Joelle K; Deng, Kaiping; Tortorello, Mary Lou; Brandl, Maria T; Wang, Hui; Zhang, Wei

    2013-01-01

    Salmonella enterica is a frequent contaminant of minimally-processed fresh produce linked to major foodborne disease outbreaks. The molecular mechanisms underlying the association of this enteric pathogen with fresh produce remain largely unexplored. In our recent study, we showed that the expression of a putative stress regulatory gene, ycfR, was significantly induced in S. enterica upon exposure to chlorine treatment, a common industrial practice for washing and decontaminating fresh produce during minimal processing. Two additional genes, sirA involved in S. enterica biofilm formation and yigG of unknown function, were also found to be differentially regulated under chlorine stress. To further characterize the roles of ycfR, sirA, and yigG in S. enterica attachment and survival on fresh produce, we constructed in-frame deletions of all three genes in two different S. enterica serovars, Typhimurium and Saintpaul, which have been implicated in previous disease outbreaks linked to fresh produce. Bacterial attachment to glass and polystyrene microtiter plates, cell aggregation and hydrophobicity, chlorine resistance, and surface attachment to intact spinach leaf and grape tomato were compared among wild-type strains, single-gene deletion mutants, and their respective complementation mutants. The results showed that deletions of ycfR, sirA, and yigG reduced bacterial attachment to glass and polystyrene as well as fresh produce surface with or without chlorine treatment in both Typhimurium and Saintpaul. Deletion of ycfR in Typhimurium significantly reduced bacterial chlorine resistance and the attachment to the plant surfaces after chlorinated water washes. Deletions of ycfR in Typhimurium and yigG in Saintpaul resulted in significant increase in cell aggregation. Our findings suggest that ycfR, sirA, and yigG collectively contribute to S. enterica surface attachment and survival during post-harvest minimal processing of fresh produce.

  11. High order surface aberration contributions from phase space analysis of differential rays.

    PubMed

    Chen, Bo; Herkommer, Alois M

    2016-03-21

    Phase space methods are very popular for illumination systems or paraxial system analysis. In this paper it will be shown that it is also a promising tool to visualize and quantify surface aberration contributions, including all orders. The method is based on the calculation and propagation of a differential ray pair. In order to validate the method we compare to Aldis calculus, an exact method to determine high order aberrations in rotational symmetric systems. A triplet lens is used as an example to visualize the results. The analysis indicates that the phase space method is a very good approximation to Aldis calculus and moreover it is not limited to any symmetry assumptions. PMID:27136789

  12. Contribution of the enterococcal surface protein Esp to pathogenesis of Enterococcus faecium endocarditis.

    PubMed

    Heikens, Esther; Singh, Kavindra V; Jacques-Palaz, Karen D; van Luit-Asbroek, Miranda; Oostdijk, Evelien A N; Bonten, Marc J M; Murray, Barbara E; Willems, Rob J L

    2011-12-01

    The enterococcal surface protein Esp, specifically linked to nosocomial Enterococcus faecium, is involved in biofilm formation. To assess the role of Esp in endocarditis, a biofilm-associated infection, an Esp-expressing E. faecium strain (E1162) or its Esp-deficient mutant (E1162Δesp) were inoculated through a catheter into the left ventricle of rats. After 24 h, less E1162Δesp than E1162 were recovered from heart valve vegetations. In addition, anti-Esp antibodies were detected in Esp-positive E. faecium bacteremia and endocarditis patient sera. In conclusion, Esp contributes to colonization of E. faecium at the heart valves. Furthermore, systemic infection elicits an Esp-specific antibody response in humans.

  13. Enzyme–adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface

    PubMed Central

    Williamson, Adele; Rothweiler, Ulli; Schrøder Leiros, Hanna-Kirsti

    2014-01-01

    DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme–adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date. PMID:25372693

  14. Arabidopsis GPAT9 contributes to synthesis of intracellular glycerolipids but not surface lipids

    PubMed Central

    Singer, Stacy D.; Chen, Guanqun; Mietkiewska, Elzbieta; Tomasi, Pernell; Jayawardhane, Kethmi; Dyer, John M.; Weselake, Randall J.

    2016-01-01

    GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE (GPAT) genes encode enzymes involved in glycerolipid biosynthesis in plants. Ten GPAT homologues have been identified in Arabidopsis. GPATs 4–8 have been shown to be involved in the production of extracellular lipid barrier polyesters. Recently, GPAT9 was reported to be essential for triacylglycerol (TAG) biosynthesis in developing Arabidopsis seeds. The enzymatic properties and possible functions of GPAT9 in surface lipid, polar lipid and TAG biosynthesis in non-seed organs, however, have not been investigated. Here we show that Arabidopsis GPAT9 exhibits sn-1 acyltransferase activity with high specificity for acyl-coenzyme A, thus providing further evidence that this GPAT is involved in storage lipid biosynthesis. We also confirm a role for GPAT9 in seed oil biosynthesis and further demonstrate that GPAT9 contributes to the biosynthesis of both polar lipids and TAG in developing leaves, as well as lipid droplet production in developing pollen grains. Conversely, alteration of constitutive GPAT9 expression had no obvious effects on surface lipid biosynthesis. Taken together, these studies expand our understanding of GPAT9 function to include modulation of several different intracellular glycerolipid pools in plant cells. PMID:27325892

  15. Relationships between deformation and microstructure evolution and minimizing surface roughness after BCP processing in RRR Nb cavitites

    SciTech Connect

    T.R. Bieler; D. Baars; K.T. Hartwig; C. Compton; T.L. Grimm

    2009-05-26

    Two strategies for improving the surface finish of niobium sheet used in superconducting radio frequency cavities were examined, using slices of single (or large-grain) material from an ingot, and equal channel angle extrusion (ECAE) preprocessing of ingot material to achieve a uniform and small grain size prior to subsequent rolling. The effect of these two processing paths on final microstructure, texture, and surface finish are discussed.

  16. A Streptococcus suis LysM domain surface protein contributes to bacterial virulence.

    PubMed

    Wu, Zongfu; Shao, Jing; Ren, Haiyan; Tang, Huanyu; Zhou, Mingyao; Dai, Jiao; Lai, Liying; Yao, Huochun; Fan, Hongjie; Chen, Dai; Zong, Jie; Lu, Chengping

    2016-05-01

    Streptococcus suis (SS) is a major swine pathogen, as well as a zoonotic agent for humans. Numerous factors contribute to SS virulence, but the pathogenesis of SS infection is poorly understood. Here, we show that a novel SS surface protein containing a LysM at the N-terminus (SS9-LysM) contributes to SS virulence. Homology analysis revealed that the amino acid sequence of SS9-LysM from the SS strain GZ0565 shares 99.8-68.7% identity with homologous proteins from other SS strains and 41.2% identity with Group B Streptococcal protective antigen Sip. Immunization experiments showed that 7 out of 30 mice immunized with recombinant SS9-LysM were protected against challenge with the virulent GZ0565 strain, while all of the control mice died within 48h following bacterial challenge. In mouse infection model, the virulence of the SS9-LysM deletion mutant (ΔSS9-LysM) was reduced compared with the wild-type (WT) strain GZ0565 and SS9-LysM complemented strain. In addition, ΔSS9-LysM was significantly more sensitive to killing by pig blood ex vivo and mouse blood in vivo compared with the WT strain and SS9-LysM complemented strain. In vivo transcriptome analysis in mouse blood showed that the WT strain reduced the expression of host genes related to iron-binding by SS9-LysM. Moreover, the total free iron concentration in blood from infected mice was significantly lower for the ΔSS9-LysM strain compared with the WT strain. Together, our data reveal that SS9-LysM facilitates SS survival within blood by releasing more free iron from the host. This represents a new mechanism of SS pathogenesis.

  17. Surface heat flow and the mantle contribution on the margins of Australia

    NASA Astrophysics Data System (ADS)

    Goutorbe, Bruno; Lucazeau, Francis; Bonneville, Alain

    2008-05-01

    We present thermal data from 473 oil exploration wells in Australia and New Zealand. Approximately 2300 bottom-hole temperatures are corrected to form a homogeneous set along with 86 temperatures from reservoir tests. Thermal conductivity profiles are estimated from a set of geophysical well logs using a recently developed neural network approach. Retaining wells in which temperature and thermal conductivity data overlap over an interval greater than 1000 m, we estimate 10 heat flow values in the Taranaki basin of New Zealand and 270 values in the northwestern, western, and southern margins and in the intracontinental Canning basin of Australia. The values are in the range 30-80 mW m-2. As a result of several differences in the data and methods, our heat flow values are 10-20 mW m-2 lower compared to previously published estimates for the same wells in New Zealand. For Australia, our values are consistent with previously measured values and trends in the continental and marine regions. On the northwestern and southeastern margins, we interpret the variations as reflecting changes in the nature of the underlying basement. Consistent with onshore data, it is inferred that the Archean crust is depleted in radiogenic elements compared to Proterozoic regions and that recent volcanism affects the eastern Paleozoic area. After removing from surface heat flow the sediment contributions, including a permanent radiogenic heat component and a transient sedimentation effect, a simple crustal model suggests that mantle heat flow on the continental margin bordering the Pilbara craton is higher than below the craton itself. Moreover, heat flow corrected for the sediment contributions is markedly lower in the Petrel intracontinental basin than in the adjacent margin, although the crust is thinner below this latter region. As both are underlaid by the same basement, this observation may indicate that the mantle contribution is also higher below that margin. Such a higher mantle

  18. Surface and Groundwater Contribution in Convening with High Crop Water Demand in Indus Basin

    NASA Astrophysics Data System (ADS)

    Hafeez, Mohsin; Ullah, Kaleem; Hanjra, Munir Ahmad; Ullah Bodla, Habib; Niaz Ahmad, Rai

    2010-05-01

    The water resources of the Indus Basin, Pakistan are mostly exploited, however the demand for water is on a permanent rise due to population growth and associated urbanization and industrialization process. Owing to rapidly increasing population, the available surface water resources are not able to cope up with people's needs. The cropping intensities and cropping patterns have changed for meeting the increased demand of food and fiber in the Indus Basin of Pakistan. Cumulative effect of all sources water i.e rainfall, irrigation and groundwater resulted in the high cropping intensities in the Basin. Presently rainfall, surface irrigation and river supplies have been unsuccessful to convene irrigation water requirements in most areas. Such conditions due to high cropping intensities in water scarce areas have diverted pressure on groundwater, which has inconsistent potential across the Indus Basin both in terms of quality and quantity. Farmers are over exploiting the groundwater to meet the high crop water demand in addition to surface water supplies. The number of private tubewells has increased more than four-fold in the last 25 years. This increasing trend of tubewell installation in the basin, along with the uncontrolled groundwater abstraction has started showing aquifer stress in most of the areas. In some parts, especially along the tail of canal systems, water levels are showing a steady rate of decline and hence - the mining of aquifer storage. Fresh groundwater areas have higher tubewell density as compared to saline groundwater zones. Even in fresh groundwater areas, uncontrolled groundwater abstraction has shown sign of groundwater quality deterioration. Under such aquifer stress conditions, there is a need to understand groundwater usage for sustainable irrigated agriculture on long term basis. In this paper the contribution of groundwater in the irrigated agriculture of Lower Chenb Canal (LCC) East, Punjab, Pakistan is explored using a nodal network

  19. The contribution of Remote Sensing to the Indian Land Surface Processes Experiment (LASPEX)

    NASA Astrophysics Data System (ADS)

    Gupta, R.; Vijayan, D.; Prasad, T.

    During the conduct of the Indian Land Surface Processes (LSP) Experiment (LASPEX) in Sabarmati river basin, tower based measurements for wind, temperature and humidity fields were collected over 5 locations with primary and intensive ground based observations at Anand, Gujarat. Remote sensing component consisted of (a) ground based measurements of spectral radiances in 3 nm bandwidth (hyperspectral) in visible through near IR region; in blue, green, red and near IR bands of IRS LISS and LANDSAT TM; leaf area index (LAI); crop and air temperatures over Anand site; (b) crop distribution information in Anand -Kandha - Derol region to relate with satellite based measurements in 36,72,188 and 1100 m spatial resolutions. Fourth order polynomial fit was observed between LAI and spectral vegetation indices for wheat. By convolving respective filter functions with 3 nm bandwidth measurements, NDVI for bandwidths corresponding to TM and AVHRR were found to be correlated with r' in 0.96 - 0.99 range, and higher value observed for AVHRR NDVI was related to additional 725 - 760 nm bandwidth in AVHRR near IR band. Hyperspectral index defined by (R77 7-R747 )/R 673 , Rrefers to reflectance in wavelength centered at , was useful in discriminating low evapotranspiration (ET) chickpea and high ET wheat. Using hyperspectral data, 650-673 nm and 760-830 nm were found as optimum spectral region for computing NDVI; and relationships between LAI and various pigment indices and red-edge indices were studied. Using 1100 m resolution A VHRR data, the relationship between NDVI and roughness parameter (computed from tower based measurements) in direct as well as fractal based mode had been developed. The surface temperature over the region was obtained using split thermal window algorithm and NDVI as surrogate parameter to define relative contribution of emissivity for soil and crop components in the pixel. Sensible heat flux, computed using AVHRR data based roughness parameter and surface

  20. Contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence.

    PubMed

    Bond-Lamberty, Ben; Wang, Chuankuan; Gower, Stith T

    2004-12-01

    We quantified the contributions of root respiration (RC) and heterotrophic respiration to soil surface CO2 flux (RS) by comparing trenched and untrenched plots in well-drained and poorly drained stands of a black spruce (Picea mariana (Mill.) BSP) fire chronosequence in northern Manitoba, Canada. Our objectives were to: (1) test different equations for modeling RS as a function of soil temperature; and (2) model annual RS and RC for the chronosequence from continuous soil temperature measurements. The choice of equation to model RS strongly affected annual RS and RC, with an Arrhenius-based model giving the best fit to the data, especially at low temperatures. Modeled values of annual RS were positively correlated with soil temperature at 2-cm depth and were affected by year of burn and trenching, but not by soil drainage. During the growing season, measured RC was low in May, peaked in late July and declined to low values by the end of the growing season. Annual RC was < 5% of RS in the recently burned stands, approximately 40% in the 21-year-old stands and 5-15% in the oldest (152-year-old) stands. Evidence suggests that RC may have been underestimated in the oldest stands, with residual root decay from trenching accounting for 5-10% of trenched plot RS at most sites. PMID:15465701

  1. Removable partial denture design using milled abutment surfaces and minimal soft tissue coverage for periodontally compromised teeth: a clinical report.

    PubMed

    Chaiyabutr, Yada; Brudvik, James S

    2008-04-01

    This clinical report describes the treatment of a partially edentulous patient with periodontally compromised teeth using a combination of single crowns and a removable partial denture (RPD). The RPD was designed to combine the benefits of milled surfaces and hygienic principles while allowing modification and addition of artificial teeth, should natural teeth be lost.

  2. Minimal thermal treatments for reducing bacterial population on cantaloupe rind surfaces and transfer to fresh-cut pieces

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cantaloupe melon has been associated with outbreaks of foodborne illness due to consumption of contaminated fresh-cut pieces. Surface structure and biochemical characteristics of bacteria play a major role on how and where bacteria may attach and also complicates decontamination treatments. Whole ca...

  3. The Contribution of Io-Raised Tides to Europa's Diurnally-Varying Surface Stresses

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Hurford, Terry A,; Manga, Michael

    2011-01-01

    Europa's icy surface records a rich history of geologic activity, Several features appear to be tectonic in origin and may have formed in response to Europa's daily-varying tidal stress [I]. Strike-slip faults and arcuate features called cycloids have both been linked to the patterns of stress change caused by eccentricity and obliquity [2J[3]. In fact, as Europa's obliquity has not been directly measured, observed tectonic patterns arc currently the best indicators of a theoretically supported [4] non-negligible obliquity. The diurnal tidal stress due to eccentricity is calculated by subtracting the average (or static) tidal shape of Europa generated by Jupiter's gravitational field from the instantaneous shape, which varies as Europa moves through its eccentric orbit [5]. In other words, it is the change of shape away from average that generates tidal stress. One might expect tidal contributions from the other large moons of Jupiter to be negligible given their size and the height of the tides they raise on Europa versus Jupiter's mass and the height of the tide it raises on Europa, However, what matters for tidally-induced stress is not how large the lo-raised bulge is compared to the Jupiter-raised bulge but rather the differences bet\\Veen the instantaneous and static bulges in each case. For example, when Europa is at apocenter, Jupiter raises a tide 30m lower than its static tide. At the same time, 10 raises a tide about 0.5m higher than its static tide. Hence, the change in Io's tidal distortion is about 2% of the change in the Jovian distortion when Europa is at apocenter

  4. Improvement in the bias of laser based optical rotational sensor by minimizing the lock - in due to surface roughness

    NASA Astrophysics Data System (ADS)

    Gupta, Mahender Kumar; Rasheed, I. Abdul; Naidu, V. Atchaiah; Rao, A. Ramachander; Chhabra, Inder Mohan; Shankar, Sai

    2016-05-01

    Laser based optical rotational sensors are used for measuring the rotation of an object where it has been mounted. The coherent property of the laser is used in inertial navigation system for navigation purposes. This rotational sensor suffers from various errors out of which lock-in is one of the error which does not allow the sensor to detect a rotation below a specific lock-in threshold. The lock-in threshold is directly dependent upon the quality of the component i.e., prism or mirror. These components are being used for folding the laser to rotate it in a definite cavity. During the interaction with the prism or mirror the laser is scattered in forward and backward direction and the level of scattering is directly dependent on the surface roughness of mirror and prism. In this paper a concept of float polishing is demonstrated for developing pitch pad, similar to tin pad to produce a mirror and prism surface to a super smooth level i.e., Ra - 1.5 to 2.0 Å. With these prisms the lock - in threshold has been decreased to 300-400° / hr and thereby improved the performance of the laser based optical rotation sensor.

  5. Experimental Approach to Controllably Vary Protein Oxidation While Minimizing Electrode Adsorption for Boron-Doped Diamond Electrochemical Surface Mapping Applications

    SciTech Connect

    McClintock, Carlee; Hettich, Robert {Bob} L

    2013-01-01

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent hydroxyl radicals for these measurements; however, many of these approaches require use of radioactive sources or caustic oxidizing chemicals. The purpose of this research was to evaluate and optimize the use of boron-doped diamond (BDD) electrochemistry as a highly accessible tool for producing hydroxyl radicals as a means to induce a controllable level of oxidation on a range of intact proteins. These experiments utilize a relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber, along with a unique cell activation approach to improve control over the intact protein oxidation yield. Studies were conducted to evaluate the level of protein adsorption onto the electrode surface. This report demonstrates a robust protocol for the use of BDD electrochemistry and high performance LC-MS/MS as a high-throughput experimental pipeline for probing higher order protein structure, and illustrates how it is complementary to predictive computational modeling efforts.

  6. Minimal Reduplication

    ERIC Educational Resources Information Center

    Kirchner, Jesse Saba

    2010-01-01

    This dissertation introduces Minimal Reduplication, a new theory and framework within generative grammar for analyzing reduplication in human language. I argue that reduplication is an emergent property in multiple components of the grammar. In particular, reduplication occurs independently in the phonology and syntax components, and in both cases…

  7. Modeling multiple surface watersheds contributing to one aquifer using the SWATmf framework

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface-subsurface integrated modeling is commonly limited by the extent of the surface domain. This limitation requires modelers to define the subsurface boundaries as a function of the surface domain resulting in inaccurate flow and transport simulation at the model boundary. In this study, the SW...

  8. Relation between skin surface temperature and minimal blanching during argon, Nd-YAG 532, and CW dye 585 laser therapy of port-wine stains.

    PubMed

    Mordon, S; Beacco, C; Rotteleur, G; Brunetaud, J M

    1993-01-01

    Laser photocoagulation has proven to be valuable in the treatment of port-wine stains. In this application, the minimal blanching technique is used as an indicator of suitable dosage since it has been demonstrated that the immediate appearance a white mark is required to achieve permanent blanching a few months later. The objective of the investigations undertaken in this study was to correlate the temperature attained at the surface of port-wine stains with immediate blanching, upon irradiation with different laser fluences. A comparative study was performed using an argon laser (all lines), a 532 nm Nd:YAG and a 585 nm argon pumped dye laser. Surface temperature was studied using an infrared camera. Temperature was measured on 10 different port-wine stains using different fluences. Whitening threshold fluence was related to surface temperature. It appeared that whitening threshold fluence corresponded to a surface temperature of 53 degrees C (+/- 3 degrees C). The whitening threshold fluence was dependent on port-wine stains and wavelength. However, whitening threshold fluence remained lower for 532 nm and 585 nm and it correlated to the absorption curve of hemoglobin.

  9. The groundwater contribution to surface water contamination in a region with intensive agricultural land use (Noord-Brabant, The Netherlands).

    PubMed

    Rozemeijer, J C; Broers, H P

    2007-08-01

    Traditionally, monitoring of soil, groundwater and surface water quality is coordinated by different authorities in the Netherlands. Nowadays, the European Water Framework Directive (EU, 2,000) stimulates an integrated approach of the complete soil-groundwater-surface water system. Based on water quality data from several test catchments, we propose a conceptual model stating that stream water quality at different discharges is the result of different mixing ratios of groundwater from different depths. This concept is used for a regional study of the groundwater contribution to surface water contamination in the Dutch province of Noord-Brabant, using the large amount of available data from the regional monitoring networks. The results show that groundwater is a dominant source of surface water contamination. The poor chemical condition of upper and shallow groundwater leads to exceedance of the quality standards in receiving surface waters, especially during quick flow periods.

  10. Long-term change in surface air temperature over Eurasian continent and possible contribution from land-surface conditions.

    NASA Astrophysics Data System (ADS)

    Kim, K.; Jeong, J. H.; Shim, T.

    2015-12-01

    Summertime heat wave over Eurasia is induced by various climatic factors. As internal and external factors are changing under an abrupt climate change, the variability of heat waves exhibits radical changes. In this study, the long-term change in heat wave characteristics over Eurasia for the last several decades was examined and the impact of land-atmosphere interaction modulated by soil moisture variability on the change was investigated. Through the empirical orthogonal functions(EOF) analysis, the principle spatio-temporal pattern of Eurasian heat wave during July-August was objectively detected. The leading pattern (1st EOF mode) of the variability was found be an overall increase in heat waves over eastern Europe and east Asia (Mongol to northern part of China), which seems to be associated mainly with the global warming signal but with interannual variability as well. Through performing JULES(Joint UK Land Environment Simulator) land surface model simulation forced with observational atmospheric forcings, soil moisture and energy flux at surface were estimated, and the impacts of land-atmosphere interaction on the heat wave variability was investigated based on the estimated land surface variables and temperature observations. It is found that there is a distinct dry soil condition accompanying with East Asian heat waves. The dry condition leads to an increase in sensible heat flux from land surface to atmosphere and resulting near-surface warming, which is followed by warm-core high - a typical characteristics of a heatwave sustained by land-atmosphere interaction. This result is consistent with an distinct increase in heatwave in recent years. By using the hindcast of long-range prediction model of KMA, GloSea5, the seasonal predictability of heatwave was examined. GloSea5 reasonably well simulates the spatial pattern of Eurasian heatwaves variability found in observations but shows modest skill in simulating accurate year-to-year variability. This result

  11. VARIABLE BOUND-SITE CHARGING CONTRIBUTIONS TO SURFACE COMPLEXATION MASS ACTION EXPRESSIONS

    EPA Science Inventory

    One and two pK models of surface complexation reactions between reactive surface sites (>SOH) and the proton (H+) use mass action expressions of the form: Ka={[>SOHn-1z-1]g>SOH(0-1)aH+EXP(-xeY/kT)}/{[>SOHnz]g>SOH(n)} where Ka=the acidity constant, [ ]=reactive species concentrati...

  12. An Experimental Approach to Controllably Vary Protein Oxidation While Minimizing Electrode Adsorption for Boron-Doped Diamond Electrochemical Surface Mapping Applications

    PubMed Central

    McClintock, Carlee S; Hettich, Robert L.

    2012-01-01

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent – hydroxyl radicals – for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins. PMID:23210708

  13. Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile

    PubMed Central

    Purcell, Erin B.; McKee, Robert W.; Bordeleau, Eric; Burrus, Vincent

    2015-01-01

    ABSTRACT The intestinal pathogen Clostridium difficile is an urgent public health threat that causes antibiotic-associated diarrhea and is a leading cause of fatal nosocomial infections in the United States. C. difficile rates of recurrence and mortality have increased in recent years due to the emergence of so-called “hypervirulent” epidemic strains. A great deal of the basic biology of C. difficile has not been characterized. Recent findings that flagellar motility, toxin synthesis, and type IV pilus (TFP) formation are regulated by cyclic diguanylate (c-di-GMP) reveal the importance of this second messenger for C. difficile gene regulation. However, the function(s) of TFP in C. difficile remains largely unknown. Here, we examine TFP-dependent phenotypes and the role of c-di-GMP in controlling TFP production in the historical 630 and epidemic R20291 strains of C. difficile. We demonstrate that TFP contribute to C. difficile biofilm formation in both strains, but with a more prominent role in R20291. Moreover, we report that R20291 is capable of TFP-dependent surface motility, which has not previously been described in C. difficile. The expression and regulation of the pilA1 pilin gene differs between R20291 and 630, which may underlie the observed differences in TFP-mediated phenotypes. The differences in pilA1 expression are attributable to greater promoter-driven transcription in R20291. In addition, R20291, but not 630, upregulates c-di-GMP levels during surface-associated growth, suggesting that the bacterium senses its substratum. The differential regulation of surface behaviors in historical and epidemic C. difficile strains may contribute to the different infection outcomes presented by these strains. IMPORTANCE How Clostridium difficile establishes and maintains colonization of the host bowel is poorly understood. Surface behaviors of C. difficile are likely relevant during infection, representing possible interactions between the bacterium and the

  14. Did mineral surface chemistry and toxicity contribute to evolution of microbial extracellular polymeric substances?

    PubMed

    Xu, Jie; Campbell, Jay M; Zhang, Nianli; Hickey, William J; Sahai, Nita

    2012-08-01

    Modern ecological niches are teeming with an astonishing diversity of microbial life in biofilms closely associated with mineral surfaces, which highlights the remarkable success of microorganisms in conquering the challenges and capitalizing on the benefits presented by the mineral-water interface. Biofilm formation capability likely evolved on early Earth because biofilms provide crucial cell survival functions. The potential toxicity of mineral surfaces toward cells and the complexities of the mineral-water-cell interface in determining the toxicity mechanisms, however, have not been fully appreciated. Here, we report a previously unrecognized role for extracellular polymeric substances (EPS), which form biofilms in shielding cells against the toxicity of mineral surfaces. Using colony plating and LIVE/DEAD staining methods in oxide suspensions versus oxide-free controls, we found greater viability of wild-type, EPS-producing strains of Pseudomonas aeruginosa PAO1 compared to their isogenic knockout mutant with defective biofilm-producing capacity. Oxide toxicity was specific to its surface charge and particle size. High resolution transmission electron microscopy (HRTEM) images and assays for highly reactive oxygen species (hROS) on mineral surfaces suggested that EPS shield via both physical and chemical mechanisms. Intriguingly, qualitative as well as quantitative measures of EPS production showed that toxic minerals induced EPS production in bacteria. By determining the specific toxicity mechanisms, we provide insight into the potential impact of mineral surfaces in promoting increased complexity of cell surfaces, including EPS and biofilm formation, on early Earth. PMID:22934560

  15. A new curvature technique calculation for surface tension contribution in PLIC-VOF method

    NASA Astrophysics Data System (ADS)

    Martinez, J.-M.; Chesneau, X.; Zeghmati, B.

    2006-01-01

    The volume of fluid (VOF) methods have been used for numerous numerical simulations. Among these techniques used to define the moving interface, the piecewise linear interface reconstruction (PLIC-VOF) is one of the most accurate. A study of the superficial tension impact on two-phase flow with free surface is presented. A new method based on direct staggered grid is developped to include surface tension in PLIC-VOF. The new numerical curvature calculation method doesn't need smoothed colour function and leads to less “spurious current”. This technique is applied to the calculus of surface tension force in the case of the rise of air bubble in viscous liquid and the fall of liquid drop in the same liquid on free surface. Droplets, thin layer and capillarity waves are observed after the free surface rupture for different Bond number. The influence of surface tension calculus is then obvioused and when the drop hit the free surface, wavelets propagate toward the virtual boundaries imposed.

  16. Contribution of environmental media to cryptosporidiosis and giardiasis prevalence in Tehran: a focus on surface waters.

    PubMed

    Hadi, Mahdi; Mesdaghinia, Alireza; Yunesian, Masud; Nasseri, Simin; Nabizadeh Nodehi, Ramin; Tashauoei, Hamidreza; Jalilzadeh, Esfandiar; Zarinnejad, Roya

    2016-10-01

    The occurrences of Cryptosporidium and Giardia in surface sources of drinking water in Tehran were monitored, using US EPA method 1623.1. The prevalence ratios (PR) of positive samples among other media (animal's stools, vegetables, and human's stools) were also estimated from literature data. The density of Giardia and Cryptosporidium in water samples were 0.129 ± 0.069 cysts/L and 0.005 ± 0.002 oocysts/L, respectively. Estimated PR in vegetables, animal stools, surface waters, and human stools were 6.65, 20.42, 21.05, and 4.28 % for Cryptosporidium and 6.46, 17.13, 73.68, and 15.65 % for Giardia, respectively. These reveal the importance of surface waters' and animal stools' roles in the prevalence of cryptosporidiosis and giardiasis in Tehran's population. Giardia's prevalence in untreated surface waters in Tehran was found 3.5 times as much as Cryptosporidium while this found 2.3 times on a global scale. Moreover, the prevalence of giardiasis to cryptosporidiosis infections in Tehran's human population was 3.65. These values could be a clue to attribute the infections to the occurrence of parasites in surface waters. Significant (p < 0.05) associations were observed between rainfalls and presence of Giardia (r = 0.62) and Cryptosporidium (r = 0.60) in surface waters. In autumn, rainfalls can increase the parasites occurrences in surface waters. Significant (p < 0.05) difference on the density of parasites was found between some seasons using Kruskal-Wallis and multiple comparison tests. A significant correlation (r = 0.86) between Giardia and Cryptosporidium densities also confirms the common sources of pollution in surface waters. Findings suggest that untreated surface waters in Tehran may be a potential route of human exposure to protozoan parasites. PMID:27370533

  17. Contribution of environmental media to cryptosporidiosis and giardiasis prevalence in Tehran: a focus on surface waters.

    PubMed

    Hadi, Mahdi; Mesdaghinia, Alireza; Yunesian, Masud; Nasseri, Simin; Nabizadeh Nodehi, Ramin; Tashauoei, Hamidreza; Jalilzadeh, Esfandiar; Zarinnejad, Roya

    2016-10-01

    The occurrences of Cryptosporidium and Giardia in surface sources of drinking water in Tehran were monitored, using US EPA method 1623.1. The prevalence ratios (PR) of positive samples among other media (animal's stools, vegetables, and human's stools) were also estimated from literature data. The density of Giardia and Cryptosporidium in water samples were 0.129 ± 0.069 cysts/L and 0.005 ± 0.002 oocysts/L, respectively. Estimated PR in vegetables, animal stools, surface waters, and human stools were 6.65, 20.42, 21.05, and 4.28 % for Cryptosporidium and 6.46, 17.13, 73.68, and 15.65 % for Giardia, respectively. These reveal the importance of surface waters' and animal stools' roles in the prevalence of cryptosporidiosis and giardiasis in Tehran's population. Giardia's prevalence in untreated surface waters in Tehran was found 3.5 times as much as Cryptosporidium while this found 2.3 times on a global scale. Moreover, the prevalence of giardiasis to cryptosporidiosis infections in Tehran's human population was 3.65. These values could be a clue to attribute the infections to the occurrence of parasites in surface waters. Significant (p < 0.05) associations were observed between rainfalls and presence of Giardia (r = 0.62) and Cryptosporidium (r = 0.60) in surface waters. In autumn, rainfalls can increase the parasites occurrences in surface waters. Significant (p < 0.05) difference on the density of parasites was found between some seasons using Kruskal-Wallis and multiple comparison tests. A significant correlation (r = 0.86) between Giardia and Cryptosporidium densities also confirms the common sources of pollution in surface waters. Findings suggest that untreated surface waters in Tehran may be a potential route of human exposure to protozoan parasites.

  18. Contribution of Head Position, Standing Surface, and Vision to Postural Control in Community-Dwelling Older Adults.

    PubMed

    Pociask, Fredrick D; DiZazzo-Miller, Rosanne; Goldberg, Allon; Adamo, Diane E

    2016-01-01

    Postural control requires the integration of sensorimotor information to maintain balance and to properly position and orient the body in response to external stimuli. Age-related declines in peripheral and central sensory and motor function contribute to postural instability and falls. This study investigated the contribution of head position, standing surface, and vision on postural sway in 26 community-dwelling older adults. Participants were asked to maintain a stable posture under conditions that varied standing surface, head position, and the availability of visual information. Significant main and interaction effects were found for all three factors. Findings from this study suggest that postural sway responses require the integration of available sources of sensory information. These results have important implications for fall risks in older adults and suggest that when standing with the head extended and eyes closed, older adults may place themselves at risk for postural disequilibrium and loss of balance. PMID:26709429

  19. 3d-shell contribution to the energy loss of protons during grazing scattering from Cu(111) surfaces

    SciTech Connect

    Gravielle, M. S.; Alducin, M.; Juaristi, J. I.; Silkin, V. M.

    2007-10-15

    Motivated by a recent experimental work [S. Lederer and H. Winter, Phys. Rev. A 73, 054901 (2006)] we study the contribution of the 3d shell electrons to the energy loss of 100 keV protons scattered off from the Cu(111) surface. To describe this process we use a multiple collision formalism, where the interaction of the projectile with 3d electrons is described by means of a sequence of single encounters with atoms belonging to the first atomic layer. In order to compare the theoretical energy loss with the experimental data, we add the contribution of valence electrons, which is evaluated in linear response theory using a response function that incorporates information on the surface band structure. For completeness, the energy lost by protons is also calculated within a jellium model that includes 3d and valence electrons with equal footing. Fair agreement between theory and experiment exists when the 3d shell is taken into account in the calculation.

  20. Contribution of Head Position, Standing Surface, and Vision to Postural Control in Community-Dwelling Older Adults.

    PubMed

    Pociask, Fredrick D; DiZazzo-Miller, Rosanne; Goldberg, Allon; Adamo, Diane E

    2016-01-01

    Postural control requires the integration of sensorimotor information to maintain balance and to properly position and orient the body in response to external stimuli. Age-related declines in peripheral and central sensory and motor function contribute to postural instability and falls. This study investigated the contribution of head position, standing surface, and vision on postural sway in 26 community-dwelling older adults. Participants were asked to maintain a stable posture under conditions that varied standing surface, head position, and the availability of visual information. Significant main and interaction effects were found for all three factors. Findings from this study suggest that postural sway responses require the integration of available sources of sensory information. These results have important implications for fall risks in older adults and suggest that when standing with the head extended and eyes closed, older adults may place themselves at risk for postural disequilibrium and loss of balance.

  1. Pharmacological induction of cell surface GRP78 contributes to apoptosis in triple negative breast cancer cells.

    PubMed

    Raiter, Annat; Yerushalmi, Rinat; Hardy, Britta

    2014-11-30

    Breast cancer tumor with triple-negative receptors (estrogen, progesterone and Her 2, receptors) is the most aggressive and deadly subtype, with high rates of disease recurrence and poor survival. Here, we show that induction in cell surface GRP78 by doxorubicin and tunicamycin was associated with CHOP/GADD153 upregulation and increase in apoptosis in triple negative breast cancer tumor cells. GRP78 is a major regulator of the stress induced unfolded protein response pathway and CHOP/GADD153 is a pro-apoptotic transcription factor associated exclusively with stress induced apoptosis. The blocking of cell surface GRP78 by anti-GRP78 antibody prevented apoptosis, suggesting that induction of cell surface GRP78 by doxorubicin and tunicamycin is required for apoptosis. A better understanding of stress induction of apoptotic signaling in triple negative breast cancer cells may help to define new therapeutic strategies.

  2. Surface marker cluster translation, rotation, scaling and deformation: Their contribution to soft tissue artefact and impact on knee joint kinematics.

    PubMed

    Benoit, D L; Damsgaard, M; Andersen, M S

    2015-07-16

    When recording human movement with stereophotogrammetry, skin deformation and displacement (soft tissue artefact; STA) inhibits surface markers' ability to validly represent the movement of the underlying bone. To resolve this issue, the components of marker motions which contribute to STA must be understood. The purpose of this study is to describe and quantify which components of this marker motion (cluster translation, rotation, scaling and deformation) contribute to STA during the stance phase of walking, a cutting manoeuvre, and one-legged hops. In vivo bone pin-based tibio-femoral kinematics of six healthy subjects were used to study skin marker-based STA. To quantify how total cluster translation, rotation, scaling and deformation contribute to STA, a resizable and deformable cluster model was constructed. STA was found to be greater in the thigh than the shank during all three movements. We found that the non-rigid (i.e. scaling and deformation) movements contribute very little to the overall amount of error, rendering surface marker optimisation methods aimed at minimising this component superfluous. The results of the current study indicate that procedures designed to account for cluster translation and rotation during human movement are required to correctly represent the motion of body segments, however reducing marker cluster scaling and deformation will have little effect on STA. PMID:25935684

  3. John Pendry: His Contributions to the Development of LEED Surface Crystallography

    SciTech Connect

    Somorjai, Gabor A.; Rous, P.J.

    2007-10-15

    In this paper we discuss the pivotal role played by Sir John Pendry in the development of Low Energy Electron Diffraction (LEED) during the past three decades; the earliest understanding on the physics of LEED to the development of sophisticated methods for the structural solution of complex surfaces.

  4. Decoupling Bulk and Surface Contributions in Water- Splitting Photocatalysts by In Situ Ultrafast Spectroscopy

    SciTech Connect

    Appavoo, Kannatassen; Mingzhao, Liu; Black, Charles T.; Sfeir, Matthew Y.

    2015-05-10

    By performing ultrafast emission spectroscopy in an operating, bias-controlled photoelectrochemical cell, we distinguish between bulk (charge transport) and surface (chemical reaction) recombination processes in a nanostructured photocatalyst and correlate its electronic properties directly with its incident-photon-to-current efficiency.

  5. Contribution of oligomer/carbon dots hybrid semiconductor nanoribbon to surface-enhanced Raman scattering property

    NASA Astrophysics Data System (ADS)

    Zhang, Guiyang; Hu, Lin; Zhu, Kerong; Yan, Manqing; Liu, Jian; Yang, Jiaxiang; Bi, Hong

    2016-02-01

    The hybrid Ag-(PS-PSS)/C-dots nanobelts (NBs) have been prepared by decorating Ag nanoparticles (NPs) on surface of the ultra-long, semiconducting (PS-PSS)/C-dots nanoribbons (NRs) via an electroless plating method. The as-prepared Ag-(PS-PSS)/C-dots NB has been demonstrated to be an excellent substrate for surface-enhanced Raman scattering (SERS) with a detection limit of 10-14 M and an enhancement factor of 3.35 × 108 while using rhodamine 6G as probe molecules. Moreover, we have investigated the application of Ag-(PS-PSS)/C-dots NBs as SERS substrate for detection of coumarins. Further, the Ag-(PS-PSS)/C-dots NB could be used as a sacrificial template to form a novel kind of hollow porous Ag nanotubes (NTs) by simply removing the inner NR in tetrahydrofuran. However, the obtained Ag NTs show a weaker SERS effect compared to that of the Ag-(PS-PSS)/C-dots NBs, which indicates that the inner organic/C-dots NR plays an essential role in SERS property of the Ag-(PS-PSS)/C-dots NBs. Here the organic (PS-PSS)/C-dots NR not only acts as a dielectric support for Ag NPs to reduce the surface plasmon damping at the Ag-NR interface due to the high electrical conductivity but also their large surface area are favorable for creating more "hot-spots". In addition, the embedded sp2-hybridized C-dots in NR can adsorb more aromatic R6G molecules via π-π interaction, which also drives R6G molecules approaching to the "hot-spots", thus enhancing the SERS signals. Based on our results, it is believed that the employment of semiconducting organic (PS-PSS)/C-dots ribbon-like structures to fabricate sensitive SERS substrates is an interesting new approach.

  6. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry

    PubMed Central

    Christo, Susan; Bachhuka, Akash; Diener, Kerrilyn R.; Vasilev, Krasimir; Hayball, John D.

    2016-01-01

    Implantable devices have become an established part of medical practice. However, often a negative inflammatory host response can impede the integration and functionality of the device. In this paper, we interrogate the role of surface nanotopography and chemistry on the potential molecular role of the inflammasome in controlling macrophage responses. To achieve this goal we engineered model substrata having precisely controlled nanotopography of predetermined height and tailored outermost surface chemistry. Bone marrow derived macrophages (BMDM) were harvested from genetically engineered mice deficient in the inflammasome components ASC, NLRP3 and AIM2. These cells were then cultured on these nanoengineered substrata and assessed for their capacity to attach and express pro-inflammatory cytokines. Our data provide evidence that the inflammasome components ASC, NLRP3 and AIM2 play a role in regulating macrophage adhesion and activation in response to surface nanotopography and chemistry. The findings of this paper are important for understanding the inflammatory consequences caused by biomaterials and pave the way to the rational design of future implantable devices having controlled and predictable inflammatory outcomes. PMID:27188492

  7. A thin transition film formed by plasma exposure contributes to the germanium surface hydrophilicity

    NASA Astrophysics Data System (ADS)

    Shumei, Lai; Danfeng, Mao; Zhiwei, Huang; Yihong, Xu; Songyan, Chen; Cheng, Li; Wei, Huang; Dingliang, Tang

    2016-09-01

    Plasma treatment and 10% NH4OH solution rinsing were performed on a germanium (Ge) surface. It was found that the Ge surface hydrophilicity after O2 and Ar plasma exposure was stronger than that of samples subjected to N2 plasma exposure. This is because the thin GeO x film formed on Ge by O2 or Ar plasma is more hydrophilic than GeO x N y formed by N2 plasma treatment. A flat (RMS < 0:5 nm) Ge surface with high hydrophilicity (contact angle smaller than 3°) was achieved by O2 plasma treatment, showing its promising application in Ge low-temperature direct wafer bonding. Project supported by the Key Project of Natural Science Foundation of China (No. 61534005), the National Science Foundation of China (No. 61474081), the National Basic Research Program of China (No. 2013CB632103), the Natural Science Foundation of Fujian Province (No. 2015D020), and the Science and Technology Project of Xiamen City (No. 3502Z20154091).

  8. The Major Surface-Associated Saccharides of Klebsiella pneumoniae Contribute to Host Cell Association

    PubMed Central

    Clements, Abigail; Gaboriaud, Fabien; Duval, Jérôme F. L.; Farn, Jacinta L.; Jenney, Adam W.; Lithgow, Trevor; Wijburg, Odilia L. C.; Hartland, Elizabeth L.; Strugnell, Richard A.

    2008-01-01

    Analysing the pathogenic mechanisms of a bacterium requires an understanding of the composition of the bacterial cell surface. The bacterial surface provides the first barrier against innate immune mechanisms as well as mediating attachment to cells/surfaces to resist clearance. We utilised a series of Klebsiella pneumoniae mutants in which the two major polysaccharide layers, capsule and lipopolysaccharide (LPS), were absent or truncated, to investigate the ability of these layers to protect against innate immune mechanisms and to associate with eukaryotic cells. The capsule alone was found to be essential for resistance to complement mediated killing while both capsule and LPS were involved in cell-association, albeit through different mechanisms. The capsule impeded cell-association while the LPS saccharides increased cell-association in a non-specific manner. The electrohydrodynamic characteristics of the strains suggested the differing interaction of each bacterial strain with eukaryotic cells could be partly explained by the charge density displayed by the outermost polysaccharide layer. This highlights the importance of considering not only specific adhesin:ligand interactions commonly studied in adherence assays but also the initial non-specific interactions governed largely by the electrostatic interaction forces. PMID:19043570

  9. Contribution of Spores to the Ability of Clostridium difficile To Adhere to Surfaces

    PubMed Central

    Joshi, Lovleen Tina; Phillips, Daniel S.; Williams, Catrin F.; Alyousef, Abdullah

    2012-01-01

    Clostridium difficile is the commonest cause of hospital-acquired infection in the United Kingdom. We characterized the abilities of 21 clinical isolates to form spores; to adhere to inorganic and organic surfaces, including stainless steel and human adenocarcinoma cells; and to germinate. The composition of culture media had a significant effect on spore formation, as significantly more spores were produced in brain heart infusion broth (Student's t test; P = 0.018). The spore surface relative hydrophobicity (RH) varied markedly (14 to 77%) and was correlated with the ability to adhere to stainless steel. We observed no correlation between the ribotype and the ability to adhere to steel. When the binding of hydrophobic (DS1813; ribotype 027; RH, 77%) and hydrophilic (DS1748; ribotype 002; RH, 14%) spores to human gut epithelial cells at different stages of cell development was examined, DS1813 spores adhered more strongly, suggesting the presence of surface properties that aid attachment to human cells. Electron microscopy studies revealed the presence of an exosporium surrounding DS1813 spores that was absent from spores of DS1748. Finally, the ability of spores to germinate was found to be strain and medium dependent. While the significance of these findings to the disease process has yet to be determined, this study has highlighted the importance of analyzing multiple isolates when attempting to characterize the behavior of a bacterial species. PMID:22923404

  10. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry

    NASA Astrophysics Data System (ADS)

    Christo, Susan; Bachhuka, Akash; Diener, Kerrilyn R.; Vasilev, Krasimir; Hayball, John D.

    2016-05-01

    Implantable devices have become an established part of medical practice. However, often a negative inflammatory host response can impede the integration and functionality of the device. In this paper, we interrogate the role of surface nanotopography and chemistry on the potential molecular role of the inflammasome in controlling macrophage responses. To achieve this goal we engineered model substrata having precisely controlled nanotopography of predetermined height and tailored outermost surface chemistry. Bone marrow derived macrophages (BMDM) were harvested from genetically engineered mice deficient in the inflammasome components ASC, NLRP3 and AIM2. These cells were then cultured on these nanoengineered substrata and assessed for their capacity to attach and express pro-inflammatory cytokines. Our data provide evidence that the inflammasome components ASC, NLRP3 and AIM2 play a role in regulating macrophage adhesion and activation in response to surface nanotopography and chemistry. The findings of this paper are important for understanding the inflammatory consequences caused by biomaterials and pave the way to the rational design of future implantable devices having controlled and predictable inflammatory outcomes.

  11. Contributions to understanding the high speed machining effects on aeronautic part surface integrity

    NASA Astrophysics Data System (ADS)

    Jomaa, Walid

    To remain competitive, the aeronautic industry has increasing requirements for mechanical components and parts with high functional performance and longer in-service life. The improvement of the in-service life of components can be achieved by mastering and optimizing the surface integrity of the manufactured parts. Thus, the present study attempted to investigate, experimentally and theoretically, the tool/work material interactions on part surface integrity during the machining of aluminium alloys and hardened materials (low alloy steels) using orthogonal machining tests data. The studied materials are two aluminum alloys (6061-T6 and 7075-T651) and AISI 4340 steel. The AISI 4340 steel was machined after been induction heat treated to 58-60 HRC. These materials were selected in an attempt to provide a comprehensive study for the machining of metals with different behaviours (ductile and hard material). The proposed approach is built on three steps. First, we proposed a design of experiment (DOE) to analyse, experimentally, the chip formation and the resulting surface integrity during the high speed machining under dry condition. The orthogonal cutting mode, adopted in these experiments, allowed to explore, theoretically, the effects of technological (cutting speed and feed) and physical (cutting forces, temperature, shear angle, friction angle, and length Contact tool/chip) parameters on the chip formation mechanisms and the machined surface characteristics (residual stress, plastic deformation, phase transformation, etc.). The cutting conditions were chosen while maintaining a central composite design (CCD) with two factors (cutting speed and feed per revolution). For the aluminum 7075-T651, the results showed that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles are the main causes of the machined surface damage. The BUE formation increases with the cutting feed while the increase of the cutting speed

  12. Cortical Thickness, Surface Area and Subcortical Volume Differentially Contribute to Cognitive Heterogeneity in Parkinson's Disease.

    PubMed

    Gerrits, Niels J H M; van Loenhoud, Anita C; van den Berg, Stan F; Berendse, Henk W; Foncke, Elisabeth M J; Klein, Martin; Stoffers, Diederick; van der Werf, Ysbrand D; van den Heuvel, Odile A

    2016-01-01

    Parkinson's disease (PD) is often associated with cognitive deficits, although their severity varies considerably between patients. Recently, we used voxel-based morphometry (VBM) to show that individual differences in gray matter (GM) volume relate to cognitive heterogeneity in PD. VBM does, however, not differentiate between cortical thickness (CTh) and surface area (SA), which might be independently affected in PD. We therefore re-analyzed our cohort using the surface-based method FreeSurfer, and investigated (i) CTh, SA, and (sub)cortical GM volume differences between 93 PD patients and 45 matched controls, and (ii) the relation between these structural measures and cognitive performance on six neuropsychological tasks within the PD group. We found cortical thinning in PD patients in the left pericalcarine gyrus, extending to cuneus, precuneus and lingual areas and left inferior parietal cortex, bilateral rostral middle frontal cortex, and right cuneus, and increased cortical surface area in the left pars triangularis. Within the PD group, we found negative correlations between (i) CTh of occipital areas and performance on a verbal memory task, (ii) SA and volume of the frontal cortex and visuospatial memory performance, and, (iii) volume of the right thalamus and scores on two verbal fluency tasks. Our primary findings illustrate that i) CTh and SA are differentially affected in PD, and ii) VBM and FreeSurfer yield non-overlapping results in an identical dataset. We argue that this discrepancy is due to technical differences and the subtlety of the PD-related structural changes. PMID:26919667

  13. Minimal cosmography

    NASA Astrophysics Data System (ADS)

    Piazza, Federico; Schücker, Thomas

    2016-04-01

    The minimal requirement for cosmography—a non-dynamical description of the universe—is a prescription for calculating null geodesics, and time-like geodesics as a function of their proper time. In this paper, we consider the most general linear connection compatible with homogeneity and isotropy, but not necessarily with a metric. A light-cone structure is assigned by choosing a set of geodesics representing light rays. This defines a "scale factor" and a local notion of distance, as that travelled by light in a given proper time interval. We find that the velocities and relativistic energies of free-falling bodies decrease in time as a consequence of cosmic expansion, but at a rate that can be different than that dictated by the usual metric framework. By extrapolating this behavior to photons' redshift, we find that the latter is in principle independent of the "scale factor". Interestingly, redshift-distance relations and other standard geometric observables are modified in this extended framework, in a way that could be experimentally tested. An extremely tight constraint on the model, however, is represented by the blackbody-ness of the cosmic microwave background. Finally, as a check, we also consider the effects of a non-metric connection in a different set-up, namely, that of a static, spherically symmetric spacetime.

  14. Vulnerability of drinking-water wells in La Crosse, Wisconsin, to enteric-virus contamination from surface water contributions

    USGS Publications Warehouse

    Borchardt, M. A.; Haas, N.L.; Hunt, R.J.

    2004-01-01

    Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. 18O/ 16O and 2H/1H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination.

  15. Vulnerability of Drinking-Water Wells in La Crosse, Wisconsin, to Enteric-Virus Contamination from Surface Water Contributions

    PubMed Central

    Borchardt, Mark A.; Haas, Nathaniel L.; Hunt, Randall J.

    2004-01-01

    Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. 18O/16O and 2H/1H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination. PMID:15466536

  16. Contribution of Surface Polishing and Sterilization Method to Backside Wear in Total Knee Arthroplasty.

    PubMed

    Teeter, Matthew G; Lanting, Brent A; Shrestha, Kush R; Howard, James L; Vasarhelyi, Edward M

    2015-12-01

    The purpose of this study was to compare the relative contributions of backside wear from polished and roughened tibial baseplates and different sterilization methods. Three groups of tibial inserts of the same design were matched: roughened gamma-air (RGA), polished gamma-air (PGA), and polished gas-plasma (PGP). Visual damage scoring and micro-CT deviation maps were used for evaluation. Total backside damage was higher (P=0.045) in RGA (13.8±3.4) compared to PGA (8.7±3.4) and PGP (8.2±4.8). Backside wear rates were greatest (P=0.02) in RGA (0.038 mm/year), followed by PGA (0.012 mm/year), and lowest in PGP (0.009 mm/year). Use of a roughened tibial baseplate had a greater effect on wear magnitude than sterilization method. PMID:26182981

  17. Contribution of Surface Polishing and Sterilization Method to Backside Wear in Total Knee Arthroplasty.

    PubMed

    Teeter, Matthew G; Lanting, Brent A; Shrestha, Kush R; Howard, James L; Vasarhelyi, Edward M

    2015-12-01

    The purpose of this study was to compare the relative contributions of backside wear from polished and roughened tibial baseplates and different sterilization methods. Three groups of tibial inserts of the same design were matched: roughened gamma-air (RGA), polished gamma-air (PGA), and polished gas-plasma (PGP). Visual damage scoring and micro-CT deviation maps were used for evaluation. Total backside damage was higher (P=0.045) in RGA (13.8±3.4) compared to PGA (8.7±3.4) and PGP (8.2±4.8). Backside wear rates were greatest (P=0.02) in RGA (0.038 mm/year), followed by PGA (0.012 mm/year), and lowest in PGP (0.009 mm/year). Use of a roughened tibial baseplate had a greater effect on wear magnitude than sterilization method.

  18. HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity

    PubMed Central

    Hawkins, Virginia E.; Hawryluk, Joanna M.; Takakura, Ana C.; Tzingounis, Anastasios V.; Moreira, Thiago S.

    2014-01-01

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) provide a CO2/H+-dependent drive to breathe and function as an integration center for the respiratory network, including serotonergic raphe neurons. We recently showed that serotonergic modulation of RTN chemoreceptors involved inhibition of KCNQ channels and activation of an unknown inward current. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels are the molecular correlate of the hyperpolarization-activated inward current (Ih) and have a high propensity for modulation by serotonin. To investigate whether HCN channels contribute to basal activity and serotonergic modulation of RTN chemoreceptors, we characterize resting activity and the effects of serotonin on RTN chemoreceptors in vitro and on respiratory activity of anesthetized rats in the presence or absence of blockers of KCNQ (XE991) and/or HCN (ZD7288, Cs+) channels. We found in vivo that bilateral RTN injections of ZD7288 increased respiratory activity and in vitro HCN channel blockade increased activity of RTN chemoreceptors under control conditions, but this was blunted by KCNQ channel inhibition. Furthermore, in vivo unilateral RTN injection of XE991 plus ZD7288 eliminated the serotonin response, and in vitro serotonin sensitivity was eliminated by application of XE991 and ZD7288 or SQ22536 (adenylate cyclase blocker). Serotonin-mediated activation of RTN chemoreceptors was blocked by a 5-HT7-receptor blocker and mimicked by a 5-HT7-receptor agonist. In addition, serotonin caused a depolarizing shift in the voltage-dependent activation of Ih. These results suggest that HCN channels contribute to resting chemoreceptor activity and that serotonin activates RTN chemoreceptors and breathing in part by a 5-HT7 receptor-dependent mechanism and downstream activation of Ih. PMID:25429115

  19. HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity.

    PubMed

    Hawkins, Virginia E; Hawryluk, Joanna M; Takakura, Ana C; Tzingounis, Anastasios V; Moreira, Thiago S; Mulkey, Daniel K

    2015-02-15

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) provide a CO2/H(+)-dependent drive to breathe and function as an integration center for the respiratory network, including serotonergic raphe neurons. We recently showed that serotonergic modulation of RTN chemoreceptors involved inhibition of KCNQ channels and activation of an unknown inward current. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels are the molecular correlate of the hyperpolarization-activated inward current (Ih) and have a high propensity for modulation by serotonin. To investigate whether HCN channels contribute to basal activity and serotonergic modulation of RTN chemoreceptors, we characterize resting activity and the effects of serotonin on RTN chemoreceptors in vitro and on respiratory activity of anesthetized rats in the presence or absence of blockers of KCNQ (XE991) and/or HCN (ZD7288, Cs(+)) channels. We found in vivo that bilateral RTN injections of ZD7288 increased respiratory activity and in vitro HCN channel blockade increased activity of RTN chemoreceptors under control conditions, but this was blunted by KCNQ channel inhibition. Furthermore, in vivo unilateral RTN injection of XE991 plus ZD7288 eliminated the serotonin response, and in vitro serotonin sensitivity was eliminated by application of XE991 and ZD7288 or SQ22536 (adenylate cyclase blocker). Serotonin-mediated activation of RTN chemoreceptors was blocked by a 5-HT7-receptor blocker and mimicked by a 5-HT7-receptor agonist. In addition, serotonin caused a depolarizing shift in the voltage-dependent activation of Ih. These results suggest that HCN channels contribute to resting chemoreceptor activity and that serotonin activates RTN chemoreceptors and breathing in part by a 5-HT7 receptor-dependent mechanism and downstream activation of Ih.

  20. North American Ground Surface Temperature Histories: A Contribution to the PAGES2k North American Project

    NASA Astrophysics Data System (ADS)

    Mareschal, J. C.; Jaume Santero, F.; Beltrami, H.

    2015-12-01

    Within the framework of the PAGES NorthAmerica2k project, three hundred and seventy three (373) North American temperature-depth profiles from boreholes deeper than 300 meters were analyzed for recent climate. To facilitate comparisons and examine the same time period, the profiles were truncated at 300 m. The ground surface temperature (GST) histories for the last 500 years were inverted from the subsurface temperature anomalies using singular value decomposition for a model of 10 temperature changes along time-intervals of increasing duration. The inversion retains four singular values and accounts for the data acquisition time difference. The reference surface temperature and geothermal gradient were estimated by linear regression to the deepest 100 meters with a 95% confidence interval. Additionally, a Monte-Carlo method was used to find the range of solutions within a maximum subsurface anomaly error determined by the root mean square between the model and the data. The GST history results for North America, given by the mean and 95% confidence interval, reveal in most cases, a warming up to 1°C - 2.5°C during the last 100-150 years.

  1. Numerical modeling of surface and water phase contributions to the electrical properties of partially saturated sandstones

    NASA Astrophysics Data System (ADS)

    Brovelli, A.; Cassiani, G.; dalla, E.; Bergamini, F.; Pitea, D.; Binley, A. M.

    2004-12-01

    Non-invasive techniques, such as ground penetrating radar, electrical resistivity tomography, and spectral induced polarization have found increasing application for the (time-lapse) monitoring of vadose zone dynamics. Critical to the usefulness of such techniques is the capability to link hydrological quantities of interest, such as moisture content, to the geophysical properties measured by non-invasive methods. Existing relationships are invariably empirical in nature, and should be calibrated on a site-by-site basis. Fundamental investigation of the electrical response of partially saturated natural porous media appears to be necessary to improve on the reliability of the hydro-geophysical relationships. We investigated the electrical response of a partially saturated, weakly consolidated sandstone via pore scale modelling, based on a digital representation of the porous medium. We created this representation purely on the basis of experimental grain-size distribution and porosity data, by using a synthetic, non-overlapping and gravitationally stable packing of spheres. Then we generated a digital representation of this medium by discretizing it in voxels. We simulated primary drainage by preforming a morphological analysis of the digital pore space. The pore-scale distribution of the phases at discrete pressure steps is computed using Laplace equation for a spherical interface and zero contact angle. Then we simulated the direct current response and the dielectric response of the multiphase system at each degree of saturation by means of finite-difference and finite-element solutions to the relevant partial differential equations. Both volume and surface pathways were taken into account. We compared the model results with laboratory data on DC resistivity and electrical permittivity of the studied sandstone. Three different approaches to model surface conductivity in simulating the DC response have been implemented and tested, reaching the conclusion that

  2. Contribution of Surface β-Glucan Polysaccharide to Physicochemical and Immunomodulatory Properties of Propionibacterium freudenreichii

    PubMed Central

    Parayre, Sandrine; Bouchoux, Antoine; Guyomarc'h, Fanny; Dewulf, Joëlle; Dols-Lafargue, Marguerite; Baglinière, François; Cousin, Fabien J.; Falentin, Hélène; Jan, Gwénaël; Foligné, Benoît

    2012-01-01

    Propionibacterium freudenreichii is a bacterial species found in Swiss-type cheeses and is also considered for its health properties. The main claimed effect is the bifidogenic property. Some strains were shown recently to display other interesting probiotic potentialities such as anti-inflammatory properties. About 30% of strains were shown to produce a surface exopolysaccharide (EPS) composed of (1→3,1→2)-β-d-glucan due to a single gene named gtfF. We hypothesized that functional properties of P. freudenreichii strains, including their anti-inflammatory properties, could be linked to the presence of β-glucan. To evaluate this hypothesis, gtfF genes of three β-glucan-producing strains were disrupted. These knockout (KO) mutants were complemented with a plasmid harboring gtfF (KO-C mutants). The absence of β-glucan in KO mutants was verified by immunological detection and transmission electron microscopy. We observed by atomic force microscopy that the absence of β-glucan in the KO mutant dramatically changed the cell's topography. The capacity to adhere to polystyrene surface was increased for the KO mutants compared to wild-type (WT) strains. Anti-inflammatory properties of WT strains and mutants were analyzed by stimulation of human peripheral blood mononuclear cells (PBMCs). A significant increase of the anti-inflammatory interleukin-10 cytokine production by PBMCs was measured in the KO mutants compared to WT strains. For one strain, the role of β-glucan in mice gut persistence was assessed, and no significant difference was observed between the WT strain and its KO mutant. Thus, β-glucan appears to partly hide the anti-inflammatory properties of P. freudenreichii; which is an important result for the selection of probiotic strains. PMID:22247154

  3. Stratospheric contribution to surface ozone in the desert Southwest during the 2013 Las Vegas Ozone Study

    NASA Astrophysics Data System (ADS)

    Langford, A. O.; Senff, C. J.; Alvarez, R. J. _II, II; Brioude, J. F.; Cooper, O. R.; Holloway, J. S.; Lin, M.; Marchbanks, R.; Pierce, R. B.; Reddy, P. J.; Sandberg, S.; Weickmann, A. M.; Williams, E. J.; Gustin, M. S.; Iraci, L. T.; Leblanc, T.; Yates, E. L.

    2014-12-01

    The 2013 Las Vegas Ozone Study (LVOS) was designed to investigate the potential impact of stratosphere-troposphere transport (STT) and long-range transport of pollution from Asia on surface O3 concentrations in Clark County, NV. This measurement campaign, which took place in May and June of 2013, was conducted at Angel Peak, NV, a high elevation site about 2.8 km above mean sea level and 45 km west of Las Vegas. The study was organized around the NOAA ESRL truck-based TOPAZ scanning ozone lidar with collocated in situ sampling of O3, CO, and meteorological parameters. These measurements were supported by the NOAA/NESDIS real time modelling system (RAQMS), FLEXPART particle dispersion model, and the NOAA GFDL AM3 model. In this talk, I will describe one of several STT events that occurred during the LVOS campaign. This intrusion, which was profiled by TOPAZ on the night of May 24-25, was also sampled by the NASA Alpha Jet, the Table Mountain ozone lidar, and by an ozonesonde flying above southern California. This event also led to significant ozone increases at surface monitors operated by Clark County, the California Air Resources Board, the U.S. National Park Service, and the Nevada Rural Ozone Initiative (NRVOI), and resulted in exceedances of the 2008 75 ppbv O3 NAAQS both in Clark County and in surrounding areas of Nevada and southern California. The potential implications of this and similar events for air quality compliance in the western U.S. will be discussed.

  4. Source Contribution Analysis of Surface Particulate Polycyclic Aromatic Hydrocarbon Concentrations in Northeastern Asia by Source-receptor Relationships

    SciTech Connect

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-Ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-11-01

    We analyzed the sourceereceptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40-60%) and central China (30-40°N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes.

  5. Analysis of contributions of nonlinear material constants to temperature-induced velocity shifts of quartz surface acoustic wave resonators.

    PubMed

    Zhang, Haifeng; Kosinski, John A; Zuo, Lei

    2016-09-01

    In this paper, we examine the significance of the various higher-order effects regarding calculating temperature behavior from a set of material constants and their temperature coefficients. Temperature-induced velocity shifts have been calculated for quartz surface acoustic wave (SAW) resonators and the contributions of different groups of nonlinear material constants (third-order elastic constants (TOE), third-order piezoelectric constants (TOP), third-order dielectric constants (TOD) and electrostrictive constants (EL)) to the temperature-induced velocity shifts have been analyzed. The analytical methodology has been verified through the comparison of experimental and analytical results for quartz resonators. In general, the third-order elastic constants were found to contribute most significantly to the temperature-induced shifts in the SAW velocity. The contributions from the third-order dielectric constants and electrostrictive constants were found to be negligible. For some specific cases, the third-order piezoelectric constants were found to make a significant contribution to the temperature-induced shifts. The significance of each third-order elastic constant as a contributor to the temperature-velocity effect was analyzed by applying a 10% variation to each of the third-order elastic constants separately. Additionally, we have considered the issues arising from the commonly used thermoelastic expansions that provide a good but not exact description of the temperature effects on frequency in piezoelectric resonators as these commonly used expansions do not include the effects of higher-order material constants. PMID:27392205

  6. Analysis of contributions of nonlinear material constants to temperature-induced velocity shifts of quartz surface acoustic wave resonators.

    PubMed

    Zhang, Haifeng; Kosinski, John A; Zuo, Lei

    2016-09-01

    In this paper, we examine the significance of the various higher-order effects regarding calculating temperature behavior from a set of material constants and their temperature coefficients. Temperature-induced velocity shifts have been calculated for quartz surface acoustic wave (SAW) resonators and the contributions of different groups of nonlinear material constants (third-order elastic constants (TOE), third-order piezoelectric constants (TOP), third-order dielectric constants (TOD) and electrostrictive constants (EL)) to the temperature-induced velocity shifts have been analyzed. The analytical methodology has been verified through the comparison of experimental and analytical results for quartz resonators. In general, the third-order elastic constants were found to contribute most significantly to the temperature-induced shifts in the SAW velocity. The contributions from the third-order dielectric constants and electrostrictive constants were found to be negligible. For some specific cases, the third-order piezoelectric constants were found to make a significant contribution to the temperature-induced shifts. The significance of each third-order elastic constant as a contributor to the temperature-velocity effect was analyzed by applying a 10% variation to each of the third-order elastic constants separately. Additionally, we have considered the issues arising from the commonly used thermoelastic expansions that provide a good but not exact description of the temperature effects on frequency in piezoelectric resonators as these commonly used expansions do not include the effects of higher-order material constants.

  7. 4-[(1-Benzyl-1H-1,2,3-triazol-4-yl)meth-oxy]benzene-1,2-dicarbo-nitrile: crystal structure, Hirshfeld surface analysis and energy-minimization calculations.

    PubMed

    Shamsudin, Norzianah; Tan, Ai Ling; Young, David J; Jotani, Mukesh M; Otero-de-la-Roza, A; Tiekink, Edward R T

    2016-04-01

    In the solid state, the title compound, C18H13N5O, adopts a conformation whereby the phenyl ring and meth-oxy-benzene-1,2-dicarbo-nitrile residue (r.m.s. deviation of the 12 non-H atoms = 0.041 Å) lie to opposite sides of the central triazolyl ring, forming dihedral angles of 79.30 (13) and 64.59 (10)°, respectively; the dihedral angle between the outer rings is 14.88 (9)°. This conformation is nearly 7 kcal mol(-1) higher in energy than the energy-minimized structure which has a syn disposition of the outer rings, enabling intra-molecular π-π inter-actions. In the crystal, methyl-ene-C-H⋯N(triazol-yl) and carbo-nitrile-N⋯π(benzene) inter-actions lead to supra-molecular chains along the a axis. Supra-molecular layers in the ab plane arise as the chains are connected by benzene-C-H⋯N(carbo-nitrile) inter-actions; layers stack with no directional inter-actions between them. The specified inter-molecular contacts along with other, weaker contributions to the supra-molecular stabilization are analysed in a Hirshfeld surface analysis. PMID:27375890

  8. 4-[(1-Benzyl-1H-1,2,3-triazol-4-yl)meth­oxy]benzene-1,2-dicarbo­nitrile: crystal structure, Hirshfeld surface analysis and energy-minimization calculations

    PubMed Central

    Shamsudin, Norzianah; Tan, Ai Ling; Young, David J.; Jotani, Mukesh M.; Otero-de-la-Roza, A.; Tiekink, Edward R. T.

    2016-01-01

    In the solid state, the title compound, C18H13N5O, adopts a conformation whereby the phenyl ring and meth­oxy–benzene-1,2-dicarbo­nitrile residue (r.m.s. deviation of the 12 non-H atoms = 0.041 Å) lie to opposite sides of the central triazolyl ring, forming dihedral angles of 79.30 (13) and 64.59 (10)°, respectively; the dihedral angle between the outer rings is 14.88 (9)°. This conformation is nearly 7 kcal mol−1 higher in energy than the energy-minimized structure which has a syn disposition of the outer rings, enabling intra­molecular π–π inter­actions. In the crystal, methyl­ene-C—H⋯N(triazol­yl) and carbo­nitrile-N⋯π(benzene) inter­actions lead to supra­molecular chains along the a axis. Supra­molecular layers in the ab plane arise as the chains are connected by benzene-C—H⋯N(carbo­nitrile) inter­actions; layers stack with no directional inter­actions between them. The specified inter­molecular contacts along with other, weaker contributions to the supra­molecular stabilization are analysed in a Hirshfeld surface analysis. PMID:27375890

  9. Contributions of Johann jacob Huber to the surface anatomy of the spinal cord and meninges.

    PubMed

    Rengachary, Setti S; Pelle, Dominic; Guthikonda, Murali

    2008-06-01

    From prehistoric times, man has been aware that injury to the spine may result in paralysis of the limbs; this is reflected in bas-relief figures found at Nineweh in ancient Mesopotamia, in a hunting scene that depicts a lioness wounded by King Ashurbanipal. The Edwin Smith papyrus gives many case illustrations of spinal cord injury resulting in paralysis, yet early physicians were unaware of the anatomy of the spinal cord. Galen performed prospective studies in animals by sectioning the spinal cord at varying levels and observing the commensurate paralysis and sensory loss. Real advances in the understanding of spinal cord anatomy did not occur until human cadaveric dissections were undertaken; even then, the knowledge of the anatomy of the spinal cord lagged behind that of other body structures. Johann Jacob Huber appears to be the first anatomist to focus on the spinal cord almost exclusively. His descriptions, and especially his illustrations that depict spinal cord surface anatomy, are impressive with regard to their accuracy and their sense of photorealism. Indeed, his illustrations seem to compare well with the anatomic drawings in contemporary anatomic texts. Yet, we were unable to find a single article in the entire English-language literature depicting his illustrations. We conclude that the description and anatomic illustrations by Johann Jacob Huber remain a hidden gem in the history of human spinal anatomy. PMID:18825005

  10. Use of isotopically labeled fertilizer to trace nitrogen fertilizer contributions to surface, soil, and ground water

    USGS Publications Warehouse

    Wilkison, D.H.; Blevins, D.W.; Silva, S.R.

    2000-01-01

    The fate and transport of a single N fertilizer application through plants, soil, runoff, and the unsaturated and saturated zones was determined for four years at a field site under continuous corn (Zea mays L.) management. Claypan soils, which underlie the site, were hypothesized to restrict the movement of agrichemicals from the soil surface to ground water. However, N fertilizer moved rapidly through preferential flow paths in the soil and into the underlying glacial till aquifer. Most N transport occurred during the fall and winter when crops were not available to use excess N. Forty months after application, 33 percent of the fertilizer had been removed by grain harvests, 30 percent had been transpired to the atmosphere, and 33 percent had migrated to ground water. Although runoff volumes were 50 percent greater than infiltration, less than 2 percent of the fertilizer was lost to runoff. Small measured denitrification rates and large measured dissolved oxygen concentrations in ground water favor the long-term stability of NO3-1 in ground water. Successive fertilizer applications, in areas that lack the ability to moderate N concentrations through consumptive N reactions, risk the potential of N-saturated ecosystems.

  11. Caracterisation des etats de surface par teledetection infrarouge thermique multispectrale: Contribution a l'etude des conditions de viabilite hivernale

    NASA Astrophysics Data System (ADS)

    Chagnon, Frederic

    valeur de temperature corrigee, une verification prealable ayant permis de determiner la precision du TES a 0,5 °C, nous avons determine la precision relative des deux autres methodes par rapport a celle du TES. Pour les deux methodes TISI et ITR, la correction de temperature radiative a donne un ecart moyen similaire de l'ordre de --1,2 °C, avec une etendue d'ecart allant de ---0,5 a --2,2 °C. L'experience realisee a permis de presenter un prototype operationnel de mesure de la temperature de surface permettant en meme temps la caracterisation de la surface mesuree. L'extraction de ces deux types d'informations a partir d'une meme serie de mesures est une innovation. La banque d'emissivite spectrale mesuree sur le terrain est aussi une contribution de ce projet. Teledetection -- Infrarouge thermique -- Temperature de surface -- Neige -- Glace -- Meteorologie routiere

  12. The contribution and spatial distribution of Ob and Yenisei runoff on surface layer of the Kara Sea.

    NASA Astrophysics Data System (ADS)

    Polukhin, A.; Makkaveev, P.

    2012-04-01

    On degree of influence of river runoff on water area of the Kara Sea in general it is possible to consider as uniform estuary of two largest Siberian rivers - Ob and Yenisei. The Kara Sea has 41 % of all river runoff from a land in Arctic ocean or 56 % of a river runoff of the rivers of the Siberian sector of Arctic regions. From them of 37 % belong to waters from The Obskaya Guba (the Ob, the Taz, the Pur) and 46 % to waters of Yenisei. Spatial distribution of a river flow and its interaction with sea waters is in many respects defines various and changeable hydrometeorological conditions of the Kara Sea. Hydrochemical researches of the Kara Sea were included into the works of complex expedition in 59th cruise of R/V "Academic Mstislav Keldysh" (on September, 11th - on October, 7th, 2011). This data supplements results of expeditions of Institute of oceanology RAS to the Kara Sea in the autumn 1993 and 2007. In these cruises were met and described lenses of fresh water contained Ob and Yenisei waters defined on hydrochemical parameters. Difference of the data of 2011 from last years is that sampling for researches of distribution of river flow (on silicon, and the general alkalinity) was spent in flowing system from horizon of 1-1,5 m on a course of a vessel with high frequency of sampling. Such technique of sampling allows to investigate a surface water area with high discretness which plays the main role in definition of the contribution of waters of Ob and Yenisei in surface water layer of the Kara Sea. The analysis of the data shows that the area of distribution and the relative contribution of waters of a different origin considerably changes from year to year. It is connected with considerable interannual variability of hydrometeorological conditions and in particular with the general circulation of waters of the Kara Sea. River flow distribution on the surface of the Kara Sea is difficult enough. Nevertheless, distinctions in a chemical compound of waters

  13. The French contribution to the voluntary observing ships network of sea surface salinity

    NASA Astrophysics Data System (ADS)

    Alory, G.; Delcroix, T.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; Maes, C.; Morrow, R.; Perrier, J.; Reverdin, G.; Roubaud, F.

    2015-11-01

    Sea Surface Salinity (SSS) is an essential climate variable that requires long term in situ observation. The French SSS Observation Service (SSS-OS) manages a network of Voluntary Observing Ships equipped with thermosalinographs (TSG). The network is global though more concentrated in the tropical Pacific and North Atlantic oceanic basins. The acquisition system is autonomous with real time transmission and is regularly serviced at harbor calls. There are distinct real time and delayed time processing chains. Real time processing includes automatic alerts to detect potential instrument problems, in case raw data are outside of climatic limits, and graphical monitoring tools. Delayed time processing relies on a dedicated software for attribution of data quality flags by visual inspection, and correction of TSG time series by comparison with daily water samples and collocated Argo data. A method for optimizing the automatic attribution of quality flags in real time, based on testing different thresholds for data deviation from climatology and retroactively comparing the resulting flags to delayed time flags, is presented. The SSS-OS real time data feed the Coriolis operational oceanography database, while the research-quality delayed time data can be extracted for selected time and geographical ranges through a graphical web interface. Delayed time data have been also combined with other SSS data sources to produce gridded files for the Pacific and Atlantic oceans. A short review of the research activities conducted with such data is given. It includes observation-based process-oriented and climate studies from regional to global scale as well as studies where in situ SSS is used for calibration/validation of models, coral proxies or satellite data.

  14. Dynamic contributions to the sea surface salinity variations along the equator and the coast of the Gulf of Guinea

    NASA Astrophysics Data System (ADS)

    Berger, H.; Tréguier, A. M.; Perenne, N.

    2012-04-01

    Seasonal variations of the sea surface salinity in the Gulf of Guinea are linked to the important variations of fresh water from precipitations and coastal runoffs. However, as freshwater forcing terms are not sufficient to explain all observed variations, dynamical contribution must be analyzed. Here, we investigate the impact of the equatorial upwelling from May to August during the salinisation of the basin and the southward extension of the Congo plume along the coast between February and March. We use a tropical Atlantic (1/4°) configuration with a high horizontal (1/12°) and vertical resolution (100 levels) nested grid for the Gulf of Guinea based on the NEMO/AGRIF platform. Mixed layer trends are computed to allow a quantitative analysis of the contribution of each mechanism during the equatorial upwelling. At basin scale, it appears that evaporation and decreasing fresh water discharge cannot explain the intensity of the salinisation along the equator, especially during May and June. Surface temperature and salinity patterns show that regions where the salinisation is the most important correspond to upwelling regions and suggest that subsurface water are responsible for the dynamic part of the salinisation. However, mixed layer trends for salinity along the equator and the coast show that the main dynamical contribution come from horizontal advection. The horizontal contribution results from a transport of higher salinity water formed in regions where the E-P-R balance tends to increase the salinity before the upwelling takes place. The low salinity observed south of 10°S along the coast cannot be due to local fresh water forcing, which is weak in the area. During three weeks in between February and March, we show that an eastward and southward reversal of the surface circulation along the equator and the coasts of Gabon and Angola advects water from the Congo plume to the south. Along the southern coast, local wind forcing is not responsible for the

  15. Surface vacuolar ATPase in ameloblastoma contributes to tumor invasion of the jaw bone.

    PubMed

    Yoshimoto, Shohei; Morita, Hiromitsu; Matsubara, Ryota; Mitsuyasu, Takeshi; Imai, Yuko; Kajioka, Shunichi; Yoneda, Masahiro; Ito, Yushi; Hirofuji, Takao; Nakamura, Seiji; Hirata, Masato

    2016-03-01

    Ameloblastoma is the most common benign odontogenic tumor in Japan. It is believed that it expands in the jaw bone through peritumoral activation of osteoclasts by receptor activator of nuclear factor kappa-B ligand (RANKL) released from the ameloblastoma, as in bone metastases of cancer cells. However, the clinical features of ameloblastoma, including its growth rate and patterns of invasion, are quite different from those of bone metastasis of cancer cells, suggesting that different underlying mechanisms are involved. Therefore, in the present study, we examined the possible mechanisms underlying the invasive expansion of ameloblastoma in the jaw bone. Expression levels of RANKL assessed by western blotting were markedly lower in ameloblastoma (AM-1) cells than in highly metastatic oral squamous cell carcinoma (HSC-3) cells. Experiments coculturing mouse macrophages (RAW264.7) with AM-1 demonstrated low osteoclastogenic activity, as assessed by tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cell formation, probably because of low release of RANKL, whereas cocultures of RAW264.7 with HSC-3 cells exhibited very high osteoclastogenic activity. Thus, RANKL release from AM-1 appeared to be too low to generate osteoclasts. However, AM-1 cultured directly on calcium phosphate-coated plates formed resorption pits, and this was inhibited by application of bafilomycin A1. Furthermore, vacuolar-type H+-ATPase (V-ATPase) and H+/Cl- exchange transporter 7 (CLC-7) were detected on the surface of AM-1 cells by plasma membrane biotinylation and immunofluorescence analysis. Immunohistochemical analysis of clinical samples of ameloblastoma also showed plasma membrane-localized V-ATPase and CLC-7 in the epithelium of plexiform, follicular and basal cell types. The demineralization activity of AM-1 was only 1.7% of osteoclasts demineralization activity, and the growth rate was 20% of human normal skin keratinocytes and HSC-3 cells. These results suggest that the

  16. Contribution of coated humic acids calculated through their surface coverage on nano iron oxides for ofloxacin and norfloxacin sorption.

    PubMed

    Peng, Hongbo; Liang, Ni; Li, Hao; Chen, Fangyuan; Zhang, Di; Pan, Bo; Xing, Baoshan

    2015-09-01

    Sorption of organic contaminants on organo-mineral complexes has been investigated extensively, but the sorption contribution of mineral particles was not properly addressed before calculating KOC, especially for ionic organic contaminants. We measured the surface coverage of a humic acid (HA) on nano iron oxides (n-Fe2O3) in a series of synthesized organo-mineral complexes. The contribution of the coated HA to ofloxacin (OFL) and norfloxacin (NOR) sorption in HA-n-Fe2O3 complexes was over 80% of the total sorption with the surface coverage of 36% and fOC of 1.6%. All the coated HA showed higher sorption to NOR and OFL in comparison to the original HA, suggesting HA fractionation and/or physical re-conformation during organo-mineral complex formation. The decreased KOC with multilayer coating may suggest the importance of site-specific interactions for OFL sorption, while the increased KOC with multilayer coating may suggest the importance of partitioning in hydrophobic region for NOR sorption.

  17. Sediment sources and their contribution along northern coast of the South China Sea: Evidence from clay minerals of surface sediments

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Yan, Wen; Chen, Zhong; Lu, Jun

    2012-09-01

    Clay minerals of surface sediment samples from nine bays/harbors along northern coast of the South China Sea (SCS) are used for sediment sources and contribution estimation in the study areas. Results reveal that sediments in the study bays/harbors seem to be a mixture of sediments from the Pearl, Hanjiang River and local islands/rivers, but their clay mineral assemblage is distinct from that of Luzon and Taiwan sediments, indicating that sediments are derived mainly from the neighboring sources through riverine input and partly from localized sediments. Due to input of local sediments in the northern SCS, sediments from both east of the Leizhou Peninsula (Area IV) and next to the Pearl River estuary (PRE, Area II) have high smectite percent. Affected by riverine input of the Pearl and Hanjiang Rivers, sediments in west of the PRE (Area III) and east of the PRE (Area I) have high illite (average 47%) and kaolinite (54%) percents, respectively. Sediment contributions of various major sources to the study areas are estimated as the following: (1) the Hanjiang River provide 95% and 84% sediments in Areas I and II, respectively, (2) the Pearl River supply 79% and 29% sediments in Areas III and IV, respectively and (3) local sediments contribute the rest and reach the maximum (˜71%) in Area IV.

  18. Assessing the Contribution of Sea Surface Temperature and Salinity to Coral δ18O using a Weighted Forward Model

    NASA Astrophysics Data System (ADS)

    Horlick, K. A.; Thompson, D. M.; Anderson, D. M.

    2015-12-01

    The isotopic ratio of 16O/18O (δ18O) in coral carbonate skeletons is a robust, high-resolution proxy for sea surface temperature (SST) and sea surface salinity (SSS) variability predating the instrumental record. Although SST and δ18O-water (correlated to SSS) variability both contribute to the δ18O signal in the coral carbonate archive, the paucity and limited temporal span of SST and SSS instrumental observations limit the ability to differentiate respective SST and SSS contribution to each δ18O record. From instrumental datasets such as HadISST v.3, ERSST, SODA, and Delcroix (2011), we forward model the δ18O ("pseudoproxy") signal using the linear bivariate forward model from Thompson 2011 ("pseudoproxy"= a1(SST)+a2(SSS)). By iteratively weighting (between 0 and 1 by 0.005) the relative contribution of SST and SSS terms to the δ18O "pseudoproxy" following Gorman et al. 2012 method, we derive the percent contributions of SST and SSS to δ18O at each site based on the weights that produce the optimal correlation to the observed coral δ18O signal. A Monte Carlo analysis of error propagation in the weighted and unweighted pseudoproxy time series was used to determine how well the weighted and unweighted forward models captured observed δ18O variance. Across the south-western Pacific (40 sites) we found that SST contributes from less than 8 to more than 78% of the variance. This work builds upon this simple forward model of coral δ18O and improves our understanding of potential sources of differences in the observed and forward modeled δ18O variability. These results may also improve SST and SSS reconstructions from corals by highlighting the reef areas whose coral δ18O signal is most heavily influenced by SST and SSS respectively. Using an inverse approach, creating a transfer function, local SST and SSS could also be reconstructed based on the site-specific weights and observed coral δ18O time series.

  19. Informed Source Separation of Atmospheric and Surface Signal Contributions in Shortwave Hyperspectral Imagery using Non-negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Wright, L.; Coddington, O.; Pilewskie, P.

    2015-12-01

    Current challenges in Earth remote sensing require improved instrument spectral resolution, spectral coverage, and radiometric accuracy. Hyperspectral instruments, deployed on both aircraft and spacecraft, are a growing class of Earth observing sensors designed to meet these challenges. They collect large amounts of spectral data, allowing thorough characterization of both atmospheric and surface properties. The higher accuracy and increased spectral and spatial resolutions of new imagers require new numerical approaches for processing imagery and separating surface and atmospheric signals. One potential approach is source separation, which allows us to determine the underlying physical causes of observed changes. Improved signal separation will allow hyperspectral instruments to better address key science questions relevant to climate change, including land-use changes, trends in clouds and atmospheric water vapor, and aerosol characteristics. In this work, we investigate a Non-negative Matrix Factorization (NMF) method for the separation of atmospheric and land surface signal sources. NMF offers marked benefits over other commonly employed techniques, including non-negativity, which avoids physically impossible results, and adaptability, which allows the method to be tailored to hyperspectral source separation. We adapt our NMF algorithm to distinguish between contributions from different physically distinct sources by introducing constraints on spectral and spatial variability and by using library spectra to inform separation. We evaluate our NMF algorithm with simulated hyperspectral images as well as hyperspectral imagery from several instruments including, the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), NASA Hyperspectral Imager for the Coastal Ocean (HICO) and National Ecological Observatory Network (NEON) Imaging Spectrometer.

  20. Minimal E6 unification

    NASA Astrophysics Data System (ADS)

    Susič, Vasja

    2016-06-01

    A realistic model in the class of renormalizable supersymmetric E6 Grand Unified Theories is constructed. Its matter sector consists of 3 × 27 representations, while the Higgs sector is 27 +27 ¯+35 1'+35 1' ¯+78 . An analytic solution for a Standard Model vacuum is found and the Yukawa sector analyzed. It is argued that if one considers the increased predictability due to only two symmetric Yukawa matrices in this model, it can be considered a minimal SUSY E6 model with this type of matter sector. This contribution is based on Ref. [1].

  1. Interparticle interactions and surface contribution to the effective anisotropy in biocompatible iron oxide nanoparticles used for contrast agents

    NASA Astrophysics Data System (ADS)

    Arelaro, A. D.; Brandl, A. L.; Lima, E.; Gamarra, L. F.; Brito, G. E. S.; Pontuschka, W. M.; Goya, G. F.

    2005-05-01

    We have investigated the dynamic magnetic properties of dextran-coated magnetite (Fe3O4) nanoparticles in the form of (a) particles suspended in a carrier liquid and (b) concentrated powder obtained from lyophilization. The blocking temperature was found to increase from TB=42(2)to52(2)K (@μ0H=10mT) after lyophilization, showing the effects of dipolar interactions in samples with identical size distributions. The temperature dependence of the hyperfine field Bhyp(T) reveals the effects of collective magnetic excitations at low temperature, and allowed us to obtain the magnetic anisotropy energy Ea=3.6×10-21J for noninteracting particles. The obtained values can be understood assuming only magnetocrystalline anisotropy, without any additional contributions from surface, shape, or exchange origin. Moreover, a magnetocrystalline anisotropy constant value K1=10kJ/m3 was obtained by assuming the cubic phase with easy magnetic direction [111] of the bulk material above the Verwey transition, supporting the idea that the Verwey transition is absent in nanosized particles. Accordingly, no indication of magnetic transition at TV could be observed in our measurements. From the dynamical parameters of ac susceptibility χ(f ,T) curves, the contribution of the dipolar interactions to the total anisotropy energy barrier could be estimated to be Ω =4.5×10-21J, larger than the single-particle value.

  2. The Surface Brightness Contribution of II Peg: A Comparison of TiO Band Analysis and Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Senavci, H. V.; O'Neal, D.; Hussain, G. A. J.; Barnes, J. R.

    2015-01-01

    We investigate the surface brightness contribution of the very well known active SB1 binary II Pegasi , to determine the star spot filling factor and the spot temperature parameters. In this context, we analyze 54 spectra of the system taken over 6 nights in September - October of 1996, using the 2.1m Otto Struve Telescope equipped with SES at the McDonald Observatory. We measure the spot temperatures and spot filling factors by fitting TiO molecular bands in this spectroscopic dataset, with model atmosphere approximation using ATLAS9 and with proxy stars obtained with the same instrument. The same dataset is then used to also produce surface spot maps using the Doppler imaging technique. We compare the spot filling factors obtained with the two independent techniques in order to better characterise the spot properties of the system and to better assess the limitations inherent to both techniques. The results obtained from both techniques show that the variation of spot filling factor as a function of phase agree well with each other, while the amount of TiO and DI spot

  3. Evaluating the contribution of changes in isoprene emissions to surface ozone trends over the eastern United States

    NASA Astrophysics Data System (ADS)

    Fiore, Arlene M.; Horowitz, Larry W.; Purves, Drew W.; Levy, Hiram; Evans, Mathew J.; Wang, Yuxuan; Li, Qinbin; Yantosca, Robert M.

    2005-06-01

    Reducing surface ozone (O3) to concentrations in compliance with the national air quality standard has proven to be challenging, despite tighter controls on O3 precursor emissions over the past few decades. New evidence indicates that isoprene emissions changed considerably from the mid-1980s to the mid-1990s owing to land-use changes in the eastern United States (Purves et al., 2004). Over this period, U.S. anthropogenic VOC (AVOC) emissions decreased substantially. Here we apply two chemical transport models (GEOS-CHEM and MOZART-2) to test the hypothesis, put forth by Purves et al. (2004), that the absence of decreasing O3 trends over much of the eastern United States may reflect a balance between increases in isoprene emissions and decreases in AVOC emissions. We find little evidence for this hypothesis; over most of the domain, mean July afternoon (1300-1700 local time) surface O3 is more responsive (ranging from -9 to +7 ppbv) to the reported changes in anthropogenic NOx emissions than to the concurrent isoprene (-2 to +2 ppbv) or AVOC (-2 to 0 ppbv) emission changes. The estimated magnitude of the O3 response to anthropogenic NOx emission changes, however, depends on the base isoprene emission inventory used in the model. The combined effect of the reported changes in eastern U.S. anthropogenic plus biogenic emissions is insufficient to explain observed changes in mean July afternoon surface O3 concentrations, suggesting a possible role for decadal changes in meteorology, hemispheric background O3, or subgrid-scale chemistry. We demonstrate that two major uncertainties, the base isoprene emission inventory and the fate of isoprene nitrates (which influence surface O3 in the model by -15 to +4 and +4 to +12 ppbv, respectively), preclude a well-constrained quantification of the present-day contribution of biogenic or anthropogenic emissions to surface O3 concentrations, particularly in the high-isoprene-emitting southeastern United States. Better constraints

  4. Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Lock, James A.

    1991-01-01

    The contributions of complex rays and the secondary radiation shed by surface waves to scattering by a dielectric sphere are calculated in the context of the Debye series expansion of the Mie scattering amplitudes. Also, the contributions of geometrical rays are reviewed and compared with the Debye series. Interference effects between surface waves, complex waves, and geometrical waves are calculated, and the possibility of observing these interference effects is discussed. Experimental data supporting the observation of a surface wave-geometrical pattern is presented.

  5. Shr is a broad-spectrum surface receptor that contributes to adherence and virulence in group A streptococcus.

    PubMed

    Fisher, Morly; Huang, Ya-Shu; Li, Xueru; McIver, Kevin S; Toukoki, Chadia; Eichenbaum, Zehava

    2008-11-01

    Group A streptococcus (GAS) is a common hemolytic pathogen that produces a range of suppurative infections and autoimmune sequelae in humans. Shr is an exported protein in GAS, which binds in vitro to hemoglobin, myoglobin, and the hemoglobin-haptoglobin complex. We previously reported that Shr is found in association with whole GAS cells and in culture supernatant. Here, we demonstrate that cell-associated Shr could not be released from the bacteria by the muralytic enzyme mutanolysin and was instead localized to the membrane. Shr was available, however, on the exterior of GAS, exposed to the extracellular environment. In vitro binding and competition assays demonstrated that in addition to hemoprotein binding, purified Shr specifically interacts with immobilized fibronectin and laminin. The absence of typical fibronectin-binding motifs indicates that a new protein pattern is involved in the binding of Shr to the extracellular matrix. Recombinant Lactococcus lactis cells expressing Shr on the bacterial surface gained the ability to bind to immobilized fibronectin, suggesting that Shr can function as an adhesin. The inactivation of shr resulted in a 40% reduction in the attachment to human epithelial cells in comparison to the parent strain. GAS infection elicited a high titer of Shr antibodies in sera from convalescent mice, demonstrating that Shr is expressed in vivo. The shr mutant was attenuated for virulence in an intramuscular zebrafish model system. In summary, this study identifies Shr as being a new microbial surface component recognizing adhesive matrix molecules in GAS that mediates attachment to epithelial cells and contributes to the infection process.

  6. Cleavage of Mer tyrosine kinase (MerTK) from the cell surface contributes to the regulation of retinal phagocytosis.

    PubMed

    Law, Ah-Lai; Parinot, Célia; Chatagnon, Jonathan; Gravez, Basile; Sahel, José-Alain; Bhattacharya, Shomi S; Nandrot, Emeline F

    2015-02-20

    Phagocytosis of apoptotic cells by macrophages and spent photoreceptor outer segments (POS) by retinal pigment epithelial (RPE) cells requires several proteins, including MerTK receptors and associated Gas6 and protein S ligands. In the retina, POS phagocytosis is rhythmic, and MerTK is activated promptly after light onset via the αvβ5 integrin receptor and its ligand MFG-E8, thus generating a phagocytic peak. The phagocytic burst is limited in time, suggesting a down-regulation mechanism that limits its duration. Our previous data showed that MerTK helps control POS binding of integrin receptors at the RPE cell surface as a negative feedback loop. Our present results show that a soluble form of MerTK (sMerTK) is released in the conditioned media of RPE-J cells during phagocytosis and in the interphotoreceptor matrix of the mouse retina during the morning phagocytic peak. In contrast to macrophages, the two cognate MerTK ligands have an opposite effect on phagocytosis and sMerTK release, whereas the integrin ligand MFG-E8 markedly increases both phagocytosis and sMerTK levels. sMerTK acts as a decoy receptor blocking the effect of both MerTK ligands. Interestingly, stimulation of sMerTK release decreases POS binding. Conversely, blocking MerTK cleavage increased mostly POS binding by RPE cells. Therefore, our data suggest that MerTK cleavage contributes to the acute regulation of RPE phagocytosis by limiting POS binding to the cell surface.

  7. Esophagectomy - minimally invasive

    MedlinePlus

    Minimally invasive esophagectomy; Robotic esophagectomy; Removal of the esophagus - minimally invasive; Achalasia - esophagectomy; Barrett esophagus - esophagectomy; Esophageal cancer - esophagectomy - laparoscopic; Cancer of the ...

  8. Age related increase in mTOR activity contributes to the pathological changes in ovarian surface epithelium

    PubMed Central

    Bajwa, Preety; Nagendra, Prathima B.; Nielsen, Sarah; Sahoo, Subhransu S.; Bielanowicz, Amanda; Lombard, Janine M.; Wilkinson, Erby J.; Miller, Richard A.; Tanwar, Pradeep S.

    2016-01-01

    Ovarian cancer is a disease of older women. However, the molecular mechanisms of ovarian aging and their contribution to the pathogenesis of ovarian cancer are currently unclear. mTOR signalling is a major regulator of aging as suppression of this pathway extends lifespan in model organisms. Overactive mTOR signalling is present in up to 80% of ovarian cancer samples and is associated with poor prognosis. This study examined the role of mTOR signalling in age-associated changes in ovarian surface epithelium (OSE). Histological examination of ovaries from both aged mice and women revealed OSE cell hyperplasia, papillary growth and inclusion cysts. These pathological lesions expressed bonafide markers of ovarian cancer precursor lesions, Pax8 and Stathmin 1, and were presented with elevated mTOR signalling. To understand whether overactive mTOR signalling is responsible for the development of these pathological changes, we analysed ovaries of the Pten trangenic mice and found significant reduction in OSE lesions compared to controls. Furthermore, pharmacological suppression of mTOR signalling significantly decreased OSE hyperplasia in aged mice. Treatment with mTOR inhibitors reduced human ovarian cancer cell viability, proliferation and colony forming ability. Collectively, we have established the role of mTOR signalling in age-related OSE pathologies and initiation of ovarian cancer. PMID:27036037

  9. Age related increase in mTOR activity contributes to the pathological changes in ovarian surface epithelium.

    PubMed

    Bajwa, Preety; Nagendra, Prathima B; Nielsen, Sarah; Sahoo, Subhransu S; Bielanowicz, Amanda; Lombard, Janine M; Wilkinson, J Erby; Miller, Richard A; Tanwar, Pradeep S

    2016-04-12

    Ovarian cancer is a disease of older women. However, the molecular mechanisms of ovarian aging and their contribution to the pathogenesis of ovarian cancer are currently unclear. mTOR signalling is a major regulator of aging as suppression of this pathway extends lifespan in model organisms. Overactive mTOR signalling is present in up to 80% of ovarian cancer samples and is associated with poor prognosis. This study examined the role of mTOR signalling in age-associated changes in ovarian surface epithelium (OSE). Histological examination of ovaries from both aged mice and women revealed OSE cell hyperplasia, papillary growth and inclusion cysts. These pathological lesions expressed bonafide markers of ovarian cancer precursor lesions, Pax8 and Stathmin 1, and were presented with elevated mTOR signalling. To understand whether overactive mTOR signalling is responsible for the development of these pathological changes, we analysed ovaries of the Pten trangenic mice and found significant reduction in OSE lesions compared to controls. Furthermore, pharmacological suppression of mTOR signalling significantly decreased OSE hyperplasia in aged mice. Treatment with mTOR inhibitors reduced human ovarian cancer cell viability, proliferation and colony forming ability. Collectively, we have established the role of mTOR signalling in age-related OSE pathologies and initiation of ovarian cancer.

  10. Use of liquid hydrocarbon and amide transfer data to estimate contributions to thermodynamic functions of protein folding from the removal of nonpolar and polar surface from water.

    PubMed

    Spolar, R S; Livingstone, J R; Record, M T

    1992-04-28

    This extension of the liquid hydrocarbon model seeks to quantify the thermodynamic contributions to protein stability from the removal of nonpolar and polar surface from water. Thermodynamic data for the transfer of hydrocarbons and organic amides from water to the pure liquid phase are analyzed to obtain contributions to the thermodynamics of folding from the reduction in water-accessible surface area. Although the removal of nonpolar surface makes the dominant contribution to the standard heat capacity change of folding (delta C0fold), here we show that inclusion of the contribution from removal of polar surface allows a quantitative prediction of delta C0fold within the uncertainty of the calorimetrically determined value. Moreover, analysis of the contribution of polar surface area to the enthalpy of transfer of liquid amides provides a means of estimating the contributions from changes in nonpolar and polar surface area as well as other factors to the enthalpy of folding (delta H0fold). In addition to estimates of delta H0fold, this extension of the liquid hydrocarbon model provides a thermodynamic explanation for the observation [Privalov, P. L., & Khechinashvili, N. N. (1974) J. Mol. Biol. 86, 665-684] that the specific enthalpy of folding (cal g-1) of a number of globular proteins converges to a common value at approximately 383 K. Because amounts of nonpolar and polar surface area buried by these proteins upon folding are found to be linear functions of molar mass, estimates of both delta C0fold and delta H0fold may be obtained given only the molar mass of the protein of interest.(ABSTRACT TRUNCATED AT 250 WORDS)

  11. Dynamical contribution to sea surface salinity variations in the eastern Gulf of Guinea based on numerical modelling

    NASA Astrophysics Data System (ADS)

    Berger, Henrick; Treguier, Anne Marie; Perenne, Nicolas; Talandier, Claude

    2014-12-01

    In this study, we analyse the seasonal variability of the sea surface salinity (SSS) for two coastal regions of the Gulf of Guinea from 1995 to 2006 using a high resolution model (1/12°) embedded in a Tropical Atlantic (1/4°) model. Compared with observations and climatologies, our model demonstrates a good capability to reproduce the seasonal and spatial variations of the SSS and mixed layer depth. Sensitivity experiments are carried out to assess the respective impacts of precipitations and river discharge on the spatial structure and seasonal variations of the SSS in the eastern part of the Gulf of Guinea. In the Bight of Biafra, both precipitations and river runoffs are necessary to observe permanent low SSS values but the river discharge has the strongest impact on the seasonal variations of the SSS. South of the equator, the Congo river discharge alone is sufficient to explain most of the SSS structure and its seasonal variability. However, mixed layer budgets for salinity reveal the necessity to take into account the horizontal and vertical dynamics to explain the seasonal evolution of the salinity in the mixed layer. Indeed evaporation, precipitations and runoffs represent a relatively small contribution to the budgets locally at intraseasonal to seasonal time scales. Horizontal advection always contribute to spread the low salinity coastal waters offshore and thus decrease the salinity in the eastern Gulf of Guinea. For the Bight of Biafra and the Congo plume region, the strong seasonal increase of the SSS observed from May/June to August/September, when the trade winds intensify, results from a decreasing offshore spread of freshwater associated with an intensification of the salt input from the subsurface. In the Congo plume region, the subsurface salt comes mainly from advection due to a strong upwelling but for the Bight of Biafra, entrainment and vertical mixing also play a role. The seasonal evolution of horizontal advection in the Bight of Biafra

  12. Detection of Remarkably Low Isotopic Ratio of Iron in Anthropogenic Aerosols and Evaluation of its Contribution to the Surface Ocean

    NASA Astrophysics Data System (ADS)

    Kurisu, M.; Iizuka, T.; Sakata, K.; Uematsu, M.; Takahashi, Y.

    2015-12-01

    It has been reported that phytoplankton growth in the High Nutrient-Low Chlorophyll (HNLC) regions is limited by dissolved iron (DFe) concentration (e.g., Martin and Fitzwater, 1988). Aerosol is known as one of the dominant sources of DFe to the ocean and classified into two origins such as anthropogenic and natural. A series of recent studies showed that Fe in anthropogenic aerosols is more soluble than that in natural aerosols (Takahashi et al., 2013) and has lower isotopic ratio (Mead et al., 2013). However, the difference between Fe isotopic ratio (δ56Fe: [(56Fe/54Fe)sample/(56Fe/54Fe)IRMM-14]-1) of two origins reported in Mead et al. (2013) is not so large compared with the standard deviation. Therefore, the aim of this study is to determine Fe species and δ56Fe in anthropogenic aerosols more accurately and to evaluate its contribution to the ocean surface. Iron species were determined by X-ray absorption fine structure (XAFS) analysis, while δ56Fe in size-fractionated aerosols were measured by MC-ICP-MS (NEPTUNE Plus) after chemical separation using anion exchange resin. Dominant Fe species in the samples were, ferrihydrite, hematite, and biotite. It was also revealed that coarse particles contained a larger amount of biotite and that fine particles contained a larger amount of hematite, which suggested that anthropogenic aerosols were emitted during combustion processes. In addition, results of Fe isotopic ratio analysis suggested that δ56Fe of coarse particles were around +0.25‰, whereas that of fine particles were -0.5 ˜ -2‰, which was lower than the δ56Fe in anthropogenic aerosol by Mead et al. (2013). The size-fractionated sampling made it possible to determine the δ56Fe in anthropogenic aerosol. Soluble component in fine particles extracted by simulated rain water also showed much lower δ56Fe (δ56Fe = -3.9±0.12‰), suggesting that anthropogenic Fe has much lower isotopic ratio. The remarkably low δ56Fe may be caused by the

  13. Macrophytes may not contribute significantly to removal of nutrients, pharmaceuticals, and antibiotic resistance in model surface constructed wetlands.

    PubMed

    Cardinal, Pascal; Anderson, Julie C; Carlson, Jules C; Low, Jennifer E; Challis, Jonathan K; Beattie, Sarah A; Bartel, Caitlin N; Elliott, Ashley D; Montero, Oscar F; Lokesh, Sheetal; Favreau, Alex; Kozlova, Tatiana A; Knapp, Charles W; Hanson, Mark L; Wong, Charles S

    2014-06-01

    Outdoor shallow wetland mesocosms, designed to simulate surface constructed wetlands to improve lagoon wastewater treatment, were used to assess the role of macrophytes in the dissipation of wastewater nutrients, selected pharmaceuticals, and antibiotic resistance genes (ARGs). Specifically, mesocosms were established with or without populations of Typha spp. (cattails), Myriophyllum sibiricum (northern water milfoil), and Utricularia vulgaris (bladderwort). Following macrophyte establishment, mesocosms were seeded with ARG-bearing organisms from a local wastewater lagoon, and treated with a single pulse of artificial municipal wastewater with or without carbamazepine, clofibric acid, fluoxetine, and naproxen (each at 7.6μg/L), as well as sulfamethoxazole and sulfapyridine (each at 150μg/L). Rates of pharmaceutical dissipation over 28d ranged from 0.073 to 3.0d(-1), corresponding to half-lives of 0.23 to 9.4d. Based on calculated rate constants, observed dissipation rates were consistent with photodegradation driving clofibric acid, naproxen, sulfamethoxazole, and sulfapyridine removal, and with sorption also contributing to carbamazepine and fluoxetine loss. Of the seven gene determinants assayed, only two genes for both beta-lactam resistance (blaCTX and blaTEM) and sulfonamide resistance (sulI and sulII) were found in sufficient quantity for monitoring. Genes disappeared relatively rapidly from the water column, with half-lives ranging from 2.1 to 99d. In contrast, detected gene levels did not change in the sediment, with the exception of sulI, which increased after 28d in pharmaceutical-treated systems. These shallow wetland mesocosms were able to dissipate wastewater contaminants rapidly. However, no significant enhancement in removal of nutrients or pharmaceuticals was observed in mesocosms with extensive aquatic plant communities. This was likely due to three factors: first, use of naïve systems with an unchallenged capacity for nutrient assimilation and

  14. Temporal trends in West Antarctic surface mass balance: do large scale modes of climate contribute to observed records?

    NASA Astrophysics Data System (ADS)

    Carpenter, M.; Rupper, S.; Williams, J.; Burgener, L. K.; Koenig, L.; Forster, R. R.; Koutnik, M. R.; Skinner, R.; Miege, C.; Brucker, L.

    2013-12-01

    Western Antarctica has been warming significantly at a rate of 0.17× 0.06 degrees C per decade from 1957 to 2006, with the strongest warming in the winter and spring months. Annual accumulation rates in the central WAIS have been decreasing over the same time period, in spite of rising temperatures. This is somewhat unexpected, as saturation vapor pressure increases with increasing temperature. One possible explanation of this observation could be related to synoptic-scale modes of climate, principally the Southern Annular Mode (SAM) and the El Nino Southern Oscillation (ENSO). These modes of climate are known to modify the track and strength of storms seasonally, but the true extent of the influence of these modes on accumulation in central WAIS is not well known. This is due, in part, to sparse instrumental weather data which makes it difficult to understand the spatial and temporal variability of the central WAIS Surface Mass Balance (SMB). Firn cores provide an excellent temporal SMB record that can fill this data gap, but are spatially limited. The spatial limitation of individual cores can be remedied by creating a network of firn cores over a region, which overcomes small scale variability and provides a regional representation of SMB over the temporal length of the firn core records. The 2011 Satellite Era Accumulation Traverse (SEAT) adds nine new firn cores (20 m deep, spanning 2010-1981) to existing cores within the same region of the central WAIS to improve the spatial network of regional SMB measurements. SMB is reconstructed from the firn cores, and are compared to simulated accumulation from five climate models and reanalyses datasets. The combination of firn cores and simulated records are used to investigate wether SAM and ENSO significantly influence SMB in the central WAIS. The new suite of cores show a statistically significant negative trend in accumulation during the past three decades, which is consistent with results from the previous cores

  15. Macrophytes may not contribute significantly to removal of nutrients, pharmaceuticals, and antibiotic resistance in model surface constructed wetlands.

    PubMed

    Cardinal, Pascal; Anderson, Julie C; Carlson, Jules C; Low, Jennifer E; Challis, Jonathan K; Beattie, Sarah A; Bartel, Caitlin N; Elliott, Ashley D; Montero, Oscar F; Lokesh, Sheetal; Favreau, Alex; Kozlova, Tatiana A; Knapp, Charles W; Hanson, Mark L; Wong, Charles S

    2014-06-01

    Outdoor shallow wetland mesocosms, designed to simulate surface constructed wetlands to improve lagoon wastewater treatment, were used to assess the role of macrophytes in the dissipation of wastewater nutrients, selected pharmaceuticals, and antibiotic resistance genes (ARGs). Specifically, mesocosms were established with or without populations of Typha spp. (cattails), Myriophyllum sibiricum (northern water milfoil), and Utricularia vulgaris (bladderwort). Following macrophyte establishment, mesocosms were seeded with ARG-bearing organisms from a local wastewater lagoon, and treated with a single pulse of artificial municipal wastewater with or without carbamazepine, clofibric acid, fluoxetine, and naproxen (each at 7.6μg/L), as well as sulfamethoxazole and sulfapyridine (each at 150μg/L). Rates of pharmaceutical dissipation over 28d ranged from 0.073 to 3.0d(-1), corresponding to half-lives of 0.23 to 9.4d. Based on calculated rate constants, observed dissipation rates were consistent with photodegradation driving clofibric acid, naproxen, sulfamethoxazole, and sulfapyridine removal, and with sorption also contributing to carbamazepine and fluoxetine loss. Of the seven gene determinants assayed, only two genes for both beta-lactam resistance (blaCTX and blaTEM) and sulfonamide resistance (sulI and sulII) were found in sufficient quantity for monitoring. Genes disappeared relatively rapidly from the water column, with half-lives ranging from 2.1 to 99d. In contrast, detected gene levels did not change in the sediment, with the exception of sulI, which increased after 28d in pharmaceutical-treated systems. These shallow wetland mesocosms were able to dissipate wastewater contaminants rapidly. However, no significant enhancement in removal of nutrients or pharmaceuticals was observed in mesocosms with extensive aquatic plant communities. This was likely due to three factors: first, use of naïve systems with an unchallenged capacity for nutrient assimilation and

  16. Minimal change disease

    MedlinePlus

    ... seen under a very powerful microscope called an electron microscope. Minimal change disease is the most common ... biopsy and examination of the tissue with an electron microscope can show signs of minimal change disease.

  17. Visualisation of the intact dura mater and brain surface in infant autopsies: a minimally destructive technique for the post-mortem assessment of head injury.

    PubMed

    Cheshire, Emma C; Malcomson, Roger D G; Rutty, Guy N; James, Deryk S

    2015-03-01

    During the post-mortem examination of babies and young children, it is important to be able to visualise the brain and its coverings, particularly in cases where a head injury is likely to have occurred. In this paper, we present an improved method for removal of the calvarial bones in infant autopsies to enable viewing of the dura mater and brain. In contrast to the standard post-mortem procedure for observing and removing the brain, this novel technique is minimally disruptive, allowing the dura mater to remain undamaged. Specialised paediatric neurosurgical tools were used to remove the skull bones from 23 neonates, infants and young children during post-mortem examination. In 21 of our 23 cases, the calvarial bones were removed successfully with the dura mater remaining intact. In one case, there was a thickening of the dura mater which created a strong adherence of this membrane to the bone. In another case, the dura mater was slightly damaged due to the inexperience of the operator in using the neurosurgical tools. This method of calvarial bone removal reduces the degree of post-mortem artefact and enhances the ability to observe and photographically document autopsy findings, including the artefact-free detection of signs of injury such as epidural or subdural haematoma, and brain swelling. This technique has now become a routine practise in both of our units to remove the skull bones in infant/young children post-mortem examinations.

  18. Enhanced in vitro biological activity generated by surface characteristics of anodically oxidized titanium--the contribution of the oxidation effect.

    PubMed

    Wurihan; Yamada, A; Suzuki, D; Shibata, Y; Kamijo, R; Miyazaki, T

    2015-05-20

    Anodically oxidized titanium surfaces, prepared by spark discharge, have micro-submicron surface topography and nano-scale surface chemistry, such as hydrophilic functional groups or hydroxyl radicals in parallel. The complexity of the surface characteristics makes it difficult to draw a clear conclusion as to which surface characteristic, of anodically oxidized titanium, is critical in each biological event. This study examined the in vitro biological changes, induced by various surface characteristics of anodically oxidized titanium with, or without, release of hydroxyl radicals onto the surface. Anodically oxidized titanium enhanced the expression of genes associated with differentiating osteoblasts and increased the degree of matrix mineralization by these cells in vitro. The phenotypes of cells on the anodically oxidized titanium were the same with, or without, release of hydroxyl radicals. However, the nanomechanical properties of this in vitro mineralized tissue were significantly enhanced on surfaces, with release of hydroxyl radicals by oxidation effects. In addition, the mineralized tissue, produced in the presence of bone morphogenetic protein-2 on bare titanium, had significantly weaker nanomechanical properties, despite there being higher osteogenic gene expression levels. We show that enhanced osteogenic cell differentiation on modified titanium is not a sufficient indicator of enhanced in vitro mineralization. This is based on the inferior mechanical properties of mineralized tissues, without either being cultured on a titanium surface with release of hydroxyl radicals, or being supplemented with lysyl oxidase family members.

  19. Multi-scale modeling study of the source contributions to near-surface ozone and sulfur oxides levels over California during the ARCTAS-CARB period

    NASA Astrophysics Data System (ADS)

    Huang, M.; Carmichael, G. R.; Spak, S. N.; Adhikary, B.; Kulkarni, S.; Cheng, Y.; Wei, C.; Tang, Y.; D'Allura, A.; Wennberg, P. O.; Huey, G. L.; Dibb, J. E.; Jimenez, J. L.; Cubison, M. J.; Weinheimer, A. J.; Kaduwela, A.; Cai, C.; Wong, M.; Pierce, R. Bradley; Al-Saadi, J. A.; Streets, D. G.; Zhang, Q.

    2011-04-01

    Chronic high surface ozone (O3) levels and the increasing sulfur oxides (SOx = SO2+SO4) ambient concentrations over South Coast (SC) and other areas of California (CA) are affected by both local emissions and long-range transport. In this paper, multi-scale tracer, full-chemistry and adjoint simulations using the STEM atmospheric chemistry model are conducted to assess the contribution of local emission sourcesto SC O3 and to evaluate the impacts of transported sulfur and local emissions on the SC sulfur budgetduring the ARCTAS-CARB experiment period in 2008. Sensitivity simulations quantify contributions of biogenic and fire emissions to SC O3 levels. California biogenic and fire emissions contribute 3-4 ppb to near-surface O3 over SC, with larger contributions to other regions in CA. During a long-range transport event from Asia starting from 22 June, high SOx levels (up to ~0.7 ppb of SO2 and ~1.3 ppb of SO4) is observed above ~6 km, but they did not affect CA surface air quality. The elevated SOx observed at 1-4 km is estimated to enhance surface SOx over SC by ~0.25 ppb (upper limit) on ~24 June. The near-surface SOx levels over SC during the flight week are attributed mostly to local emissions. Two anthropogenic SOx emission inventories (EIs) from the California Air Resources Board (CARB) and the US Environmental Protection Agency (EPA) are compared and applied in 60 km and 12 km chemical transport simulations, and the results are compared withobservations. The CARB EI shows improvements over the National Emission Inventory (NEI) by EPA, but generally underestimates surface SC SOx by about a factor of two. Adjoint sensitivity analysis indicated that SO2 levels at 00:00 UTC (17:00 local time) at six SC surface sites were influenced by previous day maritime emissions over the ocean, the terrestrial emissions over nearby urban areas, and by transported SO2 from the north through both terrestrial and maritime areas. Overall maritime emissions contribute 10-70% of

  20. Model and assessment of the contribution of dredged material disposal to sea-surface contamination in Puget Sound

    SciTech Connect

    Hardy, J.T.; Cowan, C.E.

    1986-02-01

    Hydrophobic or floatable materials released to the water column during dredge disposal operations may accumulate in high concentrations on the water surface. If such surface accumulations occur, they could impact the reproduction of fish and shellfish with neustonic (floating) eggs or larvae. Also, floatable surface contaminants could deposit on nearby beaches. In order to examine the potential impacts of such processes, an interactive computer (IBM PC) model was developed. The FORTRAN model allows input of contaminant concentrations on the dredge material, the surface area of the disposal site, the floatable fraction of the contaminated material, and the baseline concentrations of contaminants present in the sea-surface microlayer. The model then computes the resultant concentrations of each contaminant in the microlayer and the potential impact on floating fish eggs. The utility of the model would be greatly improved by empirical data, not yeat available, on the vertical upward and lateral movement of contaminants during dredge material disposal.

  1. Effect of dehydration on the interfacial water structure at a charged polymer surface: negligible χ(3) contribution to sum frequency generation signal.

    PubMed

    Ye, Shuji; Liu, Guangming; Li, Hongchun; Chen, Fenggui; Wang, Xiaowen

    2012-01-17

    Interfacial water structure at charged surfaces plays a key role in many physical, chemical, biological, environmental, and industrial processes. Understanding the release of interfacial water from the charged solid surfaces during dehydration process may provide insights into the mechanism of protein folding and the nature of weak molecular interactions. In this work, sum frequency generation vibrational spectroscopy (SFG-VS), supplemented by quartz crystal microbalance (QCM) measurements, has been applied to study the interfacial water structure at polyelectrolyte covered surfaces. Poly[2-(dimethylamino)ethyl methacrylate] (PDMAEMA) chains are grafted on solid surfaces to investigate the change of interfacial water structure with varying surface charge density induced by tuning the solution pH. At pH ≤ 7.1, SFG-VS intensity is linear to the loss of mass of interfacial water caused by the dehydration of PDMAEMA chains, and no reorientation of the strongly bonded water molecules is observed in the light of χ(ppp)/χ(ssp) ratio. χ((3)) contribution to SFG signal is deduced based on the combination of SFG and QCM results. It is the first direct experimental evidence to reveal that the χ((3)) has a negligible contribution to SFG signal of the interfacial water at a charged polymer surface.

  2. Effect of Hydrogen Peroxide in Combination with Minimal Thermal Treatment for Reducing Bacterial Populations on Cantaloupe Rind Surfaces and Transfer to Fresh-Cut Pieces.

    PubMed

    Ukuku, Dike O; Mukhopadhyay, Sudarsan; Geveke, David; Olanya, Modesto; Niemira, Brendan

    2016-08-01

    Surface structure and biochemical characteristics of bacteria and produce play a major role in how and where bacteria attach, complicating decontamination treatments. Whole cantaloupe rind surfaces were inoculated with Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes at 10(7) CFU/ml. Average population size of Salmonella, Escherichia coli O157:H7, and L. monocytogenes recovered after surface inoculation was 4.8 ± 0.12, 5.1 ± 0.14, and 3.6 ± 0.13 log CFU/cm(2), respectively. Inoculated melons were stored at 5 and 22°C for 7 days before washing treatment interventions. Intervention treatments used were (i) water (H2O) at 22°C, (ii) H2O at 80°C, (iii) 3% hydrogen peroxide (H2O2) at 22°C, and (iv) a combination of 3% H2O2 and H2O at 80°C for 300 s. The strength of pathogen attachment (SR value) at days 0, 3, and 7 of storage was determined, and then the efficacy of the intervention treatments to detach, kill, and reduce transfer of bacteria to fresh-cut pieces during fresh-cut preparation was investigated. Populations of E. coli O157:H7 attached to the rind surface at significantly higher levels (P < 0.05) than Salmonella and L. monocytogenes, but Salmonella exhibited the strongest attachment (SR value) at all days tested. Washing with 3% H2O2 alone led to significant reduction (P < 0.05) of bacteria and caused some changes in bacterial cell morphology. A combination treatment with H2O and 3% H2O2 at 8°C led to an average 4-log reduction of bacterial pathogens, and no bacterial pathogens were detected in fresh-cut pieces prepared from this combination treatment, including enriched fresh-cut samples. The results of this study indicate that the microbial safety of fresh-cut pieces from treated cantaloupes was improved at day 6 of storage at 5°C and day 3 of storage at 10°C.

  3. Effect of Hydrogen Peroxide in Combination with Minimal Thermal Treatment for Reducing Bacterial Populations on Cantaloupe Rind Surfaces and Transfer to Fresh-Cut Pieces.

    PubMed

    Ukuku, Dike O; Mukhopadhyay, Sudarsan; Geveke, David; Olanya, Modesto; Niemira, Brendan

    2016-08-01

    Surface structure and biochemical characteristics of bacteria and produce play a major role in how and where bacteria attach, complicating decontamination treatments. Whole cantaloupe rind surfaces were inoculated with Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes at 10(7) CFU/ml. Average population size of Salmonella, Escherichia coli O157:H7, and L. monocytogenes recovered after surface inoculation was 4.8 ± 0.12, 5.1 ± 0.14, and 3.6 ± 0.13 log CFU/cm(2), respectively. Inoculated melons were stored at 5 and 22°C for 7 days before washing treatment interventions. Intervention treatments used were (i) water (H2O) at 22°C, (ii) H2O at 80°C, (iii) 3% hydrogen peroxide (H2O2) at 22°C, and (iv) a combination of 3% H2O2 and H2O at 80°C for 300 s. The strength of pathogen attachment (SR value) at days 0, 3, and 7 of storage was determined, and then the efficacy of the intervention treatments to detach, kill, and reduce transfer of bacteria to fresh-cut pieces during fresh-cut preparation was investigated. Populations of E. coli O157:H7 attached to the rind surface at significantly higher levels (P < 0.05) than Salmonella and L. monocytogenes, but Salmonella exhibited the strongest attachment (SR value) at all days tested. Washing with 3% H2O2 alone led to significant reduction (P < 0.05) of bacteria and caused some changes in bacterial cell morphology. A combination treatment with H2O and 3% H2O2 at 8°C led to an average 4-log reduction of bacterial pathogens, and no bacterial pathogens were detected in fresh-cut pieces prepared from this combination treatment, including enriched fresh-cut samples. The results of this study indicate that the microbial safety of fresh-cut pieces from treated cantaloupes was improved at day 6 of storage at 5°C and day 3 of storage at 10°C. PMID:27497118

  4. A method for apportionment of natural and anthropogenic contributions to heavy metal loadings in the surface soils across large-scale regions.

    PubMed

    Hu, Yuanan; Cheng, Hefa

    2016-07-01

    Quantification of the contributions from anthropogenic sources to soil heavy metal loadings on regional scales is challenging because of the heterogeneity of soil parent materials and high variability of anthropogenic inputs, especially for the species that are primarily of lithogenic origin. To this end, we developed a novel method for apportioning the contributions of natural and anthropogenic sources by combining sequential extraction and stochastic modeling, and applied it to investigate the heavy metal pollution in the surface soils of the Pearl River Delta (PRD) in southern China. On the average, 45-86% of Zn, Cu, Pb, and Cd were present in the acid soluble, reducible, and oxidizable fractions of the surface soils, while only 12-24% of Ni, Cr, and As were partitioned in these fractions. The anthropogenic contributions to the heavy metals in the non-residual fractions, even the ones dominated by natural sources, could be identified and quantified by conditional inference trees. Combination of sequential extraction, Kriging interpolation, and stochastic modeling reveals that approximately 10, 39, 6.2, 28, 7.1, 15, and 46% of the As, Cd, Cr, Cu, Ni, Pb, and Zn, respectively, in the surface soils of the PRD were contributed by anthropogenic sources. These results were in general agreements with those obtained through subtraction of regional soil metal background from total loadings, and the soil metal inputs through atmospheric deposition as well. In the non-residual fractions of the surface soils, the anthropogenic contributions to As, Cd, Cr, Cu, Ni, Pb, and Zn, were 48, 42, 50, 51, 49, 24, and 70%, respectively. PMID:27108044

  5. Three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its minimal solvent-exposed surface.

    PubMed

    Ahn, Hee-Chul; Juranić, Nenad; Macura, Slobodan; Markley, John L

    2006-04-01

    We chose crambin, a hydrophobic and water-insoluble protein originally isolated from the seeds of the plant Crambe abyssinica, as a model for NMR investigations of membrane-associated proteins. We produced isotopically labeled crambin(P22,L25) (variant of crambin containing Pro22 and Leu25) as a cleavable fusion with staphylococcal nuclease and refolded the protein by an approach that has proved successful for the production of proteins with multiple disulfide bonds. We used NMR spectroscopy to determine the three-dimensional structure of the protein in two membrane-mimetic environments: in a mixed aqueous-organic solvent (75%/25%, acetone/water) and in DPC micelles. With the sample in the mixed solvent, it was possible to determine (>NH...OC<) hydrogen bonds directly by the detection of (h3)J(NC)' couplings. H-bonds determined in this manner were utilized in the refinement of the NMR-derived protein structures. With the protein in DPC (dodecylphosphocholine) micelles, we used manganous ion as an aqueous paramagnetic probe to determine the surface of crambin that is shielded by the detergent. With the exception of the aqueous solvent exposed loop containing residues 20 and 21, the protein surface was protected by DPC. This suggests that the protein may be similarly embedded in physiological membranes. The strategy described here for the expression and structure determination of crambin should be applicable to structural and functional studies of membrane active toxins and small membrane proteins.

  6. Contribution of specifically adsorbed ions, water, and impurities to the surface enhanced Raman spectroscopy (SERS) of Ag electrodes

    NASA Astrophysics Data System (ADS)

    Pettinger, Bruno; Philpott, Michael R.; Gordon, Joseph G., II

    1981-01-01

    Surface enhanced Raman scattering (SERS) has been observed from silver electrodes for water (H2O and D2O) in the frequency region of the librational, bending, and stretching modes. Simultaneously, SERS has been observed for halide ions and some organic impurities. The appearance of SERS from water and halide ions under the circumstances of the experiment is attributed to the formation of surface complexes involving silver adatoms, halide ions, and water molecules.

  7. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.

    PubMed

    Felgueiras, Helena P; Aissa, Ines Ben; Evans, Margaret D M; Migonney, Véronique

    2015-11-01

    The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast

  8. Hydrodynamic cavitation to improve bulk fluid to surface mass transfer in a nonimmersed ultraviolet system for minimal processing of opaque and transparent fluid foods.

    PubMed

    Milly, P J; Toledo, R T; Chen, J; Kazem, B

    2007-11-01

    Ultraviolet (UV)-induced chemical reactions and inactivation of microorganisms in transparent and opaque fluids are strongly dependent upon the homogenous exposure of the target species to the UV irradiation. Current UV technologies used in water disinfection and food preservation applications have limited efficacy due to suspended particles shading target species. An Ultraviolet-Shockwave Power Reactor (UV-SPR) consisting of an inner rotating rotor and a stationary quartz housing and 2 end plates was used to induce 'controlled cavitation.' Eight UV low-pressure mercury lamps spaced uniformly were installed lengthwise around the quartz housing periphery. A KI to I(3) (-)chemical dosimeter for UV was used to quantify photons received by fluid in the annular space of the SPR. UV dose (J/m(2)) increased from 97 J/m(2) at 0 rpm to over 700 J/m(2) for SPR speeds above 2400 rpm. Inactivation of E. coli 25922 in apple juice and skim milk in the UV-SPR at exit temperatures below 45 degrees C was greater than 4.5 and 3 logs, respectively. The UV-SPR system proved successful in increasing the mass transfer of transparent and opaque fluid to the UV irradiated surface.

  9. Regio-selective decoration of nanocavity metal arrays: contributions from localized and delocalized plasmons to surface enhanced Raman spectroscopy.

    PubMed

    Jose, Bincy; Mallon, Colm T; Forster, Robert J; Keyes, Tia E

    2011-08-28

    Spherical cap gold nanocavity arrays with internal diameters of 240, 430, 600 and 820 nm were fabricated on smooth gold films using nanosphere lithography with electrochemical metal deposition. Each array was prepared to the same normalized film thickness to diameter ratios, t(N), of 0.8 ± 0.04. Selective modification of the top surface and interior walls of the gold nanocavity arrays with [Ru(bpy)(2)(Qbpy)](2+), where bpy is 2,2'-bipyridyl and Qbpy is 2,2':4,4'':4,4''-quarterpyridyl, was accomplished using a two step adsorption process exploiting the assembled polystyrene spheres as masks. This selective modification approach permitted direct quantitative comparison, for the first time, of plasmonic enhancement of Raman signal and luminescence signal from a monolayer adsorbed at the top surface versus interior walls of all-gold nanocavity arrays. For all cavity sizes, significantly greater Raman and luminescence signal enhancement was observed from [Ru(bpy)(2)(Qbpy)](2+) monolayer adsorbed at the top surface of the array compared with the cavity walls. This disparity in Raman intensity from top versus cavity interior increased as the cavity dimensions decreased. For example, the Raman signal intensity from [Ru(bpy)(2)(Qbpy)](2+) adsorbed at the top surface of 240 nm gold arrays was 170 times greater than SERS signal for this material adsorbed at the interior walls of this array, whereas the relative Raman signal enhancement was 6 from top versus interior for the 820 nm internal radius arrays under 785 nm excitation. The origin of the relatively greater signal at the top surface is discussed in the context of plasmonic distribution at each surface.

  10. BDNF contributes to both rapid and homeostatic alterations in AMPA receptor surface expression in nucleus accumbens medium spiny neurons

    PubMed Central

    Reimers, Jeremy M.; Loweth, Jessica A.; Wolf, Marina E.

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in plasticity at glutamate synapses and the effects of repeated cocaine exposure. We recently showed that intracranial injection of BDNF into the rat nucleus accumbens (NAc), a key region for cocaine addiction, rapidly increases AMPA receptor (AMPAR) surface expression. To further characterize BDNF’s role in both rapid AMPAR trafficking and slower, homeostatic changes in AMPAR surface expression, we investigated the effects of acute (30 min) and long-term (24 h) treatment with BDNF on AMPAR distribution in NAc medium spiny neurons from postnatal rats co-cultured with mouse prefrontal cortex (PFC) neurons to restore excitatory inputs. Immunocytochemical studies showed that acute BDNF treatment increased cell surface GluA1 and GluA2 levels, as well as their co-localization, on NAc neurons. This effect of BDNF, confirmed using a protein crosslinking assay, was dependent on ERK but not AKT signaling. In contrast, long-term BDNF treatment decreased AMPAR surface expression on NAc neurons. Based on this latter result, we tested the hypothesis that BDNF plays a role in AMPAR “scaling down” in response to a prolonged increase in neuronal activity produced by bicuculline (24 h). Supporting this hypothesis, decreasing BDNF signaling with the extracellular BDNF scavenger TrkB-Fc prevented the scaling down of GluA1 and GluA2 surface levels in NAc neurons normally produced by bicuculline. In conclusion, BDNF exerts bidirectional effects on NAc AMPAR surface expression, depending on duration of exposure. Furthermore, BDNF’s involvement in synaptic scaling in the NAc differs from its previously described role in the visual cortex. PMID:24712995

  11. Anisotropic contribution to the van der Waals and the Casimir-Polder energies for CO2 and CH4 molecules near surfaces and thin films

    NASA Astrophysics Data System (ADS)

    Thiyam, Priyadarshini; Parashar, Prachi; Shajesh, K. V.; Persson, Clas; Schaden, Martin; Brevik, Iver; Parsons, Drew F.; Milton, Kimball A.; Malyi, Oleksandr I.; Boström, Mathias

    2015-11-01

    In order to understand why carbon dioxide (CO2) and methane (CH4) molecules interact differently with surfaces, we investigate the Casimir-Polder energy of a linearly polarizable CO2 molecule and an isotropically polarizable CH4 molecule in front of an atomically thin gold film and an amorphous silica slab. We quantitatively analyze how the anisotropy in the polarizability of the molecule influences the van der Waals contribution to the binding energy of the molecule.

  12. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    PubMed

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  13. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    PubMed

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows. PMID:24871934

  14. Plasminogen Binding Proteins and Plasmin Generation on the Surface of Leptospira spp.: The Contribution to the Bacteria-Host Interactions

    PubMed Central

    Vieira, Monica L.; Atzingen, Marina V.; Oliveira, Rosane; Mendes, Renata S.; Domingos, Renan F.; Vasconcellos, Silvio A.; Nascimento, Ana L. T. O.

    2012-01-01

    Leptospirosis is considered a neglected infectious disease of human and veterinary concern. Although extensive investigations on host-pathogen interactions have been pursued by several research groups, mechanisms of infection, invasion and persistence of pathogenic Leptospira spp. remain to be elucidated. We have reported the ability of leptospires to bind human plasminogen (PLG) and to generate enzimatically active plasmin (PLA) on the bacteria surface. PLA-coated Leptospira can degrade immobilized ECM molecules, an activity with implications in host tissue penetration. Moreover, we have identified and characterized several proteins that may act as PLG-binding receptors, each of them competent to generate active plasmin. The PLA activity associated to the outer surface of Leptospira could hamper the host immune attack by conferring the bacteria some benefit during infection. The PLA-coated leptospires obstruct complement C3b and IgG depositions on the bacterial surface, most probably through degradation. The decrease of leptospiral opsonization might be an important aspect of the immune evasion strategy. We believe that the presence of PLA on the leptospiral surface may (i) facilitate host tissue penetration, (ii) help the bacteria to evade the immune system and, as a consequence, (iii) permit Leptospira to reach secondary sites of infection. PMID:23118516

  15. Assessment of the biospheric contribution to surface atmospheric CO2 concentrations over East Asia with a regional chemical transport model

    NASA Astrophysics Data System (ADS)

    Kou, Xingxia; Zhang, Meigen; Peng, Zhen; Wang, Yinghong

    2015-03-01

    A regional chemical transport model, RAMS-CMAQ, was employed to assess the impacts of biosphere-atmosphere C2 exchange on seasonal variations in atmospheric C2 concentrations over East Asia. Simulated C2 concentrations were compared with observations at 12 surface stations and the comparison showed they were generally in good agreement. Both observations and simulations suggested that surface C2 over East Asia features a summertime trough due to biospheric absorption, while in some urban areas surface C2 has a distinct summer peak, which could be attributed to the strong impact from anthropogenic emissions. Analysis of the model results indicated that biospheric fluxes and fossil-fuel emissions are comparably important in shaping spatial distributions of C2 near the surface over East Asia. Biospheric flux plays an important role in the prevailing spatial pattern of C2 enhancement and reduction on the synoptic scale due to the strong seasonality of biospheric C2 flux. The elevation of C2 levels by the biosphere during winter was found to be larger than 5 ppm in North China and Southeast China, and during summertime a significant depletion (⩾ 7 ppm) occurred in most areas, except for the Indo-China Peninsula where positive bioflux values were found.

  16. Multi-scale modeling study of the source contributions to near-surface ozone and sulfur oxides levels over California during the ARCTAS-CARB period

    NASA Astrophysics Data System (ADS)

    Huang, M.; Carmichael, G. R.; Spak, S. N.; Adhikary, B.; Kulkarni, S.; Cheng, Y. F.; Wei, C.; Tang, Y.; D'Allura, A.; Wennberg, P. O.; Huey, G. L.; Dibb, J. E.; Jimenez, J. L.; Cubison, M. J.; Weinheimer, A. J.; Kaduwela, A.; Cai, C.; Wong, M.; Pierce, R. B.; Al-Saadi, J. A.; Streets, D. G.; Zhang, Q.

    2010-11-01

    Chronic ozone (O3) problems and the increasing sulfur oxides (SOx=SO2+SO4) ambient concentrations over South Coast (SC) and other areas of California (CA) are affected by both local emissions and long-range transport. In this paper, multi-scale tracer and full-chemistry simulations with the STEM atmospheric chemistry model are used to assess the contribution of local emission sources to SC O3 and evaluate the impacts of transported sulfur and local emissions on the SC sulfur budget during the ARCTAS-CARB experiment period in 2008. Sensitivity simulations quantify contributions of biogenic and fire emissions to SC O3 levels. California biogenic and fire emissions contribute 3-4 ppb to near-surface O3 over SC, with larger contributions to other regions in CA. Long-range transport from Asia is estimated to enhance surface SO4 over SC by ~0.5 μg/sm3, and the higher SOx levels (up to ~0.7 ppb of SO2 and ~6 μg/sm3 of SO4) observed above ~6 km did not affect surface air quality in the study region. Enhanced near-surface SOx levels over SC during the flight week were attributed mostly to local emissions. Two anthropogenic SOx emission inventories (EIs) from the California Air Resources Board (CARB) and the US Environmental Protection Agency (EPA) are compared and applied in 60 km and 12 km chemical transport simulations, and the results are compared with observations. The CARB EI shows improvements over the National Emission Inventory (NEI) by EPA, but generally underestimates surface SC SOx by about a factor of two. Maritime (mostly shipping) emissions contribute to the high SO2 levels over the ocean and on-shore, and fine SO4 over the downwind areas is impacted by maritime sources. Maritime emissions also modify the NOx-VOC limitations over coastal areas. These suggest an important role for shipping emission controls in reducing fine particle and O3 concentrations in SC.

  17. Contribution aux etudes de signaux radar de surfaces de mer et mise au point d'un traitement rapide

    NASA Astrophysics Data System (ADS)

    Jousselme, Anne-Laure

    Dans le but d'utiliser un radar comme instrument de mesures oceanographiques, il apparai t necessaire de developper des techniques pour extraire les caracteristiques d'une surface de mer a partir du signal recu par le radar. La plupart des algorithmes existant considerent les images radar comme des photographies de la surface oceanique, negligeant l'effet de la vitesse de rotation du radar sur le signal, ainsi que le systeme de coordonnees polaires intrinseque de l'image radar. De plus, a cause de la loudeur des calculs, ces methodes ne peuvent fournir de resultats dans des applications en temps reel. La premiere partie de notra travail consiste a modeliser et quantifier l'effet de la distorsion du spectre oceanique provoquee par une vitesse de rotation du radar trop faible. Les resultats permettent de definir clairement les vitesses de rotation du radar pour lesquelles cette distorsion est negligeable. La deuxieme partie prospose un algorithme de traitement en temps reel qui extrait les informations caracteristiques principales de la surface de mer observee, i.e., la longueur d'onde et la direction des vagues. Cette estimation, basees sur une modelisation autoregressive offre une ouverture pour le traitement des signaux en temps reel. A travers cette approche, une succession de signaux unidimensionnels est traitee, ce qui conduit a l'elimination naturelle de la distorsion introduite dans le spectre du signal.

  18. [Contribution of Particle Size and Surface Coating of Silver Nanoparticles to Its Toxicity in Marine Diatom Skeletonema costatum].

    PubMed

    Huang, Jun; Yi, Jun; Qiang, Li-yuan; Cheng, Jin-ping

    2016-05-15

    Due to the unique antibacterial properties, silver nanoparticles (AgNPs) have been widely used in commercial applications. In this study, the toxicity of three kinds of AgNPs with different sizes and surface coatings to marine diatom Skeletonema costatum (S. costatum) was studied, which was one of the dominant species in estuarine and coastal areas. All three kinds of tested AgNPs inhibited the growth of exposed S. costatum under acute exposure condition, and the order of toxicity was 10 nm-OA > 10 nm-PVP > 20 nm-PVP. Given the condition of similar particle size, oil amine surface coated AgNPs were more toxic than polyvinyl pyrrolidone (PVP) surface coated AgNPs in S. costatum in term of cytotoxicity. With the same surface coating, the toxicity of AgNPs in S. costatum was affected by its hydrodynamic diameter and exposure concentrations. When the concentration of AgNPs was less than 500 µg · L⁻¹, larger sized AgNPs showed greater toxicity; When the concentration was greater than or equal to 500 µg · L⁻¹, smaller AgNPs exhibited greater toxicity. At molecular level, 50 µg · L⁻¹ 10nm-PVP significantly upregulated expression level of 3HfcpA (P < 0.05) and significantly downregulated expression level of Dl (P < 0.05), and 500 µg · L⁻¹ 10nm-OA significantly upregulated 3HfcpA expression (P < 0.05), while 20 nm-PVP treatment group didn't show any significant change. Exposed diatom demonstrated sensitive photosynthesis response to small size and PVP coated silver nanoparticles at molecular level. This study suggested that the toxicity of AgNPs to marine microalgae was largely controlled by the particle size, surface coating, exposure medium, exposure concentration and other factors. The smaller the particle size, the greater the toxicity of AgNPs, and the particle size of AgNPs played an important role in the toxicity of AgNPs in marine diatom S. costatum.

  19. [Contribution of Particle Size and Surface Coating of Silver Nanoparticles to Its Toxicity in Marine Diatom Skeletonema costatum].

    PubMed

    Huang, Jun; Yi, Jun; Qiang, Li-yuan; Cheng, Jin-ping

    2016-05-15

    Due to the unique antibacterial properties, silver nanoparticles (AgNPs) have been widely used in commercial applications. In this study, the toxicity of three kinds of AgNPs with different sizes and surface coatings to marine diatom Skeletonema costatum (S. costatum) was studied, which was one of the dominant species in estuarine and coastal areas. All three kinds of tested AgNPs inhibited the growth of exposed S. costatum under acute exposure condition, and the order of toxicity was 10 nm-OA > 10 nm-PVP > 20 nm-PVP. Given the condition of similar particle size, oil amine surface coated AgNPs were more toxic than polyvinyl pyrrolidone (PVP) surface coated AgNPs in S. costatum in term of cytotoxicity. With the same surface coating, the toxicity of AgNPs in S. costatum was affected by its hydrodynamic diameter and exposure concentrations. When the concentration of AgNPs was less than 500 µg · L⁻¹, larger sized AgNPs showed greater toxicity; When the concentration was greater than or equal to 500 µg · L⁻¹, smaller AgNPs exhibited greater toxicity. At molecular level, 50 µg · L⁻¹ 10nm-PVP significantly upregulated expression level of 3HfcpA (P < 0.05) and significantly downregulated expression level of Dl (P < 0.05), and 500 µg · L⁻¹ 10nm-OA significantly upregulated 3HfcpA expression (P < 0.05), while 20 nm-PVP treatment group didn't show any significant change. Exposed diatom demonstrated sensitive photosynthesis response to small size and PVP coated silver nanoparticles at molecular level. This study suggested that the toxicity of AgNPs to marine microalgae was largely controlled by the particle size, surface coating, exposure medium, exposure concentration and other factors. The smaller the particle size, the greater the toxicity of AgNPs, and the particle size of AgNPs played an important role in the toxicity of AgNPs in marine diatom S. costatum. PMID:27506055

  20. A Minimal Two-band Model for the Superconducting Fe-pnictides

    SciTech Connect

    Raghu, S.

    2010-03-25

    Following the discovery of the Fe-pnictide superconductors, LDA band structure calculations showed that the dominant contributions to the spectral weight near the Fermi energy came from the Fe 3d orbitals. The Fermi surface is characterized by two hole surfaces around the {Lambda} point and two electron surfaces around the M point of the 2 Fe/cell Brillouin zone. Here, we describe a 2-band model that reproduces the topology of the LDA Fermi surface and exhibits both ferromagnetic and q = ({pi}, 0) spin density wave (SDW) fluctuations. We argue that this minimal model contains the essential low energy physics of these materials.

  1. LLNL Waste Minimization Program Plan

    SciTech Connect

    Not Available

    1990-02-14

    This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). The Waste Minimization Policy field has undergone continuous changes since its formal inception in the 1984 HSWA legislation. The first LLNL WMPP, Revision A, is dated March 1985. A series of informal revision were made on approximately a semi-annual basis. This Revision 2 is the third formal issuance of the WMPP document. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this new policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. In response to these policies, DOE has revised and issued implementation guidance for DOE Order 5400.1, Waste Minimization Plan and Waste Reduction reporting of DOE Hazardous, Radioactive, and Radioactive Mixed Wastes, final draft January 1990. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements. 3 figs., 4 tabs.

  2. SdrF, a Staphylococcus epidermidis Surface Protein, Contributes to the Initiation of Ventricular Assist Device Driveline–Related Infections

    PubMed Central

    Arrecubieta, Carlos; Toba, Faustino A.; von Bayern, Manuel; Akashi, Hirokazu; Deng, Mario C.; Naka, Yoshifumi; Lowy, Franklin D.

    2009-01-01

    Staphylococcus epidermidis remains the predominant pathogen in prosthetic-device infections. Ventricular assist devices, a recently developed form of therapy for end-stage congestive heart failure, have had considerable success. However, infections, most often caused by Staphylococcus epidermidis, have limited their long-term use. The transcutaneous driveline entry site acts as a potential portal of entry for bacteria, allowing development of either localized or systemic infections. A novel in vitro binding assay using explanted drivelines obtained from patients undergoing transplantation and a heterologous lactococcal system of surface protein expression were used to identify S. epidermidis surface components involved in the pathogenesis of driveline infections. Of the four components tested, SdrF, SdrG, PIA, and GehD, SdrF was identified as the primary ligand. SdrF adherence was mediated via its B domain attaching to host collagen deposited on the surface of the driveline. Antibodies directed against SdrF reduced adherence of S. epidermidis to the drivelines. SdrF was also found to adhere with high affinity to Dacron, the hydrophobic polymeric outer surface of drivelines. Solid phase binding assays showed that SdrF was also able to adhere to other hydrophobic artificial materials such as polystyrene. A murine model of infection was developed and used to test the role of SdrF during in vivo driveline infection. SdrF alone was able to mediate bacterial adherence to implanted drivelines. Anti-SdrF antibodies reduced S. epidermidis colonization of implanted drivelines. SdrF appears to play a key role in the initiation of ventricular assist device driveline infections caused by S. epidermidis. This pluripotential adherence capacity provides a potential pathway to infection with SdrF-positive commensal staphylococci first adhering to the external Dacron-coated driveline at the transcutaneous entry site, then spreading along the collagen-coated internal portion of the

  3. Contributions of the inside and outside leg to maintenance of curvilinear motion on a natural turf surface.

    PubMed

    Smith, N; Dyson, R; Hale, T; Janaway, L

    2006-12-01

    Little is understood of the mechanisms of locomotion if human subjects are not moving in a straight path. The identification of contributory variables to curved motion would also underpin other non-linear actions such as cutting and turning. The performance of such tasks has relevance to both success in sports and exercise, and accident avoidance in an occupational setting. Comparison of ground reaction force values in successive footstrikes would allow an understanding of the contribution of each limb's movement to motion in a curved path. For ecological validity to field games, two natural-turf covered force platforms were located outdoors in a field. Six males (age 25+/-4.73 years; mass 79.7+/-7.17 kg) wearing standard six-stud soccer boots performed straight and curved trials (radius 5m) at velocities of 4.5 and 5.5 ms(-1). Ground reaction force measures were collected on successive footstrikes at 500 Hz, whilst kinematics of the lower extremity were measured at 50 Hz. Results for two successive footfalls showed greater average total force in straight motion (3.53BW versus 3.08BW), with the outside leg contributing most to the movement pattern in curvilinear motion. Ballistic airtime was reduced from straight to curvilinear motion, creating a greater proportional foot contact time during curved running. This, with lowered total force values, suggested a lower centre of gravity during curved motion to minimise drift towards the tangent of the curve. In curved motion, all vertical force measures were greater for the outside leg, with anterior-posterior forces showing the outside leg provided greater propulsion forces and impulse. Improvement in performance in curvilinear motion should therefore be focused at the outside limb.

  4. Cell surface syndecan-1 contributes to binding and function of macrophage migration inhibitory factor (MIF) on epithelial tumor cells.

    PubMed

    Pasqualon, Tobias; Lue, Hongqi; Groening, Sabine; Pruessmeyer, Jessica; Jahr, Holger; Denecke, Bernd; Bernhagen, Jürgen; Ludwig, Andreas

    2016-04-01

    Surface expressed proteoglycans mediate the binding of cytokines and chemokines to the cell surface and promote migration of various tumor cell types including epithelial tumor cells. We here demonstrate that binding of the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) to epithelial lung and breast tumor cell lines A549 and MDA-MB231 is sensitive to enzymatic digestion of heparan sulphate chains and competitive inhibition with heparin. Moreover, MIF interaction with heparin was confirmed by chromatography and a structural comparison indicated a possible heparin binding site. These results suggested that proteoglycans carrying heparan sulphate chains are involved in MIF binding. Using shRNA-mediated gene silencing, we identified syndecan-1 as the predominant proteoglycan required for the interaction with MIF. MIF binding was decreased by induction of proteolytic shedding of syndecan-1, which could be prevented by inhibition of the metalloproteinases involved in this process. Finally, MIF induced the chemotactic migration of A549 cells, wound closure and invasion into matrigel without affecting cell proliferation. These MIF-induced responses were abrogated by heparin or by silencing of syndecan-1. Thus, our study indicates that syndecan-1 on epithelial tumor cells promotes MIF binding and MIF-mediated cell migration. This may represent a relevant mechanism through which MIF enhances tumor cell motility and metastasis.

  5. Contribution of Persistent Scatterer Interferometry (PSI) to map surface displacement in the Travale - Radicondoli Geothermal area (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Botteghi, S.; Del Ventisette, C.; Montanari, D.; Manzella, A.; Moretti, S.

    2012-12-01

    Synthetic Aperture Radar Interferometry (InSAR) has been successfully used to map the deformation of the earth surface. Multi-interferogram techniques, known as Persistent Scatterer Interferometry (PSInSAR), are a powerful tools to monitoring surface deformation connected with seismic and volcanic activity, landslides, and subsidence due to fluid extraction. The availability of many data acquired by space agencies, as well as European Space Agency (ESA), and the high spatial resolution of PSI methodology, allow to reconstruct the temporal evolution of the ground surface deformations, measuring relative displacements of individual points (Permanent Scatterers, or PS) and estimating the velocity of deformation recorded in the period covered by satellites acquisitions. The possibility to detect the continuous ground surface displacement can provide an important information about reservoir behavior during production, helping to improve the development of a geothermal field (e.g. Hole et al. 2007; JVGR). The present study aims to test PSInSAR techniques over Travale-Radicondoli area, in order to assess the surface deformation connected with the exploitation of this geothermal field. The Travale-Radicondoli area is located about 15 km E-SE of the well-known Larderello-geothermal filed - southwestern Tuscany, Italy-, extending at the south-western margin of the Anqua-Radicondoli Basin. In this area two different reservoir have been identified: a shallow steam dominated reservoir, consisting of carbonate and evaporitic units, and a deep superheated steam reservoir, within metamorphic basement units and thermometamorphic rocks. Industrial exploitation of geothermal resources in the Travale-Radicondoli area began in 1950 and concerned only a small zone on the southern margin of the area, known as the "old field", characterized by a water dominated system. Since 1973, an intensive exploitation started in a more productive area located north-east of the "old field", where the

  6. Minimally Invasive Valve Surgery

    PubMed Central

    Pope, Nicolas H.; Ailawadi, Gorav

    2014-01-01

    Cardiac valve surgery is life saving for many patients. The advent of minimally invasive surgical techniques has historically allowed for improvement in both post-operative convalescence and important clinical outcomes. The development of minimally invasive cardiac valve repair and replacement surgery over the past decade is poised to revolutionize the care of cardiac valve patients. Here, we present a review of the history and current trends in minimally invasive aortic and mitral valve repair and replacement, including the development of sutureless bioprosthetic valves. PMID:24797148

  7. Atmospheric fluxes of organic matter to the Mediterranean Sea: contribution to the elemental C: N: P ratios of surface dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Djaoudi, Kahina; Barani, Aude; Hélias-Nunige, Sandra; Van Wambeke, France; Pulido-Villena, Elvira

    2016-04-01

    It has become increasingly apparent that atmospheric transport plays an important role in the supply of macro- and micro-nutrients to the surface ocean. This atmospheric input is especially important in oligotrophic regions where the vertical supply from the subsurface is low particularly during the stratification period. Compared to its inorganic counterpart, the organic fraction of atmospheric deposition and its impact on surface ocean biogeochemistry has been poorly explored. In the ocean, carbon export to depth (and therefore, its long term storage with presumed consequences on climate) occurs both through particle sedimentation and through the transfer of dissolved organic matter (DOM) via diffusion or convection. DOM export from the surface ocean represents up to 50% of total organic carbon flux to the deep ocean in oligotrophic regions such as the Mediterranean Sea. The efficiency of this C export pathway depends, among others, on the elemental C: N: P ratios of surface DOM which might be affected by the relative contribution of microbial processes and allochthonous sources. This work reports a one-year time-series (April 2015-April 2016) of simultaneous measurements of (1) total (dry + wet) atmospheric fluxes of organic carbon, organic nitrogen, and organic phosphorus and (2) concentration of dissolved organic carbon, dissolved organic nitrogen, and dissolved organic phosphate at the surface layer (0-200 m) in the NW Mediterranean Sea. Atmospheric and oceanic surveys were conducted at the Frioul and ANTARES sites, respectively, operated by the long-term observation network MOOSE (Mediterranean Oceanic Observation System for the Environment).

  8. Interstitial ultrasound ablation of tumors within or adjacent to bone: Contributions of preferential heating at the bone surface

    NASA Astrophysics Data System (ADS)

    Scott, Serena J.; Prakash, Punit; Salgaonkar, Vasant; Jones, Peter D.; Cam, Richard N.; Han, Misung; Rieke, Viola; Burdette, E. Clif; Diederich, Chris J.

    2013-02-01

    Preferential heating of bone due to high ultrasound attenuation may enhance thermal ablation performed with cathetercooled interstitial ultrasound applicators in or near bone. At the same time, thermally and acoustically insulating cortical bone may protect sensitive structures nearby. 3D acoustic and biothermal transient finite element models were developed to simulate temperature and thermal dose distributions during catheter-cooled interstitial ultrasound ablation near bone. Experiments in ex vivo tissues and tissue-mimicking phantoms were performed to validate the models and to quantify the temperature profiles and ablated volumes for various distances between the interstitial applicator and the bone surface. 3D patient-specific models selected to bracket the range of clinical usage were developed to investigate what types of tumors could be treated, applicator configurations, insertion paths, safety margins, and other parameters. Experiments show that preferential heating at the bone surface decreases treatment times compared to when bone is absent and that all tissue between an applicator and bone can be ablated when they are up to 2 cm apart. Simulations indicate that a 5-7 mm safety margin of normal bone is needed to protect (thermal dose < 6 CEM43°C and T < 45°C) sensitive structures behind ablated bone. In 3D patient-specific simulations, tumors 1.0-3.8 cm (L) and 1.3-3.0 cm (D) near or within bone were ablated (thermal dose > 240 CEM43°C) within 10 min without damaging the nearby spinal cord, lungs, esophagus, trachea, or major vasculature. Preferential absorption of ultrasound by bone may provide improved localization, faster treatment times, and larger treatment zones in tumors in and near bone compared to other heating modalities.

  9. Gaseous deposition contributes to the contamination of surface waters by pesticides close to treated fields. A process-based model study.

    PubMed

    Bedos, Carole; Loubet, Benjamin; Barriuso, Enrique

    2013-12-17

    The contribution of atmospheric pathways to surface waters contamination by pesticides has been demonstrated. At the local scale, modeling approaches as well as measurements show situations where the contribution of gaseous dry deposition is of the same order or even higher than the drift contribution. The approach presented here consists in estimating the gaseous emissions of pesticides applied in the field, their atmospheric dispersion, and finally their gaseous deposition into aquatic ecosystems at the local scale by running process-based models, that is, the one-dimensional model for pesticide volatilization following application on bare soil (Volt'Air) and the local-scale dispersion and deposition model (FIDES-2D), adapted for pesticides. A significant number of scenarios describes contrasted situations in terms of pedoclimatic conditions (covering 9 years of meteorological data), periods of pesticide application per year, physicochemical properties of the pesticides, and spatial configurations. The identification of the main factors governing gaseous deposition led to the definition of an effective emission factor which explains a large part of the deposition variability. Based on the model outputs, deposition curves are proposed, as a base for a new tool to assess the contribution of gaseous deposition to nontarget ecosystem contamination.

  10. Gaseous deposition contributes to the contamination of surface waters by pesticides close to treated fields. A process-based model study.

    PubMed

    Bedos, Carole; Loubet, Benjamin; Barriuso, Enrique

    2013-12-17

    The contribution of atmospheric pathways to surface waters contamination by pesticides has been demonstrated. At the local scale, modeling approaches as well as measurements show situations where the contribution of gaseous dry deposition is of the same order or even higher than the drift contribution. The approach presented here consists in estimating the gaseous emissions of pesticides applied in the field, their atmospheric dispersion, and finally their gaseous deposition into aquatic ecosystems at the local scale by running process-based models, that is, the one-dimensional model for pesticide volatilization following application on bare soil (Volt'Air) and the local-scale dispersion and deposition model (FIDES-2D), adapted for pesticides. A significant number of scenarios describes contrasted situations in terms of pedoclimatic conditions (covering 9 years of meteorological data), periods of pesticide application per year, physicochemical properties of the pesticides, and spatial configurations. The identification of the main factors governing gaseous deposition led to the definition of an effective emission factor which explains a large part of the deposition variability. Based on the model outputs, deposition curves are proposed, as a base for a new tool to assess the contribution of gaseous deposition to nontarget ecosystem contamination. PMID:24206530

  11. Development of an Advanced Technique to Correct Along-Track InSAR-Derived Surface Current Fields for Contributions of Wave Motions

    NASA Astrophysics Data System (ADS)

    Smith, C.; Romeiser, R.; Reniers, A.; MacMahan, J.

    2014-12-01

    The feasibility of surface current measurements by airborne and spaceborne along-track interferometric synthetic aperture radar (along-track InSAR) has been demonstrated on a number of occasions. Since the Doppler shifts detected by the radar include contributions of surface wave motions, a correction for these contributions has to be applied, which is often estimated as a mean correction for the entire current field on the basis of a simple theoretical model. In coastal areas and river estuaries with complex current and wave patterns, this approach is not adequate because one has to account for spatial variations in the wave field and in the corresponding corrections for the current field, which can be on the same order of magnitude as the actual surface currents of interest. Here we test the ability of a numerical near-shore hindcast model (Delft3D) to produce a wave field to be used for more appropriate computations of corrections for the along-track InSAR data. Our study was conducted at the mouth of the Columbia River on the West Coast of the U.S. during the spring of 2013. Over the course of the experiment, seven TerraSAR-X along-track InSAR images were acquired as well as a variety of in-situ data sets, such as trajectories of GPS-equipped Lagrangian drifters and velocity profiles from acoustic Doppler current profilers (ADCP). We use the in-situ data to validate our Delft3D model results, and we try to relate spatially varying differences between the measured and simulated surface currents and the TerraSAR-X derived Doppler velocities to the wave spectra obtained from Delft3D and to wave patterns observed in the SAR images. The long-term objective of this work is to derive the wave information and the corresponding velocity corrections from signatures contained in the along-track InSAR data set itself, such that a completely self-consistent correction of along-track InSAR-derived surface current fields for the contributions of spatially varying wave motions

  12. [Minimal Change Esophagitis].

    PubMed

    Ryu, Han Seung; Choi, Suck Chei

    2016-01-25

    Gastroesophageal reflux disease (GERD) is defined as a condition which develops when the reflux of gastric contents causes troublesome symptoms and long-term complications. GERD can be divided into erosive reflux disease and non-erosive reflux disease based on endoscopic findings defined by the presence of mucosal break. The Los Angeles classification excludes minimal changes as an evidence of reflux esophagitis because of poor interobserver agreement. In the Asian literature, minimal changes are considered as one of the endoscopic findings of reflux esophagitis, but the clinical significance is still controversial. Minimal change esophagitis is recognized quite frequently among patients with GERD and many endoscopists recognize such findings in their clinical practice. This review is intended to clarify the definition of minimal change esophagitis and their histology, interobserver agreement, and symptom association with GERD.

  13. Minimizing Shortness of Breath

    MedlinePlus

    ... Top Doctors in the Nation Departments & Divisions Home Health Insights Stress & Relaxation Breathing and Relaxation Minimizing Shortness of Breath ... Management Assess Your Stress Coping Strategies Identifying ... & Programs Health Insights Doctors & Departments Research & Science Education & Training Make ...

  14. Analysis of the total solar irradiance composite and their contribution to global mean air surface temperature rise

    NASA Astrophysics Data System (ADS)

    Scafetta, N.

    2008-12-01

    Herein I discuss and propose updated satellite composites of the total solar irradiance covering the period 1978-2008. The composites are compiled from measurements made with the three ACRIM experiments. Measurements from the NIMBUS7/ERB, the ERBS/ERBE satellite experiments and a total solar irradiance proxy reconstruction are used to fill the gap from June 1989 to October 1991 between ACRIM1 and ACRIM2 experiments. The result of the analysis does suggests that the total solar irradiance did increase from 1980 to 2002. The climate implications of the alternative satellite composites are discussed by using a phenomenological climate model which depends on two characteristics time response at tau1 =0.4 year and tau2=8-12 years, as determined phenomenologically [Scafetta, JGR 2008]. Reconstructions of total solar irradiance signature on climate during the last four centuries are discussed. The solar variability appears to have significantly contributed to climate change during the last four centuries, including the last century. Indirectly, the model suggests that the preindustrial climate experienced a large variability which is incompatible with an Hockey Stick temperature graph.

  15. Relative Contribution of P5 and Hap Surface Proteins to Nontypable Haemophilus influenzae Interplay with the Host Upper and Lower Airways

    PubMed Central

    Viadas, Cristina; Ruiz de los Mozos, Igor; Valle, Jaione; Bengoechea, José Antonio; Garmendia, Junkal

    2015-01-01

    Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence. PMID:25894755

  16. Resonance Raman spectra of organic molecules absorbed on inorganic semiconducting surfaces: Contribution from both localized intramolecular excitation and intermolecular charge transfer excitation

    SciTech Connect

    Ye, ChuanXiang; Zhao, Yi E-mail: liangwz@xmu.edu.cn; Liang, WanZhen E-mail: liangwz@xmu.edu.cn

    2015-10-21

    The time-dependent correlation function approach for the calculations of absorption and resonance Raman spectra (RRS) of organic molecules absorbed on semiconductor surfaces [Y. Zhao and W. Z. Liang, J. Chem. Phys. 135, 044108 (2011)] is extended to include the contribution of the intermolecular charge transfer (CT) excitation from the absorbers to the semiconducting nanoparticles. The results demonstrate that the bidirectionally interfacial CT significantly modifies the spectral line shapes. Although the intermolecular CT excitation makes the absorption spectra red shift slightly, it essentially changes the relative intensities of mode-specific RRS and causes the oscillation behavior of surface enhanced Raman spectra with respect to interfacial electronic couplings. Furthermore, the constructive and destructive interferences of RRS from the localized molecular excitation and CT excitation are observed with respect to the electronic coupling and the bottom position of conductor band. The interferences are determined by both excitation pathways and bidirectionally interfacial CT.

  17. Idling time of swimming bacteria near particulate surfaces contributes to apparent adsorption coefficients at the macroscopic scale under static conditions.

    PubMed

    Liu, Jun; Ford, Roseanne M

    2009-12-01

    Static capillary assays were performed to observe the distribution of Escherichia coli and several mutant strains at the interface between an aqueous solution and a Gelrite particulate suspension, used as a model porous medium. Motile smooth-swimming mutant bacteria (E. coli HCB437) accumulated at the interface, but did not penetrate very far into the Gelrite suspension. Motile wild-type bacteria (E. coli HCB1) penetrated much further than the smooth-swimming mutant, but did not accumulate to the same extent at the interface. Nonmotile tumbly mutant bacteria (E. coli HCB359) did not accumulate or penetrate to a significant degree. Computer simulations using a Monte Carlo algorithm, with input parameters based on bacterial swimming properties in static bulk aqueous systems, appeared to underestimate the bacterial idling time associated with solid surfaces. To account for physicochemical, biological and geometrical influences, an additional component of the bacterial idling time was included. The third component of the idling time was further analyzed semiquantitatively with a 1-D population-scale transport model with first-order association (k(on)) and dissociation (k(off)) adsorption-like kinetics. Computer simulation results suggested that this additional bacterial idling time not only increased the magnitudes of k(on) and k(off), but also enhanced the ratio of k(on) to k(off). This further implies that motile bacteria may tend to accumulate at the boundaries of low-permeable regions in groundwater systems, which is beneficial for bioremediation of residual contamination that may not be accessible by conventional remediation approaches.

  18. Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties.

    PubMed

    Ertl, P; Rohde, B; Selzer, P

    2000-10-01

    Molecular polar surface area (PSA), i.e., surface belonging to polar atoms, is a descriptor that was shown to correlate well with passive molecular transport through membranes and, therefore, allows prediction of transport properties of drugs. The calculation of PSA, however, is rather time-consuming because of the necessity to generate a reasonable 3D molecular geometry and the calculation of the surface itself. A new approach for the calculation of the PSA is presented here, based on the summation of tabulated surface contributions of polar fragments. The method, termed topological PSA (TPSA), provides results which are practically identical with the 3D PSA (the correlation coefficient between 3D PSA and fragment-based TPSA for 34 810 molecules from the World Drug Index is 0.99), while the computation speed is 2-3 orders of magnitude faster. The new methodology may, therefore, be used for fast bioavailability screening of virtual libraries having millions of molecules. This article describes the new methodology and shows the results of validation studies based on sets of published absorption data, including intestinal absorption, Caco-2 monolayer penetration, and blood-brain barrier penetration.

  19. Minimizing radiation damage in nonlinear optical crystals

    DOEpatents

    Cooke, D.W.; Bennett, B.L.; Cockroft, N.J.

    1998-09-08

    Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal. 5 figs.

  20. Minimizing radiation damage in nonlinear optical crystals

    DOEpatents

    Cooke, D. Wayne; Bennett, Bryan L.; Cockroft, Nigel J.

    1998-01-01

    Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal.

  1. Minimally invasive procedures

    PubMed Central

    Baltayiannis, Nikolaos; Michail, Chandrinos; Lazaridis, George; Anagnostopoulos, Dimitrios; Baka, Sofia; Mpoukovinas, Ioannis; Karavasilis, Vasilis; Lampaki, Sofia; Papaiwannou, Antonis; Karavergou, Anastasia; Kioumis, Ioannis; Pitsiou, Georgia; Katsikogiannis, Nikolaos; Tsakiridis, Kosmas; Rapti, Aggeliki; Trakada, Georgia; Zissimopoulos, Athanasios; Zarogoulidis, Konstantinos

    2015-01-01

    Minimally invasive procedures, which include laparoscopic surgery, use state-of-the-art technology to reduce the damage to human tissue when performing surgery. Minimally invasive procedures require small “ports” from which the surgeon inserts thin tubes called trocars. Carbon dioxide gas may be used to inflate the area, creating a space between the internal organs and the skin. Then a miniature camera (usually a laparoscope or endoscope) is placed through one of the trocars so the surgical team can view the procedure as a magnified image on video monitors in the operating room. Specialized equipment is inserted through the trocars based on the type of surgery. There are some advanced minimally invasive surgical procedures that can be performed almost exclusively through a single point of entry—meaning only one small incision, like the “uniport” video-assisted thoracoscopic surgery (VATS). Not only do these procedures usually provide equivalent outcomes to traditional “open” surgery (which sometimes require a large incision), but minimally invasive procedures (using small incisions) may offer significant benefits as well: (I) faster recovery; (II) the patient remains for less days hospitalized; (III) less scarring and (IV) less pain. In our current mini review we will present the minimally invasive procedures for thoracic surgery. PMID:25861610

  2. TiO2 anatase's bulk and (001) surface, structural and electronic properties: A DFT study on the importance of Hubbard and van der Waals contributions

    NASA Astrophysics Data System (ADS)

    Araujo-Lopez, Eduard; Varilla, Luis Alcala; Seriani, Nicola; Montoya, Javier A.

    2016-11-01

    Theoretical ab initio studies done so far on the structural properties of the titanium dioxide anatase (001) surface, have not reported simultaneously the complete set of cell and interatomic parameters for this system or its bulk. Here we present a complete report of these quantities within a spin polarized Density Functional Theory calculation, including also the Hubbard term and the van der Waals dispersion contribution. We show that within this approach it is possible to find a description of TiO2 anatase using DFT, that correlates better with experimental results than most theoretical studies reported previously. This good level of agreement has an advantage with respect to other very accurate studies which have performed computationally expensive calculations involving hybrid functionals, in that our method tends to be faster while also including the van der Waals dispersion contributions in addition to the treatment of correlations. The observed high-quality description of a system like TiO2 within this approach is important and encouraging; specially because it treats properly a d-shell element that is possibly going to have, for many applications of interest, long-range interaction with molecules, e.g. in studies of photocatalysis, where one needs all the relevant physics of the system to be included. We support this claim with an example of the effects that long-range interactions have on a CO2 molecule at the (001) surface.

  3. Contribution of energetically reactive surface features to the dissolution of CeO2 and ThO2 analogues for spent nuclear fuel microstructures.

    PubMed

    Corkhill, Claire L; Myllykylä, Emmi; Bailey, Daniel J; Thornber, Stephanie M; Qi, Jiahui; Maldonado, Pablo; Stennett, Martin C; Hamilton, Andrea; Hyatt, Neil C

    2014-08-13

    In the safety case for the geological disposal of nuclear waste, the release of radioactivity from the repository is controlled by the dissolution of the spent fuel in groundwater. There remain several uncertainties associated with understanding spent fuel dissolution, including the contribution of energetically reactive surface sites to the dissolution rate. In this study, we investigate how surface features influence the dissolution rate of synthetic CeO2 and ThO2, spent nuclear fuel analogues that approximate as closely as possible the microstructure characteristics of fuel-grade UO2 but are not sensitive to changes in oxidation state of the cation. The morphology of grain boundaries (natural features) and surface facets (specimen preparation-induced features) was investigated during dissolution. The effects of surface polishing on dissolution rate were also investigated. We show that preferential dissolution occurs at grain boundaries, resulting in grain boundary decohesion and enhanced dissolution rates. A strong crystallographic control was exerted, with high misorientation angle grain boundaries retreating more rapidly than those with low misorientation angles, which may be due to the accommodation of defects in the grain boundary structure. The data from these simplified analogue systems support the hypothesis that grain boundaries play a role in the so-called "instant release fraction" of spent fuel, and should be carefully considered, in conjunction with other chemical effects, in safety performance assessements for the geological disposal of spent fuel. Surface facets formed during the sample annealing process also exhibited a strong crystallographic control and were found to dissolve rapidly on initial contact with dissolution medium. Defects and strain induced during sample polishing caused an overestimation of the dissolution rate, by up to 3 orders of magnitude.

  4. A Distinctive Cytoplasmic Tail Contributes to Low Surface Expression and Intracellular Retention of the Patr-AL MHC class I molecule1

    PubMed Central

    Goyos, Ana; Guethlein, Lisbeth A.; Horowitz, Amir; Hilton, Hugo G.; Gleimer, Michael; Brodsky, Frances M.; Parham, Peter

    2015-01-01

    Chimpanzees have orthologs of the six, fixed, functional human MHC class I genes. But in addition, the chimpanzee has a seventh functional gene, Patr-AL, which is not polymorphic but contributes substantially to population diversity by its presence on only 50% of MHC haplotypes. The ancestral AL gene emerged long before the separation of human and chimpanzee ancestors and then subsequently and specifically lost function during human evolution, but was maintained in chimpanzees. Patr-AL is an alloantigen that participates in negative and positive selection of the T-cell repertoire. The three-dimensional structure and the peptide-binding repertoire of Patr-AL and HLA-A*02 are surprisingly similar. In contrast, the expression of these two molecules is very different as shown using specific monoclonal and polyclonal antibodies made against Patr-AL. Peripheral blood cells and B cell lines express low levels of Patr-AL at the cell surface. Higher levels are seen for 221-cell transfectants expressing Patr-AL, but in these cells a large majority of Patr-AL molecules are retained in the early compartments of the secretory pathway: mainly the endoplasmic reticulum but also cis-Golgi. Replacing the cytoplasmic tail of Patr-AL with that of HLA-A*02 increased the cell-surface expression of Patr-AL substantially. Four substitutions distinguish the Patr-AL and HLA-A*02 cytoplasmic tails. Systematic mutagenesis showed that each substitution contributes changes in cell-surface expression. The combination of residues present in Patr-AL appears unique, but each individual residue is present in other primate MHC class I molecules, notably MHC-E, the most ancient of the functional human MHC class I molecules. PMID:26371256

  5. Risk Factors at Time of Primary ACL Reconstruction that Contribute to Significant Chondral Surface Change at Time of Revision ACL Reconstruction

    PubMed Central

    Kaeding, Christopher C.; Group, Mars

    2016-01-01

    Objectives: Articular cartilage health is an important issue following primary anterior cruciate ligament reconstruction (ACLR). It is not clear what risk factors at the time of primary reconstruction affect future articular cartilage health. The purpose of this study was to examine risk factors affecting chondral surface change in a cohort from the time of primary ACLR to revision ACLR. Methods: Subjects who had both primary and revision data contained in the MOON and MARS registries were included. Data included chondral surface status (grade and size) at time of primary and revision, meniscal status (no treatment/repair, ≤33% excision, >33% excision) at time of primary, time from primary to revision ACLR, and age, sex, BMI, Marx, KOOS, and IKDC at time of revision. Significant chondral surface change was defined as >25% deterioration between time of primary and revision in the femoral condyle, tibial plateau, patella, or trochlea. Logistic regression was used to test each variable’s contribution to significant chondral surface change in the medial compartment, lateral compartment, and patellofemoral compartment. Results: 134 subjects met our inclusion criteria. 34/134 (25.4%) had significant lateral compartment chondral surface change, 32/134 (23.9%) had significant medial compartment chondral surface change, and 31/134 (23.1%) had significant patellofemoral chondral surface change. Median age at time of revision was 19.5 years [IQ range 17-25] and median time from primary to revision was 462.5 days [IQ range 292-1049]. KOOS and IKDC at revision were not associated with significant chondral surface change in any compartment. Patients with >33% of their lateral meniscus excised had 13.5 times the odds of having significant lateral compartment surface change compared to subjects who either did not have lateral meniscal damage, had it repaired, or had an excision of ≤33% controlling for age (p<0.001). Patients with ≤33% excision of their medial meniscus had

  6. Ways To Minimize Bullying.

    ERIC Educational Resources Information Center

    Mueller, Mary Ellen; Parisi, Mary Joy

    This report delineates a series of interventions aimed at minimizing incidences of bullying in a suburban elementary school. The social services staff was scheduled to initiate an anti-bullying incentive in fall 2001 due to the increased occurrences of bullying during the prior year. The target population consisted of third- and fourth-grade…

  7. Minimally invasive periodontal therapy.

    PubMed

    Dannan, Aous

    2011-10-01

    Minimally invasive dentistry is a concept that preserves dentition and supporting structures. However, minimally invasive procedures in periodontal treatment are supposed to be limited within periodontal surgery, the aim of which is to represent alternative approaches developed to allow less extensive manipulation of surrounding tissues than conventional procedures, while accomplishing the same objectives. In this review, the concept of minimally invasive periodontal surgery (MIPS) is firstly explained. An electronic search for all studies regarding efficacy and effectiveness of MIPS between 2001 and 2009 was conducted. For this purpose, suitable key words from Medical Subject Headings on PubMed were used to extract the required studies. All studies are demonstrated and important results are concluded. Preliminary data from case cohorts and from many studies reveal that the microsurgical access flap, in terms of MIPS, has a high potential to seal the healing wound from the contaminated oral environment by achieving and maintaining primary closure. Soft tissues are mostly preserved and minimal gingival recession is observed, an important feature to meet the demands of the patient and the clinician in the esthetic zone. However, although the potential efficacy of MIPS in the treatment of deep intrabony defects has been proved, larger studies are required to confirm and extend the reported positive preliminary outcomes.

  8. Minimizing Promotion Trauma.

    ERIC Educational Resources Information Center

    Darling, LuAnn W.; McGrath, Loraine

    1983-01-01

    Nursing administrators can minimize promotion trauma and its unnecessary cost by building awareness of the transition process, clarifying roles and expectations, and attending to the promoted employee's needs. This article will help nursing administrators develop a concept of manager care combined with programs for orientation of new managers,…

  9. Minimally invasive pancreatic surgery.

    PubMed

    Yiannakopoulou, E

    2015-12-01

    Minimally invasive pancreatic surgery is feasible and safe. Laparoscopic distal pancreatectomy should be widely adopted for benign lesions of the pancreas. Laparoscopic pancreaticoduodenectomy, although technically demanding, in the setting of pancreatic ductal adenocarcinoma has a number of advantages including shorter hospital stay, faster recovery, allowing patients to recover in a timelier manner and pursue adjuvant treatment options. Furthermore, it seems that progression-free survival is longer in patients undergoing laparoscopic pancreaticoduodenectomy in comparison with those undergoing open pancreaticoduodenectomy. Minimally invasive middle pancreatectomy seems appropriate for benign or borderline tumors of the neck of the pancreas. Technological advances including intraoperative ultrasound and intraoperative fluorescence imaging systems are expected to facilitate the wide adoption of minimally invasive pancreatic surgery. Although, the oncological outcome seems similar with that of open surgery, there are still concerns, as the majority of relevant evidence comes from retrospective studies. Large multicenter randomized studies comparing laparoscopic with open pancreatectomy as well as robotic assisted with both open and laparoscopic approaches are needed. Robotic approach could be possibly shown to be less invasive than conventional laparoscopic approach through the less traumatic intra-abdominal handling of tissues. In addition, robotic approach could enable the wide adoption of the technique by surgeon who is not that trained in advanced laparoscopic surgery. A putative clinical benefit of minimally invasive pancreatic surgery could be the attenuated surgical stress response leading to reduced morbidity and mortality as well as lack of the detrimental immunosuppressive effect especially for the oncological patients. PMID:26530291

  10. Direct measurements of the tile drain and groundwater flow route contributions to surface water contamination: From field-scale concentration patterns in groundwater to catchment-scale surface water quality.

    PubMed

    Rozemeijer, J C; van der Velde, Y; van Geer, F C; Bierkens, M F P; Broers, H P

    2010-12-01

    Enhanced knowledge of water and solute pathways in catchments would improve the understanding of dynamics in water quality and would support the selection of appropriate water pollution mitigation options. For this study, we physically separated tile drain effluent and groundwater discharge from an agricultural field before it entered a 43.5-m ditch transect. Through continuous discharge measurements and weekly water quality sampling, we directly quantified the flow route contributions to surface water discharge and solute loading. Our multi-scale experimental approach allowed us to relate these measurements to field-scale NO(3) concentration patterns in shallow groundwater and to continuous NO(3) records at the catchment outlet. Our results show that the tile drains contributed 90-92% of the annual NO(3) and heavy metal loads. Considering their crucial role in water and solute transport, enhanced monitoring and modeling of tile drainage are important for adequate water quality management.

  11. A Novel 2D Image Compression Algorithm Based on Two Levels DWT and DCT Transforms with Enhanced Minimize-Matrix-Size Algorithm for High Resolution Structured Light 3D Surface Reconstruction

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2015-09-01

    Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.

  12. Contribution of stable isotopes and age dating tools to the understanding of pesticide transfer into surface and ground-waters in Martinique (French West Indies)

    NASA Astrophysics Data System (ADS)

    Gourcy, Laurence; Arnaud, Luc; Baran, Nicole; Petelet-Giraud, Emmanuelle

    2013-04-01

    giving necessary data for apparent age estimation using dissolved gases tracers (CFCs). Apparent age (or CFC and SF6 concentrations) and δ18O and δ2H (and calculated d-excess) of groundwater are very stable with time even during intensive rainfall episodes and high water stage. Limited variability of chemistry and isotopes in surface water allow demonstrating that the Falaise River is highly sustained by groundwater. As a consequence, regarding chlordecone, the quality of surface water is governed by groundwater quality. Besides, during the dry season when the contribution of groundwater to the flow is the highest, chlordecone concentrations fluctuations are similar for both surface and ground-waters. During the period December 2011 - August 2012, chlordecone concentration varies from 0.25 to 0.45 µg/L at Chez Lélène borehole and 0.02 to 0.1 µg/L at Falaise River. In this area, groundwater contributes to the degradation of surface water quality.

  13. Relative contributions of sea surface salinity and temperature to density gradient and tropical instability waves: implications to eddy-mean flow interaction

    NASA Astrophysics Data System (ADS)

    Hasson, Audrey; Lee, Tong

    2015-04-01

    With their relatively uniform spatial and temporal sampling, satellite observations have revolutionized the estimates of the spatial derivative fields of various oceanic parameters that are not possible to derive from in-situ measurements on a global scale with sufficient spatial resolutions. For examples, the spatial gradients of sea surface height measurements from altimetry provide information about surface geostrophic currents; those of wind stress make possible the estimates of wind stress curl and divergence; those of sea surface temperature and salinity allow detections of thermal and haline fronts. These spatial derivatives fields are critical to the studies of ocean circulation and air-sea interaction. In particular, the spatial gradients of satellite-derived sea surface temperature and salinity (SST and SSS) have provided an unprecedented opportunity to study density gradient that is important to energy conversion between the background ocean state and the fluctuating flow field such as eddies and waves through baroclinic instability. In this study, we examine eddy-mean flow interaction in tropical oceans by studying the relations between background density gradient and tropical instability wave (TIW) variability using various satellite-derived SSS and SST products. In the equatorial Pacific and Atlantic Oceans, SSS is found to have equal or larger contribution to the background meridional density gradient. This has important consequence to the density variance associated with the TIWs (a proxy for the extraction of available potential energy from the background ocean state to the TIWs). Not accounting for salinity effect would under-estimate the TIW-related density variance by at least a factor of three.

  14. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity

    SciTech Connect

    Skiadopoulos, Mario H. . E-mail: mskiadopoulos@niaid.nih.gov; Biacchesi, Stephane; Buchholz, Ursula J.; Amaro-Carambot, Emerito; Surman, Sonja R.; Collins, Peter L.; Murphy, Brian R.

    2006-02-20

    We evaluated the individual contributions of the three surface glycoproteins of human metapneumovirus (HMPV), namely the fusion F, attachment G, and small hydrophobic SH proteins, to the induction of serum HMPV-binding antibodies, serum HMPV-neutralizing antibodies, and protective immunity. Using reverse genetics, each HMPV protein was expressed individually from an added gene in recombinant human parainfluenza virus type 1 (rHPIV1) and used to infect hamsters once or twice by the intranasal route. The F protein was highly immunogenic and protective, whereas G and SH were only weakly or negligibly immunogenic and protective, respectively. Thus, in contrast to other paramyxoviruses, the HMPV attachment G protein is not a major neutralization or protective antigen. Also, although the SH protein of HMPV is a virion protein that is much larger than its counterparts in previously studied paramyxoviruses, it does not appear to be a significant neutralization or protective antigen.

  15. Relative ultraviolet spectral intensity of direct solar radiation, sky radiation and surface reflections. Relative contribution of natural sources to the outdoor UV irradiation of man.

    PubMed

    Kromann, N; Wulf, H C; Eriksen, P; Brodthagen, H

    1986-04-01

    Relative measurements of UVA and UVB radiation from the sun and the sky, as well as the reflected intensity from various land and water surfaces, have been carried out in the Copenhagen area. The measurements were taken in January and in the period April through July and supplemented by measurements in Greenland during May. Likewise, the angular distribution of direct solar radiation and sky radiation close to the direction of the sun was measured with a 0.5 degree field of view. Absolute UV irradiances were measured with detector-filter combinations. Calculations of the relative contributions of direct solar radiation, sky radiation and reflected radiation to the irradiation of a standing person show, in particular, that if seawater with waves is the surrounding scene, its reflected radiation will account for more than 10% of the received UV dose.

  16. Challenging the minimal supersymmetric SU(5) model

    SciTech Connect

    Bajc, Borut; Lavignac, Stéphane; Mede, Timon

    2014-06-24

    We review the main constraints on the parameter space of the minimal renormalizable supersymmetric SU(5) grand unified theory. They consist of the Higgs mass, proton decay, electroweak symmetry breaking and fermion masses. Superpartner masses are constrained both from below and from above, giving hope for confirming or definitely ruling out the theory in the future. This contribution is based on Ref. [1].

  17. "Workshop to Promote and Coordinate U.S.A. Contributions to AMMA on Land Surface, Water Cycle, Aerosol and Radiation Budget Issues".

    SciTech Connect

    Lamb, Peter

    2008-05-05

    RIMS ID: ER64245-1028054-0012347 Consistent with the original proposal (dated February 28, 2006), the grant supported the participation in the above Workshop of a diverse group of West African, British, and American atmospheric scientists. All of these individuals contributed strongly to Workshop, with the result that ARM’s involvement in and contribution to AMMA was enhanced with respect to land surface, water cycle, aerosol, and radiation issues. Also, the Workshop gave these participants early exposure to ARM’s 2007 CLASIC Campaign over the U.S. Southern Great Plains, which is addressing parts of the same problem complex. The following eight individuals were fully funded (complete airfare, accommodations, registration, meals) to participate in the Workshop -- Dr. Aiguo Dai (NCAR, USA), Dr. Adamou Ousmane Manga (University of Niamey, Niger), Professor Abdelkrim Ben Mohamed (University of Niamey, Niger), Dr. Gary Robinson (University of Reading, UK), Dr. Amadou Gaye (University of Dakar, Senegal), Dr. Anne Jefferson (NOAA, USA), Dr. Aondover Tarhule (University of Oklahoma, USA), and Dr. Sally McFarlane (Pacific Northwest National Laboratory, USA). Partial funding also was provided for Professor Peter Lamb (University of Oklahoma, USA). To deepen the involvement of ARM in AMMA, the grant also paid for participation in the AMMA Special Observing Period in Niamey during August (Professor Peter J. Lamb) and in a follow-up Workshop at Méteo France (Toulouse) in November (Dr. Zeinabou Mindaodou Souley, University of Niamey, Niger; Professor Peter J. Lamb). When he was in Niamey for 11 days in August, Professor Lamb had considerable involvement with the ARM Mobile Facility there. I am confident that the participation of the above individuals in the two AMMA Workshops and the AMMA Special Observing Period strengthened the ARM Program’s contribution to AMMA, increased the associated international attention on ARM, and provided a bridge to the ARM CLASIC Campaign

  18. Instabilities and Solitons in Minimal Strips

    NASA Astrophysics Data System (ADS)

    Machon, Thomas; Alexander, Gareth P.; Goldstein, Raymond E.; Pesci, Adriana I.

    2016-07-01

    We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ4 theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation.

  19. Instabilities and Solitons in Minimal Strips.

    PubMed

    Machon, Thomas; Alexander, Gareth P; Goldstein, Raymond E; Pesci, Adriana I

    2016-07-01

    We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ^{4} theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation. PMID:27419593

  20. Regional aspects of the North American land surface: Atmosphere interactions and their contributions to the variability and predictability of the regional hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Luo, Yan

    In this study, we investigate the pathways responsible for soil moisture-precipitation interactions and the mechanisms for soil moisture memory at regional scales through analysis of NCEP's North American Regional Reanalysis dataset, which is derived from a system using the mesoscale Eta model coupled with Noah land surface model. The consideration of the relative availability of water and energy leads to the relative strengths of land-atmosphere interaction and soil moisture memory, which are related to the predictability of the regional hydrologic cycle. The seasonal and geographical variations in estimated interaction and memory may establish the relative predictability among the North American basins. The potential for seasonal predictability of the regional hydrologic cycle is conditioned by the foreknowledge of the land surface soil state, which contributes significantly to summer precipitation: (i) The precipitation variability and predictability by strong land-atmosphere interactions are most important in the monsoon regions of Mexico; (ii) Although strong in interactions, the poor soil moisture memory in the Colorado basin and the western part of the Mississippi basin lowers the predictability; (iii) The Columbia basin and the eastern part of the Mississippi basin also stand out as low predictability basins, in that they have good soil moisture memory, but weak strength in interactions, limiting their predictabilities. Our analysis has revealed a highly physically and statistically consistent picture, providing solid support to studies of predictability based on model simulations.

  1. Urban and agricultural contribution of annual loads of glyphosate and AMPA towards surface waters at the Orge River catchment scale (France)

    NASA Astrophysics Data System (ADS)

    Botta, Fabrizio; Chevreuil, Marc; Blanchoud, Hélène

    2010-05-01

    exported amounts was carried out at the River scale. Different origins (agricultural zones, urban areas and wastewater treatment plants) were assessed to determine the contribution of each usage. These investigations showed the high impact of storm waters and wastewaters upon the Orge River contamination (90%), whereas the agricultural zone contributed to only 10 % of the glyphosate contamination of the River. Glyphosate contaminates the river by direct flow of rainfall sewers towards surface waters. AMPA in the Orge river originates from both degradation of glyphosate in agricultural soils (29%) and from urban sewers (79%). Glyphosate amount transferred via overflows between sewers is the main source (more than 95%) in wastewaters during application period and rainfall events, but represents only 50% of the annual load in wastewaters that reach treatment plants (WWTP). AMPA, always detected in wastewaters and WWTP, is partly related to domestic wastewaters (18 to 23% of the total load). A difference between glyphosate and AMPA load inputs in the Orge River and outputs load at the outlet was registered: Glyphosate load is decreasing downstream as AMPA is increasing, suggesting a degradation of glyphosate into the river. The rule of sediments could have a significant influence of the dynamic transport of glyphosate. The results of the budget calculation are supported by a strong and logical data collection, coupled with detailed spatial information and consciousness of estimation accuracy. Keywords: Catchment, glyphosate, AMPA, inputs, budget

  2. Contribution of seasonal sub-Antarctic surface water variability to millennial-scale changes in atmospheric CO2 over the last deglaciation and Marine Isotope Stage 3

    NASA Astrophysics Data System (ADS)

    Gottschalk, Julia; Skinner, Luke C.; Waelbroeck, Claire

    2015-02-01

    The Southern Ocean is thought to have played a key role in past atmospheric carbon dioxide (CO2,atm) changes. Three main factors are understood to control the Southern Ocean's influence on CO2,atm, via their impact on surface ocean pCO2 and therefore regional ocean-atmosphere CO2 fluxes: 1) the efficiency of air-sea gas exchange, which may be attenuated by seasonal- or annual sea-ice coverage or the development of a shallow pycnocline; 2) the supply of CO2-rich water masses from the sub-surface and the deep ocean, which is associated with turbulent mixing and surface buoyancy- and/or wind forcing; and 3) biological carbon fixation, which depends on nutrient availability and is therefore influenced by dust deposition and/or upwelling. In order to investigate the possible contributions of these processes to millennial-scale CO2,atm variations during the last glacial and deglacial periods, we make use of planktonic foraminifer census counts and stable oxygen- and carbon isotope measurements in the planktonic foraminifera Globigerina bulloides and Neogloboquadrina pachyderma (sinistral) from marine sediment core MD07-3076Q in the sub-Antarctic Atlantic. These data are interpreted on the basis of a comparison of core-top and modern seawater isotope data, which permits an assessment of the seasonal biases and geochemical controls on the stable isotopic compositions of G. bulloides and N. pachyderma (s.). Based on a comparison of our down-core results with similar data from the Southeast Atlantic (Cape Basin) we infer past basin-wide changes in the surface hydrography of the sub-Antarctic Atlantic. We find that millennial-scale rises in CO2,atm over the last 70 ka are consistently linked with evidence for increased spring upwelling, and enhanced summer air-sea exchange in the sub-Antarctic Atlantic. Parallel evidence for increased summer export production would suggest that seasonal changes in upwelling and air-sea exchange exerted a dominant influence on surface pCO2 in

  3. Minimally invasive mediastinal surgery

    PubMed Central

    Melfi, Franca M. A.; Mussi, Alfredo

    2016-01-01

    In the past, mediastinal surgery was associated with the necessity of a maximum exposure, which was accomplished through various approaches. In the early 1990s, many surgical fields, including thoracic surgery, observed the development of minimally invasive techniques. These included video-assisted thoracic surgery (VATS), which confers clear advantages over an open approach, such as less trauma, short hospital stay, increased cosmetic results and preservation of lung function. However, VATS is associated with several disadvantages. For this reason, it is not routinely performed for resection of mediastinal mass lesions, especially those located in the anterior mediastinum, a tiny and remote space that contains vital structures at risk of injury. Robotic systems can overcome the limits of VATS, offering three-dimensional (3D) vision and wristed instrumentations, and are being increasingly used. With regards to thymectomy for myasthenia gravis (MG), unilateral and bilateral VATS approaches have demonstrated good long-term neurologic results with low complication rates. Nevertheless, some authors still advocate the necessity of maximum exposure, especially when considering the distribution of normal and ectopic thymic tissue. In recent studies, the robotic approach has shown to provide similar neurological outcomes when compared to transsternal and VATS approaches, and is associated with a low morbidity. Importantly, through a unilateral robotic technique, it is possible to dissect and remove at least the same amount of mediastinal fat tissue. Preliminary results on early-stage thymomatous disease indicated that minimally invasive approaches are safe and feasible, with a low rate of pleural recurrence, underlining the necessity of a “no-touch” technique. However, especially for thymomatous disease characterized by an indolent nature, further studies with long follow-up period are necessary in order to assess oncologic and neurologic results through minimally

  4. The ZOOM minimization package

    SciTech Connect

    Fischler, Mark S.; Sachs, D.; /Fermilab

    2004-11-01

    A new object-oriented Minimization package is available for distribution in the same manner as CLHEP. This package, designed for use in HEP applications, has all the capabilities of Minuit, but is a re-write from scratch, adhering to modern C++ design principles. A primary goal of this package is extensibility in several directions, so that its capabilities can be kept fresh with as little maintenance effort as possible. This package is distinguished by the priority that was assigned to C++ design issues, and the focus on producing an extensible system that will resist becoming obsolete.

  5. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  6. Waste minimization in chrome plating

    SciTech Connect

    Scheuer, J.; Walter, K.; Nastasi, M.

    1996-09-01

    This is the final report of a one year laboratory directed research and development project at the Los Alamos National Laboratory (LANL). Traditional wet chemical electroplating techniques utilize toxic materials and pose environmental hazards in the disposal of primary baths and waste waters. Pollutants include metals and nonmetals, such as oil, grease, phosphates, and toxic and organic compounds. This project is focused on development of plasma source ion implantation (PSII), a novel and cost-effective surface modification technique, to minimize and ultimately eliminate waste generated in chrome plating. We are collaborating with and industrial partner to design material systems, utilize the PSII processes in existing Los Alamos experimental facilities, and analyze both material and performance characteristics.

  7. Logarithmic superconformal minimal models

    NASA Astrophysics Data System (ADS)

    Pearce, Paul A.; Rasmussen, Jørgen; Tartaglia, Elena

    2014-05-01

    The higher fusion level logarithmic minimal models {\\cal LM}(P,P';n) have recently been constructed as the diagonal GKO cosets {(A_1^{(1)})_k\\oplus (A_1^ {(1)})_n}/ {(A_1^{(1)})_{k+n}} where n ≥ 1 is an integer fusion level and k = nP/(P‧- P) - 2 is a fractional level. For n = 1, these are the well-studied logarithmic minimal models {\\cal LM}(P,P')\\equiv {\\cal LM}(P,P';1). For n ≥ 2, we argue that these critical theories are realized on the lattice by n × n fusion of the n = 1 models. We study the critical fused lattice models {\\cal LM}(p,p')_{n\\times n} within a lattice approach and focus our study on the n = 2 models. We call these logarithmic superconformal minimal models {\\cal LSM}(p,p')\\equiv {\\cal LM}(P,P';2) where P = |2p - p‧|, P‧ = p‧ and p, p‧ are coprime. These models share the central charges c=c^{P,P';2}=\\frac {3}{2}\\big (1-{2(P'-P)^2}/{P P'}\\big ) of the rational superconformal minimal models {\\cal SM}(P,P'). Lattice realizations of these theories are constructed by fusing 2 × 2 blocks of the elementary face operators of the n = 1 logarithmic minimal models {\\cal LM}(p,p'). Algebraically, this entails the fused planar Temperley-Lieb algebra which is a spin-1 Birman-Murakami-Wenzl tangle algebra with loop fugacity β2 = [x]3 = x2 + 1 + x-2 and twist ω = x4 where x = eiλ and λ = (p‧- p)π/p‧. The first two members of this n = 2 series are superconformal dense polymers {\\cal LSM}(2,3) with c=-\\frac {5}{2}, β2 = 0 and superconformal percolation {\\cal LSM}(3,4) with c = 0, β2 = 1. We calculate the bulk and boundary free energies analytically. By numerically studying finite-size conformal spectra on the strip with appropriate boundary conditions, we argue that, in the continuum scaling limit, these lattice models are associated with the logarithmic superconformal models {\\cal LM}(P,P';2). For system size N, we propose finitized Kac character formulae of the form q^{-{c^{P,P';2}}/{24}+\\Delta ^{P,P';2} _{r

  8. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each

  9. Porous V2O5/RGO/CNT hierarchical architecture as a cathode material: Emphasis on the contribution of surface lithium storage

    NASA Astrophysics Data System (ADS)

    Palanisamy, Kowsalya; Um, Ji Hyun; Jeong, Mihee; Yoon, Won-Sub

    2016-08-01

    A three dimensional vanadium pentoxide/reduced graphene oxide/carbon nanotube (3D V2O5/RGO/CNT) composite is synthesized by microwave-assisted hydrothermal method. The combination of 2D RGO and 1D CNT establishes continuous 3D conductive network, and most notably, the 1D CNT is designed to form hierarchically porous structure by penetrating into V2O5 microsphere assembly constituted of numerous V2O5 nanoparticles. The highly porous V2O5 microsphere enhances electrolyte contact and shortens Li+ diffusion path as a consequence of its developed surface area and mesoporosity. The successive phase transformations of 3D V2O5/RGO/CNT from α-phase to ε-, δ-, γ-, and ω-phase and its structural reversibility upon Li+ intercalation/de-intercalation are investigated by in situ XRD analysis, and the electronic and local structure reversibility around vanadium atom in 3D V2O5/RGO/CNT is observed by in situ XANES analysis. The 3D V2O5/RGO/CNT achieves a high capacity of 220 mAh g‑1 at 1 C after 80 cycles and an excellent rate capability of 100 mAh g‑1 even at a considerably high rate of 20 C. The porous 3D V2O5/RGO/CNT structure not only provides facile Li+ diffusion into bulk but contributes to surface Li+ storage as well, which enables the design of 3D V2O5/RGO/CNT composite to become a promising cathode architecture for high performance LIBs.

  10. Porous V2O5/RGO/CNT hierarchical architecture as a cathode material: Emphasis on the contribution of surface lithium storage.

    PubMed

    Palanisamy, Kowsalya; Um, Ji Hyun; Jeong, Mihee; Yoon, Won-Sub

    2016-08-11

    A three dimensional vanadium pentoxide/reduced graphene oxide/carbon nanotube (3D V2O5/RGO/CNT) composite is synthesized by microwave-assisted hydrothermal method. The combination of 2D RGO and 1D CNT establishes continuous 3D conductive network, and most notably, the 1D CNT is designed to form hierarchically porous structure by penetrating into V2O5 microsphere assembly constituted of numerous V2O5 nanoparticles. The highly porous V2O5 microsphere enhances electrolyte contact and shortens Li(+) diffusion path as a consequence of its developed surface area and mesoporosity. The successive phase transformations of 3D V2O5/RGO/CNT from α-phase to ε-, δ-, γ-, and ω-phase and its structural reversibility upon Li(+) intercalation/de-intercalation are investigated by in situ XRD analysis, and the electronic and local structure reversibility around vanadium atom in 3D V2O5/RGO/CNT is observed by in situ XANES analysis. The 3D V2O5/RGO/CNT achieves a high capacity of 220 mAh g(-1) at 1 C after 80 cycles and an excellent rate capability of 100 mAh g(-1) even at a considerably high rate of 20 C. The porous 3D V2O5/RGO/CNT structure not only provides facile Li(+) diffusion into bulk but contributes to surface Li(+) storage as well, which enables the design of 3D V2O5/RGO/CNT composite to become a promising cathode architecture for high performance LIBs.

  11. Porous V2O5/RGO/CNT hierarchical architecture as a cathode material: Emphasis on the contribution of surface lithium storage

    PubMed Central

    Palanisamy, Kowsalya; Um, Ji Hyun; Jeong, Mihee; Yoon, Won-Sub

    2016-01-01

    A three dimensional vanadium pentoxide/reduced graphene oxide/carbon nanotube (3D V2O5/RGO/CNT) composite is synthesized by microwave-assisted hydrothermal method. The combination of 2D RGO and 1D CNT establishes continuous 3D conductive network, and most notably, the 1D CNT is designed to form hierarchically porous structure by penetrating into V2O5 microsphere assembly constituted of numerous V2O5 nanoparticles. The highly porous V2O5 microsphere enhances electrolyte contact and shortens Li+ diffusion path as a consequence of its developed surface area and mesoporosity. The successive phase transformations of 3D V2O5/RGO/CNT from α-phase to ε-, δ-, γ-, and ω-phase and its structural reversibility upon Li+ intercalation/de-intercalation are investigated by in situ XRD analysis, and the electronic and local structure reversibility around vanadium atom in 3D V2O5/RGO/CNT is observed by in situ XANES analysis. The 3D V2O5/RGO/CNT achieves a high capacity of 220 mAh g−1 at 1 C after 80 cycles and an excellent rate capability of 100 mAh g−1 even at a considerably high rate of 20 C. The porous 3D V2O5/RGO/CNT structure not only provides facile Li+ diffusion into bulk but contributes to surface Li+ storage as well, which enables the design of 3D V2O5/RGO/CNT composite to become a promising cathode architecture for high performance LIBs. PMID:27511434

  12. Porous V2O5/RGO/CNT hierarchical architecture as a cathode material: Emphasis on the contribution of surface lithium storage.

    PubMed

    Palanisamy, Kowsalya; Um, Ji Hyun; Jeong, Mihee; Yoon, Won-Sub

    2016-01-01

    A three dimensional vanadium pentoxide/reduced graphene oxide/carbon nanotube (3D V2O5/RGO/CNT) composite is synthesized by microwave-assisted hydrothermal method. The combination of 2D RGO and 1D CNT establishes continuous 3D conductive network, and most notably, the 1D CNT is designed to form hierarchically porous structure by penetrating into V2O5 microsphere assembly constituted of numerous V2O5 nanoparticles. The highly porous V2O5 microsphere enhances electrolyte contact and shortens Li(+) diffusion path as a consequence of its developed surface area and mesoporosity. The successive phase transformations of 3D V2O5/RGO/CNT from α-phase to ε-, δ-, γ-, and ω-phase and its structural reversibility upon Li(+) intercalation/de-intercalation are investigated by in situ XRD analysis, and the electronic and local structure reversibility around vanadium atom in 3D V2O5/RGO/CNT is observed by in situ XANES analysis. The 3D V2O5/RGO/CNT achieves a high capacity of 220 mAh g(-1) at 1 C after 80 cycles and an excellent rate capability of 100 mAh g(-1) even at a considerably high rate of 20 C. The porous 3D V2O5/RGO/CNT structure not only provides facile Li(+) diffusion into bulk but contributes to surface Li(+) storage as well, which enables the design of 3D V2O5/RGO/CNT composite to become a promising cathode architecture for high performance LIBs. PMID:27511434

  13. Minimizing fan energy costs

    SciTech Connect

    Monroe, R.C.

    1985-05-27

    Minimizing fan energy costs and maximizing fan efficiency is the subject of this paper. Blade design itself can cause poor flow distribution and inefficiency. A basic design criterion is that a blade should produce uniform flow over the entire plane of the fan. Also an inherent problem with the axial fan is swirl -- the tangential deflection of exit-flow caused by the effect of torque. Swirl can be prevented with an inexpensive hub component. Basic efficiency can be checked by means of the fan's performance curve. Generally, fewer blades translate into higher axial-fan efficiency. A crowded inboard area creates hub turbulence which lessens efficiency. Whether the pitch of fan blades is fixed or variable also affects energy consumption. Power savings of 50% per year or more can be realized by replacing fixed-pitch, continuously operating fans with fans whose blade pitch or speed is automatically varied.

  14. Transanal Minimally Invasive Surgery

    PubMed Central

    deBeche-Adams, Teresa; Nassif, George

    2015-01-01

    Transanal minimally invasive surgery (TAMIS) was first described in 2010 as a crossover between single-incision laparoscopic surgery and transanal endoscopic microsurgery (TEM) to allow access to the proximal and mid-rectum for resection of benign and early-stage malignant rectal lesions. The TAMIS technique can also be used for noncurative intent surgery of more advanced lesions in patients who are not candidates for radical surgery. Proper workup and staging should be done before surgical decision-making. In addition to the TAMIS port, instrumentation and set up include readily available equipment found in most operating suites. TAMIS has proven its usefulness in a wide range of applications outside of local excision, including repair of rectourethral fistula, removal of rectal foreign body, control of rectal hemorrhage, and as an adjunct in total mesorectal excision for rectal cancer. TAMIS is an easily accessible, technically feasible, and cost-effective alternative to TEM. PMID:26491410

  15. [Minimal invasive implantology].

    PubMed

    Bruck, N; Zagury, A; Nahlieli, O

    2015-07-01

    Endoscopic surgery has changed the philosophy and practice of modern surgery in all aspects of medicine. It gave rise to minimally invasive surgery procedures based on the ability to visualize and to operate via small channels. In maxillofacial surgery, our ability to see clearly the surgical field opened an entirely new world of exploration, as conditions that were once almost impossible to control and whose outcome was uncertain can be now predictably managed. in this article we will descripe the advantage of using the oral endoscope during the dental implantology procedure, and we will describe a unique implant which enable us in combination with the oral endoscope to create a maxillary sinus lift with out the need of the major surgery with all of its risks and complication.

  16. [Minimally invasive breast surgery].

    PubMed

    Mátrai, Zoltán; Gulyás, Gusztáv; Kunos, Csaba; Sávolt, Akos; Farkas, Emil; Szollár, András; Kásler, Miklós

    2014-02-01

    Due to the development in medical science and industrial technology, minimally invasive procedures have appeared in the surgery of benign and malignant breast diseases. In general , such interventions result in significantly reduced breast and chest wall scars, shorter hospitalization and less pain, but they require specific, expensive devices, longer surgical time compared to open surgery. Furthermore, indications or oncological safety have not been established yet. It is quite likely, that minimally invasive surgical procedures with high-tech devices - similar to other surgical subspecialties -, will gradually become popular and it may form part of routine breast surgery even. Vacuum-assisted core biopsy with a therapeutic indication is suitable for the removal of benign fibroadenomas leaving behind an almost invisible scar, while endoscopically assisted skin-sparing and nipple-sparing mastectomy, axillary staging and reconstruction with latissimus dorsi muscle flap are all feasible through the same short axillary incision. Endoscopic techniques are also suitable for the diagnostics and treatment of intracapsular complications of implant-based breast reconstructions (intracapsular fluid, implant rupture, capsular contracture) and for the biopsy of intracapsular lesions with uncertain pathology. Perception of the role of radiofrequency ablation of breast tumors requires further hands-on experience, but it is likely that it can serve as a replacement of surgical removal in a portion of primary tumors in the future due to the development in functional imaging and anticancer drugs. With the reduction of the price of ductoscopes routine examination of the ductal branch system, guided microdochectomy and targeted surgical removal of terminal ducto-lobular units or a "sick lobe" as an anatomical unit may become feasible. The paper presents the experience of the authors and provides a literature review, for the first time in Hungarian language on the subject. Orv. Hetil

  17. Minimally invasive parathyroid surgery

    PubMed Central

    Noureldine, Salem I.; Gooi, Zhen

    2015-01-01

    Traditionally, bilateral cervical exploration for localization of all four parathyroid glands and removal of any that are grossly enlarged has been the standard surgical treatment for primary hyperparathyroidism (PHPT). With the advances in preoperative localization studies and greater public demand for less invasive procedures, novel targeted, minimally invasive techniques to the parathyroid glands have been described and practiced over the past 2 decades. Minimally invasive parathyroidectomy (MIP) can be done either through the standard Kocher incision, a smaller midline incision, with video assistance (purely endoscopic and video-assisted techniques), or through an ectopically placed, extracervical, incision. In current practice, once PHPT is diagnosed, preoperative evaluation using high-resolution radiographic imaging to localize the offending parathyroid gland is essential if MIP is to be considered. The imaging study results suggest where the surgeon should begin the focused procedure and serve as a road map to allow tailoring of an efficient, imaging-guided dissection while eliminating the unnecessary dissection of multiple glands or a bilateral exploration. Intraoperative parathyroid hormone (IOPTH) levels may be measured during the procedure, or a gamma probe used during radioguided parathyroidectomy, to ascertain that the correct gland has been excised and that no other hyperfunctional tissue is present. MIP has many advantages over the traditional bilateral, four-gland exploration. MIP can be performed using local anesthesia, requires less operative time, results in fewer complications, and offers an improved cosmetic result and greater patient satisfaction. Additional advantages of MIP are earlier hospital discharge and decreased overall associated costs. This article aims to address the considerations for accomplishing MIP, including the role of preoperative imaging studies, intraoperative adjuncts, and surgical techniques. PMID:26425454

  18. The Surface Sensor NlpE of Enterohemorrhagic Escherichia coli Contributes to Regulation of the Type III Secretion System and Flagella by the Cpx Response to Adhesion.

    PubMed

    Shimizu, Takeshi; Ichimura, Kimitoshi; Noda, Masatoshi

    2016-02-01

    Although the adhesion of enterohemorrhagic Escherichia coli (EHEC) is central to the EHEC-host interaction during infection, it remains unclear how such adhesion regulates virulence factors. Adhesion to abiotic surfaces by E. coli has been reported to be an outer membrane lipoprotein NlpE-dependent activation cue of the Cpx pathway. Therefore, we investigated the role of NlpE in EHEC on the adhesion-mediated expression of virulence genes. NlpE in EHEC contributed to upregulation of the locus of enterocyte effacement (LEE) genes encoded type III secretion system and to downregulated expression of the flagellin gene by activation of the Cpx pathway during adherence to hydrophobic glass beads and undifferentiated Caco-2 cells. Moreover, LysR homologue A (LrhA) in EHEC was involved in regulating the expression of the LEE genes and flagellin gene in response to adhesion. Gel mobility shift analysis revealed that response regulator CpxR bound to the lrhA promoter region and thereby regulated expressions of the LEE genes and flagellin gene via the transcriptional regulator LrhA in EHEC. Therefore, these results suggest that the sensing of adhesion signals via NlpE is important for regulation of the expression of the type III secretion system and flagella in EHEC during infection. PMID:26644384

  19. The Surface Sensor NlpE of Enterohemorrhagic Escherichia coli Contributes to Regulation of the Type III Secretion System and Flagella by the Cpx Response to Adhesion

    PubMed Central

    Ichimura, Kimitoshi; Noda, Masatoshi

    2015-01-01

    Although the adhesion of enterohemorrhagic Escherichia coli (EHEC) is central to the EHEC-host interaction during infection, it remains unclear how such adhesion regulates virulence factors. Adhesion to abiotic surfaces by E. coli has been reported to be an outer membrane lipoprotein NlpE-dependent activation cue of the Cpx pathway. Therefore, we investigated the role of NlpE in EHEC on the adhesion-mediated expression of virulence genes. NlpE in EHEC contributed to upregulation of the locus of enterocyte effacement (LEE) genes encoded type III secretion system and to downregulated expression of the flagellin gene by activation of the Cpx pathway during adherence to hydrophobic glass beads and undifferentiated Caco-2 cells. Moreover, LysR homologue A (LrhA) in EHEC was involved in regulating the expression of the LEE genes and flagellin gene in response to adhesion. Gel mobility shift analysis revealed that response regulator CpxR bound to the lrhA promoter region and thereby regulated expressions of the LEE genes and flagellin gene via the transcriptional regulator LrhA in EHEC. Therefore, these results suggest that the sensing of adhesion signals via NlpE is important for regulation of the expression of the type III secretion system and flagella in EHEC during infection. PMID:26644384

  20. Contributions of Ocular Surface Components to Matrix-Metalloproteinases (MMP)-2 and MMP-9 in Feline Tears following Corneal Epithelial Wounding

    PubMed Central

    Petznick, Andrea; Madigan, Michele C.; Garrett, Qian; Sweeney, Deborah F.; Evans, Margaret D. M.

    2013-01-01

    Purpose This study investigated ocular surface components that contribute to matrix-metalloproteinase (MMP)-2 and MMP-9 found in tears following corneal epithelial wounding. Methods Laboratory short-haired cats underwent corneal epithelial debridement in one randomly chosen eye (n = 18). Eye-flush tears were collected at baseline and during various healing stages. Procedural control eyes (identical experimental protocol as wounded eyes except for wounding, n = 5) served as controls for tear analysis. MMP activity was analyzed in tears using gelatin zymography. MMP staining patterns were evaluated in ocular tissues using immunohistochemistry and used to determine MMP expression sites responsible for tear-derived MMPs. Results The proMMP-2 and proMMP-9 activity in tears was highest in wounded and procedural control eyes during epithelial migration (8 to 36 hours post-wounding). Wounded eyes showed significantly higher proMMP-9 in tears only during and after epithelial restratification (day 3 to 4 and day 7 to 28 post-wounding, respectively) as compared to procedural controls (p<0.05). Tears from wounded and procedural control eyes showed no statistical differences for pro-MMP-2 and MMP-9 (p>0.05). Immunohistochemistry showed increased MMP-2 and MMP-9 expression in the cornea during epithelial migration and wound closure. The conjunctival epithelium exhibited highest levels of both MMPs during wound closure, while MMP-9 expression was reduced in conjunctival goblet cells during corneal epithelial migration followed by complete absence of the cells during wound closure. The immunostaining for both MMPs was elevated in the lacrimal gland during corneal healing, with little/no change in the meibomian glands. Conjunctival-associated lymphoid tissue (CALT) showed weak MMP-2 and intense MMP-9 staining. Conclusions Following wounding, migrating corneal epithelium contributed little to the observed MMP levels in tears. The major sources assessed in the present study

  1. A minimal lentivirus Tat.

    PubMed Central

    Derse, D; Carvalho, M; Carroll, R; Peterlin, B M

    1991-01-01

    Transcriptional regulatory mechanisms found in lentiviruses employ RNA enhancer elements called trans-activation responsive (TAR) elements. These nascent RNA stem-loops are cis-acting targets of virally encoded Tat effectors. Interactions between Tat and TAR increase the processivity of transcription complexes and lead to efficient copying of viral genomes. To study essential elements of this trans activation, peptide motifs from Tats of two distantly related lentiviruses, equine infectious anemia virus (EIAV) and human immunodeficiency virus type 1 (HIV-1), were fused to the coat protein of bacteriophage R17 and tested on the long terminal repeat of EIAV, where TAR was replaced by the R17 operator, the target of the coat protein. This independent RNA-tethering mechanism mapped activation domains of Tats from HIV-1 and EIAV to 47 and 15 amino acids and RNA-binding domains to 10 and 26 amino acids, respectively. Thus, a minimal lentivirus Tat consists of 25 amino acids, of which 15 modify viral transcription and 10 bind to the target RNA stem-loop. Images PMID:1658392

  2. Surface expression of hippocampal NMDA GluN2B receptors regulated by fear conditioning determines its contribution to memory consolidation in adult rats

    PubMed Central

    Sun, Yan-Yan; Cai, Wei; Yu, Jie; Liu, Shu-Su; Zhuo, Min; Li, Bao-Ming; Zhang, Xue-Han

    2016-01-01

    The number and subtype composition of N-methyl-d-aspartate receptor (NMDAR) at synapses determines their functional properties and role in learning and memory. Genetically increased or decreased amount of GluN2B affects hippocampus-dependent memory in the adult brain. But in some experimental conditions (e.g., memory elicited by a single conditioning trial (1 CS-US)), GluN2B is not a necessary factor, which indicates that the precise role of GluN2B in memory formation requires further exploration. Here, we examined the role of GluN2B in the consolidation of fear memory using two training paradigms. We found that GluN2B was only required for the consolidation of memory elicited by five conditioning trials (5 CS-US), not by 1 CS-US. Strikingly, the expression of membrane GluN2B in CA1was training-strength-dependently increased after conditioning, and that the amount of membrane GluN2B determined its involvement in memory consolidation. Additionally, we demonstrated the increases in the activities of cAMP, ERK, and CREB in the CA1 after conditioning, as well as the enhanced intrinsic excitability and synaptic efficacy in CA1 neurons. Up-regulation of membrane GluN2B contributed to these enhancements. These studies uncover a novel mechanism for the involvement of GluN2B in memory consolidation by its accumulation at the cell surface in response to behavioral training. PMID:27487820

  3. In-duct removal of mercury from coal-fired power plant flue gas by activated carbon: assessment of entrained flow versus wall surface contributions

    SciTech Connect

    Scala, F.; Chirone, R.; Lancia, A.

    2008-12-15

    In-duct mercury capture efficiency by activated carbon from coal-combustion flue gas was investigated. To this end, elemental mercury capture experiments were conducted at 100 C in a purposely designed 65-mm ID labscale pyrex apparatus operated as an entrained flow reactor. Gas residence times were varied between 0.7 and 2.0 s. Commercial-powdered activated carbon was continuously injected in the reactor and both mercury concentration and carbon elutriation rate were followed at the outlet. Transient mercury concentration profiles at the outlet showed that steady-state conditions were reached in a time interval of 15-20 min, much longer than the gas residence time in the reactor. Results indicate that the influence of the walls is non-negligible in determining the residence time of fine carbon particles in the adsorption zone, because of surface deposition and/or the establishment of a fluid-dynamic boundary layer near the walls. Total mercury capture efficiencies of 20-50% were obtained with carbon injection rates in the range 0.07-0.25 g/min. However, only a fraction of this capture was attributable to free-flowing carbon particles, a significant contribution coming from activated carbon staying near the reactor walls. Entrained bed experiments at lab-scale conditions are probably not properly representative of full-scale conditions, where the influence of wall interactions is lower. Moreover, previously reported entrained flow lab-scale mercury capture data should be reconsidered by taking into account the influence of particle-wall interactions.

  4. Medical waste: a minimal hazard.

    PubMed

    Keene, J H

    1991-11-01

    Medical waste is a subset of municipal waste, and regulated medical waste comprises less than 1% of the total municipal waste volume in the United States. As part of the overall waste stream, medical waste does contribute in a relative way to the aesthetic damage of the environment. Likewise, some small portion of the total release of hazardous chemicals and radioactive materials is derived from medical wastes. These comments can be made about any generated waste, regulated or unregulated. Healthcare professionals, including infection control personnel, microbiologists, public health officials, and others, have unsuccessfully argued that there is no evidence that past methods of treatment and disposal of regulated medical waste constitute any public health hazard. Historically, discovery of environmental contamination by toxic chemical disposal has followed assurances that the material was being disposed of in a safe manner. Therefore, a cynical public and its elected officials have demanded proof that the treatment and disposal of medical waste (i.e., infectious waste) do not constitute a public health hazard. Existent studies on municipal waste provide that proof. In order to argue that the results of these municipal waste studies are demonstrative of the minimal potential infectious environmental impact and lack of public health hazard associated with medical waste, we must accept the following: that the pathogens are the same whether they come from the hospital or the community, and that the municipal waste studied contained waste materials we now define as regulated medical waste.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. CONTRIBUTION OF NUTRIENTS AND E. COLI TO SURFACE WATER CONDITION IN THE OZARKS I. USING PARTIAL LEAST SQUARES PREDICTIONS WHEN STANDARD REGRESSION ASSUMPTIONS ARE VIOLATED

    EPA Science Inventory

    We present here the application of PLS regression to predicting surface water total phosphorous, total ammonia and Escherichia coli from landscape metrics. The amount of variability in surface water constituents explained by each model reflects the composition of the contributi...

  6. Minimally Invasive Surgery for Inflammatory Bowel Disease

    PubMed Central

    Holder-Murray, Jennifer; Marsicovetere, Priscilla

    2015-01-01

    Abstract: Surgical management of inflammatory bowel disease is a challenging endeavor given infectious and inflammatory complications, such as fistula, and abscess, complex often postoperative anatomy, including adhesive disease from previous open operations. Patients with Crohn's disease and ulcerative colitis also bring to the table the burden of their chronic illness with anemia, malnutrition, and immunosuppression, all common and contributing independently as risk factors for increased surgical morbidity in this high-risk population. However, to reduce the physical trauma of surgery, technologic advances and worldwide experience with minimally invasive surgery have allowed laparoscopic management of patients to become standard of care, with significant short- and long-term patient benefits compared with the open approach. In this review, we will describe the current state-of the-art for minimally invasive surgery for inflammatory bowel disease and the caveats inherent with this practice in this complex patient population. Also, we will review the applicability of current and future trends in minimally invasive surgical technique, such as laparoscopic “incisionless,” single-incision laparoscopic surgery (SILS), robotic-assisted, and other techniques for the patient with inflammatory bowel disease. There can be no doubt that minimally invasive surgery has been proven to decrease the short- and long-term burden of surgery of these chronic illnesses and represents high-value care for both patient and society. PMID:25989341

  7. Guidelines for mixed waste minimization

    SciTech Connect

    Owens, C.

    1992-02-01

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  8. Influenza SIRS with Minimal Pneumonitis

    PubMed Central

    Erramilli, Shruti; Mannam, Praveen; Manthous, Constantine A.

    2016-01-01

    Although systemic inflammatory response syndrome (SIRS) is a known complication of severe influenza pneumonia, it has been reported very rarely in patients with minimal parenchymal lung disease. We here report a case of severe SIRS, anasarca, and marked vascular phenomena with minimal or no pneumonitis. This case highlights that viruses, including influenza, may cause vascular dysregulation causing SIRS, even without substantial visceral organ involvement.

  9. Waste minimization handbook, Volume 1

    SciTech Connect

    Boing, L.E.; Coffey, M.J.

    1995-12-01

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

  10. Surface Partitioning in Organic-Inorganic Mixtures Contributes to the Size-Dependence of the Phase-State of Atmospheric Nanoparticles.

    PubMed

    Werner, Josephina; Dalirian, Maryam; Walz, Marie-Madeleine; Ekholm, Victor; Wideqvist, Ulla; Lowe, Samuel J; Öhrwall, Gunnar; Persson, Ingmar; Riipinen, Ilona; Björneholm, Olle

    2016-07-19

    Atmospheric particulate matter is one of the main factors governing the Earth's radiative budget, but its exact effects on the global climate are still uncertain. Knowledge on the molecular-scale surface phenomena as well as interactions between atmospheric organic and inorganic compounds is necessary for understanding the role of airborne nanoparticles in the Earth system. In this work, surface composition of aqueous model systems containing succinic acid and sodium chloride or ammonium sulfate is determined using a novel approach combining X-ray photoelectron spectroscopy, surface tension measurements and thermodynamic modeling. It is shown that succinic acid molecules are accumulated in the surface, yielding a 10-fold surface concentration as compared with the bulk for saturated succinic acid solutions. Inorganic salts further enhance this enrichment due to competition for hydration in the bulk. The surface compositions for various mixtures are parametrized to yield generalizable results and used to explain changes in surface tension. The enhanced surface partitioning implies an increased maximum solubility of organic compounds in atmospheric nanoparticles. The results can explain observations of size-dependent phase-state of atmospheric nanoparticles, suggesting that these particles can display drastically different behavior than predicted by bulk properties only. PMID:27326704

  11. Contribution of the Yellow Sea bottom cold water to the abnormal cooling of sea surface temperature in the summer of 2011

    NASA Astrophysics Data System (ADS)

    Lee, Joon-ho; Pang, Ig-Chan; Moon, Jae-Hong

    2016-06-01

    Satellite-based sea surface temperature (SST) measurements revealed an abnormal cooling anomaly over the Yellow Sea (YS) in the summer of 2011. Using in situ hydrographic profiles, meteorological fields, and an ocean circulation model with a passive tracer experiment, we identified the cold SST anomaly and its connection with the YS Bottom Cold Water (YSBCW), which occupies the central part of the YS below the thermocline in the summer. The summer SST anomalies in the YS showed three cold peaks in 1993, 2003, and 2011 over the past 20 years, but the reasons for the cooling events were different, as one was due to weakened surface heating and the other was attributed to mixing with the YSBCW. In 1993 and 2003, relatively weak surface heating made the surface water cooler compared with that during the other years, whereas in 2011, a strong vertical mixing of water was induced by a typhoon that passed through the central YS, causing the surface water to cool by ˜8°C and the bottom water to warm up by ˜4°C. A tracer experiment further confirmed that the vertical heat transfers between the warm surface and the cold bottom water masses when the typhoon passed through the YS interior.

  12. Surface Ozone Measured at GLOBE Schools in the Czech Republic: A Demonstration of the Importance of Student Contribution to the Larger Science Picture

    NASA Technical Reports Server (NTRS)

    Pippin, Margaret R.; Creilson, John K.; Henderson, Bryana L.; Ladd, Irene H.; Fishman, Jack; Votapkova, Dana; Krpcova, Ilona

    2008-01-01

    GLOBE (Global Learning and Observations to Benefit the Environment) is a worldwide hands-on, primary and secondary school-based education and science program, developed to give students a chance to perform real science by making measurements, analyzing data, and participating in research in collaboration with scientists. As part of the GLOBE Surface Ozone Protocol and with the assistance of the TEREZA Association in the Czech Republic, schools in the Czech Republic have been making and reporting daily measurements of surface ozone and surface meteorological data since 2001. Using a hand-held ozone monitor developed for GLOBE, students at several Czech schools have generated multiyear data records of surface ozone from 2001 to 2005. Analysis of the data shows surface ozone levels were anomalously high during the summer of 2003 relative to other summers. These findings are consistent with measurements by the European Environment Agency that highlights the summer of 2003 as having exceptionally long-lasting and spatially extensive episodes of high surface ozone, especially during the first half of August. Further analysis of the summer s prevailing meteorology shows not only that it was one of the hottest on record, a finding also seen in the student data, but the conditions for production of ozone were ideal. Findings such as these increase student, teacher, and scientist confidence in the utility of the GLOBE data for engaging budding scientists in the collection, analysis, and eventual interpretation of the data for inquiry-based education.

  13. LS3MIP (v1.0) Contribution to CMIP6: The Land Surface, Snow and Soil Moisture Model Intercomparison Project Aims, Setup and Expected Outcome.

    NASA Technical Reports Server (NTRS)

    Van Den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard; Seneviratne, Sonia I.; Derksen, Chris; Oki, Taikan; Douville, Herve; Colin, Jeanne; Ducharne, Agnes; Cheruy, Frederique; Viovy, Nicholas; Puma, Michael J.; Wada, Yoshide; Li, Weiping; Jia, Binghao; Alessandri, Andrea; Lawrence, Dave M.; Weedon, Graham P.; Ellis, Richard; Hagemann, Stefan

    2016-01-01

    The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow, and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth System Models (ESMs). The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both strongly affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. However, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems).The experiments are subdivided in two components, the first addressing systematic land biases in offline mode (LMIP, building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework (LFMIP, building upon the GLACE-CMIP blueprint).

  14. LS3MIP (v1.0) contribution to CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project - aims, setup and expected outcome

    NASA Astrophysics Data System (ADS)

    van den Hurk, Bart; Kim, Hyungjun; Krinner, Gerhard; Seneviratne, Sonia I.; Derksen, Chris; Oki, Taikan; Douville, Hervé; Colin, Jeanne; Ducharne, Agnès; Cheruy, Frederique; Viovy, Nicholas; Puma, Michael J.; Wada, Yoshihide; Li, Weiping; Jia, Binghao; Alessandri, Andrea; Lawrence, Dave M.; Weedon, Graham P.; Ellis, Richard; Hagemann, Stefan; Mao, Jiafu; Flanner, Mark G.; Zampieri, Matteo; Materia, Stefano; Law, Rachel M.; Sheffield, Justin

    2016-08-01

    The Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP) is designed to provide a comprehensive assessment of land surface, snow and soil moisture feedbacks on climate variability and climate change, and to diagnose systematic biases in the land modules of current Earth system models (ESMs). The solid and liquid water stored at the land surface has a large influence on the regional climate, its variability and predictability, including effects on the energy, water and carbon cycles. Notably, snow and soil moisture affect surface radiation and flux partitioning properties, moisture storage and land surface memory. They both strongly affect atmospheric conditions, in particular surface air temperature and precipitation, but also large-scale circulation patterns. However, models show divergent responses and representations of these feedbacks as well as systematic biases in the underlying processes. LS3MIP will provide the means to quantify the associated uncertainties and better constrain climate change projections, which is of particular interest for highly vulnerable regions (densely populated areas, agricultural regions, the Arctic, semi-arid and other sensitive terrestrial ecosystems). The experiments are subdivided in two components, the first addressing systematic land biases in offline mode ("LMIP", building upon the 3rd phase of Global Soil Wetness Project; GSWP3) and the second addressing land feedbacks attributed to soil moisture and snow in an integrated framework ("LFMIP", building upon the GLACE-CMIP blueprint).

  15. Influenza SIRS with Minimal Pneumonitis

    PubMed Central

    Erramilli, Shruti; Mannam, Praveen; Manthous, Constantine A.

    2016-01-01

    Although systemic inflammatory response syndrome (SIRS) is a known complication of severe influenza pneumonia, it has been reported very rarely in patients with minimal parenchymal lung disease. We here report a case of severe SIRS, anasarca, and marked vascular phenomena with minimal or no pneumonitis. This case highlights that viruses, including influenza, may cause vascular dysregulation causing SIRS, even without substantial visceral organ involvement. PMID:27630988

  16. Influenza SIRS with Minimal Pneumonitis.

    PubMed

    Erramilli, Shruti; Mannam, Praveen; Manthous, Constantine A

    2016-01-01

    Although systemic inflammatory response syndrome (SIRS) is a known complication of severe influenza pneumonia, it has been reported very rarely in patients with minimal parenchymal lung disease. We here report a case of severe SIRS, anasarca, and marked vascular phenomena with minimal or no pneumonitis. This case highlights that viruses, including influenza, may cause vascular dysregulation causing SIRS, even without substantial visceral organ involvement. PMID:27630988

  17. Indirect nitrous oxide emissions from surface water bodies in a lowland arable catchment: a significant contribution to agricultural greenhouse gas budgets?

    PubMed

    Outram, Faye N; Hiscock, Kevin M

    2012-08-01

    In the UK agriculture is by far the largest source of nitrous oxide (N(2)O) emissions. Direct N(2)O emissions as a result of nitrogen (N) application to soils have been well documented in the UK, whereas indirect emissions produced in surface waters and groundwaters from leached N are much less understood with limited data to support IPCC emission factors. Indirect emissions were studied in surface waters in the Upper Thurne, a lowland drained arable catchment in eastern England. All surface waters were found to have dissolved N(2)O concentrations above that expected if in equilibrium with ambient concentrations, demonstrating all surface waters were acting as a source of N(2)O. The drainage channels represented 86% of the total indirect N(2)O flux, followed by wetland areas, 11%, and the river, 3%. The dense drainage network was found to have the highest dissolved N(2)O concentrations of all the water bodies studied with a combined N(2)O flux of 16 kg N(2)O-N per day in March 2007. Such indirect fluxes are comparable to direct fluxes per hectare and represent a significant proportion of the total N(2)O flux for this catchment. Separate emission factors were established for the three different surface water types within the same catchment, suggesting that the one emission factor used in the Intergovernmental Panel on Climate Change (IPCC) methodology for predicting all indirect N(2)O emissions is inappropriate.

  18. Utilizing Resistivity Soundings and Forensic Geochemistry to Better Understand the Groundwater Contributions and the Interaction with Surface Water in a Streambed in the Texas Gulf Coast Area

    NASA Astrophysics Data System (ADS)

    Bighash, P.

    2012-12-01

    Water quality and quantity in a reservoir can be significantly affected by interactions between surface waters and adjacent aquifers. Environments that exhibit transient hydraulic conditions, such as changes in recharge and groundwater flow rates, are not well understood. The associated impacts to coastal water resources during elevated drought conditions can be better managed with a better understanding of the groundwater-surface water interaction and the transition zone. Proper characterization of the spatial and temporal extent of groundwater discharge is important for water resource management and contaminant migration pathways. The Texas coastal area has been experiencing exceptional drought conditions over the past few years which are expected to persist or intensify in the coming years. An investigation of how the hydrologic system is impacted by these conditions can be a valuable tool regarding water resource management, sustainability and conservation of the Gulf Coast region of South Texas. This study will be using resistivity soundings to vertically and laterally characterize groundwater-surface water interaction and provide a stratigraphic characterization of the transition zone in this area. Chemical and isotope tracers will be used to compliment the resistivity data in order to trace water sources in the surface water and transition zone. This information can aid in evaluating the extent of interaction and degree of mixing between the surface water and groundwater. The ultimate goal of this research is to provide new valuable information that could help professionals and researchers understand complex processes such as groundwater-surface water interaction using new methods that would improve the speed and accuracy of existing systems or techniques. This multidisciplinary approach can be useful in investigating land use impacts on groundwater inflow and in forecasting the availability of water resources in environmentally sensitive ecosystems such as

  19. Occurrence of the Microcystins MC-LW and MC-LF in Dutch Surface Waters and Their Contribution to Total Microcystin Toxicity

    PubMed Central

    Faassen, Elisabeth J.; Lürling, Miquel

    2013-01-01

    Microcystins (MCs) are the most frequently found cyanobacterial toxins in freshwater systems. Many MC variants have been identified and variants differ in their toxicity. Recent studies showed that the variants MC-LW and MC-LF might be more toxic than MC-LR, the variant that is most abundant and mostly used for risk assessments. As little is known about the presence of these two variants in The Netherlands, we determined their occurrence by analyzing 88 water samples and 10 scum samples for eight MC variants ((dm-7-)MC-RR, MC-YR, (dm-7-)MC-LR, MC-LY, MC-LW and MC-LF) by liquid chromatography with tandem mass spectrometry detection. All analyzed MC variants were detected, and MC-LW and/or MC-LF were present in 32% of the MC containing water samples. When MC-LW and MC-LF were present, they contributed to nearly 10% of the total MC concentrations, but due to their suspected high toxicity, their average contribution to the total MC toxicity was estimated to be at least 45%. Given the frequent occurrence and possible high toxicity of MC-LW and MC-LF, it seems better to base health risk assessments on the toxicity contributions of different MC variants than on MC-LR concentrations alone. PMID:23880934

  20. Minimal but non-minimal inflation and electroweak symmetry breaking

    NASA Astrophysics Data System (ADS)

    Marzola, Luca; Racioppi, Antonio

    2016-10-01

    We consider the most minimal scale invariant extension of the standard model that allows for successful radiative electroweak symmetry breaking and inflation. The framework involves an extra scalar singlet, that plays the rôle of the inflaton, and is compatibile with current experimental bounds owing to the non-minimal coupling of the latter to gravity. This inflationary scenario predicts a very low tensor-to-scalar ratio r ≈ 10‑3, typical of Higgs-inflation models, but in contrast yields a scalar spectral index ns simeq 0.97 which departs from the Starobinsky limit. We briefly discuss the collider phenomenology of the framework.

  1. Hydrogen isotopic substitution of solid methylamine through atomic surface reactions at low temperatures: A potential contribution to the D/H ratio of methylamine in molecular clouds

    NASA Astrophysics Data System (ADS)

    Oba, Yasuhiro; Chigai, Takeshi; Osamura, Yoshihiro; Watanabe, Naoki; Kouchi, Akira

    2014-01-01

    We experimentally studied hydrogen (H)-deuterium (D) substitution reactions of solid methylamine (CH3NH2) under astrophysically relevant conditions. We also calculated the potential energy surface for the H-D substitution reactions of methylamine isotopologues using quantum chemical methods. Despite the relatively large energy barrier of more than 18 kJ mol-1, CH3NH2 reacted with D atoms to yield deuterated methylamines at 10 K, suggesting that the H-D substitution reaction proceeds through quantum tunneling. Deuterated methylamines reacted with H atoms as well. On the basis of present results, we propose that methylamine has potential for D enrichment through atomic surface reactions on interstellar grains at very low temperatures in molecular clouds. D enrichment would occur in particular in the methyl group of methylamine.

  2. Untangling the contribution of aspect, drainage position and elevation to the spatial variability of fine surface fuels in south east Australian forests

    NASA Astrophysics Data System (ADS)

    Sheridan, Gary; nyman, petter; Duff, Tom; Baillie, Craig; Bovill, William; Lane, Patrick; Tolhurst, Kevin

    2015-04-01

    The prediction of fuel moisture content is important for estimating the rate of spread of wildfires, the ignition probability of firebrands, and for the efficient scheduling of prescribed fire. The moisture content of fine surface fuels varies spatially at large scales (10's to 100's km) due to variation in meteorological variables (eg. temperature, relative humidity, precipitation). At smaller scales (100's of metres) in steep topography spatial variability is attributed to topographic influences that include differences in radiation due to aspect and slope, differences in precipitation, temperature and relative humidity due to elevation, and differences in soil moisture due to hillslope drainage position. Variable forest structure and canopy shading adds further to the spatial variability in surface fuel moisture. In this study we aim to combine daily 5km resolution gridded weather data with 20m resolution DEM and vegetation structure data to predict the spatial variability of fine surface fuels in steep topography. Microclimate stations were established in south east Australia to monitor surface fine fuel moisture continuously (every 15 minutes) using newly developed instrumented litter packs, in addition to temperature and relative humidity measurements inside the litter pack, and measurement of precipitation and energy inputs above and below the forest canopy. Microclimate stations were established across a gradient of aspect (5 stations), drainage position (7 stations), elevation (15 stations), and canopy cover conditions (6 stations). The data from this extensive network of microclimate stations across a broad spectrum of topographic conditions is being analysed to enable the downscaling of gridded weather data to spatial scales that are relevant to the connectivity of wildfire fuels and to the scheduling and outcome of prescribed fires. The initial results from the first year of this study are presented here.

  3. Contribution of the 37-kDa laminin receptor precursor in the anti-metastatic PSP94-derived peptide PCK3145 cell surface binding

    SciTech Connect

    Annabi, Borhane; Currie, Jean-Christophe; Bouzeghrane, Mounia; Dulude, Helene; Daigneault, Luc; Garde, Seema; Rabbani, Shafaat A.; Panchal, Chandra; Wu, Jinzi J.; Beliveau, Richard . E-mail: oncomol@nobel.si.uqam.ca

    2006-07-21

    Purpose: PCK3145 is an anti-metastatic synthetic peptide with promising therapeutic efficacy against hormone-refractory prostate cancer. The characterization of the PCK3145 peptide cell surface binding/internalization mechanisms and of the receptors involved remained to be explored. Results: [{sup 14}C]PCK3145 cell surface binding assays showed rapid and transient kinetic profile, that was inhibited by RGD peptides, laminin, hyaluronan, and type-I collagen. RGD peptides were however unable to inhibit PCK3145 intracellular uptake. Far-Western ligand binding studies enabled the identification of the 37-kDa laminin receptor precursor (37LRP) as a potential ligand for PCK3145. Overexpression of the recombinant 37LRP indeed led to an increase in PCK3145 binding but unexpectedly not to its uptake. Conclusions: Our data support the implication of laminin receptors in cell surface binding and in transducing PCK3145 anti-metastatic effects, and provide a rational for targeting cancers that express high levels of such laminin receptors.

  4. Modelling Of The Contribution Of Upper Mantle Magnetism To The Magnetic Anomaly Map Observed On Earth's Surface: Analysis Of Different Tectonic Settings

    NASA Astrophysics Data System (ADS)

    Martin-Hernandez, F.; Ferre, E. C.; Friedman, S. A.

    2015-12-01

    Magnetic anomalies of the Geomagnetic Field have been increasing interest in recent years in particular with acquisition of new data from satellite missions. Traditionally, anomalies have been modelled from Earth's surface down to the crust-upper mantle boundary, considering the Moho as the magnetic-non magnetic interface. However, long wavelength magnetic anomalies appear as residuals not modelled in most global and large regional magnetic models. In the last years, several publications have proposed and analysed the magnetic signal from fresh upper mantle xenolith showing the presence of minor inclusions of magnetite that might be in ferrimagnetic state at those depths, depending on the particular geotherm of the geological setting. It has been modelled the effect on Earth surface of those magnetite inclusions taking into account the variation of magnetic intensity at depth, magnetic susceptibility and concentration of magnetite reported from mantle xenolith on different setting finding the effect of the inclusions can have measurable intensities at the surface. Results show that the effect of magnetite in the upper mantle could have a relevant effect when modelling magnetic signal from satellite missions.

  5. Advancements in medium and high resolution Earth observation for land-surface imaging: Evolutions, future trends and contributions to sustainable development

    NASA Astrophysics Data System (ADS)

    Ouma, Yashon O.

    2016-01-01

    Technologies for imaging the surface of the Earth, through satellite based Earth observations (EO) have enormously evolved over the past 50 years. The trends are likely to evolve further as the user community increases and their awareness and demands for EO data also increases. In this review paper, a development trend on EO imaging systems is presented with the objective of deriving the evolving patterns for the EO user community. From the review and analysis of medium-to-high resolution EO-based land-surface sensor missions, it is observed that there is a predictive pattern in the EO evolution trends such that every 10-15 years, more sophisticated EO imaging systems with application specific capabilities are seen to emerge. Such new systems, as determined in this review, are likely to comprise of agile and small payload-mass EO land surface imaging satellites with the ability for high velocity data transmission and huge volumes of spatial, spectral, temporal and radiometric resolution data. This availability of data will magnify the phenomenon of "Big Data" in Earth observation. Because of the "Big Data" issue, new computing and processing platforms such as telegeoprocessing and grid-computing are expected to be incorporated in EO data processing and distribution networks. In general, it is observed that the demand for EO is growing exponentially as the application and cost-benefits are being recognized in support of resource management.

  6. Delineation of areas contributing groundwater to selected receiving surface water bodies for long-term average hydrologic conditions from 1968 to 1983 for Long Island, New York

    USGS Publications Warehouse

    Misut, Paul E.; Monti,, Jack

    2016-10-05

    To assist resource managers and planners in developing informed strategies to address nitrogen loading to coastal water bodies of Long Island, New York, the U.S. Geological Survey and the New York State Department of Environmental Conservation initiated a program to delineate a comprehensive dataset of groundwater recharge areas (or areas contributing groundwater), travel times, and outflows to streams and saline embayments on Long Island. A four-layer regional three-dimensional finite-difference groundwater-flow model of hydrologic conditions from 1968 to 1983 was used to provide delineations of 48 groundwater watersheds on Long Island. Sixteen particle starting points were evenly spaced within each of the 4,000- by 4,000-foot model cells that receive water-table recharge and tracked using forward particle-tracking analysis modeling software to outflow zones. For each particle, simulated travel times were grouped by age as follows: less than or equal to 10 years, greater than 10 years and less than or equal to 100 years, greater than 100 years and less than or equal to 1,000 years, and greater than 1,000 years; and simulated ending zones were grouped into 48 receiving water bodies, based on the New York State Department of Environmental Conservation Waterbody Inventory/Priority Waterbodies List. Areal delineation of travel time zones and groundwater contributing areas were generated and a table was prepared presenting the sum of groundwater outflow for each area.

  7. Delineation of Areas Contributing Groundwater to Selected Receiving Surface Water Bodies for Long-Term Average Hydrologic Conditions From 1968 to 1983 for Long Island, New York

    USGS Publications Warehouse

    Misut, Paul E.; Monti,, Jack

    2016-10-05

    To assist resource managers and planners in developing informed strategies to address nitrogen loading to coastal water bodies of Long Island, New York, the U.S. Geological Survey and the New York State Department of Environmental Conservation initiated a program to delineate a comprehensive dataset of groundwater recharge areas (or areas contributing groundwater), travel times, and outflows to streams and saline embayments on Long Island. A four-layer regional three-dimensional finite-difference groundwater-flow model of hydrologic conditions from 1968 to 1983 was used to provide delineations of 48 groundwater watersheds on Long Island. Sixteen particle starting points were evenly spaced within each of the 4,000- by 4,000-foot model cells that receive water-table recharge and tracked using forward particle-tracking analysis modeling software to outflow zones. For each particle, simulated travel times were grouped by age as follows: less than or equal to 10 years, greater than 10 years and less than or equal to 100 years, greater than 100 years and less than or equal to 1,000 years, and greater than 1,000 years; and simulated ending zones were grouped into 48 receiving water bodies, based on the New York State Department of Environmental Conservation Waterbody Inventory/Priority Waterbodies List. Areal delineation of travel time zones and groundwater contributing areas were generated and a table was prepared presenting the sum of groundwater outflow for each area.

  8. Fermi surface versus Fermi sea contributions to intrinsic anomalous and spin Hall effects of multiorbital metals in the presence of Coulomb interaction and spin-Coulomb drag

    NASA Astrophysics Data System (ADS)

    Arakawa, Naoya

    2016-06-01

    Anomalous Hall effect (AHE) and spin Hall effect (SHE) are fundamental phenomena, and their potential for application is great. However, we understand the interaction effects unsatisfactorily, and should have clarified issues about the roles of the Fermi sea term and Fermi surface term of the conductivity of the intrinsic AHE or SHE of an interacting multiorbital metal and about the effects of spin-Coulomb drag on the intrinsic SHE. Here, we resolve the first issue and provide the first step about the second issue by developing a general formalism in the linear response theory with appropriate approximations and using analytic arguments. The most striking result is that even without impurities, the Fermi surface term, a non-Berry-curvature term, plays dominant roles at high or slightly low temperatures. In particular, this Fermi surface term causes the temperature dependence of the dc anomalous Hall or spin Hall conductivity due to the interaction-induced quasiparticle damping and the correction of the dc spin Hall conductivity due to the spin-Coulomb drag. Those results revise our understanding of the intrinsic AHE and SHE. We also find that the differences between the dc anomalous Hall and longitudinal conductivities arise from the difference in the dominant multiband excitations. This not only explains why the Fermi sea term such as the Berry-curvature term becomes important in clean and low-temperature case only for interband transports, but also provides the useful principles on treating the electron-electron interaction in an interacting multiorbital metal for general formalism of transport coefficients. Several correspondences between our results and experiments are finally discussed.

  9. Study of weathering processes developed on old piedmont surfaces in Western Spain: new contributions to the interpretation of the ``Raña'' profiles

    NASA Astrophysics Data System (ADS)

    Molina Ballesteros, E.; Cantano Martín, M.

    2002-01-01

    The Hercynian basement of the Iberian Peninsula was uplifted by the Alpine orogeny during the Tertiary. It gave rise to a set of block mountains and tectonic grabens, one of which is the Ciudad Rodrigo Basin. It is located in Western Spain and forms a westward extension of the great Tertiary Duero Basin. The sediments filling this graben are of continental origin, their ages ranging from Palaeogene to Quaternary. Morphologically, the southern part of this basin forms a set of piedmont surfaces (the "Raña" surfaces) appearing above the terrace system of the present rivers. This paper examines the weathering processes developed over these old piedmont surfaces using micromorphological, XR diffraction, scanning electron microscopy (SEM) and microporosity techniques. The Raña sediments are rich in quartzite pebbles and gravel within a clayey matrix. Once deposited, these materials underwent important in situ weathering processes under somewhat hydromorphic conditions, of which hydrolysis, ferrolysis and xerolysis were the most important. All these processes gave rise to: (1) transformation of most of the clasts of shists and slates into a matrix causing the destruction of the original sedimentary structures and a relative concentration of the resistant lithologies (quartzites and quartz); (2) important changes in the clay fraction, leading to a predominance of kaolinite in the upper levels of the profiles, (3) release of elements from primary minerals, Fe being one of the most important, and (4) redistribution of matter, mainly clay and Fe oxyhydroxides, within the profiles. The coexistence of seasonal periods with pF higher than 4.2 repeated over a long time, together with poor internal and external drainage conditions, are the cause of the special features displayed by Raña deposits.

  10. Evaluating the importance of surface soil contributions to reservoir sediment in alpine environments: a combined modelling and fingerprinting approach in the Posets-Maladeta Natural Park

    NASA Astrophysics Data System (ADS)

    Palazón, L.; Gaspar, L.; Latorre, B.; Blake, W. H.; Navas, A.

    2014-09-01

    Soil in alpine environments plays a key role in the development of ecosystem services and in order to maintain and preserve this important resource, information is required on processes that lead to soil erosion. Similar to other mountain alpine environments, the Benasque catchment is characterised by temperatures below freezing that can last from November to April, intense rainfall events, typically in spring and autumn, and rugged topography which makes assessment of erosion challenging. Indirect approaches to soil erosion assessment, such as combined model approaches, offer an opportunity to evaluate soil erosion in such areas. In this study (i) the SWAT (Soil and Water Assessment Tool) hydrological and erosion model and (ii) sediment fingerprinting procedures were used in parallel to assess the viability of a combined modelling and tracing approach to evaluate soil erosion processes in the area of the Posets-Maladeta Natural Park (central Spanish Pyrenees). Soil erosion rates and sediment contribution of potential sediment sources defined by soil type (Kastanozems/Phaeozems; Fluvisols and Cambisols) were assessed. The SWAT model suggested that, with the highest specific sediment yields, Cambisols are the main source of sediment in the Benasque catchment and Phaeozems and Fluvisols were identified as the lowest sediment contributors. Spring and winter model runs gave the highest and lowest specific sediment yield, respectively. In contrast, sediment fingerprinting analysis identified Fluvisols, which dominate the riparian zone, as the main sediment source at the time of sampling. This indicates the importance of connectivity as well as potential differences in the source dynamic of material in storage versus that transported efficiently from the system at times of high flow. The combined approach enabled us to better understand soil erosion processes in the Benasque alpine catchment, wherein SWAT identified areas of potential high sediment yield in large flood

  11. Eddy Current Minimizing Flow Plug for Use in Flow Conditioning and Flow Metering

    NASA Technical Reports Server (NTRS)

    England, John Dwight (Inventor); Kelley, Anthony R. (Inventor)

    2015-01-01

    An eddy-current-minimizing flow plug has an outer radial wall with open flow channels formed between the plug's inlet and outlet. The plug has a central region coupled to the inner surface of the outer radial wall. Each open flow channel includes (i) a first portion originating at the inlet and converging to a location in the plug where convergence is contributed to by changes in thickness of the outer radial wall and divergence of the central region, and (ii) a second portion originating in the plug and diverging to the outlet where divergence is contributed to by changes in thickness of the outer radial wall and convergence of the central region. For at least a portion of the open flow channels, a central axis passing through the first and second portions is non-parallel with respect to the given direction of the flow.

  12. Structural elucidation, density functional calculations and contribution of intermolecular interactions in cholest-4-en-3-one crystals: Insights from X-ray and Hirshfeld surface analysis

    NASA Astrophysics Data System (ADS)

    Khanam, Hena; Mashrai, Ashraf; Siddiqui, Nazish; Ahmad, Musheer; Alam, Mohammad Jane; Ahmad, Shabbir; Shamsuzzaman

    2015-03-01

    The foremost objective of the present work is systematic analysis of intermolecular interactions in crystal structure of cholest-4-en-3-one (2) molecule. It is accomplished by Hirshfeld surface analysis and fingerprint plot. Hirshfeld surface analysis has been used to visualize the fidelity of the crystal structure. This method permitted for the identification of individual types of intermolecular contacts and their impact on the complete packing. Molecules are linked by a combination of Cdbnd O---H, Csbnd H---H, and C---H contacts, which have clear signatures in the fingerprint plots. The theoretical study was attempted to predict the optimized geometry and computed spectra by the Density Functional Theory (DFT) using the B3LYP function with the 6-311++G(d,p) basis set. Atomic charges, MEP mapping, HOMO-LUMO, various thermodynamic and molecular properties have been reported. In addition thermal stability, optical, morphological, and microstructral properties of the title compound (2) have also been explored.

  13. Minimally invasive aortic valve surgery

    PubMed Central

    Castrovinci, Sebastiano; Emmanuel, Sam; Moscarelli, Marco; Murana, Giacomo; Caccamo, Giuseppa; Bertolino, Emanuela Clara; Nasso, Giuseppe; Speziale, Giuseppe; Fattouch, Khalil

    2016-01-01

    Aortic valve disease is a prevalent disorder that affects approximately 2% of the general adult population. Surgical aortic valve replacement is the gold standard treatment for symptomatic patients. This treatment has demonstrably proven to be both safe and effective. Over the last few decades, in an attempt to reduce surgical trauma, different minimally invasive approaches for aortic valve replacement have been developed and are now being increasingly utilized. A narrative review of the literature was carried out to describe the surgical techniques for minimally invasive aortic valve surgery and report the results from different experienced centers. Minimally invasive aortic valve replacement is associated with low perioperative morbidity, mortality and a low conversion rate to full sternotomy. Long-term survival appears to be at least comparable to that reported for conventional full sternotomy. Minimally invasive aortic valve surgery, either with a partial upper sternotomy or a right anterior minithoracotomy provides early- and long-term benefits. Given these benefits, it may be considered the standard of care for isolated aortic valve disease. PMID:27582764

  14. Minimally invasive aortic valve surgery.

    PubMed

    Castrovinci, Sebastiano; Emmanuel, Sam; Moscarelli, Marco; Murana, Giacomo; Caccamo, Giuseppa; Bertolino, Emanuela Clara; Nasso, Giuseppe; Speziale, Giuseppe; Fattouch, Khalil

    2016-09-01

    Aortic valve disease is a prevalent disorder that affects approximately 2% of the general adult population. Surgical aortic valve replacement is the gold standard treatment for symptomatic patients. This treatment has demonstrably proven to be both safe and effective. Over the last few decades, in an attempt to reduce surgical trauma, different minimally invasive approaches for aortic valve replacement have been developed and are now being increasingly utilized. A narrative review of the literature was carried out to describe the surgical techniques for minimally invasive aortic valve surgery and report the results from different experienced centers. Minimally invasive aortic valve replacement is associated with low perioperative morbidity, mortality and a low conversion rate to full sternotomy. Long-term survival appears to be at least comparable to that reported for conventional full sternotomy. Minimally invasive aortic valve surgery, either with a partial upper sternotomy or a right anterior minithoracotomy provides early- and long-term benefits. Given these benefits, it may be considered the standard of care for isolated aortic valve disease. PMID:27582764

  15. What is minimally invasive dentistry?

    PubMed

    Ericson, Dan

    2004-01-01

    Minimally Invasive Dentistry is the application of "a systematic respect for the original tissue." This implies that the dental profession recognizes that an artifact is of less biological value than the original healthy tissue. Minimally invasive dentistry is a concept that can embrace all aspects of the profession. The common delineator is tissue preservation, preferably by preventing disease from occurring and intercepting its progress, but also removing and replacing with as little tissue loss as possible. It does not suggest that we make small fillings to restore incipient lesions or surgically remove impacted third molars without symptoms as routine procedures. The introduction of predictable adhesive technologies has led to a giant leap in interest in minimally invasive dentistry. The concept bridges the traditional gap between prevention and surgical procedures, which is just what dentistry needs today. The evidence-base for survival of restorations clearly indicates that restoring teeth is a temporary palliative measure that is doomed to fail if the disease that caused the condition is not addressed properly. Today, the means, motives and opportunities for minimally invasive dentistry are at hand, but incentives are definitely lacking. Patients and third parties seem to be convinced that the only things that count are replacements. Namely, they are prepared to pay for a filling but not for a procedure that can help avoid having one.

  16. A Defense of Semantic Minimalism

    ERIC Educational Resources Information Center

    Kim, Su

    2012-01-01

    Semantic Minimalism is a position about the semantic content of declarative sentences, i.e., the content that is determined entirely by syntax. It is defined by the following two points: "Point 1": The semantic content is a complete/truth-conditional proposition. "Point 2": The semantic content is useful to a theory of…

  17. Assembly of a minimal protocell

    NASA Astrophysics Data System (ADS)

    Rasmussen, Steen

    2007-03-01

    What is minimal life, how can we make it, and how can it be useful? We present experimental and computational results towards bridging nonliving and living matter, which results in life that is different and much simpler than contemporary life. A simple yet tightly coupled catalytic cooperation between genes, metabolism, and container forms the design underpinnings of our protocell, which is a minimal self-replicating molecular machine. Experimentally, we have recently demonstrated this coupling by having an informational molecule (8-oxoguanine) catalytically control the light driven metabolic (Ru-bpy based) production of container materials (fatty acids). This is a significant milestone towards assembling a minimal self-replicating molecular machine. Recent theoretical investigations indicate that coordinated exponential component growth should naturally emerge as a result from such a catalytic coupling between the main protocellular components. A 3-D dissipative particle simulation (DPD) study of the full protocell life-cycle exposes a number of anticipated systemic issues associated with the remaining experimental challenges for the implementation of the minimal protocell. Finally we outline how more general self-replicating materials could be useful.

  18. Meteorological factors contributing to the interannual variability of midsummer surface ozone in Colorado, Utah, and other western U.S. states

    NASA Astrophysics Data System (ADS)

    Reddy, Patrick J.; Pfister, Gabriele G.

    2016-03-01

    We use daily maximum 8 h average surface O3 concentrations (MDA8) for July 1995-2013, meteorological variables from the National Center for Environmental Prediction/National Center for Atmospheric Research Reanalysis, the North American Regional Reanalysis, and output from regional chemistry-climate simulations to assess relationships between O3 and weather in the western U.S. We also explore relationships among July O3, satellite-derived NO2, and meteorology. A primary objective of this study is to identify an effective method for correcting the effects of meteorology on July MDA8. We find significant correlations between July MDA8 O3 and meteorological variables for sites in or near Denver, Colorado, and Salt Lake City, Utah. The highest correlations were for 500 hPa heights, surface temperatures, and 700 hPa temperatures and zonal winds. We conclude that increased 500 hPa heights lead to high July O3 in much of the western U.S., particularly in areas of elevated terrain near urban sources of NO2 and other O3 precursors. In addition to bringing warmer temperatures and fewer clouds, upper level ridges decrease winds and allow cyclic terrain-driven circulations to reduce transport away from sources. Because of strong, nearly linear responses of July MDA8 to 500 hPa heights, it is not reasonable to use uncorrected trends in peak O3 for assessments of the effectiveness of emissions controls for much of the western U.S. Robust linear regressions for July MDA8 and tropospheric NO2 with 500 hPa heights can be used to assess and correct trends in July MDA8 in the Intermountain West.

  19. A Precision Nitrogen Management Approach to Minimize Impacts

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrogen fertilizer is a crucial input for crop production but contributes to agriculture’s environmental footprint via CO2 emissions, N2O emissions, and eutrophication of coastal waters. The low-cost way to minimize this impact is to eliminate over-application of N. This is more difficult than it s...

  20. Minimally invasive three-dimensional site characterization system. Final report

    SciTech Connect

    Steedman, D.; Seusy, F.E.; Gibbons, J.; Bratton, J.L.

    1993-09-01

    This paper presents an improved for hazardous site characterization. The major components of the systems are: (1) an enhanced cone penetrometer test, (2) surface geophysical surveys and (3) a field database and visualization code. The objective of the effort was to develop a method of combining geophysical data with cone penetrometer data in the field to produce a synergistic effect. Various aspects of the method were tested at three sites. The results from each site are discussed and the data compared. This method allows the data to be interpreted more fully with greater certainty, is faster, cheaper and leads to a more accurate site characterization. Utilizing the cone penetrometer test rather than the standard drilling, sampling and laboratory testing reduces the workers exposure to hazardous materials and minimizes the hazardous material disposal problems. The technologies employed in this effort are, for the most part, state-of-the-art procedures. The approach of using data from various measurement systems to develop a synergistic effect was a unique contribution to environmental site characterization. The use of the cone penetrometer for providing ``ground truth`` data and as a platform for subsurface sensors in environmental site characterization represents a significant advancement in environmental site characterization.

  1. Anaesthesia for minimally invasive surgery

    PubMed Central

    Dec, Marta

    2015-01-01

    Minimally invasive surgery (MIS) is rising in popularity. It offers well-known benefits to the patient. However, restricted access to the surgical site and gas insufflation into the body cavities may result in severe complications. From the anaesthetic point of view MIS poses unique challenges associated with creation of pneumoperitoneum, carbon dioxide absorption, specific positioning and monitoring a patient to whom the anaesthetist has often restricted access, in a poorly lit environment. Moreover, with refinement of surgical procedures and growing experience the anaesthetist is presented with patients from high-risk groups (obese, elderly, with advanced cardiac and respiratory disease) who once were deemed unsuitable for the laparoscopic technique. Anaesthetic management is aimed at getting the patient safely through the procedure, minimizing the specific risks arising from laparoscopy and the patient's coexisting medical problems, ensuring quick recovery and a relatively pain-free postoperative course with early return to normal function. PMID:26865885

  2. Minimal universal quantum heat machine.

    PubMed

    Gelbwaser-Klimovsky, D; Alicki, R; Kurizki, G

    2013-01-01

    In traditional thermodynamics the Carnot cycle yields the ideal performance bound of heat engines and refrigerators. We propose and analyze a minimal model of a heat machine that can play a similar role in quantum regimes. The minimal model consists of a single two-level system with periodically modulated energy splitting that is permanently, weakly, coupled to two spectrally separated heat baths at different temperatures. The equation of motion allows us to compute the stationary power and heat currents in the machine consistent with the second law of thermodynamics. This dual-purpose machine can act as either an engine or a refrigerator (heat pump) depending on the modulation rate. In both modes of operation, the maximal Carnot efficiency is reached at zero power. We study the conditions for finite-time optimal performance for several variants of the model. Possible realizations of the model are discussed.

  3. Principle of minimal work fluctuations

    NASA Astrophysics Data System (ADS)

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality =e-β Δ F , a change in the fluctuations of e-β W may impact how rapidly the statistical average of e-β W converges towards the theoretical value e-β Δ F, where W is the work, β is the inverse temperature, and Δ F is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-β W. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-β W, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-β W. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014), 10.1103/PhysRevE.90.052132].

  4. Principle of minimal work fluctuations.

    PubMed

    Xiao, Gaoyang; Gong, Jiangbin

    2015-08-01

    Understanding and manipulating work fluctuations in microscale and nanoscale systems are of both fundamental and practical interest. For example, in considering the Jarzynski equality 〈e-βW〉=e-βΔF, a change in the fluctuations of e-βW may impact how rapidly the statistical average of e-βW converges towards the theoretical value e-βΔF, where W is the work, β is the inverse temperature, and ΔF is the free energy difference between two equilibrium states. Motivated by our previous study aiming at the suppression of work fluctuations, here we obtain a principle of minimal work fluctuations. In brief, adiabatic processes as treated in quantum and classical adiabatic theorems yield the minimal fluctuations in e-βW. In the quantum domain, if a system initially prepared at thermal equilibrium is subjected to a work protocol but isolated from a bath during the time evolution, then a quantum adiabatic process without energy level crossing (or an assisted adiabatic process reaching the same final states as in a conventional adiabatic process) yields the minimal fluctuations in e-βW, where W is the quantum work defined by two energy measurements at the beginning and at the end of the process. In the classical domain where the classical work protocol is realizable by an adiabatic process, then the classical adiabatic process also yields the minimal fluctuations in e-βW. Numerical experiments based on a Landau-Zener process confirm our theory in the quantum domain, and our theory in the classical domain explains our previous numerical findings regarding the suppression of classical work fluctuations [G. Y. Xiao and J. B. Gong, Phys. Rev. E 90, 052132 (2014)].

  5. Minimally invasive surgery. Future developments.

    PubMed

    Wickham, J E

    1994-01-15

    The rapid development of minimally invasive surgery means that there will be fundamental changes in interventional treatment. Technological advances will allow new minimally invasive procedures to be developed. Application of robotics will allow some procedures to be done automatically, and coupling of slave robotic instruments with virtual reality images will allow surgeons to perform operations by remote control. Miniature motors and instruments designed by microengineering could be introduced into body cavities to perform operations that are currently impossible. New materials will allow changes in instrument construction, such as use of memory metals to make heat activated scissors or forceps. With the reduced trauma associated with minimally invasive surgery, fewer operations will require long hospital stays. Traditional surgical wards will become largely redundant, and hospitals will need to cope with increased through-put of patients. Operating theatres will have to be equipped with complex high technology equipment, and hospital staff will need to be trained to manage it. Conventional nursing care will be carried out more in the community. Many traditional specialties will be merged, and surgical training will need fundamental revision to ensure that surgeons are competent to carry out the new procedures. PMID:8312776

  6. Waste Minimization and Pollution Prevention Awareness Plan

    SciTech Connect

    Not Available

    1994-04-01

    The purpose of this plan is to document Lawrence Livermore National Laboratory (LLNL) projections for present and future waste minimization and pollution prevention. The plan specifies those activities and methods that are or will be used to reduce the quantity and toxicity of wastes generated at the site. It is intended to satisfy Department of Energy (DOE) requirements. This Plan provides an overview of projected activities from FY 1994 through FY 1999. The plans are broken into site-wide and problem-specific activities. All directorates at LLNL have had an opportunity to contribute input, to estimate budget, and to review the plan. In addition to the above, this plan records LLNL`s goals for pollution prevention, regulatory drivers for those activities, assumptions on which the cost estimates are based, analyses of the strengths of the projects, and the barriers to increasing pollution prevention activities.

  7. Radiation oncology: physics advances that minimize morbidity.

    PubMed

    Allison, Ron R; Patel, Rajen M; McLawhorn, Robert A

    2014-12-01

    Radiation therapy has become an ever more successful treatment for many cancer patients. This is due in large part from advances in physics including the expanded use of imaging protocols combined with ever more precise therapy devices such as linear and particle beam accelerators, all contributing to treatments with far fewer side effects. This paper will review current state-of-the-art physics maneuvers that minimize morbidity, such as intensity-modulated radiation therapy, volummetric arc therapy, image-guided radiation, radiosurgery and particle beam treatment. We will also highlight future physics enhancements on the horizon such as MRI during treatment and intensity-modulated hadron therapy, all with the continued goal of improved clinical outcomes.

  8. Habitability and preservation from source to sink: Evidence for habitable surface environments in soils on early Mars and their possible contribution to fluvial deposits

    NASA Astrophysics Data System (ADS)

    Horgan, B. H. N.

    2014-12-01

    One of the most widespread habitable environments on Earth lurks just under our feet. Soils, which are created by precipitation-induced chemical weathering of rocks and sediments, provide abundant geochemical sources of energy for microbes, and form even under water-limited or snow-dominated climates. The mineralogy of soils is directly related to climatic and environmental conditions. Typical neutral, well-drained soils are dominated by phyllosilicates produced through hydrolysis by carbonic acid, but the additional presence of sulfates, oxides, reduced iron, and carbonates can indicate other conditions, including variations in water saturation, redox state, and pH. The high clay content of soils enhances preservation, and reducing soils, like those formed in wetlands, can preserve high concentrations of organics in the form of coal precursors. On Mars, deposits with mineralogies consistent with paleosols are observed in several locations, but are best exemplified by clay-bearing deposits on the plateau surrounding Mawrth Vallis. Widespread smectites at Mawrth are consistent with regional paleosols formed under a temperate climate, and detections of leached Al-rich minerals, acid sulfates, and reduced iron-bearing phases are consistent with localized modification of these soils by fluctuating ground water tables. Together, this suggests a wetlands-like surface environment with diverse chemical gradients providing many energy pathways for life and locally high preservation potential. While sites like Mawrth could be excellent targets for organics and biosignatures on Mars, one limitation of such dispersed sites is that finding high concentrations of organics can be challenging. An alternative would be to utilize deltas and other fluvial deposits as a geological filter. Deltas concentrate the often organic-rich clay size fraction of detrital sediments in well-defined locations. On Earth, the majority of deltaic organics and clays are sourced from soils upstream, and

  9. Systems Biology Perspectives on Minimal and Simpler Cells

    PubMed Central

    Xavier, Joana C.; Patil, Kiran Raosaheb

    2014-01-01

    SUMMARY The concept of the minimal cell has fascinated scientists for a long time, from both fundamental and applied points of view. This broad concept encompasses extreme reductions of genomes, the last universal common ancestor (LUCA), the creation of semiartificial cells, and the design of protocells and chassis cells. Here we review these different areas of research and identify common and complementary aspects of each one. We focus on systems biology, a discipline that is greatly facilitating the classical top-down and bottom-up approaches toward minimal cells. In addition, we also review the so-called middle-out approach and its contributions to the field with mathematical and computational models. Owing to the advances in genomics technologies, much of the work in this area has been centered on minimal genomes, or rather minimal gene sets, required to sustain life. Nevertheless, a fundamental expansion has been taking place in the last few years wherein the minimal gene set is viewed as a backbone of a more complex system. Complementing genomics, progress is being made in understanding the system-wide properties at the levels of the transcriptome, proteome, and metabolome. Network modeling approaches are enabling the integration of these different omics data sets toward an understanding of the complex molecular pathways connecting genotype to phenotype. We review key concepts central to the mapping and modeling of this complexity, which is at the heart of research on minimal cells. Finally, we discuss the distinction between minimizing the number of cellular components and minimizing cellular complexity, toward an improved understanding and utilization of minimal and simpler cells. PMID:25184563

  10. [Minimally invasive glaucoma surgery using the trabectome].

    PubMed

    Wecker, T; Jordan, J F

    2015-03-01

    The main barrier reducing outflow of aqueous humor in open angle glaucomas is the juxtacanalicular trabecular meshwork. The trabectome removes this pathophysiologically altered tissue by electroablation, thus allowing for the collector channels draining Schlemm's canal to directly communicate with the anterior chamber. In studies published so far, about 30% decrease of intraocular pressure and a simultaneous 42% reduction of pressure-lowering eyedrops could be achieved in primary and secondary open angle glaucomas. A clear cornea tunnel is used to advance the trabectome to the trabecular meshwork, leaving the conjunctiva unaffected. Hence minimally invasive chamber angle surgery using this device is in particular suitable for patients with an altered ocular surface. Lowering of intraocular pressure and reduction of needed topical medication seems to be distinct in pseudoexfoliative glaucoma. Surgery with the trabectome and phacoemulsification can easily be combined in one procedure. Using a minimally invasive approach, the complication profile of the trabectome is rather advantageous, not exceeding the general risks of globe-opening surgery. Ab-interno trabeculotomy is a safe and effective method for treatment of patients with primary or secondary open angle glaucomas and moderate target pressures.

  11. Soft tissue damage after minimally invasive THA

    PubMed Central

    2010-01-01

    Background and purpose Minimally invasive surgery (MIS) for hip replacement is thought to minimize soft tissue damage. We determined the damage caused by 4 different MIS approaches as compared to a conventional lateral transgluteal approach. Methods 5 surgeons each performed a total hip arthroplasty on 5 fresh frozen cadaver hips, using either a MIS anterior, MIS anterolateral, MIS 2-incision, MIS posterior, or lateral transgluteal approach. Postoperatively, the hips were dissected and muscle damage color-stained. We measured proportional muscle damage relative to the midsubstance cross-sectional surface area (MCSA) using computerized color detection. The integrity of external rotator muscles, nerves, and ligaments was assessed by direct observation. Results None of the other MIS approaches resulted in less gluteus medius muscle damage than the lateral transgluteal approach. However, the MIS anterior approach completely preserved the gluteus medius muscle in 4 cases while partial damage occurred in 1 case. Furthermore, the superior gluteal nerve was transected in 4 cases after a MIS anterolateral approach and in 1 after the lateral transgluteal approach. The lateral femoral cutaneous nerve was transected once after both the MIS anterior approach and the MIS 2-incision approach. Interpretation The MIS anterior approach may preserve the gluteus medius muscle during total hip arthroplasty, but with a risk of damaging the lateral femoral cutaneous nerve. PMID:21110702

  12. Minimal model for Brownian vortexes.

    PubMed

    Sun, Bo; Grier, David G; Grosberg, Alexander Y

    2010-08-01

    A Brownian vortex is a noise-driven machine that uses thermal fluctuations to extract a steady-state flow of work from a static force field. Its operation is characterized by loops in a probability current whose topology and direction can change with changes in temperature. We present discrete three- and four-state minimal models for Brownian vortexes that can be solved exactly with a master-equation formalism. These models elucidate conditions required for flux reversal in Brownian vortexes and provide insights into their thermodynamic efficiency through the rate of entropy production. PMID:20866791

  13. [Minimally invasive iridocorneal angle surgery].

    PubMed

    Jordan, J F

    2012-07-01

    The classical filtration surgery with trabeculectomy or drainage of chamber fluid with episcleral implants is the most effective method for permanent reduction of intraocular pressure to lower and normal levels. Even though both operative procedures are well-established the high efficiency of the method causes potentially dangerous intraoperative as well as interoperative complications with a frequency which cannot be ignored. In the past this led to a search for low complication alternatives with non-penetrating glaucoma surgery (NPGS) and the search is still continuing. Trabecular meshwork surgery in particular with continuous development of new operation techniques steered the focus to a complication-poor and minimally invasive, gonioscopic glaucoma surgery.

  14. The minimal scenario of leptogenesis

    NASA Astrophysics Data System (ADS)

    Blanchet, Steve; Di Bari, Pasquale

    2012-12-01

    We review the main features and results of thermal leptogenesis within the type I seesaw mechanism, the minimal extension of the Standard Model explaining neutrino masses and mixing. After presenting the simplest approach, the vanilla scenario, we discuss various important developments of recent years, such as the inclusion of lepton and heavy neutrino flavour effects, a description beyond a hierarchical heavy neutrino mass spectrum and an improved kinetic description within the density matrix and the closed-time-path formalisms. We also discuss how leptogenesis can ultimately represent an important phenomenological tool to test the seesaw mechanism and the underlying model of new physics.

  15. Radiometric calibration by rank minimization.

    PubMed

    Lee, Joon-Young; Matsushita, Yasuyuki; Shi, Boxin; Kweon, In So; Ikeuchi, Katsushi

    2013-01-01

    We present a robust radiometric calibration framework that capitalizes on the transform invariant low-rank structure in the various types of observations, such as sensor irradiances recorded from a static scene with different exposure times, or linear structure of irradiance color mixtures around edges. We show that various radiometric calibration problems can be treated in a principled framework that uses a rank minimization approach. This framework provides a principled way of solving radiometric calibration problems in various settings. The proposed approach is evaluated using both simulation and real-world datasets and shows superior performance to previous approaches.

  16. Minimizing medical litigation, part 2.

    PubMed

    Harold, Tan Keng Boon

    2006-01-01

    Provider-patient disputes are inevitable in the healthcare sector. Healthcare providers and regulators should recognize this and plan opportunities to enforce alternative dispute resolution (ADR) a early as possible in the care delivery process. Negotiation is often the main dispute resolution method used by local healthcare providers, failing which litigation would usually follow. The role of mediation in resolving malpractice disputes has been minimal. Healthcare providers, administrators, and regulators should therefore look toward a post-event communication-cum-mediation framework as the key national strategy to resolving malpractice disputes. PMID:16711089

  17. Endoscopic navigation for minimally invasive suturing.

    PubMed

    Wengert, Christian; Bossard, Lukas; Häberling, Armin; Baur, Charles; Székely, Gábor; Cattin, Philippe C

    2007-01-01

    Manipulating small objects such as needles, screws or plates inside the human body during minimally invasive surgery can be very difficult for less experienced surgeons, due to the loss of 3D depth perception. This paper presents an approach for tracking a suturing needle using a standard endoscope. The resulting pose information of the needle is then used to generate artificial 3D cues on the 2D screen to optimally support surgeons during tissue suturing. Additionally, if an external tracking device is provided to report the endoscope's position, the suturing needle can be tracked in a hybrid fashion with sub-millimeter accuracy. Finally, a visual navigation aid can be incorporated, if a 3D surface is intraoperatively reconstructed from video or registered from preoperative imaging. PMID:18044620

  18. Endoscopic navigation for minimally invasive suturing.

    PubMed

    Wengert, Christian; Bossard, Lukas; Häberling, Armin; Baur, Charles; Székely, Gábor; Cattin, Philippe C

    2007-01-01

    Manipulating small objects such as needles, screws or plates inside the human body during minimally invasive surgery can be very difficult for less experienced surgeons, due to the loss of 3D depth perception. This paper presents an approach for tracking a suturing needle using a standard endoscope. The resulting pose information of the needle is then used to generate artificial 3D cues on the 2D screen to optimally support surgeons during tissue suturing. Additionally, if an external tracking device is provided to report the endoscope's position, the suturing needle can be tracked in a hybrid fashion with sub-millimeter accuracy. Finally, a visual navigation aid can be incorporated, if a 3D surface is intraoperatively reconstructed from video or registered from preoperative imaging.

  19. Minimally invasive surgery for thyroid eye disease.

    PubMed

    Naik, Milind Neilkant; Nair, Akshay Gopinathan; Gupta, Adit; Kamal, Saurabh

    2015-11-01

    Thyroid eye disease (TED) can affect the eye in myriad ways: proptosis, strabismus, eyelid retraction, optic neuropathy, soft tissue changes around the eye and an unstable ocular surface. TED consists of two phases: active, and inactive. The active phase of TED is limited to a period of 12-18 months and is mainly managed medically with immunosuppression. The residual structural changes due to the resultant fibrosis are usually addressed with surgery, the mainstay of which is orbital decompression. These surgeries are performed during the inactive phase. The surgical rehabilitation of TED has evolved over the years: not only the surgical techniques, but also the concepts, and the surgical tools available. The indications for decompression surgery have also expanded in the recent past. This article discusses the technological and conceptual advances of minimally invasive surgery for TED that decrease complications and speed up recovery. Current surgical techniques offer predictable, consistent results with better esthetics.

  20. Minimizing travel claims cost with minimal-spanning tree model

    NASA Astrophysics Data System (ADS)

    Jamalluddin, Mohd Helmi; Jaafar, Mohd Azrul; Amran, Mohd Iskandar; Ainul, Mohd Sharizal; Hamid, Aqmar; Mansor, Zafirah Mohd; Nopiah, Zulkifli Mohd

    2014-06-01

    Travel demand necessitates a big expenditure in spending, as has been proven by the National Audit Department (NAD). Every year the auditing process is carried out throughout the country involving official travel claims. This study focuses on the use of the Spanning Tree model to determine the shortest path to minimize the cost of the NAD's official travel claims. The objective is to study the possibility of running a network based in the Kluang District Health Office to eight Rural Clinics in Johor state using the Spanning Tree model applications for optimizing travelling distances and make recommendations to the senior management of the Audit Department to analyze travelling details before an audit is conducted. Result of this study reveals that there were claims of savings of up to 47.4% of the original claims, over the course of the travel distance.

  1. Annual Waste Minimization Summary Report

    SciTech Connect

    Alfred J. Karns

    2007-01-01

    This report summarizes the waste minimization efforts undertaken by National Security Technologies, LLC (NSTec), for the U. S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NNSA/NSO), during CY06. This report was developed in accordance with the requirements of the Nevada Test Site (NTS) Resource Conservation and Recovery Act (RCRA) Permit (No. NEV HW0021) and as clarified in a letter dated April 21, 1995, from Paul Liebendorfer of the Nevada Division of Environmental Protection to Donald Elle of the DOE, Nevada Operations Office. The NNSA/NSO Pollution Prevention (P2) Program establishes a process to reduce the volume and toxicity of waste generated by the NNSA/NSO and ensures that proposed methods of treatment, storage, and/or disposal of waste minimize potential threats to human health and the environment. The following information provides an overview of the P2 Program, major P2 accomplishments during the reporting year, a comparison of the current year waste generation to prior years, and a description of efforts undertaken during the year to reduce the volume and toxicity of waste generated by the NNSA/NSO.

  2. Less minimal supersymmetric standard model

    SciTech Connect

    de Gouvea, Andre; Friedland, Alexander; Murayama, Hitoshi

    1998-03-28

    Most of the phenomenological studies of supersymmetry have been carried out using the so-called minimal supergravity scenario, where one assumes a universal scalar mass, gaugino mass, and trilinear coupling at M{sub GUT}. Even though this is a useful simplifying assumption for phenomenological analyses, it is rather too restrictive to accommodate a large variety of phenomenological possibilities. It predicts, among other things, that the lightest supersymmetric particle (LSP) is an almost pure B-ino, and that the {mu}-parameter is larger than the masses of the SU(2){sub L} and U(1){sub Y} gauginos. We extend the minimal supergravity framework by introducing one extra parameter: the Fayet'Iliopoulos D-term for the hypercharge U(1), D{sub Y}. Allowing for this extra parameter, we find a much more diverse phenomenology, where the LSP is {tilde {nu}}{sub {tau}}, {tilde {tau}} or a neutralino with a large higgsino content. We discuss the relevance of the different possibilities to collider signatures. The same type of extension can be done to models with the gauge mediation of supersymmetry breaking. We argue that it is not wise to impose cosmological constraints on the parameter space.

  3. Next-to-minimal SOFTSUSY

    NASA Astrophysics Data System (ADS)

    Allanach, B. C.; Athron, P.; Tunstall, Lewis C.; Voigt, A.; Williams, A. G.

    2014-09-01

    We describe an extension to the SOFTSUSY program that provides for the calculation of the sparticle spectrum in the Next-to-Minimal Supersymmetric Standard Model (NMSSM), where a chiral superfield that is a singlet of the Standard Model gauge group is added to the Minimal Supersymmetric Standard Model (MSSM) fields. Often, a Z3 symmetry is imposed upon the model. SOFTSUSY can calculate the spectrum in this case as well as the case where general Z3 violating (denoted as =) terms are added to the soft supersymmetry breaking terms and the superpotential. The user provides a theoretical boundary condition for the couplings and mass terms of the singlet. Radiative electroweak symmetry breaking data along with electroweak and CKM matrix data are used as weak-scale boundary conditions. The renormalisation group equations are solved numerically between the weak scale and a high energy scale using a nested iterative algorithm. This paper serves as a manual to the NMSSM mode of the program, detailing the approximations and conventions used. Catalogue identifier: ADPM_v4_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADPM_v4_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 154886 No. of bytes in distributed program, including test data, etc.: 1870890 Distribution format: tar.gz Programming language: C++, fortran. Computer: Personal computer. Operating system: Tested on Linux 3.x. Word size: 64 bits Classification: 11.1, 11.6. Does the new version supersede the previous version?: Yes Catalogue identifier of previous version: ADPM_v3_0 Journal reference of previous version: Comput. Phys. Comm. 183 (2012) 785 Nature of problem: Calculating supersymmetric particle spectrum and mixing parameters in the next-to-minimal supersymmetric standard model. The solution to the

  4. Minimizing agricultural nonpoint-source impacts: A symposium overview

    SciTech Connect

    Sharpley, A.; Meyer, M.

    1994-01-01

    This paper provides a brief overview of agricultural non-point pollution source issues and options. The need to identify critical sources for pollution control, target specific controls for different wter quality objectives within watersheds, and evaluate and implement cost effective management practices that minimize the pollution to ground water and surface waters are key issues.

  5. Minimal impact, waterless decontamination technologies for improving food safety

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Pathogen contamination of produce, meats, poultry, shellfish, and other foods remains an ongoing concern. Chemical sanitizers are widely employed for foods and food contact surfaces. However, there is growing interest in the development of minimal impact, waterless decontamination processes that wil...

  6. Perceiving environmental properties from motion information: Minimal conditions

    NASA Technical Reports Server (NTRS)

    Proffitt, Dennis R.; Kaiser, Mary K.

    1989-01-01

    The status of motion as a minimal information source for perceiving the environmental properties of surface segregation, three-dimensional (3-D) form, displacement, and dynamics is discussed. The selection of these particular properties was motivated by a desire to present research on perceiving properties that span the range of dimensional complexity.

  7. Surface purity control during XMASS detector refurbishment

    SciTech Connect

    Kobayashi, Kazuyoshi

    2015-08-17

    The XMASS project aims at detecting dark matter, pp and {sup 7}Be solar neutrinos, and neutrino less double beta decay using large volume of pure liquid xenon. The first physics target of the XMASS project is to detect dark matter with 835 kg liquid xenon. After the commissioning runs, XMASS detector was refurbished to minimize the background contribution mainly from PMT sealing material and we restarted data taking in November 2013. We report how we control surface purity, especially how we prevent radon daughter accumulation on the detector copper surface, during XMASS detector refurbishment. The result and future plan of XMASS are also reported.

  8. Design and Demonstration of Minimal Lunar Base

    NASA Astrophysics Data System (ADS)

    Boche-Sauvan, L.; Foing, B. H.; Exohab Team

    2009-04-01

    Introduction: We propose a conceptual analysis of a first minimal lunar base, in focussing on the system aspects and coordinating every different part as part an evolving architecture [1-3]. We justify the case for a scientific outpost allowing experiments, sample analysis in laboratory (relevant to the origin and evolution of the Earth, geophysical and geochemical studies of the Moon, life sciences, observation from the Moon). Research: Research activities will be conducted with this first settlement in: - science (of, from and on the Moon) - exploration (robotic mobility, rover, drilling), - technology (communication, command, organisation, automatism). Life sciences. The life sciences aspects are considered through a life support for a crew of 4 (habitat) and a laboratory activity with biological experiments performed on Earth or LEO, but then without any magnetosphere protection and therefore with direct cosmic rays and solar particle effects. Moreover, the ability of studying the lunar environment in the field will be a big asset before settling a permanent base [3-5]. Lunar environment. The lunar environment adds constraints to instruments specifications (vacuum, extreme temperature, regolith, seism, micrometeorites). SMART-1 and other missions data will bring geometrical, chemical and physical details about the environment (soil material characteristics, on surface conditions …). Test bench. To assess planetary technologies and operations preparing for Mars human exploration. Lunar outpost predesign modular concept: To allow a human presence on the moon and to carry out these experiments, we will give a pre-design of a human minimal lunar base. Through a modular concept, this base will be possibly evolved into a long duration or permanent base. We will analyse the possibilities of settling such a minimal base by means of the current and near term propulsion technology, as a full Ariane 5 ME carrying 1.7 T of gross payload to the surface of the Moon

  9. Holographic entanglement entropy of anisotropic minimal surfaces in LLM geometries

    NASA Astrophysics Data System (ADS)

    Kim, Chanju; Kim, Kyung Kiu; Kwon, O.-Kab

    2016-08-01

    We calculate the holographic entanglement entropy (HEE) of the Zk orbifold of Lin-Lunin-Maldacena (LLM) geometries which are dual to the vacua of the mass-deformed ABJM theory with Chern-Simons level k. By solving the partial differential equations analytically, we obtain the HEEs for all LLM solutions with arbitrary M2 charge and k up to μ02 -order where μ0 is the mass parameter. The renormalized entanglement entropies are all monotonically decreasing near the UV fixed point in accordance with the F-theorem. Except the multiplication factor and to all orders in μ0, they are independent of the overall scaling of Young diagrams which characterize LLM geometries. Therefore we can classify the HEEs of LLM geometries with Zk orbifold in terms of the shape of Young diagrams modulo overall size. HEE of each family is a pure number independent of the 't Hooft coupling constant except the overall multiplication factor. We extend our analysis to obtain HEE analytically to μ04 -order for the symmetric droplet case.

  10. [MINIMALLY INVASIVE AORTIC VALVE REPLACEMENT].

    PubMed

    Tabata, Minoru

    2016-03-01

    Minimally invasive aortic valve replacement (MIAVR) is defined as aortic valve replacement avoiding full sternotomy. Common approaches include a partial sternotomy right thoracotomy, and a parasternal approach. MIAVR has been shown to have advantages over conventional AVR such as shorter length of stay and smaller amount of blood transfusion and better cosmesis. However, it is also known to have disadvantages such as longer cardiopulmonary bypass and aortic cross-clamp times and potential complications related to peripheral cannulation. Appropriate patient selection is very important. Since the procedure is more complex than conventional AVR, more intensive teamwork in the operating room is essential. Additionally, a team approach during postoperative management is critical to maximize the benefits of MIAVR.

  11. Minimal unitary (covariant) scattering theory

    SciTech Connect

    Lindesay, J.V.; Markevich, A.

    1983-06-01

    In the minimal three particle equations developed by Lindesay the two body input amplitude was an on shell relativistic generalization of the non-relativistic scattering model characterized by a single mass parameter ..mu.. which in the two body (m + m) system looks like an s-channel bound state (..mu.. < 2m) or virtual state (..mu.. > 2m). Using this driving term in covariant Faddeev equations generates a rich covariant and unitary three particle dynamics. However, the simplest way of writing the relativisitic generalization of the Faddeev equations can take the on shell Mandelstam parameter s = 4(q/sup 2/ + m/sup 2/), in terms of which the two particle input is expressed, to negative values in the range of integration required by the dynamics. This problem was met in the original treatment by multiplying the two particle input amplitude by THETA(s). This paper provides what we hope to be a more direct way of meeting the problem.

  12. A minimally invasive smile enhancement.

    PubMed

    Peck, Fred H

    2014-01-01

    Minimally invasive dentistry refers to a wide variety of dental treatments. On the restorative aspect of dental procedures, direct resin bonding can be a very conservative treatment option for the patient. When tooth structure does not need to be removed, the patient benefits. Proper treatment planning is essential to determine how conservative the restorative treatment will be. This article describes the diagnosis, treatment options, and procedural techniques in the restoration of 4 maxillary anterior teeth with direct composite resin. The procedural steps are reviewed with regard to placing the composite and the variety of colors needed to ensure a natural result. Finishing and polishing of the composite are critical to ending with a natural looking dentition that the patient will be pleased with for many years.

  13. Strategies to Minimize Antibiotic Resistance

    PubMed Central

    Lee, Chang-Ro; Cho, Ill Hwan; Jeong, Byeong Chul; Lee, Sang Hee

    2013-01-01

    Antibiotic resistance can be reduced by using antibiotics prudently based on guidelines of antimicrobial stewardship programs (ASPs) and various data such as pharmacokinetic (PK) and pharmacodynamic (PD) properties of antibiotics, diagnostic testing, antimicrobial susceptibility testing (AST), clinical response, and effects on the microbiota, as well as by new antibiotic developments. The controlled use of antibiotics in food animals is another cornerstone among efforts to reduce antibiotic resistance. All major resistance-control strategies recommend education for patients, children (e.g., through schools and day care), the public, and relevant healthcare professionals (e.g., primary-care physicians, pharmacists, and medical students) regarding unique features of bacterial infections and antibiotics, prudent antibiotic prescribing as a positive construct, and personal hygiene (e.g., handwashing). The problem of antibiotic resistance can be minimized only by concerted efforts of all members of society for ensuring the continued efficiency of antibiotics. PMID:24036486

  14. Minimally packed phases in holography

    NASA Astrophysics Data System (ADS)

    Donos, Aristomenis; Gauntlett, Jerome P.

    2016-03-01

    We numerically construct asymptotically AdS black brane solutions of D = 4 Einstein-Maxwell theory coupled to a pseudoscalar. The solutions are holographically dual to d = 3 CFTs at finite chemical potential and in a constant magnetic field, which spontaneously break translation invariance leading to the spontaneous formation of abelian and momentum magnetisation currents flowing around the plaquettes of a periodic Bravais lattice. We analyse the three-dimensional moduli space of lattice solutions, which are generically oblique, and show, for a specific value of the magnetic field, that the free energy is minimised by the triangular lattice, associated with minimal packing of circles in the plane. We show that the average stress tensor for the thermodynamically preferred phase is that of a perfect fluid and that this result applies more generally to spontaneously generated periodic phases. The triangular structure persists at low temperatures indicating the existence of novel crystalline ground states.

  15. Non-minimal Inflationary Attractors

    SciTech Connect

    Kallosh, Renata; Linde, Andrei E-mail: alinde@stanford.edu

    2013-10-01

    Recently we identified a new class of (super)conformally invariant theories which allow inflation even if the scalar potential is very steep in terms of the original conformal variables. Observational predictions of a broad class of such theories are nearly model-independent. In this paper we consider generalized versions of these models where the inflaton has a non-minimal coupling to gravity with a negative parameter ξ different from its conformal value -1/6. We show that these models exhibit attractor behavior. With even a slight increase of |ξ| from |ξ| = 0, predictions of these models for n{sub s} and r rapidly converge to their universal model-independent values corresponding to conformal coupling ξ = −1/6. These values of n{sub s} and r practically coincide with the corresponding values in the limit ξ → −∞.

  16. Remote sensing contribution to land surface hydrology

    NASA Technical Reports Server (NTRS)

    Salomonson, V. V.; Choudhury, B. J.

    1990-01-01

    Progress that has been made over the past decade in developing technology for hydrological observations from operational aircraft is described. Particular attention is given to research on soil moisture, snow cover, and vegetation. Future missions such as the ESA ERS-1 and Canada's Radarsat mission are considered.

  17. Waste minimization in analytical methods

    SciTech Connect

    Green, D.W.; Smith, L.L.; Crain, J.S.; Boparai, A.S.; Kiely, J.T.; Yaeger, J.S. Schilling, J.B.

    1995-05-01

    The US Department of Energy (DOE) will require a large number of waste characterizations over a multi-year period to accomplish the Department`s goals in environmental restoration and waste management. Estimates vary, but two million analyses annually are expected. The waste generated by the analytical procedures used for characterizations is a significant source of new DOE waste. Success in reducing the volume of secondary waste and the costs of handling this waste would significantly decrease the overall cost of this DOE program. Selection of appropriate analytical methods depends on the intended use of the resultant data. It is not always necessary to use a high-powered analytical method, typically at higher cost, to obtain data needed to make decisions about waste management. Indeed, for samples taken from some heterogeneous systems, the meaning of high accuracy becomes clouded if the data generated are intended to measure a property of this system. Among the factors to be considered in selecting the analytical method are the lower limit of detection, accuracy, turnaround time, cost, reproducibility (precision), interferences, and simplicity. Occasionally, there must be tradeoffs among these factors to achieve the multiple goals of a characterization program. The purpose of the work described here is to add waste minimization to the list of characteristics to be considered. In this paper the authors present results of modifying analytical methods for waste characterization to reduce both the cost of analysis and volume of secondary wastes. Although tradeoffs may be required to minimize waste while still generating data of acceptable quality for the decision-making process, they have data demonstrating that wastes can be reduced in some cases without sacrificing accuracy or precision.

  18. Minimizing or eliminating refueling of nuclear reactor

    DOEpatents

    Doncals, Richard A.; Paik, Nam-Chin; Andre, Sandra V.; Porter, Charles A.; Rathbun, Roy W.; Schwallie, Ambrose L.; Petras, Diane S.

    1989-01-01

    Demand for refueling of a liquid metal fast nuclear reactor having a life of 30 years is eliminated or reduced to intervals of at least 10 years by operating the reactor at a low linear-power density, typically 2.5 kw/ft of fuel rod, rather than 7.5 or 15 kw/ft, which is the prior art practice. So that power of the same magnitude as for prior art reactors is produced, the volume of the core is increased. In addition, the height of the core and it diameter are dimensioned so that the ratio of the height to the diameter approximates 1 to the extent practicable considering the requirement of control and that the pressure drop in the coolant shall not be excessive. The surface area of a cylinder of given volume is a minimum if the ratio of the height to the diameter is 1. By minimizing the surface area, the leakage of neutrons is reduced. By reducing the linear-power density, increasing core volume, reducing fissile enrichment and optimizing core geometry, internal-core breeding of fissionable fuel is substantially enhanced. As a result, core operational life, limited by control worth requirements and fuel burnup capability, is extended up to 30 years of continuous power operation.

  19. Minimizing Glovebox Glove Breaches: PART II.

    SciTech Connect

    Cournoyer, M. E.; Andrade, R.M.; Taylor, D. J.; Stimmel, J. J.; Zaelke, R. L.; Balkey, J. J.

    2005-01-01

    As a matter of good business practices, a team of glovebox experts from Los Alamos National Laboratory (LANL) has been assembled to proactively investigate processes and procedures that minimize unplanned breaches in the glovebox, e.g., glove failures. A major part of this effort involves the review of glovebox glove failures that have occurred at the Plutonium Facility and at the Chemical and Metallurgy Research Facility. Information dating back to 1993 has been compiled from formal records. This data has been combined with information obtained from a baseline inventory of about 9,000 glovebox gloves. The key attributes tracked include those related to location, the glovebox glove, type and location of breaches, the worker, and the consequences resulting from breaches. This glovebox glove failure analysis yielded results in the areas of the ease of collecting this type of data, the causes of most glove failures that have occurred, the effectiveness of current controls, and recommendations to improve hazard control systems. As expected, a significant number of breaches involve high-risk operations such as grinding, hammering, using sharps (especially screwdrivers), and assembling equipment. Surprisingly, tasks such as the movement of equipment and material between gloveboxes and the opening of cans are also major contributions of breaches. Almost half the gloves fail within a year of their install date. The greatest consequence for over 90% of glovebox glove failures is alpha contamination of protective clothing. Personnel self-monitoring at the gloveboxes continues to be the most effective way of detecting glovebox glove failures. Glove failures from these tasks can be reduced through changes in procedures and the design of remote-handling apparatus. The Nuclear Materials Technology Division management uses this information to improve hazard control systems to reduce the number of unplanned breaches in the glovebox further. As a result, excursions of contaminants

  20. Mini-Med School Planning Guide

    ERIC Educational Resources Information Center

    National Institutes of Health, Office of Science Education, 2008

    2008-01-01

    Mini-Med Schools are public education programs now offered by more than 70 medical schools, universities, research institutions, and hospitals across the nation. There are even Mini-Med Schools in Ireland, Malta, and Canada! The program is typically a lecture series that meets once a week and provides "mini-med students" information on some of the…

  1. Closed locally minimal nets on tetrahedra

    SciTech Connect

    Strelkova, Nataliya P

    2011-01-31

    Closed locally minimal networks are in a sense a generalization of closed geodesics. A complete classification is known of closed locally minimal networks on regular (and generally any equihedral) tetrahedra. In the present paper certain necessary and certain sufficient conditions are given for at least one closed locally minimal network to exist on a given non-equihedral tetrahedron. Bibliography: 6 titles.

  2. Minimally Invasive Mitral Valve Surgery II

    PubMed Central

    Wolfe, J. Alan; Malaisrie, S. Chris; Farivar, R. Saeid; Khan, Junaid H.; Hargrove, W. Clark; Moront, Michael G.; Ryan, William H.; Ailawadi, Gorav; Agnihotri, Arvind K.; Hummel, Brian W.; Fayers, Trevor M.; Grossi, Eugene A.; Guy, T. Sloane; Lehr, Eric J.; Mehall, John R.; Murphy, Douglas A.; Rodriguez, Evelio; Salemi, Arash; Segurola, Romualdo J.; Shemin, Richard J.; Smith, J. Michael; Smith, Robert L.; Weldner, Paul W.; Lewis, Clifton T. P.; Barnhart, Glenn R.; Goldman, Scott M.

    2016-01-01

    Abstract Techniques for minimally invasive mitral valve repair and replacement continue to evolve. This expert opinion, the second of a 3-part series, outlines current best practices for nonrobotic, minimally invasive mitral valve procedures, and for postoperative care after minimally invasive mitral valve surgery. PMID:27654406

  3. Simulation of Contributing Areas and Surface-Water Leakage to Potential Replacement Wells Near the Community of New Post, Sawyer County, Wisconsin, by Means of a Two-Dimensional Ground-Water-Flow Model

    USGS Publications Warehouse

    Juckem, Paul F.; Hunt, Randall J.

    2008-01-01

    A two-dimensional, steady-state ground-water-flow model of the shallow ground-water-flow system near the community of New Post, Sawyer County, Wis., was refined from an existing model of the area. Hydraulic-conductivity and recharge values were not changed from the existing model for the scenario simulations described in this report. Rather, the model was refined by adding detail along the Chippewa Flowage and then was used to simulate contributing areas for three potential replacement wells pumping 30,000 gallons per day. The model also was used to simulate potential surface-water leakage out of the Chippewa Flowage captured by replacement-well pumping. A range in resistance to vertical ground-water flow was simulated along the Chippewa Flowage for each potential replacement-well location to bound the potential effects of representing three-dimensional flow with a two-dimensional model. Results indicate that pumping from a replacement well sited about 130 feet from the Chippewa Flowage could capture as much as 39 percent of the total pumping from the flowage. Pumping from either of two potential replacement wells sited at least 400 feet from the Chippewa Flowage did not induce surface-water leakage out of the flowage regardless of the resistance applied along the flowage for simulations described in this report.

  4. Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates on Mars

    NASA Technical Reports Server (NTRS)

    Schuerger, A. C.; Kern, R. G.

    2003-01-01

    In order to minimize the forward contamination of Mars, spacecraft are assembled under clean-room conditions that often require several procedures to clean and sterilize components. Surface characteristics of spacecraft materials may contribute to microbial survival by protecting spores from sterilizing agents, including UV irradiation on the surface of Mars. The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated Martian conditions.

  5. Ab initio investigation of electronic and vibrational contributions to linear and nonlinear dielectric properties of ice

    SciTech Connect

    Casassa, S.; Baima, J.; Mahmoud, A.; Kirtman, B.

    2014-06-14

    Electronic and vibrational contributions to the static and dynamic (hyper)polarizability tensors of ice XI and model structures of ordinary hexagonal ice have been theoretically investigated. Calculations were carried out by the finite field nuclear relaxation method for periodic systems (FF-NR) recently implemented in the CRYSTAL code, using the coupled-perturbed Kohn-Sham approach (CPKS) for evaluating the required electronic properties. The effect of structure on the static electronic polarizabilities (dielectric constants) and second-hyperpolarizabilities is minimal. On the other hand, the vibrational contributions to the polarizabilities were found to be significant. A reliable evaluation of these (ionic) contributions allows one to discriminate amongst ice phases characterized by different degrees of proton-order, primarily through differences caused by librational motions. Transverse static and dynamic vibrational (hyper)polarizabilities were found by extrapolating calculations for slabs of increasing size, in order to eliminate substantial surface contributions.

  6. Seasonal variability of iodine and selenium in surface and groundwater as a factor that may contribute to iodine isotope balance in the thyroid gland and its irradiation in case of radioiodine contamination during accidents at the NPP

    NASA Astrophysics Data System (ADS)

    Korobova, Elena; Kolmykova, Lyudmila; Ryzhenko, Boris; Berezkin, Viktor; Saraeva, Anastasia

    2016-04-01

    Radioiodine release to the environment during the accident at the Chernobyl NPP led to the increased risk of the thyroid cancer cases within the contaminated areas, the effect being aggravated in conditions of stable iodine and selenium deficiency in local food chains. Although the drinking water iodine is usually believed to contribute not more than 10% to local diet, our estimations accounting of water content in other products and several regional studies (e.g. India and Australia) proved its portion to be at least twice as much. As radioiodine isotopes are short-lived, their absorption depends greatly on stable iodine and selenium sufficiency in thyroid gland in the first few days of contamination and seasonal variation of stable iodine and selenium in local sources of drinking water may be significant as modifying the resulting thyroid irradiation in different seasons of the year. The main goal of the study was to evaluate seasonal variation of levels of iodine and selenium in natural waters of the Bryansk region as a possible factor affecting the radioiodine intake by thyroid gland of animals and humans in case of radioiodine contamination during the accident. Seasonal I and Se concentration was measured in the years of 2014 and 2015 at 14 test points characterizing surface (river and lake) and drinking groundwater. Obtained data proved considerable seasonal variation of I and Se concentration in natural waters (3,7-8,1 μg/l and 0,04-0,4 μg/l respectively) related to physico-chemical water parameters, such as pH, Eh and fluctuations in concentration of dissolved organic matter. The widest I and Se seasonal variability was observed in surface and well waters, maximum I level being found in autumn at the end of vegetation period characterized by active I leaching from the decomposed organic residues by long lasting precipitations. The content of selenium in the surface waters during summer-autumn (0,06-0,3 μg/l) was higher than in spring (0,04-0,05

  7. Recursively minimally-deformed oscillators

    NASA Astrophysics Data System (ADS)

    Katriel, J.; Quesne, C.

    1996-04-01

    A recursive deformation of the boson commutation relation is introduced. Each step consists of a minimal deformation of a commutator [a,a°]=fk(... ;n̂) into [a,a°]qk+1=fk(... ;n̂), where ... stands for the set of deformation parameters that fk depends on, followed by a transformation into the commutator [a,a°]=fk+1(...,qk+1;n̂) to which the deformed commutator is equivalent within the Fock space. Starting from the harmonic oscillator commutation relation [a,a°]=1 we obtain the Arik-Coon and Macfarlane-Biedenharn oscillators at the first and second steps, respectively, followed by a sequence of multiparameter generalizations. Several other types of deformed commutation relations related to the treatment of integrable models and to parastatistics are also obtained. The ``generic'' form consists of a linear combination of exponentials of the number operator, and the various recursive families can be classified according to the number of free linear parameters involved, that depends on the form of the initial commutator.

  8. Differentially Private Empirical Risk Minimization

    PubMed Central

    Chaudhuri, Kamalika; Monteleoni, Claire; Sarwate, Anand D.

    2011-01-01

    Privacy-preserving machine learning algorithms are crucial for the increasingly common setting in which personal data, such as medical or financial records, are analyzed. We provide general techniques to produce privacy-preserving approximations of classifiers learned via (regularized) empirical risk minimization (ERM). These algorithms are private under the ε-differential privacy definition due to Dwork et al. (2006). First we apply the output perturbation ideas of Dwork et al. (2006), to ERM classification. Then we propose a new method, objective perturbation, for privacy-preserving machine learning algorithm design. This method entails perturbing the objective function before optimizing over classifiers. If the loss and regularizer satisfy certain convexity and differentiability criteria, we prove theoretical results showing that our algorithms preserve privacy, and provide generalization bounds for linear and nonlinear kernels. We further present a privacy-preserving technique for tuning the parameters in general machine learning algorithms, thereby providing end-to-end privacy guarantees for the training process. We apply these results to produce privacy-preserving analogues of regularized logistic regression and support vector machines. We obtain encouraging results from evaluating their performance on real demographic and benchmark data sets. Our results show that both theoretically and empirically, objective perturbation is superior to the previous state-of-the-art, output perturbation, in managing the inherent tradeoff between privacy and learning performance. PMID:21892342

  9. Against Explanatory Minimalism in Psychiatry.

    PubMed

    Thornton, Tim

    2015-01-01

    The idea that psychiatry contains, in principle, a series of levels of explanation has been criticized not only as empirically false but also, by Campbell, as unintelligible because it presupposes a discredited pre-Humean view of causation. Campbell's criticism is based on an interventionist-inspired denial that mechanisms and rational connections underpin physical and mental causation, respectively, and hence underpin levels of explanation. These claims echo some superficially similar remarks in Wittgenstein's Zettel. But attention to the context of Wittgenstein's remarks suggests a reason to reject explanatory minimalism in psychiatry and reinstate a Wittgensteinian notion of levels of explanation. Only in a context broader than the one provided by interventionism is that the ascription of propositional attitudes, even in the puzzling case of delusions, justified. Such a view, informed by Wittgenstein, can reconcile the idea that the ascription mental phenomena presupposes a particular level of explanation with the rejection of an a priori claim about its connection to a neurological level of explanation.

  10. Against Explanatory Minimalism in Psychiatry

    PubMed Central

    Thornton, Tim

    2015-01-01

    The idea that psychiatry contains, in principle, a series of levels of explanation has been criticized not only as empirically false but also, by Campbell, as unintelligible because it presupposes a discredited pre-Humean view of causation. Campbell’s criticism is based on an interventionist-inspired denial that mechanisms and rational connections underpin physical and mental causation, respectively, and hence underpin levels of explanation. These claims echo some superficially similar remarks in Wittgenstein’s Zettel. But attention to the context of Wittgenstein’s remarks suggests a reason to reject explanatory minimalism in psychiatry and reinstate a Wittgensteinian notion of levels of explanation. Only in a context broader than the one provided by interventionism is that the ascription of propositional attitudes, even in the puzzling case of delusions, justified. Such a view, informed by Wittgenstein, can reconcile the idea that the ascription mental phenomena presupposes a particular level of explanation with the rejection of an a priori claim about its connection to a neurological level of explanation. PMID:26696908

  11. LESSons in minimally invasive urology.

    PubMed

    Dev, Harveer; Sooriakumaran, Prasanna; Tewari, Ashutosh; Rane, Abhay

    2011-05-01

    Since the introduction of laparoscopic surgery, the promise of lower postoperative morbidity and improved cosmesis has been achieved. LaparoEndoscopic Single Site (LESS) surgery potentially takes this further. Following the first human urological LESS report in 2007, numerous case series have emerged, as well as comparative studies comparing LESS with standard laparoscopy. Technological developments in instrumentation, access and optics devices are overcoming some of the challenges that are raised when operating through a single site. Further advances in the technique have included the incorporation of robotics (R-LESS), which exploit the ergonomic benefits of ex vivo robotic platforms in an attempt to further improve the implementation of LESS procedures. In the future, urologists may be able to benefit from in vivo micro-robots that will allow the manipulation of tissue from internal repositionable platforms. The use of magnetic anchoring and guidance systems (MAGS) might allow the external manoeuvring of intra-corporeal instruments to reduce clashing and facilitate triangulation. However, the final promise in minimally invasive surgery is natural orifice transluminal endoscopic surgery (NOTES), with its scarless technique. It remains to be seen whether NOTES, LESS, or any of these future developments will prove their clinical utility over standard laparoscopic methods.

  12. Minimal absent words in four human genome assemblies.

    PubMed

    Garcia, Sara P; Pinho, Armando J

    2011-01-01

    Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we aim to contribute to the catalogue of human genomic variation by investigating the variation in number and content of minimal absent words within a species, using four human genome assemblies. We compare the reference human genome GRCh37 assembly, the HuRef assembly of the genome of Craig Venter, the NA12878 assembly from cell line GM12878, and the YH assembly of the genome of a Han Chinese individual. We find the variation in number and content of minimal absent words between assemblies more significant for large and very large minimal absent words, where the biases of sequencing and assembly methodologies become more pronounced. Moreover, we find generally greater similarity between the human genome assemblies sequenced with capillary-based technologies (GRCh37 and HuRef) than between the human genome assemblies sequenced with massively parallel technologies (NA12878 and YH). Finally, as expected, we find the overall variation in number and content of minimal absent words within a species to be generally smaller than the variation between species.

  13. [Minimally invasive cardiac surgery for aortic valve disease].

    PubMed

    Fujimura, Y; Katoh, T; Hamano, K; Gohra, H; Tsuboi, H; Esato, K

    1998-12-01

    Recent surgical advances leading to good operative results have contributed to the trend to useminimally invasive approaches, even in cardiac surgery. Smaller incisions are clearly more cosmetically acceptable to patients. When using a minimally invasive approach, it is most important to maintain surgical quality without jeopardizing patients. A good operative visual field leads to good surgical results. In the parasternal approach, we use a retractor to harvest an internal thoracic artery in coronary artery bypass surgery. Retracting the sternum upward allows for a good surgical view and permits the use of an arch cannula rather than femoral cannulation. When reoperating for aortic valve repair, the j-sternotomy approach requires less adhesiolysis compared with the traditional full sternotomy. No special technique is necessary to perform aortic valve surgery using the j-sternotomy approach. However, meticulous attention must be paid to avoiding left ventricular air embolisms to prevent postoperative stroke or neurocognitive deficits, especially when utilizing a minimally invasive approach. Transesophageal echo is useful not only for monitoring cardiac function but also for monitoring the persence of air in the left ventricle and atrium. This paper compare as the degree of invasion of minimally invasive cardiac surgery and the traditional full sternotomy. No differences were found in the occurrence of systemic inflammatory response syndrome between patients undergoing minimally invasive cardiac surgery and the traditional technique. Therefore it is concluded that minimally invasive surgery for patients with aortic valve disease may become the standard approach in the near future.

  14. Oxide surfaces.

    PubMed

    Willmott, Phil

    2008-07-01

    Although the history of metal oxides and their surfaces goes back several decades to landmark studies, such as Mott and Peierls' explanation of electrical insulation in materials that are predicted in band theory to be conducting, or the observation by Morin of the superfast metal-to-insulator transition in vanadium dioxide, it is only in the last two decades that the world of condensed matter physics has become increasingly dominated by research into complex metal oxides. This has been driven most notably by an attempt to better understand and describe the fundamental physical processes behind their seemingly endless spectrum of properties, which in turn has also led to the discovery of novel phenomena, most prominently demonstrated by the discovery of high-temperature superconductivity in 1986, colossal magnetoresistance in 1994, and most recently, the formation of a two-dimensional conducting layer at the interface between two band insulators in 2004. One important reason why metal oxides, particularly in the form of thin films, have become such a popular subject for basic condensed matter research is that they offer a uniquely versatile materials base for the development of novel technologies. They owe this versatility both to the many different elemental combinations that lead to structurally similar forms, and also to the fact that in many cases, the strong interaction between the valence electrons means that there is a subtle interplay between structure and magnetic and electronic properties. This aspect has led in recent years to the birth or renaissance of research fields such as spintronics, orbital ordering, and multiferroics. Surfaces and interfaces are especially interesting in these strongly-correlated electron systems, where the rearrangement of electrical charge resulting from a minimization of surface or interfacial energy can have unexpected and often exciting consequences. Indeed, as the drive to miniaturize devices well below the micron size

  15. Hazardous-waste minimization assessment: Fort Campbell, Kentucky. Final report

    SciTech Connect

    Dharmavaram, S.; Knowlton, D.A.; Heflin, C.; Donahue, B.A.

    1991-03-01

    Waste minimization is the process of reducing the net outflow of hazardous materials that may be solid, liquid, or gaseous effluents from a given source or generating process. It involves reducing air pollution emissions, contamination of surface and ground water, and land disposal by means of source reduction, waste recycling processes, and treatment leading to complete destruction. Among Federal regulations is a requirement that every generator of hazardous wastes producing in excess of 2205 pounds per month certify that a hazardous waste minimization program is in operation. Generators are required to submit biennial reports to the USEPA that describe efforts taken to reduce the volume and toxicity of waste generated during the year. The objective of this research was to develop a hazardous waste minimization plan for Fort Campbell, Kentucky, to include actions necessary to reduce the generation of hazardous wastes. Reduction should be in both volume and toxicity.

  16. [Minimally invasive percutaneous nephrolitholapaxy (MIP)].

    PubMed

    Nagele, U; Schilling, D; Anastasiadis, A G; Walcher, U; Sievert, K D; Merseburger, A S; Kuczyk, M; Stenzl, A

    2008-09-01

    Minimally invasive percutaneous nephrolithopaxy (MIP) was developed to combine the excellent stone-free rates of the conventional percutaneous nephrolithopaxy (PCNL) technique with the low morbidity of the miniaturized PCNL (Mini-Perc) and, at the same time, achieve a high level of patient comfort. The procedure is characterized not only by the diameter of the miniaturized 18-Fr Amplatz sheath that was adopted from the Mini-Perc but also by the following features: ultrasound-guided puncture of the kidney; single-step dilatation of the access tract; ballistic lithotripsy; a low-pressure irrigation system together with stone retraction by irrigation with a specially designed nephroscope sheath, for the so-called vacuum cleaner effect; and a sealed and tubeless access tract with primary closure of the channel independent of hemorrhage and without a second-look procedure.The results of the first 57 patients demonstrate primary stone-free rates of 92.9% with operating times averaging 62 (25-123) min. Severe complications, such as sepsis or bleeding requiring blood transfusion, did not occur. The high and predictable stone-free rate and a low morbidity comparable to that of ureteroscopy and extracorporeal shock-wave lithotripsy make MIP an attractive option for patients and urologists. The "vacuum cleaner effect" with quick removal of stone fragments reduces operating time and prevents new stone formation by avoiding residual fragments. The direct and primary closure of the access tract increases patient comfort and is justified by the reintervention rate of less than 8% in the presented cohort.The lack of a need for second-look nephroscopies, the vacuum cleaner effect, improved patient comfort without nephrostomy tubes, as well as surgery times comparable to that of traditional PCNL demonstrate a consequent evolution of the Mini-Perc. MIP therefore represents a promising and future-oriented module in modern stone therapy.

  17. Minimal detectable outliers as measures of reliability

    NASA Astrophysics Data System (ADS)

    Koch, Karl-Rudolf

    2015-05-01

    The concept of reliability was introduced into geodesy by Baarda (A testing procedure for use in geodetic networks. Publications on Geodesy, vol. 2. Netherlands Geodetic Commission, Delft, 1968). It gives a measure for the ability of a parameter estimation to detect outliers and leads in case of one outlier to the MDB, the minimal detectable bias or outlier. The MDB depends on the non-centrality parameter of the -distribution, as the variance factor of the linear model is assumed to be known, on the size of the outlier test of an individual observation which is set to 0.001 and on the power of the test which is generally chosen to be 0.80. Starting from an estimated variance factor, the -distribution is applied here. Furthermore, the size of the test of the individual observation is a function of the number of outliers to keep the size of the test of all observations constant, say 0.05. The power of the test is set to 0.80. The MDBs for multiple outliers are derived here under these assumptions. The method is applied to the reconstruction of a bell-shaped surface measured by a laser scanner. The MDBs are introduced as outliers for the alternative hypotheses of the outlier tests. A Monte Carlo method reveals that due to the way of introducing the outliers, the false null hypotheses cannot be rejected on the average with a power of 0.80 if the MDBs are not enlarged by a factor.

  18. Disk Acceleration Experiment Utilizing Minimal Material (DAXUMM)

    NASA Astrophysics Data System (ADS)

    Biss, Matthew; Lorenz, Thomas; Sutherland, Gerrit

    2015-06-01

    A venture between the US Army Research Laboratory (ARL) and Lawrence Livermore National Laboratory (LLNL) is currently underway in an effort to characterize novel energetic material performance properties using a single, high-precision, gram-range charge. A nearly all-inclusive characterization experiment is proposed by combing LLNL's disk acceleration experiment (DAX) with the ARL explosive evaluation utilizing minimal material (AXEUMM) experiment. Spherical-cap charges fitted with a flat circular metal disk are centrally initiated using an exploding bridgewire detonator while photonic doppler velocimetry is used to probe the metal disk surface velocity and measure its temporal history. The metal disk's jump-off-velocity measurement is combined with conservation equations, material Hugoniots, and select empirical relationships to determine performance properties of the detonation wave (i.e., velocity, pressure, particle velocity, and density). Using the temporal velocity history with the numerical hydrocode CTH, a determination of the energetic material's equation of state and material expansion energy is possible. Initial experimental and computational results for the plastic-bonded energetic formulation PBXN-5 are presented.

  19. Bacterial Stressors in Minimally Processed Food

    PubMed Central

    Capozzi, Vittorio; Fiocco, Daniela; Amodio, Maria Luisa; Gallone, Anna; Spano, Giuseppe

    2009-01-01

    Stress responses are of particular importance to microorganisms, because their habitats are subjected to continual changes in temperature, osmotic pressure, and nutrients availability. Stressors (and stress factors), may be of chemical, physical, or biological nature. While stress to microorganisms is frequently caused by the surrounding environment, the growth of microbial cells on its own may also result in induction of some kinds of stress such as starvation and acidity. During production of fresh-cut produce, cumulative mild processing steps are employed, to control the growth of microorganisms. Pathogens on plant surfaces are already stressed and stress may be increased during the multiple mild processing steps, potentially leading to very hardy bacteria geared towards enhanced survival. Cross-protection can occur because the overlapping stress responses enable bacteria exposed to one stress to become resistant to another stress. A number of stresses have been shown to induce cross protection, including heat, cold, acid and osmotic stress. Among other factors, adaptation to heat stress appears to provide bacterial cells with more pronounced cross protection against several other stresses. Understanding how pathogens sense and respond to mild stresses is essential in order to design safe and effective minimal processing regimes. PMID:19742126

  20. Computation of mixed phosphatidylcholine-cholesterol bilayer structures by energy minimization.

    PubMed Central

    Vanderkooi, G

    1994-01-01

    The energetically preferred structures of dimyristoylphosphatidylcholine (DMPC)-cholesterol bilayers were determined at a 1:1 mole ratio. Crystallographic symmetry operations were used to generate planar bilayers of cholesterol and DMPC. Energy minimization was carried out with respect to bond rotations, rigid body motions, and the two-dimensional lattice constants. The lowest energy structures had a hydrogen bond between the cholesterol hydroxyl and the carbonyl oxygen of the sn-2 acyl chain, but the largest contribution to the intermolecular energy was from the nonbonded interactions between the flat alpha surface of cholesterol and the acyl chains of DMPC. Two modes of packing in the bilayer were found; in structure A (the global minimum), unlike molecules are nearest neighbors, whereas in structure B (second lowest energy) like-like intermolecular interactions predominate. Crystallographic close packing of the molecules in the bilayer was achieved, as judged from the molecular areas and the bilayer thickness. These energy-minimized structures are consistent with the available experimental data on mixed bilayers of lecithin and cholesterol, and may be used as starting points for molecular dynamics or other calculations on bilayers. PMID:8061195

  1. Radon induced surface contaminations in low background experiments

    SciTech Connect

    Pattavina, L.

    2013-08-08

    In neutrinoless double-beta decay and dark matter searches, one of the main issues is to increase the experimental sensitivity through careful material selection and production, minimizing the background contributions. In order to achieve the required, extremely low, counting rates, very stringent requirements must be fulfilled in terms of bulk material radiopurity. As the experimental sensitivity increases, the bulk impurities in the detector components decrease, and surface contaminations start to play an increasingly significant role In fully active detectors, like cryogenic particle detectors, surface contaminations are a critical issue (as shown by the CUORICINO experiment). {sup 222}Rn is by far the most intense source of airborne radioactivity, and if a radio-pure material is exposed to environment where the Radon concentration is not minimized, {sup 210}Pb and {sup 210}Po contaminations can occur. The mechanisms and the dynamics of Radon-induced surface contaminations are reviewed, and specific solutions to prevent and to reject the induced background are presented.

  2. Design and Demonstration of Minimal Lunar Base

    NASA Astrophysics Data System (ADS)

    Boche-Sauvan, L.; Foing, B. H.; Exohab Team

    2009-04-01

    Introduction: We propose a conceptual analysis of a first minimal lunar base, in focussing on the system aspects and coordinating every different part as part an evolving architecture [1-3]. We justify the case for a scientific outpost allowing experiments, sample analysis in laboratory (relevant to the origin and evolution of the Earth, geophysical and geochemical studies of the Moon, life sciences, observation from the Moon). Research: Research activities will be conducted with this first settlement in: - science (of, from and on the Moon) - exploration (robotic mobility, rover, drilling), - technology (communication, command, organisation, automatism). Life sciences. The life sciences aspects are considered through a life support for a crew of 4 (habitat) and a laboratory activity with biological experiments performed on Earth or LEO, but then without any magnetosphere protection and therefore with direct cosmic rays and solar particle effects. Moreover, the ability of studying the lunar environment in the field will be a big asset before settling a permanent base [3-5]. Lunar environment. The lunar environment adds constraints to instruments specifications (vacuum, extreme temperature, regolith, seism, micrometeorites). SMART-1 and other missions data will bring geometrical, chemical and physical details about the environment (soil material characteristics, on surface conditions …). Test bench. To assess planetary technologies and operations preparing for Mars human exploration. Lunar outpost predesign modular concept: To allow a human presence on the moon and to carry out these experiments, we will give a pre-design of a human minimal lunar base. Through a modular concept, this base will be possibly evolved into a long duration or permanent base. We will analyse the possibilities of settling such a minimal base by means of the current and near term propulsion technology, as a full Ariane 5 ME carrying 1.7 T of gross payload to the surface of the Moon

  3. The use of ion beam cleaning to obtain high quality cold welds with minimal deformation

    NASA Technical Reports Server (NTRS)

    Sater, B. L.; Moore, T. J.

    1978-01-01

    A variation of cold welding is described which utilizes an ion beam to clean mating surfaces prior to joining in a vacuum environment. High quality solid state welds were produced with minimal deformation.

  4. Removal of Invisalign retention attachments: a new minimally invasive method.

    PubMed

    Ruiz, Jose Luis; Finger, Werner J; Sasazaki, Hiromi; Komatsu, Masahi

    2009-01-01

    Removal of Invisalign resin retention buttons without damaging underlying enamel is a major challenge. To date, the use of tungsten carbide burs is the most common and fastest--yet a risky-ablation method. Stainbuster, a fiber-reinforced resin bur, has been introduced for removal of surface stains and resin remnants from tooth surfaces. This comparative in vitro and in vivo study proved that a combined technique, using multifluted tungsten carbide burs for fast removal of the bulk of resin followed by Stainbuster grinding for gentle removal of the final resin layer, is a safe and minimally invasive procedure for removing composite buttons from enamel.

  5. Minimizing distortion and internal forces in truss structures by simulated annealing

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.; Padula, Sharon L.

    1990-01-01

    Inaccuracies in the length of members and the diameters of joints of large space structures may produce unacceptable levels of surface distortion and internal forces. Here, two discrete optimization problems are formulated, one to minimize surface distortion (DSQRMS) and the other to minimize internal forces (FSQRMS). Both of these problems are based on the influence matrices generated by a small-deformation linear analysis. Good solutions are obtained for DSQRMS and FSQRMS through the use of a simulated annealing heuristic.

  6. Cost-effective machining of brittle materials (glasses and ceramics) eliminating/minimizing the polishing process

    NASA Astrophysics Data System (ADS)

    Carlisle, Keith; Stocker, M. A.

    1997-09-01

    The disadvantages of traditional methods of edge grinding silicon wafers are discussed. With the industry's move to 300 mm format wafers, comes the pressure of environmental issues to minimize acid etch from the wafer process which is commonly used to improve surface finish and reduce sub surface damage. The recent work of Cranfield Precision in wafer edge processing is described, together with descriptions of a new grinding process and machine to eliminate grinding induced damage and minimize the polishing time.

  7. Hydrophobic Surfaces of Spacecraft Components Enhance the Aggregation of Microorganisms and May Lead to Higher Survival Rates of Bacteria on Mars Landers

    NASA Technical Reports Server (NTRS)

    Schuerger, Andrew C.; Kern, Roger G.

    2004-01-01

    In order to minimize the forward contamination of Mars, spacecraft are assembled under cleanroom conditions that require several procedures to clean and sterilize components. Surface characteristics of spacecraft materials may contribute to microbial survival on the surface of Mars by protecting spores from sterilizing agents, including UV irradiation. The primary objective of this study was to evaluate the effects of surface characteristics of several spacecraft materials on the survival of Bacillus subtilis spores under simulated Martian conditions.

  8. Minimizing electrode contamination in an electrochemical cell

    DOEpatents

    Kim, Yu Seung; Zelenay, Piotr; Johnston, Christina

    2014-12-09

    An electrochemical cell assembly that is expected to prevent or at least minimize electrode contamination includes one or more getters that trap a component or components leached from a first electrode and prevents or at least minimizes them from contaminating a second electrode.

  9. Is goal ascription possible in minimal mindreading?

    PubMed

    Butterfill, Stephen A; Apperly, Ian A

    2016-03-01

    In this response to the commentary by Michael and Christensen, we first explain how minimal mindreading is compatible with the development of increasingly sophisticated mindreading behaviors that involve both executive functions and general knowledge and then sketch 1 approach to a minimal account of goal ascription. PMID:26901746

  10. Minimally invasive surgery in neonates and infants

    PubMed Central

    Lin, Tiffany; Pimpalwar, Ashwin

    2010-01-01

    Minimally invasive surgery (MIS) has significantly improved the field of surgery, with benefits including shorter operating time, improved recovery time, minimizing stress and pain due to smaller incisions, and even improving mortality. MIS procedures, including their indications, impact, limitations, and possible future evolution in neonates and infants, are discussed in this article. PMID:21180496

  11. Minimally Invasive Mitral Valve Surgery I

    PubMed Central

    Ailawadi, Gorav; Agnihotri, Arvind K.; Mehall, John R.; Wolfe, J. Alan; Hummel, Brian W.; Fayers, Trevor M.; Farivar, R. Saeid; Grossi, Eugene A.; Guy, T. Sloane; Hargrove, W. Clark; Khan, Junaid H.; Lehr, Eric J.; Malaisrie, S. Chris; Murphy, Douglas A.; Rodriguez, Evelio; Ryan, William H.; Salemi, Arash; Segurola, Romualdo J.; Shemin, Richard J.; Smith, J. Michael; Smith, Robert L.; Weldner, Paul W.; Goldman, Scott M.; Lewis, Clifton T. P.; Barnhart, Glenn R.

    2016-01-01

    Abstract Widespread adoption of minimally invasive mitral valve repair and replacement may be fostered by practice consensus and standardization. This expert opinion, first of a 3-part series, outlines current best practices in patient evaluation and selection for minimally invasive mitral valve procedures, and discusses preoperative planning for cannulation and myocardial protection. PMID:27654407

  12. Electroweak contributions to squark pair production at the LHC

    SciTech Connect

    Germer, Jan; Hollik, Wolfgang; Mirabella, Edoardo; Trenkel, Maike

    2010-02-10

    We present the tree-level and next-to-leading order (NLO) electroweak (EW) contributions to squark - squark production at the Large Hadron Collider (LHC) within the framework of the Minimal Supersymmetric Standard Model (MSSM).

  13. Electric dipole moment constraints on minimal electroweak baryogenesis

    SciTech Connect

    Huber, Stephan J.; Pospelov, Maxim; Ritz, Adam

    2007-02-01

    We study the simplest generic extension of the standard model which allows for conventional electroweak baryogenesis, through the addition of dimension-six operators in the Higgs sector. At least one such operator is required to be CP-odd, and we study the constraints on such a minimal setup, and related scenarios with minimal flavor violation, from the null results of searches for electric dipole moments (EDMs), utilizing the full set of two-loop contributions to the EDMs. The results indicate that the current bounds are stringent, particularly that of the recently updated neutron EDM, but fall short of ruling out these scenarios. The next generation of EDM experiments should be sufficiently sensitive to provide a conclusive test.

  14. Minimally invasive surgery in orthopaedics. Small is beautiful?

    PubMed

    Yeung, S H

    2008-08-01

    With the blooming of minimally invasive procedures in surgical specialties, many orthopaedic subspecialties have been evolving along such lines. Despite the apparent paradox that many orthopaedic implants are quite bulky to start off with, different methods have been adopted to insert them safely with the least possible trauma. Altering time-honoured incisions and surgical techniques has often been helpful. The industry is also very keen to re-design implants for this purpose and has contributed substantial momentum in this direction. Coupled with the use of operating microscopes, endoscopes, and imaging modalities, operations can be performed with greater precision and lesser trauma. The advent of computer-assisted technology is another step forward. It is through constant attention to minimising tissue trauma and a combination of different methods available, that surgeons can achieve the ultimate goals of minimally invasive surgery.

  15. Waste minimization and pollution prevention awareness plan. Revision 1

    SciTech Connect

    Not Available

    1994-07-01

    The purpose of this plan is to document Lawrence Livermore National Laboratory (LLNL) projections for present and future waste minimization and pollution prevention. The plan specifies those activities and methods that are or will be used to reduce the quantity and toxicity of wastes generated at the site. It is intended to satisfy Department of Energy (DOE) requirements. This Waste Minimization and Pollution Prevention Awareness Plan provides an overview of projected activities from FY 1994 through FY 1999. The plans are broken into site-wide and problem-specific activities. All directorates at LLNL have had an opportunity to contribute input, estimate budgets, and review the plan. In addition to the above, this plan records LLNL`s goals for pollution prevention, regulatory drivers for those activities, assumptions on which the cost estimates are based, analyses of the strengths of the projects, and the barriers to increasing pollution prevention activities.

  16. Reduced chemical warfare agent sorption in polyurethane-painted surfaces via plasma-enhanced chemical vapor deposition of perfluoroalkanes.

    PubMed

    Gordon, Wesley O; Peterson, Gregory W; Durke, Erin M

    2015-04-01

    Perfluoralkalation via plasma chemical vapor deposition has been used to improve hydrophobicity of surfaces. We have investigated this technique to improve the resistance of commercial polyurethane coatings to chemicals, such as chemical warfare agents. The reported results indicate the surface treatment minimizes the spread of agent droplets and the sorption of agent into the coating. The improvement in resistance is likely due to reduction of the coating's surface free energy via fluorine incorporation, but may also have contributing effects from surface morphology changes. The data indicates that plasma-based surface modifications may have utility in improving chemical resistance of commercial coatings.

  17. Minimal change disease: a CD80 podocytopathy?

    PubMed

    Ishimoto, Takuji; Shimada, Michiko; Araya, Carlos E; Huskey, Janna; Garin, Eduardo H; Johnson, Richard J

    2011-07-01

    Minimal change disease is the most common nephrotic syndrome in children. Although the etiology of minimal change disease remains to be elucidated, it has been postulated that it is the result of a circulating T-cell factor that causes podocyte cytoskeleton disorganization leading to increased glomerular capillary permeability and/or changes in glomerular basement membrane heparan sulfate glycosaminoglycans resulting in proteinuria. Minimal change disease has been associated with allergies and Hodgkin disease. Consistent with these associations, a role for interleukin-13 with minimal change disease has been proposed. Furthermore, studies evaluating podocytes also have evolved. Recently, increased expression of CD80 (also termed B7-1) on podocytes was identified as a mechanism for proteinuria. CD80 is inhibited by binding to CTLA-4, which is expressed on regulatory T cells. Recently, we showed that urinary CD80 is increased in minimal change disease patients and limited studies have suggested that it is not commonly present in the urine of patients with other glomerular diseases. Interleukin-13 or microbial products via Toll-like receptors could be factors that induce CD80 expression on podocytes. CTLA-4 appears to regulate CD80 expression in podocytes, and to be altered in minimal change disease patients. These findings lead us to suggest that proteinuria in minimal change disease is caused by persistent CD80 expression in podocytes, possibly initiated by stimulation of these cells by antigens or cytokines.

  18. The second exon-encoded factor XII region is involved in the interaction of factor XII with factor XI and does not contribute to the binding site for negatively charged surfaces.

    PubMed

    Citarella, F; Fedele, G; Roem, D; Fantoni, A; Hack, C E

    1998-12-01

    XIa-C1-inhibitor complexes (50%) than full-length FXII. This impaired factor XI activation by rFXII-triangle up19a was also observed in a purified system and was independent of the presence of high molecular weight kininogen. Furthermore, the synthetic peptide 3-19, preincubated with factor XI, inhibited up to 30% activation of factor XI both in the purified system as well as in plasma. These results together indicate that amino acid residues 3-19 of FXII are involved in the activation of factor XI and do not contribute to the binding of FXII to negatively charged surfaces.

  19. Constrained optimization in human walking: cost minimization and gait plasticity.

    PubMed

    Bertram, John E A

    2005-03-01

    As walking speed increases, consistent relationships emerge between the three determinant parameters of walking, speed, step frequency and step length. However, when step length or step frequency are predetermined rather than speed, different relationships are spontaneously selected. This result is expected if walking parameters are selected to optimize to an underlying objective function, known as the constrained optimization hypothesis. The most likely candidate for the objective function is metabolic cost per distance traveled, where the hypothesis predicts that the subject will minimize the cost of travel under a given gait constraint even if this requires an unusual step length and frequency combination. In the current study this is tested directly by measuring the walking behavior of subjects constrained systematically to determined speeds, step frequencies or step lengths and comparing behavior to predictions derived directly from minimization of measured metabolic cost. A metabolic cost surface in speed-frequency space is derived from metabolic rate for 10 subjects walking at 49 speed-frequency conditions. Optimization is predicted from the iso-energetic cost contours derived from this surface. Substantial congruence is found between the predicted and observed behavior using the cost of walking per unit distance. Although minimization of cost per distance appears to dominate walking control, certain notable differences from predicted behavior suggest that other factors must also be considered. The results of these studies provide a new perspective on the integration of walking cost with neuromuscular control, and provide a novel approach to the investigation of the control features involved in gait parameter selection.

  20. Adopting a new philosophy: minimal invasion.

    PubMed

    Whitehouse, Joseph A

    2006-06-01

    Dentistry is a dynamic profession with new trends evolving. Minimally invasive dentistry is becoming not just a concept but a way of practicing. Creative people are finding ways, materials, and technology that enable patients to experience less hard-tissue or soft-tissue removal, improved prevention and maintenance, and increased attention to a philosophy of "less is more." The World Congress of Minimally Invasive Dentistry was formed to facilitate the sharing of these new concepts. The members embrace change, and dentistry offers the constant opportunity for such. As the standard of care moves toward minimally invasive dentistry, patients will benefit. PMID:16792118

  1. Technology applications for radioactive waste minimization

    SciTech Connect

    Devgun, J.S.

    1994-07-01

    The nuclear power industry has achieved one of the most successful examples of waste minimization. The annual volume of low-level radioactive waste shipped for disposal per reactor has decreased to approximately one-fifth the volume about a decade ago. In addition, the curie content of the total waste shipped for disposal has decreased. This paper will discuss the regulatory drivers and economic factors for waste minimization and describe the application of technologies for achieving waste minimization for low-level radioactive waste with examples from the nuclear power industry.

  2. Minimally Invasive Cardiovascular Surgery: Incisions and Approaches

    PubMed Central

    Langer, Nathaniel B.; Argenziano, Michael

    2016-01-01

    Throughout the modern era of cardiac surgery, most operations have been performed via median sternotomy with cardiopulmonary bypass. This paradigm is changing, however, as cardiovascular surgery is increasingly adopting minimally invasive techniques. Advances in patient evaluation, instrumentation, and operative technique have allowed surgeons to perform a wide variety of complex operations through smaller incisions and, in some cases, without cardiopulmonary bypass. With patients desiring less invasive operations and the literature supporting decreased blood loss, shorter hospital length of stay, improved postoperative pain, and better cosmesis, minimally invasive cardiac surgery should be widely practiced. Here, we review the incisions and approaches currently used in minimally invasive cardiovascular surgery. PMID:27127555

  3. Academic Achievement and Minimal Brain Dysfunction

    ERIC Educational Resources Information Center

    Edwards, R. Philip; And Others

    1971-01-01

    The investigation provided no evidence that a diagnosis of minimal brain dysfunction based on a pediatric neurological evaluation and/or visual-motor impairment as measured by the Bender-Gestalt, is a useful predictor of academic achievement. (Author)

  4. Minimally Invasive Treatments for Breast Cancer

    MedlinePlus

    ... SIR login) Interventional Radiology Minimally Invasive Treatments for Breast Cancer Interventional Radiology Treatments Offer New Options and Hope ... have in the fight against breast cancer. About Breast Cancer When breast tissue divides and grows at an ...

  5. Waste minimization and pollution prevention awareness plan

    SciTech Connect

    Not Available

    1991-05-31

    The purpose of this plan is to document the Lawrence Livermore National Laboratory (LLNL) Waste Minimization and Pollution Prevention Awareness Program. The plan specifies those activities and methods that are or will be employed to reduce the quantity and toxicity of wastes generated at the site. The intent of this plan is to respond to and comply with (DOE's) policy and guidelines concerning the need for pollution prevention. The Plan is composed of a LLNL Waste Minimization and Pollution Prevention Awareness Program Plan and, as attachments, Program- and Department-specific waste minimization plans. This format reflects the fact that waste minimization is considered a line management responsibility and is to be addressed by each of the Programs and Departments. 14 refs.

  6. Genetic algorithms for minimal source reconstructions

    SciTech Connect

    Lewis, P.S.; Mosher, J.C.

    1993-12-01

    Under-determined linear inverse problems arise in applications in which signals must be estimated from insufficient data. In these problems the number of potentially active sources is greater than the number of observations. In many situations, it is desirable to find a minimal source solution. This can be accomplished by minimizing a cost function that accounts from both the compatibility of the solution with the observations and for its ``sparseness``. Minimizing functions of this form can be a difficult optimization problem. Genetic algorithms are a relatively new and robust approach to the solution of difficult optimization problems, providing a global framework that is not dependent on local continuity or on explicit starting values. In this paper, the authors describe the use of genetic algorithms to find minimal source solutions, using as an example a simulation inspired by the reconstruction of neural currents in the human brain from magnetoencephalographic (MEG) measurements.

  7. Controlling molecular transport in minimal emulsions

    PubMed Central

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of ‘minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions. PMID:26797564

  8. Heart bypass surgery - minimally invasive - discharge

    MedlinePlus

    ... coronary artery bypass - discharge; RACAB - discharge; Keyhole heart surgery - discharge ... You had minimally invasive coronary artery bypass surgery on one ... an artery from your chest to create a detour, or bypass, around ...

  9. Controlling molecular transport in minimal emulsions

    NASA Astrophysics Data System (ADS)

    Gruner, Philipp; Riechers, Birte; Semin, Benoît; Lim, Jiseok; Johnston, Abigail; Short, Kathleen; Baret, Jean-Christophe

    2016-01-01

    Emulsions are metastable dispersions in which molecular transport is a major mechanism driving the system towards its state of minimal energy. Determining the underlying mechanisms of molecular transport between droplets is challenging due to the complexity of a typical emulsion system. Here we introduce the concept of `minimal emulsions', which are controlled emulsions produced using microfluidic tools, simplifying an emulsion down to its minimal set of relevant parameters. We use these minimal emulsions to unravel the fundamentals of transport of small organic molecules in water-in-fluorinated-oil emulsions, a system of great interest for biotechnological applications. Our results are of practical relevance to guarantee a sustainable compartmentalization of compounds in droplet microreactors and to design new strategies for the dynamic control of droplet compositions.

  10. Sludge minimization technologies--an overview.

    PubMed

    Odegaard, H

    2004-01-01

    The management of wastewater sludge from wastewater treatment plants represents one of the major challenges in wastewater treatment today. The cost of the sludge treatment amounts to more than the cost of the liquid in many cases. Therefore the focus on and interest in sludge minimization is steadily increasing. In this paper an overview is given for sludge minimization (sludge mass reduction) options. It is demonstrated that sludge minimization may be a result of reduced production of sludge and/or disintegration processes that may take place both in the wastewater treatment stage and in the sludge stage. Various sludge disintegration technologies for sludge minimization are discussed, including mechanical methods (focusing on stirred ball-mill, high-pressure homogenizer, ultrasonic disintegrator), chemical methods (focusing on the use of ozone), physical methods (focusing on thermal and thermal/chemical hydrolysis) and biological methods (focusing on enzymatic processes).

  11. Level set based structural topology optimization for minimizing frequency response

    NASA Astrophysics Data System (ADS)

    Shu, Lei; Wang, Michael Yu; Fang, Zongde; Ma, Zhengdong; Wei, Peng

    2011-11-01

    For the purpose of structure vibration reduction, a structural topology optimization for minimizing frequency response is proposed based on the level set method. The objective of the present study is to minimize the frequency response at the specified points or surfaces on the structure with an excitation frequency or a frequency range, subject to the given amount of the material over the admissible design domain. The sensitivity analysis with respect to the structural boundaries is carried out, while the Extended finite element method (X-FEM) is employed for solving the state equation and the adjoint equation. The optimal structure with smooth boundaries is obtained by the level set evolution with advection velocity, derived from the sensitivity analysis and the optimization algorithm. A number of numerical examples, in the frameworks of two-dimension (2D) and three-dimension (3D), are presented to demonstrate the feasibility and effectiveness of the proposed approach.

  12. Minimally Invasive Forefoot Surgery in France.

    PubMed

    Meusnier, Tristan; Mukish, Prikesht

    2016-06-01

    Study groups have been formed in France to advance the use of minimally invasive surgery. These techniques are becoming more frequently used and the technique nuances are continuing to evolve. The objective of this article was to advance the awareness of the current trends in minimally invasive surgery for common diseases of the forefoot. The percutaneous surgery at the forefoot is less developed at this time, but also will be discussed.

  13. The advantages of minimally invasive dentistry.

    PubMed

    Christensen, Gordon J

    2005-11-01

    Minimally invasive dentistry, in cases in which it is appropriate, is a concept that preserves dentitions and supporting structures. In this column, I have discussed several examples of minimally invasive dental techniques. This type of dentistry is gratifying for dentists and appreciated by patients. If more dentists would practice it, the dental profession could enhance the public's perception of its honesty and increase its professionalism as well.

  14. Current research in sonic-boom minimization

    NASA Technical Reports Server (NTRS)

    Darden, C. M.; Mack, R. J.

    1976-01-01

    A review is given of several questions as yet unanswered in the area of sonic-boom research. Efforts, both here at Langley and elsewhere, in the area of minimization, human response, design techniques and in developing higher order propagation methods are discussed. In addition, a wind-tunnel test program being conducted to assess the validity of minimization methods based on a forward spike in the F-function is described.

  15. Minimally invasive treatment of infected pancreatic necrosis

    PubMed Central

    Cebulski, Włodzimierz; Słodkowski, Maciej; Krasnodębski, Ireneusz W.

    2014-01-01

    Infected pancreatic necrosis is a challenging complication that worsens prognosis in acute pancreatitis. For years, open necrosectomy has been the mainstay treatment option in infected pancreatic necrosis, although surgical debridement still results in high morbidity and mortality rates. Recently, many reports on minimally invasive treatment in infected pancreatic necrosis have been published. This paper presents a review of minimally invasive techniques and attempts to define their role in the management of infected pancreatic necrosis. PMID:25653725

  16. Aortic Valve Surgery: Minimally Invasive Options

    PubMed Central

    Ramlawi, Basel; Bedeir, Kareem; Lamelas, Joseph

    2016-01-01

    Minimally invasive aortic valve surgery has not been adopted by a significant proportion of cardiac surgeons despite proven benefits. This may be related to a high learning curve and technical issues requiring retraining. In this review, we discuss the data for minimally invasive aortic valve surgery and describe our operative technique for both ministernotomy and anterior thoracotomy approaches. We also discuss the advent of novel sutureless valves and how these techniques compare to available transcatheter aortic valve procedures. PMID:27127559

  17. Minimally Invasive Osteotomies of the Calcaneus.

    PubMed

    Guyton, Gregory P

    2016-09-01

    Osteotomies of the calcaneus are powerful surgical tools, representing a critical component of the surgical reconstruction of pes planus and pes cavus deformity. Modern minimally invasive calcaneal osteotomies can be performed safely with a burr through a lateral incision. Although greater kerf is generated with the burr, the effect is modest, can be minimized, and is compatible with many fixation techniques. A hinged jig renders the procedure more reproducible and accessible.

  18. Future of Minimally Invasive Colorectal Surgery.

    PubMed

    Whealon, Matthew; Vinci, Alessio; Pigazzi, Alessio

    2016-09-01

    Minimally invasive surgery is slowly taking over as the preferred operative approach for colorectal diseases. However, many of the procedures remain technically difficult. This article will give an overview of the state of minimally invasive surgery and the many advances that have been made over the last two decades. Specifically, we discuss the introduction of the robotic platform and some of its benefits and limitations. We also describe some newer techniques related to robotics. PMID:27582647

  19. Minimally Invasive Surgery in Gynecologic Oncology

    PubMed Central

    Mori, Kristina M.; Neubauer, Nikki L.

    2013-01-01

    Minimally invasive surgery has been utilized in the field of obstetrics and gynecology as far back as the 1940s when culdoscopy was first introduced as a visualization tool. Gynecologists then began to employ minimally invasive surgery for adhesiolysis and obtaining biopsies but then expanded its use to include procedures such as tubal sterilization (Clyman (1963), L. E. Smale and M. L. Smale (1973), Thompson and Wheeless (1971), Peterson and Behrman (1971)). With advances in instrumentation, the first laparoscopic hysterectomy was successfully performed in 1989 by Reich et al. At the same time, minimally invasive surgery in gynecologic oncology was being developed alongside its benign counterpart. In the 1975s, Rosenoff et al. reported using peritoneoscopy for pretreatment evaluation in ovarian cancer, and Spinelli et al. reported on using laparoscopy for the staging of ovarian cancer. In 1993, Nichols used operative laparoscopy to perform pelvic lymphadenectomy in cervical cancer patients. The initial goals of minimally invasive surgery, not dissimilar to those of modern medicine, were to decrease the morbidity and mortality associated with surgery and therefore improve patient outcomes and patient satisfaction. This review will summarize the history and use of minimally invasive surgery in gynecologic oncology and also highlight new minimally invasive surgical approaches currently in development. PMID:23997959

  20. Economic impact of minimally invasive lumbar surgery

    PubMed Central

    Hofstetter, Christoph P; Hofer, Anna S; Wang, Michael Y

    2015-01-01

    Cost effectiveness has been demonstrated for traditional lumbar discectomy, lumbar laminectomy as well as for instrumented and noninstrumented arthrodesis. While emerging evidence suggests that minimally invasive spine surgery reduces morbidity, duration of hospitalization, and accelerates return to activites of daily living, data regarding cost effectiveness of these novel techniques is limited. The current study analyzes all available data on minimally invasive techniques for lumbar discectomy, decompression, short-segment fusion and deformity surgery. In general, minimally invasive spine procedures appear to hold promise in quicker patient recovery times and earlier return to work. Thus, minimally invasive lumbar spine surgery appears to have the potential to be a cost-effective intervention. Moreover, novel less invasive procedures are less destabilizing and may therefore be utilized in certain indications that traditionally required arthrodesis procedures. However, there is a lack of studies analyzing the economic impact of minimally invasive spine surgery. Future studies are necessary to confirm the durability and further define indications for minimally invasive lumbar spine procedures. PMID:25793159

  1. Multifunction minimization for programmable logic arrays

    SciTech Connect

    Campbell, J.A.

    1984-01-01

    The problem of minimizing two-level AND/OR Boolean algebraic functions of n inputs and m outputs for implementation on programmable logic arrays (PLA) is examined. The theory of multiple-output functions as well as the historically alternative approaches to reckoning the cost of an equation implementation are reviewed. The PLA is shown to be a realization of the least product gate equation cost criterion. The multi-function minimization is dealt with in the context of a directed tree search algorithm developed in previous research. The PLA oriented minimization is shown to alter the nature of each of the basic tenets of multiple-output minimization used in earlier work. The concept of a non-prime but selectable implicant is introduced. A new cost criterion, the quantum cost, is discussed, and an approximation algorithm utilizing this criterion is developed. A timing analysis of a cyclic resolution algorithm for PLA based functions is presented. Lastly, the question of efficiency in automated minimization algorithms is examined. The application of the PLA cost criterion is shown to exhibit intrinsic increases in computational efficiency. A minterm classification algorithm is suggested and a PLA minimization algorithm is implemented in the FORTRAN language.

  2. Sequential unconstrained minimization algorithms for constrained optimization

    NASA Astrophysics Data System (ADS)

    Byrne, Charles

    2008-02-01

    The problem of minimizing a function f(x):RJ → R, subject to constraints on the vector variable x, occurs frequently in inverse problems. Even without constraints, finding a minimizer of f(x) may require iterative methods. We consider here a general class of iterative algorithms that find a solution to the constrained minimization problem as the limit of a sequence of vectors, each solving an unconstrained minimization problem. Our sequential unconstrained minimization algorithm (SUMMA) is an iterative procedure for constrained minimization. At the kth step we minimize the function G_k(x)=f(x)+g_k(x), to obtain xk. The auxiliary functions gk(x):D ⊆ RJ → R+ are nonnegative on the set D, each xk is assumed to lie within D, and the objective is to minimize the continuous function f:RJ → R over x in the set C=\\overline D , the closure of D. We assume that such minimizers exist, and denote one such by \\hat x . We assume that the functions gk(x) satisfy the inequalities 0\\leq g_k(x)\\leq G_{k-1}(x)-G_{k-1}(x^{k-1}), for k = 2, 3, .... Using this assumption, we show that the sequence {f(xk)} is decreasing and converges to f({\\hat x}) . If the restriction of f(x) to D has bounded level sets, which happens if \\hat x is unique and f(x) is closed, proper and convex, then the sequence {xk} is bounded, and f(x^*)=f({\\hat x}) , for any cluster point x*. Therefore, if \\hat x is unique, x^*={\\hat x} and \\{x^k\\}\\rightarrow {\\hat x} . When \\hat x is not unique, convergence can still be obtained, in particular cases. The SUMMA includes, as particular cases, the well-known barrier- and penalty-function methods, the simultaneous multiplicative algebraic reconstruction technique (SMART), the proximal minimization algorithm of Censor and Zenios, the entropic proximal methods of Teboulle, as well as certain cases of gradient descent and the Newton-Raphson method. The proof techniques used for SUMMA can be extended to obtain related results for the induced proximal

  3. Contributing factors to the development of childhood asthma: working toward risk minimization.

    PubMed

    Guibas, George V; Megremis, Spyridon; West, Peter; Papadopoulos, Nikolaos G

    2015-06-01

    Asthma is the most common chronic disease in childhood, and considerable research has been undertaken to find ways to prevent its development and reduce its prevalence. For such interventions to be successful, risk factors for asthma emergence should be identified and clearly defined. Data are robust for some of them, including atopy, viral infections and exposure to airborne irritants, whereas it is less conclusive for others, such as aeroallergen exposure and bacterial infections. Several interventions for asthma prevention, including avoidance and pharmacotherapy, have been attempted. However, most of them have furnished equivocal results. Various issues hinder the establishment of risk factors for asthma development and reduce the effectiveness of interventions, including the complexity of the disease and the fluidity of the developing systems in childhood. In this review, we revisit the evidence on pediatric asthma risk factors and prevention and discuss issues that perplex this field.

  4. MINIMIZATION OF CARBON LOSS IN COAL REBURNING

    SciTech Connect

    Vladimir Zamansky; Vitali Lissianski; Pete Maly; Richard Koppang

    2002-09-10

    This project develops Fuel-Flexible Reburning (FFR) technology that is an improved version of conventional reburning. In FFR solid fuel is partially gasified before injection into the reburning zone of a boiler. Partial gasification of the solid fuel improves efficiency of NO{sub x} reduction and decreases LOI by increasing fuel reactivity. Objectives of this project were to develop engineering and scientific information and know-how needed to improve the cost of reburning via increased efficiency and minimized LOI and move the FFR technology to the demonstration and commercialization stage. All project objectives and technical performance goals have been met, and competitive advantages of FFR have been demonstrated. The work included a combination of experimental and modeling studies designed to identify optimum process conditions, confirm the process mechanism and to estimate cost effectiveness of the FFR technology. Experimental results demonstrated that partial gasification of a solid fuel prior to injection into the reburning zone improved the efficiency of NO{sub x} reduction and decreased LOI. Several coals with different volatiles content were tested. Testing suggested that incremental increase in the efficiency of NO{sub x} reduction due to coal gasification was more significant for coals with low volatiles content. Up to 14% increase in the efficiency of NO{sub x} reduction in comparison with basic reburning was achieved with coal gasification. Tests also demonstrated that FFR improved efficiency of NO{sub x} reduction for renewable fuels with high fuel-N content. Modeling efforts focused on the development of the model describing reburning with gaseous gasification products. Modeling predicted that the composition of coal gasification products depended on temperature. Comparison of experimental results and modeling predictions suggested that the heterogeneous NO{sub x} reduction on the surface of char played important role. Economic analysis confirmed

  5. Surface Emissivity Effects on Thermodynamic Retrieval of IR Spectral Radiance

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Smith, William L.; Liu, Xu

    2006-01-01

    The surface emissivity effect on the thermodynamic parameters (e.g., the surface skin temperature, atmospheric temperature, and moisture) retrieved from satellite infrared (IR) spectral radiance is studied. Simulation analysis demonstrates that surface emissivity plays an important role in retrieval of surface skin temperature and terrestrial boundary layer (TBL) moisture. NAST-I ultraspectral data collected during the CLAMS field campaign are used to retrieve thermodynamic properties of the atmosphere and surface. The retrievals are then validated by coincident in-situ measurements, such as sea surface temperature, radiosonde temperature and moisture profiles. Retrieved surface emissivity is also validated by that computed from the observed radiance and calculated emissions based on the retrievals of surface temperature and atmospheric profiles. In addition, retrieved surface skin temperature and emissivity are validated together by radiance comparison between the observation and retrieval-based calculation in the window region where atmospheric contribution is minimized. Both simulation and validation results have lead to the conclusion that variable surface emissivity in the inversion process is needed to obtain accurate retrievals from satellite IR spectral radiance measurements. Retrieval examples are presented to reveal that surface emissivity plays a significant role in retrieving accurate surface skin temperature and TBL thermodynamic parameters.

  6. Minimally invasive procedures on the lumbar spine

    PubMed Central

    Skovrlj, Branko; Gilligan, Jeffrey; Cutler, Holt S; Qureshi, Sheeraz A

    2015-01-01

    Degenerative disease of the lumbar spine is a common and increasingly prevalent condition that is often implicated as the primary reason for chronic low back pain and the leading cause of disability in the western world. Surgical management of lumbar degenerative disease has historically been approached by way of open surgical procedures aimed at decompressing and/or stabilizing the lumbar spine. Advances in technology and surgical instrumentation have led to minimally invasive surgical techniques being developed and increasingly used in the treatment of lumbar degenerative disease. Compared to the traditional open spine surgery, minimally invasive techniques require smaller incisions and decrease approach-related morbidity by avoiding muscle crush injury by self-retaining retractors, preventing the disruption of tendon attachment sites of important muscles at the spinous processes, using known anatomic neurovascular and muscle planes, and minimizing collateral soft-tissue injury by limiting the width of the surgical corridor. The theoretical benefits of minimally invasive surgery over traditional open surgery include reduced blood loss, decreased postoperative pain and narcotics use, shorter hospital length of stay, faster recover and quicker return to work and normal activity. This paper describes the different minimally invasive techniques that are currently available for the treatment of degenerative disease of the lumbar spine. PMID:25610845

  7. Minimal control power of the controlled teleportation

    NASA Astrophysics Data System (ADS)

    Jeong, Kabgyun; Kim, Jaewan; Lee, Soojoon

    2016-03-01

    We generalize the control power of a perfect controlled teleportation of an entangled three-qubit pure state, suggested by Li and Ghose [Phys. Rev. A 90, 052305 (2014), 10.1103/PhysRevA.90.052305], to the control power of a general controlled teleportation of a multiqubit pure state. Thus, we define the minimal control power, and calculate the values of the minimal control power for a class of general three-qubit Greenberger-Horne-Zeilinger (GHZ) states and the three-qubit W class whose states have zero three-tangles. Moreover, we show that the standard three-qubit GHZ state and the standard three-qubit W state have the maximal values of the minimal control power for the two classes, respectively. This means that the minimal control power can be interpreted as not only an operational quantity of a three-qubit quantum communication but also a degree of three-qubit entanglement. In addition, we calculate the values of the minimal control power for general n -qubit GHZ states and the n -qubit W -type states.

  8. Production of minimally disturbed synchronous cultures of hematopoietic cells

    NASA Technical Reports Server (NTRS)

    Thornton, Maureen; Eward, Kathryn Leigh; Helmstetter, Charles E.; Edward, K. L. (Principal Investigator)

    2002-01-01

    A method is describedforproducing sizable quantities of synchronously dividing, minimally disturbed mammalian cells. Cultures were grown immobilized on surfaces such that cell division within the population resulted in the continuous release of synchronous newborn cells. As judged by the quality and duration of synchronous growth, cell size distributions, and DNA compositions, newborn mouse L1210 cells grew with a very high level of synchrony without overt evidence of growth disturbances. The technology should be applicable to a variety of hematopoietic cells, as evidenced by similar results with human MOLT-4 and U937 cell lines.

  9. Frequency analysis of nonlinear oscillations via the global error minimization

    NASA Astrophysics Data System (ADS)

    Kalami Yazdi, M.; Hosseini Tehrani, P.

    2016-06-01

    The capacity and effectiveness of a modified variational approach, namely global error minimization (GEM) is illustrated in this study. For this purpose, the free oscillations of a rod rocking on a cylindrical surface and the Duffing-harmonic oscillator are treated. In order to validate and exhibit the merit of the method, the obtained result is compared with both of the exact frequency and the outcome of other well-known analytical methods. The corollary reveals that the first order approximation leads to an acceptable relative error, specially for large initial conditions. The procedure can be promisingly exerted to the conservative nonlinear problems.

  10. A grassmannian formulation of the WZW and minimal models

    NASA Astrophysics Data System (ADS)

    Fucito, Francesco

    1989-05-01

    Grassmannians provide a geometrical interpretation of infinite dimensional Kac-Moody and Virasoro algebras. Here we show how to obtain, using this formulism, the values of the central charges and the conformal dimensions (weights) corresponding to the WZW and minimal models. This is achieved by suitably generalizing the procedure which gave the central charge and the conformal dimension of the b-c system. In analogy with this previous case we get a prescription to compute the correlation functions of such models on Riemann surfaces of arbitrary genus. On leave of absence from Dipartimento di Fisica, INFN- Sezione di Roma, Universitá di Roma II, ``Tor Vergata'', I-00173 Rome, Italy.

  11. Genetic research on biospecimens poses minimal risk.

    PubMed

    Wendler, David S; Rid, Annette

    2015-01-01

    Genetic research on human biospecimens is increasingly common. However, debate continues over the level of risk that this research poses to sample donors. Some argue that genetic research on biospecimens poses minimal risk; others argue that it poses greater than minimal risk and therefore needs additional requirements and limitations. This debate raises concern that some donors are not receiving appropriate protection or, conversely, that valuable research is being subject to unnecessary requirements and limitations. The present paper attempts to resolve this debate using the widely-endorsed 'risks of daily life' standard. The three extant versions of this standard all suggest that, with proper measures in place to protect confidentiality, most genetic research on human biospecimens poses minimal risk to donors.

  12. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  13. Minimally invasive surgery for atrial fibrillation.

    PubMed

    Lancaster, Timothy S; Melby, Spencer J; Damiano, Ralph J

    2016-04-01

    The surgical treatment of atrial fibrillation (AF) has been revolutionized over the past two decades through surgical innovation and improvements in endoscopic imaging, ablation technology, and surgical instrumentation. These advances have prompted the development of the less complex and less morbid Cox-Maze IV procedure, and have allowed its adaptation to a minimally invasive right mini-thoracotomy approach that can be used in stand-alone AF ablation and in patients undergoing concomitant mitral and tricuspid valve surgery. Other minimally invasive ablation techniques have been developed for stand-alone AF ablation, including video-assisted pulmonary vein isolation, extended left atrial lesion sets, and a hybrid approach. This review will discuss the tools, techniques, and outcomes of minimally invasive surgical procedures currently being practiced for AF ablation.

  14. Advanced pyrochemical technologies for minimizing nuclear waste

    SciTech Connect

    Bronson, M.C.; Dodson, K.E.; Riley, D.C.

    1994-06-01

    The Department of Energy (DOE) is seeking to reduce the size of the current nuclear weapons complex and consequently minimize operating costs. To meet this DOE objective, the national laboratories have been asked to develop advanced technologies that take uranium and plutonium, from retired weapons and prepare it for new weapons, long-term storage, and/or final disposition. Current pyrochemical processes generate residue salts and ceramic wastes that require aqueous processing to remove and recover the actinides. However, the aqueous treatment of these residues generates an estimated 100 liters of acidic transuranic (TRU) waste per kilogram of plutonium in the residue. Lawrence Livermore National Laboratory (LLNL) is developing pyrochemical techniques to eliminate, minimize, or more efficiently treat these residue streams. This paper will present technologies being developed at LLNL on advanced materials for actinide containment, reactors that minimize residues, and pyrochemical processes that remove actinides from waste salts.

  15. Robotically assisted minimally invasive mitral valve surgery

    PubMed Central

    Alwair, Hazaim; Nifong, Wiley L; Chitwood, W Randolph

    2013-01-01

    Increased recognition of advantages, over the last decade, of minimizing surgical trauma by operating through smaller incisions and its direct impact on reduced postoperative pain, quicker recovery, improved cosmesis and earlier return to work has spurred the minimally invasive cardiac surgical revolution. This transition began in the early 1990s with advancements in endoscopic instruments, video & fiberoptic technology and improvements in perfusion systems for establishing cardiopulmonary bypass (CPB) via peripheral cannulation. Society of Thoracic Surgeons data documents that 20% of all mitral valve surgeries are performed using minimally invasive techniques, with half being robotically assisted. This article reviews the current status of robotically assisted mitral valve surgery, its advantages and technical modifications for optimizing clinical outcomes. PMID:24251030

  16. [EVOLUTION OF MINIMALLY INVASIVE CARDIAC SURGERY].

    PubMed

    Fujita, Tomoyuki; Kobayashi, Junjiro

    2016-03-01

    Minimally invasive surgery is an attractive choice for patients undergoing major cardiac surgery. We review the history of minimally invasive valve surgery in this article. Due to many innovations in surgical tools, cardiopulmonary bypass systems, visualization systems, and robotic systems as well as surgical techniques, minimally invasive cardiac surgery has become standard care for valve lesion repair. In particular, aortic cross-clamp techniques and methods for cardioplegia using the Chitwood clamp and root cannula or endoballoon catheter in combination with femoro-femoral bypass systems have made such procedures safer and more practical. On the other hand, robotically assisted surgery has not become standard due to the cost and slow learning curve. However, along with the development of robotics, this less-invasive technique may provide another choice for patients in the near future. PMID:27295770

  17. Minimal perceptrons for memorizing complex patterns

    NASA Astrophysics Data System (ADS)

    Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo

    2016-11-01

    Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.

  18. Mixed low-level waste minimization at Los Alamos

    SciTech Connect

    Starke, T.P.

    1998-12-01

    During the first six months of University of California 98 Fiscal Year (July--December) Los Alamos National Laboratory has achieved a 57% reduction in mixed low-level waste generation. This has been accomplished through a systems approach that identified and minimized the largest MLLW streams. These included surface-contaminated lead, lead-lined gloveboxes, printed circuit boards, and activated fluorescent lamps. Specific waste minimization projects have been initiated to address these streams. In addition, several chemical processing equipment upgrades are being implemented. Use of contaminated lead is planned for several high energy proton beam stop applications and stainless steel encapsulated lead is being evaluated for other radiological control area applications. INEEL is assisting Los Alamos with a complete systems analysis of analytical chemistry derived mixed wastes at the CMR building and with a minimum life-cycle cost standard glovebox design. Funding for waste minimization upgrades has come from several sources: generator programs, waste management, the generator set-aside program, and Defense Programs funding to INEEL.

  19. Inverse Modeling Via Linearized Functional Minimization

    NASA Astrophysics Data System (ADS)

    Barajas-Solano, D. A.; Wohlberg, B.; Vesselinov, V. V.; Tartakovsky, D. M.

    2014-12-01

    We present a novel parameter estimation methodology for transient models of geophysical systems with uncertain, spatially distributed, heterogeneous and piece-wise continuous parameters.The methodology employs a bayesian approach to propose an inverse modeling problem for the spatial configuration of the model parameters.The likelihood of the configuration is formulated using sparse measurements of both model parameters and transient states.We propose using total variation regularization (TV) as the prior reflecting the heterogeneous, piece-wise continuity assumption on the parameter distribution.The maximum a posteriori (MAP) estimator of the parameter configuration is then computed by minimizing the negative bayesian log-posterior using a linearized functional minimization approach. The computation of the MAP estimator is a large-dimensional nonlinear minimization problem with two sources of nonlinearity: (1) the TV operator, and (2) the nonlinear relation between states and parameters provided by the model's governing equations.We propose a a hybrid linearized functional minimization (LFM) algorithm in two stages to efficiently treat both sources of nonlinearity.The relation between states and parameters is linearized, resulting in a linear minimization sub-problem equipped with the TV operator; this sub-problem is then minimized using the Alternating Direction Method of Multipliers (ADMM). The methodology is illustrated with a transient saturated groundwater flow application in a synthetic domain, stimulated by external point-wise loadings representing aquifer pumping, together with an array of discrete measurements of hydraulic conductivity and transient measurements of hydraulic head.We show that our inversion strategy is able to recover the overall large-scale features of the parameter configuration, and that the reconstruction is improved by the addition of transient information of the state variable.

  20. Minimally invasive surgical techniques in periodontal regeneration.

    PubMed

    Cortellini, Pierpaolo

    2012-09-01

    A review of the current scientific literature was undertaken to evaluate the efficacy of minimally invasive periodontal regenerative surgery in the treatment of periodontal defects. The impact on clinical outcomes, surgical chair-time, side effects and patient morbidity were evaluated. An electronic search of PUBMED database from January 1987 to December 2011 was undertaken on dental journals using the key-word "minimally invasive surgery". Cohort studies, retrospective studies and randomized controlled clinical trials referring to treatment of periodontal defects with at least 6 months of follow-up were selected. Quality assessment of the selected studies was done through the Strength of Recommendation Taxonomy Grading (SORT) System. Ten studies (1 retrospective, 5 cohorts and 4 RCTs) were included. All the studies consistently support the efficacy of minimally invasive surgery in the treatment of periodontal defects in terms of clinical attachment level gain, probing pocket depth reduction and minimal gingival recession. Six studies reporting on side effects and patient morbidity consistently indicate very low levels of pain and discomfort during and after surgery resulting in a reduced intake of pain-killers and very limited interference with daily activities in the post-operative period. Minimally invasive surgery might be considered a true reality in the field of periodontal regeneration. The observed clinical improvements are consistently associated with very limited morbidity to the patient during the surgical procedure as well as in the post-operative period. Minimally invasive surgery, however, cannot be applied at all cases. A stepwise decisional algorithm should support clinicians in choosing the treatment approach.

  1. Minimally invasive transforaminal lumbosacral interbody fusion.

    PubMed

    Chang, Peng-Yuan; Wang, Michael Y

    2016-07-01

    In minimally invasive spinal fusion surgery, transforaminal lumbar (sacral) interbody fusion (TLIF) is one of the most common procedures that provides both anterior and posterior column support without retraction or violation to the neural structure. Direct and indirect decompression can be done through this single approach. Preoperative plain radiographs and MR scan should be carefully evaluated. This video demonstrates a standard approach for how to perform a minimally invasive transforaminal lumbosacral interbody fusion. The video can be found here: https://youtu.be/bhEeafKJ370 . PMID:27364426

  2. The Parisi Formula has a Unique Minimizer

    NASA Astrophysics Data System (ADS)

    Auffinger, Antonio; Chen, Wei-Kuo

    2015-05-01

    In 1979, Parisi (Phys Rev Lett 43:1754-1756, 1979) predicted a variational formula for the thermodynamic limit of the free energy in the Sherrington-Kirkpatrick model, and described the role played by its minimizer. This formula was verified in the seminal work of Talagrand (Ann Math 163(1):221-263, 2006) and later generalized to the mixed p-spin models by Panchenko (Ann Probab 42(3):946-958, 2014). In this paper, we prove that the minimizer in Parisi's formula is unique at any temperature and external field by establishing the strict convexity of the Parisi functional.

  3. The concept of minimally invasive dentistry.

    PubMed

    Ericson, Dan

    2007-01-01

    This paper reviews Minimally Invasive Dentistry (MID) from a day-to-day dentistry perspective, focusing mostly on cariology and restorative dentistry, even though it embraces many aspects of dentistry. The concept of MID supports a systematic respect for the original tissue, including diagnosis, risk assessment, preventive treatment, and minimal tissue removal upon restoration. The motivation for MID emerges from the fact that fillings are not permanent and that the main reasons for failure are secondary caries and filling fracture. To address these flaws, there is a need for economical re-routing so that practices can survive on maintaining dental health and not only by operative procedures.

  4. Minimally invasive restorative dentistry: a biomimetic approach.

    PubMed

    Malterud, Mark I

    2006-08-01

    When providing dental treatment for a given patient, the practitioner should use a minimally invasive technique that conserves sound tooth structure as a clinical imperative. Biomimetics is a tenet that guides the author's practice and is generally described as the mimicking of natural life. This can be accomplished in many cases using contemporary composite resins and adhesive dental procedures. Both provide clinical benefits and support the biomimetic philosophy for treatment. This article illustrates a minimally invasive approach for the restoration of carious cervical defects created by poor hygiene exacerbated by the presence of orthodontic brackets.

  5. Minimally invasive repair of meta-bones.

    PubMed

    Piras, Alessandro; Guerrero, Tomás G

    2012-09-01

    Metacarpal and metatarsal fractures are common injuries in small animals and, in most of the cases, can be treated by minimally invasive techniques. Bone plates applied through epi-periosteal tunnels can stabilize meta-bones. Meta-bones III and IV are stabilized by dorsally applied plates. Meta-bones II and V are stabilized using plates applied medially and laterally. The scarcity of soft tissue coverage and the simple anatomy of meta-bones make these fractures amenable to fixation by using minimally invasive techniques. This practice should reduce morbidity and enhance healing time.

  6. Minimal mass design of tensegrity structures

    NASA Astrophysics Data System (ADS)

    Nagase, Kenji; Skelton, R. E.

    2014-03-01

    This paper provides a unified framework for minimal mass design of tensegrity systems. For any given configuration and any given set of external forces, we design force density (member force divided by length) and cross-section area to minimize the structural mass subject to an equilibrium condition and a maximum stress constraint. The answer is provided by a linear program. Stability is assured by a positive definite stiffness matrix. This condition is described by a linear matrix inequality. Numerical examples are shown to illustrate the proposed method.

  7. Minimal scales from an extended Hilbert space

    NASA Astrophysics Data System (ADS)

    Kober, Martin; Nicolini, Piero

    2010-12-01

    We consider an extension of the conventional quantum Heisenberg algebra, assuming that coordinates as well as momenta fulfil nontrivial commutation relations. As a consequence, a minimal length and a minimal mass scale are implemented. Our commutators do not depend on positions and momenta and we provide an extension of the coordinate coherent state approach to noncommutative geometry. We explore, as a toy model, the corresponding quantum field theory in a (2+1)-dimensional spacetime. Then we investigate the more realistic case of a (3+1)-dimensional spacetime, foliated into noncommutative planes. As a result, we obtain propagators, which are finite in the ultraviolet as well as the infrared regime.

  8. Pattern Search Methods for Linearly Constrained Minimization

    NASA Technical Reports Server (NTRS)

    Lewis, Robert Michael; Torczon, Virginia

    1998-01-01

    We extend pattern search methods to linearly constrained minimization. We develop a general class of feasible point pattern search algorithms and prove global convergence to a Karush-Kuhn-Tucker point. As in the case of unconstrained minimization, pattern search methods for linearly constrained problems accomplish this without explicit recourse to the gradient or the directional derivative. Key to the analysis of the algorithms is the way in which the local search patterns conform to the geometry of the boundary of the feasible region.

  9. From Jack polynomials to minimal model spectra

    NASA Astrophysics Data System (ADS)

    Ridout, David; Wood, Simon

    2015-01-01

    In this note, a deep connection between free field realizations of conformal field theories and symmetric polynomials is presented. We give a brief introduction into the necessary prerequisites of both free field realizations and symmetric polynomials, in particular Jack symmetric polynomials. Then we combine these two fields to classify the irreducible representations of the minimal model vertex operator algebras as an illuminating example of the power of these methods. While these results on the representation theory of the minimal models are all known, this note exploits the full power of Jack polynomials to present significant simplifications of the original proofs in the literature.

  10. Non-minimal inflation and SUSY GUTs

    SciTech Connect

    Okada, Nobuchika

    2012-07-27

    The Standard Model Higgs boson with the nonminimal coupling to the gravitational curvature can drive cosmological inflation. We study this type of inflationary scenario in the context of supergravity. We first point out that it is naturally implemented in the minimal supersymmetric SU(5) model, and hence virtually in any GUT models. Next we propose another scenario based on the Minimal Supersymmetric Standard Model supplemented by the right-handed neutrinos. These models can be tested by new observational data from the Planck satellite experiments within a few years.

  11. Membrane electrolytic cell for minimizing hypochlorite and chlorate formation

    SciTech Connect

    Fair, D. L.; Justice, D. D.; Woodard Jr., K. E.

    1985-07-09

    An electrolytic cell for the electrolysis of an alkali metal chloride brine is comprised of an anode compartment and a cathode compartment separated by a cation exchange membrane. The anode is comprised of an unflattened expanded structure of a valve metal selected from the group consisting of titanium, tantalum, niobium, and alloys thereof. At least one side of the anode has as the electrochemically active surface an electrodeposited layer of a valve metal oxide. A plurality of cracks traverse the electrodeposited layer and a coating of a platinum metal group oxide covers the electrodeposited layer and substantially fills the cracks. The cationic exchange membrane is comprised of a laminated structure having a first surface adapted to contact an anolyte in which the ion exchange groups are predominately sulfonic acid groups. The first surface is also in contact with the electrochemically active surface of the anode. A second surface of the cation exchange membrane, adapted to contact a catholyte, has ion exchange groups which are predominately carboxylic acid groups. The cathode positioned in the cathode compartment is spaced apart from the cation exchange membrane. The cell operates with both a low chlorine overvoltage and a low oxygen overvoltage. During electrolysis of alkali metal chloride brines, the formation of hypochlorite and chlorate ions is minimized and the alkali metal hydroxides produced have low chlorate concentrations and are suitable for use without further treatment in chlorate-sensitive applications. Spent brine treatment is simplified and at reduced costs.

  12. Minimal Mimicry: Mere Effector Matching Induces Preference

    ERIC Educational Resources Information Center

    Sparenberg, Peggy; Topolinski, Sascha; Springer, Anne; Prinz, Wolfgang

    2012-01-01

    Both mimicking and being mimicked induces preference for a target. The present experiments investigate the minimal sufficient conditions for this mimicry-preference link to occur. We argue that mere effector matching between one's own and the other person's movement is sufficient to induce preference, independent of which movement is actually…

  13. Probabilistic inspection strategies for minimizing service failures

    NASA Technical Reports Server (NTRS)

    Brot, Abraham

    1994-01-01

    The INSIM computer program is described which simulates the 'limited fatigue life' environment in which aircraft structures generally operate. The use of INSIM to develop inspection strategies which aim to minimize service failures is demonstrated. Damage-tolerance methodology, inspection thresholds and customized inspections are simulated using the probability of failure as the driving parameter.

  14. Minimal Interventions in the Teaching of Mathematics

    ERIC Educational Resources Information Center

    Foster, Colin

    2014-01-01

    This paper addresses ways in which mathematics pedagogy can benefit from insights gleaned from counselling. Person-centred counselling stresses the value of genuineness, warm empathetic listening and minimal intervention to support people in solving their own problems and developing increased autonomy. Such an approach contrasts starkly with the…

  15. DUPONT CHAMBERS WORKS WASTE MINIMIZATION PROJECT

    EPA Science Inventory

    In a joint U.S. Environmental Protection Agency (EPA) and DuPont waste minimization project, fifteen waste streams were-selected for assessment. The intent was to develop assessments diverse in terms of process type, mode of operation, waste type, disposal needed, and relative s...

  16. Tsallis distribution from minimally selected order statistics

    SciTech Connect

    Wilk, G.; Wlodarczyk, Z.

    2007-12-06

    We demonstrate that selection of the minimal value of ordered variables leads in a natural way to its distribution being given by the Tsallis distribution, the same as that resulting from Tsallis nonextensive statistics. The possible application of this result to the multiparticle production processes is indicated.

  17. Banach spaces that realize minimal fillings

    SciTech Connect

    Bednov, B. B.; Borodin, P. A. E-mail: pborodin@inbox.ru

    2014-04-30

    It is proved that a real Banach space realizes minimal fillings for all its finite subsets (a shortest network spanning a fixed finite subset always exists and has the minimum possible length) if and only if it is a predual of L{sub 1}. The spaces L{sub 1} are characterized in terms of Steiner points (medians). Bibliography: 25 titles. (paper)

  18. Minimal Brain Dysfunction: Associations with Perinatal Complications.

    ERIC Educational Resources Information Center

    Nichols, Paul L.

    Examined with over 28,000 7-year-old children whose mothers registered for prenatal care was the relationship between perinatal complications and such characteristics as poor school achievement, hyperactivity, and neurological soft signs associated with the diagnosis of minimal brain dysfunction (MBD). Ten perinatal antecedents were studied:…

  19. Pancreatic cancer: Open or minimally invasive surgery?

    PubMed

    Zhang, Yu-Hua; Zhang, Cheng-Wu; Hu, Zhi-Ming; Hong, De-Fei

    2016-08-28

    Pancreatic duct adenocarcinoma is one of the most fatal malignancies, with R0 resection remaining the most important part of treatment of this malignancy. However, pancreatectomy is believed to be one of the most challenging procedures and R0 resection remains the only chance for patients with pancreatic cancer to have a good prognosis. Some surgeons have tried minimally invasive pancreatic surgery, but the short- and long-term outcomes of pancreatic malignancy remain controversial between open and minimally invasive procedures. We collected comparative data about minimally invasive and open pancreatic surgery. The available evidence suggests that minimally invasive pancreaticoduodenectomy (MIPD) is as safe and feasible as open PD (OPD), and shows some benefit, such as less intraoperative blood loss and shorter postoperative hospital stay. Despite the limited evidence for MIPD in pancreatic cancer, most of the available data show that the short-term oncological adequacy is similar between MIPD and OPD. Some surgical techniques, including superior mesenteric artery-first approach and laparoscopic pancreatoduodenectomy with major vein resection, are believed to improve the rate of R0 resection. Laparoscopic distal pancreatectomy is less technically demanding and is accepted in more pancreatic centers. It is technically safe and feasible and has similar short-term oncological prognosis compared with open distal pancreatectomy. PMID:27621576

  20. Minimally Invasive Mitral Valve Surgery III

    PubMed Central

    Lehr, Eric J.; Guy, T. Sloane; Smith, Robert L.; Grossi, Eugene A.; Shemin, Richard J.; Rodriguez, Evelio; Ailawadi, Gorav; Agnihotri, Arvind K.; Fayers, Trevor M.; Hargrove, W. Clark; Hummel, Brian W.; Khan, Junaid H.; Malaisrie, S. Chris; Mehall, John R.; Murphy, Douglas A.; Ryan, William H.; Salemi, Arash; Segurola, Romualdo J.; Smith, J. Michael; Wolfe, J. Alan; Weldner, Paul W.; Barnhart, Glenn R.; Goldman, Scott M.; Lewis, Clifton T. P.

    2016-01-01

    Abstract Minimally invasive mitral valve operations are increasingly common in the United States, but robotic-assisted approaches have not been widely adopted for a variety of reasons. This expert opinion reviews the state of the art and defines best practices, training, and techniques for developing a successful robotics program. PMID:27662478