Science.gov

Sample records for minimal surface contributions

  1. Periodic minimal surfaces

    NASA Astrophysics Data System (ADS)

    Mackay, Alan L.

    1985-04-01

    A minimal surface is one for which, like a soap film with the same pressure on each side, the mean curvature is zero and, thus, is one where the two principal curvatures are equal and opposite at every point. For every closed circuit in the surface, the area is a minimum. Schwarz1 and Neovius2 showed that elements of such surfaces could be put together to give surfaces periodic in three dimensions. These periodic minimal surfaces are geometrical invariants, as are the regular polyhedra, but the former are curved. Minimal surfaces are appropriate for the description of various structures where internal surfaces are prominent and seek to adopt a minimum area or a zero mean curvature subject to their topology; thus they merit more complete numerical characterization. There seem to be at least 18 such surfaces3, with various symmetries and topologies, related to the crystallographic space groups. Recently, glyceryl mono-oleate (GMO) was shown by Longley and McIntosh4 to take the shape of the F-surface. The structure postulated is shown here to be in good agreement with an analysis of the fundamental geometry of periodic minimal surfaces.

  2. Minimal surfaces over stars

    NASA Astrophysics Data System (ADS)

    McDougall, Jane; Schaubroeck, Lisbeth

    2008-04-01

    A JS surface is a minimal graph over a polygonal domain that becomes infinite in magnitude at the domain boundary. Jenkins and Serrin characterized the existence of these minimal graphs in terms of the signs of the boundary values and the side-lengths of the polygon. For a convex polygon, there can be essentially only one JS surface, but a non-convex domain may admit several distinct JS surfaces. We consider two families of JS surfaces corresponding to different boundary values, namely JS0 and JS1, over domains in the form of regular stars. We give parameterizations for these surfaces as lifts of harmonic maps, and observe that all previously constructed JS surfaces have been of type JS0. We give an example of a JS1 surface that is a new complete embedded minimal surface generalizing Scherk's doubly periodic surface, and show also that the JS0 surface over a regular convex 2n-gon is the limit of JS1 surfaces over non-convex stars. Finally we consider the construction of other JS surfaces over stars that belong neither to JS0 nor to JS1.

  3. Discrete Minimal Surface Algebras

    NASA Astrophysics Data System (ADS)

    Arnlind, Joakim; Hoppe, Jens

    2010-05-01

    We consider discrete minimal surface algebras (DMSA) as generalized noncommutative analogues of minimal surfaces in higher dimensional spheres. These algebras appear naturally in membrane theory, where sequences of their representations are used as a regularization. After showing that the defining relations of the algebra are consistent, and that one can compute a basis of the enveloping algebra, we give several explicit examples of DMSAs in terms of subsets of sln (any semi-simple Lie algebra providing a trivial example by itself). A special class of DMSAs are Yang-Mills algebras. The representation graph is introduced to study representations of DMSAs of dimension d ≤ 4, and properties of representations are related to properties of graphs. The representation graph of a tensor product is (generically) the Cartesian product of the corresponding graphs. We provide explicit examples of irreducible representations and, for coinciding eigenvalues, classify all the unitary representations of the corresponding algebras.

  4. Shapes of embedded minimal surfaces.

    PubMed

    Colding, Tobias H; Minicozzi, William P

    2006-07-25

    Surfaces that locally minimize area have been extensively used to model physical phenomena, including soap films, black holes, compound polymers, protein folding, etc. The mathematical field dates to the 1740s but has recently become an area of intense mathematical and scientific study, specifically in the areas of molecular engineering, materials science, and nanotechnology because of their many anticipated applications. In this work, we show that all minimal surfaces are built out of pieces of the surfaces in Figs. 1 and 2.

  5. Shapes of embedded minimal surfaces

    PubMed Central

    Colding, Tobias H.; Minicozzi, William P.

    2006-01-01

    Surfaces that locally minimize area have been extensively used to model physical phenomena, including soap films, black holes, compound polymers, protein folding, etc. The mathematical field dates to the 1740s but has recently become an area of intense mathematical and scientific study, specifically in the areas of molecular engineering, materials science, and nanotechnology because of their many anticipated applications. In this work, we show that all minimal surfaces are built out of pieces of the surfaces in Figs. 1 and 2. PMID:16847265

  6. Wilson loops in minimal surfaces

    SciTech Connect

    Drukker, Nadav; Gross, David J.; Ooguri, Hirosi

    1999-04-27

    The AdS/CFT correspondence suggests that the Wilson loop of the large N gauge theory with N = 4 supersymmetry in 4 dimensions is described by a minimal surface in AdS{sub 5} x S{sup 5}. The authors examine various aspects of this proposal, comparing gauge theory expectations with computations of minimal surfaces. There is a distinguished class of loops, which the authors call BPS loops, whose expectation values are free from ultra-violet divergence. They formulate the loop equation for such loops. To the extent that they have checked, the minimal surface in AdS{sub 5} x S{sup 5} gives a solution of the equation. The authors also discuss the zig-zag symmetry of the loop operator. In the N = 4 gauge theory, they expect the zig-zag symmetry to hold when the loop does not couple the scalar fields in the supermultiplet. They will show how this is realized for the minimal surface.

  7. The minimal power spectrum: Higher order contributions

    NASA Technical Reports Server (NTRS)

    Fry, J. N.

    1994-01-01

    It has been an accepted belief for some time that gravity induces a minimal tail P(k) approximately k(exp 4) in the power spectrum as k approaches 0 for distributions with no initial power on large scales. In a recent numerical experiment with initial power confined to a restricted range in k, Shandarin and Melott (1990) found a k approaches 0 tail that at early stages of evolution behaves as k(exp 4) and grows with time as a(exp 4)(t), where a(t) is the cosmological expansion factor, and at late times depends on scale as k(exp 3) and grows with time as a(exp 2)(t). I compute analytically several contributions to the power spectrum of higher order than those included in earlier work, and I apply the results to the particular case of initial power restricted to a finite range of k. As expected, in the perturbative regime P(k) approximately a(exp 4)k(exp 4) from the first correction to linear perturbation theory is the dominant term as k approaches 0. Numerical investigations show that the higher order contributions go as k(exp 4) also. However, perturbation theory alone cannot tell whether the P approximately a(exp 2)k(exp 3) result is 'nonperturbative' or a numerical artifact.

  8. Bi-quartic parametric polynomial minimal surfaces

    NASA Astrophysics Data System (ADS)

    Kassabov, O.; Vlachkova, K.

    2015-10-01

    Minimal surfaces with isothermal parameters admitting Bézier representation were studied by Cosín and Monterde. They showed that, up to an affine transformation, the Enneper surface is the only bi-cubic isothermal minimal surface. Here we study bi-quartic isothermal minimal surfaces and establish the general form of their generating functions in the Weierstrass representation formula. We apply an approach proposed by Ganchev to compute the normal curvature and show that, in contrast to the bi-cubic case, there is a variety of bi-quartic isothermal minimal surfaces. Based on the Bézier representation we establish some geometric properties of the bi-quartic harmonic surfaces. Numerical experiments are visualized and presented to illustrate and support our results.

  9. Blackfolds, plane waves and minimal surfaces

    NASA Astrophysics Data System (ADS)

    Armas, Jay; Blau, Matthias

    2015-07-01

    Minimal surfaces in Euclidean space provide examples of possible non-compact horizon geometries and topologies in asymptotically flat space-time. On the other hand, the existence of limiting surfaces in the space-time provides a simple mechanism for making these configurations compact. Limiting surfaces appear naturally in a given space-time by making minimal surfaces rotate but they are also inherent to plane wave or de Sitter space-times in which case minimal surfaces can be static and compact. We use the blackfold approach in order to scan for possible black hole horizon geometries and topologies in asymptotically flat, plane wave and de Sitter space-times. In the process we uncover several new configurations, such as black helicoids and catenoids, some of which have an asymptotically flat counterpart. In particular, we find that the ultraspinning regime of singly-spinning Myers-Perry black holes, described in terms of the simplest minimal surface (the plane), can be obtained as a limit of a black helicoid, suggesting that these two families of black holes are connected. We also show that minimal surfaces embedded in spheres rather than Euclidean space can be used to construct static compact horizons in asymptotically de Sitter space-times.

  10. Minimal model for spoof acoustoelastic surface states

    SciTech Connect

    Christensen, J. Willatzen, M.; Liang, Z.

    2014-12-15

    Similar to textured perfect electric conductors for electromagnetic waves sustaining artificial or spoof surface plasmons we present an equivalent phenomena for the case of sound. Aided by a minimal model that is able to capture the complex wave interaction of elastic cavity modes and airborne sound radiation in perfect rigid panels, we construct designer acoustoelastic surface waves that are entirely controlled by the geometrical environment. Comparisons to results obtained by full-wave simulations confirm the feasibility of the model and we demonstrate illustrative examples such as resonant transmissions and waveguiding to show a few examples of many where spoof elastic surface waves are useful.

  11. Reflections concerning triply-periodic minimal surfaces.

    PubMed

    Schoen, Alan H

    2012-10-06

    In recent decades, there has been an explosion in the number and variety of embedded triply-periodic minimal surfaces (TPMS) identified by mathematicians and materials scientists. Only the rare examples of low genus, however, are commonly invoked as shape templates in scientific applications. Exact analytic solutions are now known for many of the low genus examples. The more complex surfaces are readily defined with numerical tools such as Surface Evolver software or the Landau-Ginzburg model. Even though table-top versions of several TPMS have been placed within easy reach by rapid prototyping methods, the inherent complexity of many of these surfaces makes it challenging to grasp their structure. The problem of distinguishing TPMS, which is now acute because of the proliferation of examples, has been addressed by Lord & Mackay (Lord & Mackay 2003 Curr. Sci. 85, 346-362).

  12. Reflections concerning triply-periodic minimal surfaces

    PubMed Central

    Schoen, Alan H.

    2012-01-01

    In recent decades, there has been an explosion in the number and variety of embedded triply-periodic minimal surfaces (TPMS) identified by mathematicians and materials scientists. Only the rare examples of low genus, however, are commonly invoked as shape templates in scientific applications. Exact analytic solutions are now known for many of the low genus examples. The more complex surfaces are readily defined with numerical tools such as Surface Evolver software or the Landau–Ginzburg model. Even though table-top versions of several TPMS have been placed within easy reach by rapid prototyping methods, the inherent complexity of many of these surfaces makes it challenging to grasp their structure. The problem of distinguishing TPMS, which is now acute because of the proliferation of examples, has been addressed by Lord & Mackay (Lord & Mackay 2003 Curr. Sci. 85, 346–362). PMID:24098851

  13. Bibliometric analysis of scientific contributions in minimally invasive general surgery.

    PubMed

    Antoniou, Stavros A; Lasithiotakis, Konstantinos; Koch, Oliver O; Antoniou, George A; Pointner, Rudolph; Granderath, Frank A

    2014-02-01

    Publication of scientific articles in peer-reviewed medical journals is considered as a measure of research productivity. The aim of the present study was to quantify the research contributions of different countries in minimally invasive surgery and to critically discuss the results under the prism of recent socioeconomic developments. The electronical archives of 4 major surgical journals (Annals of Surgery, British Journal of Surgery, Journal of the American College of Surgeons, and Surgical Endoscopy) were searched between 2009 and 2012. Publications on minimally invasive general surgery were assessed according to the country. A total of 6595 records were identified; 2160 articles were related to minimally invasive surgery. The volume of publication activity was evenly distributed in North America (34%) and Europe (39%). The United States (31%), the United Kingdom (7.6%), and Japan (6.7%) were the most productive countries. When adjusted for country population, the Netherlands (7.7/10), Denmark (4.4/10), and Switzerland (4.1/10) occupied the highest ranks. Although the United States dominates in terms of absolute number of publications, several smaller countries were more prolific, when the number of inhabitants was taken into account. The recent financial crisis is expected to undermine international collaborative conditions in the field of minimally invasive surgery. The need for a stepped-up international scientific collaboration is hereto highlighted.

  14. Lead from calcium supplements contributes minimally to blood lead concentrations

    NASA Astrophysics Data System (ADS)

    Gulson, B. L.; Mizon, K. J.; Palmer, J. M.; Korsch, M. J.; Taylor, A. J.

    2003-05-01

    We undertook a study using lead isotopes to determine the contribution of lead to blood from consumption of calcium supplements approximating the recommended daily intakes over a 6 month period. Subjects were subdivided into three groups. One treatment group (n=8) was administered a complex calcium supplement (carbonite/phosphate/citrate) and the other treatment group (n=7), calcium carbonate. The control group (n=6) received no supplementation. The lead isotopic compositions of the supplements were completely different from those of the blood of the subjects. Lead isotopic compositions for the complex supplement showed minimal change during treatment compared with pre-treatment. Lead isotopic compositions in blood for the calcium carbonate supplement showed increases of up to 0.5% in the ^{206}Pb/^{204}Pb ratio, and for all isotope ratios there was a statistically significant difference between bascline and treatment (p <0.005). Blood tead concentrations showed minimal changes.

  15. Elliptic surface grid generation on minimal and parametrized surfaces

    NASA Technical Reports Server (NTRS)

    Spekreijse, S. P.; Nijhuis, G. H.; Boerstoel, J. W.

    1995-01-01

    An elliptic grid generation method, which generates boundary conforming grids in a two dimensional physical space, is presented. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the Poisson grid generation system with control functions specified by the algebraic transformation. It is shown that the grid generation on a minimal surface in a three dimensional space is equivalent to the grid generation in a two dimensional domain in physical space. A second elliptic grid generation method, which generates boundary conforming grids on smooth surfaces, is presented. Concerning surface modeling, it is shown that bicubic Hermit interpolation is an excellent method to generate a smooth surface crossing a discrete set of control points.

  16. Elliptic surface grid generation on minimal and parmetrized surfaces

    NASA Technical Reports Server (NTRS)

    Spekreijse, S. P.; Nijhuis, G. H.; Boerstoel, J. W.

    1995-01-01

    An elliptic grid generation method is presented which generates excellent boundary conforming grids in domains in 2D physical space. The method is based on the composition of an algebraic and elliptic transformation. The composite mapping obeys the familiar Poisson grid generation system with control functions specified by the algebraic transformation. New expressions are given for the control functions. Grid orthogonality at the boundary is achieved by modification of the algebraic transformation. It is shown that grid generation on a minimal surface in 3D physical space is in fact equivalent to grid generation in a domain in 2D physical space. A second elliptic grid generation method is presented which generates excellent boundary conforming grids on smooth surfaces. It is assumed that the surfaces are parametrized and that the grid only depends on the shape of the surface and is independent of the parametrization. Concerning surface modeling, it is shown that bicubic Hermite interpolation is an excellent method to generate a smooth surface which is passing through a given discrete set of control points. In contrast to bicubic spline interpolation, there is extra freedom to model the tangent and twist vectors such that spurious oscillations are prevented.

  17. Minimal surfaces in AdS C-metric

    NASA Astrophysics Data System (ADS)

    Xu, Hao

    2017-10-01

    We shed some light on the field theory interpretation of C-metric by investigating the minimal surfaces which are homologous to the given boundary regions. The accelerating black holes change the asymptotic structure of the space-time. We focus on the geometry features of the minimal surface and study how deep it reaches into the bulk. The regularized area of the minimal surface is not well defined and we introduce a new quantity D (m ,θ0), defined as the minimal surface divided by the area of the given boundary region, to study the system.

  18. Computerized inspection of real surfaces and minimization of their deviations

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Zhang, Y.; Kuan, Chihping; Handschuh, R. F.

    1991-01-01

    A method is developed for the minimization of gear tooth surface deviations between theoretical and real surfaces for the improvement of precision of surface manufacture. Coordinate measurement machinery is used to determine a grid of surface coordinates. Theoretical calculations are made for the grid points. A least-square method is used to minimize the deviations between real and theoretical surfaces by altering the manufacturing machine-tool settings. An example is given for a hypoid gear.

  19. Minimizing Uncertainty in Cryogenic Surface Figure Measurement

    NASA Technical Reports Server (NTRS)

    Blake, Peter; Mink, Ronald G.; Chambers, John; Robinson, F. David; Content, David; Davila, Pamela

    2005-01-01

    A new facility at the Goddard Space Flight Center is designed to measure with unusual accuracy the surface figure of mirrors at cryogenic temperatures down to 12 K. The facility is currently configured for spherical mirrors with a radius of curvature (ROC) of 600 mm, and apertures of about 150 mm or less. The goals of the current experiment were to 1) Obtain the best possible estimate of test mirror surface figure, S(x,y) at 87 K and 20 K; 2) Obtain the best estimate of the cryo-change, Delta (x,y): the change in surface figure between room temperature and the two cryo-temperatures; and 3) Determine the uncertainty of these measurements, using the definitions and guidelines of the ISO Guide to the Expression of Uncertainty in Measurement. A silicon mirror was tested, and the cry-change from room temperature to 20K was found to be 3.7 nm rms, with a standard uncertainty of 0.23 nm in the rms statistic. Both the cryo-change figure and the uncertainty are among the lowest such figures yet published. This report describes the facilities, experimental methods, and uncertainty analysis of the measurements.

  20. Minimizing Uncertainty in Cryogenic Surface Figure Measurement

    NASA Technical Reports Server (NTRS)

    Blake, Peter; Mink, Ronald G.; Chambers, John; Robinson, F. David; Content, David; Davila, Pamela

    2005-01-01

    A new facility at the Goddard Space Flight Center is designed to measure with unusual accuracy the surface figure of mirrors at cryogenic temperatures down to 12 K. The facility is currently configured for spherical mirrors with a radius of curvature (ROC) of 600 mm, and apertures of about 150 mm or less. The goals of the current experiment were to 1) Obtain the best possible estimate of test mirror surface figure, S(x,y) at 87 K and 20 K; 2) Obtain the best estimate of the cryo-change, Delta (x,y): the change in surface figure between room temperature and the two cryo-temperatures; and 3) Determine the uncertainty of these measurements, using the definitions and guidelines of the ISO Guide to the Expression of Uncertainty in Measurement. A silicon mirror was tested, and the cry-change from room temperature to 20K was found to be 3.7 nm rms, with a standard uncertainty of 0.23 nm in the rms statistic. Both the cryo-change figure and the uncertainty are among the lowest such figures yet published. This report describes the facilities, experimental methods, and uncertainty analysis of the measurements.

  1. The problems of the minimal surface and minimal lineal measure in three dimensions

    SciTech Connect

    Christensen, R.M.

    1994-02-01

    A solution is given to the classical problem of the minimal surface in three dimensions formed from a repeating cell microstructure under isotropic conditions. The solution is found through a global/local minimization procedure and the resulting basic cell is composed of 14 faces. At the junctions where the intersections between faces meet at a point, half of the junctions involve 4 intersections and half involve 3 intersections. The same general solution also applies tot he related minimal lineal measure problem where the measure is that of the length of the intersections connecting the junctions. Some implications and applications for materials science are given.

  2. Minimizing the Reflection of Electromagnetic Waves by Surface Impedance.

    DTIC Science & Technology

    1986-07-01

    Chen2’ and G. Crosta3 ,** Technical Summary Report #2942 July 1986 ABSTRACT In an empty halfspace a point source emits electromagnetic waves of fixed...are determined by means of the geometrical optics approximation. An optimization method is used to compute the surface impedance, which minimizes a...given function of the e.m. fields (e.g. the average energy density) at a given observation point . The properties of the functions to be minimized are

  3. Triply periodic minimal surfaces decorated with curved graphite

    NASA Astrophysics Data System (ADS)

    Terrones, Humbeto; Mackay, Alan L.

    1993-05-01

    Hypothetical negatively curved structures derived from graphite are described, in which all carbon atoms rest on triply periodic minimal surfaces (TPMS). The D minimal surface was calculated using the Weierstrass representation. By applying the Bonnet transformation to the D surface, the gyroid and P surfaces were constructed. Curvatures, densities, lattice parameters and energies have been calculated for all structures. The absolute value of the maximum Gaussian curvature is smaller than that for C 60 fullerene. A new periodic graphite net with the same topology as the I-WP minimal surface, using 5-, 6- and 8-membered rings is found possible. The stability of 11 negatively curved graphitic structures has been determined using Tersoff's three-body potential. All the structures described are more stable than C 60,mainly because the 120° bond angles in ordinary graphite are almost preserved in the 7- and 8-membered carbon rings. The way is now open to explore the decoration of minimal surfaces with further arrangements of atoms of different elements.

  4. Minimal adhesion surface area in tangentially loaded digital contacts.

    PubMed

    Terekhov, Alexander V; Hayward, Vincent

    2011-09-02

    The stick-to-slip transition of a fingertip in contact with a planar surface does not occur instantaneously. As the tangential load increases, portions of the skin adhere while others slip, giving rise to an evolution of the contact state, termed partial slip. We develop a quasi-static model that predicts that if the coefficient of kinetic friction is larger than the coefficient of static friction, then the stuck surface area diminishes as the tangential load increases until reaching a 'minimal adhesion surface area' where it vanishes abruptly. This phenomenon was observed in recently measured finger-slip image data (André et al., 2011) that were processed by an optic flow detection algorithm. We examined the results of 10 trials. Four of them exhibited the minimal adhesion surface area phenomenon, four of them did not, and two were inconclusive.

  5. Triply periodic minimal and constant mean curvature surfaces

    PubMed Central

    Grosse-Brauckmann, Karsten

    2012-01-01

    We want to summarize some established results on periodic surfaces which are minimal or have constant mean curvature, along with some recent results. We will do this from a mathematical point of view with a general readership in mind. PMID:24098842

  6. Tensorial Minkowski functionals of triply periodic minimal surfaces

    PubMed Central

    Mickel, Walter; Schröder-Turk, Gerd E.; Mecke, Klaus

    2012-01-01

    A fundamental understanding of the formation and properties of a complex spatial structure relies on robust quantitative tools to characterize morphology. A systematic approach to the characterization of average properties of anisotropic complex interfacial geometries is provided by integral geometry which furnishes a family of morphological descriptors known as tensorial Minkowski functionals. These functionals are curvature-weighted integrals of tensor products of position vectors and surface normal vectors over the interfacial surface. We here demonstrate their use by application to non-cubic triply periodic minimal surface model geometries, whose Weierstrass parametrizations allow for accurate numerical computation of the Minkowski tensors. PMID:24098847

  7. Delivery of minimally dispersed liquid interfaces for sequential surface chemistry.

    PubMed

    Ostromohov, N; Bercovici, M; Kaigala, G V

    2016-08-02

    We present a method for sequential delivery of reagents to a reaction site with minimal dispersion of their interfaces. Using segmented flow to encapsulate the reagents as droplets, the dispersion between reagent plugs remains confined in a limited volume, while being transmitted to the reaction surface. In close proximity to the target surface, we use a passive array of microstructures for removal of the oil phase such that the original reagent sequence is reconstructed, and only the aqueous phase reaches the reaction surface. We provide a detailed analysis of the conditions under which the method can be applied and demonstrate maintaining a transition time of 560 ms between reagents transported to a reaction site over a distance of 60 cm. We implemented the method using a vertical microfluidic probe on an open surface, allowing contact-free interaction with biological samples, and demonstrated two examples of assays implemented using the method: measurements of receptor-ligand reaction kinetics and of the fluorescence response of immobilized GFP to local variations in pH. We believe that the method can be useful for studying the dynamic response of cells and proteins to various stimuli, as well as for highly automated multi-step assays.

  8. Nodal surface approximations to the P, G, D and I-WP triply periodic minimal surfaces

    NASA Astrophysics Data System (ADS)

    Gandy, Paul J. F.; Bardhan, Sonny; Mackay, Alan L.; Klinowski, Jacek

    2001-03-01

    The cubic P, G, D and I-WP triply periodic minimal surfaces (TPMS) may be closely approximated using periodic nodal surfaces (PNS) with few Fourier terms, thus enabling easy generation of TPMS for use in various chemical and physical applications. The accuracy of such approximations is quantitatively discussed and represented visually using a colour coding.

  9. Supergravity contributions to inflation in models with non-minimal coupling to gravity

    NASA Astrophysics Data System (ADS)

    Das, Kumar; Domcke, Valerie; Dutta, Koushik

    2017-03-01

    This paper provides a systematic study of supergravity contributions relevant for inflationary model building in Jordan frame supergravity. In this framework, canonical kinetic terms in the Jordan frame result in the separation of the Jordan frame scalar potential into a tree-level term and a supergravity contribution which is potentially dangerous for sustaining inflation. We show that if the vacuum energy necessary for driving inflation originates dominantly from the F-term of an auxiliary field (i.e. not the inflaton), the supergravity corrections to the Jordan frame scalar potential are generically suppressed. Moreover, these supergravity contributions identically vanish if the superpotential vanishes along the inflationary trajectory. On the other hand, if the F-term associated with the inflaton dominates the vacuum energy, the supergravity contributions are generically comparable to the globally supersymmetric contributions. In addition, the non-minimal coupling to gravity inherent to Jordan frame supergravity significantly impacts the inflationary model depending on the size and sign of this coupling. We discuss the phenomenology of some representative inflationary models, and point out the relation to the recently much discussed cosmological `attractor' models.

  10. Polymeric membranes: surface modification for minimizing (bio)colloidal fouling.

    PubMed

    Kochkodan, Victor; Johnson, Daniel J; Hilal, Nidal

    2014-04-01

    This paper presents an overview on recent developments in surface modification of polymer membranes for reduction of their fouling with biocolloids and organic colloids in pressure driven membrane processes. First, colloidal interactions such as London-van der Waals, electrical, hydration, hydrophobic, steric forces and membrane surface properties such as hydrophilicity, charge and surface roughness, which affect membrane fouling, have been discussed and the main goals of the membrane surface modification for fouling reduction have been outlined. Thereafter the recent studies on reduction of (bio)colloidal of polymer membranes using ultraviolet/redox initiated surface grafting, physical coating/adsorption of a protective layer on the membrane surface, chemical reactions or surface modification of polymer membranes with nanoparticles as well as using of advanced atomic force microscopy to characterize (bio)colloidal fouling have been critically summarized. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Slippery surfaces of pitcher plants: Nepenthes wax crystals minimize insect attachment via microscopic surface roughness.

    PubMed

    Scholz, I; Bückins, M; Dolge, L; Erlinghagen, T; Weth, A; Hischen, F; Mayer, J; Hoffmann, S; Riederer, M; Riedel, M; Baumgartner, W

    2010-04-01

    Pitcher plants of the genus Nepenthes efficiently trap and retain insect prey in highly specialized leaves. Besides a slippery peristome which inhibits adhesion of insects they employ epicuticular wax crystals on the inner walls of the conductive zone of the pitchers to hamper insect attachment by adhesive devices. It has been proposed that the detachment of individual crystals and the resulting contamination of adhesive organs is responsible for capturing insects. However, our results provide evidence in favour of a different mechanism, mainly based on the stability and the roughness of the waxy surface. First, we were unable to detect a large quantity of crystal fragments on the pads of insects detached from mature pitcher surfaces of Nepenthes alata. Second, investigation of the pitcher surface by focused ion beam treatment showed that the wax crystals form a compact 3D structure. Third, atomic force microscopy of the platelet-shaped crystals revealed that the crystals are mechanically stable, rendering crystal detachment by insect pads unlikely. Fourth, the surface profile parameters of the wax layer showed striking similarities to those of polishing paper with low grain size. By measuring friction forces of insects on this artificial surface we demonstrate that microscopic roughness alone is sufficient to minimize insect attachment. A theoretical model shows that surface roughness within a certain length scale will prevent adhesion by being too rough for adhesive pads but not rough enough for claws.

  12. Brain and Surface Warping via Minimizing Lipschitz Extensions (PREPRINT)

    DTIC Science & Technology

    2006-01-01

    presentation of the framework is complemented with examples on synthetic geometric phantoms and cortical surfaces extracted from human brain MRI scans. 15... geometric phantoms and cortical surfaces extracted from human brain MRI scans. 1 Introduction Brain warping, a form of brain image registration and... geometric pattern matching, is one of the most funda- mental and thereby most studied problems in computa- tional brain imaging [37]. Brain images are

  13. Hot-rolling nanowire transparent electrodes for surface roughness minimization.

    PubMed

    Hosseinzadeh Khaligh, Hadi; Goldthorpe, Irene A

    2014-01-01

    Silver nanowire transparent electrodes are a promising alternative to transparent conductive oxides. However, their surface roughness presents a problem for their integration into devices with thin layers such as organic electronic devices. In this paper, hot rollers are used to soften plastic substrates with heat and mechanically press the nanowires into the substrate surface. By doing so, the root-mean-square surface roughness is reduced to 7 nm and the maximum peak-to-valley value is 30 nm, making the electrodes suitable for typical organic devices. This simple process requires no additional materials, which results in a higher transparency, and is compatible with roll-to-roll fabrication processes. In addition, the adhesion of the nanowires to the substrate significantly increases.

  14. Minimizing Cache Misses Using Minimum-Surface Bodies

    NASA Technical Reports Server (NTRS)

    Frumkin, Michael; VanderWijngaart, Rob; Biegel, Bryan (Technical Monitor)

    2002-01-01

    A number of known techniques for improving cache performance in scientific computations involve the reordering of the iteration space. Some of these reorderings can be considered as coverings of the iteration space with the sets having good surface-to-volume ratio. Use of such sets reduces the number of cache misses in computations of local operators having the iteration space as a domain. First, we derive lower bounds which any algorithm must suffer while computing a local operator on a grid. Then we explore coverings of iteration spaces represented by structured and unstructured grids which allow us to approach these lower bounds. For structured grids we introduce a covering by successive minima tiles of the interference lattice of the grid. We show that the covering has low surface-to-volume ratio and present a computer experiment showing actual reduction of the cache misses achieved by using these tiles. For planar unstructured grids we show existence of a covering which reduces the number of cache misses to the level of structured grids. On the other hand, we present a triangulation of a 3-dimensional cube such that any local operator on the corresponding grid has significantly larger number of cache misses than a similar operator on a structured grid.

  15. Nonzero Ideal Gas Contribution to the Surface Tension of Water.

    PubMed

    Sega, Marcello; Fábián, Balázs; Jedlovszky, Pál

    2017-06-15

    Surface tension, the tendency of fluid interfaces to behave elastically and minimize their surface, is routinely calculated as the difference between the lateral and normal components of the pressure or, invoking isotropy in momentum space, of the virial tensor. Here we show that the anisotropy of the kinetic energy tensor close to a liquid-vapor interface can be responsible for a large part of its surface tension (about 15% for water, independent from temperature).

  16. Surface Contour Radar (SCR) contributions to FASINEX

    NASA Technical Reports Server (NTRS)

    Walsh, E. J.

    1988-01-01

    The SCR was asked to participate in the Frontal Air-Sea Interaction Experiment (FASINEX) to provide directional wave spectra. The NASA P-3 carrying the SCR, the Radar Ocean Wave Spectrometer, and the Airborne Oceanographic Lidar was one of five aircrafts and two ocean research ships participating in this coordinated study of the air sea interaction in the vicinity of a sea surface temperature front near 28 deg N, 70 deg W. Analysis of data from the February 1986 experiment is still ongoing, but results already submitted for publication strengthen the hypothesis that off-nadir radar backscatter is closely correlated to wind stress. The SCR provided valuable information on the directional wave spectrum and its spatial variation.

  17. Minimization of deviations of gear real tooth surfaces determined by coordinate measurements

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Kuan, C.; Wang, J.-C.; Handschuh, R. F.; Masseth, J.; Maruyama, N.

    1992-01-01

    The deviations of a gear's real tooth surface from the theoretical surface are determined by coordinate measurements at the grid of the surface. A method was developed to transform the deviations from Cartesian coordinates to those along the normal at the measurement locations. Equations are derived that relate the first order deviations with the adjustment to the manufacturing machine-tool settings. The deviations of the entire surface are minimized. The minimization is achieved by application of the least-square method for an overdetermined system of linear equations. The proposed method is illustrated with a numerical example for hypoid gear and pinion.

  18. Environmental issues in urban settings: Contributions of geology to conflict minimization

    SciTech Connect

    Vitek, J.D. ); Giardino, J.R. )

    1992-01-01

    Human utilization of the surface of the earth reaches maximum intensity in high density urban areas. Structures, roads, and parking lots conceal the surface and its numerous characteristics from view. Residents of urban environments quickly forget (assuming they knew in the first place) the importance of the land surface upon which they function daily. Although rivers and the shoreline are seldom lost to view, they are treated as static rather than dynamic phenomena. Earthquakes and landslides, geologic events which easily destroy urban structures, are infrequent events which contribute to human denial of potential impact. Geologists have a critical role to play in educating urban decision-makers about the geologic characteristics that are unique to each city. Two decades ago Robert F. Leggett developed the general concept of the interrelationships between geology and urban settings in his book Cities and Geology''. Geologic characteristics, including age and bedrock lithology and earthquake potential, in conjunction with geomorphic phenomena, including river floods, sea-level fluctuation from tides and storms, mass movement, and soil dynamics, comprise the most fundamental data in terms of developing a geologically safe urban environment and insuring safety during periods of growth and expansion. The unique setting of every city requires similar studies being repeated at each location. Urban decision makers must promote the use of geologic knowledge in all city activities.

  19. Surface states of a system of Dirac fermions: A minimal model

    SciTech Connect

    Volkov, V. A. Enaldiev, V. V.

    2016-03-15

    A brief survey is given of theoretical works on surface states (SSs) in Dirac materials. Within the formalism of envelope wave functions and boundary conditions for these functions, a minimal model is formulated that analytically describes surface and edge states of various (topological and nontopological) types in several systems with Dirac fermions (DFs). The applicability conditions of this model are discussed.

  20. Surface and bulk contribution to Cu(111) quantum efficiency

    SciTech Connect

    Pedersoli, Emanuele; Greaves, Corin Michael Ricardo; Wan, Weishi; Coleman-Smith, Christopher; Padmore, Howard A.; Pagliara, Stefania; Cartella, Andrea; Lamarca, Fabrizio; Ferrini, Gabriele; Galimberti, Gianluca; Montagnese, Matteo; dal Conte, Stefano; Parmigiani, Fulvio

    2008-11-04

    The quantum efficiency (QE) of Cu(111) is measured for different impinging light angles with photon energies just above the work function. We observe that the vectorial photoelectric effect, an enhancement of the QE due to illumination with light with an electric vector perpendicular to the sample surface, is stronger in the more surface sensitive regime. This can be explained by a contribution to photoemission due to the variation in the electromagnetic potential at the surface. The contributions of bulk and surface electrons can then be determined.

  1. Determination of real machine-tool settings and minimization of real surface deviation by computerized inspection

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Kuan, Chihping; Zhang, YI

    1991-01-01

    A numerical method is developed for the minimization of deviations of real tooth surfaces from the theoretical ones. The deviations are caused by errors of manufacturing, errors of installment of machine-tool settings and distortion of surfaces by heat-treatment. The deviations are determined by coordinate measurements of gear tooth surfaces. The minimization of deviations is based on the proper correction of initially applied machine-tool settings. The contents of accomplished research project cover the following topics: (1) Descriptions of the principle of coordinate measurements of gear tooth surfaces; (2) Deviation of theoretical tooth surfaces (with examples of surfaces of hypoid gears and references for spiral bevel gears); (3) Determination of the reference point and the grid; (4) Determination of the deviations of real tooth surfaces at the points of the grid; and (5) Determination of required corrections of machine-tool settings for minimization of deviations. The procedure for minimization of deviations is based on numerical solution of an overdetermined system of n linear equations in m unknowns (m much less than n ), where n is the number of points of measurements and m is the number of parameters of applied machine-tool settings to be corrected. The developed approach is illustrated with numerical examples.

  2. The topological molecule: Its finite fluxes, exchange stability and minimal surfaces

    NASA Astrophysics Data System (ADS)

    Thomas, Gerald F.

    2016-03-01

    Molecules have at least one nontrivial topological property in common: their minimal surfaces of finite flux. This is why they are stable aggregates of atoms mutually engaged to varying degrees via Coulombic and exchange interactions in fealty to quantum mechanics on otherwise passive nuclear scaffolds. Isolated atoms do not have minimal surfaces but they do undergo exchange interactions. All surfaces implicitly defined by a molecule’s charge density are shown to have zero mean curvature and are consequently minimal surfaces. This finding extends to any potential of a molecule. The minimal surface is of importance in that it is indicative of a vanishing mean curvature whose measurement serves as a way of gauging the charge density or electrostatic potential’s local reliability, a quality assurance protocol absent in conventional crystallography but available to scanning force microscopy. The smaller the mean curvature of an atom, the more bonded is that atom in a molecule. The basis for this discovery is that implicit surfaces admit finite flux to cross them regardless of atomic affiliation, thus engendering exchange, correlation, and chemical bonding between the atoms in the underlying nuclear framework of a molecule. Finite flux in the charge density is a necessary condition for chemical bonding and the stability of molecules and is what makes the electron localization function (ELF) and the exchange-correlation functional (BLYP) useful.

  3. Chemical Contribution to Surface-Enahanced Raman Scattering

    SciTech Connect

    Persson, Bo Nils J; Zhao, Ke; Zhang, Zhenyu

    2006-01-01

    We present a new mechanism for the chemical contribution to surface-enhanced Raman scattering (SERS). The theory considers the modulation of the polarizability of a metal nanocluster or a flat metal surface by the vibrational motion of an adsorbed molecule. The modulated polarization of the substrate coupled with the incident light will contribute to the Raman scattering enhancement. We show that for a metal cluster and for a flat metal surface this new chemical contribution may enhance the Raman scattering intensity by a factor of {approx} 10{sup 2} and {approx}10{sup 4}, respectively. The new SERS process is determined by the electric field parallel to the surface of the metal substrate at the molecular binding site.

  4. Minimal intervention dentistry II: part 1. Contribution of the operating microscope to dentistry.

    PubMed

    Sitbon, Y; Attathom, T; St-Georges, A J

    2014-02-01

    The different aspects of treatment of periodontal disease and mucogingival defects all require an accurate diagnosis in addition to good control and precision during therapeutic procedures. Magnification aids and microsurgery, combined with minimally invasive techniques, can best meet these requirements. The suitability of treatment, the healing time, pain levels and postoperative scarring are all improved and the patient benefits.

  5. Tailored surface free energy of membrane diffusers to minimize microbial adhesion

    NASA Astrophysics Data System (ADS)

    Zhao, Q.; Wang, S.; Müller-Steinhagen, H.

    2004-05-01

    Biofouling is considered to be the limiting factor of the majority of membrane processes. Since microbial adhesion is a prerequisite for membrane biofouling, prevention of microbial adhesion and colonization on the membrane surfaces will have a major impact in preventing biofouling. In this paper the effects of surface free energies on bacterial adhesion were investigated and the optimum surface free energy of membranes on which bacterial adhesion force is minimal was obtained. A graded nickel-polytetrafluoroethylene (PTFE) composite coating technique was used to tailor the surface free energy of membrane diffusers to the optimum value. Initial experimental results showed that these coatings reduced microbial adhesion by 68-94%.

  6. Formal Killing fields for minimal Lagrangian surfaces in complex space forms

    NASA Astrophysics Data System (ADS)

    Wang, Joe S.

    2017-04-01

    The differential system for minimal Lagrangian surfaces in a 2C-dimensional, non-flat, complex space form is an elliptic integrable system defined on the Grassmann bundle of oriented Lagrangian 2-planes. This is a 6-symmetric space associated with the Lie group SL(3 , C) , and the minimal Lagrangian surfaces arise as the primitive maps. Utilizing this property, we derive the inductive differential algebraic formulas for a pair of the formal loop algebra sl(3 , C) [ [ λ ] ] -valued canonical formal Killing fields. For applications, (a) we give a complete classification of the (pseudo) Jacobi fields for the minimal Lagrangian system, (b) we obtain an infinite sequence of conservation laws from the components of the canonical formal Killing fields.

  7. A new proof of the interior gradient bound for the minimal surface equation in N dimensions.

    PubMed

    Trudinger, N S

    1972-04-01

    An interior gradient bound for classical solutions of the minimal surface equation in n variables was established by Bombieri, De Giorgi, and Miranda in 1968. We provide a new and simpler derivation of this estimate and partly develop in the process some new techniques applicable to the study of hypersurfaces in general.

  8. Minimal area surfaces dual to Wilson loops and the Mathieu equation

    NASA Astrophysics Data System (ADS)

    Huang, Changyu; He, Yifei; Kruczenski, Martin

    2016-08-01

    The AdS/CFT correspondence relates Wilson loops in {N}=4 SYM to minimal area surfaces in AdS 5 × S 5 space. Recently, a new approach to study minimal area surfaces in AdS 3 ⊂ AdS 5 was discussed based on a Schroedinger equation with a periodic potential determined by the Schwarzian derivative of the shape of the Wilson loop. Here we use the Mathieu equation, a standard example of a periodic potential, to obtain a class of Wilson loops such that the area of the dual minimal area surface can be computed analytically in terms of eigenvalues of such equation. As opposed to previous examples, these minimal surfaces have an umbilical point (where the principal curvatures are equal) and are invariant under λ-deformations. In various limits they reduce to the single and multiple wound circular Wilson loop and to the regular light-like polygons studied by Alday and Maldacena. In this last limit, the periodic potential becomes a series of deep wells each related to a light-like segment. Small corrections are described by a tight-binding approximation. In the circular limit they are well approximated by an expansion developed by A. Dekel. In the particular case of no umbilical points they reduce to a previous solution proposed by J. Toledo. The construction works both in Euclidean and Minkowski signature of AdS 3.

  9. The study about forming high-precision optical lens minimalized sinuous error structures for designed surface

    NASA Astrophysics Data System (ADS)

    Katahira, Yu; Fukuta, Masahiko; Katsuki, Masahide; Momochi, Takeshi; Yamamoto, Yoshihiro

    2016-09-01

    Recently, it has been required to improve qualities of aspherical lenses mounted on camera units. Optical lenses in highvolume production generally are applied with molding process using cemented carbide or Ni-P coated steel, which can be selected from lens material such as glass and plastic. Additionally it can be obtained high quality of the cut or ground surface on mold due to developments of different mold product technologies. As results, it can be less than 100nmPV as form-error and 1nmRa as surface roughness in molds. Furthermore it comes to need higher quality, not only formerror( PV) and surface roughness(Ra) but also other surface characteristics. For instance, it can be caused distorted shapes at imaging by middle spatial frequency undulations on the lens surface. In this study, we made focus on several types of sinuous structures, which can be classified into form errors for designed surface and deteriorate optical system performances. And it was obtained mold product processes minimalizing undulations on the surface. In the report, it was mentioned about the analyzing process by using PSD so as to evaluate micro undulations on the machined surface quantitatively. In addition, it was mentioned that the grinding process with circumferential velocity control was effective for large aperture lenses fabrication and could minimalize undulations appeared on outer area of the machined surface, and mentioned about the optical glass lens molding process by using the high precision press machine.

  10. Instability of a Möbius strip minimal surface and a link with systolic geometry.

    PubMed

    Pesci, Adriana I; Goldstein, Raymond E; Alexander, Gareth P; Moffatt, H Keith

    2015-03-27

    We describe the first analytically tractable example of an instability of a nonorientable minimal surface under parametric variation of its boundary. A one-parameter family of incomplete Meeks Möbius surfaces is defined and shown to exhibit an instability threshold as the bounding curve is opened up from a double-covering of the circle. Numerical and analytical methods are used to determine the instability threshold by solution of the Jacobi equation on the double covering of the surface. The unstable eigenmode shows excellent qualitative agreement with that found experimentally for a closely related surface. A connection is proposed between systolic geometry and the instability by showing that the shortest noncontractable closed geodesic on the surface (the systolic curve) passes near the maximum of the unstable eigenmode.

  11. Surface curvature in triply-periodic minimal surface architectures as a distinct design parameter in preparing advanced tissue engineering scaffolds.

    PubMed

    Blanquer, Sébastien B G; Werner, Maike; Hannula, Markus; Sharifi, Shahriar; Lajoinie, Guillaume P R; Eglin, David; Hyttinen, Jari; Poot, André A; Grijpma, Dirk W

    2017-04-12

    Reproduction of the anatomical structures and functions of tissues using cells and designed 3D scaffolds is an ongoing challenge. For this, scaffolds with appropriate biomorphic surfaces promoting cell attachment, proliferation and differentiation are needed. In this study, eight triply-periodic minimal surface (TPMS)-based scaffolds were designed using specific trigonometric equations, providing the same porosity and the same number of unit cells, while presenting different surface curvatures. The scaffolds were fabricated by stereolithography using a photocurable resin based on the biocompatible, biodegradable and rubber-like material, poly(trimethylene carbonate) (PTMC). A numerical approach was developed to calculate the surface curvature distributions of the TPMS architectures. Moreover, the scaffolds were characterized by scanning electron microscopy, micro-computed tomography and water permeability measurements. These original scaffold architectures will be helpful to decipher the biofunctional role of the surface curvature of scaffolds intended for tissue engineering applications.

  12. Porin polypeptide contributes to surface charge of gonococci.

    PubMed Central

    Swanson, J; Dorward, D; Lubke, L; Kao, D

    1997-01-01

    Each strain of Neisseria gonorrhoeae elaborates a single porin polypeptide, with the porins expressed by different strains comprising two general classes, Por1A and Por1B. In the outer membrane, each porin molecule folds into 16 membrane-spanning beta-strands joined by top- and bottom-loop domains. Por1A and Por1B have similar membrane-spanning regions, but the eight surface-exposed top loops (I to VIII) differ in length and sequence. To determine whether porins, and especially their top loop domains, contribute to bacterial cell surface charge, strain MS11 gonococci that were identical except for expressing a recombinant Por1A, Por1B, or mosaic Por1A-1B polypeptide were compared by whole-cell electrophoresis. These porin variants displayed different electrophoretic mobilities that correlated with the net numbers of charged amino acids within surface-exposed loops of their respective porin polypeptides. The susceptibilities of porin variants to polyanionic sulfated polymers correlated roughly with gonococcal surface charge; those porin variants with diminished surface negativity showed increased sensitivity to the polyanionic sulfated compounds. These observations indicate that porin polypeptides in situ contribute to the surface charge of gonococci, and they suggest that the bacterium's interactions with large sulfated compounds are thereby affected. PMID:9171398

  13. Contribution of sunflecks is minimal in expanding shrub thickets compared to temperate forest.

    PubMed

    Brantley, Steven T; Young, Donald R

    2009-04-01

    Ecological consequences of shrub encroachment are emerging as a key issue in the study of global change. In mesic grasslands, shrub encroachment can result in a fivefold increase in ecosystem leaf area index (LAI) and a concurrent reduction in understory light and herbaceous diversity. LAI and light attenuation are often higher for shrub thickets than for forest communities in the same region, yet little is known about the contribution of sunflecks in shrub-dominated systems. Our objective was to compare fine-scale spatial and temporal dynamics of understory light in shrub thickets to the light environment in typical forest communities. We used an array of quantum sensors to examine variation in diffuse and direct light and determined the relative contribution of sunflecks during midday in Morella cerifera shrub thickets, a 30-yr-old abandoned Pinus taeda plantation, and a mature, second-growth, deciduous forest. Instantaneous photosynthetic photon flux density (PPFD) was measured at 1-s intervals at five sites in each community during midday. In summer, understory light during midday in shrub thickets was approximately 0.8% of above-canopy light, compared to 1.9% and 5.4% in pine and deciduous forests, respectively. During summer, PPFD was uncorrelated between sensors as close as 0.075 m in shrub thickets compared to 0.175 m and 0.900 m in pine and deciduous forests, respectively, indicating that sunflecks in shrub thickets were generally small compared to sunflecks in the two forests. Sunflecks in shrub thickets were generally short (all <30 s) and relatively low in intensity (<150 micromol photons x m(-2) x s(-1)) and contributed only 5% of understory light during midday. Sunflecks were longer (up to 6 minutes) and more intense (up to 350 micromol photons x m(-2) x s(-1)) in the two forest communities and Contributed 31% and 22% of understory light during midday in pine and deciduous forest, respectively. The combination of high LAI and relatively short

  14. Selective Labelling of Cell-surface Proteins using CyDye DIGE Fluor Minimal Dyes

    PubMed Central

    Hagner-McWhirter, Asa; Winkvist, Maria; Bourin, Stephanie; Marouga, Rita

    2008-01-01

    Surface proteins are central to the cell's ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods. PMID:19066531

  15. Selective labelling of cell-surface proteins using CyDye DIGE Fluor minimal dyes.

    PubMed

    Hagner-McWhirter, Asa; Winkvist, Maria; Bourin, Stephanie; Marouga, Rita

    2008-11-26

    Surface proteins are central to the cell's ability to react to its environment and to interact with neighboring cells. They are known to be inducers of almost all intracellular signaling. Moreover, they play an important role in environmental adaptation and drug treatment, and are often involved in disease pathogenesis and pathology (1). Protein-protein interactions are intrinsic to signaling pathways, and to gain more insight in these complex biological processes, sensitive and reliable methods are needed for studying cell surface proteins. Two-dimensional (2-D) electrophoresis is used extensively for detection of biomarkers and other targets in complex protein samples to study differential changes. Cell surface proteins, partly due to their low abundance (1 2% of cellular proteins), are difficult to detect in a 2-D gel without fractionation or some other type of enrichment. They are also often poorly represented in 2-D gels due to their hydrophobic nature and high molecular weight (2). In this study, we present a new protocol for intact cells using CyDye DIGE Fluor minimal dyes for specific labeling and detection of this important group of proteins. The results showed specific labeling of a large number of cell surface proteins with minimal labeling of intracellular proteins. This protocol is rapid, simple to use, and all three CyDye DIGE Fluor minimal dyes (Cy 2, Cy 3 and Cy 5) can be used to label cell-surface proteins. These features allow for multiplexing using the 2-D Fluorescence Difference Gel Electrophoresis (2-D DIGE) with Ettan DIGE technology and analysis of protein expression changes using DeCyder 2-D Differential Analysis Software. The level of cell-surface proteins was followed during serum starvation of CHO cells for various lengths of time (see Table 1). Small changes in abundance were detected with high accuracy, and results are supported by defined statistical methods.

  16. Some comments on spacelike minimal surfaces with null polygonal boundaries in AdS m

    NASA Astrophysics Data System (ADS)

    Dorn, Harald

    2010-02-01

    We discuss some geometrical issues related to spacelike minimal surfaces in AdS m with null polygonal boundaries at conformal infinity. In particular for AdS 4, two holomorphic input functions for the Pohlmeyer reduced system are identified. This system contains two coupled differential equations for two functions α left( {z,bar z} right) and β left( {z,bar z} right) , related to curvature and torsion of the surface. Furthermore, we conjecture that, for a polynomial choice of the two holomorphic functions, the relative positions of their zeros encode the conformal invariant data of the boundary null 2 n-gon.

  17. Contribution of the surface layer turbulence at Maidanak observatory

    NASA Astrophysics Data System (ADS)

    Ilyasov, S.

    2006-08-01

    The results of night-time microthermal measurements of surface layer optical turbulence at Maidanak observatory in Uzbekistan are presented. The measurements were carried out in July-August 2002 using the micro temperature sensors developed at the University of Nice. Temperature sensors were installed on 8 levels between 3.0 and 25.5m on the preinstalled meteorological mast. Simultaneous measurements of total seeing by Differential Image Motion Monitor (DIMM) allow us estimate the surface layer contribution to the total seeing - was found to be about 8%. The meteorological data, obtained at the same height as DIMM were used to estimate the relation of surface layer turbulence optical intensity to wind speed. It was found that during low wind speed (<0.5 m/s) or calm (windless) weather conditions surface layer turbulence increased which causes the deterioration of the total seeing.

  18. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick; Johnson, Benjamin T.

    2010-01-01

    Physically-based passive microwave precipitation retrieval algorithms require a set of relationships between satellite observed brightness temperatures (TB) and the physical state of the underlying atmosphere and surface. These relationships are typically non-linear, such that inversions are ill-posed especially over variable land surfaces. In order to better understand these relationships, this work presents a theoretical analysis using brightness temperature weighting functions to quantify the percentage of the TB resulting from absorption/emission/reflection from the surface, absorption/emission/scattering by liquid and frozen hydrometeors in the cloud, the emission from atmospheric water vapor, and other contributors. The results are presented for frequencies from 10 to 874 GHz and for several individual precipitation profiles as well as for three cloud resolving model simulations of falling snow. As expected, low frequency channels (<89 GHz) respond to liquid hydrometeors and the surface, while the higher frequency channels become increasingly sensitive to ice hydrometeors and the water vapor sounding channels react to water vapor in the atmosphere. Low emissivity surfaces (water and snow-covered land) permit energy downwelling from clouds to be reflected at the surface thereby increasing the percentage of the TB resulting from the hydrometeors. The slant path at a 53deg viewing angle increases the hydrometeor contributions relative to nadir viewing channels and show sensitivity to surface polarization effects. The TB percentage information presented in this paper answers questions about the relative contributions to the brightness temperatures and provides a key piece of information required to develop and improve precipitation retrievals over land surfaces.

  19. Near-Surface Electronic Contribution to Semiconductor Elasticity

    NASA Astrophysics Data System (ADS)

    Lin, J. T.; Shuvra, P. D.; McNamara, S.; Gong, H.; Liao, W.; Davidson, J. L.; Walsh, K. M.; Alles, M. L.; Alphenaar, B. W.

    2017-09-01

    The influence of the carrier concentration on the elasticity is measured for a microscale silicon resonator. UV radiation is used to generate a surface charge that gates the underlying carrier concentration, as indicated by the device resistance. Correlated with the carrier concentration change is a drop in the resonant frequency that persists for 60 h following exposure. Model calculations show that the change in resonant frequency is due to the modification of the elastic modulus in the near-surface region. This effect becomes increasingly important as device dimensions are reduced to the nanometer scale, and contributes an important source of instability for microscale and nanoscale electromechanical devices operating in radiation environments.

  20. Minimally invasive surgery fellowship graduates: Their demographics, practice patterns, and contributions.

    PubMed

    Park, Adrian E; Sutton, Erica R H; Heniford, B Todd

    2015-12-01

    Fellowship opportunities in minimally invasive surgery, bariatric, gastrointestinal, and hepatobiliary arose to address unmet training needs. The large cohort of non-Accreditation Council for Graduate Medical Education -accredited fellowship graduates (NACGMEG) has been difficult to track. In this, the largest survey of graduates to date, our goal was to characterize this unique group's demographics and professional activities. A total of 580 NACGMEG were surveyed covering 150 data points: demographics, practice patterns, academics, lifestyle, leadership, and maintenance of certification. Of 580 previous fellows, 234 responded. Demographics included: average age 37 years, 84% male, 75% in urban settings, 49% in purely academic practice, and 58% in practice <5 years. They averaged 337 operating room cases/year (approximately 400/year for private practice vs 300/year for academic). NACGMEG averaged 100 flexible endoscopies/year (61 esophagogastroduodenoscopies, 39 colon). In the past 24 months, 60% had submitted abstracts to a national meeting, and 54% submitted manuscripts to peer-reviewed journals. Subset analyses revealed relevant relationships. There was high satisfaction (98%) that their fellowship experience met expectations; 78% termed their fellowships, versus 50% for residencies, highly pertinent to their current practices. 63% of previous fellows occupy local leadership roles, and most engage in maintenance of certification activities. Fellowship alumnae appear to be productive contributors to American surgery. They are clinically and academically active, believe endoscopy is important, have adopted continuous learning, and most assume work leadership roles. The majority acknowledge their fellowship training as having met expectations and uniquely equipping them for their current practice. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Iridescent flowers? Contribution of surface structures to optical signaling.

    PubMed

    van der Kooi, Casper J; Wilts, Bodo D; Leertouwer, Hein L; Staal, Marten; Elzenga, J Theo M; Stavenga, Doekele G

    2014-07-01

    The color of natural objects depends on how they are structured and pigmented. In flowers, both the surface structure of the petals and the pigments they contain determine coloration. The aim of the present study was to assess the contribution of structural coloration, including iridescence, to overall floral coloration. We studied the reflection characteristics of flower petals of various plant species with an imaging scatterometer, which allows direct visualization of the angle dependence of the reflected light in the hemisphere above the petal. To separate the light reflected by the flower surface from the light backscattered by the components inside (e.g. the vacuoles), we also investigated surface casts. A survey among angiosperms revealed three different types of floral surface structure, each with distinct reflections. Petals with a smooth and very flat surface had mirror-like reflections and petal surfaces with cones yielded diffuse reflections. Petals with striations yielded diffraction patterns when single cells were illuminated. The iridescent signal, however, vanished when illumination similar to that found in natural conditions was applied. Pigmentary rather than structural coloration determines the optical appearance of flowers. Therefore, the hypothesized signaling by flowers with striated surfaces to attract potential pollinators presently seems untenable. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  2. Effect of Anti-Sticking Nanostructured Surface Coating on Minimally Invasive Electrosurgical Device in Brain.

    PubMed

    Cheng, Han-Yi; Ou, Keng-Liang; Chiang, Hsi-Jen; Lin, Li-Hsiang

    2015-10-01

    The purpose of the present study was to examine the extent of thermal injury in the brain after the use of a minimally invasive electrosurgical device with a nanostructured copper-doped diamond-like carbon (DLC-Cu) surface coating. To effectively utilize an electrosurgical device in clinical surgery, it is important to decrease the thermal injury to the adjacent tissues. The surface characteristics and morphology of DLC-Cu thin film was evaluated using a contact angle goniometer, scanning electron microscopy, and atomic force microscopy. Three-dimensional biomedical brain models were reconstructed using magnetic resonance images to simulate the electrosurgical procedure. Results indicated that the temperature was reduced significantly when a minimally invasive electrosurgical device with a DLC-Cu thin film coating (DLC-Cu-SS) was used. Temperatures decreased with the use of devices with increasing film thickness. Thermographic data revealed that surgical temperatures in an animal model were significantly lower with the DLC-Cu-SS electrosurgical device compared to an untreated device. Furthermore, the DLC-Cu-SS device created a relatively small region of injury and lateral thermal range. As described above, the biomedical nanostructured film reduced excessive thermal injury with the use of a minimally invasive electrosurgical device in the brain.

  3. Micro/nanostructured surface modification using femtosecond laser pulses on minimally invasive electrosurgical devices.

    PubMed

    Lin, Chia-Cheng; Lin, Hao-Jan; Lin, Yun-Ho; Sugiatno, Erwan; Ruslin, Muhammad; Su, Chen-Yao; Ou, Keng-Liang; Cheng, Han-Yi

    2016-01-29

    The purpose of the present study was to examine thermal damage and a sticking problem in the tissue after the use of a minimally invasive electrosurgical device with a nanostructured surface treatment that uses a femtosecond laser pulse (FLP) technique. To safely use an electrosurgical device in clinical surgery, it is important to decrease thermal damage to surrounding tissues. The surface characteristics and morphology of the FLP layer were evaluated using optical microscopy, scanning electron microscopy, and transmission electron microscopy; element analysis was performed using energy-dispersive X-ray spectroscopy, grazing incidence X-ray diffraction, and X-ray photoelectron spectroscopy. In the animal model, monopolar electrosurgical devices were used to create lesions in the legs of 30 adult rats. Animals were sacrificed for investigations at 0, 3, 7, 14, and 28 days postoperatively. Results indicated that the thermal damage and sticking situations were reduced significantly when a minimally invasive electrosurgical instrument with an FLP layer was used. Temperatures decreased while film thickness increased. Thermographic data revealed that surgical temperatures in an animal model were significantly lower in the FLP electrosurgical device compared with that in the untreated one. Furthermore, the FLP device created a relatively small area of thermal damage. As already mentioned, the biomedical nanostructured layer reduced thermal damage and promoted the antisticking property with the use of a minimally invasive electrosurgical device. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2016.

  4. Evaluating the contribution of shape attributes to recognition using the minimal transient discrete cue protocol

    PubMed Central

    2012-01-01

    Subjects were tested for their ability to identify objects that were represented by an array of dots that marked the major contours, usually only the outer boundary. Each dot was briefly flashed to make its position known, and a major variable was the time interval that was required to flash all the dots for a given shape. Recognition declined as the total time for display of the dot inventory was increased. Each shape was shown to a given subject only once and it was either recognized -- named – or not. Although the recorded response was binary, a large number of subjects was tested, which made it possible to derive regression functions and thus specify an intercept and slope for each shape. Shapes differed substantially in their slopes, which is likely due to the amount of redundant information provided by neighboring dots. Indices of shape attributes were also derived, specifically Attneave’s indices of complexity, mean curvature, inflection count, and symmetry. Three of the four shape attributes were significantly related to intercept and slope levels, but none made a substantial contribution. This suggests that these attributes are not essential properties that define shapes and allow for recognition. PMID:23146718

  5. Structural contribution to the roughness of supersmooth crystal surface

    SciTech Connect

    Butashin, A. V.; Muslimov, A. E. Kanevsky, V. M.; Deryabin, A. N.; Pavlov, V. A.; Asadchikov, V. E.

    2013-05-15

    Technological advances in processing crystals (Si, sapphire {alpha}-Al{sub 2}O{sub 3}, SiC, GaN, LiNbO{sub 3}, SrTiO{sub 3}, etc.) of substrate materials and X-ray optics elements make it possible to obtain supersmooth surfaces with a periodicity characteristic of the crystal structure. These periodic structures are formed by atomically smooth terraces and steps of nano- and subnanometer sizes, respectively. A model surface with such nanostructures is proposed, and the relations between its roughness parameters and the height of atomic steps are determined. The roughness parameters calculated from these relations almost coincide with the experimental atomic force microscopy (AFM) data obtained from 1 Multiplication-Sign 1 and 10 Multiplication-Sign 10 {mu}m areas on the surface of sapphire plates with steps. The minimum roughness parameters for vicinal crystal surfaces, which are due to the structural contribution, are calculated based on the approach proposed. A comparative analysis of the relief and roughness parameters of sapphire plate surfaces with different degrees of polishing is performed. A size effect is established: the relief height distribution changes from stochastic to regular with a decrease in the surface roughness.

  6. Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury.

    PubMed

    Ren, Yilong; Ao, Yan; O'Shea, Timothy M; Burda, Joshua E; Bernstein, Alexander M; Brumm, Andrew J; Muthusamy, Nagendran; Ghashghaei, H Troy; Carmichael, S Thomas; Cheng, Liming; Sofroniew, Michael V

    2017-01-24

    Ependyma have been proposed as adult neural stem cells that provide the majority of newly proliferated scar-forming astrocytes that protect tissue and function after spinal cord injury (SCI). This proposal was based on small, midline stab SCI. Here, we tested the generality of this proposal by using a genetic knock-in cell fate mapping strategy in different murine SCI models. After large crush injuries across the entire spinal cord, ependyma-derived progeny remained local, did not migrate and contributed few cells of any kind and less than 2%, if any, of the total newly proliferated and molecularly confirmed scar-forming astrocytes. Stab injuries that were near to but did not directly damage ependyma, contained no ependyma-derived cells. Our findings show that ependymal contribution of progeny after SCI is minimal, local and dependent on direct ependymal injury, indicating that ependyma are not a major source of endogenous neural stem cells or neuroprotective astrocytes after SCI.

  7. Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury

    PubMed Central

    Ren, Yilong; Ao, Yan; O’Shea, Timothy M.; Burda, Joshua E.; Bernstein, Alexander M.; Brumm, Andrew J.; Muthusamy, Nagendran; Ghashghaei, H. Troy; Carmichael, S. Thomas; Cheng, Liming; Sofroniew, Michael V.

    2017-01-01

    Ependyma have been proposed as adult neural stem cells that provide the majority of newly proliferated scar-forming astrocytes that protect tissue and function after spinal cord injury (SCI). This proposal was based on small, midline stab SCI. Here, we tested the generality of this proposal by using a genetic knock-in cell fate mapping strategy in different murine SCI models. After large crush injuries across the entire spinal cord, ependyma-derived progeny remained local, did not migrate and contributed few cells of any kind and less than 2%, if any, of the total newly proliferated and molecularly confirmed scar-forming astrocytes. Stab injuries that were near to but did not directly damage ependyma, contained no ependyma-derived cells. Our findings show that ependymal contribution of progeny after SCI is minimal, local and dependent on direct ependymal injury, indicating that ependyma are not a major source of endogenous neural stem cells or neuroprotective astrocytes after SCI. PMID:28117356

  8. The Surface Extraction from TIN based Search-space Minimization (SETSM) algorithm

    NASA Astrophysics Data System (ADS)

    Noh, Myoung-Jong; Howat, Ian M.

    2017-07-01

    Digital Elevation Models (DEMs) provide critical information for a wide range of scientific, navigational and engineering activities. Submeter resolution, stereoscopic satellite imagery with high geometric and radiometric quality, and wide spatial coverage are becoming increasingly accessible for generating stereo-photogrammetric DEMs. However, low contrast and repeatedly-textured surfaces, such as snow and glacial ice at high latitudes, and mountainous terrains challenge existing stereo-photogrammetric DEM generation techniques, particularly without a-priori information such as existing seed DEMs or the manual setting of terrain-specific parameters. To utilize these data for fully-automatic DEM extraction at a large scale, we developed the Surface Extraction from TIN-based Search-space Minimization (SETSM) algorithm. SETSM is fully automatic (i.e. no search parameter settings are needed) and uses only the sensor model Rational Polynomial Coefficients (RPCs). SETSM adopts a hierarchical, combined image- and object-space matching strategy utilizing weighted normalized cross-correlation with both original distorted and geometrically corrected images for overcoming ambiguities caused by foreshortening and occlusions. In addition, SETSM optimally minimizes search-spaces to extract optimal matches over problematic terrains by iteratively updating object surfaces within a Triangulated Irregular Network, and utilizes a geometric-constrained blunder and outlier detection in object space. We prove the ability of SETSM to mitigate typical stereo-photogrammetric matching problems over a range of challenging terrains. SETSM is the primary DEM generation software for the US National Science Foundation's ArcticDEM project.

  9. Isogeometric finite element approximation of minimal surfaces based on extended loop subdivision

    NASA Astrophysics Data System (ADS)

    Pan, Qing; Chen, Chong; Xu, Guoliang

    2017-08-01

    In this paper, we investigate the formulation of isogeometric analysis for minimal surface models on planar bounded domains by extended Loop surface subdivision approach. The exactness of the physical domain of interest is fixed on the coarsest level of the triangular discretization with any topological structure, which is thought of as the initial control mesh of Loop subdivision. By performing extended Loop subdivision, the control mesh can be repeatedly refined, and the geometry is described as an infinite set of quartic box-spline while maintaining its original exactness. The limit function representation of extended Loop subdivision forms our finite element space, which possesses C1 smoothness and the flexibility of mesh topology. We establish its inverse inequalities which resemble the ones of general finite element spaces. We develop the approximation estimate with the aid of H1 convergence property of the corresponding linear models. It enables us to overcome the difficulty of proving the boundedness of the gradient of finite element solutions appearing in the coefficient of minimal surface models. Numerical examples are given with the comparison to the classical linear finite element method which is consistent with our theoretical results.

  10. Minimally Invasive Holographic Surface Scanning for Soft-Tissue Image Registration

    PubMed Central

    Hackworth, Douglas M.; Webster, Robert J.

    2014-01-01

    Recent advances in registration have extended intra-surgical image guidance from its origins in bone-based procedures to new applications in soft tissues, thus enabling visualization of spatial relationships between surgical instruments and subsurface structures before incisions begin. Preoperative images are generally registered to soft tissues through aligning segmented volumetric image data with an intraoperatively sensed cloud of organ surface points. However, there is currently no viable noncontact minimally invasive scanning technology that can collect these points through a single laparoscopic port, which limits wider adoption of soft-tissue image guidance. In this paper, we describe a system based on conoscopic holography that is capable of minimally invasive surface scanning. We present the results of several validation experiments scanning ex vivo biological and phantom tissues with a system consisting of a tracked, off-the-shelf, relatively inexpensive conoscopic holography unit. These experiments indicate that conoscopic holography is suitable for use with biological tissues, and can provide surface scans of comparable quality to existing clinically used laser range scanning systems that require open surgery. We demonstrate experimentally that conoscopic holography can be used to guide a surgical needle to desired subsurface targets with an average tip error of less than 3 mm. PMID:20659823

  11. Nonlocal symmetries, spectral parameter and minimal surfaces in AdS/CFT

    NASA Astrophysics Data System (ADS)

    Klose, Thomas; Loebbert, Florian; Münkler, Hagen

    2017-03-01

    We give a general account of nonlocal symmetries in symmetric space models and their relation to the AdS/CFT correspondence. In particular, we study a master symmetry which generates the spectral parameter and acts as a level-raising operator on the classical Yangian generators. The master symmetry extends to an infinite tower of symmetries with nonlocal Casimir elements as associated conserved charges. We discuss the algebraic properties of these symmetries and establish their role in explaining the recently observed one-parameter deformation of holographic Wilson loops. Finally, we provide a numerical framework, in which discretized minimal surfaces and their master symmetry deformation can be calculated.

  12. Scattering Amplitudes, the AdS/CFT Correspondence, Minimal Surfaces, and Integrability

    DOE PAGES

    Alday, Luis F.

    2010-01-01

    We focus on the computation of scattering amplitudes of planar maximally supersymmetric Yang-Mill in four dimensions at strong coupling by means of the AdS/CFT correspondence and explain how the problem boils down to the computation of minimal surfaces in AdS in the first part of this paper. In the second part of this review we explain how integrability allows to give a solution to the problem in terms of a set of integral equations. The intention of the review is to give a pedagogical, rather than very detailed, exposition.

  13. Contribution of Microchemical Surface Analysis of Archaeological Artefacts

    NASA Astrophysics Data System (ADS)

    Mousser, H.; Madani, A.; Amri, R.; Mousser, A.; Darchen, A.

    2009-11-01

    Museum CIRTA of the town of Constantine has a collection of more than 35000 coins and statuettes going back to Numide, Roman, Republican, Vandal and Byzantine times and is struck in the name of the cities, of the kingdoms and the empires. Surface analysis of these coins gives information about the chemical composition and leads to recommendations for restoration and preservations. This work is a contribution of microchemical surface study of coin with the effigy of the Numide King Massinissa (Constantine between 3rd and 2nd century before Jesus Christ). The photographic and scanning electron microscopy coupled with energy dispersive spectrometry (SEM + EDS) and diffraction of X-ray (DRX) was used. The optic microscopy (OMP) and SEM pictures of coins showed heterogeneous surface. Scanning electron microscopy coupled with energy dispersive spectrometry identified three basic metals copper (46.06%), antimony (17.74%) and lead (12.06%), (Weight Percentage). The DRX identifies stages (copper and lead) and their crystalline oxides Bindheimite (Pb2Sb2O7) and Bystromite (MgSb2O6) on the coin's surface.

  14. Lipid component contributions to the surface activity of meibomian lipids.

    PubMed

    Schuett, Burkhardt S; Millar, Thomas J

    2012-10-17

    Meibomian lipid films have very complex physical properties that enable them to be compressed and expanded without collapsing. These properties can be attributed to the self assembly of the individual components, mainly wax and cholesteryl esters (WE and CE). Here, the surface pressure properties of WEs and CEs films have been compared to evaluate their contributions to meibomian lipid films. Films of different WEs and CEs were spread on a Langmuir trough and their surface pressure area profiles were compared with a particular emphasis on the effects caused by the degree of saturation of the alkyl/alkene chains. Fully saturated WEs and CEs formed unstable films that collapsed upon compression. Very unsaturated waxes and CEs tended to have two distinct phases, one that reflects interaction with the aqueous subphase, while the second appeared to be with the multilayered bulk of the lipid film. With aging of the films, the WEs tended to move off the surface into the bulk. When meibomian lipid films were seeded with large amounts of WEs, only minor changes could be seen unless the WE was very unsaturated. These data are consistent with meibomian lipid films having a surfactant layer with a complex bulk layer external to this. It is speculated that the bulk layer contains thermotropic smectic chiral liquid crystals of CEs that are interacting with the WEs. This structure would tend to prevent collapse of the meibomian lipids onto the ocular surface and be very tolerant of lipophilic contaminants.

  15. Contribution of Surface Thermal Forcing to Mixing in the Ocean

    NASA Astrophysics Data System (ADS)

    Wang, F.; Huang, S. D.; Xia, K. Q.

    2016-12-01

    The mixing rate in convective flows driven by surface temperature gradient is investigated laboratorially to understand the contribution of surface thermal forcing (STF) to mixing in ocean. We found that either increasing Rayleigh number Ra or lateral aspect ratio Г can individually enhance the mixing. It is the depth ratio, defined by the ratio of thermocline thickness to sea depth, that substantially determines the contribution of STF to mixing in ocean. If the ocean circulation is purely driven by STF, the mixing rate and mixing efficiency will be O(10-6 m2/s) and 0.95, which are far from the real values, O(10-5 m2/s) and 0.17, in ocean. The meridional heat transport will also be two orders smaller than the real value 2 PW nowadays. These suggest that the mixing in real ocean is not dominated by STF and the meridional heat transport is conveyor belt powered by other energy source like wind stress.

  16. The dominant surface-topography contributions of individual subduction parameters

    NASA Astrophysics Data System (ADS)

    Crameri, Fabio; Lithgow-Bertelloni, Carolina; Tackley, Paul

    2017-04-01

    It is no secret, not any longer, that dynamic processes below the plate exert a significant contribution to the elevation of the plate at the surface (e.g., Flament et al., 2013). We have therefore studied* the individual impact each and every major subduction parameter has on surface topography. This allows us to qualitatively compare the different sources amongst each other, and to quantify their actual potential to vertically deflect the surface. The gained knowledge from this compilation is crucial: We might finally be able to link the directly-observable surface topography to the dynamics (buoyancy, rheology, and geometry) of the subduction system. *This study is made possible by the efficient convection code StagYY (Tackley 2008), the largely-automated post-processing and visualisation toolbox StagLab (www.fabiocrameri.ch/software), and crucial model developments (Crameri and Tackley, 2015; Crameri et al., G-cubed, submitted, Crameri and Lithgow-Bertelloni, Tectonophysics, submitted). REFERENCES 
Flament, N., M. Gurnis, and R. D. Müller (2013), A review of observations and models of dynamic topography, Lithosphere, 5(2), 189-210. Crameri, F., and P. J. Tackley (2015), Parameters controlling dynamically self-consistent plate tectonics and single-sided subduction in global models of mantle convection, J. Geophys. Res. Solid Earth, 120(5), 3680-3706. Crameri, F., C. R. Lithgow-Bertelloni, and P. J. Tackley (submitted), The dynamical control of subduction parameters on surface topography, Geochem. Geophys. Geosyst. Crameri, F., and C. R. Lithgow-Bertelloni (submitted), Dynamic Mantle-Transition-Zone Controls on Upper-Plate Tilt, Tectonophysics. Tackley, P.J (2008) Modelling compressible mantle convection with large viscosity contrasts in a three- dimensional spherical shell using the yin-yang grid. Physics of the Earth and Planetary Interiors 171(1-4), 7-18.

  17. Thin plate spline feature point matching for organ surfaces in minimally invasive surgery imaging

    NASA Astrophysics Data System (ADS)

    Lin, Bingxiong; Sun, Yu; Qian, Xiaoning

    2013-03-01

    Robust feature point matching for images with large view angle changes in Minimally Invasive Surgery (MIS) is a challenging task due to low texture and specular reflections in these images. This paper presents a new approach that can improve feature matching performance by exploiting the inherent geometric property of the organ surfaces. Recently, intensity based template image tracking using a Thin Plate Spline (TPS) model has been extended for 3D surface tracking with stereo cameras. The intensity based tracking is also used here for 3D reconstruction of internal organ surfaces. To overcome the small displacement requirement of intensity based tracking, feature point correspondences are used for proper initialization of the nonlinear optimization in the intensity based method. Second, we generate simulated images from the reconstructed 3D surfaces under all potential view positions and orientations, and then extract feature points from these simulated images. The obtained feature points are then filtered and re-projected to the common reference image. The descriptors of the feature points under different view angles are stored to ensure that the proposed method can tolerate a large range of view angles. We evaluate the proposed method with silicon phantoms and in vivo images. The experimental results show that our method is much more robust with respect to the view angle changes than other state-of-the-art methods.

  18. Internal gravity wave contributions to global sea surface variability

    NASA Astrophysics Data System (ADS)

    Savage, A.; Arbic, B. K.; Richman, J. G.; Shriver, J. F.; Buijsman, M. C.; Zamudio, L.; Wallcraft, A. J.; Sharma, H.

    2016-02-01

    High-resolution (1/12th and 1/25th degree) 41-layer simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea-surface height (SSH). The HYCOM output has been separated into steric, non-steric, and total sea-surface height and the maps display variance in subtidal, tidal, and supertidal bands. Two of the global maps are of particular interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) wide-swath satellite altimeter mission; (1) a map of the nonstationary tidal signal (estimated after removing the stationary tidal signal via harmonic analysis), and (2) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum. Both of these maps display signals of order 1 cm2, the target accuracy for the SWOT mission. Therefore, both non-stationary internal tides and non-tidal internal gravity waves are likely to be important sources of "noise" that must be accurately removed before examination of lower-frequency phenomena can take place.

  19. Potential contribution of microbial degradation to natural attenuation of MTBE in surface water systems

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2001-01-01

    The potential contribution of in situ biodegradation as a mechanism for natural attenuation of MTBE in surface water was studied. Surface water sediments from streams and lakes at 11 sites throughout the US. Microbial degradation of [U-14C] MTBE was observed in surface-water-sediment microcosms under anaerobic conditions, but the efficiency and products of anaerobic MTBE biodegradation were strongly dependent on the predominant terminal electron accepting conditions. In the presence of substantial methanogenic activity, MTBE biodegradation was nominal and involved reduction of MTBE to t-butanol (TBA). Under more oxidizing conditions, minimal accumulation of 14C-TBA and significant mineralization of [U-14C] MTBE to 14CO2 were observed. Microorganisms inhabiting the bed sediments of streams and lakes could degrade MTBE effectively under a range of anaerobic terminal electron accepting conditions. Thus, anaerobic bed sediment microbial processes also might contribute to natural attenuation of MTBE in surface water systems throughout the US. This is an abstract of a paper presented at the 222nd ACS National Meting (Chicago, IL 8/26-30/2001).

  20. Bifurcation of a capillary minimal surface in a weak gravitational field

    NASA Astrophysics Data System (ADS)

    Borisovich, A. Yu

    1997-04-01

    In this paper we study a variational elliptic boundary-value problem on a convex region \\Omega \\subset \\mathbb R^2 with Bond parameter \\lambda \\in \\mathbb R that arises in hydromechanics and is closely related to the Plateau problem. It describes the behaviour of an elastic surface separating two liquid or gaseous media as the gravitational field changes. In the absence of gravitational force we have \\lambda =0 and the solution to the problem is a minimal surface. Here we study the behaviour of this surface (loss of stability, bifurcations) when gravity is introduced. The method of analysis is based on reducing the problem to an operator equation in Hölder or Sobolev spaces with a non-linear Fredholm operator of index 0 that depends on the parameter \\lambda, and applying the Crandall-Rabinowitz theorem on simple bifurcation points, the Lyapunov-Schmidt method of reduction to finite dimensions, and the key function method due to Sapronov. We obtain both necessary and sufficient general conditions for bifurcation, and study in detail the situation when \\Omega is a circle or a square.

  1. Heterogeneous minimal surface porous scaffold design using the distance field and radial basis functions.

    PubMed

    Yoo, Dongjin

    2012-06-01

    This paper presented an effective method for the 3D heterogeneous porous scaffold design of human tissue using triply periodic minimal surface (TPMS) internal pore architectures. First, an implicit solid representing the smooth 3D scalar field for the porosity distribution was reconstructed by interpolating the geometric positions of control points and porosity values defined at those points using an implicit interpolation algorithm based on the thin-plate radial basis function. After generating the implicit solid representing the smooth 3D scalar field for the porosity distribution, a functionally graded tissue scaffold with accurately controlled porosity distribution was designed using the TPMS-based unit cell libraries. Numerical results showed that the proposed scaffold design method has the potential benefits for accurately controlling the spatial porosity distribution within an arbitrarily shaped scaffold while keeping the advantage of the TPMS-based unit cell libraries.

  2. Influence of boundary conditions on the existence and stability of minimal surfaces of revolution made of soap films

    NASA Astrophysics Data System (ADS)

    Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent

    2014-09-01

    Because of surface tension, soap films seek the shape that minimizes their surface energy and thus their surface area. This mathematical postulate allows one to predict the existence and stability of simple minimal surfaces. After briefly recalling classical results obtained in the case of symmetric catenoids that span two circular rings with the same radius, we discuss the role of boundary conditions on such shapes, working with two rings having different radii. We then investigate the conditions of existence and stability of other shapes that include two portions of catenoids connected by a planar soap film and half-symmetric catenoids for which we introduce a method of observation. We report a variety of experimental results including metastability—an hysteretic evolution of the shape taken by a soap film—explained using simple physical arguments. Working by analogy with the theory of phase transitions, we conclude by discussing universal behaviors of the studied minimal surfaces in the vicinity of their existence thresholds.

  3. Degradable polyester scaffolds with controlled surface chemistry combining minimal protein adsorption with specific bioactivation

    NASA Astrophysics Data System (ADS)

    Grafahrend, Dirk; Heffels, Karl-Heinz; Beer, Meike V.; Gasteier, Peter; Möller, Martin; Boehm, Gabriele; Dalton, Paul D.; Groll, Jürgen

    2011-01-01

    Advanced biomaterials and scaffolds for tissue engineering place high demands on materials and exceed the passive biocompatibility requirements previously considered acceptable for biomedical implants. Together with degradability, the activation of specific cell-material interactions and a three-dimensional environment that mimics the extracellular matrix are core challenges and prerequisites for the organization of living cells to functional tissue. Moreover, although bioactive signalling combined with minimization of non-specific protein adsorption is an advanced modification technique for flat surfaces, it is usually not accomplished for three-dimensional fibrous scaffolds used in tissue engineering. Here, we present a one-step preparation of fully synthetic, bioactive and degradable extracellular matrix-mimetic scaffolds by electrospinning, using poly(D,L-lactide-co-glycolide) as the matrix polymer. Addition of a functional, amphiphilic macromolecule based on star-shaped poly(ethylene oxide) transforms current biomedically used degradable polyesters into hydrophilic fibres, which causes the suppression of non-specific protein adsorption on the fibres’ surface. The subsequent covalent attachment of cell-adhesion-mediating peptides to the hydrophilic fibres promotes specific bioactivation and enables adhesion of cells through exclusive recognition of the immobilized binding motifs. This approach permits synthetic materials to directly control cell behaviour, for example, resembling the binding of cells to fibronectin immobilized on collagen fibres in the extracellular matrix of connective tissue.

  4. Understanding, managing, and minimizing urban impacts on surface water nitrogen loading.

    PubMed

    Bernhardt, Emily S; Band, Lawrence E; Walsh, Christopher J; Berke, Philip E

    2008-01-01

    The concentration of materials and energy within cities is an inevitable consequence of dense populations and their per capita requirements for food, fiber, and fuel. As the world population becomes increasingly urban over the coming decades, urban areas will dramatically affect the distribution of nutrients across the face of the planet. In many cities, technological developments and urban planning have been effective at reducing the amount of waste nitrogen that is ultimately exported to downstream surface waters, largely through investments in sanitary sewer infrastructure and wastewater treatment. There are, however, still large cities throughout the developed world that have failed to take advantage of these obvious innovations to reduce their impact on downstream ecosystems. In addition, very few cities have adequately addressed the problems of diffuse nitrogen pollution, instead city infrastructure is often designed to route this N directly into downstream ecosystems. In the developing world, many of these problems are more acute, as rapidly growing urban populations exceed the capacity of limited municipal infrastructure. Reducing urban N pollution of groundwaters and surface waters both locally and globally can only be achieved through cultural and political adaptation in addition to technological innovations. In this review, we will focus on the implications of an increasingly urban world population on local, regional, and global nitrogen cycles and propose a variety of approaches for minimizing and mitigating the impacts of urban N concentration.

  5. Porous scaffold design using the distance field and triply periodic minimal surface models.

    PubMed

    Yoo, Dong J

    2011-11-01

    An effective method for the 3D porous scaffold design of human tissue is presented based on a hybrid method of distance field and triply periodic minimal surface (TPMS). By the creative application of traditional distance field algorithm into the Boolean operations of the anatomical model and TPMS-based unit cell library, an almost defects free porous scaffolds having the complicated micro-structure and high quality external surface faithful to a specific anatomic model can be easily obtained without the difficult and time-consuming trimming and re-meshing processes. After generating the distance fields for the given tissue model and required internal micro-structure, a series of simple modifications in distance fields enable us to obtain a complex porous scaffold. Experimental results show that the proposed scaffold design method has the potential to combine the perfectly interconnected pore networks based on the TPMS unit cell libraries and the given external geometry in a consistent framework irrespective of the complexity of the models.

  6. FEM analysis of bonding process used for minimization of deformation of optical surface under Metis coronagraph mirrors manufacturing

    NASA Astrophysics Data System (ADS)

    Procháska, F.; Vít, T.; Matoušek, O.; Melich, R.

    2016-11-01

    High demands on the final surfaces micro-roughness as well as great shape accuracy have to be achieved under the manufacturing process of the precise mirrors for Metis orbital coronagraph. It is challenging engineering task with respect to lightweight design of the mirrors and resulting objectionable optical surface shape stability. Manufacturing of such optical elements is usually affected by number of various effects. Most of them are caused by instability of temperature field. It is necessary to explore, comprehend and consequently minimize all thermo - mechanical processes which take place during mirror cementing, grinding and polishing processes to minimize the optical surface deformation. Application of FEM simulation was proved as a useful tool to help to solve this task. FEM simulations were used to develop and virtually compare different mirror holders to minimize the residual stress generated by temperature changes and to suppress the shape deformation of the optical surface below the critical limit of about 100 nm.

  7. Minimal intervention dentistry II: part 4. Minimal intervention techniques of preparation and adhesive restorations. The contribution of the sono-abrasive techniques.

    PubMed

    Decup, F; Lasfargues, J-J

    2014-04-01

    The concept of minimal intervention in oral medicine is based on advances in biological sciences applied to the dental organ. Many cultural barriers, economic as well as technical, have thwarted the application of micro-invasive conservative techniques by the general practitioner. Emerging technologies do not remove all obstacles but promote the integration of less invasive techniques in daily practice. Sono-abrasion is a technique for the selective preparation of enamel and dentine offering excellent efficacy, quality and safety. The authors describe the therapeutic principles, the choice of instrumentation and its mode of action and discuss its interest in adhesive restorative dentistry. The illustrated clinical situations focus on the preservation and optimisation of tissue bonding for both initial lesions and advanced lesions.

  8. Minimal alterations on the enamel surface by micro-abrasion: in vitro roughness and wear assessments

    PubMed Central

    RODRIGUES, Marcela Charantola; MONDELLI, Rafael Francisco Lia; OLIVEIRA, Gabriela Ulian; FRANCO, Eduardo Batista; BASEGGIO, Wagner; WANG, Linda

    2013-01-01

    Objective: To evaluate the in vitro changes on the enamel surface after a micro-abrasion treatment promoted by different products. Material and Methods: Fifty (50) fragments of bovine enamel (15 mm x 5 mm) were randomly assigned to five groups (n=10) according to the product utilized: G1 (control)= silicone polisher (TDV), G2= 37% phosphoric acid (3M/ESPE) + pumice stone (SS White), G3= Micropol (DMC Equipment), G4= Opalustre (Ultradent) and G5= Whiteness RM (FGM Dental Products). Roughness and wear were the responsible variables used to analyze these surfaces in four stages: baseline, 60 s and 120 s after the micro-abrasion and after polishing, using a Hommel Tester T1000 device. After the tests, a normal distribution of data was verified, with repeated ANOVA analyses (p≤0.05) which were used to compare each product in different stages. One-way ANOVA and Tukey tests were applied for individual comparisons between the products in each stage (p≤0.05). Results: Means and standard deviations of roughness and wear (mm) after all the promoted stages were: G1=7.26(1.81)/13.16(2.67), G2=2.02(0.62)/37.44(3.33), G3=1.81(0.91)/34.93(6.92), G4=1.92(0.29)/38.42(0.65) and G5=1.98(0.53)/33.45(2.66). At 60 seconds, all products tended to produce less surface roughness with a variable gradual decrease over time. After polishing, there were no statistically significant differences between the groups, except for G1. Independent of the product utilized, the enamel wear occurred after the micro-abrasion. Conclusions: In this in vitro study, enamel micro-abrasion presented itself as a conservative approach, regardless of the type of the paste compound utilized. These products promoted minor roughness alterations and minimal wear. The use of phosphoric acid and pumice stone showed similar results to commercial products for the micro-abrasion with regard to the surface roughness and wear. PMID:23739863

  9. Minimal alterations on the enamel surface by micro-abrasion: in vitro roughness and wear assessments.

    PubMed

    Rodrigues, Marcela Charantola; Mondelli, Rafael Francisco Lia; Oliveira, Gabriela Ulian; Franco, Eduardo Batista; Baseggio, Wagner; Wang, Linda

    2013-01-01

    To evaluate the in vitro changes on the enamel surface after a micro-abrasion treatment promoted by different products. Fifty (50) fragments of bovine enamel (15 mm × 5 mm) were randomly assigned to five groups (n=10) according to the product utilized: G1 (control)= silicone polisher (TDV), G2= 37% phosphoric acid (3M/ESPE) + pumice stone (SS White), G3= Micropol (DMC Equipment), G4= Opalustre (Ultradent) and G5= Whiteness RM (FGM Dental Products). Roughness and wear were the responsible variables used to analyze these surfaces in four stages: baseline, 60 s and 120 s after the micro-abrasion and after polishing, using a Hommel Tester T1000 device. After the tests, a normal distribution of data was verified, with repeated ANOVA analyses (p≤0.05) which were used to compare each product in different stages. One-way ANOVA and Tukey tests were applied for individual comparisons between the products in each stage (p≤0.05). Means and standard deviations of roughness and wear (µm) after all the promoted stages were: G1=7.26(1.81)/13.16(2.67), G2=2.02(0.62)/37.44(3.33), G3=1.81(0.91)/34.93(6.92), G4=1.92(0.29)/38.42(0.65) and G5=1.98(0.53)/33.45(2.66). At 60 seconds, all products tended to produce less surface roughness with a variable gradual decrease over time. After polishing, there were no statistically significant differences between the groups, except for G1. Independent of the product utilized, the enamel wear occurred after the micro-abrasion. In this in vitro study, enamel micro-abrasion presented itself as a conservative approach, regardless of the type of the paste compound utilized. These products promoted minor roughness alterations and minimal wear. The use of phosphoric acid and pumice stone showed similar results to commercial products for the micro-abrasion with regard to the surface roughness and wear.

  10. Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions.

    PubMed

    Oh, Dongyeop X; Cha, Yun Jeong; Nguyen, Hoang-Linh; Je, Hwa Heon; Jho, Yong Seok; Hwang, Dong Soo; Yoon, Dong Ki

    2016-03-18

    Chitin is one of the most abundant biomaterials in nature, with 10(10) tons produced annually as hierarchically organized nanofibril fillers to reinforce the exoskeletons of arthropods. This green and cheap biomaterial has attracted great attention due to its potential application to reinforce biomedical materials. Despite that, its practical use is limited since the extraction of chitin nanofibrils requires surface modification involving harsh chemical treatments, leading to difficulties in reproducing their natural prototypal hierarchical structure, i.e. chiral nematic phase. Here, we develop a chemical etching-free approach using calcium ions, called "natural way", to disintegrate the chitin nanofibrils while keeping the essential moiety for the self-assembly, ultimately resulting in the reproduction of chitin's natural chiral structure in a polymeric matrix. This chiral chitin nanostructure exceptionally toughens the composite. Our resultant chiral nematic phase of chitin materials can contribute to the understanding and use of the reinforcing strategy in nature.

  11. Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions

    NASA Astrophysics Data System (ADS)

    Oh, Dongyeop X.; Cha, Yun Jeong; Nguyen, Hoang-Linh; Je, Hwa Heon; Jho, Yong Seok; Hwang, Dong Soo; Yoon, Dong Ki

    2016-03-01

    Chitin is one of the most abundant biomaterials in nature, with 1010 tons produced annually as hierarchically organized nanofibril fillers to reinforce the exoskeletons of arthropods. This green and cheap biomaterial has attracted great attention due to its potential application to reinforce biomedical materials. Despite that, its practical use is limited since the extraction of chitin nanofibrils requires surface modification involving harsh chemical treatments, leading to difficulties in reproducing their natural prototypal hierarchical structure, i.e. chiral nematic phase. Here, we develop a chemical etching-free approach using calcium ions, called “natural way”, to disintegrate the chitin nanofibrils while keeping the essential moiety for the self-assembly, ultimately resulting in the reproduction of chitin’s natural chiral structure in a polymeric matrix. This chiral chitin nanostructure exceptionally toughens the composite. Our resultant chiral nematic phase of chitin materials can contribute to the understanding and use of the reinforcing strategy in nature.

  12. Chiral nematic self-assembly of minimally surface damaged chitin nanofibrils and its load bearing functions

    PubMed Central

    Oh, Dongyeop X.; Cha, Yun Jeong; Nguyen, Hoang-Linh; Je, Hwa Heon; Jho, Yong Seok; Hwang, Dong Soo; Yoon, Dong Ki

    2016-01-01

    Chitin is one of the most abundant biomaterials in nature, with 1010 tons produced annually as hierarchically organized nanofibril fillers to reinforce the exoskeletons of arthropods. This green and cheap biomaterial has attracted great attention due to its potential application to reinforce biomedical materials. Despite that, its practical use is limited since the extraction of chitin nanofibrils requires surface modification involving harsh chemical treatments, leading to difficulties in reproducing their natural prototypal hierarchical structure, i.e. chiral nematic phase. Here, we develop a chemical etching-free approach using calcium ions, called “natural way”, to disintegrate the chitin nanofibrils while keeping the essential moiety for the self-assembly, ultimately resulting in the reproduction of chitin’s natural chiral structure in a polymeric matrix. This chiral chitin nanostructure exceptionally toughens the composite. Our resultant chiral nematic phase of chitin materials can contribute to the understanding and use of the reinforcing strategy in nature. PMID:26988392

  13. Application of a narrow-surface cage in full endoscopic minimally invasive transforaminal lumbar interbody fusion.

    PubMed

    He, Er-Xing; Guo, Jing; Ling, Qin-Jie; Yin, Zhi-Xun; Wang, Ying; Li, Ming

    2017-06-01

    Spinal endoscopy has been widely applied in lumbar discectomy and decompression. However, endoscopic lumbar interbody fusion still remains a technical challenge due to the limited space within the working trocar for cage implantation. The purpose of this study was to investigate the feasibility and effectiveness of using a narrow-surface fusion cage in full endoscopic minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF) for the treatment of lumbar degenerative disease. From Jun 2013 to Dec 2014, a total of 42 patients (23 males, 19 females) underwent full endoscopic MIS-TLIF at our hospital was recruited. An 8-mm-wide narrow-surface fusion cage was selected for all cases. Perioperative parameters and complications were recorded. Comparisons on visual analog scale (VAS) and oswestry disability index (ODI) scores before and after surgery were performed. At the last follow-up, Nakai grading system was applied to assess patients' satisfaction; meanwhile, interbody fusion was evaluated by computed tomography. Mean operation time was 233.1 ± 69.5 min, and mean blood loss during surgery was 221.8 ± 98.5 ml. Two patients (4.8%) developed neurological complications. Postoperative follow-up ranged from 24 to 36 months (mean 27.6 ± 3.8 months). VAS and ODI scores were significantly improved 3 months after surgery and at the final follow-up, respectively (P < 0.05). Outcome of surgery was graded as excellent for 32 patients, good for 8 patients, and acceptable for 2 patients, corresponding to a success rate ("good" and "excellent") of 95.2%. Thirty-nine of the 42 patients demonstrated solid interbody fusion at the last follow-up, indicating a fusion rate of 92.9%. Application of a narrow-surface fusion cage in full endoscopic MIS-TLIF for the treatment of lumbar degenerative disease is feasible and effective. The clinical outcome and fusion success of this procedure were acceptable and promising. Copyright © 2017 IJS Publishing Group Ltd

  14. Myosin II controls cellular branching morphogenesis and migration in three dimensions by minimizing cell-surface curvature.

    PubMed

    Elliott, Hunter; Fischer, Robert S; Myers, Kenneth A; Desai, Ravi A; Gao, Lin; Chen, Christopher S; Adelstein, Robert S; Waterman, Clare M; Danuser, Gaudenz

    2015-02-01

    In many cases, cell function is intimately linked to cell shape control. We used endothelial cell branching morphogenesis as a model to understand the role of myosin II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell-surface curvature. We find that Rho/ROCK-stimulated myosin II contractility minimizes cell-scale branching by recognizing and minimizing local cell-surface curvature. Using microfabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin II cortical association, where it acts to maintain minimal curvature. The feedback between regulation of myosin II by curvature and control of curvature by myosin II drives cycles of localized cortical myosin II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration.

  15. The Contribution of Surface Potential to Diverse Problems in Electrostatics

    NASA Astrophysics Data System (ADS)

    Horenstein, M.

    2015-10-01

    Electrostatics spans many different subject areas. Some comprise “good electrostatics,” where charge is used for desirable purposes. Such areas include industrial manufacturing, electrophotography, surface modification, precipitators, aerosol control, and MEMS. Other areas comprise “bad electrostatics,” where charge is undesirable. Such areas include hazardous discharges, ESD, health effects, nuisance triboelectrification, particle contamination, and lightning. Conference proceedings such as this one inevitably include papers grouped around these topics. One common thread throughout is the surface potential developed when charge resides on an insulator surface. Often, the charged insulator will be in intimate contact with a ground plane. At other times, the charged insulator will be isolated. In either case, the resulting surface potential is important to such processes as propagating brush discharges, charge along a moving web, electrostatic biasing effects in MEMS, non-contacting voltmeters, field-effect transistor sensors, and the maximum possible charge on a woven fabric.

  16. "Feathered" fractal surfaces to minimize secondary electron emission for a wide range of incident angles

    NASA Astrophysics Data System (ADS)

    Swanson, Charles; Kaganovich, Igor D.

    2017-07-01

    Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a "feathered" surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow angles of incidence more effectively than velvet. We find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.

  17. Protein Charge and Mass Contribute to the Spatio-temporal Dynamics of Protein-Protein Interactions in a Minimal Proteome

    PubMed Central

    Xu, Yu; Wang, Hong; Nussinov, Ruth; Ma, Buyong

    2013-01-01

    We constructed and simulated a ‘minimal proteome’ model using Langevin dynamics. It contains 206 essential protein types which were compiled from the literature. For comparison, we generated six proteomes with randomized concentrations. We found that the net charges and molecular weights of the proteins in the minimal genome are not random. The net charge of a protein decreases linearly with molecular weight, with small proteins being mostly positively charged and large proteins negatively charged. The protein copy numbers in the minimal genome have the tendency to maximize the number of protein-protein interactions in the network. Negatively charged proteins which tend to have larger sizes can provide large collision cross-section allowing them to interact with other proteins; on the other hand, the smaller positively charged proteins could have higher diffusion speed and are more likely to collide with other proteins. Proteomes with random charge/mass populations form less stable clusters than those with experimental protein copy numbers. Our study suggests that ‘proper’ populations of negatively and positively charged proteins are important for maintaining a protein-protein interaction network in a proteome. It is interesting to note that the minimal genome model based on the charge and mass of E. Coli may have a larger protein-protein interaction network than that based on the lower organism M. pneumoniae. PMID:23420643

  18. Effect of metal type and surface treatment on in vitro tensile strength of copings cemented to minimally retentive preparations.

    PubMed

    Abreu, Amara; Loza, Maria A; Elias, Augusto; Mukhopadhyay, Siuli; Rueggeberg, Frederick A

    2007-09-01

    Due to the potential lack of ideal preparation form, the type of alloy and its surface pretreatment may have clinically relevant correlations with the retentive strength of castings to minimally retentive preparations. The purpose of this study was to evaluate the effect of alloy type and surface pretreatments of base and noble metal copings on their tensile strength to minimally retentive preparations. Minimally retentive, standardized crown preparations were made on recently extracted human third molars (n=68). Noble (IPS d.SIGN 53) and base metal (Rexillium NBF) copings were fabricated. All copings received heat treatment for oxide formation. Three experimental groups were then developed for each metal type (groups ranging from 10 to 12 specimens each): oxide only, airborne-particle abraded, or metal-primed. Copings were cemented using a self-adhesive universal resin cement (RelyX Unicem) and were thermal cycled (500 cycles between 5 and 55 degrees C) and stored (24 hours, 37 degrees C) before debonding using a universal testing machine. Frequency of debond location was compared among specimen groups. A 2-way ANOVA was used to test for interaction between the metal type and surface treatment, and, if no significant interaction was found, to test the main effects for metal type and surface treatment (alpha=.05). A multinomial logit model using the likelihood ratio test was used to describe the effect of metal type and surface treatment on failure site location (alpha=.05). The 2-way ANOVA indicated no significant influence of any factor on debond load: metal type (P=.885), surface treatment (P=.555), or their interaction (P=.644). The multinomial logit statistical model showed that noble metals and metal primers significantly (P<.05) shifted debond failures to occur more frequently at the resin/tooth interface or within the tooth itself. Neither metal type nor surface pretreatment affected bond strength. However, alloy type and surface treatment affected site of

  19. Surface and bulk contributions to nematic order reconstruction.

    PubMed

    Amoddeo, A; Barberi, R; Lombardo, G

    2012-06-01

    Nematic molecules confined in an asymmetric π cell and subjected to strong electric fields exhibit textural distortions involving nematic order variations, described by the Landau-de Gennes Q-tensor theory. We investigated the evolution of order variations as function of the applied electric pulse amplitude and of the nematic surface pretilt anchoring angles by implementing a Q-tensor model with a moving mesh finite element method. The proposed technique is able to clearly distinguish the bulk and the surface order reconstruction which occur in the cell.

  20. KENNEDY SPACE CENTER, FLA. - Launch Pad 39A undergoes sandblasting of its metal structures and surfaces. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

    NASA Image and Video Library

    2003-09-12

    KENNEDY SPACE CENTER, FLA. - Launch Pad 39A undergoes sandblasting of its metal structures and surfaces. Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

  1. Shape optimization of radiant enclosures with specular-diffuse surfaces by means of a random search and gradient minimization

    NASA Astrophysics Data System (ADS)

    Rukolaine, Sergey A.

    2015-01-01

    A technique of the shape optimization of radiant enclosures with specular-diffuse surfaces is proposed. The shape optimization problem is formulated as an operator equation of the first kind with respect to a surface to be optimized. The operator equation is reduced to a minimization problem for a least-squares objective shape functional. The minimization problem is solved by a combination of the pure random (or blind) search (the simplest stochastic minimization method) and the conjugate gradient method. The random search is used to find a starting point for the gradient method. The latter needs the gradient of the objective functional. The shape gradient of the objective functional is derived by means of the shape sensitivity analysis and the adjoint problem method. Eventually, the shape gradient is obtained as a result of solving the direct and adjoint problems. If a surface to be optimized is given by a finite number of parameters, then the objective functional becomes a function in a finite-dimensional space and the shape gradient becomes an ordinary gradient. Numerical examples of the shape optimization of "two-dimensional" radiant enclosures with polyhedral specular or specular-diffuse surfaces are given.

  2. Mechanical work makes important contributions to surface chemistry at steps

    NASA Astrophysics Data System (ADS)

    Francis, M. F.; Curtin, W. A.

    2015-02-01

    The effect of mechanical strain on the binding energy of adsorbates to late transition metals is believed to be entirely controlled by electronic factors, with tensile stress inducing stronger binding. Here we show, via computation, that mechanical strain of late transition metals can modify binding at stepped surfaces opposite to well-established trends on flat surfaces. The mechanism driving the trend is mechanical, arising from the relaxation of stored mechanical energy. The mechanical energy change can be larger than, and of opposite sign than, the energy changes due to electronic effects and leads to a violation of trends predicted by the widely accepted electronic ‘d-band’ model. This trend has a direct impact on catalytic activity, which is demonstrated here for methanation, where biaxial tension is predicted to shift the activity of nickel significantly, reaching the peak of the volcano plot and comparable to cobalt and ruthenium.

  3. Mechanical work makes important contributions to surface chemistry at steps

    PubMed Central

    Francis, M. F.; Curtin, W. A.

    2015-01-01

    The effect of mechanical strain on the binding energy of adsorbates to late transition metals is believed to be entirely controlled by electronic factors, with tensile stress inducing stronger binding. Here we show, via computation, that mechanical strain of late transition metals can modify binding at stepped surfaces opposite to well-established trends on flat surfaces. The mechanism driving the trend is mechanical, arising from the relaxation of stored mechanical energy. The mechanical energy change can be larger than, and of opposite sign than, the energy changes due to electronic effects and leads to a violation of trends predicted by the widely accepted electronic ‘d-band’ model. This trend has a direct impact on catalytic activity, which is demonstrated here for methanation, where biaxial tension is predicted to shift the activity of nickel significantly, reaching the peak of the volcano plot and comparable to cobalt and ruthenium. PMID:25677075

  4. Contribution of wastewater discharges to ocean surface particulates

    SciTech Connect

    Bracewell, L.W.; Selleck, R.E.; Carter, R.

    1980-08-01

    The results of a survey in the Southern California Bight indicated that much of the floatable particulates in the vicinity of primary treatment outfalls originated in wastewater. Most of the particulates of this origin were composed of grease and wax. These particulates also contained appreciable concentrations of coliform bacteria. The particulates from primary effluents had large proportions of unsaturated 18-carbon fatty acids, whereas secondary effluent particulates resembled open-ocean particulates in proportions of fatty acids. Larger particulates were quickly dispersed. Surface concentrations of 3-mg hexane-extractable matter/m/sup 2/ or less probably are aesthetically acceptable.

  5. [Joint surface resection with a minimally invasive dorsal approach for arthrodesis of the distal interphalangeal joint].

    PubMed

    Ayala-Gamboa, U; Domínguez-Chacón, N D

    2015-01-01

    Degenerative joint disease of the distal interphalangeal joint of the fingers precedes its occurrence in all the remaining regions of the body and produces major disability. We describe a distal interphalangeal arthrodesis technique performed with minimally invasive surgery. Case etiology was varied and mean follow-up was 10 months. All cases healed and functional recovery started at postoperative week two. This is a reproducible technique that produces satisfactory results in the short and medium term.

  6. Multispectral remote sensing contribution to land surface evaporation

    NASA Technical Reports Server (NTRS)

    Choudhury, B. J.

    1990-01-01

    The global water cycle is perhaps the most important of all the biogeochemical cycles and evaporation, which is a significant component of the water cycle, is also linked with the energy and carbon cycles. Long-term evaporation over large areas has generally been computed as the difference of precipitation and river runoff. Analysis of short-term evaporation rate and its spatial pattern, however, is extremely complex, and multispectral remotely sensed data could aid in such analysis. Multispectral data considered here are visible and near-infrared reflectances, infrared surface temperature and the 37 GHz brightness temperatures. These observations are found to be not totally independent of each other. A few of their relationships are established and discussed considering physically-based models.

  7. Light scattering from human corneal grafts: Bulk and surface contribution

    NASA Astrophysics Data System (ADS)

    Latour, Gaël; Georges, Gaëlle; Lamoine, Laure Siozade; Deumié, Carole; Conrath, John; Hoffart, Louis

    2010-09-01

    The cornea is the only transparent tissue in the body. The transparency is the main characteristic of the corneal tissue, and depends not only on the transmission coefficient but also on the losses by scattering and absorption. The scattering properties of the cornea tissues become one of the most important parameters in the case of the corneal graft. These scattering properties are studied in this paper in the reflected half area, similar to the diagnosis configuration. We quantify the influence of the cornea thickness and of the epithelial layer on scattering level. The technique of ellipsometry on scattered field is also used to analyze the polarization properties in order to determine the origin of scattering (surface and/or bulk).

  8. Graphene drape minimizes the pinning and hysteresis of water drops on nanotextured rough surfaces.

    PubMed

    Singh, Eklavya; Thomas, Abhay V; Mukherjee, Rahul; Mi, Xi; Houshmand, Farzad; Peles, Yoav; Shi, Yunfeng; Koratkar, Nikhil

    2013-04-23

    Previous studies of the interaction of water with graphene-coated surfaces have been limited to flat (smooth) surfaces. Here we created a rough surface by nanopatterning and then draped the surface with a single-layer graphene sheet. We found that the ultrasheer graphene drape prevents the penetration of water into the textured surface thereby drastically reducing the contact angle hysteresis (which is a measure of frictional energy dissipation) and preventing the liquid contact line from getting pinned to the substrate. This has important technological implications since the main obstacle to the motion of liquid drops on rough surfaces is contact angle hysteresis and contact line pinning. Graphene drapes could therefore enable enhanced droplet mobility which is required in a wide range of applications in micro and nanofluidics. Compared to polymer coatings that could fill the cavities between the nano/micropores or significantly alter the roughness profile of the substrate, graphene provides the thinnest (i.e., most sheer) and most conformal drape that is imaginable. Despite its extreme thinness, the graphene drape is mechanically robust, chemically stable, and offers high flexibility and resilience which can enable it to reliably drape arbitrarily complex surface topologies. Graphene drapes may therefore provide a hitherto unavailable ability to tailor the dynamic wettability of surfaces for a variety of applications.

  9. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation.

    PubMed

    Delviks-Frankenberry, Krista A; Nikolaitchik, Olga A; Burdick, Ryan C; Gorelick, Robert J; Keele, Brandon F; Hu, Wei-Shau; Pathak, Vinay K

    2016-05-01

    Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10-5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10-21 and1 × 10-11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic

  10. Minimal Contribution of APOBEC3-Induced G-to-A Hypermutation to HIV-1 Recombination and Genetic Variation

    PubMed Central

    Nikolaitchik, Olga A.; Burdick, Ryan C.; Gorelick, Robert J.; Keele, Brandon F.; Hu, Wei-Shau; Pathak, Vinay K.

    2016-01-01

    Although the predominant effect of host restriction APOBEC3 proteins on HIV-1 infection is to block viral replication, they might inadvertently increase retroviral genetic variation by inducing G-to-A hypermutation. Numerous studies have disagreed on the contribution of hypermutation to viral genetic diversity and evolution. Confounding factors contributing to the debate include the extent of lethal (stop codon) and sublethal hypermutation induced by different APOBEC3 proteins, the inability to distinguish between G-to-A mutations induced by APOBEC3 proteins and error-prone viral replication, the potential impact of hypermutation on the frequency of retroviral recombination, and the extent to which viral recombination occurs in vivo, which can reassort mutations in hypermutated genomes. Here, we determined the effects of hypermutation on the HIV-1 recombination rate and its contribution to genetic variation through recombination to generate progeny genomes containing portions of hypermutated genomes without lethal mutations. We found that hypermutation did not significantly affect the rate of recombination, and recombination between hypermutated and wild-type genomes only increased the viral mutation rate by 3.9 × 10−5 mutations/bp/replication cycle in heterozygous virions, which is similar to the HIV-1 mutation rate. Since copackaging of hypermutated and wild-type genomes occurs very rarely in vivo, recombination between hypermutated and wild-type genomes does not significantly contribute to the genetic variation of replicating HIV-1. We also analyzed previously reported hypermutated sequences from infected patients and determined that the frequency of sublethal mutagenesis for A3G and A3F is negligible (4 × 10−21 and1 × 10−11, respectively) and its contribution to viral mutations is far below mutations generated during error-prone reverse transcription. Taken together, we conclude that the contribution of APOBEC3-induced hypermutation to HIV-1 genetic

  11. Myosin-II controls cellular branching morphogenesis and migration in 3D by minimizing cell surface curvature

    PubMed Central

    Elliott, Hunter; Fischer, Robert A.; Myers, Kenneth A.; Desai, Ravi A.; Gao, Lin; Chen, Christopher S.; Adelstein, Robert; Waterman, Clare M.; Danuser, Gaudenz

    2014-01-01

    In many cases cell function is intimately linked to cell shape control. We utilized endothelial cell branching morphogenesis as a model to understand the role of myosin-II in shape control of invasive cells migrating in 3D collagen gels. We applied principles of differential geometry and mathematical morphology to 3D image sets to parameterize cell branch structure and local cell surface curvature. We find that Rho/ROCK-stimulated myosin-II contractility minimizes cell-scale branching by recognizing and minimizing local cell surface curvature. Utilizing micro-fabrication to constrain cell shape identifies a positive feedback mechanism in which low curvature stabilizes myosin-II cortical association, where it acts to maintain minimal curvature. The feedback between myosin-II regulation by and control of curvature drives cycles of localized cortical myosin-II assembly and disassembly. These cycles in turn mediate alternating phases of directionally biased branch initiation and retraction to guide 3D cell migration. PMID:25621949

  12. Elimination or Minimization of Oscillation Marks: A Path To Improved Cast Surface Quality

    SciTech Connect

    Dr. Alan W. Cramb

    2007-12-17

    Oscillation marks are the most recognizable feature of continuous casting and can be related to the subsurface defects that can be found on product rolled from continuous cast slabs. The purpose of this work was to develop strategies that can be used on industrial continuous casters to reduce oscillation mark depth and, in particular, to minimize the formation of hook type defects that are prevalent on ultra low carbon grades. The major focus of the work was on developing a technique to allow heat transfer in the meniscus region of the continuous caster to be measured and the effect of mold slag chemistry and chrystallization to be documented. A new experimental technique was developed that allowed the effect of mold flux chemistry and chrystallization on the radiation heat transfer rate to be measured dynamically.

  13. 3D reconstruction of internal organ surfaces for minimal invasive surgery.

    PubMed

    Hu, Mingxing; Penney, Graeme; Edwards, Philip; Figl, Michael; Hawkes, David

    2007-01-01

    While Minimally Invasive Surgery (MIS) offers great benefits to patients compared with open surgery surgeons suffer from a restricted field-of-view and obstruction from instruments. We present a novel method for 3D reconstruction of soft tissue, which can provide a wider field-of-view with 3D information for surgeons, including restoration of missing data. The paper focuses on the use of Structure from Motion (SFM) techniques to solve the missing data problem and application of competitive evolutionary agents to improve the robustness to missing data and outliers. The method has been evaluated with synthetic data, images from a phantom heart model, and in vivo MIS image sequences using the da Vinci telerobotic surgical system.

  14. Images as embedding maps and minimal surfaces: Movies, color, and volumetric medical images

    SciTech Connect

    Kimmel, R.; Malladi, R.; Sochen, N.

    1997-02-01

    A general geometrical framework for image processing is presented. The authors consider intensity images as surfaces in the (x,I) space. The image is thereby a two dimensional surface in three dimensional space for gray level images. The new formulation unifies many classical schemes, algorithms, and measures via choices of parameters in a {open_quote}master{close_quotes} geometrical measure. More important, it is a simple and efficient tool for the design of natural schemes for image enhancement, segmentation, and scale space. Here the authors give the basic motivation and apply the scheme to enhance images. They present the concept of an image as a surface in dimensions higher than the three dimensional intuitive space. This will help them handle movies, color, and volumetric medical images.

  15. Surface Modification of Poly(dimethylsiloxane) Using Ionic Complementary Peptides to Minimize Nonspecific Protein Adsorption.

    PubMed

    Yu, Xiaoling; Xiao, Junzhu; Dang, Fuquan

    2015-06-02

    Poly(dimethylsiloxane) (PDMS) has become a widely used material for microfluidic and biological applications. However, PDMS has unacceptably high levels of nonspecific protein adsorption, which significantly lowers the performance of PDMS-based microfluidic chips. Most existing methods to reduce protein fouling of PDMS are to make the surface more hydrophilic by surface oxidization, polymer grafting, and physisorbed coatings. These methods suffer from the relatively short-term stability, the multistep complex treatment procedure, or the insufficient adsorption reduction. Herein, we developed a novel and facile modification method based on self-assembled peptides with well-tailored amino acid composition and sequence, which can also interact strongly with the PDMS surface in the same way as proteins, for suppressing the nonspecific protein fouling and improving the biocompatibility of PDMS-based microfluidic chips. We first demonstrated that an ionic complementary peptide, EAR16-II with a sequence of [(Ala-Glu-Ala-Glu-Ala-Arg-Ala-Arg)2], can readily self-assemble into an amphipathic film predominantly composed of tightly packed β-sheets on the native hydrophobic and plasma-oxidized hydrophilic PDMS surfaces upon low concentrations of carbohydrates. The self-assembled EAR16-II amphipathic film exposed its hydrophobic side to the solution and thus rendered the PDMS surface hydrophobic with water contact angles (WCAs) of around 110.0°. However, the self-assembled EAR16-II amphipathic film exhibited excellent protein-repelling and blood compatibility properties comparable to or better than those obtained with previously reported methods. A schematic model has been proposed to explain the interactions of EAR16-II with the PDMS surface and the antifouling capability of EAR16-II coatings at a molecular level. The current work will pave the way to the development of novel coating materials to address the nonspecific protein adsorption on PDMS, thereby broadening the

  16. Glutathione-coated luminescent gold nanoparticles: a surface ligand for minimizing serum protein adsorption.

    PubMed

    Vinluan, Rodrigo D; Liu, Jinbin; Zhou, Chen; Yu, Mengxiao; Yang, Shengyang; Kumar, Amit; Sun, Shasha; Dean, Andrew; Sun, Xiankai; Zheng, Jie

    2014-08-13

    Ultrasmall glutathione-coated luminescent gold nanoparticles (GS-AuNPs) are known for their high resistance to serum protein adsorption. Our studies show that these NPs can serve as surface ligands to significantly enhance the physiological stability and lower the serum protein adsorption of superparamagnetic iron oxide nanoparticles (SPIONs), in addition to rendering the NPs the luminescence property. After the incorporation of GS-AuNPs onto the surface of SPIONs to form the hybrid nanoparticles (HBNPs), these SPIONs' protein adsorption was about 10-fold lower than those of the pure glutathione-coated SPIONs suggesting that GS-AuNPs are capable of providing a stealth effect against serum proteins.

  17. Contributions to a reliable hydrogen sensor based on surface plasmon surface resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Morjan, Martin; Züchner, Harald; Cammann, Karl

    2009-06-01

    Hydrogen is being seen as a potentially inexhaustible, clean power supply. Direct hydrogen production and storage techniques that would eliminate carbon by-products and compete in cost are accelerated in R&D due to the recent sharp price increase of crude oil. But hydrogen is also linked with certain risks of use, namely the danger of explosions if mixed with air due to the very low energy needed for ignition and the possibility to diminish the ozone layer by undetected leaks. To reduce those risks efficient, sensitive and very early warning systems are needed. This paper will contribute to this challenge in adopting the optical method of Surface-Plasmon-Resonance (SPR) Spectroscopy for a sensitive detection of hydrogen concentrations well below the lower explosion limit. The technique of SPR performed with fiberoptics would in principle allow a remote control without any electrical contacts in the potential explosion zone. A thin palladium metal layer has been studied as sensing element. A simulation programme to find an optimum sensor design lead to the conclusion that an Otto-configuration is more advantageous under intended "real world" measurement conditions than a Kretschmann configuration. This could be experimentally verified. The very small air gap in the Otto-configuration could be successfully replaced by a several hundred nm thick intermediate layer of MgF 2 or SiO 2 to ease the fabrication of hydrogen sensor-chips based on glass slide substrates. It could be demonstrated that by a separate detection of the TM- and TE-polarized light fractions the TE-polarized beam could be used as a reference signal, since the TE-part does not excite surface plasmons and thus is not influenced by the presence of hydrogen. Choosing the measured TM/TE intensity ratio as the analytical signal a sensor-chip made from a BK7 glass slide with a 425 nm thick intermediate layer of SiO 2 and a sensing layer of 50 nm Pd on top allowed a drift-free, reliable and reversible

  18. Registration of liver images to minimally invasive intraoperative surface and subsurface data

    NASA Astrophysics Data System (ADS)

    Wu, Yifei; Rucker, D. C.; Conley, Rebekah H.; Pheiffer, Thomas S.; Simpson, Amber L.; Geevarghese, Sunil K.; Miga, Michael I.

    2014-03-01

    Laparoscopic liver resection is increasingly being performed with results comparable to open cases while incurring less trauma and reducing recovery time. The tradeoff is increased difficulty due to limited visibility and restricted freedom of movement. Image-guided surgical navigation systems have the potential to help localize anatomical features to improve procedural safety and achieve better surgical resection outcome. Previous research has demonstrated that intraoperative surface data can be used to drive a finite element tissue mechanics organ model such that high resolution preoperative scans are registered and visualized in the context of the current surgical pose. In this paper we present an investigation of using sparse data as imposed by laparoscopic limitations to drive a registration model. Non-contact laparoscopicallyacquired surface swabbing and mock-ultrasound subsurface data were used within the context of a nonrigid registration methodology to align mock deformed intraoperative surface data to the corresponding preoperative liver model as derived from pre-operative image segmentations. The mock testing setup to validate the potential of this approach used a tissue-mimicking liver phantom with a realistic abdomen-port patient configuration. Experimental results demonstrates a range of target registration errors (TRE) on the order of 5mm were achieving using only surface swab data, while use of only subsurface data yielded errors on the order of 6mm. Registrations using a combination of both datasets achieved TRE on the order of 2.5mm and represent a sizeable improvement over either dataset alone.

  19. Minimal thermal treatments for reducing bacterial population on cantaloupe rind surfaces

    USDA-ARS?s Scientific Manuscript database

    Cantaloupe melon has been associated with outbreaks of foodborne illness due to consumption of contaminated fresh-cut pieces. Surface structure and biochemical characteristics of bacteria play a major role on how and where bacteria may attach and also complicates decontamination treatments and this ...

  20. Improved seismic profiling by minimally invasive multimodal surface wave method with standard penetration test source (MMSW-SPT)

    NASA Astrophysics Data System (ADS)

    Lin, Shibin; Ashlock, Jeramy C.

    2017-03-01

    Surface waves propagating in layered media inherently possess multimodal dispersion characteristics. However, traditional surface wave testing methods employing measurements at the free surface usually capture only a single apparent dispersion curve, especially when using short geophone arrays common to near surface and geotechnical-scale investigations. Such single-mode or fragmented multimode apparent dispersion curves contain only a fraction of the possible dispersion information, thus limiting the accuracy of inverted profiles. To enable more robust measurement of higher Rayleigh-wave modes, a recently developed hybrid minimally invasive multimodal surface wave method is combined herein with the widely used geotechnical standard penetration test (SPT), which is employed as a practical and ubiquitous downhole source. Upon superimposing surface wave dispersion data for a range of SPT impact depths within the soil, higher modes can be measured more consistently and reliably relative to traditional non-invasive testing methods. As a result, misidentification of multiple dispersion modes can be practically eliminated, significantly improving the accuracy and certainty of inversion results.

  1. Surface modification minimizes the toxicity of silver nanoparticles: an in vitro and in vivo study.

    PubMed

    Das, Balaram; Tripathy, Satyajit; Adhikary, Jaydeep; Chattopadhyay, Sourav; Mandal, Debasis; Dash, Sandeep Kumar; Das, Sabyasachi; Dey, Aditi; Dey, Sankar Kumar; Das, Debasis; Roy, Somenath

    2017-08-01

    Currently toxicological research in Silver nanoparticle is a leading issue in medical science. The surface chemistry and physical dimensions of silver nanoparticles (Ag-NPs) play an important role in toxicity. The aim of this present study was to evaluate the in vitro and in vivo toxicity of Ag-NPs as well as the alteration of toxicity profile due to surface functionalization (PEG and BSA) and the intracellular signaling pathways involved in nanoparticles mediated oxidative stress and apoptosis in vitro and in vivo system. Ag-NPs released excess Ag(+) ions leads to activation of NADPH oxidase and helps in generating the reactive oxygen species (ROS). Silver nanoparticles elicit the production of excess amount of ROS results activation of TNF-α. Ag-NPs activates caspase-3 and 9 which are the signature of mitochondrial pathway. Ag-NPs are responsible to decrease the antioxidant enzymes and imbalance the oxidative status into the cells but functionalization with BSA and PEG helps to protect the adverse effect of Ag-NPs on the cells. This study suggested that Ag-NPs are toxic to normal cells which directly lead with human health. Surface functionalization may open the gateway for further use of Ag-NPs in different area such as antimicrobial and anticancer therapy, industrial use or in biomedical sciences.

  2. Surface water seal application to minimize volatilization loss of methyl isothiocyanate from soil columns.

    PubMed

    Simpson, Catherine R; Nelson, Shad D; Stratmann, Jerry E; Ajwa, Husein A

    2010-06-01

    Metam-sodium (MS, sodium methyldithiocarbamate) has been identified as a promising alternative chemical to replace methyl bromide (MeBr) in soil preplant fumigation. One degradation product of MS in soil is the volatile gas methyl isothiocyanate (MITC) which controls soilborne pests. Inconsistent results associated with MS usage indicate that there is a need to determine cultural practices that increase pest control efficacy. Sealing the soil surface with water after MS application may be a sound method to reduce volatilization loss of MITC from soils and increase the contact time necessary for MITC to control pests. The objective of this research was to develop a preliminary soil surface water application amount that would potentially inhibit the off-gassing rate of MITC. Off-gassing rate was consistently reduced with increasing water seal application. The application of a 2.5-3.8 cm water seal provided significantly lower (71-74% reduction in MITC volatilization) total fumigant loss compared with no water seal. The most favorable reduction in MITC off-gassing was observed in the 2.5 cm water seal. This suggests that volatilization of MITC-generating compounds can be highly suppressed using adequate surface irrigation following chemical application in this soil type (sandy clay loam), based on preliminary bench-scale soil column studies. .

  3. Application of radiometric surface temperature for surface energy balance estimation: John Monteith's contributions

    USDA-ARS?s Scientific Manuscript database

    Over 25 years ago, Huband and Monteith paper’s investigating the radiative surface temperature and the surface energy balance of a wheat canopy, highlighted the key issues in computing fluxes with radiometric surface temperature. These included the relationship between radiometric and aerodynamic s...

  4. A novel method for texture-mapping conoscopic surfaces for minimally invasive image-guided kidney surgery

    PubMed Central

    Ong, Rowena; Glisson, Courtenay L.; Burgner-Kahrs, Jessica; Simpson, Amber; Danilchenko, Andrei; Lathrop, Ray; Herrell, S. Duke; Webster, Robert J.; Miga, Michael

    2016-01-01

    Purpose Organ-level registration is critical to image-guided therapy in soft tissue. This is especially important in organs such as the kidney which can freely move. We have developed a method for registration that combines three-dimensional locations from a holographic conoscope with an endoscopically obtained textured surface. By combining these data sources clear decisions as to the tissue from which the points arise can be made. Methods By localizing the conoscope’s laser dot in the endoscopic space, we register the textured surface to the cloud of conoscopic points. This allows the cloud of points to be filtered for only those arising from the kidney surface. Once a valid cloud is obtained we can use standard surface registration techniques to perform the image-space to physical-space registration. Since our methods use two distinct data sources we test for spatial accuracy and characterize temporal effects in phantoms, ex vivo porcine and human kidneys. In addition we use an industrial robot to provide controlled motion and positioning for characterizing temporal effects. Results Our initial surface acquisitions are hand-held. This means that we take approximately 55 s to acquire a surface. At that rate we see no temporal effects due to acquisition synchronization or probe speed. Our surface registrations were able to find applied targets with submillimeter target registration errors. Conclusion The results showed that the textured surfaces could be reconstructed with submillimetric mean registration errors. While this paper focuses on kidney applications, this method could be applied to any anatomical structures where a line of sight can be created via open or minimally invasive surgical techniques. PMID:26758889

  5. Additive manufacturing and mechanical characterization of graded porosity scaffolds designed based on triply periodic minimal surface architectures.

    PubMed

    Afshar, M; Anaraki, A Pourkamali; Montazerian, H; Kadkhodapour, J

    2016-09-01

    Since the advent of additive manufacturing techniques, triply periodic minimal surfaces have emerged as a novel tool for designing porous scaffolds. Whereas scaffolds are expected to provide multifunctional performance, spatially changing pore patterns have been a promising approach to integrate mechanical characteristics of different architectures into a unique scaffold. Smooth morphological variations are also frequently seen in nature particularly in bone and cartilage structures and can be inspiring for designing of artificial tissues. In this study, we carried out experimental and numerical procedures to uncover the mechanical properties and deformation mechanisms of linearly graded porosity scaffolds for two different mathematically defined pore structures. Among TPMS-based scaffolds, P and D surfaces were subjected to gradient modeling to explore the mechanical responses for stretching and bending dominated deformations, respectively. Moreover, the results were compared to their corresponding uniform porosity structures. Mechanical properties were found to be by far greater for the stretching dominated structure (P-Surface). For bending dominated architecture (D-Surface), although there was no global fracture for uniform structures, graded structure showed a brittle fracture at 0.08 strain. A layer by layer deformation mechanism for stretching dominated structure was observed. For bending dominated scaffolds, deformation was accompanied by development of 45° shearing bands. Finite element simulations were also performed and the results showed a good agreement with the experimental observations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Reproducible Construction of Surface Tension-Mediated Honeycomb Concave Microwell Arrays for Engineering of 3D Microtissues with Minimal Cell Loss

    PubMed Central

    Lee, GeonHui; Lee, JaeSeo; Oh, HyunJik; Lee, SangHoon

    2016-01-01

    The creation of engineered 3D microtissues has attracted prodigious interest because of the fact that this microtissue structure is able to mimic in vivo environments. Such microtissues can be applied extensively in the fields of regenerative medicine and tissue engineering, as well as in drug and toxicity screening. Here, we develop a novel method of fabricating a large number of dense honeycomb concave microwells via surface tension-mediated self-construction. More specifically, in order to control the curvature and shape of the concavity in a precise and reproducible manner, a custom-made jig system was designed and fabricated. By applying a pre-set force using the jig system, the shape of the honeycomb concave well was precisely and uniformly controlled, despite the fact that wells were densely packed. The thin wall between the honeycomb wells enables the minimization of cell loss during the cell-seeding process. To evaluate the performance of the honeycomb microwell array, rat hepatocytes were seeded, and spheroids were successfully formed with uniform shape and size. Liver-specific functions such as albumin secretion and cytochrome P450 were subsequently analyzed. The proposed method of fabricating honeycomb concave wells is cost-effective, simple, and reproducible. The honeycomb well array can produce multiple spheroids with minimal cell loss, and can lead to significant contributions in tissue engineering and organ regeneration. PMID:27513567

  7. Reproducible Construction of Surface Tension-Mediated Honeycomb Concave Microwell Arrays for Engineering of 3D Microtissues with Minimal Cell Loss.

    PubMed

    Lee, GeonHui; Lee, JaeSeo; Oh, HyunJik; Lee, SangHoon

    2016-01-01

    The creation of engineered 3D microtissues has attracted prodigious interest because of the fact that this microtissue structure is able to mimic in vivo environments. Such microtissues can be applied extensively in the fields of regenerative medicine and tissue engineering, as well as in drug and toxicity screening. Here, we develop a novel method of fabricating a large number of dense honeycomb concave microwells via surface tension-mediated self-construction. More specifically, in order to control the curvature and shape of the concavity in a precise and reproducible manner, a custom-made jig system was designed and fabricated. By applying a pre-set force using the jig system, the shape of the honeycomb concave well was precisely and uniformly controlled, despite the fact that wells were densely packed. The thin wall between the honeycomb wells enables the minimization of cell loss during the cell-seeding process. To evaluate the performance of the honeycomb microwell array, rat hepatocytes were seeded, and spheroids were successfully formed with uniform shape and size. Liver-specific functions such as albumin secretion and cytochrome P450 were subsequently analyzed. The proposed method of fabricating honeycomb concave wells is cost-effective, simple, and reproducible. The honeycomb well array can produce multiple spheroids with minimal cell loss, and can lead to significant contributions in tissue engineering and organ regeneration.

  8. Combined surface micropatterning and reactive chemistry maximizes tissue adhesion with minimal inflammation

    PubMed Central

    Pereira, Maria J. N.; Sundback, Cathryn A.; Lang, Nora; Cho, Woo Kyung; Pomerantseva, Irina; Ouyang, Ben; Tao, Sarah L.; McHugh, Kevin; Mwizerwa, Olive; Vemula, Praveen K.; Mochel, Mark C.; Carter, David J.; Borenstein, Jeffrey T.; Langer, Robert; Ferreira, Lino S.; Karp, Jeffrey M.; Masiakos, Peter T.

    2014-01-01

    The use of tissue adhesives for internal clinical applications is limited due to a lack of materials that balance strong adhesion with biocompatibility. The use of substrate topography was explored to reduce the volume of a highly reactive and toxic glue without compromising adhesive strength. Micro-textured patches coated with a thin layer of cyanoacrylate glue achieved similar adhesion levels to patches employing large amounts of adhesive, and was superior to the level of adhesion achieved when a thin coating was applied to a non-textured patch. In vivo studies demonstrated reduced tissue inflammation and necrosis for patterned patches with a thinly coated layer of reactive glue, thus overcoming a significant challenge with existing tissue adhesives such as cyanoacrylate. Closure of surgical stomach and colon defects in a rat model was achieved without abdominal adhesions. Harnessing the synergy between surface topography and reactive chemistry enables controlled tissue adhesion with an improved biocompatibility profile without requiring changes in the chemical composition of reactive tissue glues. PMID:24106240

  9. Hydrothermal synthesis of high surface area ZIF-8 with minimal use of TEA

    NASA Astrophysics Data System (ADS)

    Butova, V. V.; Budnyk, A. P.; Bulanova, E. A.; Lamberti, C.; Soldatov, A. V.

    2017-07-01

    In this paper we present, for the first time, a simple hydrothermal recipe for the synthesis of ZIF-8 Metal-Organic Framework (MOF) with a large specific surface area (1340 m2/g by BET). An important feature of the method is that the product forms in aqueous medium under standard hydrothermal conditions without DMF and great excess of linker with the use of TEA as structure directing agent. The ZIF-8 crystal phase of the product was confirmed by XRD; this technique has been also exploited to check the crystallinity and to follow the changes in the MOF structure induced by heating. TGA and temperature dependent XRD testify the high thermal stability of the material (470 °C in N2 and at 400 °C in air). The IR spectral profile of the material provides a complete picture of vibrations assigned to the linker and the metal center. The systematic investigation of the products obtained by increasing the TEA amount in the reacting medium from 0 to 25.5 mol equivalent Zn2+, allowed us to understand its role and to find 2.6 mol equivalent Zn2+ as the minimum amount needed to obtain a single phase ZIF-8 material with the high standard reported above. The stability of the material under severe basic conditions makes it a promising candidate in heterogeneous catalysis. The material has shown high capacity in I2 uptake, making it interesting also for selective molecular adsorption.

  10. Microelastic properties of minimally adhesive surfaces: A comparative study of RTV11™ and Intersleek elastomers™

    NASA Astrophysics Data System (ADS)

    Terán Arce, Fernando; Avci, Recep; Beech, Iwona B.; Cooksey, Keith E.; Wigglesworth-Cooksey, Barbara

    2003-07-01

    A comparative study of two commercially available elastomers, RTV11™ and Intersleek™, has been conducted employing atomic force microscopy (AFM) and surface and bulk analysis techniques. The results confirmed the presence of CaCO3 (rhombohedral calcite) filler particles in RTV11 and revealed TiO2 (tetragonal rutile) and Fe3O4 (cubic magnetite) as filler particles in Intersleek formulation. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) depth profiling revealed average threshold depths of ˜100 nm for the onset of filler particles. Indentation curves obtained from AFM force-volume imaging demonstrated that the presence of these particles significantly alters the local elastic properties of the coating. While the particle-free, high-compliance regions followed Hertzian behavior to a reasonable approximation, the low-compliance domains, where the subsurface filler particles reside, showed a significant deviation from this model. The Hertzian model, applied to the particle-free regions, gave values of 3.0, 1.9, and 1.4 MPa, respectively, for the elastic moduli of thin RTV11, thick RTV11, and Intersleek. For thin and thick RTV11 the presence of subsurface particles caused a local increase in the elastic moduli of the polymers, resulting in values 2.1 and 1.7 times higher than those for the particle-free regions of the corresponding polymers. For Intersleek, this increase was only 1.3 times. TOF-SIMS analysis did not reveal local differences in the chemical composition of the polymers, hence the inhomogeneities in the microelastic properties of these polymers are explained in terms of differences in the physical properties of these regions. Subsurface filler particles undergo substantial elastic displacements under the influence of the penetrating AFM tip.

  11. Experimental approach to controllably vary protein oxidation while minimizing electrode adsorption for boron-doped diamond electrochemical surface mapping applications.

    PubMed

    McClintock, Carlee S; Hettich, Robert L

    2013-01-02

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent (i.e., hydroxyl radicals) for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate the oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins.

  12. Minimal configuration of body surface potential mapping for discrimination of left versus right dominant frequencies during atrial fibrillation.

    PubMed

    Rodrigo, M; Climent, A M; Liberos, A; Fernández-Aviles, F; Atienza, F; Guillem, M S; Berenfeld, O

    2017-08-01

    Ablation of drivers maintaining atrial fibrillation (AF) has been demonstrated as an effective therapy. Drivers in the form of rapidly activated atrial regions can be noninvasively localized to either left or right atria (LA, RA) with body surface potential mapping (BSPM) systems. This study quantifies the accuracy of dominant frequency (DF) measurements from reduced-leads BSPM systems and assesses the minimal configuration required for ablation guidance. Nine uniformly distributed lead sets of eight to 66 electrodes were evaluated. BSPM signals were registered simultaneously with intracardiac electrocardiograms (EGMs) in 16 AF patients. DF activity was analyzed on the surface potentials for the nine leads configurations, and the noninvasive measures were compared with the EGM recordings. Surface DF measurements presented similar values than panoramic invasive EGM recordings, showing the highest DF regions in corresponding locations. The noninvasive DFs measures had a high correlation with the invasive discrete recordings; they presented a deviation of <0.5 Hz for the highest DF and a correlation coefficient of >0.8 for leads configurations with 12 or more electrodes. Reduced-leads BSPM systems enable noninvasive discrimination between LA versus RA DFs with similar results as higher-resolution 66-leads system. Our findings demonstrate the possible incorporation of simplified BSPM systems into clinical planning procedures for AF ablation. © 2017 Wiley Periodicals, Inc.

  13. Induction of an Infinite Periodic Minimal Surface by Endowing An Amphiphilic Zwitterion with Halogen‐Bond Ability

    PubMed Central

    Okafuji, Akiyoshi; Kato, Takashi

    2016-01-01

    Abstract We have designed an amphiphilic zwitterion with an iodine‐substituted imidazolium cation. Although it forms a layered assembly with flat interfaces, the addition of an equimolar amount of bis(trifluoromethane)sulfonimide results in the formation of a bicontinuous cubic liquid‐crystalline assembly with a primitive‐type infinite periodic minimal surface, where its zwitterionic headgroup sits regularly. IR measurements revealed that halogen bond between the iodine atoms on the imidazolium cation and the anions is involved in its molecular‐assembly behavior. The present results clearly indicate the potential utility of halogen bonding to control the dimensionality and continuity of the ionic/nonionic interface of amphiphiles in bulk and consequent mesophase patterns, which may be a significant new molecular technology for precisely arranging functional molecules on a 3D continuous interfaces. PMID:27777835

  14. Minimal Pairs: Minimal Importance?

    ERIC Educational Resources Information Center

    Brown, Adam

    1995-01-01

    This article argues that minimal pairs do not merit as much attention as they receive in pronunciation instruction. There are other aspects of pronunciation that are of greater importance, and there are other ways of teaching vowel and consonant pronunciation. (13 references) (VWL)

  15. Enthalpic, entropic, and square gradient contributions to the surface energetics of amine-cured epoxy systems.

    PubMed

    Mezzenga, Raffaele; Page, Stéphane A; Månson, Jan-Anders E

    2002-06-01

    The evolution of surface tension during polymerization of three amine-cured epoxy systems was investigated. Due to the chemical reaction of the epoxy groups with primary and secondary amines, the energetic status of an epoxy-amine system increased during polymerization. At the same time, the polymerization process induced entropic variations, also contributing to the evolution of surface energetics. A simple relation expressing the surface tension as a function of the bulk energy, the entropy of the system, and the square gradient of the polymer density was derived. The bulk and surface energetics were expressed in terms of solubility parameter and surface tension, respectively. The former was predicted using the Van Krevelen group contribution method, while the latter was directly measured using the Wilhelmy wetting method. Results indicated that, in all the three epoxy-amine systems under investigation, a unique relationship combining the surface tension, the bulk energy, the entropy, and the density square gradient of the system could be used. On the basis of the present study, and taking into account all contributory factors, it was concluded that the enthalpy component to the surface energetics is the dominant contribution.

  16. The Relative Contributions of Facial Shape and Surface Information to Perceptions of Attractiveness and Dominance

    PubMed Central

    Torrance, Jaimie S.; Wincenciak, Joanna; Hahn, Amanda C.; DeBruine, Lisa M.; Jones, Benedict C.

    2014-01-01

    Although many studies have investigated the facial characteristics that influence perceptions of others’ attractiveness and dominance, the majority of these studies have focused on either the effects of shape information or surface information alone. Consequently, the relative contributions of facial shape and surface characteristics to attractiveness and dominance perceptions are unclear. To address this issue, we investigated the relationships between ratings of original versions of faces and ratings of versions in which either surface information had been standardized (i.e., shape-only versions) or shape information had been standardized (i.e., surface-only versions). For attractiveness and dominance judgments of both male and female faces, ratings of shape-only and surface-only versions independently predicted ratings of the original versions of faces. The correlations between ratings of original and shape-only versions and between ratings of original and surface-only versions differed only in two instances. For male attractiveness, ratings of original versions were more strongly related to ratings of surface-only than shape-only versions, suggesting that surface information is particularly important for men’s facial attractiveness. The opposite was true for female physical dominance, suggesting that shape information is particularly important for women’s facial physical dominance. In summary, our results indicate that both facial shape and surface information contribute to judgments of others’ attractiveness and dominance, suggesting that it may be important to consider both sources of information in research on these topics. PMID:25349994

  17. The relative contributions of facial shape and surface information to perceptions of attractiveness and dominance.

    PubMed

    Torrance, Jaimie S; Wincenciak, Joanna; Hahn, Amanda C; DeBruine, Lisa M; Jones, Benedict C

    2014-01-01

    Although many studies have investigated the facial characteristics that influence perceptions of others' attractiveness and dominance, the majority of these studies have focused on either the effects of shape information or surface information alone. Consequently, the relative contributions of facial shape and surface characteristics to attractiveness and dominance perceptions are unclear. To address this issue, we investigated the relationships between ratings of original versions of faces and ratings of versions in which either surface information had been standardized (i.e., shape-only versions) or shape information had been standardized (i.e., surface-only versions). For attractiveness and dominance judgments of both male and female faces, ratings of shape-only and surface-only versions independently predicted ratings of the original versions of faces. The correlations between ratings of original and shape-only versions and between ratings of original and surface-only versions differed only in two instances. For male attractiveness, ratings of original versions were more strongly related to ratings of surface-only than shape-only versions, suggesting that surface information is particularly important for men's facial attractiveness. The opposite was true for female physical dominance, suggesting that shape information is particularly important for women's facial physical dominance. In summary, our results indicate that both facial shape and surface information contribute to judgments of others' attractiveness and dominance, suggesting that it may be important to consider both sources of information in research on these topics.

  18. Cortical morphometry in attention deficit/hyperactivity disorder: Contribution of thickness and surface area to volume.

    PubMed

    Silk, Timothy J; Beare, Richard; Malpas, Charles; Adamson, Chris; Vilgis, Veronika; Vance, Alasdair; Bellgrove, Mark A

    2016-09-01

    Although lower brain volume is a consistent neuroimaging finding in attention deficit hyperactivity disorder (ADHD), we lack an understanding of whether this effect is driven by changes in cortical thickness or surface area, which are governed by distinct neurodevelopmental processes. This study examined ADHD-control differences in cortical thickness, surface area and volume, and tests whether thickness and surface area mediates any observed volume differences. Magnetic resonance imaging (MRI) data was collected from 35 males with ADHD-combined type and 35 typically developing control participants aged 9-17 years. Morphometric measures were examined for between group differences and the specific contribution of surface area and thickness to group differences in volume tested using mediation analysis. Individuals with ADHD had smaller total cortical volume (7.3%), surface area (4.3%), and mean cortical thickness (2.8%) compared to controls. Differences were pronounced in frontal and parietal lobes. Variance in volume as a function of ADHD diagnosis was accounted for at least in part by the relationship between diagnosis and each of cortical thickness and surface area, with regional variation in the relative contributions of these measures. The surface area of the precuneus was a major driver of volume differences, attesting to the potential relevance of this region for neurodevelopment in ADHD. Both surface area and cortical thickness play a significant mediating role in determining diagnostic differences in volume, with regional variation in the contribution of thickness and surface area to those volume differences, highlighting the importance of examining both cortical thickness and surface area in examining ADHD. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Contributions of feature shapes and surface cues to the recognition of facial expressions.

    PubMed

    Sormaz, Mladen; Young, Andrew W; Andrews, Timothy J

    2016-10-01

    Theoretical accounts of face processing often emphasise feature shapes as the primary visual cue to the recognition of facial expressions. However, changes in facial expression also affect the surface properties of the face. In this study, we investigated whether this surface information can also be used in the recognition of facial expression. First, participants identified facial expressions (fear, anger, disgust, sadness, happiness) from images that were manipulated such that they varied mainly in shape or mainly in surface properties. We found that the categorization of facial expression is possible in either type of image, but that different expressions are relatively dependent on surface or shape properties. Next, we investigated the relative contributions of shape and surface information to the categorization of facial expressions. This employed a complementary method that involved combining the surface properties of one expression with the shape properties from a different expression. Our results showed that the categorization of facial expressions in these hybrid images was equally dependent on the surface and shape properties of the image. Together, these findings provide a direct demonstration that both feature shape and surface information make significant contributions to the recognition of facial expressions.

  20. Contribution of surface material and size to the expected versus the perceived weight of objects.

    PubMed

    Vicovaro, Michele; Burigana, Luigi

    2017-01-01

    Because the perceived weight of objects may be affected by various nonweight properties, such as their size and the density of their surface material, relative weight is sometimes misperceived (the size-weight illusion and the material-weight illusion, respectively). A widely accepted explanation for weight illusions is provided by the so-called expectation model, according to which the perceived weight stems from the contrast between the actual and expected weights. In the present study, we varied both the surface material and the size of stimuli, while keeping constant their physical weights. In Experiment 1, the participants lifted the stimuli by grasping them on opposite sides, whereas in Experiment 2 they lifted them by using a string that was attached to their top surface. We used a variant of the random conjoint measurement paradigm to obtain subjective interval scales of the contributions of surface material and size to the expected and the perceived weight of the stimuli. Inconsistently with the predictions from the expectation model, we found, in both experiments, that the surface material contributed more than the size to the expected weight, whereas the size contributed more than the surface material to the perceived weight. The results support the hypothesis that perceived weight may depend on implicit, rather than explicit, weight expectations.

  1. A survey of state-of-the-art surface chemistries to minimize fouling from human and animal biofluids.

    PubMed

    Blaszykowski, Christophe; Sheikh, Sonia; Thompson, Michael

    2015-10-15

    Upon contact with bodily fluids, synthetic materials spontaneously acquire a layer of various species (most notably proteins) on their surface. The concern with respect to biomedical equipment, implants or devices resides in the possibility for biological processes with potentially harmful effects to ensue. In biosensor technology, the issue with this natural fouling phenomenon is that of non-specific adsorption to sensing platforms, which generates an often overwhelming interference signal that prevents the detection, not to mention the quantification, of target analytes present at considerably lower concentration. To alleviate this ubiquitous, recurrent problem - this genuine biotechnological plague - considerable research efforts have been devoted over the last few decades to engineer antifouling coatings. Extensive literature now exists that describes stealth organic adlayers capable of reducing fouling surface coverage Γ down to a few ng cm(-2)- however from biotechnologically irrelevant buffered solutions free or nearly depleted of any potentially interfering species. Regrettably indeed, few coatings are known to display/retain such level of performance when exposed to otherwise more complex, real-life biosamples (even diluted). Herein, we comprehensively review the state-of-the-art surface chemistries developed to date (January 2015) to minimize fouling from 8 such uncomparatively more challenging biological media (blood plasma, blood serum, cell lysate, cerebrospinal fluid, egg, milk, saliva, and urine) - whether of human or animal origin. Literature search for another 25 biological milieux generated no (exploitable) hit. Also discussed in this Review are the identification of the species responsible for fouling, and the dependence of antifouling properties on biosample source variability.

  2. Large contribution of sea surface warming to recent increase in Atlantic hurricane activity.

    PubMed

    Saunders, Mark A; Lea, Adam S

    2008-01-31

    Atlantic hurricane activity has increased significantly since 1995 (refs 1-4), but the underlying causes of this increase remain uncertain. It is widely thought that rising Atlantic sea surface temperatures have had a role in this, but the magnitude of this contribution is not known. Here we quantify this contribution for storms that formed in the tropical North Atlantic, Caribbean Sea and Gulf of Mexico; these regions together account for most of the hurricanes that make landfall in the United States. We show that a statistical model based on two environmental variables--local sea surface temperature and an atmospheric wind field--can replicate a large proportion of the variance in tropical Atlantic hurricane frequency and activity between 1965 and 2005. We then remove the influence of the atmospheric wind field to assess the contribution of sea surface temperature. Our results indicate that the sensitivity of tropical Atlantic hurricane activity to August-September sea surface temperature over the period we consider is such that a 0.5 degrees C increase in sea surface temperature is associated with a approximately 40% increase in hurricane frequency and activity. The results also indicate that local sea surface warming was responsible for approximately 40% of the increase in hurricane activity relative to the 1950-2000 average between 1996 and 2005. Our analysis does not identify whether warming induced by greenhouse gases contributed to the increase in hurricane activity, but the ability of climate models to reproduce the observed relationship between hurricanes and sea surface temperature will serve as a useful means of assessing whether they are likely to provide reliable projections of future changes in Atlantic hurricane activity.

  3. Microstructural and surface modifications and hydroxyapatite coating of Ti-6Al-4V triply periodic minimal surface lattices fabricated by selective laser melting.

    PubMed

    Yan, Chunze; Hao, Liang; Hussein, Ahmed; Wei, Qingsong; Shi, Yusheng

    2017-06-01

    Ti-6Al-4V Gyroid triply periodic minimal surface (TPMS) lattices were manufactured by selective laser melting (SLM). The as-built Ti-6Al-4V lattices exhibit an out-of-equilibrium microstructure with very fine α' martensitic laths. When subjected to the heat treatment of 1050°C for 4h followed by furnace cooling, the lattices show a homogenous and equilibrium lamellar α+β microstructure with less dislocation and crystallographic defects compared with the as-built α' martensite. The as-built lattices present very rough strut surfaces bonded with plenty of partially melted metal particles. The sand blasting nearly removed all the bonded metal particles, but created many tiny cracks. The HCl etching eliminated these tiny cracks, and subsequent NaOH etching resulted in many small and shallow micro-pits and develops a sodium titanate hydrogel layer on the surfaces of the lattices. When soaked in simulated body fluid (SBF), the Ti-6Al-4V TPMS lattices were covered with a compact and homogeneous biomimetic hydroxyapatite (HA) layer. This work proposes a new method for making Ti-6Al-4V TPMS lattices with a homogenous and equilibrium microstructure and biomimetic HA coating, which show both tough and bioactive characteristics and can be promising materials usable as bone substitutes. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Volume and surface contributions to the nuclear symmetry energy within the coherent density fluctuation model

    NASA Astrophysics Data System (ADS)

    Antonov, A. N.; Gaidarov, M. K.; Sarriguren, P.; Moya de Guerra, E.

    2016-07-01

    The volume and surface components of the nuclear symmetry energy (NSE) and their ratio are calculated within the coherent density fluctuation model (CDFM). The estimations use the results of the model for the NSE in finite nuclei based on the Brueckner energy-density functional for nuclear matter. In addition, we present results for the NSE and its volume and surface contributions obtained by using the Skyrme energy-density functional. The CDFM weight function is obtained using the proton and neutron densities from the self-consistent HF+BCS method with Skyrme interactions. We present and discuss the values of the volume and surface contributions to the NSE and their ratio obtained for the Ni, Sn, and Pb isotopic chains, studying their isotopic sensitivity. The results are compared with estimations of other approaches which have used available experimental data on binding energies, neutron-skin thicknesses, excitation energies to isobaric analog states (IAS), and also with results of other theoretical methods.

  5. Additively manufactured metallic porous biomaterials based on minimal surfaces: A unique combination of topological, mechanical, and mass transport properties.

    PubMed

    Bobbert, F S L; Lietaert, K; Eftekhari, A A; Pouran, B; Ahmadi, S M; Weinans, H; Zadpoor, A A

    2017-02-16

    Porous biomaterials that simultaneously mimic the topological, mechanical, and mass transport properties of bone are in great demand but are rarely found in the literature. In this study, we rationally designed and additively manufactured (AM) porous metallic biomaterials based on four different types of triply periodic minimal surfaces (TPMS) that mimic the properties of bone to an unprecedented level of multi-physics detail. Sixteen different types of porous biomaterials were rationally designed and fabricated using selective laser melting (SLM) from a titanium alloy (Ti-6Al-4V). The topology, quasi-static mechanical properties, fatigue resistance, and permeability of the developed biomaterials were then characterized. In terms of topology, the biomaterials resembled the morphological properties of trabecular bone including mean surface curvatures close to zero. The biomaterials showed a favorable but rare combination of relatively low elastic properties in the range of those observed for trabecular bone and high yield strengths exceeding those reported for cortical bone. This combination allows for simultaneously avoiding stress shielding, while providing ample mechanical support for bone tissue regeneration and osseointegration. Furthermore, as opposed to other AM porous biomaterials developed to date for which the fatigue endurance limit has been found to be ≈20% of their yield (or plateau) stress, some of the biomaterials developed in the current study show extremely high fatigue resistance with endurance limits up to 60% of their yield stress. It was also found that the permeability values measured for the developed biomaterials were in the range of values reported for trabecular bone. In summary, the developed porous metallic biomaterials based on TPMS mimic the topological, mechanical, and physical properties of trabecular bone to a great degree. These properties make them potential candidates to be applied as parts of orthopedic implants and/or as bone

  6. Minimizing the Standard Deviation of Spatially Averaged Surface Cross-Sectional Data from the Dual-Frequency Precipitation Radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Kim, Hyokyung

    2016-01-01

    For an airborne or spaceborne radar, the precipitation-induced path attenuation can be estimated from the measurements of the normalized surface cross section, sigma 0, in the presence and absence of precipitation. In one implementation, the mean rain-free estimate and its variability are found from a lookup table (LUT) derived from previously measured data. For the dual-frequency precipitation radar aboard the global precipitation measurement satellite, the nominal table consists of the statistics of the rain-free 0 over a 0.5 deg x 0.5 deg latitude-longitude grid using a three-month set of input data. However, a problem with the LUT is an insufficient number of samples in many cells. An alternative table is constructed by a stepwise procedure that begins with the statistics over a 0.25 deg x 0.25 deg grid. If the number of samples at a cell is too few, the area is expanded, cell by cell, choosing at each step that cell that minimizes the variance of the data. The question arises, however, as to whether the selected region corresponds to the smallest variance. To address this question, a second type of variable-averaging grid is constructed using all possible spatial configurations and computing the variance of the data within each region. Comparisons of the standard deviations for the fixed and variable-averaged grids are given as a function of incidence angle and surface type using a three-month set of data. The advantage of variable spatial averaging is that the average standard deviation can be reduced relative to the fixed grid while satisfying the minimum sample requirement.

  7. Evaluation of smoothing in an iterative lp-norm minimization algorithm for surface-based source localization of MEG

    NASA Astrophysics Data System (ADS)

    Han, Jooman; Sic Kim, June; Chung, Chun Kee; Park, Kwang Suk

    2007-08-01

    The imaging of neural sources of magnetoencephalographic data based on distributed source models requires additional constraints on the source distribution in order to overcome ill-posedness and obtain a plausible solution. The minimum lp norm (0 < p <= 1) constraint is known to be appropriate for reconstructing focal sources distributed in several regions. A well-known recursive method for solving the lp-norm minimization problem, for example, is the focal underdetermined system solver (FOCUSS). However, this iterative algorithm tends to give spurious sources when the noise level is high. In this study, we present an algorithm to incorporate a smoothing technique into the FOCUSS algorithm and test different smoothing kernels in a surface-based cortical source space. Simulations with cortical source patches assumed in auditory areas show that the incorporation of the smoothing procedure improves the performance of the FOCUSS algorithm, and that using the geodesic distance for constructing a smoothing kernel is a better choice than using the Euclidean one, particularly when employing a cortical source space. We also apply these methods to a real data set obtained from an auditory experiment and illustrate their applicability to realistic data by presenting the reconstructed source images localized in the superior temporal gyrus.

  8. Contribution of the Interdecadal Pacific Oscillation to twentieth-century global surface temperature trends

    NASA Astrophysics Data System (ADS)

    Meehl, Gerald A.; Hu, Aixue; Santer, Benjamin D.; Xie, Shang-Ping

    2016-11-01

    Longer-term externally forced trends in global mean surface temperatures (GMSTs) are embedded in the background noise of internally generated multidecadal variability. A key mode of internal variability is the Interdecadal Pacific Oscillation (IPO), which contributed to a reduced GMST trend during the early 2000s. We use a novel, physical phenomenon-based approach to quantify the contribution from a source of internally generated multidecadal variability--the IPO--to multidecadal GMST trends. Here we show that the largest IPO contributions occurred in its positive phase during the rapid warming periods from 1910-1941 and 1971-1995, with the IPO contributing 71% and 75%, respectively, to the difference between the median values of the externally forced trends and observed trends. The IPO transition from positive to negative in the late-1990s contributed 27% of the discrepancy between model median estimates of the forced part of the GMST trend and the observed trend from 1995 to 2013, with additional contributions that are probably due to internal variability outside of the Pacific and an externally forced response from small volcanic eruptions. Understanding and quantifying the contribution of a specific source of internally generated variability--the IPO--to GMST trends is necessary to improve decadal climate prediction skill.

  9. Phytoestrogens and mycoestrogens in surface waters--Their sources, occurrence, and potential contribution to estrogenic activity.

    PubMed

    Jarošová, Barbora; Javůrek, Jakub; Adamovský, Ondřej; Hilscherová, Klára

    2015-08-01

    This review discusses the potential contribution of phytoestrogens and mycoestrogens to in vitro estrogenic activities occurring in surface waters and in vivo estrogenic effects in fish. Main types, sources, and pathways of entry into aquatic environment of these detected compounds were summarized. Reviewed concentrations of phyto/mycoestrogens in surface waters were mostly undetectable or in low ng/L ranges, but exceeded tens of μg/L for the flavonoids biochanin A, daidzein and genistein at some sites. While a few phytosterols were reported to occur at relatively high concentrations in surface waters, information about their potencies in in vitro systems is very limited, and contradictory in some cases. The relative estrogenic activities of compounds (compared to standard estrogen 17β-estradiol) by various in vitro assays were included, and found to differ by orders of magnitude. These potencies were used to estimate total potential estrogenic activities based on chemical analyses of phyto/mycoestrogens. In vivo effective concentrations of waterborne phyto/mycoestrogens were available only for biochanin A, daidzein, formononetin, genistein, equol, sitosterol, and zearalenone. The lowest observable effect concentrations in vivo were reported for the mycoestrogen zearalenone. This compound and especially its metabolites also elicited the highest in vitro estrogenic potencies. Despite the limited information available, the review documents low contribution of phyto/mycoestrogens to estrogenic activity in vast majority of surface waters, but significant contribution to in vitro responses and potentially also to in vivo effects in areas with high concentrations.

  10. Clay mineralogy of surface sediments as a tool for deciphering river contributions to the Cariaco Basin (Venezuela)

    NASA Astrophysics Data System (ADS)

    Bout-Roumazeilles, V.; Riboulleau, A.; du Châtelet, E. Armynot; Lorenzoni, L.; Tribovillard, N.; Murray, R. W.; Müller-Karger, F.; Astor, Y. M.

    2013-02-01

    The mineralogical composition of 95 surface sediment samples from the Cariaco Basin continental shelf and Orinoco delta was investigated in order to constrain the clay-mineral main provenance and distribution within the Cariaco Basin. The spatial variability of the data set was studied using a geo-statistical approach that allows drawing representative clay-mineral distribution maps. These maps are used to identify present-day dominant sources for each clay-mineral species in agreement with the geological characteristics of the main river watersheds emptying into the basin. This approach allows (1) identifying the most distinctive clay-mineral species/ratios that determine particle provenance, (2) evaluating the respective contribution of local rivers, and (3) confirming the minimal present-day influence of the Orinoco plume on the Cariaco Basin sedimentation. The Tuy, Unare, and Neveri Rivers are the main sources of clay particles to the Cariaco Basin sedimentation. At present, the Tuy River is the main contributor of illite to the western part of the southern Cariaco Basin continental shelf. The Unare River plume, carrying smectite and kaolinite, has a wide westward propagation, whereas the Neveri River contribution is less extended, providing kaolinite and illite toward the eastern Cariaco Basin. The Manzanares, Araya, Tortuga, and Margarita areas are secondary sources of local influence. These insights shed light on the origin of present-day terrigenous sediments of the Cariaco Basin and help to propose alternative explanations for the temporal variability of clay mineralogy observed in previously published studies.

  11. Ultrafast magneto-photocurrents in GaAs: Separation of surface and bulk contributions

    SciTech Connect

    Schmidt, Christian B. Priyadarshi, Shekhar; Bieler, Mark; Tarasenko, Sergey A.

    2015-04-06

    We induce ultrafast magneto-photocurrents in a GaAs crystal employing interband excitation with femtosecond laser pulses at room temperature and non-invasively separate surface and bulk contributions to the overall current response. The separation between the different symmetry contributions is achieved by measuring the simultaneously emitted terahertz radiation for different sample orientations. Excitation intensity and photon energy dependences of the magneto-photocurrents for linearly and circularly polarized excitations reveal an involvement of different microscopic origins, one of which is the inverse spin Hall effect. Our experiments are important for a better understanding of the complex momentum-space carrier dynamics in magnetic fields.

  12. Octasaccharide is the minimal length unit required for efficient binding of cyclophilin B to heparin and cell surface heparan sulphate

    PubMed Central

    2004-01-01

    Cyclophilin B (CyPB) is a heparin-binding protein first identified as a receptor for cyclosporin A. In previous studies, we reported that CyPB triggers chemotaxis and integrin-mediated adhesion of T-lymphocytes by way of interaction with two types of binding sites. The first site corresponds to a signalling receptor; the second site has been identified as heparan sulphate (HS) and appears crucial to induce cell adhesion. Characterization of the HS-binding unit is critical to understand the requirement of HS in pro-adhesive activity of CyPB. By using a strategy based on gel mobility shift assays with fluorophore-labelled oligosaccharides, we demonstrated that the minimal heparin unit required for efficient binding of CyPB is an octasaccharide. The mutants CyPBKKK− [where KKK− refers to the substitutions K3A(Lys3→Ala)/K4A/K5A] and CyPBΔYFD (where Tyr14-Phe-Asp16 has been deleted) failed to interact with octasaccharides, confirming that the Y14FD16 and K3KK5 clusters are required for CyPB binding. Molecular modelling revealed that both clusters are spatially arranged so that they may act synergistically to form a binding site for the octasaccharide. We then demonstrated that heparin-derived octasaccharides and higher degree of polymerization oligosaccharides inhibited the interaction between CyPB and fluorophore-labelled HS chains purified from T-lymphocytes, and strongly reduced the HS-dependent pro-adhesive activity of CyPB. However, oligosaccharides or heparin were unable to restore adhesion of heparinase-treated T-lymphocytes, indicating that HS has to be present on the cell membrane to support the pro-adhesive activity of CyPB. Altogether, these results demonstrate that the octasaccharide is likely to be the minimal length unit required for efficient binding of CyPB to cell surface HS and consequent HS-dependent cell responses. PMID:15109301

  13. Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions.

    PubMed

    Birkenfeld, Judith; de Castro, Alberto; Marcos, Susana

    2015-08-01

    We estimated the contribution of the gradient refractive index (GRIN) and lens surfaces to lens astigmatism and lens astigmatic angle as a function of age in human donor lenses. Human lenses were imaged, ex vivo, with 3D-spectral optical coherence tomography (OCT) and their back focal length was measured using laser ray tracing. The contribution of lens surfaces and GRIN to lens astigmatism were evaluated by computational ray tracing on the GRIN lens and a homogenous equivalent index lens. Astigmatism magnitude and relative astigmatic angle of and between lens surfaces, GRIN lens, and lens with homogeneous refractive index were evaluated, and all results were correlated with age. The magnitude of astigmatism in the anterior lens surface decreased with age (slope = -0.005 diopters [D]/y; r = 0.397, P = 0.018). Posterior surface astigmatism and lens astigmatism were not age-dependent. Presence of GRIN did not alter significantly the magnitude or axis of the lens astigmatism. The astigmatism of GRIN lens and lens with homogeneous refractive index correlated with anterior lens surface astigmatism (GRIN, P = 3.9E - 6, r = 0.693; equivalent refractive index lens, P = 4.1E - 4, r = 0.565). The astigmatic angle of posterior surface, GRIN lens, and homogeneous refractive index lens did not change significantly with age. The axis of lens astigmatism is close to the astigmatic axis of the anterior lens surface. Age-related changes in lens astigmatism appear to be related to changes in the anterior lens astigmatism. The influence of the GRIN on lens astigmatism and the astigmatic axis is minor.

  14. Revisit of Joule heating in CE: the contribution of surface conductance.

    PubMed

    Xuan, Xiangchun

    2007-08-01

    We present in this short communication the true form of Joule heating in CE which considers the contribution of surface conductance. This increased conductivity of electrolyte solution within electrical double layer has never been discussed in previous studies. The resultant intensive heat generation near the capillary wall is demonstrated using numerical simulation to produce not a locally strong temperature rise, but an additional temperature elevation in the whole solution compared to the model neglecting surface conductance. The latter effect is, however, negligible in typical CE while it might become significant in very small channels.

  15. Contribution of Cell Surface Hydrophobicity in the Resistance of Staphylococcus aureus against Antimicrobial Agents

    PubMed Central

    Lather, Puja; Mohanty, A. K.; Jha, Pankaj; Garsa, Anita Kumari

    2016-01-01

    Staphylococcus aureus is found in a wide variety of habitats, including human skin, where many strains are commensals that may be clinically significant or contaminants of food. To determine the physiological characteristics of resistant strain of Staphylococcus aureus against pediocin, a class IIa bacteriocin, a resistant strain was compared with wild type in order to investigate the contribution of hydrophobicity to this resistance. Additional clumping of resistant strain relative to wild type in light microscopy was considered as an elementary evidence of resistance attainment. A delay in log phase attainment was observed in resistant strain compared to the wild type strain. A significant increase in cell surface hydrophobicity was detected for resistant strain in both hexadecane and xylene indicating the contribution of cell surface hydrophobicity as adaptive reaction against antimicrobial agents. PMID:26966577

  16. Surface Glycoproteins of Exosomes Shed by Myeloid-Derived Suppressor Cells Contribute to Function.

    PubMed

    Chauhan, Sitara; Danielson, Steven; Clements, Virginia; Edwards, Nathan; Ostrand-Rosenberg, Suzanne; Fenselau, Catherine

    2017-01-06

    In this report, we use a proteomic strategy to identify glycoproteins on the surface of exosomes derived from myeloid-derived suppressor cells (MDSCs), and then test if selected glycoproteins contribute to exosome-mediated chemotaxis and migration of MDSCs. We report successful modification of a surface chemistry method for use with exosomes and identify 21 surface N-glycoproteins on exosomes released by mouse mammary carcinoma-induced MDSCs. These glycoprotein identities and functionalities are compared with 93 N-linked glycoproteins identified on the surface of the parental cells. As with the lysate proteomes examined previously, the exosome surface N-glycoproteins are primarily a subset of the glycoproteins on the surface of the suppressor cells that released them, with related functions and related potential as therapeutic targets. The "don't eat me" molecule CD47 and its binding partners thrombospondin-1 (TSP1) and signal regulatory protein α (SIRPα) were among the surface N-glycoproteins detected. Functional bioassays using antibodies to these three molecules demonstrated that CD47, TSP1, and to a lesser extent SIRPα facilitate exosome-mediated MDSC chemotaxis and migration.

  17. Contribution of choline-binding proteins to cell surface properties of Streptococcus pneumoniae.

    PubMed

    Swiatlo, Edwin; Champlin, Franklin R; Holman, Steven C; Wilson, W William; Watt, James M

    2002-01-01

    Nonspecific interactions related to physicochemical properties of bacterial cell surfaces, such as hydrophobicity and electrostatic charge, are known to have important roles in bacterium-host cell encounters. Streptococcus pneumoniae (pneumococcus) expresses multiple, surface-exposed, choline-binding proteins (CBPs) which have been associated with adhesion and virulence. The purpose of this study was to determine the contribution of CBPs to the surface characteristics of pneumococci and, consequently, to learn how CBPs may affect nonspecific interactions with host cells. Pneumococcal strains lacking CBPs were derived by adapting bacteria to a defined medium that substituted ethanolamine for choline. Such strains do not anchor CBPs to their surface. Cell surface hydrophobicity was tested for the wild-type and adapted strains by using a biphasic hydrocarbon adherence assay, and electrostatic charge was determined by zeta potential measurement. Adherence of pneumococci to human-derived cells was assessed by fluorescence-activated cell sorter analysis. Strains lacking both capsule and CBPs were significantly more hydrophobic than nonencapsulated strains with a normal complement of CBPs. The effect of CBPs on hydrophobicity was attenuated in the presence of capsule. Removal of CBPs conferred a greater electronegative net surface charge than that which cells with CBPs possessed, regardless of the presence of capsule. Strains that lack CBPs were poorly adherent to human monocyte-like cells when compared with wild-type bacteria with a full complement of CBPs. These results suggest that CBPs contribute significantly to the hydrophobic and electrostatic surface characteristics of pneumococci and may facilitate adherence to host cells partially through nonspecific, physicochemical interactions.

  18. Line contribution to the critical Casimir force between a homogeneous and a chemically stepped surface.

    PubMed

    Toldin, Francesco Parisen; Tröndle, Matthias; Dietrich, S

    2015-06-03

    Recent experimental realizations of the critical Casimir effect have been implemented by monitoring colloidal particles immersed in a binary liquid mixture near demixing and exposed to a chemically structured substrate. In particular, critical Casimir forces have been measured for surfaces consisting of stripes with periodically alternating adsorption preferences, forming chemical steps between them. Motivated by these experiments, we analyze the contribution of such chemical steps to the critical Casimir force for the film geometry and within the Ising universality class. By means of Monte Carlo simulations, mean-field theory and finite-size scaling analysis we determine the universal scaling function associated with the contribution to the critical Casimir force due to individual, isolated chemical steps facing a surface with homogeneous adsorption preference or with Dirichlet boundary condition. In line with previous findings, these results allow one to compute the critical Casimir force for the film geometry and in the presence of arbitrarily shaped, but wide stripes. In this latter limit the force decomposes into a sum of the contributions due to the two homogeneous parts of the surface and due to the chemical steps between the stripes. We assess this decomposition by comparing the resulting sum with actual simulation data for the critical Casimir force in the presence of a chemically striped substrate.

  19. Surface contribution to high-order aberrations using the Aldis therem and Andersen's algorithms

    NASA Astrophysics Data System (ADS)

    Ortiz-Estardante, A.; Cornejo-Rodriguez, Alejandro

    1990-07-01

    Formulae and computer programs were developed for surface contributions to high order aberrations coefficients using the Aldis theorem and Andersen algor ithms for a symmetr ical optical system. 2. THEORY Using the algorithms developed by T. B. Andersent which allow to calculate the high order aberrations coefficients of an optical system. We were able to obtain a set of equations for the contributions of each surface of a centered optical system to such aberration coefficiets by using the equations of Andersen and the so called Aldis theorem 3. COMPUTER PROGRAMS AND EXAMPLES. The study for the case of an object at infinite has been completed and more recently the object to finite distance case has been also finished . The equations have been properly programed for the two above mentioned situations . Some typical designs of optical systems will be presented and some advantages and disadvantages of the developed formulae and method will be discussed. 4. CONCLUSIONS The algorithm developed by Anderson has a compact notation and structure which is suitable for computers. Using those results obtained by Anderson together with the Aldis theorem a set of equations were derived and programmed for the surface contributions of a centered optical system to high order aberrations. 5. REFERENCES 1. T . B. Andersen App 1. Opt. 3800 (1980) 2. A. Cox A system of Optical Design Focal Press 1964 18 / SPIE

  20. Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy.

    PubMed

    Lombardi, John R; Birke, Ronald L

    2007-06-28

    We reexamine the Herzberg-Teller theory of charge-transfer contributions to the theory of surface enhanced Raman scattering (SERS). In previous work, the Kramers-Heisenberg-Dirac framework was utilized to explain many of the observed features in SERS. However, recent experimental and theoretical developments suggest that we revise the theory to take advantage of the time-dependent picture of Raman scattering. Results are obtained for molecular adsorption on nanoparticles in both the strong confinement limit and the weak confinement limit. We show that the Herzberg-Teller contributions to the charge-transfer effect in SERS display a resonance at the molecule-to-metal or metal-to-molecule transition while retaining the selection rules associated with normal Raman spectroscopy (i.e., harmonic oscillator, as opposed to Franck-Condon overlaps). The charge-transfer contribution to the enhancement factor scales as Gamma(-4), where Gamma is the homogeneous linewidth of the charge-transfer transition, and thus is extremely sensitive to the magnitude of this parameter. We show that the Herzberg-Teller coupling term may be associated with the polaron-coupling constant of the surface phonon-electron interaction. A time-dependent expression for the Raman amplitude is developed, and we discuss the implications of these results for both metal and semiconductor nanoparticle surfaces.

  1. Daytime and nighttime groundwater contributions to soils with different surface conditions

    NASA Astrophysics Data System (ADS)

    Xing, Xuguang; Ma, Xiaoyi; Shi, Wenjuan

    2015-12-01

    Contributions of groundwater to the soil-water balance play an important role in areas with shallow water tables. The characteristics of daytime and nighttime water flux using non-weighing lysimeters were studied from June to September 2012 and 2013 in the extremely arid Xinjiang Uyghur Autonomous Region in northwestern China. The study consisted of nine treatments: three surface conditions, bare soil and cotton plants, each with water tables at depths of 1.0, 1.5, and 2.0 m; and plastic mulch with a water table at 1.5 m but with three percentages of open areas (POAs) in the plastic. The groundwater supply coefficient (SC) and the groundwater contribution (GC) generally varied with surface conditions. Both SC and GC decreased in the bare-soil and cotton treatments with increasing depth of the groundwater. Both SC and GC increased in the plastic-mulch treatment with increasing POA. Average nighttime GCs in the bare-soil treatments in July and August (the midsummer months) were 50.8-60.8 and 53.2-65.3 %, respectively, of the total daily contributions. Average nighttime GCs in the cotton treatments in July and August were 51.4-60.2 and 51.5-58.1 %, respectively, of the total daily contributions. The average GCs in June and September, however, were lower at night than during the daytime. Soil temperature may thus play a more important role than air temperature in the upflow of groundwater.

  2. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures for Falling Snow Events

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Johnson, Benjamin T.

    2011-01-01

    Physically based passive microwave precipitation retrieval algorithms require a set of relationships between satellite -observed brightness temperatures (TBs) and the physical state of the underlying atmosphere and surface. These relationships are nonlinear, such that inversions are ill ]posed especially over variable land surfaces. In order to elucidate these relationships, this work presents a theoretical analysis using TB weighting functions to quantify the percentage influence of the TB resulting from absorption, emission, and/or reflection from the surface, as well as from frozen hydrometeors in clouds, from atmospheric water vapor, and from other contributors. The percentage analysis was also compared to Jacobians. The results are presented for frequencies from 10 to 874 GHz, for individual snow profiles, and for averages over three cloud-resolving model simulations of falling snow. The bulk structure (e.g., ice water path and cloud depth) of the underlying cloud scene was found to affect the resultant TB and percentages, producing different values for blizzard, lake effect, and synoptic snow events. The slant path at a 53 viewing angle increases the hydrometeor contributions relative to nadir viewing channels. Jacobians provide the magnitude and direction of change in the TB values due to a change in the underlying scene; however, the percentage analysis provides detailed information on how that change affected contributions to the TB from the surface, hydrometeors, and water vapor. The TB percentage information presented in this paper provides information about the relative contributions to the TB and supplies key pieces of information required to develop and improve precipitation retrievals over land surfaces.

  3. Surface and Atmospheric Contributions to Passive Microwave Brightness Temperatures for Falling Snow Events

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Johnson, Benjamin T.

    2011-01-01

    Physically based passive microwave precipitation retrieval algorithms require a set of relationships between satellite -observed brightness temperatures (TBs) and the physical state of the underlying atmosphere and surface. These relationships are nonlinear, such that inversions are ill ]posed especially over variable land surfaces. In order to elucidate these relationships, this work presents a theoretical analysis using TB weighting functions to quantify the percentage influence of the TB resulting from absorption, emission, and/or reflection from the surface, as well as from frozen hydrometeors in clouds, from atmospheric water vapor, and from other contributors. The percentage analysis was also compared to Jacobians. The results are presented for frequencies from 10 to 874 GHz, for individual snow profiles, and for averages over three cloud-resolving model simulations of falling snow. The bulk structure (e.g., ice water path and cloud depth) of the underlying cloud scene was found to affect the resultant TB and percentages, producing different values for blizzard, lake effect, and synoptic snow events. The slant path at a 53 viewing angle increases the hydrometeor contributions relative to nadir viewing channels. Jacobians provide the magnitude and direction of change in the TB values due to a change in the underlying scene; however, the percentage analysis provides detailed information on how that change affected contributions to the TB from the surface, hydrometeors, and water vapor. The TB percentage information presented in this paper provides information about the relative contributions to the TB and supplies key pieces of information required to develop and improve precipitation retrievals over land surfaces.

  4. Contribution of household herbicide usage to glyphosate and its degradate aminomethylphosphonic acid in surface water drains.

    PubMed

    Ramwell, Carmel T; Kah, Melanie; Johnson, Paul D

    2014-12-01

    It is necessary to understand the extent to which different sources of pesticides contribute to surface water contamination in order to focus preventive measures appropriately. The extent to which glyphosate use in the home and garden sector may contribute to surface water contamination has not previously been quantified. The aim of this study was to quantify the widely used herbicide glyphosate and its degradation product aminomethylphosphonic acid (AMPA) in surface water drains (storm drains) that could be attributed to amateur, non-professional usage alone. Maximum glyphosate and AMPA concentrations in surface water drains were 8.99 and 1.15 µg L(-1) respectively after the first rain event following the main application period, but concentrations rapidly declined to <1.5 and <0.5 µg L(-1) . The AMPA:glyphosate ratio was typically 0.35. Less than 1% of the applied glyphosate was recovered in drain water. Glyphosate and AMPA losses from urban areas that arise solely from amateur usage have been quantified. In spite of overdosing occurring, glyphosate concentrations in drain flow were lower than concentrations reported elsewhere from professional use in urban areas. © 2014 Society of Chemical Industry.

  5. Potential contribution of microbial degradation to natural attenuation of MTBE in surface water systems

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.; Landmeyer, J.E.

    2001-01-01

    To evaluate the potential contribution of in situ biodegradation as a mechanism for natural attenuation of MTBE in surface water, surface water sediments were collected from streams and lakes at 11 sites throughout the US and the ability of the indigenous microorganisms to mineralize [U-14C] MTBE to 14CO2 under aerobic conditions was examined. Mineralization of [U-14C] MTBE to 14CO2 ranged from 15 to 66% over 50 days and did not differ significantly between sediments collected from MTBE contaminated sites and from sites with no history of MTBE exposure. The microorganisms, which inhabit the bed sediments of streams and lakes could degrade MTBE efficiently and this capability is widespread in the environment. Microbial degradation of [U-14C] MTBE was observed in surface-water-sediment microcosms under anaerobic conditions, but the efficiency and products of anaerobic MTBE biodegradation were strongly dependent on the predominant terminal electron accepting conditions. Microorganisms inhabiting the bed sediments of streams and lakes could degrade MTBE effectively under a range of anaerobic terminal electron accepting conditions. Thus, anaerobic bed sediment microbial processes also might contribute to natural attenuation of MTBE in surface water systems throughout the US.

  6. Contribution to Surface Water Contamination Understanding by Pesticides and Pharmaceuticals, at a Watershed Scale

    PubMed Central

    Piel, Stéphanie; Baurès, Estelle; Thomas, Olivier

    2012-01-01

    This study aims at understanding the presence of regulated and emerging micropollutants, particularly pesticides and pharmaceuticals, in surface water, regarding spatial and temporal influences at a watershed scale. The study of relations between micropollutants and other water quality and hydroclimatic parameters was carried out from a statistical analysis on historical and experimental data of different sampling sites from the main watershed of Brittany, western France. The outcomes point out the influence of urban and rural areas of the watershed as well as the impact of seasons on contamination variations. This work contributes to health risk assessment related to surface water contamination by micropollutants. This approach is particularly interesting in the case of agricultural watersheds such as the one studied, where more than 80% of surface water is used to produce drinking water. PMID:23211608

  7. Can internal heat contribute to the high surface temperature of Venus

    NASA Technical Reports Server (NTRS)

    Morrison, D.

    1976-01-01

    It is shown that current observational data on conditions at the Venusian surface are adequate to exclude the possibility that thermal energy from a hot interior contributes to the high surface temperature of the planet. The maximum energy flux conducted from the interior is estimated by assigning a maximum thermal conductivity and a minimum thickness to the crust. It is found that the crust must be at least 10 km thick and that the maximum thermal flux for this thickness is about 6 millionths of a calorie per sq cm/sec. The relative importance of this internal energy source is assessed by comparing it with the amount of solar energy deposited at the surface. The result demonstrates that the absorbed solar energy is at least one and probably two orders of magnitude higher than the minimum flux conducted from the interior. It is concluded that a very efficient atmospheric trapping mechanism (the greenhouse effect) is operating on Venus.

  8. Contribution to surface water contamination understanding by pesticides and pharmaceuticals, at a watershed scale.

    PubMed

    Piel, Stéphanie; Baurès, Estelle; Thomas, Olivier

    2012-12-04

    This study aims at understanding the presence of regulated and emerging micropollutants, particularly pesticides and pharmaceuticals, in surface water, regarding spatial and temporal influences at a watershed scale. The study of relations between micropollutants and other water quality and hydroclimatic parameters was carried out from a statistical analysis on historical and experimental data of different sampling sites from the main watershed of Brittany, western France. The outcomes point out the influence of urban and rural areas of the watershed as well as the impact of seasons on contamination variations. This work contributes to health risk assessment related to surface water contamination by micropollutants. This approach is particularly interesting in the case of agricultural watersheds such as the one studied, where more than 80% of surface water is used to produce drinking water.

  9. Contribution of material’s surface layer on charge state distribution in laser ablation plasma

    SciTech Connect

    Kumaki, Masafumi; Steski, Dannie; Kanesue, Takeshi; Ikeda, Shunsuke; Okamura, Masahiro; Washio, Masakazu

    2016-02-15

    To generate laser ablation plasma, a pulse laser is focused onto a solid target making a crater on the surface. However, not all the evaporated material is efficiently converted to hot plasma. Some portion of the evaporated material could be turned to low temperature plasma or just vapor. To investigate the mechanism, we prepared an aluminum target coated by thin carbon layers. Then, we measured the ablation plasma properties with different carbon thicknesses on the aluminum plate. The results showed that C{sup 6+} ions were generated only from the surface layer. The deep layers (over 250 nm from the surface) did not provide high charge state ions. On the other hand, low charge state ions were mainly produced by the deeper layers of the target. Atoms deeper than 1000 nm did not contribute to the ablation plasma formation.

  10. Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering

    NASA Astrophysics Data System (ADS)

    Xu, Hongxing; Aizpurua, Javier; Käll, Mikael; Apell, Peter

    2000-09-01

    We examine whether single molecule sensitivity in surface-enhanced Raman scattering (SERS) can be explained in the framework of classical electromagnetic theory. The influence of colloid particle shape and size, composition (Ag or Au) and interparticle separation distance on the wavelength-dependent SERS enhancement factor is reported. Our calculations indicate that the maximum enhancement factor achievable through electromagnetics is of the order 1011. This is obtained only under special circumstances, namely at interstitial sites between particles and at locations outside sharp surface protrusions. The comparative rarity of such sites, together with the extreme spatial localization of the enhancement they provide, can qualitatively explain why only very few surface sites seem to contribute to the measured signal in single-molecule SERS experiments. Enhancement factors of the order 1014-1015, which have been reported in recent experiments, are likely to involve additional enhancement mechanisms such as chemisorption induced resonance Raman effects.

  11. Contribution of the cornea and internal surfaces to the change of ocular aberrations with age

    NASA Astrophysics Data System (ADS)

    Artal, Pablo; Berrio, Esther; Guirao, Antonio; Piers, Patricia

    2002-01-01

    We studied the age dependence of the relative contributions of the aberrations of the cornea and the internal ocular surfaces to the total aberrations of the eye. We measured the wave-front aberration of the eye with a Hartmann-Shack sensor and the aberrations of the anterior corneal surface from the elevation data provided by a corneal topography system. The aberrations of the internal surfaces were obtained by direct subtraction of the ocular and corneal wave-front data. Measurements were obtained for normal healthy subjects with ages ranging from 20 to 70 years. The magnitude of the RMS wave-front aberration (excluding defocus and astigmatism) of the eye increases more than threefold within the age range considered. However, the aberrations of the anterior corneal surface increase only slightly with age. In most of the younger subjects, total ocular aberrations are lower than corneal aberrations, while in the older subjects the reverse condition occurs. Astigmatism, coma, and spherical aberration of the cornea are larger than in the complete eye in younger subjects, whereas the contrary is true for the older subjects. The internal ocular surfaces compensate, at least in part, for the aberrations associated with the cornea in most younger subjects, but this compensation is not present in the older subjects. These results suggest that the degradation of the ocular optics with age can be explained largely by the loss of the balance between the aberrations of the corneal and the internal surfaces.

  12. Long-term change in the source contribution to surface ozone over Japan

    NASA Astrophysics Data System (ADS)

    Nagashima, Tatsuya; Sudo, Kengo; Akimoto, Hajime; Kurokawa, Junichi; Ohara, Toshimasa

    2017-07-01

    The relative contributions of various source regions to the long-term (1980-2005) increasing trend in surface ozone (O3) over Japan were estimated by a series of tracer-tagging simulations using a global chemical transport model. The model simulated the observed increasing trend in surface O3, including its seasonal variation and geographical features, in Japan well and demonstrated the relative roles of different source regions in forming this trend. Most of the increasing trend in surface O3 over Japan ( ˜ 97 %) that was simulated was explained as the sum of trends in contributions of different regions to photochemical O3 production. The increasing trend in O3 produced in China accounted for 36 % of the total increasing trend and those in the other northeast Asian regions (the Korean Peninsula, coastal regions in East Asia, and Japan) each accounted for about 12-15 %. Furthermore, the contributions of O3 created in the entire free troposphere and in western, southern, and southeastern Asian regions also increased, and their increasing trends accounted for 16 and 7 % of the total trend, respectively. The impact of interannual variations in climate, in methane concentration, and in emission of O3 precursors from different source regions on the relative contributions of O3 created in each region estimated above was also investigated. The variation of climate and the increase in methane concentration together caused the increase of photochemical O3 production in several regions, and represented about 19 % of the total increasing trend in surface O3 over Japan. The increase in emission of O3 precursors in China caused an increase of photochemical O3 production not only in China itself but also in the other northeast Asian regions and accounted for about 46 % of the total increase in surface O3 over Japan. Similarly, the relative impact of O3 precursor emission changes in the Korean Peninsula and Japan were estimated as about 16 and 4 % of the total increasing trend

  13. Decoupling the contribution of dispersive and acid-base components of surface energy on the cohesion of pharmaceutical powders.

    PubMed

    Shah, Umang V; Olusanmi, Dolapo; Narang, Ajit S; Hussain, Munir A; Tobyn, Michael J; Heng, Jerry Y Y

    2014-11-20

    This study reports an experimental approach to determine the contribution from two different components of surface energy on cohesion. A method to tailor the surface chemistry of mefenamic acid via silanization is established and the role of surface energy on cohesion is investigated. Silanization was used as a method to functionalize mefenamic acid surfaces with four different functional end groups resulting in an ascending order of the dispersive component of surface energy. Furthermore, four haloalkane functional end groups were grafted on to the surface of mefenamic acid, resulting in varying levels of acid-base component of surface energy, while maintaining constant dispersive component of surface energy. A proportional increase in cohesion was observed with increases in both dispersive as well as acid-base components of surface energy. Contributions from dispersive and acid-base surface energy on cohesion were determined using an iterative approach. Due to the contribution from acid-base surface energy, cohesion was found to increase ∼11.7× compared to the contribution from dispersive surface energy. Here, we provide an approach to deconvolute the contribution from two different components of surface energy on cohesion, which has the potential of predicting powder flow behavior and ultimately controlling powder cohesion.

  14. The contribution of surfaces and interfaces to the crystal thermal conductivity

    NASA Astrophysics Data System (ADS)

    Kazan, M.; Masri, P.

    crystal. Moreover, when crystal size becomes small enough that the ratio of surface to volume is not negligible, the modification of the frequency distribution function of the crystal by the presence of free surfaces, which is the addition of a contribution from an essentially two-dimensional crystal, will alter the temperature dependence of thermal conductivity and give rise to distinct size effects on the thermal conductivity. Furthermore, selection rules governing physical properties in crystals, which have their origins in symmetry properties, translational and rotational, of an infinitely extended crystal, can be relaxed for finite crystals or for atoms in the surface layers of crystals for which these symmetry properties no longer hold. Thus, one would expect to find that the thermal conductivity of a thin film or small particle will show specific features that do not appear for the case of bulk material. In order to present theoretical understanding of the effect of size and surface contribution to the lattice thermal conductivity, we present in the last sections a theoretical lattice dynamical discussion of the thermal conductivity in which the modification of the lattice vibration by the presence of free boundary surfaces play a dominant role.

  15. Ti-6Al-4V triply periodic minimal surface structures for bone implants fabricated via selective laser melting.

    PubMed

    Yan, Chunze; Hao, Liang; Hussein, Ahmed; Young, Philippe

    2015-11-01

    Triply periodic minimal surface (TPMS) structures have already been shown to be a versatile source of biomorphic scaffold designs. Therefore, in this work, Ti-6Al-4V Gyroid and Diamond TPMS lattices having an interconnected high porosity of 80-95% and pore sizes in the range of 560-1600 μm and 480-1450 μm respectively were manufactured by selective laser melting (SLM) for bone implants. The manufacturability, microstructure and mechanical properties of the Ti-6Al-4V TPMS lattices were evaluated. Comparison between 3D micro-CT reconstructed models and original CAD models of the Ti-6Al-4V TPMS lattices shows excellent reproduction of the designs. The as-built Ti-6Al-4V struts exhibit the microstructure of columnar grains filled with very fine and orthogonally oriented α' martensitic laths with the width of 100-300 nm and have the microhardness of 4.01 ± 0.34 GPa. After heat treatment at 680°C for 4h, the α' martensite was converted to a mixture of α and β, in which the α phase being the dominant fraction is present as fine laths with the width of 500-800 nm and separated by a small amount of narrow, interphase regions of dark β phase. Also, the microhardness is decreased to 3.71 ± 0.35 GPa due to the coarsening of the microstructure. The 80-95% porosity TPMS lattices exhibit a comparable porosity with trabecular bone, and the modulus is in the range of 0.12-1.25 GPa and thus can be adjusted to the modulus of trabecular bone. At the same range of porosity of 5-10%, the moduli of cortical bone and of the Ti-6Al-4V TPMS lattices are in a similar range. Therefore, the modulus and porosity of Ti-6Al-4V TPMS lattices can be tailored to the levels of human bones and thus reduce or avoid "stress shielding" and increase longevity of implants. Due to the biomorphic designs, and high interconnected porosity and stiffness comparable to human bones, SLM-made Ti-6Al-4V TPMS lattices can be a promising material for load bearing bone implants. Copyright © 2015 Elsevier

  16. Modelling atmospheric and induced non-tidal oceanic loading contributions to surface gravity and tilt measurements

    NASA Astrophysics Data System (ADS)

    Boy, Jean-Paul; Longuevergne, Laurent; Boudin, Frédéric; Jacob, Thomas; Lyard, Florent; Llubes, Muriel; Florsch, Nicolas; Esnoult, Marie-France

    2009-12-01

    We investigate the contribution of atmospheric and its induced non-tidal oceanic loading effects on surface time-varying gravity and tilt measurements for several stations in Western Europe. The ocean response to pressure forcing can be modelled accordingly to the inverted barometer, i.e. assuming that air pressure variations are fully compensated by static sea height changes, or using ocean general circulation models. We validate two runs of the HUGO-m barotropic ocean model by comparing predicted sea surface height variations with hundred tide-gauge measurements along the European coasts. We then show that global surface pressure field, as well as a barotropic high-resolution ocean model forced by air pressure and winds allow in most cases a significant reduction of the variance of gravity residuals and, to a smaller extends tilt residuals. We finally show that precise gravity measurements with superconducting gravimeters allow the observation of large storm surges, occurring in the North Sea, even for inland stations. However, we also confirm that the continental hydrology contribution cannot be neglected. Thanks to their specific sensitivity feature, only tiltmeters closest to the coast can clearly detect the loading due to these storm surges.

  17. Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters.

    PubMed

    Smith, Jason M; Casciotti, Karen L; Chavez, Francisco P; Francis, Christopher A

    2014-08-01

    The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity--ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts--varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification.

  18. “Feathered” fractal surfaces to minimize secondary electron emission for a wide range of incident angles

    DOE PAGES

    Swanson, Charles; Kaganovich, Igor D.

    2017-07-24

    Complex structures on a material surface can significantly reduce the total secondary electron emission from that surface. The reduction occurs due to the capture of low-energy, true secondary electrons emitted at one point of the structure and intersecting another. We performed Monte Carlo calculations to demonstrate that fractal surfaces can reduce net secondary electron emission produced by the surface as compared to the flat surface. Specifically, we describe one surface, a “feathered” surface, which reduces the secondary electron emission yield more effectively than other previously considered configurations. Specifically, feathers grown onto a surface suppress secondary electron emission from shallow anglesmore » of incidence more effectively than velvet. Here, we find that, for the surface simulated, secondary electron emission yield remains below 20% of its un-suppressed value, even for shallow incident angles, where the velvet-only surface gives reduction factor of only 50%.« less

  19. High order surface aberration contributions from phase space analysis of differential rays.

    PubMed

    Chen, Bo; Herkommer, Alois M

    2016-03-21

    Phase space methods are very popular for illumination systems or paraxial system analysis. In this paper it will be shown that it is also a promising tool to visualize and quantify surface aberration contributions, including all orders. The method is based on the calculation and propagation of a differential ray pair. In order to validate the method we compare to Aldis calculus, an exact method to determine high order aberrations in rotational symmetric systems. A triplet lens is used as an example to visualize the results. The analysis indicates that the phase space method is a very good approximation to Aldis calculus and moreover it is not limited to any symmetry assumptions.

  20. Percentage Contributions from Atmospheric and Surface Features to Computed Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick

    2006-01-01

    Over the past few years, there has become an increasing interest in the use of millimeter-wave (mm-wave) and sub-millimeter-wave (submm-wave) radiometer observations to investigate the properties of ice particles in clouds. Passive radiometric channels respond to both the integrated particle mass throughout the volume and field of view, and to the amount, location, and size distribution of the frozen (and liquid) particles with the sensitivity varying for different frequencies and hydrometeor types. One methodology used since the 1960's to discern the relationship between the physical state observed and the brightness temperature (TB) is through the temperature weighting function profile. In this research, the temperature weighting function concept is exploited to analyze the sensitivity of various characteristics of the cloud profile, such as relative humidity, ice water path, liquid water path, and surface emissivity. In our numerical analysis, we compute the contribution (in Kelvin) from each of these cloud and surface characteristics, so that the sum of these various parts equals the computed TB. Furthermore, the percentage contribution from each of these characteristics is assessed. There is some intermingling/contamination of the contributions from various components due to the integrated nature of passive observations and the absorption and scattering between the vertical layers, but all in all the knowledge gained is useful. This investigation probes the sensitivity over several cloud classifications, such as cirrus, blizzards, light snow, anvil clouds, and heavy rain. The focus is on mm-wave and submm-wave frequencies, however discussions of the effects of cloud variations to frequencies as low as 10 GHz and up to 874 GHz will also be presented. The results show that nearly 60% of the TB value at 89 GHz comes from the earth's surface for even the heaviest blizzard snow rates. On the other hand, a significant percentage of the TB value comes from the snow

  1. Percentage Contributions from Atmospheric and Surface Features to Computed Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    Jackson, Gail Skofronick

    2006-01-01

    Over the past few years, there has become an increasing interest in the use of millimeter-wave (mm-wave) and sub-millimeter-wave (submm-wave) radiometer observations to investigate the properties of ice particles in clouds. Passive radiometric channels respond to both the integrated particle mass throughout the volume and field of view, and to the amount, location, and size distribution of the frozen (and liquid) particles with the sensitivity varying for different frequencies and hydrometeor types. One methodology used since the 1960's to discern the relationship between the physical state observed and the brightness temperature (TB) is through the temperature weighting function profile. In this research, the temperature weighting function concept is exploited to analyze the sensitivity of various characteristics of the cloud profile, such as relative humidity, ice water path, liquid water path, and surface emissivity. In our numerical analysis, we compute the contribution (in Kelvin) from each of these cloud and surface characteristics, so that the sum of these various parts equals the computed TB. Furthermore, the percentage contribution from each of these characteristics is assessed. There is some intermingling/contamination of the contributions from various components due to the integrated nature of passive observations and the absorption and scattering between the vertical layers, but all in all the knowledge gained is useful. This investigation probes the sensitivity over several cloud classifications, such as cirrus, blizzards, light snow, anvil clouds, and heavy rain. The focus is on mm-wave and submm-wave frequencies, however discussions of the effects of cloud variations to frequencies as low as 10 GHz and up to 874 GHz will also be presented. The results show that nearly 60% of the TB value at 89 GHz comes from the earth's surface for even the heaviest blizzard snow rates. On the other hand, a significant percentage of the TB value comes from the snow

  2. Fermi level pinning and the charge transfer contribution to the energy of adsorption at semiconducting surfaces

    SciTech Connect

    Krukowski, Stanisław; Kempisty, Paweł; Strak, Paweł; Sakowski, Konrad

    2014-01-28

    It is shown that charge transfer, the process analogous to formation of semiconductor p-n junction, contributes significantly to adsorption energy at semiconductor surfaces. For the processes without the charge transfer, such as molecular adsorption of closed shell systems, the adsorption energy is determined by the bonding only. In the case involving charge transfer, such as open shell systems like metal atoms or the dissociating molecules, the energy attains different value for the Fermi level differently pinned. The Density Functional Theory (DFT) simulation of species adsorption at different surfaces, such as SiC(0001) or GaN(0001) confirms these predictions: the molecular adsorption is independent on the coverage, while the dissociative process adsorption energy varies by several electronvolts.

  3. Estimate solar contribution to the global surface warming using the ACRIM TSI satellite composite.

    NASA Astrophysics Data System (ADS)

    Scafetta, N.; West, B. J.

    2005-12-01

    We study, by using a wavelet decomposition methodology, the solar signature on global surface temperature data using the ACRIM total solar irradiance satellite composite by Willson and Mordvinov. These data present a +0.047% per decade trend between minima during solar cycles 21-23 (1980-2002). By using the phenomenological climate sensitivity to a 22-year cycle, we estimate that the ACRIM upward trend might have contributed 10-30% of the global surface temperature warming over the period 1980-2002. Moreover, by comparing the phenomenological climate sensitivity to the 11-year solar cycle with those hypothesized by some energy balance models we conclude that the former is 1.5-3 times stronger than the latter. Finally, we study the climate sensitivity in different regions of the Earth.

  4. Contribution of the highly conserved EaeH surface protein to enterotoxigenic Escherichia coli pathogenesis.

    PubMed

    Sheikh, Alaullah; Luo, Qingwei; Roy, Koushik; Shabaan, Salwa; Kumar, Pardeep; Qadri, Firdausi; Fleckenstein, James M

    2014-09-01

    Enterotoxigenic Escherichia coli (ETEC) strains are among the most common causes of diarrheal illness worldwide. These pathogens disproportionately afflict children in developing countries, where they cause substantial morbidity and are responsible for hundreds of thousands of deaths each year. Although these organisms are important targets for enteric vaccines, most development efforts to date have centered on a subset of plasmid-encoded fimbrial adhesins known as colonization factors and heat-labile toxin (LT). Emerging data suggest that ETEC undergoes considerable changes in its surface architecture, sequentially deploying a number of putative adhesins during its interactions with the host. We demonstrate here that one putative highly conserved, chromosomally encoded adhesin, EaeH, engages the surfaces of intestinal epithelial cells and contributes to bacterial adhesion, LT delivery, and colonization of the small intestine. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  5. Elastic and chemical contributions to the stability of magnetic surface alloys on Ru(0001)

    NASA Astrophysics Data System (ADS)

    Marathe, Madhura; Imam, Mighfar; Narasimhan, Shobhana

    2009-02-01

    We have used density-functional theory to study the miscibility and magnetic properties of surface alloys. Our systems consist of a single pseudomorphic layer of MxN1-x on the Ru(0001) surface, where M=Fe or Co, and N=Pt , Au, Ag, Cd, or Pb. Several of the combinations studied by us display a preference for atomically mixed configurations over phase-segregated forms. We have also performed further ab initio calculations to obtain the parameters describing the elastic interactions between atoms in the alloy layer, including the effective atomic sizes at the surface. We find that while elastic interactions favor alloying for all the systems considered by us, in some cases chemical interactions disfavor atomic mixing. We show that a simple criterion (analogous to the Hume-Rothery first law for bulk alloys) need not necessarily work for strain-stabilized surface alloys because of the presence of additional elastic contributions to the alloy heat of formation that will tend to oppose phase segregation. We find that magnetic moments are significantly enhanced with respect to the bulk elements.

  6. RKKY-like contributions to the magnetic anisotropy energy: 3 d adatoms on Pt(111) surface

    NASA Astrophysics Data System (ADS)

    Bouhassoune, Mohammmed; Dias, Manuel dos Santos; Zimmermann, Bernd; Dederichs, Peter H.; Lounis, Samir

    2016-09-01

    The magnetic anisotropy energy defines the energy barrier that stabilizes a magnetic moment. Utilizing density-functional-theory-based simulations and analytical formulations, we establish that this barrier is strongly modified by long-range contributions very similar to Friedel oscillations and Rudermann-Kittel-Kasuya-Yosida interactions. Thus, oscillations are expected and observed, with different decaying factors and highly anisotropic in realistic materials, which can switch nontrivially the sign of the magnetic anisotropy energy. This behavior is general, and for illustration we address the transition-metal adatoms, Cr, Mn, Fe, and Co deposited on a Pt(111) surface. We explain, in particular, the mechanisms leading to the strong site dependence of the magnetic anisotropy energy observed for Fe adatoms on a Pt(111) surface as revealed previously via first-principles-based simulations and inelastic scanning tunneling spectroscopy [A. A. Khajetoorians et al., Phys. Rev. Lett. 111, 157204 (2013), 10.1103/PhysRevLett.111.157204]. The same mechanisms are probably active for the site dependence of the magnetic anisotropy energy obtained for Fe adatoms on Pd or Rh(111) surfaces and for Co adatoms on a Rh(111) surface [P. Blonski et al., Phys. Rev. B 81, 104426 (2010), 10.1103/PhysRevB.81.104426].

  7. Factors contributing to the off-target transport of pyrethroid insecticides from urban surfaces.

    PubMed

    Jorgenson, Brant C; Wissel-Tyson, Christopher; Young, Thomas M

    2012-08-01

    Pyrethroid insecticides used in urban and suburban contexts have been found in urban creek sediments and associated with toxicity in aquatic bioassays. The objectives of this study were to evaluate the main factors contributing to the off-target transport of pyrethroid insecticides from surfaces typical of residential landscapes. Controlled rainfall simulations over concrete, bare soil, and turf plots treated individually with pyrethroid insecticides in a suspension concentrate, an emulsifiable concentrate, or a granule formulation were conducted at different rainfall intensities and different product set-time intervals. Pyrethroid mass washoff varied by several orders of magnitude between experimental treatments. Suspension concentrate product application to concrete yielded significantly greater washoff than any other treatment; granule product application to turf yielded the least washoff. Fractional losses at 10 L of runoff ranged from 25.9 to 0.011% of pyrethroid mass applied, and 10 L nominal mass losses ranged from 3970 to 0.18 μg. Mass washoff depended principally on formulation and surface type combination and, to a lesser degree, on set-time interval and rainfall intensity. Treatment effects were analyzed by ANOVA on main factors of formulation, surface type, and set time. Factor effects were not purely additive; a significant interaction between formulation and surface type was noted.

  8. Microthermal measurements of the surface layer and its contribution to the seeing

    NASA Astrophysics Data System (ADS)

    Guerra, Juan Carlos; Gonzalez, Manuel

    2006-06-01

    In order to obtain more knowledge of the atmospheric surface layer, an internet based remote monitoring system has been developed. The surface layer turbulence degrades the images to a degree that will depend on the terrain, vegetation, structures and earth thermal effects on the local site. To find the contribution of these micro-thermal fluctuations introduced by the surface layer to the image degradation a series of fast response temperature sensor are placed at different heights and a front-end electronic system is used to control the sensors and manage the Ethernet communication to a remote PC. From the instantaneous temperature differences between the micro thermocouple systems we can derive the temperature structure function coefficient C t2 which is related to the refractive index structure function coefficient C n2. Data from the micro thermocouples must be read at fairly high frequency and recorded in a fashion which may be synchronised. The long term surface layer turbulence measurements are stored in a remote PC.

  9. Organic matter on the early surface of Mars: An assessment of the contribution by interplanetary dust

    NASA Technical Reports Server (NTRS)

    Flynn, G. J.

    1993-01-01

    Calculations by Anders and Chyba et al. have recently revived interest in the suggestion that organic compounds important to the development of life were delivered to the primitive surface of the Earth by comets, asteroids or the interplanetary dust derived from these two sources. Anders has shown that the major post-accretion contribution of extraterrestrial organic matter to the surface of the Earth is from interplanetary dust. Since Mars is a much more favorable site for the gentle deceleration of interplanetary dust particles than is Earth, model calculations show that biologically important organic compounds are likely to have been delivered to the early surface of Mars by the interplanetary dust in an order-of-magnitude higher surface density than onto the early Earth. Using the method described by Flynn and McKay, the size frequency distribution, and the atmospheric entry velocity distribution of IDP's at Mars were calculated. The entry velocity distribution, coupled with the atmospheric entry heating model developed by Whipple and extended by Fraundorf was used to calculate the fraction of the particles in each mass decade which survives atmospheric entry without melting (i.e., those not heated above 1600K). The incident mass and surviving mass in each mass decade are shown for both Earth and Mars.

  10. Surface mass balance contributions to acceleration of Antarctic ice mass loss during 2003-2013.

    PubMed

    Seo, Ki-Weon; Wilson, Clark R; Scambos, Ted; Kim, Baek-Min; Waliser, Duane E; Tian, Baijun; Kim, Byeong-Hoon; Eom, Jooyoung

    2015-05-01

    Recent observations from satellite gravimetry (the Gravity Recovery and Climate Experiment (GRACE) mission) suggest an acceleration of ice mass loss from the Antarctic Ice Sheet (AIS). The contribution of surface mass balance changes (due to variable precipitation) is compared with GRACE-derived mass loss acceleration by assessing the estimated contribution of snow mass from meteorological reanalysis data. We find that over much of the continent, the acceleration can be explained by precipitation anomalies. However, on the Antarctic Peninsula and other parts of West Antarctica, mass changes are not explained by precipitation and are likely associated with ice discharge rate increases. The total apparent GRACE acceleration over all of the AIS between 2003 and 2013 is -13.6 ± 7.2 Gt/yr(2). Of this total, we find that the surface mass balance component is -8.2 ± 2.0 Gt/yr(2). However, the GRACE estimate appears to contain errors arising from the atmospheric pressure fields used to remove air mass effects. The estimated acceleration error from this effect is about 9.8 ± 5.8 Gt/yr(2). Correcting for this yields an ice discharge acceleration of -15.1 ± 6.5 Gt/yr(2).

  11. Contributions of Charged Residues in Structurally Dynamic Capsid Surface Loops to Rous Sarcoma Virus Assembly

    PubMed Central

    Heyrana, Katrina J.; Goh, Boon Chong; Nguyen, Tam-Linh N.; England, Matthew R.; Bewley, Maria C.; Schulten, Klaus

    2016-01-01

    ABSTRACT Extensive studies of orthoretroviral capsids have shown that many regions of the CA protein play unique roles at different points in the virus life cycle. The N-terminal domain (NTD) flexible-loop (FL) region is one such example: exposed on the outer capsid surface, it has been implicated in Gag-mediated particle assembly, capsid maturation, and early replication events. We have now defined the contributions of charged residues in the FL region of the Rous sarcoma virus (RSV) CA to particle assembly. Effects of mutations on assembly were assessed in vivo and in vitro and analyzed in light of new RSV Gag lattice models. Virus replication was strongly dependent on the preservation of charge at a few critical positions in Gag-Gag interfaces. In particular, a cluster of charges at the beginning of FL contributes to an extensive electrostatic network that is important for robust Gag assembly and subsequent capsid maturation. Second-site suppressor analysis suggests that one of these charged residues, D87, has distal influence on interhexamer interactions involving helix α7. Overall, the tolerance of FL to most mutations is consistent with current models of Gag lattice structures. However, the results support the interpretation that virus evolution has achieved a charge distribution across the capsid surface that (i) permits the packing of NTD domains in the outer layer of the Gag shell, (ii) directs the maturational rearrangements of the NTDs that yield a functional core structure, and (iii) supports capsid function during the early stages of virus infection. IMPORTANCE The production of infectious retrovirus particles is a complex process, a choreography of protein and nucleic acid that occurs in two distinct stages: formation and release from the cell of an immature particle followed by an extracellular maturation phase during which the virion proteins and nucleic acids undergo major rearrangements that activate the infectious potential of the virion. This

  12. Balance control under different passive contributions of the ankle extensors: quiet standing on inclined surfaces.

    PubMed

    Sasagawa, Shun; Ushiyama, Junichi; Masani, Kei; Kouzaki, Motoki; Kanehisa, Hiroaki

    2009-07-01

    Human bipedal stance is often modeled as a single inverted pendulum that pivots at the ankle joints in the sagittal plane. Because the center of body mass is usually maintained in front of the ankle joints, ankle extensor torque is continuously required to prevent the body from falling. During quiet standing, both passive and active mechanisms contribute to generate the ankle extensor torque counteracting gravity. This study aimed to investigate the active stabilization mechanism in more detail. Eight healthy subjects were requested to stand quietly on three different surfaces of 1) toes-up, 2) level, and 3) toes-down. Surface electromyogram (EMG) was recorded from the medial head of the gastrocnemius (MG), soleus (SOL), and tibialis anterior muscles. Inclination angle of the body was simultaneously measured. As a result, we found that EMG activities of MG and SOL were lowest during the toes-up standing and highest during the toes-down, indicating that increased (decreased) passive contribution required less (more) extensor torque generated by active muscle contraction. Frequency domain analysis also revealed that sway-related modulation of the ankle extensor activity (0.12-4.03 Hz) was unchanged among the three foot inclinations. On the other hand, isometric contraction strength of these muscles increased as the slope declined (toes-up < level < toes-down). These results support the idea that by regulating the isometric contraction strength, the CNS maintains a constant level of muscle tone and resultant ankle stiffness irrespective of the passive contribution. Such control scheme would be crucial when we consider the low bandwidth of the intermittent controller.

  13. Contribution of surface salt bridges to protein stability: guidelines for protein engineering.

    PubMed

    Makhatadze, George I; Loladze, Vakhtang V; Ermolenko, Dmitri N; Chen, XiaoFen; Thomas, Susan T

    2003-04-11

    The small globular protein, ubiquitin, contains a pair of oppositely charged residues, K11 and E34, that according to the three-dimensional structure are located on the surface of this protein with a spatial orientation characteristic of a salt bridge. We investigated the strength of this salt bridge and its contribution to the global stability of the ubiquitin molecule. Using the "double mutant cycle" analysis, the strength of the pairwise interactions between K11 and E34 was estimated to be favorable by 3.6kJ/mol. Further, the salt bridge of the reverse orientation, i.e. E11/K34, can be formed and is found to have a strength (3.8kJ/mol) similar to that of the K11/E34 pair. However, the global stability of the K11/E34 variant of ubiquitin is 2.2kJ/mol higher than that of the E11/K34 variant. The difference in the contribution of the opposing salt bridge orientations to the overall stability of the ubiquitin molecule is attributed to the difference in the charge-charge interactions between residues forming the salt bridge and the rest of the ionizable groups in this protein. On the basis of these results, we concluded that surface salt bridges are stabilizing, but their contribution to the overall protein stability is strongly context-dependent, with charge-charge interactions being the largest determinant. Analysis of 16 salt bridges from six different proteins, for which detailed experimental data on energetics have been reported, support the conclusions made from the analysis of the salt bridge in ubiquitin. Implications of these findings for engineering proteins with enhanced thermostability are discussed.

  14. Minimal surfaces of the {{AdS}}_{5}\\times {S}^{5} superstring and the symmetries of super Wilson loops at strong coupling

    NASA Astrophysics Data System (ADS)

    Münkler, Hagen; Pollok, Jonas

    2015-09-01

    Based on an extension of the holographic principle to superspace, we provide a strong-coupling description of smooth super Wilson loops in {N}=4 super Yang-Mills theory in terms of minimal surfaces of the {{AdS}}5× {S}5 superstring. We employ the classical integrability of the Green-Schwarz superstring on {{AdS}}5× {S}5 to derive the superconformal and Yangian Y[{psu}(2,2| 4)] Ward identities for the super Wilson loop, thus extending the strong coupling results obtained for the Maldacena-Wilson loop. In the course of the derivation, we determine the minimal surface solution up to third order in an expansion close to the conformal boundary.

  15. Sources contributing to background surface ozone in the US Intermountain West

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Jacob, D. J.; Yue, X.; Downey, N. V.; Wood, D. A.; Blewitt, D.

    2014-06-01

    We quantify the sources contributing to background surface ozone concentrations in the US Intermountain West by using the GEOS-Chem chemical transport model with 1 / 2° × 2 / 3° horizontal resolution to interpret the Clean Air Status and Trends Network (CASTNet) ozone monitoring data for 2006-2008. We isolate contributions from lightning, wildfires, the stratosphere, and California pollution. Lightning emissions are constrained by observations and wildfire emissions are estimated from daily fire reports. We find that lightning increases mean surface ozone in summer by 10 ppbv in the Intermountain West, with moderate variability. Wildfire plumes generate high-ozone events in excess of 80 ppbv in GEOS-Chem, but CASTNet ozone observations in the Intermountain West show no enhancements during these events nor do they show evidence of regional fire influence. Models may overestimate ozone production in fresh fire plumes because of inadequate chemistry and grid-scale resolution. The highest ozone concentrations observed in the Intermountain West (> 75 ppbv) in spring are associated with stratospheric intrusions. The model captures the timing of these intrusions but not their magnitude, reflecting numerical diffusion intrinsic to Eulerian models. This can be corrected statistically through a relationship between model bias and the model-diagnosed magnitude of stratospheric influence; with this correction, models may still be useful to forecast and interpret high-ozone events from stratospheric intrusions. We show that discrepancy between models in diagnosing stratospheric influence is due in part to differences in definition, i.e., whether stratospheric ozone is diagnosed as produced in the stratosphere (GEOS-Chem definition) or as transported from above the tropopause. The latter definition can double the diagnosed stratospheric influence in surface air by labeling as "stratospheric" any ozone produced in the troposphere and temporarily transported to the stratosphere

  16. Surface Gravity Data Contribution to the Puerto Rico and U.S. Virgin Islands Geoid Model

    NASA Astrophysics Data System (ADS)

    Li, X.; Gerhards, C.; Holmes, S. A.; Saleh, J.; Shaw, B.

    2015-12-01

    The Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project provides updated local gravity field information for the XGEOID15 models. In particular, its airborne gravity data in the area of Puerto Rico and U.S. Virgin Islands (PRVI) made substantial improvements (~60%) on the precision of the geoid models at the local GNSS/Leveling bench marks in the target area. Fortunately, PRVI is free of the huge systematic error in the North American Vertical Datum of 1988 (NAVD88). Thus, the airborne contribution was evaluated more realistically. In addition, the airborne data picked up more detailed gravity field information in the medium wavelength band (spherical harmonic degree 200 to 600) that are largely beyond the resolution of the current satellite missions, especially along the nearby ocean trench areas. Under this circumstance (significant airborne contributions in the medium band), local surface gravity data need to be examined more carefully than before during merging with the satellite and airborne information for local geoid improvement, especially considering the well-known systematic problems in the NGS historical gravity holdings (Saleh et al 2013 JoG). Initial tests showed that it is very important to maintain high consistency between the surface data sets and the airborne enhanced reference model. In addition, a new aggregation method (Gerhards 2014, Inverse Problems) will also be tested to optimally combine the local surface data with the reference model. The data cleaning and combining procedures in the target area will be summarized here as reference for future applications.

  17. Differential contributions of archaeal ammonia oxidizer ecotypes to nitrification in coastal surface waters

    PubMed Central

    Smith, Jason M; Casciotti, Karen L; Chavez, Francisco P; Francis, Christopher A

    2014-01-01

    The occurrence of nitrification in the oceanic water column has implications extending from local effects on the structure and activity of phytoplankton communities to broader impacts on the speciation of nitrogenous nutrients and production of nitrous oxide. The ammonia-oxidizing archaea, responsible for carrying out the majority of nitrification in the sea, are present in the marine water column as two taxonomically distinct groups. Water column group A (WCA) organisms are detected at all depths, whereas Water column group B (WCB) are present primarily below the photic zone. An open question in marine biogeochemistry is whether the taxonomic definition of WCA and WCB organisms and their observed distributions correspond to distinct ecological and biogeochemical niches. We used the natural gradients in physicochemical and biological properties that upwelling establishes in surface waters to study their roles in nitrification, and how their activity—ascertained from quantification of ecotype-specific ammonia monooxygenase (amoA) genes and transcripts—varies in response to environmental fluctuations. Our results indicate a role for both ecotypes in nitrification in Monterey Bay surface waters. However, their respective contributions vary, due to their different sensitivities to surface water conditions. WCA organisms exhibited a remarkably consistent level of activity and their contribution to nitrification appears to be related to community size. WCB activity was less consistent and primarily constrained to colder, high nutrient and low chlorophyll waters. Overall, the results of our characterization yielded a strong, potentially predictive, relationship between archaeal amoA gene abundance and the rate of nitrification. PMID:24553472

  18. Contributions of regional and intercontinental transport to surface ozone in Tokyo

    NASA Astrophysics Data System (ADS)

    Yoshitomi, M.; Wild, O.; Akimoto, H.

    2011-04-01

    Japan lies downwind of the Asian continent and for much of the year air quality is directly influenced by emissions of ozone precursors over these heavily-populated and rapidly-industrializing regions. This study examines the extent to which oxidant transport from regional and distant anthropogenic sources influences air quality in Japan in springtime, when these contributions are largest. We find that European and North American contributions to surface ozone over Japan in spring are persistent, averaging 3.5±1.1 ppb and 2.8±0.5 ppb respectively, and are greatest in cold continental outflow conditions following the passage of cold fronts. Contributions from China are larger, 4.0±2.8 ppb, and more variable, as expected for a closer source region, and are generally highest near cold fronts preceding the influence of more distant sources. The stratosphere provides a varying but ever-present background of ozone of about 11.2±2.5 ppb during spring. Local sources over Japan and Korea have a relatively small impact on mean ozone, 2.4±7.6 ppb, but this masks a strong diurnal signal, and local sources clearly dominate during episodes of high daytime ozone. By examining the meteorological mechanisms that favour transport from different source regions, we demonstrate that while maximum foreign influence generally does not occur at the same time as the greatest buildup of oxidants from local sources, it retains a significant influence under these conditions. It is thus clear that while meteorological boundaries provide some protection from foreign influence during oxidant outbreaks in Tokyo, these distant sources still make a substantial contribution to exceedance of the Japanese ozone air quality standard in springtime.

  19. Contributions of regional and intercontinental transport to surface ozone in the Tokyo area

    NASA Astrophysics Data System (ADS)

    Yoshitomi, M.; Wild, O.; Akimoto, H.

    2011-08-01

    Japan lies downwind of the Asian continent and for much of the year air quality is directly influenced by emissions of ozone precursors over these heavily-populated and rapidly-industrializing regions. This study examines the extent to which oxidant transport from regional and distant anthropogenic sources influences air quality in Japan in springtime, when these contributions are largest. We find that European and North American contributions to surface ozone over Japan in spring are persistent, averaging 3.5±1.1 ppb and 2.8±0.5 ppb respectively, and are greatest in cold continental outflow conditions following the passage of cold fronts. Contributions from China are larger, 4.0±2.8 ppb, and more variable, as expected for a closer source region, and are generally highest near cold fronts preceding the influence of more distant sources. The stratosphere provides a varying but ever-present background of ozone of about 11.2±2.5 ppb during spring. Local sources over Japan and Korea have a relatively small impact on mean ozone, 2.4±7.6 ppb, but this masks a strong diurnal signal, and local sources clearly dominate during episodes of high daytime ozone. By examining the meteorological mechanisms that favour transport from different source regions, we demonstrate that while maximum foreign influence generally does not occur at the same time as the greatest buildup of oxidants from local sources, it retains a significant influence under these conditions. It is thus clear that while meteorological boundaries provide some protection from foreign influence during oxidant outbreaks in Tokyo, these distant sources still make a substantial contribution to exceedance of the Japanese ozone air quality standard in springtime.

  20. Analysis of bulk and surface contributions in the neutron skin of nuclei

    SciTech Connect

    Warda, M.; Vinas, X.; Roca-Maza, X.; Centelles, M.

    2010-05-15

    The neutron skin thickness of nuclei is a sensitive probe of the nuclear symmetry energy and has multiple implications for nuclear and astrophysical studies. However, precision measurements of this observable are difficult to obtain. The analysis of the experimental data may imply some assumptions about the bulk or surface nature of the formation of the neutron skin. Here we study the bulk or surface character of neutron skins of nuclei following from calculations with Gogny, Skyrme, and covariant nuclear mean-field interactions. These interactions are successful in describing nuclear charge radii and binding energies but predict different values for neutron skins. We perform the study by fitting two-parameter Fermi distributions to the calculated self-consistent neutron and proton densities. We note that the equivalent sharp radius is a more suitable reference quantity than the half-density radius parameter of the Fermi distributions to discern between the bulk and surface contributions in neutron skins. We present calculations for nuclei in the stability valley and for the isotopic chains of Sn and Pb.

  1. Probing the contribution of different intermolecular forces to the adsorption of spheroproteins onto hydrophilic surfaces.

    PubMed

    Borges, João; Campiña, José M; Silva, A Fernando

    2013-12-27

    Protein adsorption is a delicate process, which results from the balance between the properties of proteins and their solid supports. Although the relevance of some of these parameters has been already unveiled, the precise involvement of electrostatics and other weaker intermolecular forces requires further comprehension. Aiming to contribute to this task, this work explores the attachment, rearrangement, and surface aggregation of a model spheroprotein, such as bovine β-lactoglobulin (β-LG), onto hydrophilic substrates prefunctionalized with different alkylthiol films. Thereby, a variety of electrostatic scenarios for the adsorption of β-LG could be recreated through the variation of the pH and the functional chemistry of the surfaces. The changes in surface mass density (plus associated water) and film flexibility were followed in situ with quartz crystal microbalance with dissipation monitoring. Film packing and aggregation were assessed by faradaic electrochemical measurements and ex situ atomic force microscopy and field effect scanning electron microscopy. In contrast to previous hypotheses arguing that electrostatic interactions between charged substrates and proteins would be the only driving force, a complex interplay between Coulombic and non-Coulombic intermolecular forces (which would depend upon the experimental conditions) has been suggested to explain the results.

  2. Individual surface-engineered microorganisms as robust Pickering interfacial biocatalysts for resistance-minimized phase-transfer bioconversion.

    PubMed

    Chen, Zhaowei; Ji, Haiwei; Zhao, Chuanqi; Ju, Enguo; Ren, Jinsong; Qu, Xiaogang

    2015-04-13

    A powerful strategy for long-term and diffusional-resistance-minimized whole-cell biocatalysis in biphasic systems is reported where individually encapsulated bacteria are employed as robust and recyclable Pickering interfacial biocatalysts. By individually immobilizing bacterial cells and optimizing the hydrophobic/hydrophilic balance of the encapsulating magnetic mineral shells, the encased bacteria became interfacially active and locate at the Pickering emulsion interfaces, leading to dramatically enhanced bioconversion performances by minimizing internal and external diffusional resistances. Moreover, in situ product separation and biocatalyst recovery was readily achieved using a remote magnetic field. Importantly, the mineral shell effectively protected the entire cell from long-term organic-solvent stress, as shown by the reusability of the biocatalysts for up to 30 cycles, while retaining high stereoselective catalytic activities, cell viabilities, and proliferative abilities.

  3. Genes ycfR, sirA and yigG contribute to the surface attachment of Salmonella enterica Typhimurium and Saintpaul to fresh produce.

    PubMed

    Salazar, Joelle K; Deng, Kaiping; Tortorello, Mary Lou; Brandl, Maria T; Wang, Hui; Zhang, Wei

    2013-01-01

    Salmonella enterica is a frequent contaminant of minimally-processed fresh produce linked to major foodborne disease outbreaks. The molecular mechanisms underlying the association of this enteric pathogen with fresh produce remain largely unexplored. In our recent study, we showed that the expression of a putative stress regulatory gene, ycfR, was significantly induced in S. enterica upon exposure to chlorine treatment, a common industrial practice for washing and decontaminating fresh produce during minimal processing. Two additional genes, sirA involved in S. enterica biofilm formation and yigG of unknown function, were also found to be differentially regulated under chlorine stress. To further characterize the roles of ycfR, sirA, and yigG in S. enterica attachment and survival on fresh produce, we constructed in-frame deletions of all three genes in two different S. enterica serovars, Typhimurium and Saintpaul, which have been implicated in previous disease outbreaks linked to fresh produce. Bacterial attachment to glass and polystyrene microtiter plates, cell aggregation and hydrophobicity, chlorine resistance, and surface attachment to intact spinach leaf and grape tomato were compared among wild-type strains, single-gene deletion mutants, and their respective complementation mutants. The results showed that deletions of ycfR, sirA, and yigG reduced bacterial attachment to glass and polystyrene as well as fresh produce surface with or without chlorine treatment in both Typhimurium and Saintpaul. Deletion of ycfR in Typhimurium significantly reduced bacterial chlorine resistance and the attachment to the plant surfaces after chlorinated water washes. Deletions of ycfR in Typhimurium and yigG in Saintpaul resulted in significant increase in cell aggregation. Our findings suggest that ycfR, sirA, and yigG collectively contribute to S. enterica surface attachment and survival during post-harvest minimal processing of fresh produce.

  4. Enzyme-adenylate structure of a bacterial ATP-dependent DNA ligase with a minimized DNA-binding surface.

    PubMed

    Williamson, Adele; Rothweiler, Ulli; Leiros, Hanna Kirsti Schrøder

    2014-11-01

    DNA ligases are a structurally diverse class of enzymes which share a common catalytic core and seal breaks in the phosphodiester backbone of double-stranded DNA via an adenylated intermediate. Here, the structure and activity of a recombinantly produced ATP-dependent DNA ligase from the bacterium Psychromonas sp. strain SP041 is described. This minimal-type ligase, like its close homologues, is able to ligate singly nicked double-stranded DNA with high efficiency and to join cohesive-ended and blunt-ended substrates to a more limited extent. The 1.65 Å resolution crystal structure of the enzyme-adenylate complex reveals no unstructured loops or segments, and suggests that this enzyme binds the DNA without requiring full encirclement of the DNA duplex. This is in contrast to previously characterized minimal DNA ligases from viruses, which use flexible loop regions for DNA interaction. The Psychromonas sp. enzyme is the first structure available for the minimal type of bacterial DNA ligases and is the smallest DNA ligase to be crystallized to date.

  5. A study on the theoretical and practical accuracy of conoscopic holography-based surface measurements: toward image registration in minimally invasive surgery†

    PubMed Central

    Burgner, J.; Simpson, A. L.; Fitzpatrick, J. M.; Lathrop, R. A.; Herrell, S. D.; Miga, M. I.; Webster, R. J.

    2013-01-01

    Background Registered medical images can assist with surgical navigation and enable image-guided therapy delivery. In soft tissues, surface-based registration is often used and can be facilitated by laser surface scanning. Tracked conoscopic holography (which provides distance measurements) has been recently proposed as a minimally invasive way to obtain surface scans. Moving this technique from concept to clinical use requires a rigorous accuracy evaluation, which is the purpose of our paper. Methods We adapt recent non-homogeneous and anisotropic point-based registration results to provide a theoretical framework for predicting the accuracy of tracked distance measurement systems. Experiments are conducted a complex objects of defined geometry, an anthropomorphic kidney phantom and a human cadaver kidney. Results Experiments agree with model predictions, producing point RMS errors consistently < 1 mm, surface-based registration with mean closest point error < 1 mm in the phantom and a RMS target registration error of 0.8 mm in the human cadaver kidney. Conclusions Tracked conoscopic holography is clinically viable; it enables minimally invasive surface scan accuracy comparable to current clinical methods that require open surgery. PMID:22761086

  6. The Contribution of Reservoirs to Global Land Surface Water Storage Variations

    SciTech Connect

    Zhou, Tian; Nijssen, Bart; Gao, Huilin; Lettenmaier, Dennis P.

    2016-12-21

    Man-made reservoirs play a key role in the terrestrial water system. They alter water fluxes at the land surface and impact surface water storage through water management regulations for diverse purposes such as irrigation, municipal water supply, hydropower generation, and flood control. Although most developed countries have established sophisticated observing systems for many variables in the land surface water cycle, long-term and consistent records of reservoir storage are much more limited and not always shared. Furthermore, most land surface hydrological models do not represent the effects of water management activities. Here, the contribution of reservoirs to seasonal water storage variations is investigated using a large-scale water management model to simulate the effects of reservoir management at basin and continental scales. The model was run from 1948 to 2010 at a spatial resolution of 0.258 latitude–longitude. A total of 166 of the largest reservoirs in the world with a total capacity of about 3900 km3 (nearly 60%of the globally integrated reservoir capacity) were simulated. The global reservoir storage time series reflects the massive expansion of global reservoir capacity; over 30 000 reservoirs have been constructed during the past half century, with a mean absolute interannual storage variation of 89 km3. The results indicate that the average reservoir-induced seasonal storage variation is nearly 700 km3 or about 10%of the global reservoir storage. For some river basins, such as the Yellow River, seasonal reservoir storage variations can be as large as 72%of combined snow water equivalent and soil moisture storage.

  7. Contribution of the enterococcal surface protein Esp to pathogenesis of Enterococcus faecium endocarditis.

    PubMed

    Heikens, Esther; Singh, Kavindra V; Jacques-Palaz, Karen D; van Luit-Asbroek, Miranda; Oostdijk, Evelien A N; Bonten, Marc J M; Murray, Barbara E; Willems, Rob J L

    2011-12-01

    The enterococcal surface protein Esp, specifically linked to nosocomial Enterococcus faecium, is involved in biofilm formation. To assess the role of Esp in endocarditis, a biofilm-associated infection, an Esp-expressing E. faecium strain (E1162) or its Esp-deficient mutant (E1162Δesp) were inoculated through a catheter into the left ventricle of rats. After 24 h, less E1162Δesp than E1162 were recovered from heart valve vegetations. In addition, anti-Esp antibodies were detected in Esp-positive E. faecium bacteremia and endocarditis patient sera. In conclusion, Esp contributes to colonization of E. faecium at the heart valves. Furthermore, systemic infection elicits an Esp-specific antibody response in humans.

  8. Contribution of the Enterococcal Surface Protein Esp to pathogenesis of Enterococcus faecium endocarditis

    PubMed Central

    Heikens, Esther; Singh, Kavindra V.; Jacques-Palaz, Karen D.; van Luit-Asbroek, Miranda; Oostdijk, Evelien A. N.; Bonten, Marc J. M.; Murray, Barbara E.; Willems, Rob J. L.

    2011-01-01

    The enterococcal surface protein Esp, specifically linked to nosocomial Enterococcus faecium, is involved in biofilm formation. To assess the role of Esp in endocarditis, a biofilm-associated infection, an Esp-expressing E. faecium strain (E1162) or its Esp-deficient mutant (E1162Δesp) were inoculated through a catheter into the left ventricle of rats. After 24 hours, less E1162Δesp than E1162 were recovered from heart valve vegetations. In addition, anti-Esp antibodies were detected in Esp-positive E. faecium bacteremia and endocarditis patient sera. In conclusion, Esp contributes to colonization of E. faecium at the heart valves. Furthermore, systemic infection elicits an Esp-specific antibody response in humans. PMID:21911077

  9. Contributions to the geomagnetic secular variation from a reanalysis of core surface dynamics

    NASA Astrophysics Data System (ADS)

    Barrois, O.; Gillet, N.; Aubert, J.

    2017-10-01

    We invert for motions at the surface of Earth's core under spatial and temporal constraints that depart from the mathematical smoothings usually employed to ensure spectral convergence of the flow solutions. Our spatial constraints are derived from geodynamo simulations. The model is advected in time using stochastic differential equations coherent with the occurrence of geomagnetic jerks. Together with a Kalman filter, these spatial and temporal constraints enable the estimation of core flows as a function of length and time-scales. From synthetic experiments, we find it crucial to account for subgrid errors to obtain an unbiased reconstruction. This is achieved through an augmented state approach. We show that a significant contribution from diffusion to the geomagnetic secular variation should be considered even on short periods, because diffusion is dynamically related to the rapidly changing flow below the core surface. Our method, applied to geophysical observations over the period 1950-2015, gives access to reasonable solutions in terms of misfit to the data. We highlight an important signature of diffusion in the Eastern equatorial area, where the eccentric westward gyre reaches low latitudes, in relation with important up/downwellings. Our results also confirm that the dipole decay, observed over the past decades, is primarily driven by advection processes. Our method allows us to provide probability densities for forecasts of the core flow and the secular variation.

  10. Electrostatic contribution to the surface pressure of charged monolayers containing polyphosphoinositides.

    PubMed

    Levental, I; Janmey, P A; Cēbers, A

    2008-08-01

    Structural and functional studies of lateral heterogeneity in biological membranes have underlined the importance of membrane organization in biological function. Most inquiries have focused on steric determinants of membrane organization, such as headgroup size and acyl-chain saturation. This manuscript reports a combination of theory and experiment that shows significant electrostatic contributions to surface pressures in monolayers of phospholipids where the charge spacing is smaller than the Bjerrum length. For molecules with steric cross sections typical of phospholipids in the cell membrane (approximately 50 A(2)), only polyphosphoinositides achieve this threshold. The most abundant such lipid is phosphatidylinositol bisphosphate, which has between three and four charged groups at physiological conditions. Theory and experiment show that surface pressure increases linearly with phosphatidylinositol bisphosphate net charge and reveal crossing of high and low ionic strength pressure-area isotherms, due to opposing effects of ionic strength in compressed and expanded monolayers. Theory and experiment show that electrostatic effects are negligible for monolayers of univalent lipids, emphasizing the unique importance of electrostatic effects for lateral organization of polyphosphoinositides. Quantitative differences between theory and experiment suggest that attractive interactions between polyphosphoinositides, possibly mediated by hydrogen bonding, can lessen the effect of electrostatic repulsions.

  11. Arabidopsis GPAT9 contributes to synthesis of intracellular glycerolipids but not surface lipids

    PubMed Central

    Singer, Stacy D.; Chen, Guanqun; Mietkiewska, Elzbieta; Tomasi, Pernell; Jayawardhane, Kethmi; Dyer, John M.; Weselake, Randall J.

    2016-01-01

    GLYCEROL-3-PHOSPHATE ACYLTRANSFERASE (GPAT) genes encode enzymes involved in glycerolipid biosynthesis in plants. Ten GPAT homologues have been identified in Arabidopsis. GPATs 4–8 have been shown to be involved in the production of extracellular lipid barrier polyesters. Recently, GPAT9 was reported to be essential for triacylglycerol (TAG) biosynthesis in developing Arabidopsis seeds. The enzymatic properties and possible functions of GPAT9 in surface lipid, polar lipid and TAG biosynthesis in non-seed organs, however, have not been investigated. Here we show that Arabidopsis GPAT9 exhibits sn-1 acyltransferase activity with high specificity for acyl-coenzyme A, thus providing further evidence that this GPAT is involved in storage lipid biosynthesis. We also confirm a role for GPAT9 in seed oil biosynthesis and further demonstrate that GPAT9 contributes to the biosynthesis of both polar lipids and TAG in developing leaves, as well as lipid droplet production in developing pollen grains. Conversely, alteration of constitutive GPAT9 expression had no obvious effects on surface lipid biosynthesis. Taken together, these studies expand our understanding of GPAT9 function to include modulation of several different intracellular glycerolipid pools in plant cells. PMID:27325892

  12. Long term change in relative contribution of various source regions on the surface ozone over Japan

    NASA Astrophysics Data System (ADS)

    Nagashima, T.; Sudo, K.; Akimoto, H.; Kurokawa, J.; Ohara, T.

    2011-12-01

    Although the concentrations of O3 precursors over Japan have been decreasing in recent decades, long-term monitoring data shows that the surface concentration of O3 in Japan has increased since the mid-1980s until the present time. As the cause of this recent increase in surface O3 over Japan, the trans-boundary transport of O3 from the outside of Japan have been pointed out and discussed. In particular, transport from East Asian countries whose emissions of the O3 precursors have been greatly increasing recently due to their economic growth is likely a major cause of the observed increase in O3 over Japan. However, the long-term change in other factors that also have an influence on the O3 in Japan, such as the domestic emissions or the background O3, should also be evaluated. Here, we performed a long-term (1980-2005) simulation of the Source-Receptor (S-R) relationship for surface O3 in East Asia by utilizing the tagged tracer method with a global chemical transport model. During this period, emissions of O3 precursors in the model from East Asia, especially from China, have increased more than double, while those from North America have not change so much and those from Europe have decreased. The model simulated the long-term increasing trend in the surface O3 over Japan similar to the observation. The long-term changes of contributions from each source region of O3 showed that the largest contributor to the increasing trend of surface O3 in Japan is the increase of O3 created in planetary boundary layer (PBL) of China which accounts for 35% of the trend, and those of O3 created in PBL of Korean Peninsular and Japan account for 13% and 12%, respectively. The O3 created in free troposphere of China also increased, which account for 4% of the trend. Therefore, almost 40% of recent O3 increase in Japan can be attributed to the increase in the O3 created over China.

  13. Minimal and Contributing Sequence Determinants of the cis-Acting Locus of Transfer (clt) of Streptomycete Plasmid pIJ101 Occur within an Intrinsically Curved Plasmid Region

    PubMed Central

    Ducote, Matthew J.; Prakash, Shubha; Pettis, Gregg S.

    2000-01-01

    Efficient interbacterial transfer of streptomycete plasmid pIJ101 requires the pIJ101 tra gene, as well as a cis-acting plasmid function known as clt. Here we show that the minimal pIJ101 clt locus consists of a sequence no greater than 54 bp in size that includes essential inverted-repeat and direct-repeat sequences and is located in close proximity to the 3′ end of the korB regulatory gene. Evidence that sequences extending beyond the minimal locus and into the korB open reading frame influence clt transfer function and demonstration that clt-korB sequences are intrinsically curved raise the possibility that higher-order structuring of DNA and protein within this plasmid region may be an inherent feature of efficient pIJ101 transfer. PMID:11073933

  14. Minimal and contributing sequence determinants of the cis-acting locus of transfer (clt) of streptomycete plasmid pIJ101 occur within an intrinsically curved plasmid region.

    PubMed

    Ducote, M J; Prakash, S; Pettis, G S

    2000-12-01

    Efficient interbacterial transfer of streptomycete plasmid pIJ101 requires the pIJ101 tra gene, as well as a cis-acting plasmid function known as clt. Here we show that the minimal pIJ101 clt locus consists of a sequence no greater than 54 bp in size that includes essential inverted-repeat and direct-repeat sequences and is located in close proximity to the 3' end of the korB regulatory gene. Evidence that sequences extending beyond the minimal locus and into the korB open reading frame influence clt transfer function and demonstration that clt-korB sequences are intrinsically curved raise the possibility that higher-order structuring of DNA and protein within this plasmid region may be an inherent feature of efficient pIJ101 transfer.

  15. Chemical characteristics of fulvic acids from Arctic surface waters: Microbial contributions and photochemical transformations

    NASA Astrophysics Data System (ADS)

    Cory, Rose M.; McKnight, Diane M.; Chin, Yu-Ping; Miller, Penney; Jaros, Chris L.

    2007-12-01

    Dissolved organic matter (DOM) originating from the extensive Arctic tundra is an important source of organic material to the Arctic Ocean. Chemical characteristics of whole water dissolved organic matter (DOM) and the fulvic acid fraction of DOM were studied from nine surface waters in the Arctic region of Alaska to gain insight into the extent of microbial and photochemical transformation of this DOM. All the fulvic acids had a strong terrestrial/higher plant signature, with uniformly depleted δ13C values of -28‰, and low fluorescence indices around 1.3. Several of the measured chemical characteristics of the Arctic fulvic acids were related to water residence time, a measure of environmental exposure to sunlight and microbial activity. For example, fulvic acids from Arctic streams had higher aromatic contents, higher specific absorbance values, lower nitrogen content, lower amino acid-like fluorescence and were more depleted in δ15N relative to fulvic acids isolated from lake and coastal surface waters. The differences in the nitrogen signature between the lake and coastal fulvic acids compared to the stream fulvic acids indicated that microbial contributions to the fulvic acid pool increased with increasing water residence time. The photo-lability of the fulvic acids was positively correlated with water residence time, suggesting that the fulvic acids isolated from source waters with larger water residence times (i.e., lakes and coastal waters) have experienced greater photochemical degradation than the stream fulvic acids. In addition, many of the initial differences in fulvic acid chemical characteristics across the gradient of water residence times were consistent with changes observed in fulvic acid photolysis experiments. Taken together, results from this study suggest that photochemical processes predominantly control the chemical character of fulvic acids in Arctic surface waters. Our findings show that hydrologic transport in addition to

  16. Relationships between deformation and microstructure evolution and minimizing surface roughness after BCP processing in RRR Nb cavitites

    SciTech Connect

    T.R. Bieler; D. Baars; K.T. Hartwig; C. Compton; T.L. Grimm

    2009-05-26

    Two strategies for improving the surface finish of niobium sheet used in superconducting radio frequency cavities were examined, using slices of single (or large-grain) material from an ingot, and equal channel angle extrusion (ECAE) preprocessing of ingot material to achieve a uniform and small grain size prior to subsequent rolling. The effect of these two processing paths on final microstructure, texture, and surface finish are discussed.

  17. Contribution of Soil Surface CO2 Efflux to Boreal Forest Net Ecosystem Flux: Measurements and Modeling

    NASA Astrophysics Data System (ADS)

    Niinisto, S. M.; Kellomaki, S.

    2001-05-01

    The aims of the study are to assess the contribution of measured soil surface CO2 efflux to boreal forest net ecosystem flux and to test whether modeled component fluxes such as leaf and surface soil fluxes are consistent with the net flux measured from a tower over a forest stand. Net ecosystem flux was measured continuously in a boreal Scots pine forest in eastern Finland (62° 52'N, 30° 49'E) during the growing period in 2000. Height and diameter of trees in this 50-year-old stand ranged from 10 to 13 m and from 9 to 12 cm, respectively, for 80 % of trees. Eddy-flux measurements were made at the top of a 32-m tower, about 20 m above the canopy. Wind velocity and virtual temperature were measured with a three-axis sonic anemometer. CO2 fluctuations at 32 m were continuously monitored with a CO2 analyzer. Raw data were sampled at 10 Hz and 1/2 hr fluxes calculated. Soil surface CO2 efflux was measured on the top of a feather moss or lichen cover with an IRGA and four automated open dynamic chambers, each equipped with a PAR sensor and air temperature probe. Chambers of 19 cm diameter were made of transparent PMMA. Measurements were made twice per hr, lasting 1 min each. Periods considered in this study included both early and late season conditions, since data from the automated soil surface efflux measurements were available from May to June as well as from August to September. In this study, we aim to compare the measured soil surface CO2 efflux with simultaneously measured net ecosystem flux. The performance of the automated chambers will be tested by comparing with simultaneous measurements from a dark closed static chamber at the same site. A simple regression model, using soil surface temperature as an independent variable, will be built using the static dark chamber data from the previous years. A rough correction for the carbon uptake of moss will be made. This model could be validated later with automated measurements. To investigate further the

  18. The contribution of neighbouring countries to pesticide levels in Dutch surface waters.

    PubMed

    Van 'T Zelfde, M; Tamis, W L M; Vijver, M G; De Snoo, G R

    2011-01-01

    Compared with other European countries, Dutch consumption of pesticides is high, particularly in agriculture, with many of the compounds found in surface waters in high concentrations and various standards being exceeded. Surface water quality is routinely monitored and the data obtained are published in the Dutch Pesticides Atlas. One important mechanism for reducing pesticide levels in surface waters is authorisation policy, which proceeds on the assumption that the pollution concerned has taken place in the Netherlands. The country straddles the delta of several major European rivers, however, and as river basins do not respect national borders some of the water quality problems will derive from neighbouring countries. Against this background the general question addressed in this article is the following: To what extent do countries neighbouring on the Netherlands contribute to pesticide pollution of Dutch surface waters? To answer this question, data from the Pesticides Atlas for the period 2005-2009 were used. Border zones with Belgium and Germany were defined and the data for these zones compared with Dutch data. In the analyses, due allowance was also made for authorised and non-authorised compounds and for differences between flowing and stagnant waters. Monitoring efforts in the border zones and in the Netherlands were also characterised, showing that efforts in the former are similar to those in the rest of the country. In the border zone with Belgium the relative number of non-authorised pesticides exceeding the standards is clearly higher than in the rest of the Netherlands. These exceedances are observed mainly in flowing waters. In contrast, there is no difference in the relative number of standard-exceeding measurements between the border zones and the rest of the Netherlands. In the boundary zones the array of standard-exceeding compounds clearly deviates from that in the rest of the Netherlands, with compounds authorised in the neighbouring

  19. A Streptococcus suis LysM domain surface protein contributes to bacterial virulence.

    PubMed

    Wu, Zongfu; Shao, Jing; Ren, Haiyan; Tang, Huanyu; Zhou, Mingyao; Dai, Jiao; Lai, Liying; Yao, Huochun; Fan, Hongjie; Chen, Dai; Zong, Jie; Lu, Chengping

    2016-05-01

    Streptococcus suis (SS) is a major swine pathogen, as well as a zoonotic agent for humans. Numerous factors contribute to SS virulence, but the pathogenesis of SS infection is poorly understood. Here, we show that a novel SS surface protein containing a LysM at the N-terminus (SS9-LysM) contributes to SS virulence. Homology analysis revealed that the amino acid sequence of SS9-LysM from the SS strain GZ0565 shares 99.8-68.7% identity with homologous proteins from other SS strains and 41.2% identity with Group B Streptococcal protective antigen Sip. Immunization experiments showed that 7 out of 30 mice immunized with recombinant SS9-LysM were protected against challenge with the virulent GZ0565 strain, while all of the control mice died within 48h following bacterial challenge. In mouse infection model, the virulence of the SS9-LysM deletion mutant (ΔSS9-LysM) was reduced compared with the wild-type (WT) strain GZ0565 and SS9-LysM complemented strain. In addition, ΔSS9-LysM was significantly more sensitive to killing by pig blood ex vivo and mouse blood in vivo compared with the WT strain and SS9-LysM complemented strain. In vivo transcriptome analysis in mouse blood showed that the WT strain reduced the expression of host genes related to iron-binding by SS9-LysM. Moreover, the total free iron concentration in blood from infected mice was significantly lower for the ΔSS9-LysM strain compared with the WT strain. Together, our data reveal that SS9-LysM facilitates SS survival within blood by releasing more free iron from the host. This represents a new mechanism of SS pathogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Perturbative computation of string one-loop corrections to Wilson loop minimal surfaces in AdS 5 × S 5

    NASA Astrophysics Data System (ADS)

    Forini, V.; Tseytlin, A. A.; Vescovi, E.

    2017-03-01

    We revisit the computation of the 1-loop string correction to the "latitude" minimal surface in AdS 5 × S 5 representing 1/4 BPS Wilson loop in planar N=4 SYM theory previously addressed in arXiv:1512.00841 and arXiv:1601.04708. We resolve the problem of matching with the subleading term in the strong coupling expansion of the exact gauge theory result (derived previously from localization) using a different method to compute determinants of 2d string fluctuation operators. We apply perturbation theory in a small parameter (angle of the latitude) corresponding to an expansion near the AdS 2 minimal surface representing 1/2 BPS circular Wilson loop. This allows us to compute the corrections to the heat kernels and zeta-functions of the operators in terms of the known heat kernels on AdS 2. We apply the same method also to two other examples of Wilson loop surfaces: generalized cusp and k-wound circle.

  1. Minimal thermal treatments for reducing bacterial population on cantaloupe rind surfaces and transfer to fresh-cut pieces

    USDA-ARS?s Scientific Manuscript database

    Cantaloupe melon has been associated with outbreaks of foodborne illness due to consumption of contaminated fresh-cut pieces. Surface structure and biochemical characteristics of bacteria play a major role on how and where bacteria may attach and also complicates decontamination treatments. Whole ca...

  2. Surface and Groundwater Contribution in Convening with High Crop Water Demand in Indus Basin

    NASA Astrophysics Data System (ADS)

    Hafeez, Mohsin; Ullah, Kaleem; Hanjra, Munir Ahmad; Ullah Bodla, Habib; Niaz Ahmad, Rai

    2010-05-01

    The water resources of the Indus Basin, Pakistan are mostly exploited, however the demand for water is on a permanent rise due to population growth and associated urbanization and industrialization process. Owing to rapidly increasing population, the available surface water resources are not able to cope up with people's needs. The cropping intensities and cropping patterns have changed for meeting the increased demand of food and fiber in the Indus Basin of Pakistan. Cumulative effect of all sources water i.e rainfall, irrigation and groundwater resulted in the high cropping intensities in the Basin. Presently rainfall, surface irrigation and river supplies have been unsuccessful to convene irrigation water requirements in most areas. Such conditions due to high cropping intensities in water scarce areas have diverted pressure on groundwater, which has inconsistent potential across the Indus Basin both in terms of quality and quantity. Farmers are over exploiting the groundwater to meet the high crop water demand in addition to surface water supplies. The number of private tubewells has increased more than four-fold in the last 25 years. This increasing trend of tubewell installation in the basin, along with the uncontrolled groundwater abstraction has started showing aquifer stress in most of the areas. In some parts, especially along the tail of canal systems, water levels are showing a steady rate of decline and hence - the mining of aquifer storage. Fresh groundwater areas have higher tubewell density as compared to saline groundwater zones. Even in fresh groundwater areas, uncontrolled groundwater abstraction has shown sign of groundwater quality deterioration. Under such aquifer stress conditions, there is a need to understand groundwater usage for sustainable irrigated agriculture on long term basis. In this paper the contribution of groundwater in the irrigated agriculture of Lower Chenb Canal (LCC) East, Punjab, Pakistan is explored using a nodal network

  3. Angiogenic growth factors interactome and drug discovery: The contribution of surface plasmon resonance.

    PubMed

    Rusnati, Marco; Presta, Marco

    2015-06-01

    Angiogenesis is implicated in several pathological conditions, including cancer, and in regenerative processes, including the formation of collateral blood vessels after stroke. Physiological angiogenesis is the outcome of a fine balance between the action of angiogenic growth factors (AGFs) and anti-angiogenic molecules, while pathological angiogenesis occurs when this balance is pushed toward AGFs. AGFs interact with multiple endothelial cell (EC) surface receptors inducing cell proliferation, migration and proteases upregulation. On the contrary, free or extracellular matrix-associated molecules inhibit angiogenesis by sequestering AGFs (thus hampering EC stimulation) or by interacting with specific EC receptors inducing apoptosis or decreasing responsiveness to AGFs. Thus, angiogenesis results from an intricate network of interactions among pro- and anti-angiogenic molecules, EC receptors and various modulators. All these interactions represent targets for the development of pro- or anti-angiogenic therapies. These aims call for suitable technologies to study the countless interactions occurring during neovascularization. Surface plasmon resonance (SPR) is a label-free optical technique to study biomolecular interactions in real time. It has become the golden standard technology for interaction analysis in biomedical research, including angiogenesis. From a survey of the literature it emerges that SPR has already contributed substantially to the better understanding of the neovascularization process, laying the basis for the decoding of the angiogenesis "interactome" and the identification of "hub molecules" that may represent preferential targets for an efficacious modulation of angiogenesis. Here, the still unexploited full potential of SPR is enlightened, pointing to improvements in its use for a deeper understanding of the mechanisms of neovascularization and the identification of novel anti-angiogenic drugs.

  4. Surface heat flow and the mantle contribution on the margins of Australia

    NASA Astrophysics Data System (ADS)

    Goutorbe, Bruno; Lucazeau, Francis; Bonneville, Alain

    2008-05-01

    We present thermal data from 473 oil exploration wells in Australia and New Zealand. Approximately 2300 bottom-hole temperatures are corrected to form a homogeneous set along with 86 temperatures from reservoir tests. Thermal conductivity profiles are estimated from a set of geophysical well logs using a recently developed neural network approach. Retaining wells in which temperature and thermal conductivity data overlap over an interval greater than 1000 m, we estimate 10 heat flow values in the Taranaki basin of New Zealand and 270 values in the northwestern, western, and southern margins and in the intracontinental Canning basin of Australia. The values are in the range 30-80 mW m-2. As a result of several differences in the data and methods, our heat flow values are 10-20 mW m-2 lower compared to previously published estimates for the same wells in New Zealand. For Australia, our values are consistent with previously measured values and trends in the continental and marine regions. On the northwestern and southeastern margins, we interpret the variations as reflecting changes in the nature of the underlying basement. Consistent with onshore data, it is inferred that the Archean crust is depleted in radiogenic elements compared to Proterozoic regions and that recent volcanism affects the eastern Paleozoic area. After removing from surface heat flow the sediment contributions, including a permanent radiogenic heat component and a transient sedimentation effect, a simple crustal model suggests that mantle heat flow on the continental margin bordering the Pilbara craton is higher than below the craton itself. Moreover, heat flow corrected for the sediment contributions is markedly lower in the Petrel intracontinental basin than in the adjacent margin, although the crust is thinner below this latter region. As both are underlaid by the same basement, this observation may indicate that the mantle contribution is also higher below that margin. Such a higher mantle

  5. The contribution of Remote Sensing to the Indian Land Surface Processes Experiment (LASPEX)

    NASA Astrophysics Data System (ADS)

    Gupta, R.; Vijayan, D.; Prasad, T.

    During the conduct of the Indian Land Surface Processes (LSP) Experiment (LASPEX) in Sabarmati river basin, tower based measurements for wind, temperature and humidity fields were collected over 5 locations with primary and intensive ground based observations at Anand, Gujarat. Remote sensing component consisted of (a) ground based measurements of spectral radiances in 3 nm bandwidth (hyperspectral) in visible through near IR region; in blue, green, red and near IR bands of IRS LISS and LANDSAT TM; leaf area index (LAI); crop and air temperatures over Anand site; (b) crop distribution information in Anand -Kandha - Derol region to relate with satellite based measurements in 36,72,188 and 1100 m spatial resolutions. Fourth order polynomial fit was observed between LAI and spectral vegetation indices for wheat. By convolving respective filter functions with 3 nm bandwidth measurements, NDVI for bandwidths corresponding to TM and AVHRR were found to be correlated with r' in 0.96 - 0.99 range, and higher value observed for AVHRR NDVI was related to additional 725 - 760 nm bandwidth in AVHRR near IR band. Hyperspectral index defined by (R77 7-R747 )/R 673 , Rrefers to reflectance in wavelength centered at , was useful in discriminating low evapotranspiration (ET) chickpea and high ET wheat. Using hyperspectral data, 650-673 nm and 760-830 nm were found as optimum spectral region for computing NDVI; and relationships between LAI and various pigment indices and red-edge indices were studied. Using 1100 m resolution A VHRR data, the relationship between NDVI and roughness parameter (computed from tower based measurements) in direct as well as fractal based mode had been developed. The surface temperature over the region was obtained using split thermal window algorithm and NDVI as surrogate parameter to define relative contribution of emissivity for soil and crop components in the pixel. Sensible heat flux, computed using AVHRR data based roughness parameter and surface

  6. Contribution of vision to postural behaviors during continuous support-surface translations

    PubMed Central

    Jilk, D. Joseph; Safavynia, Seyed A.; Ting, Lena H.

    2014-01-01

    During standing balance, kinematics of postural behaviors have been previously observed to change across visual conditions, perturbation amplitudes, or perturbation frequencies. However, experimental limitations only allowed for independent investigation of such parameters. Here, we adapted a pseudorandom ternary sequence (PRTS) perturbation previously used in rotational support-surface perturbations (Peterka 2002) to a translational paradigm, allowing us to concurrently examine the effects of vision, perturbation amplitude, and frequency on balance control. Additionally, the unpredictable PRTS perturbation eliminated effects of feedforward adaptations typical of responses to sinusoidal stimuli. The PRTS perturbation contained a wide spectral bandwidth (0.08-3.67 Hz) and was scaled to 4 different peak-to-peak amplitudes (3-24 cm). Root-mean-square (RMS) of hip displacement and velocity increased relative to RMS ankle displacement and velocity in the absence of vision across all subjects, especially at higher perturbation amplitudes. Gain and phase lag of CoM sway relative to the perturbation also increased with perturbation frequency; phase lag further increased when vision was absent. Together, our results suggest that visual input, perturbation amplitude, and perturbation frequency can concurrently and independently modulate postural strategies during standing balance. Moreover, each factor contributes to the difficulty of maintaining postural stability; increased difficulty evokes a greater reliance on hip motion. Finally, despite high degrees of joint angle variation across subjects, CoM measures were relatively similar across subjects, suggesting that the CoM is an important controlled variable for balance. PMID:24132526

  7. Aeromonas Flagella (Polar and Lateral) Are Enterocyte Adhesins That Contribute to Biofilm Formation on Surfaces

    PubMed Central

    Kirov, Sylvia M.; Castrisios, Marika; Shaw, Jonathan G.

    2004-01-01

    Aeromonas spp. (gram-negative, aquatic bacteria which include enteropathogenic strains) have two distinct flagellar systems, namely a polar flagellum for swimming in liquid and multiple lateral flagella for swarming over surfaces. Only ∼60% of mesophilic strains can produce lateral flagella. To evaluate flagellar contributions to Aeromonas intestinal colonization, we compared polar and lateral flagellar mutant strains of a diarrheal isolate of Aeromonas caviae for the ability to adhere to the intestinal cell lines Henle 407 and Caco-2, which have the characteristic features of human intestinal enterocytes. Strains lacking polar flagella were virtually nonadherent to these cell lines, while loss of the lateral flagellum decreased adherence by ∼60% in comparison to the wild-type level. Motility mutants (unable to swim or swarm in agar assays) had adhesion levels of ∼50% of wild-type values, irrespective of their flagellar expression. Flagellar mutant strains were also evaluated for the ability to form biofilms in a borosilicate glass tube model which was optimized for Aeromonas spp. (broth inoculum, with a 16- to 20-h incubation at 37°C). All flagellar mutants showed a decreased ability to form biofilms (at least 30% lower than the wild type). For the chemotactic motility mutant cheA, biofilm formation decreased >80% from the wild-type level. The complementation of flagellar phenotypes (polar flagellar mutants) restored biofilms to wild-type levels. We concluded that both flagellar types are enterocyte adhesins and need to be fully functional for optimal biofilm formation. PMID:15039313

  8. Percentage Contributions from Atmospheric and Surface Features to Computed Brightness Temperatures

    NASA Technical Reports Server (NTRS)

    SkofronickJackson, Gail; Kim, Min-Jeong; Johnson, Benjamin

    2006-01-01

    Over the past few years, a few solid precipitation detection and retrieval algorithms have been developed and shown to be applicable for snowing clouds and blizzards. Current precipitating snow retrieval algorithms require the use of millimeter-wave radiometer observations. The millimeter-wave frequencies are especially sensitive to the scattering and emission properties of frozen particles due to the ice particle refractive index. These channels can also be used to discern information about the frozen particles above the melting layer. Passive radiometric channels respond to both the integrated particle mass throughout the volume and field of view, and to the amount, location, and size distribution of the frozen (and liquid) particles with the sensitivity varying for different frequencies and hydrometeor types. This work will show the percentage of the brightness temperature resulting from the liquid hydrometeor, frozen hydrometeor, relative humidity, and surface contributions. The focus will be on precipitating snow events and millimeter-wave frequencies however, other events and frequencies will be included in the analysis.

  9. Formulating the bonding contribution equation in heterogeneous catalysis: a quantitative description between the surface structure and adsorption energy.

    PubMed

    Wang, Ziyun; Hu, P

    2017-02-15

    The relation between the surface structure and adsorption energy of adsorbates is of great importance in heterogeneous catalysis. Based on density functional theory calculations, we propose an explicit equation with three chemically meaningful terms, namely the bonding contribution equation, to quantitatively account for the surface structures and the adsorption energies. Successful predictions of oxygen adsorption energies on complex alloy surfaces containing up to 4 components are demonstrated, and the generality of this equation is also tested using different surface sizes and other adsorbates. This work may not only offer a powerful tool to understand the structure-adsorption relation, but may also be used to inversely design novel catalysts.

  10. Advances in modeling semiconductor epitaxy: Contributions of growth orientation and surface reconstruction to InN metalorganic vapor phase epitaxy

    NASA Astrophysics Data System (ADS)

    Kusaba, Akira; Kangawa, Yoshihiro; Kempisty, Pawel; Shiraishi, Kenji; Kakimoto, Koichi; Koukitu, Akinori

    2016-12-01

    We propose a newly improved thermodynamic analysis method that incorporates surface energies. The new theoretical approach enables us to investigate the effects of the growth orientation and surface reconstruction. The obtained knowledge would be indispensable for examining the preferred growth conditions in terms of the contribution of the surface state. We applied the theoretical approach to study the growth processes of InN(0001) and (000\\bar{1}) by metalorganic vapor phase epitaxy. Calculation results reproduced the difference in optimum growth temperature. That is, we successfully developed a new theoretical approach that can predict growth processes on various growth surfaces.

  11. Experimental Approach to Controllably Vary Protein Oxidation While Minimizing Electrode Adsorption for Boron-Doped Diamond Electrochemical Surface Mapping Applications

    SciTech Connect

    McClintock, Carlee; Hettich, Robert {Bob} L

    2013-01-01

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent hydroxyl radicals for these measurements; however, many of these approaches require use of radioactive sources or caustic oxidizing chemicals. The purpose of this research was to evaluate and optimize the use of boron-doped diamond (BDD) electrochemistry as a highly accessible tool for producing hydroxyl radicals as a means to induce a controllable level of oxidation on a range of intact proteins. These experiments utilize a relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber, along with a unique cell activation approach to improve control over the intact protein oxidation yield. Studies were conducted to evaluate the level of protein adsorption onto the electrode surface. This report demonstrates a robust protocol for the use of BDD electrochemistry and high performance LC-MS/MS as a high-throughput experimental pipeline for probing higher order protein structure, and illustrates how it is complementary to predictive computational modeling efforts.

  12. Field method for separating the contribution of surface-connected preferential flow pathways from flow through the soil matrix

    NASA Astrophysics Data System (ADS)

    Sanders, Emily C.; Abou Najm, Majdi R.; Mohtar, Rabi H.; Kladivko, Eileen; Schulze, Darrell

    2012-04-01

    Liquid latex was used as a method to seal visible surface-connected preferential flow pathways (PFPs) in the field in an effort to block large surface-connected preferential flow and force water to move through the soil matrix. The proposed approach allows for the quantification of the contribution of large surface-connected cracks and biological pores to infiltration at various soil moisture states. Experiments were conducted in a silty clay loam soil in a field under a no-till corn-soybean rotation planted to corn. Surface intake rates under ponding were measured using a simplified falling head technique under two scenarios: (1) natural soil conditions with unaltered PFPs and (2) similar soil conditions with latex-sealed large macropores at the surface. Results indicated that the contribution of flow from large surface-connected macropores to overall surface intake rates varied from approximately 34% to 99% depending on the initial moisture content and macroporosity present. However, evidence of preferential flow continued to appear in latex-sealed plots, suggesting significant contributions to preferential flow from smaller structural macropores, particularly in two out of four tests where no significant differences were observed between control and latex-sealed plots.

  13. Cell Surface THY-1 Contributes to Human Cytomegalovirus Entry via a Macropinocytosis-Like Process.

    PubMed

    Li, Qingxue; Fischer, Elizabeth; Cohen, Jeffrey I

    2016-11-01

    is controversial. In this study, we show that THY-1, a cell surface protein that is critical for the early stage of entry of HCMV into certain cell types, contributes to virus entry by macropinocytosis. Our findings suggest that HCMV has adapted to utilize THY-1 to facilitate entry of HCMV into macropinosomes in certain cell types. Further knowledge about the mechanism of HCMV entry into cells may facilitate the development of novel inhibitors of virus infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. Antimicrobial susceptibility and minimal inhibitory concentration of Pseudomonas aeruginosa isolated from septic ocular surface disease in different animal species

    PubMed Central

    Leigue, L.; Montiani-Ferreira, F.; Moore, B.A.

    2016-01-01

    The purpose of this study was to evaluate the antibiotic susceptibility profile of Pseudomonas aeruginosa isolated from different animal species with septic ocular surface disease. Sixteen strains of P. aeruginosa were isolated from different species of animals (dog, cat, horse, penguin and brown bear) with ocular surface diseases such as conjunctivitis, keratocojnuctivits sicca and ulcerative keratitis. These isolates were tested against 11 different antimicrobials agents using the Kirby-Bauer disk-diffusion method. Minimum inhibitory concentrations (MICs) were determined using E-tests for two antibiotics (tobramycin and ciprofloxacin) commonly used in veterinary ophthalmology practice. Imipenem was the most effective antibiotic, with 100% of the strains being susceptible, followed by amikacin (87.5%), gentamicin, norfloxacin, gatifloxacin and polymyxin (both with 81.5%of susceptibility). MIC90 of ciprofloxacin was 2 µg/ml and the values found ranged from 0.094 µg/ml to 32 µg/ml. For tobramycin, MIC90 was 32 µg/ml and ranged from 0.25 µg/ml to 256 µg/ml. The most effective in vitro antibiotic tested against P. aeruginosa in this study was imipenem, followed by amikacin. The 3 mg/ml eye drops commercially available ciprofloxacin presentations were in vitro effective against all strains tested in this study if applied up to 4 hours after instillation. Whereas for tobramycin the 3 mg/ml eye drops commercial presentations were not in vitro effective against some strains isolated in this study. Thus for ocular infections with P. aeruginosa when using tobramycin the ideal recommendation would be to either use eye drops with higher concentrations or decrease the frequency intervals from four to a minimum of every two hours. PMID:27928519

  15. Sources and contribution of terrigenous organic carbon to surface sediments in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Goñi, Miguel A.; Ruttenberg, Kathleen C.; Eglinton, Timothy I.

    1997-09-01

    The sources and burial processes of organic matter in marine sediments are not well understood, yet they are important if we are to have a better understanding of the global carbon cycle. In particular, the nature and fraction of the terrestrial organic carbon preserved in marine sediments is poorly constrained. Here we use the chemical and stable carbon isotope signatures of oxidation products from a macromolecular component (lignin) of the terrigenous organic matter preserved in offshore surface sediments in the Gulf of Mexico to complement similar data from an existing onshore transect in this region. The complete onshore-offshore data set, along with radiocarbon dates of the bulk organic material at the same sites, allows the differentiation of material originating from plants that photosynthesize using the C4 mechanism from those that undergo C3 photosynthesis. We conclude that the offshore lignins derive from erosion of the extensive grassland (C4) soils of the Mississippi River drainage basin, and that the nearshore lignins originate largely from C3 plant detritus from coastal forests and swamps. This distribution is probably due to the hydrodynamic sorting of the different source materials during their seaward transport. These results suggest that previous studies have significantly underestimated the terrigenous fraction of organic matter in offshore sediments by not recognizing the contribution of C4 vegetation to the carbon-isotope composition. Such an underestimate may force revisions in the assessment of past marine primary productivity and associated organic carbon fluxes, and of organic matter preservation/remineralization and nutrient cycling in marine sediments.

  16. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean.

    PubMed

    Pedler, Byron E; Aluwihare, Lihini I; Azam, Farooq

    2014-05-20

    Marine dissolved organic carbon (DOC) encompasses one of the largest reservoirs of carbon on Earth. Heterotrophic bacteria are the primary biotic force regulating the fate of this material, yet the capacity of individual strains to significantly contribute to carbon cycling is unknown. Here we quantified the ability of a single Alteromonas strain [Alteromonas sp. strain Scripps Institution of Oceanography (AltSIO)] to drawdown ambient DOC in a coastal ecosystem. In three experiments, AltSIO alone consumed the entire pool of labile DOC, defined here as the quantity consumed by the submicron size fraction of ambient microbial assemblages within 5 d. These findings demonstrate that complete removal of the labile DOC pool in coastal surface seawater can be achieved by a single taxon. During long-term incubations (>1 y) testing semilabile DOC consumption, AltSIO entered dormancy but remained viable, while the diverse assemblages continued to consume carbon. Given that AltSIO is a large bacterium and thus subject to increased grazing pressure, we sought to determine the ecological relevance of this phenotype. Growth dynamics in natural seawater revealed that AltSIO rapidly outgrew the native bacteria, and despite intense grazing pressure, was never eliminated from the population. A survey in the California Current Ecosystem revealed that large bacteria (≥40 fg C⋅cell(-1)) were persistent, accounting for up to 12% of total bacterial abundance and 24% of total bacterial biomass. We conclude that large, rapidly growing bacteria have the potential to disproportionately alter the fate of carbon in the mesotrophic ocean and play an important role in ecosystem function.

  17. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean

    PubMed Central

    Pedler, Byron E.; Aluwihare, Lihini I.; Azam, Farooq

    2014-01-01

    Marine dissolved organic carbon (DOC) encompasses one of the largest reservoirs of carbon on Earth. Heterotrophic bacteria are the primary biotic force regulating the fate of this material, yet the capacity of individual strains to significantly contribute to carbon cycling is unknown. Here we quantified the ability of a single Alteromonas strain [Alteromonas sp. strain Scripps Institution of Oceanography (AltSIO)] to drawdown ambient DOC in a coastal ecosystem. In three experiments, AltSIO alone consumed the entire pool of labile DOC, defined here as the quantity consumed by the submicron size fraction of ambient microbial assemblages within 5 d. These findings demonstrate that complete removal of the labile DOC pool in coastal surface seawater can be achieved by a single taxon. During long-term incubations (>1 y) testing semilabile DOC consumption, AltSIO entered dormancy but remained viable, while the diverse assemblages continued to consume carbon. Given that AltSIO is a large bacterium and thus subject to increased grazing pressure, we sought to determine the ecological relevance of this phenotype. Growth dynamics in natural seawater revealed that AltSIO rapidly outgrew the native bacteria, and despite intense grazing pressure, was never eliminated from the population. A survey in the California Current Ecosystem revealed that large bacteria (≥40 fg C⋅cell−1) were persistent, accounting for up to 12% of total bacterial abundance and 24% of total bacterial biomass. We conclude that large, rapidly growing bacteria have the potential to disproportionately alter the fate of carbon in the mesotrophic ocean and play an important role in ecosystem function. PMID:24733921

  18. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean

    NASA Astrophysics Data System (ADS)

    Pedler, Byron E.; Aluwihare, Lihini I.; Azam, Farooq

    2014-05-01

    Marine dissolved organic carbon (DOC) encompasses one of the largest reservoirs of carbon on Earth. Heterotrophic bacteria are the primary biotic force regulating the fate of this material, yet the capacity of individual strains to significantly contribute to carbon cycling is unknown. Here we quantified the ability of a single Alteromonas strain [Alteromonas sp. strain Scripps Institution of Oceanography (AltSIO)] to drawdown ambient DOC in a coastal ecosystem. In three experiments, AltSIO alone consumed the entire pool of labile DOC, defined here as the quantity consumed by the submicron size fraction of ambient microbial assemblages within 5 d. These findings demonstrate that complete removal of the labile DOC pool in coastal surface seawater can be achieved by a single taxon. During long-term incubations (>1 y) testing semilabile DOC consumption, AltSIO entered dormancy but remained viable, while the diverse assemblages continued to consume carbon. Given that AltSIO is a large bacterium and thus subject to increased grazing pressure, we sought to determine the ecological relevance of this phenotype. Growth dynamics in natural seawater revealed that AltSIO rapidly outgrew the native bacteria, and despite intense grazing pressure, was never eliminated from the population. A survey in the California Current Ecosystem revealed that large bacteria (≥40 fg Cṡcell-1) were persistent, accounting for up to 12% of total bacterial abundance and 24% of total bacterial biomass. We conclude that large, rapidly growing bacteria have the potential to disproportionately alter the fate of carbon in the mesotrophic ocean and play an important role in ecosystem function.

  19. The Contribution of Io-Raised Tides to Europa's Diurnally-Varying Surface Stresses

    NASA Technical Reports Server (NTRS)

    Rhoden, Alyssa Rose; Hurford, Terry A,; Manga, Michael

    2011-01-01

    Europa's icy surface records a rich history of geologic activity, Several features appear to be tectonic in origin and may have formed in response to Europa's daily-varying tidal stress [I]. Strike-slip faults and arcuate features called cycloids have both been linked to the patterns of stress change caused by eccentricity and obliquity [2J[3]. In fact, as Europa's obliquity has not been directly measured, observed tectonic patterns arc currently the best indicators of a theoretically supported [4] non-negligible obliquity. The diurnal tidal stress due to eccentricity is calculated by subtracting the average (or static) tidal shape of Europa generated by Jupiter's gravitational field from the instantaneous shape, which varies as Europa moves through its eccentric orbit [5]. In other words, it is the change of shape away from average that generates tidal stress. One might expect tidal contributions from the other large moons of Jupiter to be negligible given their size and the height of the tides they raise on Europa versus Jupiter's mass and the height of the tide it raises on Europa, However, what matters for tidally-induced stress is not how large the lo-raised bulge is compared to the Jupiter-raised bulge but rather the differences bet\\Veen the instantaneous and static bulges in each case. For example, when Europa is at apocenter, Jupiter raises a tide 30m lower than its static tide. At the same time, 10 raises a tide about 0.5m higher than its static tide. Hence, the change in Io's tidal distortion is about 2% of the change in the Jovian distortion when Europa is at apocenter

  20. Assessment of contribution of greenhouse gases, water vapour and cloudiness to global surface air temperature changes

    NASA Astrophysics Data System (ADS)

    Gusakova, Maria; Karlin, Lev N.

    2013-04-01

    A contribution of the basic greenhouse effect components to the changes of global surface air temperature (SAT) has been assessed. The Earth's energy budget and the longwave energy transformation, in particular, were considered to investigate the mechanism of the influence of greenhouse effect (GHE) on global SAT. As is known, some part of the outgoing terrestrial radiation is retained in the atmosphere by greenhouse gases (GHGs) such as CO2, CH4, N2O, water vapour (WV) and cloudiness. The analysis of the changes in global SAT, GHGs and WV concentrations for the period 1984 - 2010 has shown that these parameters have a trend to increase. The research into global cloudiness and the vertical distribution of cloud layers made it possible to trace both positive and negative trends, namely the increase of availability of middle and high clouds has a positive trend while the increase of availability of global clouds and low clouds have a negative trend. Making use of the regression analysis relationships between global SAT and the components of greenhouse effect were obtained. It is shown, that the availability of total clouds and low clouds result in climate cooling, while the availability of middle and high clouds cause the increase of global SAT. The analysis of these parameters made it possible to carry out parameterization of GHE. To identify non-anthropogenic possible reasons of global SAT changes the influence of GHE on global SAT has been analyzed, with El-Nino phenomenon being one of the possible reasons. It has been shown that the GHGs role in global SAT changes is not dominant.

  1. Minimal Reduplication

    ERIC Educational Resources Information Center

    Kirchner, Jesse Saba

    2010-01-01

    This dissertation introduces Minimal Reduplication, a new theory and framework within generative grammar for analyzing reduplication in human language. I argue that reduplication is an emergent property in multiple components of the grammar. In particular, reduplication occurs independently in the phonology and syntax components, and in both cases…

  2. Minimal Reduplication

    ERIC Educational Resources Information Center

    Kirchner, Jesse Saba

    2010-01-01

    This dissertation introduces Minimal Reduplication, a new theory and framework within generative grammar for analyzing reduplication in human language. I argue that reduplication is an emergent property in multiple components of the grammar. In particular, reduplication occurs independently in the phonology and syntax components, and in both cases…

  3. Oxygen plasma surface modification augments poly(L-lactide-co-glycolide) cytocompatibility toward osteoblasts and minimizes immune activation of macrophages.

    PubMed

    Scislowska-Czarnecka, Anna; Szmigiel, Dariusz; Genet, Michel; Dupont-Gillain, Christine; Pamula, Elzbieta; Kolaczkowska, Elzbieta

    2015-12-01

    Here, we report on modification of one of the model biomedical polymers, poly L-lactide-co-glycolide (PLGA; 85:15), by reactive ion etching (RIE) oxygen plasma treatment. PLGA's major disadvantage is high hydrophobicity which restrains binding of cell-adhesive proteins and host cells. In the current approach, we aimed to answer two questions: (1) will only short (10 s) and moderate (20-200 mTorr, 45-90 W) RIE oxygen plasma treatment, leading to decrease of water contact angle by only up to 10°, sufficiently improve PLGA adherence to cells, and (2) how will this affect osteoblasts and activation of the immune system? All obtained modified PLGAs had improved hydrophilicity but unaltered roughness (as revealed by water contact angle measurements, X-ray photoelectron spectroscopy, and atomic force microscopy) resulting in significantly improved adhesion of osteoblasts (MG-63) and their low activation. Importantly, macrophages (RAW 264.7), one of the key cells initiating inflammation and bone resorption, responded significantly less vigorously to the modified polymers, expressing/releasing lower amounts of nitric oxide, matrix metalloproteinases (MMP-9), and pro-inflammatory cytokines (TNF-α, IL-6, IL-12p70, IFN-γ, IL-10). We conclude that already slight RIE oxygen plasma modification of PLGA is sufficient to improve its surface properties, and enhance cytocompatibility. Most importantly, this type of modification prevents excessive immune response.

  4. KENNEDY SPACE CENTER, FLA. - A worker sandblasts the surface behind the Mobile Launcher Platform on Launch Pad 39A . Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

    NASA Image and Video Library

    2003-09-12

    KENNEDY SPACE CENTER, FLA. - A worker sandblasts the surface behind the Mobile Launcher Platform on Launch Pad 39A . Routine maintenance includes sandblasting and repainting as preventive means to minimize corrosion.

  5. Increasing measurement accuracy of age-related BOLD signal change: Minimizing vascular contributions by resting-state-fluctuation-of-amplitude scaling

    PubMed Central

    Kannurpatti, Sridhar S.; Motes, Michael A.; Rypma, Bart; Biswal, Bharat B.

    2012-01-01

    In this report we demonstrate a hemodynamic scaling method with resting-state fluctuation of amplitude (RSFA) in healthy adult younger and older subject groups. We show that RSFA correlated with breath hold (BH) responses throughout the brain in groups of younger and older subjects, that RSFA and BH performed comparably in accounting for age-related hemodynamic coupling changes, and yielded more veridical estimates of age-related differences in task-related neural activity. BOLD data from younger and older adults performing motor and cognitive tasks were scaled using RSFA and BH related signal changes. Scaling with RSFA and BH reduced the skew of the BOLD response amplitude distribution in each subject and reduced mean BOLD amplitude and variability in both age groups. Statistically significant differences in intra-subject amplitude variation across regions of activated cortex, and inter-subject amplitude variation in regions of activated cortex were observed between younger and older subject groups. Intra- and inter-subject variability differences were mitigated after scaling. RSFA, though similar to BH in minimizing skew in the un-scaled BOLD amplitude distribution, attenuated the neural activity related BOLD amplitude significantly less than BH. The amplitude and spatial extent of group activation were lower in the older than in the younger group prior to and after scaling. After accounting for vascular variability differences through scaling, age-related decreases in activation volume were observed during the motor and cognitive tasks. The results suggest that RSFA-scaled data yield age-related neural activity differences during task performance with negligible effects from non-neural (i.e., vascular) sources. PMID:20665721

  6. How and to what end may consciousness contribute to action? Attributing properties of consciousness to an embodied, minimally cognitive artificial neural network

    PubMed Central

    Cruse, Holk; Schilling, Malte

    2013-01-01

    An artificial neural network called reaCog is described which is based on a decentralized, reactive and embodied architecture developed to control non-trivial hexapod walking in an unpredictable environment (Walknet) while using insect-like navigation (Navinet). In reaCog, these basic networks are extended in such a way that the complete system, reaCog, adopts the capability of inventing new behaviors and – via internal simulation – of planning ahead. This cognitive expansion enables the reactive system to be enriched with additional procedures. Here, we focus on the question to what extent properties of phenomena to be characterized on a different level of description as for example consciousness can be found in this minimally cognitive system. Adopting a monist view, we argue that the phenomenal aspect of mental phenomena can be neglected when discussing the function of such a system. Under this condition, reaCog is discussed to be equipped with properties as are bottom-up and top-down attention, intentions, volition, and some aspects of Access Consciousness. These properties have not been explicitly implemented but emerge from the cooperation between the elements of the network. The aspects of Access Consciousness found in reaCog concern the above mentioned ability to plan ahead and to invent and guide (new) actions. Furthermore, global accessibility of memory elements, another aspect characterizing Access Consciousness is realized by this network. reaCog allows for both reactive/automatic control and (access-) conscious control of behavior. We discuss examples for interactions between both the reactive domain and the conscious domain. Metacognition or Reflexive Consciousness is not a property of reaCog. Possible expansions are discussed to allow for further properties of Access Consciousness, verbal report on internal states, and for Metacognition. In summary, we argue that already simple networks allow for properties of consciousness if leaving the

  7. Entropic contributions enhance polarity compensation for CeO2(100) surfaces

    NASA Astrophysics Data System (ADS)

    Capdevila-Cortada, Marçal; López, Núria

    2016-11-01

    Surface structure controls the physical and chemical response of materials. Surface polar terminations are appealing because of their unusual properties but they are intrinsically unstable. Several mechanisms, namely metallization, adsorption, and ordered reconstructions, can remove thermodynamic penalties rendering polar surfaces partially stable. Here, for CeO2(100), we report a complementary stabilization mechanism based on surface disorder that has been unravelled through theoretical simulations that: account for surface energies and configurational entropies; show the importance of the ion distribution degeneracy; and identify low diffusion barriers between conformations that ensure equilibration. Disordered configurations in oxides might also be further stabilized by preferential adsorption of water. The entropic stabilization term will appear for surfaces with a high number of empty sites, typically achieved when removing part of the ions in a polar termination to make the layer charge zero. Assessing the impact of surface disorder when establishing new structure-activity relationships remains a challenge.

  8. Entropic contributions enhance polarity compensation for CeO2(100) surfaces.

    PubMed

    Capdevila-Cortada, Marçal; López, Núria

    2017-03-01

    Surface structure controls the physical and chemical response of materials. Surface polar terminations are appealing because of their unusual properties but they are intrinsically unstable. Several mechanisms, namely metallization, adsorption, and ordered reconstructions, can remove thermodynamic penalties rendering polar surfaces partially stable. Here, for CeO2(100), we report a complementary stabilization mechanism based on surface disorder that has been unravelled through theoretical simulations that: account for surface energies and configurational entropies; show the importance of the ion distribution degeneracy; and identify low diffusion barriers between conformations that ensure equilibration. Disordered configurations in oxides might also be further stabilized by preferential adsorption of water. The entropic stabilization term will appear for surfaces with a high number of empty sites, typically achieved when removing part of the ions in a polar termination to make the layer charge zero. Assessing the impact of surface disorder when establishing new structure-activity relationships remains a challenge.

  9. The hysteretic contribution of friction for the polished rubber on the concrete surface

    NASA Astrophysics Data System (ADS)

    Feshanjerdi, M.; Khorrami, M.; Masoudi, A. A.; Razzaghi Kashani, M.

    2017-02-01

    The rubber friction coefficient, and the contact area during stationary sliding is calculated, for the contact of a polished rubber block and a concrete surface, when both surfaces are rough. The calculation is based on an extended version of Persson's contact mechanics theory. Compared to only the substrate being rough, when both of the surfaces are rough but their cross correlation is zero, the friction coefficient is larger. Introducing a positive correlation decreases the friction coefficient, while introducing a negative correlation increases the friction coefficient. To support these theoretical arguments, some experiments have been performed. We have produced roughness on the rubber surface, using abrasive paper, and measured the surface topographies for the concrete and the polished rubber surfaces. The auto spectral density functions for the both surfaces have been calculated, and the rubber viscoelastic modulus mastercurve has been obtained. We have measured the rubber friction at different sliding velocities, when the rubber surfaces are rough and smooth, and compared it to the theoretical results. It is seen that when the rubber surface is rough, the rubber friction coefficient is larger compared to the case the rubber surface is smooth. The theoretical results are in good agreement with experimental observation.

  10. An Experimental Approach to Controllably Vary Protein Oxidation While Minimizing Electrode Adsorption for Boron-Doped Diamond Electrochemical Surface Mapping Applications

    PubMed Central

    McClintock, Carlee S; Hettich, Robert L.

    2012-01-01

    Oxidative protein surface mapping has become a powerful approach for measuring the solvent accessibility of folded protein structures. A variety of techniques exist for generating the key reagent – hydroxyl radicals – for these measurements; however, these approaches range significantly in their complexity and expense of operation. This research expands upon earlier work to enhance the controllability of boron-doped diamond (BDD) electrochemistry as an easily accessible tool for producing hydroxyl radicals in order to oxidize a range of intact proteins. Efforts to modulate oxidation level while minimizing the adsorption of protein to the electrode involved the use of relatively high flow rates to reduce protein residence time inside the electrochemical flow chamber. Additionally, a different cell activation approach using variable voltage to supply a controlled current allowed us to precisely tune the extent of oxidation in a protein-dependent manner. In order to gain perspective on the level of protein adsorption onto the electrode surface, studies were conducted to monitor protein concentration during electrolysis and gauge changes in the electrode surface between cell activation events. This report demonstrates the successful use of BDD electrochemistry for greater precision in generating a target number of oxidation events upon intact proteins. PMID:23210708

  11. Reconstruction of a 3D surface from video that is robust to missing data and outliers: application to minimally invasive surgery using stereo and mono endoscopes.

    PubMed

    Hu, Mingxing; Penney, Graeme; Figl, Michael; Edwards, Philip; Bello, Fernando; Casula, Roberto; Rueckert, Daniel; Hawkes, David

    2012-04-01

    Minimally invasive surgery (MIS) offers great benefits to patients compared with open surgery. Nevertheless during MIS surgeons often need to contend with a narrow field-of-view of the endoscope and obstruction from other surgical instruments. He/she may also need to relate the surgical scene to information derived from previously acquired 3D medical imaging. We thus present a new framework to reconstruct the 3D surface of an internal organ from endoscopic images which is robust to measurement noise, missing data and outliers. This can provide 3D surface with a wide field-of-view for surgeons, and it can also be used for 3D-3D registration of the anatomy to pre-operative CT/MRI data for use in image guided interventions. Our proposed method first removes most of the outliers using an outlier removal method that is based on the trilinear constraints over three images. Then data that are missing from one or more of the video images (missing data) and 3D structure are recovered using the structure from motion (SFM) technique. Evolutionary agents are applied to improve both the efficiency of data recovery and robustness to outliers. Furthermore, an incremental bundle adjustment strategy is used to refine the camera parameters and 3D structure and produce a more accurate 3D surface. Experimental results with synthetic data show that the method is able to reconstruct surfaces in the presence of feature tracking errors (up to 5 pixel standard deviation) and a large amount of missing data (up to 50%). Experiments on a realistic phantom model and in vivo data further demonstrate the good performance of the proposed approach in terms of accuracy (1.7 mm residual phantom surface error) and robustness (50% missing data rate, and 20% outliers in in vivo experiments). Copyright © 2010 Elsevier B.V. All rights reserved.

  12. Supra-additive contribution of shape and surface information to individual face discrimination as revealed by fast periodic visual stimulation.

    PubMed

    Dzhelyova, Milena; Rossion, Bruno

    2014-12-24

    Face perception depends on two main sources of information--shape and surface cues. Behavioral studies suggest that both of them contribute roughly equally to discrimination of individual faces, with only a small advantage provided by their combination. However, it is difficult to quantify the respective contribution of each source of information to the visual representation of individual faces with explicit behavioral measures. To address this issue, facial morphs were created that varied in shape only, surface only, or both. Electrocephalogram (EEG) were recorded from 10 participants during visual stimulation at a fast periodic rate, in which the same face was presented four times consecutively and the fifth face (the oddball) varied along one of the morphed dimensions. Individual face discrimination was indexed by the periodic EEG response at the oddball rate (e.g., 5.88 Hz/5 = 1.18 Hz). While shape information was discriminated mainly at right occipitotemporal electrode sites, surface information was coded more bilaterally and provided a larger response overall. Most importantly, shape and surface changes alone were associated with much weaker responses than when both sources of information were combined in the stimulus, revealing a supra-additive effect. These observations suggest that the two kinds of information combine nonlinearly to provide a full individual face representation, face identity being more than the sum of the contribution of shape and surface cues. © 2014 ARVO.

  13. Long-term change in surface air temperature over Eurasian continent and possible contribution from land-surface conditions.

    NASA Astrophysics Data System (ADS)

    Kim, K.; Jeong, J. H.; Shim, T.

    2015-12-01

    Summertime heat wave over Eurasia is induced by various climatic factors. As internal and external factors are changing under an abrupt climate change, the variability of heat waves exhibits radical changes. In this study, the long-term change in heat wave characteristics over Eurasia for the last several decades was examined and the impact of land-atmosphere interaction modulated by soil moisture variability on the change was investigated. Through the empirical orthogonal functions(EOF) analysis, the principle spatio-temporal pattern of Eurasian heat wave during July-August was objectively detected. The leading pattern (1st EOF mode) of the variability was found be an overall increase in heat waves over eastern Europe and east Asia (Mongol to northern part of China), which seems to be associated mainly with the global warming signal but with interannual variability as well. Through performing JULES(Joint UK Land Environment Simulator) land surface model simulation forced with observational atmospheric forcings, soil moisture and energy flux at surface were estimated, and the impacts of land-atmosphere interaction on the heat wave variability was investigated based on the estimated land surface variables and temperature observations. It is found that there is a distinct dry soil condition accompanying with East Asian heat waves. The dry condition leads to an increase in sensible heat flux from land surface to atmosphere and resulting near-surface warming, which is followed by warm-core high - a typical characteristics of a heatwave sustained by land-atmosphere interaction. This result is consistent with an distinct increase in heatwave in recent years. By using the hindcast of long-range prediction model of KMA, GloSea5, the seasonal predictability of heatwave was examined. GloSea5 reasonably well simulates the spatial pattern of Eurasian heatwaves variability found in observations but shows modest skill in simulating accurate year-to-year variability. This result

  14. Genetic and environmental contributions to regional cortical surface area in humans: a magnetic resonance imaging twin study.

    PubMed

    Eyler, Lisa T; Prom-Wormley, Elizabeth; Panizzon, Matthew S; Kaup, Allison R; Fennema-Notestine, Christine; Neale, Michael C; Jernigan, Terry L; Fischl, Bruce; Franz, Carol E; Lyons, Michael J; Grant, Michael; Stevens, Allison; Pacheco, Jennifer; Perry, Michele E; Schmitt, J Eric; Seidman, Larry J; Thermenos, Heidi W; Tsuang, Ming T; Chen, Chi-Hua; Thompson, Wesley K; Jak, Amy; Dale, Anders M; Kremen, William S

    2011-10-01

    Cortical surface area measures appear to be functionally relevant and distinct in etiology, development, and behavioral correlates compared with other size characteristics, such as cortical thickness. Little is known about genetic and environmental influences on individual differences in regional surface area in humans. Using a large sample of adult twins, we determined relative contributions of genes and environment on variations in regional cortical surface area as measured by magnetic resonance imaging before and after adjustment for genetic and environmental influences shared with total cortical surface area. We found high heritability for total surface area and, before adjustment, moderate heritability for regional surface areas. Compared with other lobes, heritability was higher for frontal lobe and lower for medial temporal lobe. After adjustment for total surface area, regionally specific genetic influences were substantially reduced, although still significant in most regions. Unlike other lobes, left frontal heritability remained high after adjustment. Thus, global and regionally specific genetic factors both influence cortical surface areas. These findings are broadly consistent with results from animal studies regarding the evolution and development of cortical patterning and may guide future research into specific environmental and genetic determinants of variation among humans in the surface area of particular regions.

  15. Minimal contribution of ERK1/2-MAPK signalling towards the maintenance of oncogenic GNAQQ209P-driven uveal melanomas in zebrafish

    PubMed Central

    Mouti, Mai Abdel; Dee, Christopher; Coupland, Sarah E.; Hurlstone, Adam F.L.

    2016-01-01

    Mutations affecting Gαq proteins are pervasive in uveal melanoma (UM), suggesting they ‘drive’ UM pathogenesis. The ERK1/2-MAPK pathway is critical for cutaneous melanoma development and consequently an important therapeutic target. Defining the contribution of ERK1/2-MAPK signalling to UM development has been hampered by the lack of an informative animal model that spontaneously develops UM. Towards this end, we engineered transgenic zebrafish to express oncogenic GNAQQ209P in the melanocyte lineage. This resulted in hyperplasia of uveal melanocytes, but with no evidence of malignant progression, nor perturbation of skin melanocytes. Combining expression of oncogenic GNAQQ209P with p53 inactivation resulted in earlier onset and even more extensive hyperplasia of uveal melanocytes that progressed to UM. Immunohistochemistry revealed only weak immunoreactivity to phosphorylated (p)ERK1/2 in established uveal tumours—in contrast to strong immunoreactivity in oncogenic RAS-driven skin lesions—but ubiquitous positive staining for nuclear Yes-associated protein (YAP). Moreover, no changes were observed in pERK1/2 levels upon transient knockdown of GNAQ or phospholipase C-beta (PLC-β) inhibition in the majority of human UM cell lines we tested harbouring GNAQ mutations. In summary, our findings demonstrate a weak correlation between oncogenic GNAQQ209P mutation and sustained ERK1/2-MAPK activation, implying that ERK1/2 signalling is unlikely to be instrumental in the maintenance of GNAQQ209P-driven UMs. PMID:27166257

  16. VARIABLE BOUND-SITE CHARGING CONTRIBUTIONS TO SURFACE COMPLEXATION MASS ACTION EXPRESSIONS

    EPA Science Inventory

    One and two pK models of surface complexation reactions between reactive surface sites (>SOH) and the proton (H+) use mass action expressions of the form: Ka={[>SOHn-1z-1]g>SOH(0-1)aH+EXP(-xeY/kT)}/{[>SOHnz]g>SOH(n)} where Ka=the acidity constant, [ ]=reactive species concentrati...

  17. VARIABLE BOUND-SITE CHARGING CONTRIBUTIONS TO SURFACE COMPLEXATION MASS ACTION EXPRESSIONS

    EPA Science Inventory

    One and two pK models of surface complexation reactions between reactive surface sites (>SOH) and the proton (H+) use mass action expressions of the form: Ka={[>SOHn-1z-1]g>SOH(0-1)aH+EXP(-xeY/kT)}/{[>SOHnz]g>SOH(n)} where Ka=the acidity constant, [ ]=reactive species concentrati...

  18. Regulation of Type IV Pili Contributes to Surface Behaviors of Historical and Epidemic Strains of Clostridium difficile

    PubMed Central

    Purcell, Erin B.; McKee, Robert W.; Bordeleau, Eric; Burrus, Vincent

    2015-01-01

    ABSTRACT The intestinal pathogen Clostridium difficile is an urgent public health threat that causes antibiotic-associated diarrhea and is a leading cause of fatal nosocomial infections in the United States. C. difficile rates of recurrence and mortality have increased in recent years due to the emergence of so-called “hypervirulent” epidemic strains. A great deal of the basic biology of C. difficile has not been characterized. Recent findings that flagellar motility, toxin synthesis, and type IV pilus (TFP) formation are regulated by cyclic diguanylate (c-di-GMP) reveal the importance of this second messenger for C. difficile gene regulation. However, the function(s) of TFP in C. difficile remains largely unknown. Here, we examine TFP-dependent phenotypes and the role of c-di-GMP in controlling TFP production in the historical 630 and epidemic R20291 strains of C. difficile. We demonstrate that TFP contribute to C. difficile biofilm formation in both strains, but with a more prominent role in R20291. Moreover, we report that R20291 is capable of TFP-dependent surface motility, which has not previously been described in C. difficile. The expression and regulation of the pilA1 pilin gene differs between R20291 and 630, which may underlie the observed differences in TFP-mediated phenotypes. The differences in pilA1 expression are attributable to greater promoter-driven transcription in R20291. In addition, R20291, but not 630, upregulates c-di-GMP levels during surface-associated growth, suggesting that the bacterium senses its substratum. The differential regulation of surface behaviors in historical and epidemic C. difficile strains may contribute to the different infection outcomes presented by these strains. IMPORTANCE How Clostridium difficile establishes and maintains colonization of the host bowel is poorly understood. Surface behaviors of C. difficile are likely relevant during infection, representing possible interactions between the bacterium and the

  19. A new curvature technique calculation for surface tension contribution in PLIC-VOF method

    NASA Astrophysics Data System (ADS)

    Martinez, J.-M.; Chesneau, X.; Zeghmati, B.

    2006-01-01

    The volume of fluid (VOF) methods have been used for numerous numerical simulations. Among these techniques used to define the moving interface, the piecewise linear interface reconstruction (PLIC-VOF) is one of the most accurate. A study of the superficial tension impact on two-phase flow with free surface is presented. A new method based on direct staggered grid is developped to include surface tension in PLIC-VOF. The new numerical curvature calculation method doesn't need smoothed colour function and leads to less “spurious current”. This technique is applied to the calculus of surface tension force in the case of the rise of air bubble in viscous liquid and the fall of liquid drop in the same liquid on free surface. Droplets, thin layer and capillarity waves are observed after the free surface rupture for different Bond number. The influence of surface tension calculus is then obvioused and when the drop hit the free surface, wavelets propagate toward the virtual boundaries imposed.

  20. Contribution of environmental media to cryptosporidiosis and giardiasis prevalence in Tehran: a focus on surface waters.

    PubMed

    Hadi, Mahdi; Mesdaghinia, Alireza; Yunesian, Masud; Nasseri, Simin; Nabizadeh Nodehi, Ramin; Tashauoei, Hamidreza; Jalilzadeh, Esfandiar; Zarinnejad, Roya

    2016-10-01

    The occurrences of Cryptosporidium and Giardia in surface sources of drinking water in Tehran were monitored, using US EPA method 1623.1. The prevalence ratios (PR) of positive samples among other media (animal's stools, vegetables, and human's stools) were also estimated from literature data. The density of Giardia and Cryptosporidium in water samples were 0.129 ± 0.069 cysts/L and 0.005 ± 0.002 oocysts/L, respectively. Estimated PR in vegetables, animal stools, surface waters, and human stools were 6.65, 20.42, 21.05, and 4.28 % for Cryptosporidium and 6.46, 17.13, 73.68, and 15.65 % for Giardia, respectively. These reveal the importance of surface waters' and animal stools' roles in the prevalence of cryptosporidiosis and giardiasis in Tehran's population. Giardia's prevalence in untreated surface waters in Tehran was found 3.5 times as much as Cryptosporidium while this found 2.3 times on a global scale. Moreover, the prevalence of giardiasis to cryptosporidiosis infections in Tehran's human population was 3.65. These values could be a clue to attribute the infections to the occurrence of parasites in surface waters. Significant (p < 0.05) associations were observed between rainfalls and presence of Giardia (r = 0.62) and Cryptosporidium (r = 0.60) in surface waters. In autumn, rainfalls can increase the parasites occurrences in surface waters. Significant (p < 0.05) difference on the density of parasites was found between some seasons using Kruskal-Wallis and multiple comparison tests. A significant correlation (r = 0.86) between Giardia and Cryptosporidium densities also confirms the common sources of pollution in surface waters. Findings suggest that untreated surface waters in Tehran may be a potential route of human exposure to protozoan parasites.

  1. Water content and thickness of the stratum corneum contribute to skin surface morphology.

    PubMed

    Sato, J; Yanai, M; Hirao, T; Denda, M

    2000-08-01

    Skin surface morphology has long been recognized as reflecting skin pathology. In the present study, we evaluated skin surface morphology using hairless mice under contrasting conditions of humidity. The skin surface microrelief was recorded with opaque quick-drying silicone rubber, and examined under a microscope. A binary image was produced by density slicing. Within 3 days of exposure to dry conditions, skin roughness was significantly increased. The skin roughness was partially mitigated by topical application of an aqueous solution of glycerol or hydration by immersion in water. A significant correlation between skin roughness and stratum corneum thickness was also observed. These results suggest that skin surface morphology is associated with both water content and thickness of the stratum corneum.

  2. ABI domain-containing proteins contribute to surface protein display and cell division in Staphylococcus aureus.

    PubMed

    Frankel, Matthew B; Wojcik, Brandon M; DeDent, Andrea C; Missiakas, Dominique M; Schneewind, Olaf

    2010-10-01

    The human pathogen Staphylococcus aureus requires cell wall anchored surface proteins to cause disease. During cell division, surface proteins with YSIRK signal peptides are secreted into the cross-wall, a layer of newly synthesized peptidoglycan between separating daughter cells. The molecular determinants for the trafficking of surface proteins are, however, still unknown. We screened mutants with non-redundant transposon insertions by fluorescence-activated cell sorting for reduced deposition of protein A (SpA) into the staphylococcal envelope. Three mutants, each of which harboured transposon insertions in genes for transmembrane proteins, displayed greatly reduced envelope abundance of SpA and surface proteins with YSIRK signal peptides. Characterization of the corresponding mutations identified three transmembrane proteins with abortive infectivity (ABI) domains, elements first described in lactococci for their role in phage exclusion. Mutations in genes for ABI domain proteins, designated spdA, spdB and spdC (surface protein display), diminish the expression of surface proteins with YSIRK signal peptides, but not of precursor proteins with conventional signal peptides. spdA, spdB and spdC mutants display an increase in the thickness of cross-walls and in the relative abundance of staphylococci with cross-walls, suggesting that spd mutations may represent a possible link between staphylococcal cell division and protein secretion.

  3. Surface roughness contribution to the adhesion force distribution of salmeterol xinafoate on lactose carriers by atomic force microscopy.

    PubMed

    Islam, Nazrul; Stewart, Peter; Larson, Ian; Hartley, Patrick

    2005-07-01

    Adhesion force distributions of silica spheres (5 and 20 microm) and salmeterol xinafoate (4 microm) particles with inhalation grade lactose surfaces and spin coated lactose films were determined by atomic force microscopy (AFM) to investigate the influence of surface roughness on the force distributions. The roughness of lactose particles and films was determined by both AFM and confocal microscopy (CM); the lactose particles showed RMS R(q) values between 0.93 and 2.2 microm. The adhesion force distributions for silica and SX probes were significantly different for the different lactose carriers and broad, e.g., the adhesion force distribution between a 5 microm silica sphere and lactose particles ranged from 5 to 105 nN. This contrasted with distributions on smooth spin coated lactose films (RMS R(q) of 0.28 nm) which were not significantly different and were narrow, e.g., the adhesion force distribution between a 5 microm silica sphere and spin coated lactose films was between 42 and 68 nN. In addition, no significant difference in adhesion force distribution occurred with silica probe size on the lactose carrier surface. The use of X-ray photoelectron spectroscopic analysis confirmed that the lactose surfaces were free of impurities that might contribute to variation in adhesion. Although the almost atomically flat films showed some adhesion variability, the surface roughness of the lactose particles was a major contributing factor to the broad distributions seen in this study.

  4. Did Mineral Surface Chemistry and Toxicity Contribute to Evolution of Microbial Extracellular Polymeric Substances?

    PubMed Central

    Campbell, Jay M.; Zhang, Nianli; Hickey, William J.

    2012-01-01

    Abstract Modern ecological niches are teeming with an astonishing diversity of microbial life in biofilms closely associated with mineral surfaces, which highlights the remarkable success of microorganisms in conquering the challenges and capitalizing on the benefits presented by the mineral–water interface. Biofilm formation capability likely evolved on early Earth because biofilms provide crucial cell survival functions. The potential toxicity of mineral surfaces toward cells and the complexities of the mineral–water–cell interface in determining the toxicity mechanisms, however, have not been fully appreciated. Here, we report a previously unrecognized role for extracellular polymeric substances (EPS), which form biofilms in shielding cells against the toxicity of mineral surfaces. Using colony plating and LIVE/DEAD staining methods in oxide suspensions versus oxide-free controls, we found greater viability of wild-type, EPS-producing strains of Pseudomonas aeruginosa PAO1 compared to their isogenic knockout mutant with defective biofilm-producing capacity. Oxide toxicity was specific to its surface charge and particle size. High resolution transmission electron microscopy (HRTEM) images and assays for highly reactive oxygen species (hROS) on mineral surfaces suggested that EPS shield via both physical and chemical mechanisms. Intriguingly, qualitative as well as quantitative measures of EPS production showed that toxic minerals induced EPS production in bacteria. By determining the specific toxicity mechanisms, we provide insight into the potential impact of mineral surfaces in promoting increased complexity of cell surfaces, including EPS and biofilm formation, on early Earth. Key Words: Mineral toxicity—Bacteria—EPS evolution—Biofilms—Cytotoxicity—Silica—Anatase—Alumina. Astrobiology 12, 785–798. PMID:22934560

  5. Multi-Model Comparison of Lateral Boundary Contributions to Surface Ozone Over the United States

    EPA Science Inventory

    As the National Ambient Air Quality Standards (NAAQS) for ozone become more stringent, there has been growing attention on characterizing the contributions and the uncertainties in ozone from outside the US to the ozone concentrations within the US. The third phase of the Air Qua...

  6. Multi-Model Comparison of Lateral Boundary Contributions to Surface Ozone Over the United States

    EPA Science Inventory

    As the National Ambient Air Quality Standards (NAAQS) for ozone become more stringent, there has been growing attention on characterizing the contributions and the uncertainties in ozone from outside the US to the ozone concentrations within the US. The third phase of the Air Qua...

  7. Contribution of Head Position, Standing Surface, and Vision to Postural Control in Community-Dwelling Older Adults.

    PubMed

    Pociask, Fredrick D; DiZazzo-Miller, Rosanne; Goldberg, Allon; Adamo, Diane E

    2016-01-01

    Postural control requires the integration of sensorimotor information to maintain balance and to properly position and orient the body in response to external stimuli. Age-related declines in peripheral and central sensory and motor function contribute to postural instability and falls. This study investigated the contribution of head position, standing surface, and vision on postural sway in 26 community-dwelling older adults. Participants were asked to maintain a stable posture under conditions that varied standing surface, head position, and the availability of visual information. Significant main and interaction effects were found for all three factors. Findings from this study suggest that postural sway responses require the integration of available sources of sensory information. These results have important implications for fall risks in older adults and suggest that when standing with the head extended and eyes closed, older adults may place themselves at risk for postural disequilibrium and loss of balance.

  8. Minimizing Surface Exposure to Climate Extremity in Coastal Megacities by Structure Remodelling using Integral Geographic Information System: Lessons from Greater Mumbai Metropolitan

    NASA Astrophysics Data System (ADS)

    Tiwari, A.

    2016-12-01

    Coastal metropolitans in South Asia represent the most densely populated and congested urban spaces ranking among the largest urban settlements of the planet. These megacities are characterized by inadequate infrastructure, lack of mitigation tools, and weak resilience of urban ecosystems. Additionally, climate change has increased vulnerability of poor and marginalized population living in rapidly growing coastal megacities to increased frequency, severity and intensity of extreme weather events. This has adversely affected local counter strategies and adaptation tools, transforming such events into hazards with the inability to respond and mitigate. Study aimed to develop a participatory framework for risk reduction in Greater Mumbai Metropolitan by Structure Remodeling (SR) in integral GIS. Research utilized terrain analysis tools and vulnerability mapping, and identified risk susceptible fabric and checked its scope for SR without: 1.adding to its (often) complex fragmentation, and 2.without interference with the ecosystem services accommodated by it. Surfaces available included paved ground, streetscapes commercial facades, rooftops,public spaces, open as well as dark spaces. Remodeling altered certain characteristics in the intrinsic or extrinsic cross-section profile or in both (if suitable) with infrastructure measures (grey, green, blue) that collectively involved ecosystem services and maintained natural hydrological connection. This method fairly reduced exposure of vulnerable surface and minimized risk to achieve extremity-neutral state. Harmonizing with public perception and incorporating priorities of local authorities, the method is significant as it rises above the fundamental challenges arising during management of (often) conflicting perspectives and interests of multiplicity of stakeholders involved at various levels in urban climate governance while ensuring inclusive solutions with reduced vulnerability and increased resilience. Additionally

  9. Pharmacological induction of cell surface GRP78 contributes to apoptosis in triple negative breast cancer cells

    PubMed Central

    Hardy, Britta

    2014-01-01

    Breast cancer tumor with triple-negative receptors (estrogen, progesterone and Her 2, receptors) is the most aggressive and deadly subtype, with high rates of disease recurrence and poor survival. Here, we show that induction in cell surface GRP78 by doxorubicin and tunicamycin was associated with CHOP/GADD153 upregulation and increase in apoptosis in triple negative breast cancer tumor cells. GRP78 is a major regulator of the stress induced unfolded protein response pathway and CHOP/GADD153 is a pro-apoptotic transcription factor associated exclusively with stress induced apoptosis. The blocking of cell surface GRP78 by anti-GRP78 antibody prevented apoptosis, suggesting that induction of cell surface GRP78 by doxorubicin and tunicamycin is required for apoptosis. A better understanding of stress induction of apoptotic signaling in triple negative breast cancer cells may help to define new therapeutic strategies. PMID:25360516

  10. Surface marker cluster translation, rotation, scaling and deformation: Their contribution to soft tissue artefact and impact on knee joint kinematics.

    PubMed

    Benoit, D L; Damsgaard, M; Andersen, M S

    2015-07-16

    When recording human movement with stereophotogrammetry, skin deformation and displacement (soft tissue artefact; STA) inhibits surface markers' ability to validly represent the movement of the underlying bone. To resolve this issue, the components of marker motions which contribute to STA must be understood. The purpose of this study is to describe and quantify which components of this marker motion (cluster translation, rotation, scaling and deformation) contribute to STA during the stance phase of walking, a cutting manoeuvre, and one-legged hops. In vivo bone pin-based tibio-femoral kinematics of six healthy subjects were used to study skin marker-based STA. To quantify how total cluster translation, rotation, scaling and deformation contribute to STA, a resizable and deformable cluster model was constructed. STA was found to be greater in the thigh than the shank during all three movements. We found that the non-rigid (i.e. scaling and deformation) movements contribute very little to the overall amount of error, rendering surface marker optimisation methods aimed at minimising this component superfluous. The results of the current study indicate that procedures designed to account for cluster translation and rotation during human movement are required to correctly represent the motion of body segments, however reducing marker cluster scaling and deformation will have little effect on STA.

  11. John Pendry: His Contributions to the Development of LEED Surface Crystallography

    SciTech Connect

    Somorjai, Gabor A.; Rous, P.J.

    2007-10-15

    In this paper we discuss the pivotal role played by Sir John Pendry in the development of Low Energy Electron Diffraction (LEED) during the past three decades; the earliest understanding on the physics of LEED to the development of sophisticated methods for the structural solution of complex surfaces.

  12. Decoupling Bulk and Surface Contributions in Water- Splitting Photocatalysts by In Situ Ultrafast Spectroscopy

    SciTech Connect

    Appavoo, Kannatassen; Mingzhao, Liu; Black, Charles T.; Sfeir, Matthew Y.

    2015-05-10

    By performing ultrafast emission spectroscopy in an operating, bias-controlled photoelectrochemical cell, we distinguish between bulk (charge transport) and surface (chemical reaction) recombination processes in a nanostructured photocatalyst and correlate its electronic properties directly with its incident-photon-to-current efficiency.

  13. Sectoral contributions to surface water stress in the coterminous United States

    Treesearch

    K. Averyt; J. Meldrum; P. Caldwell; G. Sun; S. McNulty; A. Huber-Lee; N. Madden

    2013-01-01

    Here, we assess current stress in the freshwater system based on the best available data in order to understand possible risks and vulnerabilities to regional water resources and the sectors dependent on freshwater. We present watershed-scale measures of surface water supply stress for the coterminous United States (US) using the water supply stress index (WaSSI) model...

  14. The Micellar Cubic Phases of Lipid-Containing Systems: Analogies with Foams, Relations with the Infinite Periodic Minimal Surfaces, Sharpness of the Polar/Apolar Partition

    NASA Astrophysics Data System (ADS)

    Luzzati, Vittorio; Delacroix, Hervé; Gulik, Annette

    1996-03-01

    Of the 7 cubic phases clearly identified in lipid-containing systems, 2 are bicontinuous, 4 micellar. 3 of these are of type I: one (Q^{223}) consists of two types of micelles, the two others of identical quasi-spherical micelles close-packed in the face-centred (Q^{225}) or the body-centred mode (Q^{229}). These structures, mush like foams, can be described as systems of space-filling polyhedra: distorted 12- and 14-hedra in Q^{223}, rhombic dodecahedra in Q^{225}, truncated octahedra in Q^{229}. In foams the geometry of the septa and of their junctions are generally assumed to obey Plateau's conditions, at least at vanishing water content: these conditions are satisfied in Q^{223}, can be satisfied in Q^{229} by introducing subtle distortions in the hexagonal faces, but cannot be satisfied in Q^{225}. Alternatively, these structures can be represented in terms of infinite periodic minimal surfaces (IPMS) since it is found that two types of IPMS, F-RD in Q^{225} and I-WP in Q^{229}, almost coincide with one particular equi-electron-density surface of the 3D electron density maps. These IPMS partition 3D space into two non-congruent labyrinths: in the case of the lipid phases one of the labyrinths contains the hydrated micelles, the other is filled by water. If interfacial interactions are associated with these surfaces, then the surfaces being minimal, the interactions may also be expected to be minimal. Another characteristic of the micellar phases is that the dimensions of their hydrophobic core, computed assuming that headgroups and water are totally immiscible with the chains, often are incompatible with the fully extended length of the chains. This paradox is evaded if headgroups and chains are allowed to be partiallly miscible with each other. Des 7 phases cubiques clairement identifiées dans les systèmes lipidiques, 2 sont bicontinues, 4 micellaires. Parmi ces dernières, 3 sont du type I : une (Q^{223}) comporte deux types de micelles, deux autres sont

  15. Contribution of N2 Ion on Polar Group Introduction at PTFE Surface by the High E/n Discharge

    NASA Astrophysics Data System (ADS)

    Nakayama, Akihiko; Iwa, Toru; Yumoto, Motoshige

    PTFE (Poly-tetra-fluoro-ethylene) has superior characteristic such as low dielectric constant, low dielectric tangent and chemistry stability. However, it has low adhesion force. In order to improve adhesion force, we have studied on surface modification of PTFE by using discharge under high E/n (E: electric field, n: particle density) condition in nitrogen. Under high E/n condition, electron and ions gain energy up to 100eV or more. It is deduced that improvement of adhesion is brought about by introduction of the polar groups at the surface. However, it does not understand clearly which particle (ion, atom, excited molecule etc.) in discharge space contributes to introduce the polar groups on the PTFE surface. We assume that ion with high kinetic energy rather than the binding energy of PTFE contributes on introduction of chemical bonds by cutting of the C-C or C-F bonds. It is expected that cutting the bonds is a rate-determining step in surface modification. Then, we measured contact angle of samples irradiated by various ion energy and exposure dose. From the results, the increase of the exposure dose make fast to introduce polar groups. In addition, it is deduced that ion energy around 40eV is effective for polar groups introduction.

  16. Minimal cosmography

    NASA Astrophysics Data System (ADS)

    Piazza, Federico; Schücker, Thomas

    2016-04-01

    The minimal requirement for cosmography—a non-dynamical description of the universe—is a prescription for calculating null geodesics, and time-like geodesics as a function of their proper time. In this paper, we consider the most general linear connection compatible with homogeneity and isotropy, but not necessarily with a metric. A light-cone structure is assigned by choosing a set of geodesics representing light rays. This defines a "scale factor" and a local notion of distance, as that travelled by light in a given proper time interval. We find that the velocities and relativistic energies of free-falling bodies decrease in time as a consequence of cosmic expansion, but at a rate that can be different than that dictated by the usual metric framework. By extrapolating this behavior to photons' redshift, we find that the latter is in principle independent of the "scale factor". Interestingly, redshift-distance relations and other standard geometric observables are modified in this extended framework, in a way that could be experimentally tested. An extremely tight constraint on the model, however, is represented by the blackbody-ness of the cosmic microwave background. Finally, as a check, we also consider the effects of a non-metric connection in a different set-up, namely, that of a static, spherically symmetric spacetime.

  17. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Deser, Clara; Guo, Ruixia; Lehner, Flavio

    2017-08-01

    The recent slowdown in global mean surface temperature (GMST) warming during boreal winter is examined from a regional perspective using 10-member initial-condition ensembles with two global coupled climate models in which observed tropical Pacific sea surface temperature anomalies (TPAC SSTAs) and radiative forcings are specified. Both models show considerable diversity in their surface air temperature (SAT) trend patterns across the members, attesting to the importance of internal variability beyond the tropical Pacific that is superimposed upon the response to TPAC SSTA and radiative forcing. Only one model shows a close relationship between the realism of its simulated GMST trends and SAT trend patterns. In this model, Eurasian cooling plays a dominant role in determining the GMST trend amplitude, just as in nature. In the most realistic member, intrinsic atmospheric dynamics and teleconnections forced by TPAC SSTA cause cooling over Eurasia (and North America), and contribute equally to its GMST trend.

  18. Ultra-fast grain boundary diffusion and its contribution to surface segregation on a martensitic steel. Experiments and modeling

    NASA Astrophysics Data System (ADS)

    Christien, F.; Le Gall, R.

    2011-09-01

    Phosphorus surface segregation was measured by Auger Electron Spectroscopy on a 17-4 PH martensitic stainless steel at 450, 550 and 600 °C. Surface segregation was shown to be much faster than expected which was attributed to a high contribution of phosphorus diffusion along the former austenitic grain boundaries. A model of surface segregation was developed following the Darken-du Plessis approach and taking account of both bulk and grain boundary solute diffusion. The phosphorus grain boundary diffusion coefficient in 17-4 PH was estimated: DGB< = 6.2 10 4 exp(- 157 kJ mol - 1 /RT)cm 2 s - 1 . It is found to be more than three orders of magnitude higher in 17-4 PH steel than in α-iron.

  19. CD133 protein N-glycosylation processing contributes to cell surface recognition of the primitive cell marker AC133 epitope.

    PubMed

    Mak, Anthony B; Blakely, Kim M; Williams, Rashida A; Penttilä, Pier-Andrée; Shukalyuk, Andrey I; Osman, Khan T; Kasimer, Dahlia; Ketela, Troy; Moffat, Jason

    2011-11-25

    The AC133 epitope expressed on the CD133 glycoprotein has been widely used as a cell surface marker of numerous stem cell and cancer stem cell types. It has been recently proposed that posttranslational modification and regulation of CD133 may govern cell surface AC133 recognition. Therefore, we performed a large scale pooled RNA interference (RNAi) screen to identify genes involved in cell surface AC133 expression. Gene hits could be validated at a rate of 70.5% in a secondary assay using an orthogonal RNAi system, demonstrating that our primary RNAi screen served as a powerful genetic screening approach. Within the list of hits from the primary screen, genes involved in N-glycan biosynthesis were significantly enriched as determined by Ingenuity Canonical Pathway analyses. Indeed, inhibiting biosynthesis of the N-glycan precursor using the small molecule tunicamycin or inhibiting its transfer to CD133 by generating N-glycan-deficient CD133 mutants resulted in undetectable cell surface AC133. Among the screen hits involved in N-glycosylation were genes involved in complex N-glycan processing, including the poorly characterized MGAT4C, which we demonstrate to be a positive regulator of cell surface AC133 expression. Our study identifies a set of genes involved in CD133 N-glycosylation as a direct contributing factor to cell surface AC133 recognition and provides biochemical evidence for the function and structure of CD133 N-glycans.

  20. Nonreciprocal Oersted field contribution to the current-induced frequency shift of magnetostatic surface waves

    NASA Astrophysics Data System (ADS)

    Haidar, Mohammad; Bailleul, Matthieu; Kostylev, Mikhail; Lao, Yuyang

    2014-03-01

    The influence of an electrical current on the propagation of magnetostatic surface waves is investigated in a relatively thick (40 nm) permalloy film both experimentally and theoretically. Contrary to previously studied thinner films where the dominating effect is the current-induced spin-wave Doppler shift, the magnetic field generated by the current (Oersted field) is found to induce a strong nonreciprocal frequency shift which overcompensates the Doppler shift. The measured current-induced frequency shift is in agreement with the developed theory. The theory relates the sign of the frequency shift to the spin-wave modal profiles. The good agreement between the experiment and the theory confirms a recent prediction of a counterintuitive mode localization for magnetostatic surface waves in the dipole-exchange regime.

  1. Contribution of the comonomers to the bulk and surface properties of methacrylate copolymers.

    PubMed

    Hermitte, L; Thomas, F; Bougaran, R; Martelet, C

    2004-04-01

    Relationships between formulation, bulk properties, and surface properties are investigated on series of copolymers prepared with hydroxyethylmethacrylate (HEMA), methylmethacrylate (MMA), and ethylmethacrylate (EMA) monomers, and on the homopolymers PMMA and PHEMA. The bulk water content, swelling ratio, and static (sessile drop and captive bubble) and dynamic (Wilhelmy plate technique) contact angles and the electrokinetic potential (streaming potential) are measured. The bulk water content and swelling ratio of HEMA copolymers are proportional to the amount of HEMA and are linearly correlated to the contact angle hysteresis. Periodic instabilities in the wetting cycles, similar to Haines jumps, are observed with HEMA copolymers and support a bidirectional relaxation of the hydrophilic groups respectively towards external water and capillary water. The origin of the electrokinetic potential of these nonionizable polymers is attributed to specific adsorption of [Formula: see text] ions. Its dependence on surface hydrophobicity and statistical length of the side-chains is interpreted in terms of the properties of water molecules near the interface.

  2. Contribution of oligomer/carbon dots hybrid semiconductor nanoribbon to surface-enhanced Raman scattering property

    NASA Astrophysics Data System (ADS)

    Zhang, Guiyang; Hu, Lin; Zhu, Kerong; Yan, Manqing; Liu, Jian; Yang, Jiaxiang; Bi, Hong

    2016-02-01

    The hybrid Ag-(PS-PSS)/C-dots nanobelts (NBs) have been prepared by decorating Ag nanoparticles (NPs) on surface of the ultra-long, semiconducting (PS-PSS)/C-dots nanoribbons (NRs) via an electroless plating method. The as-prepared Ag-(PS-PSS)/C-dots NB has been demonstrated to be an excellent substrate for surface-enhanced Raman scattering (SERS) with a detection limit of 10-14 M and an enhancement factor of 3.35 × 108 while using rhodamine 6G as probe molecules. Moreover, we have investigated the application of Ag-(PS-PSS)/C-dots NBs as SERS substrate for detection of coumarins. Further, the Ag-(PS-PSS)/C-dots NB could be used as a sacrificial template to form a novel kind of hollow porous Ag nanotubes (NTs) by simply removing the inner NR in tetrahydrofuran. However, the obtained Ag NTs show a weaker SERS effect compared to that of the Ag-(PS-PSS)/C-dots NBs, which indicates that the inner organic/C-dots NR plays an essential role in SERS property of the Ag-(PS-PSS)/C-dots NBs. Here the organic (PS-PSS)/C-dots NR not only acts as a dielectric support for Ag NPs to reduce the surface plasmon damping at the Ag-NR interface due to the high electrical conductivity but also their large surface area are favorable for creating more "hot-spots". In addition, the embedded sp2-hybridized C-dots in NR can adsorb more aromatic R6G molecules via π-π interaction, which also drives R6G molecules approaching to the "hot-spots", thus enhancing the SERS signals. Based on our results, it is believed that the employment of semiconducting organic (PS-PSS)/C-dots ribbon-like structures to fabricate sensitive SERS substrates is an interesting new approach.

  3. Contribution of sortase A to the regulation of Listeria monocytogenes LPXTG surface proteins.

    PubMed

    Mariscotti, Javier F; Quereda, Juan J; Pucciarelli, M Graciela

    2012-03-01

    Gram-positive bacteria of the genus Listeria contain many surface proteins covalently bound to the peptidoglycan. In the pathogenic species Listeria monocytogenes, some of these surface proteins mediate adhesion and entry into host cells. Specialized enzymes called sortases anchor these proteins to the cell wall by a mechanism involving processing and covalent linkage to the peptidoglycan. How bacteria coordinate the production of sortases and their respective protein substrates is currently unknown. The present work investigated whether the functional status of the sortase influences the level at which its cognate substrates are produced. The relative amounts of surface proteins containing an LPXTG sorting motif recognized by sortase A (StrA) were determined in isogenic wild-type and ΔsrtA strains of L. monocytogenes. The possibility of regulation at the transcriptional level was also examined. The results showed that the absence of SrtA did not affect the expression of any of the genes encoding LPXTG proteins. However, marked differences were found at the protein level for some substrates depending on the presence/absence of SrtA. In addition to the known "mis-sorting" of some LPXTG proteins caused by the absence of SrtA, the total amount of certain LPXTG protein species was lower in the ΔsrtA mutant. These data suggested that the rate of synthesis and/or the stability of a subset of LPXTG proteins could be regulated post-transcriptionally depending on the functionality of SrtA. For some LPXTG proteins, the absence of SrtA resulted in only a partial loss of the protein that remained bound to the peptidoglycan, thus providing support for additional modes of cell-wall association in some members of the LPXTG surface protein family.

  4. A thin transition film formed by plasma exposure contributes to the germanium surface hydrophilicity

    NASA Astrophysics Data System (ADS)

    Shumei, Lai; Danfeng, Mao; Zhiwei, Huang; Yihong, Xu; Songyan, Chen; Cheng, Li; Wei, Huang; Dingliang, Tang

    2016-09-01

    Plasma treatment and 10% NH4OH solution rinsing were performed on a germanium (Ge) surface. It was found that the Ge surface hydrophilicity after O2 and Ar plasma exposure was stronger than that of samples subjected to N2 plasma exposure. This is because the thin GeO x film formed on Ge by O2 or Ar plasma is more hydrophilic than GeO x N y formed by N2 plasma treatment. A flat (RMS < 0:5 nm) Ge surface with high hydrophilicity (contact angle smaller than 3°) was achieved by O2 plasma treatment, showing its promising application in Ge low-temperature direct wafer bonding. Project supported by the Key Project of Natural Science Foundation of China (No. 61534005), the National Science Foundation of China (No. 61474081), the National Basic Research Program of China (No. 2013CB632103), the Natural Science Foundation of Fujian Province (No. 2015D020), and the Science and Technology Project of Xiamen City (No. 3502Z20154091).

  5. Contributions to understanding the high speed machining effects on aeronautic part surface integrity

    NASA Astrophysics Data System (ADS)

    Jomaa, Walid

    To remain competitive, the aeronautic industry has increasing requirements for mechanical components and parts with high functional performance and longer in-service life. The improvement of the in-service life of components can be achieved by mastering and optimizing the surface integrity of the manufactured parts. Thus, the present study attempted to investigate, experimentally and theoretically, the tool/work material interactions on part surface integrity during the machining of aluminium alloys and hardened materials (low alloy steels) using orthogonal machining tests data. The studied materials are two aluminum alloys (6061-T6 and 7075-T651) and AISI 4340 steel. The AISI 4340 steel was machined after been induction heat treated to 58-60 HRC. These materials were selected in an attempt to provide a comprehensive study for the machining of metals with different behaviours (ductile and hard material). The proposed approach is built on three steps. First, we proposed a design of experiment (DOE) to analyse, experimentally, the chip formation and the resulting surface integrity during the high speed machining under dry condition. The orthogonal cutting mode, adopted in these experiments, allowed to explore, theoretically, the effects of technological (cutting speed and feed) and physical (cutting forces, temperature, shear angle, friction angle, and length Contact tool/chip) parameters on the chip formation mechanisms and the machined surface characteristics (residual stress, plastic deformation, phase transformation, etc.). The cutting conditions were chosen while maintaining a central composite design (CCD) with two factors (cutting speed and feed per revolution). For the aluminum 7075-T651, the results showed that the formation of BUE and the interaction between the tool edge and the iron-rich intermetallic particles are the main causes of the machined surface damage. The BUE formation increases with the cutting feed while the increase of the cutting speed

  6. The contribution of inflammasome components on macrophage response to surface nanotopography and chemistry

    NASA Astrophysics Data System (ADS)

    Christo, Susan; Bachhuka, Akash; Diener, Kerrilyn R.; Vasilev, Krasimir; Hayball, John D.

    2016-05-01

    Implantable devices have become an established part of medical practice. However, often a negative inflammatory host response can impede the integration and functionality of the device. In this paper, we interrogate the role of surface nanotopography and chemistry on the potential molecular role of the inflammasome in controlling macrophage responses. To achieve this goal we engineered model substrata having precisely controlled nanotopography of predetermined height and tailored outermost surface chemistry. Bone marrow derived macrophages (BMDM) were harvested from genetically engineered mice deficient in the inflammasome components ASC, NLRP3 and AIM2. These cells were then cultured on these nanoengineered substrata and assessed for their capacity to attach and express pro-inflammatory cytokines. Our data provide evidence that the inflammasome components ASC, NLRP3 and AIM2 play a role in regulating macrophage adhesion and activation in response to surface nanotopography and chemistry. The findings of this paper are important for understanding the inflammatory consequences caused by biomaterials and pave the way to the rational design of future implantable devices having controlled and predictable inflammatory outcomes.

  7. Arctic Digital Elevation Models (DEMs) generated by Surface Extraction from TIN-Based Searchspace Minimization (SETSM) algorithm from RPCs-based Imagery

    NASA Astrophysics Data System (ADS)

    Noh, M. J.; Howat, I. M.; Porter, C. C.; Willis, M. J.; Morin, P. J.

    2016-12-01

    The Arctic is undergoing rapid change associated with climate warming. Digital Elevation Models (DEMs) provide critical information for change measurement and infrastructure planning in this vulnerable region, yet the existing quality and coverage of DEMs in the Arctic is poor. Low contrast and repeatedly-textured surfaces, such as snow and glacial ice and mountain shadows, all common in the Arctic, challenge existing stereo-photogrammetric techniques. Submeter resolution, stereoscopic satellite imagery with high geometric and radiometric quality, and wide spatial coverage are becoming increasingly accessible to the scientific community. To utilize these imagery for extracting DEMs at a large scale over glaciated and high latitude regions we developed the Surface Extraction from TIN-based Searchspace Minimization (SETSM) algorithm. SETSM is fully automatic (i.e. no search parameter settings are needed) and uses only the satellite rational polynomial coefficients (RPCs). Using SETSM, we have generated a large number of DEMs (> 100,000 scene pair) from WorldView, GeoEye and QuickBird stereo images collected by DigitalGlobe Inc. and archived by the Polar Geospatial Center (PGC) at the University of Minnesota through an academic licensing program maintained by the US National Geospatial-Intelligence Agency (NGA). SETSM is the primary DEM generation software for the US National Science Foundation's ArcticDEM program, with the objective of generating high resolution (2-8m) topography for the entire Arctic landmass, including seamless DEM mosaics and repeat DEM strips for change detection. ArcticDEM is collaboration between multiple US universities, governmental agencies and private companies, as well as international partners assisting with quality control and registration. ArcticDEM is being produced using the petascale Blue Waters supercomputer at the National Center for Supercomputer Applications at the University of Illinois. In this paper, we introduce the SETSM

  8. Vulnerability of Drinking-Water Wells in La Crosse, Wisconsin, to Enteric-Virus Contamination from Surface Water Contributions

    PubMed Central

    Borchardt, Mark A.; Haas, Nathaniel L.; Hunt, Randall J.

    2004-01-01

    Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. 18O/16O and 2H/1H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination. PMID:15466536

  9. Vulnerability of drinking-water wells in La Crosse, Wisconsin, to enteric-virus contamination from surface water contributions

    USGS Publications Warehouse

    Borchardt, M. A.; Haas, N.L.; Hunt, R.J.

    2004-01-01

    Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. 18O/ 16O and 2H/1H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination.

  10. Vulnerability of drinking-water wells in La Crosse, Wisconsin, to enteric-virus contamination from surface water contributions.

    PubMed

    Borchardt, Mark A; Haas, Nathaniel L; Hunt, Randall J

    2004-10-01

    Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. (18)O/(16)O and (2)H/(1)H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination.

  11. Resonance contributions to anti-Stokes/Stokes ratios under surface enhanced Raman scattering conditions

    NASA Astrophysics Data System (ADS)

    Maher, R. C.; Hou, J.; Cohen, L. F.; Le Ru, E. C.; Hadfield, J. M.; Harvey, J. E.; Etchegoin, P. G.; Liu, F. M.; Green, M.; Brown, R. J. C.; Milton, M. J. T.

    2005-08-01

    Anti-Stokes/Stokes asymmetries under surface enhanced Raman scattering (SERS) conditions are studied for a wide variety of SERS-active media and different analytes. Evidence is provided for the existence of underlying resonances that create these asymmetries. We show here that these resonances are associated with the electromagnetic coupling between the analyte (probe) and the metal. The work demonstrates the use of the anti-Stokes/Stokes ratio as a tool to understand the hierarchy of resonances in the SERS problem, which is essential for quantification purposes.

  12. HCN channels contribute to serotonergic modulation of ventral surface chemosensitive neurons and respiratory activity

    PubMed Central

    Hawkins, Virginia E.; Hawryluk, Joanna M.; Takakura, Ana C.; Tzingounis, Anastasios V.; Moreira, Thiago S.

    2014-01-01

    Chemosensitive neurons in the retrotrapezoid nucleus (RTN) provide a CO2/H+-dependent drive to breathe and function as an integration center for the respiratory network, including serotonergic raphe neurons. We recently showed that serotonergic modulation of RTN chemoreceptors involved inhibition of KCNQ channels and activation of an unknown inward current. Hyperpolarization-activated cyclic-nucleotide-gated (HCN) channels are the molecular correlate of the hyperpolarization-activated inward current (Ih) and have a high propensity for modulation by serotonin. To investigate whether HCN channels contribute to basal activity and serotonergic modulation of RTN chemoreceptors, we characterize resting activity and the effects of serotonin on RTN chemoreceptors in vitro and on respiratory activity of anesthetized rats in the presence or absence of blockers of KCNQ (XE991) and/or HCN (ZD7288, Cs+) channels. We found in vivo that bilateral RTN injections of ZD7288 increased respiratory activity and in vitro HCN channel blockade increased activity of RTN chemoreceptors under control conditions, but this was blunted by KCNQ channel inhibition. Furthermore, in vivo unilateral RTN injection of XE991 plus ZD7288 eliminated the serotonin response, and in vitro serotonin sensitivity was eliminated by application of XE991 and ZD7288 or SQ22536 (adenylate cyclase blocker). Serotonin-mediated activation of RTN chemoreceptors was blocked by a 5-HT7-receptor blocker and mimicked by a 5-HT7-receptor agonist. In addition, serotonin caused a depolarizing shift in the voltage-dependent activation of Ih. These results suggest that HCN channels contribute to resting chemoreceptor activity and that serotonin activates RTN chemoreceptors and breathing in part by a 5-HT7 receptor-dependent mechanism and downstream activation of Ih. PMID:25429115

  13. North American Ground Surface Temperature Histories: A Contribution to the PAGES2k North American Project

    NASA Astrophysics Data System (ADS)

    Mareschal, J. C.; Jaume Santero, F.; Beltrami, H.

    2015-12-01

    Within the framework of the PAGES NorthAmerica2k project, three hundred and seventy three (373) North American temperature-depth profiles from boreholes deeper than 300 meters were analyzed for recent climate. To facilitate comparisons and examine the same time period, the profiles were truncated at 300 m. The ground surface temperature (GST) histories for the last 500 years were inverted from the subsurface temperature anomalies using singular value decomposition for a model of 10 temperature changes along time-intervals of increasing duration. The inversion retains four singular values and accounts for the data acquisition time difference. The reference surface temperature and geothermal gradient were estimated by linear regression to the deepest 100 meters with a 95% confidence interval. Additionally, a Monte-Carlo method was used to find the range of solutions within a maximum subsurface anomaly error determined by the root mean square between the model and the data. The GST history results for North America, given by the mean and 95% confidence interval, reveal in most cases, a warming up to 1°C - 2.5°C during the last 100-150 years.

  14. The contribution of rainwater to variability in surface ocean hydrogen peroxide

    NASA Astrophysics Data System (ADS)

    Cooper, William J.; Saltzman, Eric S.; Zika, Rod G.

    1987-03-01

    Hydrogen peroxide concentrations have been determined in marine rain from the Gulf of Mexico (114-820×10-7mol L-1, ¯=402×10-7mol L-1, s=218×10-7mol L-1), the western Atlantic Ocean (84-206×10-7mol L-1, ¯=127×10-7mol L-1, s=45×10-7mol L-1), and one rain event off the Florida Keys (x¯=284×10-7mol L-1, s=38×10-7mol L-1). In several cases, simultaneous measurements of the concentration of H2O2 in the surface ocean were also determined. These measurements were made with the ship under way using a continuous flow sampling system with the intake at the bow. In shallow stratified layers, rain events can increase the existing hydrogen peroxide concentration by a factor greater than 10 and dramatically increase the mean H2O2 concentration of mixed depth layers of 50 m or more. Rain is a significant transient source of H2O2 in the surface ocean.

  15. The surface layer of Tannerella forsythia contributes to serum resistance and oral bacterial coaggregation.

    PubMed

    Shimotahira, Naohiro; Oogai, Yuichi; Kawada-Matsuo, Miki; Yamada, Sakuo; Fukutsuji, Kenji; Nagano, Keiji; Yoshimura, Fuminobu; Noguchi, Kazuyuki; Komatsuzawa, Hitoshi

    2013-04-01

    Tannerella forsythia is an anaerobic, Gram-negative bacterium involved in the so-called "red complex," which is associated with severe and chronic periodontitis. The surface layer (S-layer) of T. forsythia is composed of cell surface glycoproteins, such as TfsA and TfsB, and is known to play a role in adhesion/invasion and suppression of proinflammatory cytokine expression. Here we investigated the association of this S-layer with serum resistance and coaggregation with other oral bacteria. The growth of the S-layer-deficient mutant in a bacterial medium containing more than 20% non-heat-inactivated calf serum (CS) or more than 40% non-heat-inactivated human serum was significantly suppressed relative to that of the wild type (WT). Next, we used confocal microscopy to perform quantitative analysis on the effect of serum. The survival ratio of the mutant exposed to 100% non-heat-inactivated CS (76% survival) was significantly lower than that of the WT (97% survival). Furthermore, significant C3b deposition was observed in the mutant but not in the WT. In a coaggregation assay, the mutant showed reduced coaggregation with Streptococcus sanguinis, Streptococcus salivarius, and Porphyromonas gingivalis but strong coaggregation with Fusobacterium nucleatum. These results indicated that the S-layer of T. forsythia plays multiple roles in virulence and may be associated with periodontitis.

  16. The Surface Layer of Tannerella forsythia Contributes to Serum Resistance and Oral Bacterial Coaggregation

    PubMed Central

    Shimotahira, Naohiro; Oogai, Yuichi; Kawada-Matsuo, Miki; Yamada, Sakuo; Fukutsuji, Kenji; Nagano, Keiji; Yoshimura, Fuminobu; Noguchi, Kazuyuki

    2013-01-01

    Tannerella forsythia is an anaerobic, Gram-negative bacterium involved in the so-called “red complex,” which is associated with severe and chronic periodontitis. The surface layer (S-layer) of T. forsythia is composed of cell surface glycoproteins, such as TfsA and TfsB, and is known to play a role in adhesion/invasion and suppression of proinflammatory cytokine expression. Here we investigated the association of this S-layer with serum resistance and coaggregation with other oral bacteria. The growth of the S-layer-deficient mutant in a bacterial medium containing more than 20% non-heat-inactivated calf serum (CS) or more than 40% non-heat-inactivated human serum was significantly suppressed relative to that of the wild type (WT). Next, we used confocal microscopy to perform quantitative analysis on the effect of serum. The survival ratio of the mutant exposed to 100% non-heat-inactivated CS (76% survival) was significantly lower than that of the WT (97% survival). Furthermore, significant C3b deposition was observed in the mutant but not in the WT. In a coaggregation assay, the mutant showed reduced coaggregation with Streptococcus sanguinis, Streptococcus salivarius, and Porphyromonas gingivalis but strong coaggregation with Fusobacterium nucleatum. These results indicated that the S-layer of T. forsythia plays multiple roles in virulence and may be associated with periodontitis. PMID:23357386

  17. Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora.

    PubMed

    Koczan, Jessica M; Lenneman, Bryan R; McGrath, Molly J; Sundin, George W

    2011-10-01

    Biofilm formation plays a critical role in the pathogenesis of Erwinia amylovora and the systemic invasion of plant hosts. The functional role of the exopolysaccharides amylovoran and levan in pathogenesis and biofilm formation has been evaluated. However, the role of biofilm formation, independent of exopolysaccharide production, in pathogenesis and movement within plants has not been studied previously. Evaluation of the role of attachment in E. amylovora biofilm formation and virulence was examined through the analysis of deletion mutants lacking genes encoding structures postulated to function in attachment to surfaces or in cellular aggregation. The genes and gene clusters studied were selected based on in silico analyses. Microscopic analyses and quantitative assays demonstrated that attachment structures such as fimbriae and pili are involved in the attachment of E. amylovora to surfaces and are necessary for the production of mature biofilms. A time course assay indicated that type I fimbriae function earlier in attachment, while type IV pilus structures appear to function later in attachment. Our results indicate that multiple attachment structures are needed for mature biofilm formation and full virulence and that biofilm formation facilitates entry and is necessary for the buildup of large populations of E. amylovora cells in xylem tissue.

  18. 4-[(1-Benzyl-1H-1,2,3-triazol-4-yl)meth­oxy]benzene-1,2-dicarbo­nitrile: crystal structure, Hirshfeld surface analysis and energy-minimization calculations

    PubMed Central

    Shamsudin, Norzianah; Tan, Ai Ling; Young, David J.; Jotani, Mukesh M.; Otero-de-la-Roza, A.; Tiekink, Edward R. T.

    2016-01-01

    In the solid state, the title compound, C18H13N5O, adopts a conformation whereby the phenyl ring and meth­oxy–benzene-1,2-dicarbo­nitrile residue (r.m.s. deviation of the 12 non-H atoms = 0.041 Å) lie to opposite sides of the central triazolyl ring, forming dihedral angles of 79.30 (13) and 64.59 (10)°, respectively; the dihedral angle between the outer rings is 14.88 (9)°. This conformation is nearly 7 kcal mol−1 higher in energy than the energy-minimized structure which has a syn disposition of the outer rings, enabling intra­molecular π–π inter­actions. In the crystal, methyl­ene-C—H⋯N(triazol­yl) and carbo­nitrile-N⋯π(benzene) inter­actions lead to supra­molecular chains along the a axis. Supra­molecular layers in the ab plane arise as the chains are connected by benzene-C—H⋯N(carbo­nitrile) inter­actions; layers stack with no directional inter­actions between them. The specified inter­molecular contacts along with other, weaker contributions to the supra­molecular stabilization are analysed in a Hirshfeld surface analysis. PMID:27375890

  19. 4-[(1-Benzyl-1H-1,2,3-triazol-4-yl)meth-oxy]benzene-1,2-dicarbo-nitrile: crystal structure, Hirshfeld surface analysis and energy-minimization calculations.

    PubMed

    Shamsudin, Norzianah; Tan, Ai Ling; Young, David J; Jotani, Mukesh M; Otero-de-la-Roza, A; Tiekink, Edward R T

    2016-04-01

    In the solid state, the title compound, C18H13N5O, adopts a conformation whereby the phenyl ring and meth-oxy-benzene-1,2-dicarbo-nitrile residue (r.m.s. deviation of the 12 non-H atoms = 0.041 Å) lie to opposite sides of the central triazolyl ring, forming dihedral angles of 79.30 (13) and 64.59 (10)°, respectively; the dihedral angle between the outer rings is 14.88 (9)°. This conformation is nearly 7 kcal mol(-1) higher in energy than the energy-minimized structure which has a syn disposition of the outer rings, enabling intra-molecular π-π inter-actions. In the crystal, methyl-ene-C-H⋯N(triazol-yl) and carbo-nitrile-N⋯π(benzene) inter-actions lead to supra-molecular chains along the a axis. Supra-molecular layers in the ab plane arise as the chains are connected by benzene-C-H⋯N(carbo-nitrile) inter-actions; layers stack with no directional inter-actions between them. The specified inter-molecular contacts along with other, weaker contributions to the supra-molecular stabilization are analysed in a Hirshfeld surface analysis.

  20. Contribution of Surface β-Glucan Polysaccharide to Physicochemical and Immunomodulatory Properties of Propionibacterium freudenreichii

    PubMed Central

    Parayre, Sandrine; Bouchoux, Antoine; Guyomarc'h, Fanny; Dewulf, Joëlle; Dols-Lafargue, Marguerite; Baglinière, François; Cousin, Fabien J.; Falentin, Hélène; Jan, Gwénaël; Foligné, Benoît

    2012-01-01

    Propionibacterium freudenreichii is a bacterial species found in Swiss-type cheeses and is also considered for its health properties. The main claimed effect is the bifidogenic property. Some strains were shown recently to display other interesting probiotic potentialities such as anti-inflammatory properties. About 30% of strains were shown to produce a surface exopolysaccharide (EPS) composed of (1→3,1→2)-β-d-glucan due to a single gene named gtfF. We hypothesized that functional properties of P. freudenreichii strains, including their anti-inflammatory properties, could be linked to the presence of β-glucan. To evaluate this hypothesis, gtfF genes of three β-glucan-producing strains were disrupted. These knockout (KO) mutants were complemented with a plasmid harboring gtfF (KO-C mutants). The absence of β-glucan in KO mutants was verified by immunological detection and transmission electron microscopy. We observed by atomic force microscopy that the absence of β-glucan in the KO mutant dramatically changed the cell's topography. The capacity to adhere to polystyrene surface was increased for the KO mutants compared to wild-type (WT) strains. Anti-inflammatory properties of WT strains and mutants were analyzed by stimulation of human peripheral blood mononuclear cells (PBMCs). A significant increase of the anti-inflammatory interleukin-10 cytokine production by PBMCs was measured in the KO mutants compared to WT strains. For one strain, the role of β-glucan in mice gut persistence was assessed, and no significant difference was observed between the WT strain and its KO mutant. Thus, β-glucan appears to partly hide the anti-inflammatory properties of P. freudenreichii; which is an important result for the selection of probiotic strains. PMID:22247154

  1. Stratospheric contribution to surface ozone in the desert Southwest during the 2013 Las Vegas Ozone Study

    NASA Astrophysics Data System (ADS)

    Langford, A. O.; Senff, C. J.; Alvarez, R. J. _II, II; Brioude, J. F.; Cooper, O. R.; Holloway, J. S.; Lin, M.; Marchbanks, R.; Pierce, R. B.; Reddy, P. J.; Sandberg, S.; Weickmann, A. M.; Williams, E. J.; Gustin, M. S.; Iraci, L. T.; Leblanc, T.; Yates, E. L.

    2014-12-01

    The 2013 Las Vegas Ozone Study (LVOS) was designed to investigate the potential impact of stratosphere-troposphere transport (STT) and long-range transport of pollution from Asia on surface O3 concentrations in Clark County, NV. This measurement campaign, which took place in May and June of 2013, was conducted at Angel Peak, NV, a high elevation site about 2.8 km above mean sea level and 45 km west of Las Vegas. The study was organized around the NOAA ESRL truck-based TOPAZ scanning ozone lidar with collocated in situ sampling of O3, CO, and meteorological parameters. These measurements were supported by the NOAA/NESDIS real time modelling system (RAQMS), FLEXPART particle dispersion model, and the NOAA GFDL AM3 model. In this talk, I will describe one of several STT events that occurred during the LVOS campaign. This intrusion, which was profiled by TOPAZ on the night of May 24-25, was also sampled by the NASA Alpha Jet, the Table Mountain ozone lidar, and by an ozonesonde flying above southern California. This event also led to significant ozone increases at surface monitors operated by Clark County, the California Air Resources Board, the U.S. National Park Service, and the Nevada Rural Ozone Initiative (NRVOI), and resulted in exceedances of the 2008 75 ppbv O3 NAAQS both in Clark County and in surrounding areas of Nevada and southern California. The potential implications of this and similar events for air quality compliance in the western U.S. will be discussed.

  2. Source Contribution Analysis of Surface Particulate Polycyclic Aromatic Hydrocarbon Concentrations in Northeastern Asia by Source-receptor Relationships

    SciTech Connect

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-Ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-11-01

    We analyzed the sourceereceptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40°N, 40-60%) and central China (30-40°N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes.

  3. Source contribution analysis of surface particulate polycyclic aromatic hydrocarbon concentrations in northeastern Asia by source-receptor relationships.

    PubMed

    Inomata, Yayoi; Kajino, Mizuo; Sato, Keiichi; Ohara, Toshimasa; Kurokawa, Jun-ichi; Ueda, Hiromasa; Tang, Ning; Hayakawa, Kazuichi; Ohizumi, Tsuyoshi; Akimoto, Hajime

    2013-11-01

    We analyzed the source-receptor relationships for particulate polycyclic aromatic hydrocarbon (PAH) concentrations in northeastern Asia using an aerosol chemical transport model. The model successfully simulated the observed concentrations. In Beijing (China) benzo[a]pyren (BaP) concentrations are due to emissions from its own domain. In Noto, Oki and Tsushima (Japan), transboundary transport from northern China (>40 °N, 40-60%) and central China (30-40 °N, 10-40%) largely influences BaP concentrations from winter to spring, whereas the relative contribution from central China is dominant (90%) in Hedo. In the summer, the contribution from Japanese domestic sources increases (40-80%) at the 4 sites. Contributions from Japan and Russia are additional source of BaP over the northwestern Pacific Ocean in summer. The contribution rates for the concentrations from each domain are different among PAH species depending on their particulate phase oxidation rates. Reaction with O3 on particulate surfaces may be an important component of the PAH oxidation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. How does climate change contribute to surface ozone change over the United States?

    NASA Astrophysics Data System (ADS)

    Murazaki, K.; Hess, P.

    2006-03-01

    The impact of climate change on U.S. surface ozone levels is investigated. We simulated two 10 year periods using the global chemical transport model MOZART-2 (Model of Ozone and Related chemical Tracers version 2): 1990-2000 and 2090-2100. In each case, MOZART-2 is driven by meteorology from the National Center for Atmospheric Research (NCAR) coupled Climate Systems Model (CSM) 1.0 forced with the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenarios (SRES) A1 scenario. During both periods the chemical emissions are fixed at 1990s levels, so that only changes in climate are allowed to impact ozone. The simulated surface ozone concentration during the 1990s is compared with observations from the Environmental Protection Agency's Aerometric Information Retrieval System (EPA AIRS) monitoring sites. Model-measurement correlations are high, but MOZART-2 overpredicts ozone especially over the eastern United States. The impact of climate change is calculated separately for background ozone and for the ozone generated through U.S. NOx emissions. Our results show that the response of ozone to climate change in polluted regions is not the same as in remote regions. MOZART-2 predicts a 0-2 ppbv decrease in background ozone in the future simulation over the United States but an increase in ozone produced internally within the United States of up to 6 ppbv. The decrease in background ozone is attributed to a future decrease in the lifetime of ozone in regions of low NOx. Over the western United States the decrease in background ozone approximately cancels the increase in locally produced ozone. As a result, the main impact of future climate change on ozone is centered over the eastern United States, where future ozone increases up to 5 ppbv. We predict that in the future over the northeast United States, up to 12 additional days each year will exceed the maximum daily 8-hour averaged ozone limit of 80 ppbv. Various climatic factors are

  5. Spatial and Seasonal Variability in Soluble Iron Deposition and Contribution to Sea-surface Iron Distributions

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Drewniak, B.; Ito, A.

    2016-12-01

    Recent comparison of the iron (Fe) distributions from 13 global ocean biogeochemistry models reveals substantial inter-model variability in the input fluxes of soluble iron (sFe). It leads to a wide range of the Fe residence times across the models, and has important implications for predicting response of ecosystems and global carbon cycling to perturbations of Fe supply. Progress in reducing the uncertainty in the Fe sources has been made including the atmospheric deposition of soluble Fe. In the present study, we examine the spatial and seasonal variability in predicted sFe deposition from 6 CMIP5 models, all including dust sources with a fixed Fe solubility, compared with chemical transport model simulations. Three CMIP5 models (CESM1, HadGEM2 and GFDL-ESM2M) predict the largest Fe deposition in the subtropical NE Atlantic and the Arabian Sea, while more Fe is predicted by the other three models (MPI-ESM, CNRM-CM5 and IPSL-CSM5A) to deposit to the mid latitude North Pacific and the Mediterranean Sea. Sensitivity studies with a chemical transport model suggest that inclusion of dust Fe dissolution schemes and combustion sFe sources modifies the predicted sFe deposition in both magnitude and spatial distribution, and the uncertainty is comparable to the inter-model variability due to the dust sources alone. Furthermore, we show that the model differences in sFe deposition are not reflected consistently on the predicted sea-surface dissolved Fe (dFe). In addition to better agreement in the global mean dFe suggested in the previous studies, the spatial and seasonal variability in the dFe distributions across the models is shown to be decreased. Locations with high concentrations of dFe are generally not co-located with large deposition of sFe. But the extent of the dFe distribution deviated from the sFe deposition vary significantly from one model to another. This implies that response of sea-surface dFe distributions to anthropogenic influences (through dust Fe

  6. Caracterisation des etats de surface par teledetection infrarouge thermique multispectrale: Contribution a l'etude des conditions de viabilite hivernale

    NASA Astrophysics Data System (ADS)

    Chagnon, Frederic

    valeur de temperature corrigee, une verification prealable ayant permis de determiner la precision du TES a 0,5 °C, nous avons determine la precision relative des deux autres methodes par rapport a celle du TES. Pour les deux methodes TISI et ITR, la correction de temperature radiative a donne un ecart moyen similaire de l'ordre de --1,2 °C, avec une etendue d'ecart allant de ---0,5 a --2,2 °C. L'experience realisee a permis de presenter un prototype operationnel de mesure de la temperature de surface permettant en meme temps la caracterisation de la surface mesuree. L'extraction de ces deux types d'informations a partir d'une meme serie de mesures est une innovation. La banque d'emissivite spectrale mesuree sur le terrain est aussi une contribution de ce projet. Teledetection -- Infrarouge thermique -- Temperature de surface -- Neige -- Glace -- Meteorologie routiere

  7. Use of isotopically labeled fertilizer to trace nitrogen fertilizer contributions to surface, soil, and ground water

    USGS Publications Warehouse

    Wilkison, D.H.; Blevins, D.W.; Silva, S.R.

    2000-01-01

    The fate and transport of a single N fertilizer application through plants, soil, runoff, and the unsaturated and saturated zones was determined for four years at a field site under continuous corn (Zea mays L.) management. Claypan soils, which underlie the site, were hypothesized to restrict the movement of agrichemicals from the soil surface to ground water. However, N fertilizer moved rapidly through preferential flow paths in the soil and into the underlying glacial till aquifer. Most N transport occurred during the fall and winter when crops were not available to use excess N. Forty months after application, 33 percent of the fertilizer had been removed by grain harvests, 30 percent had been transpired to the atmosphere, and 33 percent had migrated to ground water. Although runoff volumes were 50 percent greater than infiltration, less than 2 percent of the fertilizer was lost to runoff. Small measured denitrification rates and large measured dissolved oxygen concentrations in ground water favor the long-term stability of NO3-1 in ground water. Successive fertilizer applications, in areas that lack the ability to moderate N concentrations through consumptive N reactions, risk the potential of N-saturated ecosystems.

  8. The nature and enhancement of magnetic surface contribution in model NiO nanoparticles

    NASA Astrophysics Data System (ADS)

    Sharma, S. K.; Vargas, J. M.; De Biasi, E.; Béron, F.; Knobel, M.; Pirota, K. R.; Meneses, C. T.; Kumar, Shalendra; Lee, C. G.; Pagliuso, P. G.; Rettori, Carlos

    2010-01-01

    We report an alternative synthesis method and novel magnetic properties of Ni-oxide nanoparticles (NPs). The NPs were prepared by thermal decomposition of nickel phosphine complexes in a high-boiling-point organic solvent. These particles exhibit an interesting morphology constituted by a crystalline core and a broad disordered superficial shell. Our results suggest that the magnetic behavior is mainly dominated by strong surface effects at low temperature, which become evident through the observation of shifted hysteresis loops (~2.2 kOe), coercivity enhancement (~10.2 kOe) and high field irreversibility (>=50 kOe). Both an exchange bias and a vertical shift in magnetization can be observed in this system below 35 K after field cooling. Additionally, the exchange bias field shows a linear dependence on the magnetization shift values, which elucidate the role of pinned spins on the exchange fields. The experimental data are analyzed in terms of the interplay between the interface exchange coupling and the antiferromagnetically ordered structure of the core.

  9. Contributions of Johann jacob Huber to the surface anatomy of the spinal cord and meninges.

    PubMed

    Rengachary, Setti S; Pelle, Dominic; Guthikonda, Murali

    2008-06-01

    From prehistoric times, man has been aware that injury to the spine may result in paralysis of the limbs; this is reflected in bas-relief figures found at Nineweh in ancient Mesopotamia, in a hunting scene that depicts a lioness wounded by King Ashurbanipal. The Edwin Smith papyrus gives many case illustrations of spinal cord injury resulting in paralysis, yet early physicians were unaware of the anatomy of the spinal cord. Galen performed prospective studies in animals by sectioning the spinal cord at varying levels and observing the commensurate paralysis and sensory loss. Real advances in the understanding of spinal cord anatomy did not occur until human cadaveric dissections were undertaken; even then, the knowledge of the anatomy of the spinal cord lagged behind that of other body structures. Johann Jacob Huber appears to be the first anatomist to focus on the spinal cord almost exclusively. His descriptions, and especially his illustrations that depict spinal cord surface anatomy, are impressive with regard to their accuracy and their sense of photorealism. Indeed, his illustrations seem to compare well with the anatomic drawings in contemporary anatomic texts. Yet, we were unable to find a single article in the entire English-language literature depicting his illustrations. We conclude that the description and anatomic illustrations by Johann Jacob Huber remain a hidden gem in the history of human spinal anatomy.

  10. Surface flux and ocean heat transport convergence contributions to seasonal and interannual variations of ocean heat content

    NASA Astrophysics Data System (ADS)

    Roberts, C. D.; Palmer, M. D.; Allan, R. P.; Desbruyeres, D. G.; Hyder, P.; Liu, C.; Smith, D.

    2017-01-01

    We present an observation-based heat budget analysis for seasonal and interannual variations of ocean heat content (H) in the mixed layer (Hmld) and full-depth ocean (Htot). Surface heat flux and ocean heat content estimates are combined using a novel Kalman smoother-based method. Regional contributions from ocean heat transport convergences are inferred as a residual and the dominant drivers of Hmld and Htot are quantified for seasonal and interannual time scales. We find that non-Ekman ocean heat transport processes dominate Hmld variations in the equatorial oceans and regions of strong ocean currents and substantial eddy activity. In these locations, surface temperature anomalies generated by ocean dynamics result in turbulent flux anomalies that drive the overlying atmosphere. In addition, we find large regions of the Atlantic and Pacific oceans where heat transports combine with local air-sea fluxes to generate mixed layer temperature anomalies. In all locations, except regions of deep convection and water mass transformation, interannual variations in Htot are dominated by the internal rearrangement of heat by ocean dynamics rather than the loss or addition of heat at the surface. Our analysis suggests that, even in extratropical latitudes, initialization of ocean dynamical processes could be an important source of skill for interannual predictability of Hmld and Htot. Furthermore, we expect variations in Htot (and thus thermosteric sea level) to be more predictable than near surface temperature anomalies due to the increased importance of ocean heat transport processes for full-depth heat budgets.

  11. Multidomain, Surface Layer-associated Glycoside Hydrolases Contribute to Plant Polysaccharide Degradation by Caldicellulosiruptor Species.

    PubMed

    Conway, Jonathan M; Pierce, William S; Le, Jaycee H; Harper, George W; Wright, John H; Tucker, Allyson L; Zurawski, Jeffrey V; Lee, Laura L; Blumer-Schuette, Sara E; Kelly, Robert M

    2016-03-25

    The genome of the extremely thermophilic bacterium Caldicellulosiruptor kronotskyensisencodes 19 surface layer (S-layer) homology (SLH) domain-containing proteins, the most in any Caldicellulosiruptorspecies genome sequenced to date. These SLH proteins include five glycoside hydrolases (GHs) and one polysaccharide lyase, the genes for which were transcribed at high levels during growth on plant biomass. The largest GH identified so far in this genus, Calkro_0111 (2,435 amino acids), is completely unique toC. kronotskyensisand contains SLH domains. Calkro_0111 was produced recombinantly inEscherichia colias two pieces, containing the GH16 and GH55 domains, respectively, as well as putative binding and spacer domains. These displayed endo- and exoglucanase activity on the β-1,3-1,6-glucan laminarin. A series of additional truncation mutants of Calkro_0111 revealed the essential architectural features required for catalytic function. Calkro_0402, another of the SLH domain GHs inC. kronotskyensis, when produced inE. coli, was active on a variety of xylans and β-glucans. Unlike Calkro_0111, Calkro_0402 is highly conserved in the genus Caldicellulosiruptorand among other biomass-degrading Firmicutes but missing from Caldicellulosiruptor bescii As such, the gene encoding Calkro_0402 was inserted into the C. besciigenome, creating a mutant strain with its S-layer extensively decorated with Calkro_0402. This strain consequently degraded xylans more extensively than wild-typeC. bescii The results here provide new insights into the architecture and role of SLH domain GHs and demonstrate that hemicellulose degradation can be enhanced through non-native SLH domain GHs engineered into the genomes of Caldicellulosiruptorspecies. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. The French Contribution to the Voluntary Observing Ships Network of Sea Surface Salinity

    NASA Astrophysics Data System (ADS)

    Delcroix, T. C.; Alory, G.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S. E.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; Maes, C.; Morrow, R.; Perrier, J.; Reverdin, G. P.; Roubaud, F.

    2016-02-01

    Sea Surface Salinity (SSS) is an essential climate variable that requires long term in situ observation. The French SSS Observation Service (SSS-OS) manages a network of Voluntary Observing Ships equipped with thermosalinographs (TSG). The network is global though more concentrated in the tropical Pacific and North Atlantic oceanic basins. The acquisition system is autonomous with real time transmission and is regularly serviced at harbor calls. There are distinct real time and delayed time processing chains. Real time processing includes automatic alerts to detect potential instrument problems, in case raw data are outside of climatic limits, and graphical monitoring tools. Delayed time processing relies on a dedicated software for attribution of data quality flags by visual inspection, and correction of TSG time series by comparison with daily water samples and collocated Argo data. A method for optimizing the automatic attribution of quality flags in real time, based on testing different thresholds for data deviation from climatology and retroactively comparing the resulting flags to delayed time flags, is presented. The SSS-OS real time data feed the Coriolis operational oceanography database, while the research-quality delayed time data can be extracted for selected time and geographical ranges through a graphical web interface. Delayed time data have been also combined with other SSS data sources to produce gridded files for the Pacific and Atlantic oceans. A short review of the research activities conducted with such data is given. It includes observation-based process-oriented and climate studies from regional to global scale as well as studies where in situ SSS is used for calibration/validation of models, coral proxies or satellite data.

  13. The French contribution to the voluntary observing ships network of sea surface salinity

    NASA Astrophysics Data System (ADS)

    Alory, G.; Delcroix, T.; Téchiné, P.; Diverrès, D.; Varillon, D.; Cravatte, S.; Gouriou, Y.; Grelet, J.; Jacquin, S.; Kestenare, E.; Maes, C.; Morrow, R.; Perrier, J.; Reverdin, G.; Roubaud, F.

    2015-11-01

    Sea Surface Salinity (SSS) is an essential climate variable that requires long term in situ observation. The French SSS Observation Service (SSS-OS) manages a network of Voluntary Observing Ships equipped with thermosalinographs (TSG). The network is global though more concentrated in the tropical Pacific and North Atlantic oceanic basins. The acquisition system is autonomous with real time transmission and is regularly serviced at harbor calls. There are distinct real time and delayed time processing chains. Real time processing includes automatic alerts to detect potential instrument problems, in case raw data are outside of climatic limits, and graphical monitoring tools. Delayed time processing relies on a dedicated software for attribution of data quality flags by visual inspection, and correction of TSG time series by comparison with daily water samples and collocated Argo data. A method for optimizing the automatic attribution of quality flags in real time, based on testing different thresholds for data deviation from climatology and retroactively comparing the resulting flags to delayed time flags, is presented. The SSS-OS real time data feed the Coriolis operational oceanography database, while the research-quality delayed time data can be extracted for selected time and geographical ranges through a graphical web interface. Delayed time data have been also combined with other SSS data sources to produce gridded files for the Pacific and Atlantic oceans. A short review of the research activities conducted with such data is given. It includes observation-based process-oriented and climate studies from regional to global scale as well as studies where in situ SSS is used for calibration/validation of models, coral proxies or satellite data.

  14. Surface vacuolar ATPase in ameloblastoma contributes to tumor invasion of the jaw bone.

    PubMed

    Yoshimoto, Shohei; Morita, Hiromitsu; Matsubara, Ryota; Mitsuyasu, Takeshi; Imai, Yuko; Kajioka, Shunichi; Yoneda, Masahiro; Ito, Yushi; Hirofuji, Takao; Nakamura, Seiji; Hirata, Masato

    2016-03-01

    Ameloblastoma is the most common benign odontogenic tumor in Japan. It is believed that it expands in the jaw bone through peritumoral activation of osteoclasts by receptor activator of nuclear factor kappa-B ligand (RANKL) released from the ameloblastoma, as in bone metastases of cancer cells. However, the clinical features of ameloblastoma, including its growth rate and patterns of invasion, are quite different from those of bone metastasis of cancer cells, suggesting that different underlying mechanisms are involved. Therefore, in the present study, we examined the possible mechanisms underlying the invasive expansion of ameloblastoma in the jaw bone. Expression levels of RANKL assessed by western blotting were markedly lower in ameloblastoma (AM-1) cells than in highly metastatic oral squamous cell carcinoma (HSC-3) cells. Experiments coculturing mouse macrophages (RAW264.7) with AM-1 demonstrated low osteoclastogenic activity, as assessed by tartrate-resistant acid phosphatase (TRAP)-positive multinuclear cell formation, probably because of low release of RANKL, whereas cocultures of RAW264.7 with HSC-3 cells exhibited very high osteoclastogenic activity. Thus, RANKL release from AM-1 appeared to be too low to generate osteoclasts. However, AM-1 cultured directly on calcium phosphate-coated plates formed resorption pits, and this was inhibited by application of bafilomycin A1. Furthermore, vacuolar-type H+-ATPase (V-ATPase) and H+/Cl- exchange transporter 7 (CLC-7) were detected on the surface of AM-1 cells by plasma membrane biotinylation and immunofluorescence analysis. Immunohistochemical analysis of clinical samples of ameloblastoma also showed plasma membrane-localized V-ATPase and CLC-7 in the epithelium of plexiform, follicular and basal cell types. The demineralization activity of AM-1 was only 1.7% of osteoclasts demineralization activity, and the growth rate was 20% of human normal skin keratinocytes and HSC-3 cells. These results suggest that the

  15. Direct measurements of the tile drain and groundwater contributions to surface water contamination: from field-scale concentration patterns in groundwater to catchment-scale surface water quality

    NASA Astrophysics Data System (ADS)

    Rozemeijer, J.; Van der Velde, Y.; Van Geer, F.; Broers, H.

    2011-12-01

    Enhanced knowledge of water and nutrient pathways in catchments improves the understanding of dynamics in water quality and supports the selection of appropriate water pollution mitigation options. For this study, we physically separated tile drain effluent and groundwater discharge from an agricultural field before it entered a 43.5 meter ditch transect. Through continuous discharge measurements and weekly water quality sampling, we directly quantified the flow route contributions to surface water discharge and solute loading. Our multi-scale experimental approach allowed us to relate these measurements to field-scale NO3 concentration patterns in shallow groundwater and to continuous NO3 records at the catchment outlet. Our mapping of shallow groundwater quality at the experimental field revealed a highly variable spatial pattern, with NO3 concentrations ranging from 0 to 219 mg/l. Our measurement results allowed us to relate NO3 concentrations of the individual tile drains to the spatial NO3 concentration pattern in shallow groundwater. These results show that tile drain effluent sampling is an efficient way to obtain information on shallow groundwater composition. The catchment-scale monitoring revealed a large spatial heterogeneity in tile drain effluent NO3 concentrations, which ranged from 0 mg/l up to 390 mg/l. A distinct similarity was found between the temporal patterns in NO3 concentrations in tile drain effluent at the field-scale, in tile drain effluent throughout the catchment, and in stream water at the catchment outlet. They all showed a seasonal pattern with higher concentrations in winter, which is related to the increased contribution of near-surface flow routes to the tile drain and stream discharge in winter. Our measurements indicated that tile drains play a major role in lateral water and solute transport from the agricultural field towards the surface water system. On average, the tile drains contributed 80% of the discharge and 90-92% of

  16. Contribution of coated humic acids calculated through their surface coverage on nano iron oxides for ofloxacin and norfloxacin sorption.

    PubMed

    Peng, Hongbo; Liang, Ni; Li, Hao; Chen, Fangyuan; Zhang, Di; Pan, Bo; Xing, Baoshan

    2015-09-01

    Sorption of organic contaminants on organo-mineral complexes has been investigated extensively, but the sorption contribution of mineral particles was not properly addressed before calculating KOC, especially for ionic organic contaminants. We measured the surface coverage of a humic acid (HA) on nano iron oxides (n-Fe2O3) in a series of synthesized organo-mineral complexes. The contribution of the coated HA to ofloxacin (OFL) and norfloxacin (NOR) sorption in HA-n-Fe2O3 complexes was over 80% of the total sorption with the surface coverage of 36% and fOC of 1.6%. All the coated HA showed higher sorption to NOR and OFL in comparison to the original HA, suggesting HA fractionation and/or physical re-conformation during organo-mineral complex formation. The decreased KOC with multilayer coating may suggest the importance of site-specific interactions for OFL sorption, while the increased KOC with multilayer coating may suggest the importance of partitioning in hydrophobic region for NOR sorption.

  17. Six Hydrophobins Are Involved in Hydrophobin Rodlet Formation in Aspergillus nidulans and Contribute to Hydrophobicity of the Spore Surface

    PubMed Central

    Seidel, Constanze; Gutt, Beatrice; Röhrig, Julian; Strunk, Timo; Vincze, Paul; Walheim, Stefan; Schimmel, Thomas; Wenzel, Wolfgang; Fischer, Reinhard

    2014-01-01

    Hydrophobins are amphiphilic proteins able to self-assemble at water-air interphases and are only found in filamentous fungi. In Aspergillus nidulans two hydrophobins, RodA and DewA, have been characterized, which both localize on the conidiospore surface and contribute to its hydrophobicity. RodA is the constituent protein of very regularly arranged rodlets, 10 nm in diameter. Here we analyzed four more hydrophobins, DewB-E, in A. nidulans and found that all six hydrophobins contribute to the hydrophobic surface of the conidiospores but only deletion of rodA caused loss of the rodlet structure. Analysis of the rodlets in the dewB-E deletion strains with atomic force microscopy revealed that the rodlets appeared less robust. Expression of DewA and DewB driven from the rodA promoter and secreted with the RodA secretion signal in a strain lacking RodA, restored partly the hydrophobicity. DewA and B were able to form rodlets to some extent but never reached the rodlet structure of RodA. The rodlet-lacking rodA-deletion strain opens the possibility to systematically study rodlet formation of other natural or synthetic hydrophobins. PMID:24722460

  18. Six hydrophobins are involved in hydrophobin rodlet formation in Aspergillus nidulans and contribute to hydrophobicity of the spore surface.

    PubMed

    Grünbacher, André; Throm, Tanja; Seidel, Constanze; Gutt, Beatrice; Röhrig, Julian; Strunk, Timo; Vincze, Paul; Walheim, Stefan; Schimmel, Thomas; Wenzel, Wolfgang; Fischer, Reinhard

    2014-01-01

    Hydrophobins are amphiphilic proteins able to self-assemble at water-air interphases and are only found in filamentous fungi. In Aspergillus nidulans two hydrophobins, RodA and DewA, have been characterized, which both localize on the conidiospore surface and contribute to its hydrophobicity. RodA is the constituent protein of very regularly arranged rodlets, 10 nm in diameter. Here we analyzed four more hydrophobins, DewB-E, in A. nidulans and found that all six hydrophobins contribute to the hydrophobic surface of the conidiospores but only deletion of rodA caused loss of the rodlet structure. Analysis of the rodlets in the dewB-E deletion strains with atomic force microscopy revealed that the rodlets appeared less robust. Expression of DewA and DewB driven from the rodA promoter and secreted with the RodA secretion signal in a strain lacking RodA, restored partly the hydrophobicity. DewA and B were able to form rodlets to some extent but never reached the rodlet structure of RodA. The rodlet-lacking rodA-deletion strain opens the possibility to systematically study rodlet formation of other natural or synthetic hydrophobins.

  19. Sediment sources and their contribution along northern coast of the South China Sea: Evidence from clay minerals of surface sediments

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Yan, Wen; Chen, Zhong; Lu, Jun

    2012-09-01

    Clay minerals of surface sediment samples from nine bays/harbors along northern coast of the South China Sea (SCS) are used for sediment sources and contribution estimation in the study areas. Results reveal that sediments in the study bays/harbors seem to be a mixture of sediments from the Pearl, Hanjiang River and local islands/rivers, but their clay mineral assemblage is distinct from that of Luzon and Taiwan sediments, indicating that sediments are derived mainly from the neighboring sources through riverine input and partly from localized sediments. Due to input of local sediments in the northern SCS, sediments from both east of the Leizhou Peninsula (Area IV) and next to the Pearl River estuary (PRE, Area II) have high smectite percent. Affected by riverine input of the Pearl and Hanjiang Rivers, sediments in west of the PRE (Area III) and east of the PRE (Area I) have high illite (average 47%) and kaolinite (54%) percents, respectively. Sediment contributions of various major sources to the study areas are estimated as the following: (1) the Hanjiang River provide 95% and 84% sediments in Areas I and II, respectively, (2) the Pearl River supply 79% and 29% sediments in Areas III and IV, respectively and (3) local sediments contribute the rest and reach the maximum (˜71%) in Area IV.

  20. Assessing the Contribution of Sea Surface Temperature and Salinity to Coral δ18O using a Weighted Forward Model

    NASA Astrophysics Data System (ADS)

    Horlick, K. A.; Thompson, D. M.; Anderson, D. M.

    2015-12-01

    The isotopic ratio of 16O/18O (δ18O) in coral carbonate skeletons is a robust, high-resolution proxy for sea surface temperature (SST) and sea surface salinity (SSS) variability predating the instrumental record. Although SST and δ18O-water (correlated to SSS) variability both contribute to the δ18O signal in the coral carbonate archive, the paucity and limited temporal span of SST and SSS instrumental observations limit the ability to differentiate respective SST and SSS contribution to each δ18O record. From instrumental datasets such as HadISST v.3, ERSST, SODA, and Delcroix (2011), we forward model the δ18O ("pseudoproxy") signal using the linear bivariate forward model from Thompson 2011 ("pseudoproxy"= a1(SST)+a2(SSS)). By iteratively weighting (between 0 and 1 by 0.005) the relative contribution of SST and SSS terms to the δ18O "pseudoproxy" following Gorman et al. 2012 method, we derive the percent contributions of SST and SSS to δ18O at each site based on the weights that produce the optimal correlation to the observed coral δ18O signal. A Monte Carlo analysis of error propagation in the weighted and unweighted pseudoproxy time series was used to determine how well the weighted and unweighted forward models captured observed δ18O variance. Across the south-western Pacific (40 sites) we found that SST contributes from less than 8 to more than 78% of the variance. This work builds upon this simple forward model of coral δ18O and improves our understanding of potential sources of differences in the observed and forward modeled δ18O variability. These results may also improve SST and SSS reconstructions from corals by highlighting the reef areas whose coral δ18O signal is most heavily influenced by SST and SSS respectively. Using an inverse approach, creating a transfer function, local SST and SSS could also be reconstructed based on the site-specific weights and observed coral δ18O time series.

  1. Informed Source Separation of Atmospheric and Surface Signal Contributions in Shortwave Hyperspectral Imagery using Non-negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Wright, L.; Coddington, O.; Pilewskie, P.

    2015-12-01

    Current challenges in Earth remote sensing require improved instrument spectral resolution, spectral coverage, and radiometric accuracy. Hyperspectral instruments, deployed on both aircraft and spacecraft, are a growing class of Earth observing sensors designed to meet these challenges. They collect large amounts of spectral data, allowing thorough characterization of both atmospheric and surface properties. The higher accuracy and increased spectral and spatial resolutions of new imagers require new numerical approaches for processing imagery and separating surface and atmospheric signals. One potential approach is source separation, which allows us to determine the underlying physical causes of observed changes. Improved signal separation will allow hyperspectral instruments to better address key science questions relevant to climate change, including land-use changes, trends in clouds and atmospheric water vapor, and aerosol characteristics. In this work, we investigate a Non-negative Matrix Factorization (NMF) method for the separation of atmospheric and land surface signal sources. NMF offers marked benefits over other commonly employed techniques, including non-negativity, which avoids physically impossible results, and adaptability, which allows the method to be tailored to hyperspectral source separation. We adapt our NMF algorithm to distinguish between contributions from different physically distinct sources by introducing constraints on spectral and spatial variability and by using library spectra to inform separation. We evaluate our NMF algorithm with simulated hyperspectral images as well as hyperspectral imagery from several instruments including, the NASA Airborne Visible/Infrared Imaging Spectrometer (AVIRIS), NASA Hyperspectral Imager for the Coastal Ocean (HICO) and National Ecological Observatory Network (NEON) Imaging Spectrometer.

  2. Contribution of Changes in Sea Surface Temperature and Aerosol Loading to the Decreasing Precipitation Trend in Southern China.

    NASA Astrophysics Data System (ADS)

    Cheng, Yanjie; Lohmann, Ulrike; Zhang, Junhua; Luo, Yunfeng; Liu, Zuoting; Lesins, Glen

    2005-05-01

    The effects of increasing sea surface temperature (SST) and aerosol loading in a drought region in Southern China are studied using aerosol optical depth (AOD), low-level cloud cover (LCC), visibility, and precipitation from observed surface data; wind, temperature, specific humidity, and geopotential height from the NCEP-NCAR reanalysis fields; and SST from the NOAA archive data. The results show a warming of the SST in the South China Sea and the Indian Ocean, and a strengthening of the West Pacific Subtropical High (WPSH) in the early summer during the last 40 yr, with the high pressure system extending farther westward over the continent in Southern China. Because the early summer average temperature contrast between the land and ocean decreased, the southwesterly monsoon from the ocean onto mainland China weakened and a surface horizontal wind divergence anomaly occurred over Southern China stabilizing the boundary layer. Thus, less moisture was transported to Southern China, causing a drying trend. Despite this, surface observations show that AOD and LCC have increased, while visibility has decreased. Precipitation has decreased in this region in the early summer, consistent with both the second aerosol indirect effect (reduction in precipitation efficiency caused by the more numerous and smaller cloud droplets) and dynamically induced changes from convective to more stratiform clouds. The second aerosol indirect effect and increases in SST and greenhouse gases (GHG) were simulated separately with the ECHAM4 general circulation model (GCM). The GCM results suggest that both effects contribute to the changes in LCC and precipitation in the drought region in Southern China. The flooding trend in Eastern China, however, is more likely caused by strengthened convective precipitation associated with increases in SST and GHG.

  3. Implementing a physical soil water flow model with minimal soil characteristics and added value offered by surface soil moisture measurements assimilation.

    NASA Astrophysics Data System (ADS)

    Chanzy, André

    2010-05-01

    climatic data. The strategy takes profit of all work made on soil texture as a proxi of soil hydraulic through pedotransfer functions. It also takes into account the constraints in soil moisture variations after important precipitation events. Performances on soil moisture are assessed by considering both the soil moisture accuracy and the ability of detecting a soil moisture threshold. o The added value of soil moisture measurements. The aim is to evaluate to which extent we can improve soil moisture simulations by assimilating a few soil moisture measurements made in the surface layer (ploughed layers). We focus on such a layer since moisture can be derived from remote sensing observations or by using in situ sensors (capacitance sensor, TDR) with minimal effort. The validity of such measurements to represent the soil moisture at the field scale is analysed. It is shown that relative variations in soil moisture are much easier to obtain than an absolute characterisation of the soil moisture measurements. We evaluate the value of assimilating surface measurement in the TEC model and how we can deal with a measurement of relative soil moisture variations (in order to prevent a tedious calibration process). Again the performances of the approach are evaluated with the soil moisture accuracy and the ability of detecting a soil moisture threshold.

  4. The Surface Brightness Contribution of II Peg: A Comparison of TiO Band Analysis and Doppler Imaging

    NASA Astrophysics Data System (ADS)

    Senavci, H. V.; O'Neal, D.; Hussain, G. A. J.; Barnes, J. R.

    2015-01-01

    We investigate the surface brightness contribution of the very well known active SB1 binary II Pegasi , to determine the star spot filling factor and the spot temperature parameters. In this context, we analyze 54 spectra of the system taken over 6 nights in September - October of 1996, using the 2.1m Otto Struve Telescope equipped with SES at the McDonald Observatory. We measure the spot temperatures and spot filling factors by fitting TiO molecular bands in this spectroscopic dataset, with model atmosphere approximation using ATLAS9 and with proxy stars obtained with the same instrument. The same dataset is then used to also produce surface spot maps using the Doppler imaging technique. We compare the spot filling factors obtained with the two independent techniques in order to better characterise the spot properties of the system and to better assess the limitations inherent to both techniques. The results obtained from both techniques show that the variation of spot filling factor as a function of phase agree well with each other, while the amount of TiO and DI spot

  5. Evaluating the contribution of changes in isoprene emissions to surface ozone trends over the eastern United States

    NASA Astrophysics Data System (ADS)

    Fiore, Arlene M.; Horowitz, Larry W.; Purves, Drew W.; Levy, Hiram; Evans, Mathew J.; Wang, Yuxuan; Li, Qinbin; Yantosca, Robert M.

    2005-06-01

    Reducing surface ozone (O3) to concentrations in compliance with the national air quality standard has proven to be challenging, despite tighter controls on O3 precursor emissions over the past few decades. New evidence indicates that isoprene emissions changed considerably from the mid-1980s to the mid-1990s owing to land-use changes in the eastern United States (Purves et al., 2004). Over this period, U.S. anthropogenic VOC (AVOC) emissions decreased substantially. Here we apply two chemical transport models (GEOS-CHEM and MOZART-2) to test the hypothesis, put forth by Purves et al. (2004), that the absence of decreasing O3 trends over much of the eastern United States may reflect a balance between increases in isoprene emissions and decreases in AVOC emissions. We find little evidence for this hypothesis; over most of the domain, mean July afternoon (1300-1700 local time) surface O3 is more responsive (ranging from -9 to +7 ppbv) to the reported changes in anthropogenic NOx emissions than to the concurrent isoprene (-2 to +2 ppbv) or AVOC (-2 to 0 ppbv) emission changes. The estimated magnitude of the O3 response to anthropogenic NOx emission changes, however, depends on the base isoprene emission inventory used in the model. The combined effect of the reported changes in eastern U.S. anthropogenic plus biogenic emissions is insufficient to explain observed changes in mean July afternoon surface O3 concentrations, suggesting a possible role for decadal changes in meteorology, hemispheric background O3, or subgrid-scale chemistry. We demonstrate that two major uncertainties, the base isoprene emission inventory and the fate of isoprene nitrates (which influence surface O3 in the model by -15 to +4 and +4 to +12 ppbv, respectively), preclude a well-constrained quantification of the present-day contribution of biogenic or anthropogenic emissions to surface O3 concentrations, particularly in the high-isoprene-emitting southeastern United States. Better constraints

  6. Assessing the contributions of surface waves and complex rays to far-field Mie scattering by use of the Debye series

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Lock, James A.

    1991-01-01

    The contributions of complex rays and the secondary radiation shed by surface waves to scattering by a dielectric sphere are calculated in the context of the Debye series expansion of the Mie scattering amplitudes. Also, the contributions of geometrical rays are reviewed and compared with the Debye series. Interference effects between surface waves, complex waves, and geometrical waves are calculated, and the possibility of observing these interference effects is discussed. Experimental data supporting the observation of a surface wave-geometrical pattern is presented.

  7. The contribution of coherent structures to momentum and heat fluxes in the atmospheric surface layer above a coastal urban wetland

    NASA Astrophysics Data System (ADS)

    Duman, T.; Schafer, K. V.

    2016-12-01

    The turbulence processes in the atmospheric surface layer play an important role in the transport of momentum and scalars to the atmosphere. Recent interest in turbulent transport has increased particularly in the context of plant canopies, to estimate the effect of increasing CO2 emissions and the role of the biosphere as a carbon sink, which resulted in a global effort (FluxNet) to measure such exchanges across different biomes and climates. Recently, attention has been directed to turbulent fluxes of methane from wetlands, which contribute a considerable portion of greenhouse gases to the atmosphere. Still, not much is known about the structure of turbulence above wetlands, being very heterogeneous both in space and time. High-frequency (20Hz) tower measurements of turbulent 3D velocity and temperature collected over 5 years, are used here to study the flow and fluxes of momentum and buoyancy above a non-mitigated tidal urban wetland in the New-Jersey Meadowlands. To provide an adequate characterization of the surface layer structure over the wetland, similarity theory relations were tested, and the role of coherent turbulent motions was studied, as the drivers responsible for large fraction of turbulent fluxes. To quantify signatures of coherent motions, often called ejections and sweeps, quadrant analysis was performed, conditionally sampling the velocity and temperature fluctuations. Analysis of daytime flow during unstable and near-neutral conditions in the period of fully grown vegetation, show that most features of the turbulence agree well with other plant canopy flows. This includes the dimensionless relationships between turbulent variables and scaling parameters, and the values of mean momentum flux and turbulence intensity (<0.5). However, the contribution of sweeps and ejections to the momentum flux were more than twice of what is typically found above wheat and corn fields. This phenomenon may be attributed to the highly saturated soil of the tidal

  8. Cleavage of Mer tyrosine kinase (MerTK) from the cell surface contributes to the regulation of retinal phagocytosis.

    PubMed

    Law, Ah-Lai; Parinot, Célia; Chatagnon, Jonathan; Gravez, Basile; Sahel, José-Alain; Bhattacharya, Shomi S; Nandrot, Emeline F

    2015-02-20

    Phagocytosis of apoptotic cells by macrophages and spent photoreceptor outer segments (POS) by retinal pigment epithelial (RPE) cells requires several proteins, including MerTK receptors and associated Gas6 and protein S ligands. In the retina, POS phagocytosis is rhythmic, and MerTK is activated promptly after light onset via the αvβ5 integrin receptor and its ligand MFG-E8, thus generating a phagocytic peak. The phagocytic burst is limited in time, suggesting a down-regulation mechanism that limits its duration. Our previous data showed that MerTK helps control POS binding of integrin receptors at the RPE cell surface as a negative feedback loop. Our present results show that a soluble form of MerTK (sMerTK) is released in the conditioned media of RPE-J cells during phagocytosis and in the interphotoreceptor matrix of the mouse retina during the morning phagocytic peak. In contrast to macrophages, the two cognate MerTK ligands have an opposite effect on phagocytosis and sMerTK release, whereas the integrin ligand MFG-E8 markedly increases both phagocytosis and sMerTK levels. sMerTK acts as a decoy receptor blocking the effect of both MerTK ligands. Interestingly, stimulation of sMerTK release decreases POS binding. Conversely, blocking MerTK cleavage increased mostly POS binding by RPE cells. Therefore, our data suggest that MerTK cleavage contributes to the acute regulation of RPE phagocytosis by limiting POS binding to the cell surface. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Investigation of surface ozone variability over the Antractic Plateau by observations at the "Concordia" WMO/GAW contributing station

    NASA Astrophysics Data System (ADS)

    Cristofanelli, Paolo; Udisti, Roberto; Busetto, Maurizio; Calzolari, Francescopiero; Putero, Davide; Lupi, Angelo; Mazzola, Mauro; Petkov, Boyan; Bonasoni, Paolo

    2017-04-01

    Tropospheric ozone (O3), is a greenhouse gas and a driver for atmosphere oxidative capacity. It has at least doubled since pre-industrial age but a comprehensive understanding of the global distribution and trends are difficult to achieve due to its reactivity. Measurements at Antarctic locations provide the opportunity to investigate O3 variability without direct anthropogenic influence providing information on its background variability. This work will focus on the investigation of the variability of surface tropospheric O3 over the eastern Antarctic Plateau. In particular, we will analyze seven years (2006 - 2013) of continuous observations at the WMO/GAW Contributing Station Concordia (75.10°S, 123.33°E, 3233m a.s.l. m) with the purpose of shading light on specific atmospheric processes that need to be accurately taken into account for interpreting O3 variability: (i) in-situ NOx emissions and subsequent photochemical O3 production during summer, (ii) long-range transport of air-masses enriched in O3 by photochemical production over the surface of Antarctic Plateau, (iii) long-range transport of air-masses depleted in O3 from coastal regions or open oceans. Moreover, even if their influence is expected to be limited, the possible influence of STE will be specifically investigated. To this aims, in-situ O3 variability will be analyzed as a function of 3D air-mass back-trajectories calculated by the HYSPLIT and FLEXTRA models. Co-variability with meteorological parameters and other atmospheric tracers (e.g. aerosol measurement as a function of key source and transport processes) will be also studied in order to provide a preliminary assessment of their impact on O3 variability. The STEFLUX (Stratosphere-to-Troposphere Exchange Flux) tool will be used to investigate the influence of stratosphere-to-troposphere transport on ozone variability over eastern Antarctic Plateau.

  10. Contributions of natural arsenic sources to surface waters on a high grade arsenic-geochemical anomaly (French Massif Central).

    PubMed

    Bossy, A; Grosbois, C; Hendershot, W; Beauchemin, S; Crouzet, C; Bril, H

    2012-08-15

    The subwatershed studied drains a non-exploited area of the St-Yrieix-la-Perche gold mining district (French Massif Central) and it is located on an arsenic (As) geochemical anomaly. In this context, it is important to know the geochemical processes involved in the transfer of As from solid environmental compartments to the aquatic system. The stream showed a temporal variation of dissolved As (As(d)) content from 69.4 μg.L(-1) in the low flow period to 7.5 μg.L(-1) in the high flow period. Upstream, ground- and wetland waters had As(d) concentrations up to 215 and 169 μg.L(-1), respectively. The main representative As sources were determined at the subwatershed scale with in-situ monitoring of major and trace element contents in different waters and single extraction experiments. The As sources to stream water could be regrouped into two components: (i) one As-rich group (mainly in the low flow period) with groundwater, gallery exploration outlet waters and wetland waters, and (ii) one As-poor group (mainly in the high flow period) with rainwaters and soil solutions. In the soil profile, As(d) showed a significant decrease from 52.4 μg.L(-1) in the 0-5 cm superficial soil horizon to 14.4 μg.L(-1) in the 135-165 cm deep soil horizon. This decrease may be related to pedogenic processes and suggests an evolution of As-bearing phase stability through the soil profile. Quantification of As(d) fluxes at the subwatershed scale showed that groundwater was the major input (>80%) of As(d) to surface water. Moreover, natural weathering of the As-rich solid phases showed an impact on the As release, mainly from superficial soil horizons with runoff contributing about 5% to As input in surface water.

  11. Esophagectomy - minimally invasive

    MedlinePlus

    Minimally invasive esophagectomy; Robotic esophagectomy; Removal of the esophagus - minimally invasive; Achalasia - esophagectomy; Barrett esophagus - esophagectomy; Esophageal cancer - esophagectomy - laparoscopic; Cancer of the ...

  12. Very low isotope ratio of iron in fine aerosols related to its contribution to the surface ocean

    NASA Astrophysics Data System (ADS)

    Kurisu, Minako; Takahashi, Yoshio; Iizuka, Tsuyoshi; Uematsu, Mitsuo

    2016-09-01

    Seven size-fractionated aerosol samples were collected from Hiroshima, Japan, and were analyzed in terms of chemical composition, soluble fraction of iron (Fe), Fe species, and Fe isotope ratios. The results suggested that Fe in fine particles contained a larger fraction of anthropogenic aerosols than coarse particles did. Iron in the fine particles was more soluble in simulated seawater (up to 25%) than that in the coarse particles and was in the form of Fe (hydr)oxide species, such as ferrihydrite or hematite. The Fe isotope ratios (δ56Fe) of the coarse particles (+0.04‰ to +0.30‰) were close to the crustal mean value (0.0‰). By contrast, the δ56Fe values of fine particles were much lower and ranged from -2.01‰ to -0.56‰. δ56Fe values of the soluble Fe fraction in the fine particles were remarkably low (-3.91 to -1.87‰), suggesting that anthropogenic aerosols yield soluble Fe with low δ56Fe values. Such low values could be explained by kinetic isotope fractionation during evaporation of Fe at high temperatures, coupled with the refractory characteristics of Fe. Marine aerosols from the Northwest Pacific were also analyzed. The δ56Fe values in the fine particles were also lower than those in the coarse particles. These results may be important to quantitatively estimate the contribution of anthropogenic Fe deposited on the surface ocean on the basis of the Fe isotopes.

  13. Age related increase in mTOR activity contributes to the pathological changes in ovarian surface epithelium

    PubMed Central

    Bajwa, Preety; Nagendra, Prathima B.; Nielsen, Sarah; Sahoo, Subhransu S.; Bielanowicz, Amanda; Lombard, Janine M.; Wilkinson, Erby J.; Miller, Richard A.; Tanwar, Pradeep S.

    2016-01-01

    Ovarian cancer is a disease of older women. However, the molecular mechanisms of ovarian aging and their contribution to the pathogenesis of ovarian cancer are currently unclear. mTOR signalling is a major regulator of aging as suppression of this pathway extends lifespan in model organisms. Overactive mTOR signalling is present in up to 80% of ovarian cancer samples and is associated with poor prognosis. This study examined the role of mTOR signalling in age-associated changes in ovarian surface epithelium (OSE). Histological examination of ovaries from both aged mice and women revealed OSE cell hyperplasia, papillary growth and inclusion cysts. These pathological lesions expressed bonafide markers of ovarian cancer precursor lesions, Pax8 and Stathmin 1, and were presented with elevated mTOR signalling. To understand whether overactive mTOR signalling is responsible for the development of these pathological changes, we analysed ovaries of the Pten trangenic mice and found significant reduction in OSE lesions compared to controls. Furthermore, pharmacological suppression of mTOR signalling significantly decreased OSE hyperplasia in aged mice. Treatment with mTOR inhibitors reduced human ovarian cancer cell viability, proliferation and colony forming ability. Collectively, we have established the role of mTOR signalling in age-related OSE pathologies and initiation of ovarian cancer. PMID:27036037

  14. Basin and Crater Ejecta Contributions to the South Pole-Aitken Basin (SPA) Regolith; Positive Implications for Robotic Surface Samples

    NASA Technical Reports Server (NTRS)

    Petro, Noah E.; Jolliff, B. L.

    2011-01-01

    The ability of impacts of all sizes to laterally transport ejected material across the lunar surface is well-documented both in lunar samples [1-4] and in remote sensing data [5-7]. The need to quantify the amount of lateral transport has lead to several models to estimate the scale of this effect. Such models have been used to assess the origin of components at the Apollo sites [8-10] or to predict what might be sampled by robotic landers [11-13]. Here we continue to examine the regolith inside the South Pole-Aitken Basin (SPA) and specifically assess the contribution to the SPA regolith by smaller craters within the basin. Specifically we asses the effects of four larger craters within SPA, Bose, Bhabha, Stoney, and Bellinsgauzen all located within the mafic enhancement in the center of SPA (Figure 1). The region around these craters is of interest as it is a possible landing and sample return site for the proposed Moon-Rise mission [14-17]. Additionally, understanding the provenance of components in the SPA regolith is important for interpreting remotely sensed data of the basin interior [18-20].

  15. Injury and recovery of salmonella, Escherichia coli 0157:H7 and Listeria Monocytogenes on cantaloupe rind surfaces after hyrdogren peroxide and minimal thermal treatment

    USDA-ARS?s Scientific Manuscript database

    Introduction: Produce surface structures vary and complicate decontamination treatments for reducing attached bacteria. Purpose: The objective of this study on survival and recovery of injured population of Salmonella, Escherichia coli O157:H7 and Listeria monocytogenes on cantaloupe rind surfaces...

  16. LETTER TO THE EDITOR: Direct construction of a dividing surface of minimal flux for multi-degree-of-freedom systems that cannot be recrossed

    NASA Astrophysics Data System (ADS)

    Waalkens, H.; Wiggins, S.

    2004-09-01

    The fundamental assumption of transition state theory is the existence of a dividing surface having the property that trajectories originating in reactants (resp. products) must cross the surface only once and then proceed to products (resp. reactants). Recently it has been shown (Wiggins et al (2001) Phys. Rev. Lett. 86 5478; Uzer et al (2002) Nonlinearity 15 957) how to construct a dividing surface in phase space for Hamiltonian systems with an arbitrary (finite) number of degrees of freedom having the property that trajectories only cross once locally. In this letter we provide an argument showing that the flux across this dividing surface is a minimum with respect to certain types of variations of the dividing surface.

  17. Dynamical contribution to sea surface salinity variations in the eastern Gulf of Guinea based on numerical modelling

    NASA Astrophysics Data System (ADS)

    Berger, Henrick; Treguier, Anne Marie; Perenne, Nicolas; Talandier, Claude

    2014-12-01

    In this study, we analyse the seasonal variability of the sea surface salinity (SSS) for two coastal regions of the Gulf of Guinea from 1995 to 2006 using a high resolution model (1/12°) embedded in a Tropical Atlantic (1/4°) model. Compared with observations and climatologies, our model demonstrates a good capability to reproduce the seasonal and spatial variations of the SSS and mixed layer depth. Sensitivity experiments are carried out to assess the respective impacts of precipitations and river discharge on the spatial structure and seasonal variations of the SSS in the eastern part of the Gulf of Guinea. In the Bight of Biafra, both precipitations and river runoffs are necessary to observe permanent low SSS values but the river discharge has the strongest impact on the seasonal variations of the SSS. South of the equator, the Congo river discharge alone is sufficient to explain most of the SSS structure and its seasonal variability. However, mixed layer budgets for salinity reveal the necessity to take into account the horizontal and vertical dynamics to explain the seasonal evolution of the salinity in the mixed layer. Indeed evaporation, precipitations and runoffs represent a relatively small contribution to the budgets locally at intraseasonal to seasonal time scales. Horizontal advection always contribute to spread the low salinity coastal waters offshore and thus decrease the salinity in the eastern Gulf of Guinea. For the Bight of Biafra and the Congo plume region, the strong seasonal increase of the SSS observed from May/June to August/September, when the trade winds intensify, results from a decreasing offshore spread of freshwater associated with an intensification of the salt input from the subsurface. In the Congo plume region, the subsurface salt comes mainly from advection due to a strong upwelling but for the Bight of Biafra, entrainment and vertical mixing also play a role. The seasonal evolution of horizontal advection in the Bight of Biafra

  18. Detection of Remarkably Low Isotopic Ratio of Iron in Anthropogenic Aerosols and Evaluation of its Contribution to the Surface Ocean

    NASA Astrophysics Data System (ADS)

    Kurisu, M.; Iizuka, T.; Sakata, K.; Uematsu, M.; Takahashi, Y.

    2015-12-01

    It has been reported that phytoplankton growth in the High Nutrient-Low Chlorophyll (HNLC) regions is limited by dissolved iron (DFe) concentration (e.g., Martin and Fitzwater, 1988). Aerosol is known as one of the dominant sources of DFe to the ocean and classified into two origins such as anthropogenic and natural. A series of recent studies showed that Fe in anthropogenic aerosols is more soluble than that in natural aerosols (Takahashi et al., 2013) and has lower isotopic ratio (Mead et al., 2013). However, the difference between Fe isotopic ratio (δ56Fe: [(56Fe/54Fe)sample/(56Fe/54Fe)IRMM-14]-1) of two origins reported in Mead et al. (2013) is not so large compared with the standard deviation. Therefore, the aim of this study is to determine Fe species and δ56Fe in anthropogenic aerosols more accurately and to evaluate its contribution to the ocean surface. Iron species were determined by X-ray absorption fine structure (XAFS) analysis, while δ56Fe in size-fractionated aerosols were measured by MC-ICP-MS (NEPTUNE Plus) after chemical separation using anion exchange resin. Dominant Fe species in the samples were, ferrihydrite, hematite, and biotite. It was also revealed that coarse particles contained a larger amount of biotite and that fine particles contained a larger amount of hematite, which suggested that anthropogenic aerosols were emitted during combustion processes. In addition, results of Fe isotopic ratio analysis suggested that δ56Fe of coarse particles were around +0.25‰, whereas that of fine particles were -0.5 ˜ -2‰, which was lower than the δ56Fe in anthropogenic aerosol by Mead et al. (2013). The size-fractionated sampling made it possible to determine the δ56Fe in anthropogenic aerosol. Soluble component in fine particles extracted by simulated rain water also showed much lower δ56Fe (δ56Fe = -3.9±0.12‰), suggesting that anthropogenic Fe has much lower isotopic ratio. The remarkably low δ56Fe may be caused by the

  19. TEA-sensitive currents contribute to membrane potential of organ surface primo-node cells in rats.

    PubMed

    Choi, Jae-Hong; Lim, Chae Jeong; Han, Tae Hee; Lee, Seul Ki; Lee, So Yeong; Ryu, Pan Dong

    2011-02-01

    The primo-vascular (Bonghan) tissue has been identified in most tissues in the body, but its structure and functions are not yet well understood. We characterized electrophysiological properties of the cells of the primo-nodes (PN) on the surface of abdominal organs using a slice patch clamp technique. The most abundant were small round cells (~10 μm) without processes. These PN cells exhibited low resting membrane potential (-36 mV) and did not fire action potentials. On the basis of the current-voltage (I-V) relationships and kinetics of outward currents, the PN cells can be grouped into four types. Among these, type I cells were the majority (69%); they showed strong outward rectification in I-V relations. The outward current was activated rapidly and sustained without decay. Tetraethylammonium (TEA) dose-dependently blocked both outward and inward current (IC(50), 4.3 mM at ± 60 mV). In current clamp conditions, TEA dose-dependently depolarized the membrane potential (18.5 mV at 30 mM) with increase in input resistance. The tail current following a depolarizing voltage step was reversed at -27 mV, and transient outward current like A-type K(+) current was not expressed at holding potential of -80 mV. Taken together, the results demonstrate for the first time that the small round PN cells are heterogenous, and that, in type I cells, TEA-sensitive current with limited selectivity to K(+) contributed to resting membrane potential of these cells.

  20. Minimal covering problem and PLA minimization

    SciTech Connect

    Young, M.H.; Muroga, S.

    1985-12-01

    Solving the minimal covering problem by an implicit enumeration method is discussed. The implicit enumeration method in this paper is a modification of the Quine-McCluskey method tailored to computer processing and also its extension, utilizing some new properties of the minimal covering problem for speedup. A heuristic algorithm is also presented to solve large-scale problems. Its application to the minimization of programmable logic arrays (i.e., PLAs) is shown as an example. Computational experiences are presented to confirm the improvements by the implicit enumeration method discussed.

  1. Surface modification of nanoparticles by PEO/PPO block copolymers to minimize interactions with blood components and prolong blood circulation in rats.

    PubMed

    Tan, J S; Butterfield, D E; Voycheck, C L; Caldwell, K D; Li, J T

    1993-09-01

    The biological fate of injected foreign particles is believed to be closely related to their interactions with blood plasma proteins and cells. In order to verify this correlation, we have quantitatively measured protein adsorption and blood retention profiles in rats by using model polystyrene latex nanoparticles. The in vitro interactions of these non-biodegradable particles with plasma proteins and whole blood can be altered by modifying their surfaces with a family of amphiphilic polymeric surfactants, PEO/PPO Pluronic or Tetronic block copolymers. Protein adsorption was measured by several techniques, including photon correlation spectroscopy, centrifugation, high performance liquid chromatography and field-flow fractionation. Pluronic F108 and Tetronic 908 and 1508 copolymers (with PEO terminal block MWPEO > 5000, PPO middle block MWPPO > 3000, and HLB values > 24) were shown to be the most effective surface modifiers in reducing adsorption of plasma proteins on the particles. Minimum interaction of coated particles with whole blood was also observed by optical microscopy. The blood circulation half-life of the particles injected in rats was increased from 20 min to 13 h when the latex particles (75 nm) were precoated with these block copolymers. These results suggest that nanoparticles designed for use as injectable drugs or drug carriers should display similar surface characteristics provided by such amphiphilic surface modifiers.

  2. Macrophytes may not contribute significantly to removal of nutrients, pharmaceuticals, and antibiotic resistance in model surface constructed wetlands.

    PubMed

    Cardinal, Pascal; Anderson, Julie C; Carlson, Jules C; Low, Jennifer E; Challis, Jonathan K; Beattie, Sarah A; Bartel, Caitlin N; Elliott, Ashley D; Montero, Oscar F; Lokesh, Sheetal; Favreau, Alex; Kozlova, Tatiana A; Knapp, Charles W; Hanson, Mark L; Wong, Charles S

    2014-06-01

    Outdoor shallow wetland mesocosms, designed to simulate surface constructed wetlands to improve lagoon wastewater treatment, were used to assess the role of macrophytes in the dissipation of wastewater nutrients, selected pharmaceuticals, and antibiotic resistance genes (ARGs). Specifically, mesocosms were established with or without populations of Typha spp. (cattails), Myriophyllum sibiricum (northern water milfoil), and Utricularia vulgaris (bladderwort). Following macrophyte establishment, mesocosms were seeded with ARG-bearing organisms from a local wastewater lagoon, and treated with a single pulse of artificial municipal wastewater with or without carbamazepine, clofibric acid, fluoxetine, and naproxen (each at 7.6μg/L), as well as sulfamethoxazole and sulfapyridine (each at 150μg/L). Rates of pharmaceutical dissipation over 28d ranged from 0.073 to 3.0d(-1), corresponding to half-lives of 0.23 to 9.4d. Based on calculated rate constants, observed dissipation rates were consistent with photodegradation driving clofibric acid, naproxen, sulfamethoxazole, and sulfapyridine removal, and with sorption also contributing to carbamazepine and fluoxetine loss. Of the seven gene determinants assayed, only two genes for both beta-lactam resistance (blaCTX and blaTEM) and sulfonamide resistance (sulI and sulII) were found in sufficient quantity for monitoring. Genes disappeared relatively rapidly from the water column, with half-lives ranging from 2.1 to 99d. In contrast, detected gene levels did not change in the sediment, with the exception of sulI, which increased after 28d in pharmaceutical-treated systems. These shallow wetland mesocosms were able to dissipate wastewater contaminants rapidly. However, no significant enhancement in removal of nutrients or pharmaceuticals was observed in mesocosms with extensive aquatic plant communities. This was likely due to three factors: first, use of naïve systems with an unchallenged capacity for nutrient assimilation and

  3. Temporal trends in West Antarctic surface mass balance: do large scale modes of climate contribute to observed records?

    NASA Astrophysics Data System (ADS)

    Carpenter, M.; Rupper, S.; Williams, J.; Burgener, L. K.; Koenig, L.; Forster, R. R.; Koutnik, M. R.; Skinner, R.; Miege, C.; Brucker, L.

    2013-12-01

    Western Antarctica has been warming significantly at a rate of 0.17× 0.06 degrees C per decade from 1957 to 2006, with the strongest warming in the winter and spring months. Annual accumulation rates in the central WAIS have been decreasing over the same time period, in spite of rising temperatures. This is somewhat unexpected, as saturation vapor pressure increases with increasing temperature. One possible explanation of this observation could be related to synoptic-scale modes of climate, principally the Southern Annular Mode (SAM) and the El Nino Southern Oscillation (ENSO). These modes of climate are known to modify the track and strength of storms seasonally, but the true extent of the influence of these modes on accumulation in central WAIS is not well known. This is due, in part, to sparse instrumental weather data which makes it difficult to understand the spatial and temporal variability of the central WAIS Surface Mass Balance (SMB). Firn cores provide an excellent temporal SMB record that can fill this data gap, but are spatially limited. The spatial limitation of individual cores can be remedied by creating a network of firn cores over a region, which overcomes small scale variability and provides a regional representation of SMB over the temporal length of the firn core records. The 2011 Satellite Era Accumulation Traverse (SEAT) adds nine new firn cores (20 m deep, spanning 2010-1981) to existing cores within the same region of the central WAIS to improve the spatial network of regional SMB measurements. SMB is reconstructed from the firn cores, and are compared to simulated accumulation from five climate models and reanalyses datasets. The combination of firn cores and simulated records are used to investigate wether SAM and ENSO significantly influence SMB in the central WAIS. The new suite of cores show a statistically significant negative trend in accumulation during the past three decades, which is consistent with results from the previous cores

  4. Better Hyper-minimization

    NASA Astrophysics Data System (ADS)

    Maletti, Andreas

    Hyper-minimization aims to compute a minimal deterministic finite automaton (dfa) that recognizes the same language as a given dfa up to a finite number of errors. Algorithms for hyper-minimization that run in time O(n logn), where n is the number of states of the given dfa, have been reported recently in [Gawrychowski and Jeż: Hyper-minimisation made efficient. Proc. Mfcs, Lncs 5734, 2009] and [Holzer and Maletti: An n logn algorithm for hyper-minimizing a (minimized) deterministic automaton. Theor. Comput. Sci. 411, 2010]. These algorithms are improved to return a hyper-minimal dfa that commits the least number of errors. This closes another open problem of [Badr, Geffert, and Shipman: Hyper-minimizing minimized deterministic finite state automata. Rairo Theor. Inf. Appl. 43, 2009]. Unfortunately, the time complexity for the obtained algorithm increases to O(n 2).

  5. Increasingly minimal bias routing

    DOEpatents

    Bataineh, Abdulla; Court, Thomas; Roweth, Duncan

    2017-02-21

    A system and algorithm configured to generate diversity at the traffic source so that packets are uniformly distributed over all of the available paths, but to increase the likelihood of taking a minimal path with each hop the packet takes. This is achieved by configuring routing biases so as to prefer non-minimal paths at the injection point, but increasingly prefer minimal paths as the packet proceeds, referred to herein as Increasing Minimal Bias (IMB).

  6. Listeria monocytogenes biofilm-associated protein (BapL) may contribute to surface attachment of L. monocytogenes but is absent from many field isolates.

    PubMed

    Jordan, Suzanne J; Perni, Stefano; Glenn, Sarah; Fernandes, Isabel; Barbosa, Manuela; Sol, Manuela; Tenreiro, Rogerio P; Chambel, Lelia; Barata, Belarmino; Zilhao, Isabel; Aldsworth, Timothy G; Adriao, Andreia; Faleiro, M Leonor; Shama, Gilbert; Andrew, Peter W

    2008-09-01

    Listeria monocytogenes is a food-borne pathogen capable of adhering to a range of surfaces utilized within the food industry, including stainless steel. The factors required for the attachment of this ubiquitous organism to abiotic surfaces are still relatively unknown. In silico analysis of the L. monocytogenes EGD genome identified a putative cell wall-anchored protein (Lmo0435 [BapL]), which had similarity to proteins involved in biofilm formation by staphylococci. An insertion mutation was constructed in L. monocytogenes to determine the influence of this protein on attachment to abiotic surfaces. The results show that the protein may contribute to the surface adherence of strains that possess BapL, but it is not an essential requirement for all L. monocytogenes strains. Several BapL-negative field isolates demonstrated an ability to adhere to abiotic surfaces equivalent to that of BapL-positive strains. BapL is not required for the virulence of L. monocytogenes in mice.

  7. Three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its minimal solvent-exposed surface

    PubMed Central

    Ahn, Hee-Chul; Jurani, Nenad; Macura, Slobodan; Markley, John L.

    2008-01-01

    We chose crambin, a hydrophobic and water-insoluble protein originally isolated from the seeds of the plant Crambe abyssinica, as a model for NMR investigations of membrane-associated proteins. We produced isotopically labeled crambin(P22,L25) as a cleavable fusion with staphylococcal nuclease and refolded the protein by an approach that has proved successful for the production of proteins with multiple disulfide bonds. We used NMR spectroscopy to determine the three-dimensional structure of the protein in two membrane-mimetic environments: in a mixed aqueous-organic solvent (75%/25%, acetone/water) and in DPC micelles. With the sample in the mixed solvent, it was possible to determine (>NH···OC<) hydrogen bonds directly by the detection of h3JNC′ couplings. H-bonds determined in this manner were utilized in the refinement of the NMR-derived protein structures. With the protein in DPC micelles, we used manganous ion as an aqueous paramagnetic probe to determine the surface of crambin that is shielded by the detergent. With the exception of the aqueous solvent exposed loop containing residues 20 and 21, the protein surface was protected by DPC. This suggests that the protein may be similarly embedded in physiological membranes. The strategy described here for the expression and structure determination of crambin should be applicable to structural and functional studies of membrane active toxins and small membrane proteins. PMID:16569017

  8. Three-dimensional structure of the water-insoluble protein crambin in dodecylphosphocholine micelles and its minimal solvent-exposed surface.

    PubMed

    Ahn, Hee-Chul; Juranić, Nenad; Macura, Slobodan; Markley, John L

    2006-04-05

    We chose crambin, a hydrophobic and water-insoluble protein originally isolated from the seeds of the plant Crambe abyssinica, as a model for NMR investigations of membrane-associated proteins. We produced isotopically labeled crambin(P22,L25) (variant of crambin containing Pro22 and Leu25) as a cleavable fusion with staphylococcal nuclease and refolded the protein by an approach that has proved successful for the production of proteins with multiple disulfide bonds. We used NMR spectroscopy to determine the three-dimensional structure of the protein in two membrane-mimetic environments: in a mixed aqueous-organic solvent (75%/25%, acetone/water) and in DPC micelles. With the sample in the mixed solvent, it was possible to determine (>NH...OC<) hydrogen bonds directly by the detection of (h3)J(NC)' couplings. H-bonds determined in this manner were utilized in the refinement of the NMR-derived protein structures. With the protein in DPC (dodecylphosphocholine) micelles, we used manganous ion as an aqueous paramagnetic probe to determine the surface of crambin that is shielded by the detergent. With the exception of the aqueous solvent exposed loop containing residues 20 and 21, the protein surface was protected by DPC. This suggests that the protein may be similarly embedded in physiological membranes. The strategy described here for the expression and structure determination of crambin should be applicable to structural and functional studies of membrane active toxins and small membrane proteins.

  9. Model and assessment of the contribution of dredged material disposal to sea-surface contamination in Puget Sound

    SciTech Connect

    Hardy, J.T.; Cowan, C.E.

    1986-02-01

    Hydrophobic or floatable materials released to the water column during dredge disposal operations may accumulate in high concentrations on the water surface. If such surface accumulations occur, they could impact the reproduction of fish and shellfish with neustonic (floating) eggs or larvae. Also, floatable surface contaminants could deposit on nearby beaches. In order to examine the potential impacts of such processes, an interactive computer (IBM PC) model was developed. The FORTRAN model allows input of contaminant concentrations on the dredge material, the surface area of the disposal site, the floatable fraction of the contaminated material, and the baseline concentrations of contaminants present in the sea-surface microlayer. The model then computes the resultant concentrations of each contaminant in the microlayer and the potential impact on floating fish eggs. The utility of the model would be greatly improved by empirical data, not yeat available, on the vertical upward and lateral movement of contaminants during dredge material disposal.

  10. Multi-scale modeling study of the source contributions to near-surface ozone and sulfur oxides levels over California during the ARCTAS-CARB period

    NASA Astrophysics Data System (ADS)

    Huang, M.; Carmichael, G. R.; Spak, S. N.; Adhikary, B.; Kulkarni, S.; Cheng, Y.; Wei, C.; Tang, Y.; D'Allura, A.; Wennberg, P. O.; Huey, G. L.; Dibb, J. E.; Jimenez, J. L.; Cubison, M. J.; Weinheimer, A. J.; Kaduwela, A.; Cai, C.; Wong, M.; Pierce, R. Bradley; Al-Saadi, J. A.; Streets, D. G.; Zhang, Q.

    2011-04-01

    Chronic high surface ozone (O3) levels and the increasing sulfur oxides (SOx = SO2+SO4) ambient concentrations over South Coast (SC) and other areas of California (CA) are affected by both local emissions and long-range transport. In this paper, multi-scale tracer, full-chemistry and adjoint simulations using the STEM atmospheric chemistry model are conducted to assess the contribution of local emission sourcesto SC O3 and to evaluate the impacts of transported sulfur and local emissions on the SC sulfur budgetduring the ARCTAS-CARB experiment period in 2008. Sensitivity simulations quantify contributions of biogenic and fire emissions to SC O3 levels. California biogenic and fire emissions contribute 3-4 ppb to near-surface O3 over SC, with larger contributions to other regions in CA. During a long-range transport event from Asia starting from 22 June, high SOx levels (up to ~0.7 ppb of SO2 and ~1.3 ppb of SO4) is observed above ~6 km, but they did not affect CA surface air quality. The elevated SOx observed at 1-4 km is estimated to enhance surface SOx over SC by ~0.25 ppb (upper limit) on ~24 June. The near-surface SOx levels over SC during the flight week are attributed mostly to local emissions. Two anthropogenic SOx emission inventories (EIs) from the California Air Resources Board (CARB) and the US Environmental Protection Agency (EPA) are compared and applied in 60 km and 12 km chemical transport simulations, and the results are compared withobservations. The CARB EI shows improvements over the National Emission Inventory (NEI) by EPA, but generally underestimates surface SC SOx by about a factor of two. Adjoint sensitivity analysis indicated that SO2 levels at 00:00 UTC (17:00 local time) at six SC surface sites were influenced by previous day maritime emissions over the ocean, the terrestrial emissions over nearby urban areas, and by transported SO2 from the north through both terrestrial and maritime areas. Overall maritime emissions contribute 10-70% of

  11. Binding of alkenes and ionic liquids to B-H-functionalized boron nanoparticles: creation of particles with controlled dispersibility and minimal surface oxidation.

    PubMed

    Perez, Jesus Paulo L; Yu, Jiang; Sheppard, Anna J; Chambreau, Steven D; Vaghjiani, Ghanshyam L; Anderson, Scott L

    2015-05-13

    The interaction of B-H-functionalized boron nanoparticles with alkenes and nitrogen-rich ionic liquids (ILs) is investigated by a combination of X-ray photoelectron spectroscopy, FTIR spectroscopy, dynamic light scattering, thermogravimetric analysis, and helium ion microscopy. Surface B-H bonds are shown to react with terminal alkenes to produce alkyl-functionalized boron particles. The interaction of nitrogen-rich ILs with the particles appears, instead, to be dominated by boron-nitrogen bonding, even for an ILs with terminal alkene functionality. This chemistry provides a convenient approach to producing and capping boron nanoparticles with a protective organic layer, which is shown to protect the particles from oxidation during air exposure. By controlling the capping group, particles with high dispersibility in nonpolar or polar liquids can be produced. For the particles capped with ILs, the effect of particle loading on hypergolic ignition of the ILs is reported.

  12. Contribution on Taguchi's Method Application on the Surface Roughness Analysis in End Milling Process on 7136 Aluminium Alloy

    NASA Astrophysics Data System (ADS)

    ȚÎȚU, M. A.; POP, A. B.

    2016-11-01

    The resulting surface quality after the cutting process is one of the most important characteristics of product quality and also the most frequent customer requirement. Previous research was focused on the effect investigation of machining parameters: cutting speed [1] and feed per tooth [2] on surface roughness. This paper is in itself a continuation of a previous research [3], in which, with Taguchi's method it was determined the level of influence of the cutting parameters on surface roughness of 7136 aluminium alloy in end milling process. The purpose of this paper is to highlight the importance of Taguchi's method use to analyse the surface roughness of 7136 aluminium alloy in end milling process. To conduct the experiments, three cutting parameters were used: cutting speed, feed per tooth and cutting depth. To analyse the surface quality, the surface roughness Ra (the arithmetic average of the absolute values) was measured. It was determined the recommended configuration regarding the optimum values of each machining parameter and the interactions between them, in order to obtain the better cutting process performance and to reduce the surface roughness sensitivity to uncontrollable factors. Based on a full factorial experiment were confirmed the obtained results by applying the Taguchi's method. Final results are a starting point for further research.

  13. Moulding technique demonstrates the contribution of surface geometry to the super-hydrophobic properties of the surface of a water strider.

    PubMed

    Goodwyn, Pablo Perez; De Souza, Emerson; Fujisaki, Kenji; Gorb, Stanislav

    2008-05-01

    Water striders (Insecta, Heteroptera, Gerridae) have a complex three-dimensional waterproof hairy cover which renders them super-hydrophobic. This paper experimentally demonstrates for the first time the mechanism of the super-hydrophobicity of the cuticle of water striders. The complex two-level microstructure of the surface, including the smallest microtrichia (200-300 nm wide, 7-9 microm long), was successfully replicated using a two-step moulding technique. The mould surface exhibited super-hydrophobic properties similar to the original insect surface. The average water contact angle (CA) of the mould was 164.7 degrees , whereas the CA of the flat polymer was about 92 degrees . These results show that (i) in water striders, the topography of the surface plays a dominant role in super-hydrophobicity, (ii) very low surface energy bulk material (typically smaller than 0.020 N m(-1)) is not necessary to achieve super-hydrophobicity; and (3) the two-step moulding technique may be used to mimic quite complex biological functional surfaces.

  14. Separating Atmospheric and Surface Contributions in Hyperspectral Imager for the Coastal Ocean (HICO) Scenes using Informed Non-Negative Matrix Factorization

    NASA Astrophysics Data System (ADS)

    Wright, L.; Coddington, O.; Pilewskie, P.

    2016-12-01

    Hyperspectral instruments are a growing class of Earth observing sensors designed to improve remote sensing capabilities beyond discrete multi-band sensors by providing tens to hundreds of continuous spectral channels. Improved spectral resolution, range and radiometric accuracy allow the collection of large amounts of spectral data, facilitating thorough characterization of both atmospheric and surface properties. These new instruments require novel approaches for processing imagery and separating surface and atmospheric signals. One approach is numerical source separation, which allows the determination of the underlying physical causes of observed signals. Improved source separation will enable hyperspectral imagery to better address key science questions relevant to climate change, including land-use changes, trends in clouds and atmospheric water vapor, and aerosol characteristics. We developed an Informed Non-negative Matrix Factorization (INMF) method for separating atmospheric and surface sources. INMF offers marked benefits over other commonly employed techniques including non-negativity, which avoids physically impossible results; and adaptability, which tailors the method to hyperspectral source separation. The INMF algorithm is adapted to separate contributions from physically distinct sources using constraints on spectral and spatial variability, and library spectra to improve the initial guess. We also explore methods to produce an initial guess of the spatial separation patterns. Using this INMF algorithm we decompose hyperspectral imagery from the NASA Hyperspectral Imager for the Coastal Ocean (HICO) with a focus on separating surface and atmospheric signal contributions. HICO's coastal ocean focus provides a dataset with a wide range of atmospheric conditions, including high and low aerosol optical thickness and cloud cover, with only minor contributions from the ocean surfaces in order to isolate the contributions of the multiple atmospheric

  15. Hydrodynamic cavitation to improve bulk fluid to surface mass transfer in a nonimmersed ultraviolet system for minimal processing of opaque and transparent fluid foods.

    PubMed

    Milly, P J; Toledo, R T; Chen, J; Kazem, B

    2007-11-01

    Ultraviolet (UV)-induced chemical reactions and inactivation of microorganisms in transparent and opaque fluids are strongly dependent upon the homogenous exposure of the target species to the UV irradiation. Current UV technologies used in water disinfection and food preservation applications have limited efficacy due to suspended particles shading target species. An Ultraviolet-Shockwave Power Reactor (UV-SPR) consisting of an inner rotating rotor and a stationary quartz housing and 2 end plates was used to induce 'controlled cavitation.' Eight UV low-pressure mercury lamps spaced uniformly were installed lengthwise around the quartz housing periphery. A KI to I(3) (-)chemical dosimeter for UV was used to quantify photons received by fluid in the annular space of the SPR. UV dose (J/m(2)) increased from 97 J/m(2) at 0 rpm to over 700 J/m(2) for SPR speeds above 2400 rpm. Inactivation of E. coli 25922 in apple juice and skim milk in the UV-SPR at exit temperatures below 45 degrees C was greater than 4.5 and 3 logs, respectively. The UV-SPR system proved successful in increasing the mass transfer of transparent and opaque fluid to the UV irradiated surface.

  16. Contributions of adhesive proteins to the cellular and bacterial response to surfaces treated with bioactive polymers: case of poly(sodium styrene sulfonate) grafted titanium surfaces.

    PubMed

    Felgueiras, Helena P; Aissa, Ines Ben; Evans, Margaret D M; Migonney, Véronique

    2015-11-01

    The research developed on functionalized model or prosthetic surfaces with bioactive polymers has raised the possibility to modulate and/or control the biological in vitro and in vivo responses to synthetic biomaterials. The mechanisms underlying the bioactivity exhibited by sulfonated groups on surfaces involves both selective adsorption and conformational changes of adsorbed proteins. Indeed, surfaces functionalized by grafting poly(sodium styrene sulfonate) [poly(NaSS)] modulate the cellular and bacterial response by inducing specific interactions with fibronectin (Fn). Once implanted, a biomaterial surface is exposed to a milieu of many proteins that compete for the surface which dictates the subsequent biological response. Once understood, this can be controlled by dictating exposure of active binding sites. In this in vitro study, we report the influence of binary mixtures of proteins [albumin (BSA), Fn and collagen type I (Col I)] adsorbed on poly(NaSS) grafted Ti6Al4V on the adhesion and differentiation of MC3T3-E1 osteoblast-like cells and the adhesion and proliferation of Staphylococcus aureus (S. aureus). Outcomes showed that poly(NaSS) stimulated cell spreading, attachment strength, differentiation and mineralization, whatever the nature of protein provided at the interface compared with ungrafted Ti6Al4V (control). While in competition, Fn and Col I were capable of prevailing over BSA. Fn played an important role in the early interactions of the cells with the surface, while Col I was responsible for increased alkaline phosphatase, calcium and phosphate productions associated with differentiation. Poly(NaSS) grafted surfaces decreased the adhesion of S. aureus and the presence of Fn on these chemically altered surfaces increased bacterial resistance ≈70% compared to the ungrafted Ti6Al4V. Overall, our study showed that poly(NaSS) grafted Ti6Al4V selectively adsorbed proteins (particularly Fn) promoting the adhesion and differentiation of osteoblast

  17. Up-cycling waste glass to minimal water adsorption/absorption lightweight aggregate by rapid low temperature sintering: optimization by dual process-mixture response surface methodology.

    PubMed

    Velis, Costas A; Franco-Salinas, Claudia; O'Sullivan, Catherine; Najorka, Jens; Boccaccini, Aldo R; Cheeseman, Christopher R

    2014-07-01

    Mixed color waste glass extracted from municipal solid waste is either not recycled, in which case it is an environmental and financial liability, or it is used in relatively low value applications such as normal weight aggregate. Here, we report on converting it into a novel glass-ceramic lightweight aggregate (LWA), potentially suitable for high added value applications in structural concrete (upcycling). The artificial LWA particles were formed by rapidly sintering (<10 min) waste glass powder with clay mixes using sodium silicate as binder and borate salt as flux. Composition and processing were optimized using response surface methodology (RSM) modeling, and specifically (i) a combined process-mixture dual RSM, and (ii) multiobjective optimization functions. The optimization considered raw materials and energy costs. Mineralogical and physical transformations occur during sintering and a cellular vesicular glass-ceramic composite microstructure is formed, with strong correlations existing between bloating/shrinkage during sintering, density and water adsorption/absorption. The diametrical expansion could be effectively modeled via the RSM and controlled to meet a wide range of specifications; here we optimized for LWA structural concrete. The optimally designed LWA is sintered in comparatively low temperatures (825-835 °C), thus potentially saving costs and lowering emissions; it had exceptionally low water adsorption/absorption (6.1-7.2% w/wd; optimization target: 1.5-7.5% w/wd); while remaining substantially lightweight (density: 1.24-1.28 g.cm(-3); target: 0.9-1.3 g.cm(-3)). This is a considerable advancement for designing effective environmentally friendly lightweight concrete constructions, and boosting resource efficiency of waste glass flows.

  18. Contribution of fine filler particles to energy dissipation during wet sliding of elastomer compounds on a rough surface

    NASA Astrophysics Data System (ADS)

    Pan, Xiao-Dong

    2007-08-01

    Elastomer compounds reinforced with precipitated silica can exhibit elevated wet sliding friction on a rough surface in comparison with corresponding compounds filled with carbon black particles. The underlying mechanism is currently not well understood. To unravel this puzzling observation, the variation of wet sliding friction with filler volume fraction is examined at the sliding speed of the order of 1 m s-1 under different lubrication conditions. Depending on the lubrication liquid—water or ethanol—a compound that shows both higher bulk hysteretic loss and lower modulus does not always exhibit a higher wet sliding friction. A thorough characterization of the bulk rheology of the compounds investigated fails to provide the rationale for such behaviour, thus constituting an apparent violation of the conventional viscoelastic understanding of rubber friction on a rough surface. On the other hand, the detected lowering of friction when the lubrication liquid is changed from water to ethanol resembles the effect of liquid medium on interfacial adhesion reported in the literature. Hence, it is suggested that a stronger interfacial attractive interaction should exist in water between the road surface and silica particles on the compound surface immediately next to the road surface. This should be related to the elevated wet sliding friction detected for silica-filled compounds under water lubrication.

  19. BDNF contributes to both rapid and homeostatic alterations in AMPA receptor surface expression in nucleus accumbens medium spiny neurons

    PubMed Central

    Reimers, Jeremy M.; Loweth, Jessica A.; Wolf, Marina E.

    2015-01-01

    Brain-derived neurotrophic factor (BDNF) plays a critical role in plasticity at glutamate synapses and the effects of repeated cocaine exposure. We recently showed that intracranial injection of BDNF into the rat nucleus accumbens (NAc), a key region for cocaine addiction, rapidly increases AMPA receptor (AMPAR) surface expression. To further characterize BDNF’s role in both rapid AMPAR trafficking and slower, homeostatic changes in AMPAR surface expression, we investigated the effects of acute (30 min) and long-term (24 h) treatment with BDNF on AMPAR distribution in NAc medium spiny neurons from postnatal rats co-cultured with mouse prefrontal cortex (PFC) neurons to restore excitatory inputs. Immunocytochemical studies showed that acute BDNF treatment increased cell surface GluA1 and GluA2 levels, as well as their co-localization, on NAc neurons. This effect of BDNF, confirmed using a protein crosslinking assay, was dependent on ERK but not AKT signaling. In contrast, long-term BDNF treatment decreased AMPAR surface expression on NAc neurons. Based on this latter result, we tested the hypothesis that BDNF plays a role in AMPAR “scaling down” in response to a prolonged increase in neuronal activity produced by bicuculline (24 h). Supporting this hypothesis, decreasing BDNF signaling with the extracellular BDNF scavenger TrkB-Fc prevented the scaling down of GluA1 and GluA2 surface levels in NAc neurons normally produced by bicuculline. In conclusion, BDNF exerts bidirectional effects on NAc AMPAR surface expression, depending on duration of exposure. Furthermore, BDNF’s involvement in synaptic scaling in the NAc differs from its previously described role in the visual cortex. PMID:24712995

  20. A survey of surface hemorheological experiments on the inhibition of fibrinogenin formation employing surface layers of fibrinogen systems with heparins and other substances. A contribution on antithrombogenic action.

    PubMed

    Copley, A L; King, R G

    1984-08-01

    In earlier studies using a modified Weissenberg Rheogoniometer, we found decreased rigidity or torque values (tau) in surface layers of heparin plasma, when compared to tau of oxalate plasma from the same blood withdrawal (Thrombosis Res. 1, 1-17, 1972). In subsequent studies of the viscoelasticity of surface layers of highly purified fibrinogen (97-100% clottability) of human and bovine origin, we found, with some heparins, marked lowering of surface viscous moduli (eta's) and of surface elastic moduli (Gs). With some heparins no changes in tau, eta's and Gs occurred. Certain low molecular weight (LMW) preparations of heparins showed decreases, but some did not. This is also the case with heparins of low and high affinity for antithrombin. Calcium heparin and Ca2+ alone always increased eta's and Gs, when added to the fibrinogen system. N-desulfated heparin both decreased or did not change eta's and Gs. Preparations of fibrinogen in dog plasma, to which sodium heparin was added, resulted in a decrease of tau values. These results appear to emphasize that plasma proteins other than fibrinogen, and other plasma constituents, may affect surface hemorheological values. These findings suggest needed interface studies of fibrinogen systems to which plasma or plasma constituents are added. We found also that other substances, i.e., dextran MW 20,000; dextran sulfate MW 17,000; sodium hyaluronate and depolymerized hyaluronate decreased tau, eta's and Gs markedly. Recent findings in the literature are discussed in relation to thrombogenesis in which fibrinogenin gelation is considered as the initial phase of blood clotting. Fibrinogenin is the new term for initial fibrinogen aggregation and subsequent fibrinogen gelation without thrombin participation. The inhibition of fibrinogenin formation extra vivum is considered to be a valid indicator of antithrombogenic activity of substances which play a significant role in investigations on the therapy and prevention of

  1. Assessment of the biospheric contribution to surface atmospheric CO2 concentrations over East Asia with a regional chemical transport model

    NASA Astrophysics Data System (ADS)

    Kou, Xingxia; Zhang, Meigen; Peng, Zhen; Wang, Yinghong

    2015-03-01

    A regional chemical transport model, RAMS-CMAQ, was employed to assess the impacts of biosphere-atmosphere C2 exchange on seasonal variations in atmospheric C2 concentrations over East Asia. Simulated C2 concentrations were compared with observations at 12 surface stations and the comparison showed they were generally in good agreement. Both observations and simulations suggested that surface C2 over East Asia features a summertime trough due to biospheric absorption, while in some urban areas surface C2 has a distinct summer peak, which could be attributed to the strong impact from anthropogenic emissions. Analysis of the model results indicated that biospheric fluxes and fossil-fuel emissions are comparably important in shaping spatial distributions of C2 near the surface over East Asia. Biospheric flux plays an important role in the prevailing spatial pattern of C2 enhancement and reduction on the synoptic scale due to the strong seasonality of biospheric C2 flux. The elevation of C2 levels by the biosphere during winter was found to be larger than 5 ppm in North China and Southeast China, and during summertime a significant depletion (⩾ 7 ppm) occurred in most areas, except for the Indo-China Peninsula where positive bioflux values were found.

  2. The contribution of rice agriculture to methylmercury in surface waters: A review of data from the Sacramento Valley, California

    USGS Publications Warehouse

    Tanner, K. Christy; Windham-Myers, Lisamarie; Fleck, Jacob; Tate, Kenneth W.; McCord, Stephen A.; Linquist, Bruce A.

    2017-01-01

    Methylmercury (MeHg) is a bioaccumulative pollutant produced in and exported from flooded soils, including those used for rice (Oriza sativa L.) production. Using unfiltered aqueous MeHg data from MeHg monitoring programs in the Sacramento River watershed from 1996 to 2007, we assessed the MeHg contribution from rice systems to the Sacramento River. Using a mixed-effects regression analysis, we compared MeHg concentrations in agricultural drainage water from rice-dominated regions (AgDrain) to MeHg concentrations in the Sacramento and Feather Rivers, both upstream and downstream of AgDrain inputs. We also calculated MeHg loads from AgDrains and the Sacramento and Feather Rivers. Seasonally, MeHg concentrations were higher during November through May than during June through October, but the differences varied by location. Relative to upstream, November through May AgDrain least-squares mean MeHg concentration (0.18 ng L−1, range 0.15–0.23 ng L−1) was 2.3-fold higher, while June through October AgDrain mean concentration (0.097 ng L−1, range 0.6–1.6 ng L−1) was not significantly different from upstream. June through October AgDrain MeHg loads contributed 10.7 to 14.8% of the total Sacramento River MeHg load. Missing flow data prevented calculation of the percent contribution of AgDrains in November through May. At sites where calculation was possible, November through May loads made up 70 to 90% of the total annual load. Elevated flow and MeHg concentration in November through May both contribute to the majority of the AgDrain MeHg load occurring during this period. Methylmercury reduction efforts should target elevated November through May MeHg concentrations in AgDrains. However, our findings suggest that the contribution and environmental impact of rice is an order of magnitude lower than previous studies in the California Yolo Bypass.

  3. The Contribution of Rice Agriculture to Methylmercury in Surface Waters: A Review of Data from the Sacramento Valley, California.

    PubMed

    Tanner, K Christy; Windham-Myers, Lisamarie; Fleck, Jacob A; Tate, Kenneth W; McCord, Stephen A; Linquist, Bruce A

    2017-01-01

    Methylmercury (MeHg) is a bioaccumulative pollutant produced in and exported from flooded soils, including those used for rice ( L.) production. Using unfiltered aqueous MeHg data from MeHg monitoring programs in the Sacramento River watershed from 1996 to 2007, we assessed the MeHg contribution from rice systems to the Sacramento River. Using a mixed-effects regression analysis, we compared MeHg concentrations in agricultural drainage water from rice-dominated regions (AgDrain) to MeHg concentrations in the Sacramento and Feather Rivers, both upstream and downstream of AgDrain inputs. We also calculated MeHg loads from AgDrains and the Sacramento and Feather Rivers. Seasonally, MeHg concentrations were higher during November through May than during June through October, but the differences varied by location. Relative to upstream, November through May AgDrain least-squares mean MeHg concentration (0.18 ng L, range 0.15-0.23 ng L) was 2.3-fold higher, while June through October AgDrain mean concentration (0.097 ng L, range 0.6-1.6 ng L) was not significantly different from upstream. June through October AgDrain MeHg loads contributed 10.7 to 14.8% of the total Sacramento River MeHg load. Missing flow data prevented calculation of the percent contribution of AgDrains in November through May. At sites where calculation was possible, November through May loads made up 70 to 90% of the total annual load. Elevated flow and MeHg concentration in November through May both contribute to the majority of the AgDrain MeHg load occurring during this period. Methylmercury reduction efforts should target elevated November through May MeHg concentrations in AgDrains. However, our findings suggest that the contribution and environmental impact of rice is an order of magnitude lower than previous studies in the California Yolo Bypass.

  4. Minimizing Classroom Interruptions.

    ERIC Educational Resources Information Center

    Partin, Ronald L.

    1987-01-01

    Offers suggestions for minimizing classroom interruptions, such as suggesting to the principal that announcements not be read over the intercom during class time and arranging desks and chairs so as to minimize visual distractions. Contains a school interruption survey form. (JC)

  5. The contribution of ventricular apicobasal and transmural repolarization patterns to the development of the T wave body surface potentials in frogs (Rana temporaria) and pike (Esox lucius).

    PubMed

    Vaykshnorayte, Marina A; Azarov, Jan E; Tsvetkova, Alena S; Vityazev, Vladimir A; Ovechkin, Alexey O; Shmakov, Dmitry N

    2011-05-01

    The study aimed at the simultaneous determination of the transmural and apicobasal differences in the repolarization timing and the comparison of the contributions of these two repolarization gradients to the development of the body surface T wave potentials in animals with the single heart ventricle (fishes and amphibians). Unipolar potentials were measured on the body surface, epicardium and in the intramural (subepicardial, Epi; midmyocardial; and subendocardial, Endo) ventricular layers of 9 pike and 8 frogs. Activation times, repolarization times and activation-recovery intervals were determined. A transmural gradient in repolarization durations in frogs (Endo>Epi, P<0.024) corresponds to the gradient in repolarization times. No significant transmural difference in repolarization duration is observed in pike that produces a repolarization sequence from Endo to Epi (Endosurface potential distributions during the T wave in spite of the opposite transmural repolarization patterns. The present study suggests that the apicobasal repolarization gradient provides the major contribution to the development of the T wave potentials on the body surface in pike and frogs.

  6. A Minimal Two-band Model for the Superconducting Fe-pnictides

    SciTech Connect

    Raghu, S.

    2010-03-25

    Following the discovery of the Fe-pnictide superconductors, LDA band structure calculations showed that the dominant contributions to the spectral weight near the Fermi energy came from the Fe 3d orbitals. The Fermi surface is characterized by two hole surfaces around the {Lambda} point and two electron surfaces around the M point of the 2 Fe/cell Brillouin zone. Here, we describe a 2-band model that reproduces the topology of the LDA Fermi surface and exhibits both ferromagnetic and q = ({pi}, 0) spin density wave (SDW) fluctuations. We argue that this minimal model contains the essential low energy physics of these materials.

  7. Surface magnetic contribution in zinc ferrite thin films studied by element- and site-specific XMCD hysteresis-loops

    NASA Astrophysics Data System (ADS)

    Mendoza Zélis, P.; Pasquevich, G. A.; Salcedo Rodríguez, K. L.; Sánchez, F. H.; Rodríguez Torres, C. E.

    2016-12-01

    Element- and site-specific magnetic hysteresis-loops measurements on a zinc ferrite (ZnFe2O4) thin film were performed by X-ray magnetic circular dichroism. Results show that iron in octahedral and tetrahedral sites of spinel structure are coupled antiferromagnetically between them, and when magnetic field is applied the magnetic moment of the ion located at octahedral sites aligns along the field direction. The magnetic measurements reveal a distinctive response of the surface with in-plane anisotropy and an effective anisotropy constant value of 12.6 kJ/m3. This effective anisotropy is due to the combining effects of demagnetizing field and, volume and surface magnetic anisotropies KV =3.1 kJ/m3 and KS =16 μJ/m2.

  8. Minimal Doubling and Point Splitting

    SciTech Connect

    Creutz, M.

    2010-06-14

    Minimally-doubled chiral fermions have the unusual property of a single local field creating two fermionic species. Spreading the field over hypercubes allows construction of combinations that isolate specific modes. Combining these fields into bilinears produces meson fields of specific quantum numbers. Minimally-doubled fermion actions present the possibility of fast simulations while maintaining one exact chiral symmetry. They do, however, introduce some peculiar aspects. An explicit breaking of hyper-cubic symmetry allows additional counter-terms to appear in the renormalization. While a single field creates two different species, spreading this field over nearby sites allows isolation of specific states and the construction of physical meson operators. Finally, lattice artifacts break isospin and give two of the three pseudoscalar mesons an additional contribution to their mass. Depending on the sign of this mass splitting, one can either have a traditional Goldstone pseudoscalar meson or a parity breaking Aoki-like phase.

  9. LLNL Waste Minimization Program Plan

    SciTech Connect

    Not Available

    1990-02-14

    This document is the February 14, 1990 version of the LLNL Waste Minimization Program Plan (WMPP). The Waste Minimization Policy field has undergone continuous changes since its formal inception in the 1984 HSWA legislation. The first LLNL WMPP, Revision A, is dated March 1985. A series of informal revision were made on approximately a semi-annual basis. This Revision 2 is the third formal issuance of the WMPP document. EPA has issued a proposed new policy statement on source reduction and recycling. This policy reflects a preventative strategy to reduce or eliminate the generation of environmentally-harmful pollutants which may be released to the air, land surface, water, or ground water. In accordance with this new policy new guidance to hazardous waste generators on the elements of a Waste Minimization Program was issued. In response to these policies, DOE has revised and issued implementation guidance for DOE Order 5400.1, Waste Minimization Plan and Waste Reduction reporting of DOE Hazardous, Radioactive, and Radioactive Mixed Wastes, final draft January 1990. This WMPP is formatted to meet the current DOE guidance outlines. The current WMPP will be revised to reflect all of these proposed changes when guidelines are established. Updates, changes and revisions to the overall LLNL WMPP will be made as appropriate to reflect ever-changing regulatory requirements. 3 figs., 4 tabs.

  10. High cloud variations with surface temperature from 2002 to 2015: Contributions to atmospheric radiative cooling rate and precipitation changes

    NASA Astrophysics Data System (ADS)

    Liu, Run; Liou, Kuo-Nan; Su, Hui; Gu, Yu; Zhao, Bin; Jiang, Jonathan H.; Liu, Shaw Chen

    2017-05-01

    The global mean precipitation is largely constrained by atmospheric radiative cooling rates (Qr), which are sensitive to changes in high cloud fraction. We investigate variations of high cloud fraction with surface temperature (Ts) from July 2002 to June 2015 and compute their radiative effects on Qr using the Fu-Liou-Gu plane-parallel radiation model. We find that the tropical mean (30°S-30°N) high cloud fraction decreases with increasing Ts at a rate of about -1.0 ± 0.34% K-1 from 2002 to 2015, which leads to an enhanced atmospheric cooling around 0.86 W m-2 K-1. On the other hand, the northern midlatitudes (30°N-60°N) high cloud fraction increases with surface warming at a rate of 1.85 ± 0.65% K-1 and the near-global mean (60°S-60°N) high cloud fraction shows a statistically insignificant decreasing trend with increasing Ts over the analysis period. Dividing high clouds into cirrus, cirrostratus, and deep convective clouds, we find that cirrus cloud fraction increases with surface warming at a rate of 0.32 ± 0.11% K-1 (0.01 ± 0.17% K-1) for the near-global mean (tropical mean), while cirrostratus and deep convective clouds decrease with surface warming at a rate of -0.02 ± 0.18% K-1 and -0.33 ± 0.18% K-1 for the near-global mean and -0.64 ± 0.23% K-1 and -0.37 ± 0.13% K-1 for the tropical mean, respectively. High cloud fraction response to feedback to Ts accounts for approximately 1.9 ± 0.7% and 16.0 ± 6.1% of the increase in precipitation per unit surface warming over the period of 2002-2015 for the near-global mean and the tropical mean, respectively.

  11. SdrF, a Staphylococcus epidermidis Surface Protein, Contributes to the Initiation of Ventricular Assist Device Driveline–Related Infections

    PubMed Central

    Arrecubieta, Carlos; Toba, Faustino A.; von Bayern, Manuel; Akashi, Hirokazu; Deng, Mario C.; Naka, Yoshifumi; Lowy, Franklin D.

    2009-01-01

    Staphylococcus epidermidis remains the predominant pathogen in prosthetic-device infections. Ventricular assist devices, a recently developed form of therapy for end-stage congestive heart failure, have had considerable success. However, infections, most often caused by Staphylococcus epidermidis, have limited their long-term use. The transcutaneous driveline entry site acts as a potential portal of entry for bacteria, allowing development of either localized or systemic infections. A novel in vitro binding assay using explanted drivelines obtained from patients undergoing transplantation and a heterologous lactococcal system of surface protein expression were used to identify S. epidermidis surface components involved in the pathogenesis of driveline infections. Of the four components tested, SdrF, SdrG, PIA, and GehD, SdrF was identified as the primary ligand. SdrF adherence was mediated via its B domain attaching to host collagen deposited on the surface of the driveline. Antibodies directed against SdrF reduced adherence of S. epidermidis to the drivelines. SdrF was also found to adhere with high affinity to Dacron, the hydrophobic polymeric outer surface of drivelines. Solid phase binding assays showed that SdrF was also able to adhere to other hydrophobic artificial materials such as polystyrene. A murine model of infection was developed and used to test the role of SdrF during in vivo driveline infection. SdrF alone was able to mediate bacterial adherence to implanted drivelines. Anti-SdrF antibodies reduced S. epidermidis colonization of implanted drivelines. SdrF appears to play a key role in the initiation of ventricular assist device driveline infections caused by S. epidermidis. This pluripotential adherence capacity provides a potential pathway to infection with SdrF-positive commensal staphylococci first adhering to the external Dacron-coated driveline at the transcutaneous entry site, then spreading along the collagen-coated internal portion of the

  12. The cloud and surface contributions to the net radiation balance during the 1982-83 El Nino

    NASA Technical Reports Server (NTRS)

    Sohn, Byung-Ju; Smith, Eric A.

    1989-01-01

    This paper investigates the interannual fluctuations in cloud and surface forcing associated with the unusually intense ENSO event of 1982-1983. The analysis was performed over a six-year period for which global radiation budget and cloudiness measurements from the Nimbus-7 experiments were available simultaneously. It is shown that major anomalies in cloudiness, due mostly to shifts of a major convective center in the Pacific Ocean associated with inactive or active ENSO phase, are most notable over the equatorial central Pacific, the maritime continent over the western Pacific, the South Pacific convergence zone, and the Indian Ocean.

  13. Polybrominated Diphenyl Ethers (PBDEs) in Surface Soils across Five Asian Countries: Levels, Spatial Distribution, and Source Contribution.

    PubMed

    Li, Wen-Long; Ma, Wan-Li; Jia, Hong-Liang; Hong, Wen-Jun; Moon, Hyo-Bang; Nakata, Haruhiko; Minh, Nguyen Hung; Sinha, Ravindra Kumar; Chi, Kai Hsien; Kannan, Kurunthachalam; Sverko, Ed; Li, Yi-Fan

    2016-12-06

    A total of 23 polybrominated diphenyl ether (PBDE) congeners were measured in soil samples collected in areas with no known point source [urban/rural/background (U/R/B) sites] and in areas with known point source [brominated flame retardant (BFR)-related industrial sites (F sites) and e-waste recycling sites (E sites)] across five Asian countries. The highest PBDE concentrations were found in BFR-related industrial and e-waste recycling sites. The concentrations of PBDEs in U/R/B sites decreased in the following order: urban > rural > background sites. Total PBDE concentrations were dominated by BDE-209, while BDE-17, -85, -138, -191, -204, and -205 were the least abundant compounds. In both urban sites and rural sites, the mean concentrations of total PBDEs (∑23BDEs) in soils decreased in the following order: Japan > China > South Korea > India > Vietnam. The concentrations of PBDEs in soils were comparable with those reported in other studies. Among the three commercial PBDE mixtures, relatively large contributions of commercial penta-BDE were observed in Vietnam, whereas deca-BDE was the dominant form in mixtures contributing from 55.8 ± 2.5 to 100.0 ± 1.2% of the total PBDEs in soils collected from other four countries. Regression analysis suggested that local population density (PD) is a good indicator of PBDEs in soils of each country. Significant and positive correlation between soil organic content and PBDE level was observed in Chinese soil for most nondeca-BDE homologues with their usage stopped 10 years ago, indicating its important role in controlling the revolatilization of PBDEs from soil and changing the spatial trend of PBDE in soil from the primary distribution pattern to the secondary distribution pattern, especially when primary emission is ceased.

  14. Cell surface syndecan-1 contributes to binding and function of macrophage migration inhibitory factor (MIF) on epithelial tumor cells.

    PubMed

    Pasqualon, Tobias; Lue, Hongqi; Groening, Sabine; Pruessmeyer, Jessica; Jahr, Holger; Denecke, Bernd; Bernhagen, Jürgen; Ludwig, Andreas

    2016-04-01

    Surface expressed proteoglycans mediate the binding of cytokines and chemokines to the cell surface and promote migration of various tumor cell types including epithelial tumor cells. We here demonstrate that binding of the chemokine-like inflammatory cytokine macrophage migration inhibitory factor (MIF) to epithelial lung and breast tumor cell lines A549 and MDA-MB231 is sensitive to enzymatic digestion of heparan sulphate chains and competitive inhibition with heparin. Moreover, MIF interaction with heparin was confirmed by chromatography and a structural comparison indicated a possible heparin binding site. These results suggested that proteoglycans carrying heparan sulphate chains are involved in MIF binding. Using shRNA-mediated gene silencing, we identified syndecan-1 as the predominant proteoglycan required for the interaction with MIF. MIF binding was decreased by induction of proteolytic shedding of syndecan-1, which could be prevented by inhibition of the metalloproteinases involved in this process. Finally, MIF induced the chemotactic migration of A549 cells, wound closure and invasion into matrigel without affecting cell proliferation. These MIF-induced responses were abrogated by heparin or by silencing of syndecan-1. Thus, our study indicates that syndecan-1 on epithelial tumor cells promotes MIF binding and MIF-mediated cell migration. This may represent a relevant mechanism through which MIF enhances tumor cell motility and metastasis.

  15. FK506 binding protein mutational analysis. Defining the surface residue contributions to stability of the calcineurin co-complex.

    PubMed

    Futer, O; DeCenzo, M T; Aldape, R A; Livingston, D J

    1995-08-11

    The 12- and 13-kDa FK506 binding proteins (FKBP12 and FKBP13) are cis-trans peptidyl-prolyl isomerases that bind the macrolides FK506 (Tacrolimus) and rapamycin (Sirolimus). The FKBP12.FK506 complex is immunosuppressive, acting as an inhibitor of the protein phosphatase calcineurin. We have examined the role of the key surface residues of FKBP12 and FKBP13 in calcineurin interactions by generating substitutions at these residues by site-directed mutagenesis. All mutants are active catalysts of the prolyl isomerase reaction, and bind FK506 or rapamycin with high affinity. Mutations at FKBP12 residues Asp-37, Arg-42, His-87, and Ile-90 decrease calcineurin affinity of the mutant FKBP12.FK506 complex by as much as 2600-fold in the case of I90K. Replacement of three FKBP13 surface residues (Gln-50, Ala-95, and Lys-98) with the corresponding homologous FKBP12 residues (Arg-42, His-87, and Ile-90) generates an FKBP13 variant that is equivalent to FKBP12 in its affinity for FK506, rapamycin, and calcineurin. These results confirm the role of two loop regions of FKBP12 (residues 40-44 and 84-91) as part of the effector face that interacts with calcineurin.

  16. Contribution of Persistent Scatterer Interferometry (PSI) to map surface displacement in the Travale - Radicondoli Geothermal area (Tuscany, Italy)

    NASA Astrophysics Data System (ADS)

    Botteghi, S.; Del Ventisette, C.; Montanari, D.; Manzella, A.; Moretti, S.

    2012-12-01

    Synthetic Aperture Radar Interferometry (InSAR) has been successfully used to map the deformation of the earth surface. Multi-interferogram techniques, known as Persistent Scatterer Interferometry (PSInSAR), are a powerful tools to monitoring surface deformation connected with seismic and volcanic activity, landslides, and subsidence due to fluid extraction. The availability of many data acquired by space agencies, as well as European Space Agency (ESA), and the high spatial resolution of PSI methodology, allow to reconstruct the temporal evolution of the ground surface deformations, measuring relative displacements of individual points (Permanent Scatterers, or PS) and estimating the velocity of deformation recorded in the period covered by satellites acquisitions. The possibility to detect the continuous ground surface displacement can provide an important information about reservoir behavior during production, helping to improve the development of a geothermal field (e.g. Hole et al. 2007; JVGR). The present study aims to test PSInSAR techniques over Travale-Radicondoli area, in order to assess the surface deformation connected with the exploitation of this geothermal field. The Travale-Radicondoli area is located about 15 km E-SE of the well-known Larderello-geothermal filed - southwestern Tuscany, Italy-, extending at the south-western margin of the Anqua-Radicondoli Basin. In this area two different reservoir have been identified: a shallow steam dominated reservoir, consisting of carbonate and evaporitic units, and a deep superheated steam reservoir, within metamorphic basement units and thermometamorphic rocks. Industrial exploitation of geothermal resources in the Travale-Radicondoli area began in 1950 and concerned only a small zone on the southern margin of the area, known as the "old field", characterized by a water dominated system. Since 1973, an intensive exploitation started in a more productive area located north-east of the "old field", where the

  17. Atmospheric fluxes of organic matter to the Mediterranean Sea: contribution to the elemental C: N: P ratios of surface dissolved organic matter

    NASA Astrophysics Data System (ADS)

    Djaoudi, Kahina; Barani, Aude; Hélias-Nunige, Sandra; Van Wambeke, France; Pulido-Villena, Elvira

    2016-04-01

    It has become increasingly apparent that atmospheric transport plays an important role in the supply of macro- and micro-nutrients to the surface ocean. This atmospheric input is especially important in oligotrophic regions where the vertical supply from the subsurface is low particularly during the stratification period. Compared to its inorganic counterpart, the organic fraction of atmospheric deposition and its impact on surface ocean biogeochemistry has been poorly explored. In the ocean, carbon export to depth (and therefore, its long term storage with presumed consequences on climate) occurs both through particle sedimentation and through the transfer of dissolved organic matter (DOM) via diffusion or convection. DOM export from the surface ocean represents up to 50% of total organic carbon flux to the deep ocean in oligotrophic regions such as the Mediterranean Sea. The efficiency of this C export pathway depends, among others, on the elemental C: N: P ratios of surface DOM which might be affected by the relative contribution of microbial processes and allochthonous sources. This work reports a one-year time-series (April 2015-April 2016) of simultaneous measurements of (1) total (dry + wet) atmospheric fluxes of organic carbon, organic nitrogen, and organic phosphorus and (2) concentration of dissolved organic carbon, dissolved organic nitrogen, and dissolved organic phosphate at the surface layer (0-200 m) in the NW Mediterranean Sea. Atmospheric and oceanic surveys were conducted at the Frioul and ANTARES sites, respectively, operated by the long-term observation network MOOSE (Mediterranean Oceanic Observation System for the Environment).

  18. Suspended sediment load and mechanical erosion in the Senegal Basin — Estimation of the surface runoff concentration and relative contributions of channel and slope erosion

    NASA Astrophysics Data System (ADS)

    Kattan, Z.; Gac, J. Y.; Probst, J. L.

    1987-06-01

    The main purpose of this paper is to propose a method to better understand the suspended sediment dynamics in the Senegal Basin, and the behaviour of the river particulate load at Bakel gauging station (218,000 km 2) during the period 1979-1984. The method is based on the estimation of surface discharge using a simple hydrological model which allows separation of the different flow components of the annual hydrograph. Then the suspended sediment loads can be correlated with the surface discharge. During the study period, the mean annual flow (330 m 3s -1) represented only 46% of the mean long-term flow (1903-1984), and the mean yearly particulate load carried by the Senegal River was about 1.9 million tons. Two approaches are used to estimate the different contributions to the river's suspended sediment transport. The main contribution originates from slope erosion, which supplies 50-80% of the total sediment transport and the second originates from channel erosion. The suspended sediment concentration in the surface runoff, primarily calculated by a global annual method, ranges from 0.9 to 1.6 gl -1 and averages 1.3 gl -1. After correction for channel erosion input, this concentration is reduced to 1.1 gl -1.

  19. Contribution of the surface layer to the seeing at San Pedro Mártir: Si-mul-ta-neous microthermal and DIMM measurements

    NASA Astrophysics Data System (ADS)

    Sánchez, L. J.; Cruz, D. X.; Avila, R.; Agabi, A.; Azouit, M.; Cuevas, S.; Garfias, F.; González, S. I.; Harris, O.; Masciadri, E.; Orlov, V. G.; Vernin, J.; Voitsekhovich, V. V.

    2003-09-01

    Results from experiments measuring the contribution of the surface layer to the optical seeing at the Observatorio Astronómico Nacional at San Pedro Mártir (OAN-SPM) are reported. Microthermal sensors placed at 7 levels on a 15-m-high instrumented mast were used to measure the structure constant of the refractive index C[n]2. The integrated seeing parameter was measured with a Differential Image Motion Monitor during 23 nights. Log-normal statistics were found for the seeing with mean of 0.98 arcsec and median value 0.84 arcsec . The contribution of the surface layer (2.3 to 15 m) to the total optical turbulence has a mean value of 16%, which corresponds to a degradation of 10% of the total seeing. These values are similar to those found in other observatories around the world, suggesting that the presence of trees in the OAN-SPM does not have a significant effect on the surface layer seeing. Further studies should provide a confirmation of this tendency.

  20. Minimal Orderings Revisited

    SciTech Connect

    Peyton, B.W.

    1999-07-01

    When minimum orderings proved too difficult to deal with, Rose, Tarjan, and Leuker instead studied minimal orderings and how to compute them (Algorithmic aspects of vertex elimination on graphs, SIAM J. Comput., 5:266-283, 1976). This paper introduces an algorithm that is capable of computing much better minimal orderings much more efficiently than the algorithm in Rose et al. The new insight is a way to use certain structures and concepts from modern sparse Cholesky solvers to re-express one of the basic results in Rose et al. The new algorithm begins with any initial ordering and then refines it until a minimal ordering is obtained. it is simple to obtain high-quality low-cost minimal orderings by using fill-reducing heuristic orderings as initial orderings for the algorithm. We examine several such initial orderings in some detail.

  1. The metal-insulator transition in vanadium dioxide: A view at bulk and surface contributions for thin films and the effect of annealing

    NASA Astrophysics Data System (ADS)

    Yin, W.; West, K. G.; Lu, J. W.; Pei, Y.; Wolf, S. A.; Reinke, P.; Sun, Y.

    2009-06-01

    Vanadium dioxide is investigated as potential oxide barrier in spin switches, and in order to incorporate VO2 layers in complex multilayer devices, it is necessary to understand the relation between bulk and surface/interface properties. Highly oriented VO2 thin films were grown on (0001) sapphire single crystal substrates with reactive bias target ion beam deposition. In the analysis of the VO2 films, bulk-sensitive methods [x-ray diffraction (XRD) and transport measurements] and surface sensitive techniques [photoelectron spectroscopy (PES) and scanning tunneling microscopy and spectroscopy] were employed. The samples were subjected to heating cycles with annealing temperatures of up to 425 and 525K. Prior to annealing the VO2 films exhibit the transition from the monoclinic to the tetragonal phase with the concurrent change in conductivity by more than a factor of 103 and their phase purity is confirmed by XRD. Annealing to 425K and thus cycling across the metal-insulator transition (MIT) temperature has no impact on the bulk properties of the VO2 film but the surface undergoes irreversible electronic changes. The observation of the valence band with PES during the annealing illustrates that the surface adopts a partially metallic character, which is retained after cooling. Annealing to a higher temperature (525K ) triggers a modification of the bulk, which is evidenced by a considerable reduction in the MIT characteristics, and a degradation in crystallite morphology. The local measurement of the conductivity with scanning tunneling spectroscopy shows the transition of the surface from predominantly semiconducting surface prior to annealing to a surface with an overwhelming contribution from metallic sections afterward. The spatial distribution of metallic regions cannot be linked in a unique manner to the crystallite size or location within the crystallites. The onset of oxygen depletion at the surface is held responsible for this behavior. The onset of bulk

  2. Response surface modeling-based source contribution analysis and VOC emission control policy assessment in a typical ozone-polluted urban Shunde, China.

    PubMed

    You, Zhiqiang; Zhu, Yun; Jang, Carey; Wang, Shuxiao; Gao, Jian; Lin, Che-Jen; Li, Minhui; Zhu, Zhenghua; Wei, Hao; Yang, Wenwei

    2017-01-01

    To develop a sound ozone (O3) pollution control strategy, it is important to well understand and characterize the source contribution due to the complex chemical and physical formation processes of O3. Using the "Shunde" city as a pilot summer case study, we apply an innovative response surface modeling (RSM) methodology based on the Community Multi-Scale Air Quality (CMAQ) modeling simulations to identify the O3 regime and provide dynamic analysis of the precursor contributions to effectively assess the O3 impacts of volatile organic compound (VOC) control strategy. Our results show that Shunde is a typical VOC-limited urban O3 polluted city. The "Jiangmen" city, as the main upper wind area during July 2014, its VOCs and nitrogen oxides (NOx) emissions make up the largest contribution (9.06%). On the contrary, the contribution from local (Shunde) emission is lowest (6.35%) among the seven neighbor regions. The local VOCs industrial source emission has the largest contribution comparing to other precursor emission sectors in Shunde. The results of dynamic source contribution analysis further show that the local NOx control could slightly increase the ground O3 under low (10.00%) and medium (40.00%) reduction ratios, while it could start to turn positive to decrease ground O3 under the high NOx abatement ratio (75.00%). The real-time assessment of O3 impacts from VOCs control strategies in Pearl River Delta (PRD) shows that the joint regional VOCs emission control policy will effectively reduce the ground O3 concentration in Shunde.

  3. Minimally invasive stomas.

    PubMed

    Hellinger, Michael D; Al Haddad, Abdullah

    2008-02-01

    Traditionally, stoma creation and end stoma reversal have been performed via a laparotomy incision. However, in many situations, stoma construction may be safely performed in a minimally invasive nature. This may include a trephine, laparoscopic, or combined approach. Furthermore, Hartmann's colostomy reversal, a procedure traditionally associated with substantial morbidity, may also be performed laparoscopically. The authors briefly review patient selection, preparation, and indications, and focus primarily on surgical techniques and results of minimally invasive stoma creation and Hartmann's reversal.

  4. Minimally invasive lumbar foraminotomy.

    PubMed

    Deutsch, Harel

    2013-07-01

    Lumbar radiculopathy is a common problem. Nerve root compression can occur at different places along a nerve root's course including in the foramina. Minimal invasive approaches allow easier exposure of the lateral foramina and decompression of the nerve root in the foramina. This video demonstrates a minimally invasive approach to decompress the lumbar nerve root in the foramina with a lateral to medial decompression. The video can be found here: http://youtu.be/jqa61HSpzIA.

  5. Protons migrate along interfacial water without significant contributions from jumps between ionizable groups on the membrane surface

    PubMed Central

    Springer, Andreas; Hagen, Volker; Cherepanov, Dmitry A.; Antonenko, Yuri N.; Pohl, Peter

    2011-01-01

    Proton diffusion along membrane surfaces is thought to be essential for many cellular processes such as energy transduction. Commonly, it is treated as a succession of jumps between membrane-anchored proton-binding sites. Our experiments provide evidence for an alternative model. We released membrane-bound caged protons by UV flashes and monitored their arrival at distant sites by fluorescence measurements. The kinetics of the arrival is probed as a function of distance for different membranes and for different water isotopes. We found that proton diffusion along the membrane is fast even in the absence of ionizable groups in the membrane, and it decreases strongly in D2O as compared to H2O. We conclude that the fast proton transport along the membrane is dominated by diffusion via interfacial water, and not via ionizable lipid moieties. PMID:21859952

  6. Electronic contributions to infrared spectra of adsorbate molecules on metal surfaces: Ethene on Cu(1 1 1)

    NASA Astrophysics Data System (ADS)

    Skibbe, O.; Binder, M.; Otto, A.; Pucci, A.

    2008-05-01

    Already at coverages well below 1 ML copper ad-atoms on Cu(1 1 1) significantly modify infrared reflection-absorption spectra of ethene (C2H4) on Cu(1 1 1). Raman modes of the centrosymmetric molecule appear in the spectra. Their lines do not involve significant shifts of vibration frequencies as they would be expected for strong distortions of the molecule. High-resolution electron-energy-loss spectra of adsorbed ethene for various Cu-adatom precoverage show the same vibration lines. Since the molecules are obviously unchanged, the Raman lines in the infrared spectra must have obtained dynamic dipole moment from transient electron transfer favored by atomic disorder on the metal surface.

  7. Contribution of GIS to evaluate surface water pollution by heavy metals: Case of Ichkeul Lake (Northern Tunisia)

    NASA Astrophysics Data System (ADS)

    Yazidi, Amira; Saidi, Salwa; Ben Mbarek, Nabiha; Darragi, Fadila

    2017-10-01

    The concentrations of nutrients and heavy elements in the surface water of the lake Ichkeul, main wadis which feed directly and thermal springs that flow into the lake, are measured to evaluate these chemical elements. There are used to highlight the interactions between these different aquatic compartments of Ichkeul. All metal concentrations in lake water, except Cu, were lower than the maximum permitted concentration for the protection of aquatic life. The results show that the highest concentrations are located in the eastern and south-eastern part of the lake where the polluted water comes from the lagoon of Bizerte through the wadi Tinja as well as from the city of Mateur through the wadi Joumine. The pollution indices and especially the heavy metal evaluation index (HEI) show high pollution specially located at the mouths of wadis and an increase of heavy metal concentrations, as a result of uncontrolled releases of domestic and industrial wastewater.

  8. Interstitial ultrasound ablation of tumors within or adjacent to bone: Contributions of preferential heating at the bone surface

    NASA Astrophysics Data System (ADS)

    Scott, Serena J.; Prakash, Punit; Salgaonkar, Vasant; Jones, Peter D.; Cam, Richard N.; Han, Misung; Rieke, Viola; Burdette, E. Clif; Diederich, Chris J.

    2013-02-01

    Preferential heating of bone due to high ultrasound attenuation may enhance thermal ablation performed with cathetercooled interstitial ultrasound applicators in or near bone. At the same time, thermally and acoustically insulating cortical bone may protect sensitive structures nearby. 3D acoustic and biothermal transient finite element models were developed to simulate temperature and thermal dose distributions during catheter-cooled interstitial ultrasound ablation near bone. Experiments in ex vivo tissues and tissue-mimicking phantoms were performed to validate the models and to quantify the temperature profiles and ablated volumes for various distances between the interstitial applicator and the bone surface. 3D patient-specific models selected to bracket the range of clinical usage were developed to investigate what types of tumors could be treated, applicator configurations, insertion paths, safety margins, and other parameters. Experiments show that preferential heating at the bone surface decreases treatment times compared to when bone is absent and that all tissue between an applicator and bone can be ablated when they are up to 2 cm apart. Simulations indicate that a 5-7 mm safety margin of normal bone is needed to protect (thermal dose < 6 CEM43°C and T < 45°C) sensitive structures behind ablated bone. In 3D patient-specific simulations, tumors 1.0-3.8 cm (L) and 1.3-3.0 cm (D) near or within bone were ablated (thermal dose > 240 CEM43°C) within 10 min without damaging the nearby spinal cord, lungs, esophagus, trachea, or major vasculature. Preferential absorption of ultrasound by bone may provide improved localization, faster treatment times, and larger treatment zones in tumors in and near bone compared to other heating modalities.

  9. Gaseous deposition contributes to the contamination of surface waters by pesticides close to treated fields. A process-based model study.

    PubMed

    Bedos, Carole; Loubet, Benjamin; Barriuso, Enrique

    2013-12-17

    The contribution of atmospheric pathways to surface waters contamination by pesticides has been demonstrated. At the local scale, modeling approaches as well as measurements show situations where the contribution of gaseous dry deposition is of the same order or even higher than the drift contribution. The approach presented here consists in estimating the gaseous emissions of pesticides applied in the field, their atmospheric dispersion, and finally their gaseous deposition into aquatic ecosystems at the local scale by running process-based models, that is, the one-dimensional model for pesticide volatilization following application on bare soil (Volt'Air) and the local-scale dispersion and deposition model (FIDES-2D), adapted for pesticides. A significant number of scenarios describes contrasted situations in terms of pedoclimatic conditions (covering 9 years of meteorological data), periods of pesticide application per year, physicochemical properties of the pesticides, and spatial configurations. The identification of the main factors governing gaseous deposition led to the definition of an effective emission factor which explains a large part of the deposition variability. Based on the model outputs, deposition curves are proposed, as a base for a new tool to assess the contribution of gaseous deposition to nontarget ecosystem contamination.

  10. Analysis of the total solar irradiance composite and their contribution to global mean air surface temperature rise

    NASA Astrophysics Data System (ADS)

    Scafetta, N.

    2008-12-01

    Herein I discuss and propose updated satellite composites of the total solar irradiance covering the period 1978-2008. The composites are compiled from measurements made with the three ACRIM experiments. Measurements from the NIMBUS7/ERB, the ERBS/ERBE satellite experiments and a total solar irradiance proxy reconstruction are used to fill the gap from June 1989 to October 1991 between ACRIM1 and ACRIM2 experiments. The result of the analysis does suggests that the total solar irradiance did increase from 1980 to 2002. The climate implications of the alternative satellite composites are discussed by using a phenomenological climate model which depends on two characteristics time response at tau1 =0.4 year and tau2=8-12 years, as determined phenomenologically [Scafetta, JGR 2008]. Reconstructions of total solar irradiance signature on climate during the last four centuries are discussed. The solar variability appears to have significantly contributed to climate change during the last four centuries, including the last century. Indirectly, the model suggests that the preindustrial climate experienced a large variability which is incompatible with an Hockey Stick temperature graph.

  11. Relative Contribution of P5 and Hap Surface Proteins to Nontypable Haemophilus influenzae Interplay with the Host Upper and Lower Airways.

    PubMed

    Euba, Begoña; Moleres, Javier; Viadas, Cristina; Ruiz de los Mozos, Igor; Valle, Jaione; Bengoechea, José Antonio; Garmendia, Junkal

    2015-01-01

    Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence.

  12. Relative Contribution of P5 and Hap Surface Proteins to Nontypable Haemophilus influenzae Interplay with the Host Upper and Lower Airways

    PubMed Central

    Viadas, Cristina; Ruiz de los Mozos, Igor; Valle, Jaione; Bengoechea, José Antonio; Garmendia, Junkal

    2015-01-01

    Nontypable Haemophilus influenzae (NTHi) is a major cause of opportunistic respiratory tract disease, and initiates infection by colonizing the nasopharynx. Bacterial surface proteins play determining roles in the NTHi-airways interplay, but their specific and relative contribution to colonization and infection of the respiratory tract has not been addressed comprehensively. In this study, we focused on the ompP5 and hap genes, present in all H. influenzae genome sequenced isolates, and encoding the P5 and Hap surface proteins, respectively. We employed isogenic single and double mutants of the ompP5 and hap genes generated in the pathogenic strain NTHi375 to evaluate P5 and Hap contribution to biofilm growth under continuous flow, to NTHi adhesion, and invasion/phagocytosis on nasal, pharyngeal, bronchial, alveolar cultured epithelial cells and alveolar macrophages, and to NTHi murine pulmonary infection. We show that P5 is not required for bacterial biofilm growth, but it is involved in NTHi interplay with respiratory cells and in mouse lung infection. Mechanistically, P5NTHi375 is not a ligand for CEACAM1 or α5 integrin receptors. Hap involvement in NTHi375-host interaction was shown to be limited, despite promoting bacterial cell adhesion when expressed in H. influenzae RdKW20. We also show that Hap does not contribute to bacterial biofilm growth, and that its absence partially restores the deficiency in lung infection observed for the ΔompP5 mutant. Altogether, this work frames the relative importance of the P5 and Hap surface proteins in NTHi virulence. PMID:25894755

  13. The contribution of anammox and denitrification to sediment N2 production in a surface flow constructed wetland.

    PubMed

    Erler, Dirk V; Eyre, Bradley D; Davison, Leigh

    2008-12-15

    This study used anaerobic slurry assays and intact core incubations to quantify potential rates of anammox (anaerobic ammonia oxidation) in sediments along the flow path of a surface flow constructed wetland receiving secondary treated sewage effluent. Anammox occurred at two of the four sites assayed with a maximum rate of 199.4 +/- 18.7 micromol N x m(-2) x hr(-1) (24% of total N2 production) at the discharge end of the wetland. Denitrification was the major producer of N2, with a maximum rate of 965.3 +/- 122.8 micromol N x m(-2) x hr(-1) at site 2. Oxygen was probably the key regulator of anammox activity within the studied CW. In addition to anammox, we found evidence that nitrifier-denitrification was potentially responsible for the production of N2O. Total production of N2O was 15.1% of the total gaseous N produced. Limitations to the methodology for quantifying anammox in CW's are outlined. This study demonstrated that denitrification is not the only pathway for gaseous production in constructed wetlands and that wetlands may be significant sources of greenhouse gases such as N2O.

  14. Minimizing radiation damage in nonlinear optical crystals

    DOEpatents

    Cooke, D.W.; Bennett, B.L.; Cockroft, N.J.

    1998-09-08

    Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal. 5 figs.

  15. Minimizing radiation damage in nonlinear optical crystals

    DOEpatents

    Cooke, D. Wayne; Bennett, Bryan L.; Cockroft, Nigel J.

    1998-01-01

    Methods are disclosed for minimizing laser induced damage to nonlinear crystals, such as KTP crystals, involving various means for electrically grounding the crystals in order to diffuse electrical discharges within the crystals caused by the incident laser beam. In certain embodiments, electrically conductive material is deposited onto or into surfaces of the nonlinear crystals and the electrically conductive surfaces are connected to an electrical ground. To minimize electrical discharges on crystal surfaces that are not covered by the grounded electrically conductive material, a vacuum may be created around the nonlinear crystal.

  16. Surface Ozone Measured at GLOBE Schools in the Czech Republic: A Demonstration of the Importance of Student Contribution to the Larger Science Picture

    NASA Astrophysics Data System (ADS)

    Creilson, J.; Pippin, M.; Henderson, B.; Ladd, I.; Fishman, J.; Votápková, D.; Krpcová, I.

    2007-12-01

    GLOBE (Global Learning and Observations to Benefit the Environment) is a worldwide hands-on, primary and secondary school-based education and science program and was developed to give students a chance to perform real science by making measurements, analyzing data, and participating in research in collaboration with scientists. When it was first established in 1994, one cornerstone of the vision for GLOBE was that it would provide a mechanism by which K-12 students could contribute meaningfully to the earth science community. As part of the GLOBE Surface Ozone Protocol and with the assistance of the TEREZA Association in the Czech Republic, schools in the Czech Republic have been making and reporting daily measurements of surface ozone and surface meteorological data since 2001. Using a hand-held ozone monitor developed for GLOBE, students at several Czech schools have generated multiyear data records of surface ozone from 2001-2005. Analysis of the data shows surface ozone levels were anomalously high during the summer of 2003 relative to other summers. These findings are consistent with measurements by the European Environment Agency that highlights the summer of 2003 as having exceptionally long-lasting and spatially extensive episodes of high surface ozone, especially during the first half of August. Further analysis of the summer's prevailing meteorology shows not only that it was one of the hottest on record, a finding also seen in the student data, but the conditions for production of ozone were ideal. Findings such as these increase student, teacher, and scientist confidence in the utility of the GLOBE data for engaging budding scientists in the collection, analysis, and eventual interpretation of the data for inquiry-based education.

  17. Lung deposited surface area in Leicester urban background site/UK: Sources and contribution of new particle formation

    NASA Astrophysics Data System (ADS)

    Hama, Sarkawt M. L.; Ma, Nan; Cordell, Rebecca L.; Kos, Gerard P. A.; Wiedensohler, Alfred; Monks, Paul S.

    2017-02-01

    Lung Deposited Surface Area (LDSA) has been identified as a potential metric for the correlation of a physical aerosol particle properties with health outcomes. Currently, there is little urban LDSA data. As a case study, we investigated measurements of LDSA (alveolar) concentrations in a mid-size European city. LDSA and associated measurements were carried out over 1.5 years at an urban background site in Leicester, UK. Average LDSA concentrations in the cold (November-April) and warm (May-October) seasons of UK were 37 and 23 μm2 cm-3, respectively. LDSA correlates well (R2 = 0.65-0.7, r = 0.77-0.8) with traffic related pollutants, such as equivalent black carbon (eBC) and NOX. We also report for the first time in the UK the correlation between an empirically derived LDSA and eBC. Furthermore, the effect of wind speed and direction on the LDSA was explored. Higher LDSA concentrations are observed at low wind speeds (1-2 m s-1), owing to local traffic emissions. In addition, the diurnal variation of LDSA showed a second peak in the afternoon under warm and relatively clean atmospheric conditions, which can be attributed to photochemical new particle formation (NPF) and growth into the Aitken mode range. These NPF events increased the average background LDSA concentrations from 15.5 to 35.5 μm2 cm-3, although they might not be health-relevant. Overall, the results support the notion that local traffic emissions are a major contributor to observed LDSA concentrations with a clear seasonal pattern with higher values during winter.

  18. Minimally invasive procedures

    PubMed Central

    Baltayiannis, Nikolaos; Michail, Chandrinos; Lazaridis, George; Anagnostopoulos, Dimitrios; Baka, Sofia; Mpoukovinas, Ioannis; Karavasilis, Vasilis; Lampaki, Sofia; Papaiwannou, Antonis; Karavergou, Anastasia; Kioumis, Ioannis; Pitsiou, Georgia; Katsikogiannis, Nikolaos; Tsakiridis, Kosmas; Rapti, Aggeliki; Trakada, Georgia; Zissimopoulos, Athanasios; Zarogoulidis, Konstantinos

    2015-01-01

    Minimally invasive procedures, which include laparoscopic surgery, use state-of-the-art technology to reduce the damage to human tissue when performing surgery. Minimally invasive procedures require small “ports” from which the surgeon inserts thin tubes called trocars. Carbon dioxide gas may be used to inflate the area, creating a space between the internal organs and the skin. Then a miniature camera (usually a laparoscope or endoscope) is placed through one of the trocars so the surgical team can view the procedure as a magnified image on video monitors in the operating room. Specialized equipment is inserted through the trocars based on the type of surgery. There are some advanced minimally invasive surgical procedures that can be performed almost exclusively through a single point of entry—meaning only one small incision, like the “uniport” video-assisted thoracoscopic surgery (VATS). Not only do these procedures usually provide equivalent outcomes to traditional “open” surgery (which sometimes require a large incision), but minimally invasive procedures (using small incisions) may offer significant benefits as well: (I) faster recovery; (II) the patient remains for less days hospitalized; (III) less scarring and (IV) less pain. In our current mini review we will present the minimally invasive procedures for thoracic surgery. PMID:25861610

  19. Experimental Degassing of Volatile Bearing Martian Magmas into a CO2-rich Atmosphere: Magmatic Vapor-Driven Surface Modification and Contribution to the Atmosphere

    NASA Astrophysics Data System (ADS)

    Ustunisik, G. K.; Nekvasil, H.; Lindsley, D. H.

    2011-12-01

    A variety of studies have focused on redistribution of mantle material by ascent of magmas through the crust, and the nature of these magmas and their compositional evolution (Nekvasil et al. 2009; McCubbin et al. 2009; McCubbin et al. 2010). An additional strong focus has been surface alteration/weathering and redistribution of surface materials by sedimentary processes. In order to fully understand Mars as a system, however, we also need to determine the results of interaction of magmatic vapors with surface materials, such as alteration and volatile sequestration, and, through this, assess the net contribution to the martian atmosphere. It has been suggested that the early martian atmosphere was CO2-rich(Michalski and Niles 2010; Morris et al. 2010; Harvey 2010), but that it eventually lost this characteristic over time. It is possible that the nature of the magmatic vapor interaction with surface materials and the magmatic volatile contribution to the Martian atmosphere changed over time in response to this. To investigate this possibility we have initiated a set of experiment that assess relative loss of magma-hosted S, F, Cl and water to a CO2-rich and a CO2-poor atmosphere, the nature of sublimates produced with dropping temperature, and the type of alteration assemblages that could lead to volatile sequestration. The experiments were designed to simulate degassing of a volatile-rich martian magma that ascended rapidly and retained much of its volatile load until eruption onto the surface at a pressure of between 0.3 and 1 bar. Sealed silica tubes were used which hosted the synthetic volatile-containing martian basalt, the oxygen buffer assemblage and CO2 source, and a capsule containing crushed wallrock for reaction with the vapor phase in a well-characterized thermal gradient. These tubes were suspended in a vertical Pt-wound furnace and heated for several hours at a temperature just above the liquidus to simulate first boiling. Preliminary results will be

  20. Minimal gaugino mediation

    SciTech Connect

    Schmaltz, Martin; Skiba, Witold

    2000-11-01

    We propose minimal gaugino mediation as the simplest known solution to the supersymmetric flavor and CP problems. The framework predicts a very minimal structure for the soft parameters at ultrahigh energies: gaugino masses are unified and non-vanishing whereas all other soft supersymmetry breaking parameters vanish. We show that this boundary condition naturally arises from a small extra dimension and present a complete model which includes a new extra-dimensional solution to the {mu} problem. We briefly discuss the predicted superpartner spectrum as a function of the two parameters of the model. The commonly ignored renormalization group evolution above the GUT scale is crucial to the viability of minimal gaugino mediation but does not introduce new model dependence.

  1. Minimal Gaugino Mediation

    SciTech Connect

    Schmaltz, M.

    2000-01-19

    The authors propose Minimal Gaugino Mediation as the simplest known solution to the supersymmetric flavor and CP problems. The framework predicts a very minimal structure for the soft parameters at ultra-high energies: gaugino masses are unified and non-vanishing whereas all other soft supersymmetry breaking parameters vanish. The authors show that this boundary condition naturally arises from a small extra dimension and present a complete model which includes a new extra-dimensional solution to the mu problem. The authors briefly discuss the predicted superpartner spectrum as a function of the two parameters of the model. The commonly ignored renormalization group evolution above the GUT scale is crucial to the viability of Minimal Gaugino Mediation but does not introduce new model dependence.

  2. Annual variations in GPS-measured vertical displacements near Upernavik Isstrøm (Greenland) and contributions from surface mass loading

    NASA Astrophysics Data System (ADS)

    Liu, Lin; Khan, Shfaqat Abbas; Dam, Tonie; Ma, Joseph Ho Yin; Bevis, Michael

    2017-01-01

    In response to present-day ice mass loss on and near the Greenland Ice Sheet, steady crustal uplifts have been observed from the network of Global Positioning System (GPS) stations mounted on bedrock. In addition to the secular uplift trends, the GPS time series also show prominent annual variability. Here we examine the annual changes of the vertical displacements measured at two GPS stations (SRMP and UPVK) near Upernavik Isstrøm in western Greenland. We model elastic loading displacements due to various surface mass loading including three nonice components: atmospheric pressure, ocean bottom pressure, continental water storage, and one ice component, i.e., surface mass balance (SMB). We find that the contribution from atmospheric pressure changes can explain 46% and 78% of the annual amplitude observed in the GPS verticals at SRMP and UPVK, respectively. We also show that removing the predicted loading displacements due to SMB adversely increases the annual variance of the GPS residuals. However, using the GPS data alone, we cannot identify the exact cause(s) of this discrepancy because the annual loading displacements are sensitive to the SMB changes from over 85% of the ice sheet area. Alternatively, by differencing vertical displacements between the two stations, we find a good agreement between the modeled differential SMB loading displacements and the GPS residuals after removing nonice components. Our study highlights the necessity of correcting for nonice loading contributions in the GPS measurements of crustal deformation to infer ice mass changes in Greenland at annual periods.

  3. Surface antigens contribute differently to the pathophysiological features in serotype K1 and K2 Klebsiella pneumoniae strains isolated from liver abscesses.

    PubMed

    Yeh, Kuo-Ming; Chiu, Sheng-Kung; Lin, Chii-Lan; Huang, Li-Yueh; Tsai, Yu-Kuo; Chang, Jen-Chang; Lin, Jung-Chung; Chang, Feng-Yee; Siu, Leung-Kei

    2016-01-01

    The virulence role of surface antigens in a single serotype of Klebsiella pneumoniae strain have been studied, but little is known about whether their contribution will vary with serotype. To investigate the role of K and O antigen in hyper-virulent strains, we constructed O and K antigen deficient mutants from serotype K1 STL43 and K2 TSGH strains from patients with liver abscess, and characterized their virulence in according to the abscess formation and resistance to neutrophil phagocytosis, serum, and bacterial clearance in liver. Both of K1 and K2-antigen mutants lost their wildtype resistance to neutrophil phagocytosis and hepatic clearance, and failed to cause abscess formation. K2-antigen mutant became serum susceptible while K1-antigen mutant maintained its resistance to serum killing. The amount of glucuronic acid, indicating the amount of capsular polysaccharide (CPS, K antigen), was inversed proportional to the rate of phagocytosis. O-antigen mutant of serotype K1 strains had significantly more amount of CPS, and more resistant to neutrophil phagocytosis than its wildtype counterpart. O-antigen mutants of serotype K1 and K2 strains lost their wildtype serum resistance, and kept resistant to neutrophil phagocytosis. While both mutants lacked the same O1 antigen, O-antigen mutant of serotype K1 became susceptible to liver clearance and cause mild abscess formation, but its serotype K2 counterpart maintained these wildtype virulence. We conclude that the contribution of surface antigens to virulence of K. pneumoniae strains varies with serotypes.

  4. TiO2 anatase's bulk and (001) surface, structural and electronic properties: A DFT study on the importance of Hubbard and van der Waals contributions

    NASA Astrophysics Data System (ADS)

    Araujo-Lopez, Eduard; Varilla, Luis Alcala; Seriani, Nicola; Montoya, Javier A.

    2016-11-01

    Theoretical ab initio studies done so far on the structural properties of the titanium dioxide anatase (001) surface, have not reported simultaneously the complete set of cell and interatomic parameters for this system or its bulk. Here we present a complete report of these quantities within a spin polarized Density Functional Theory calculation, including also the Hubbard term and the van der Waals dispersion contribution. We show that within this approach it is possible to find a description of TiO2 anatase using DFT, that correlates better with experimental results than most theoretical studies reported previously. This good level of agreement has an advantage with respect to other very accurate studies which have performed computationally expensive calculations involving hybrid functionals, in that our method tends to be faster while also including the van der Waals dispersion contributions in addition to the treatment of correlations. The observed high-quality description of a system like TiO2 within this approach is important and encouraging; specially because it treats properly a d-shell element that is possibly going to have, for many applications of interest, long-range interaction with molecules, e.g. in studies of photocatalysis, where one needs all the relevant physics of the system to be included. We support this claim with an example of the effects that long-range interactions have on a CO2 molecule at the (001) surface.

  5. Estimating the Contributions of Surface Wash-off and Channel Erosion to Total Sediment and Solute Loads in a Small Mixed Land Use Watershed

    NASA Astrophysics Data System (ADS)

    Nipper, J.; Bowden, W. B.

    2009-12-01

    Watershed sediment and solute loads originate from many different sources. These can include point sources, soil erosion, impervious surface wash-off, channel bank and bed erosion, and other sources depending on the land use activities within the watershed. However, the difficulties encountered in quantifying the contributions of specific nonpoint sources to watershed loads magnifies the uncertainty in watershed management efforts aimed at mitigating the pollutants. The goal of this research is to quantify the contribution of wash-off from residentially developed land and stream channel erosion to total watershed sediment and solute loadings within a 103 ha tributary watershed of Potash Brook, in Chittenden County, Vermont. To do so we deployed autosamplers at two stream cross sections and within two representative storm drain outfalls to sample TSS, TN, NO3-, TKN, TP, and Cl-. Samples were collected during storm events on a flow weighted composite basis, and by periodic base flow sampling. In stream sampling was conducted over a total 5 years and storm drain sampling covered a total of 2 years. Preliminary analysis of these data suggests that surface wash-off from developed portions of the watershed can generate greater than 90% of the TSS and greater than 50% of the Cl- loads measured at the watershed outlet sampling location. Currently, these data are being incorporated into an EPA-SWMM model of the watershed coupled with an evolutionary strategies parameter search algorithm. The model generated and measured wash-off data will be used with the measured load data at the watershed outlet to estimate the contribution of the stream channel by difference over all sampled events.

  6. Contribution of energetically reactive surface features to the dissolution of CeO2 and ThO2 analogues for spent nuclear fuel microstructures.

    PubMed

    Corkhill, Claire L; Myllykylä, Emmi; Bailey, Daniel J; Thornber, Stephanie M; Qi, Jiahui; Maldonado, Pablo; Stennett, Martin C; Hamilton, Andrea; Hyatt, Neil C

    2014-08-13

    In the safety case for the geological disposal of nuclear waste, the release of radioactivity from the repository is controlled by the dissolution of the spent fuel in groundwater. There remain several uncertainties associated with understanding spent fuel dissolution, including the contribution of energetically reactive surface sites to the dissolution rate. In this study, we investigate how surface features influence the dissolution rate of synthetic CeO2 and ThO2, spent nuclear fuel analogues that approximate as closely as possible the microstructure characteristics of fuel-grade UO2 but are not sensitive to changes in oxidation state of the cation. The morphology of grain boundaries (natural features) and surface facets (specimen preparation-induced features) was investigated during dissolution. The effects of surface polishing on dissolution rate were also investigated. We show that preferential dissolution occurs at grain boundaries, resulting in grain boundary decohesion and enhanced dissolution rates. A strong crystallographic control was exerted, with high misorientation angle grain boundaries retreating more rapidly than those with low misorientation angles, which may be due to the accommodation of defects in the grain boundary structure. The data from these simplified analogue systems support the hypothesis that grain boundaries play a role in the so-called "instant release fraction" of spent fuel, and should be carefully considered, in conjunction with other chemical effects, in safety performance assessements for the geological disposal of spent fuel. Surface facets formed during the sample annealing process also exhibited a strong crystallographic control and were found to dissolve rapidly on initial contact with dissolution medium. Defects and strain induced during sample polishing caused an overestimation of the dissolution rate, by up to 3 orders of magnitude.

  7. A Novel 2D Image Compression Algorithm Based on Two Levels DWT and DCT Transforms with Enhanced Minimize-Matrix-Size Algorithm for High Resolution Structured Light 3D Surface Reconstruction

    NASA Astrophysics Data System (ADS)

    Siddeq, M. M.; Rodrigues, M. A.

    2015-09-01

    Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.

  8. Characterizing seasonal contribution of particles from the surface ocean to the mesopelagic food web through amino acid compound specific isotopic analysis and 234Thorium measurements

    NASA Astrophysics Data System (ADS)

    Grabb, K. C.; benitez-Nelson, C. R.; Drazen, J.; Close, H. G.; Hannides, C. C.; Ka'apu-Lyons, C. A.; Umhau, B.; Popp, B. N.

    2016-02-01

    The mesopelagic food web is a major contributor to the biological carbon pump but is largely unconstrained mainly due to inadequate sampling of the deep ocean. Recent results of amino acid compound specific nitrogen isotope analyses (AA-CSIA) indicate the possibility of refractory suspended particles contributing to the mesopelagic food community in addition to more labile rapidly sinking particles from the surface oceans. Here we combine amino acid concentrations and AA-CSIA with 234Thorium (234Th) measurements to constrain seasonal differences in the downward flux of particles from the surface ocean at station ALOHA in the subtropical North Pacific Ocean. We determined the concentrations and isotopic composition of specific amino acids as well as the 234Th-normalized flux of C, N and amino acids throughout the upper 400m of the water column during winter and summer of 2014. Results exhibit distinct seasonal profiles. The amino acid flux was 10 times greater in the summer, indicating increased primary production and export from the surface oceans to the deep. In contrast, the fraction of each specific amino acid compared to the total amount of amino acids remained reasonably constant between seasons and depths. Throughout the water column δ15N values of small particles (1-53µm) increased with depth, consistent with previous results from deeper samples (up to 750 meters) and indicating microbial degradation. The large particles (>53µm) have differing isotopic composition, allowing the contribution of small and large particles to be distinguishable within the mesopelagic food web. This study highlights the dependence of the deep ocean on the strength of the biological pump and our results potentially can be used to interpret the seasonal dietary composition of higher trophic level mesopelagic organisms.

  9. CONMIN- CONSTRAINED FUNCTION MINIMIZATION

    NASA Technical Reports Server (NTRS)

    Vanderplaats, G. N.

    1994-01-01

    In many mathematical problems, it is necessary to determine the minimum and maximum of a function of several variables, limited by various linear and nonlinear inequality constraints. It is seldom possible, in practical applications, to solve these problems directly. In most cases, an iterative method must be used to numerically obtain a solution. The CONMIN program was developed to numerically perform the minimization of a multi-variable function subject to a set of inequality constraints. The function need not be a simple analytical equation; it may be any function which can be numerically evaluated. The basic analytic technique used by CONMIN is to minimize the function until one or more of the constraints become active. The minimization process then continues by following the constraint boundaries in a direction such that the value of the function continues to decrease. When a point is reached where no further decrease in the function can be obtained, the process is terminated. Function maximization may be achieved by minimizing the negative of the function. This program is written in FORTRAN IV for batch execution and has been implemented on a CDC 6000 series computer with a central memory requirement of approximately 43K (octal) of 60 bit words. The CONMIN program was originally developed in 1973 and last updated in 1978.

  10. Minimally invasive valve surgery.

    PubMed

    Woo, Y Joseph

    2009-08-01

    Traditional cardiac valve replacement surgery is being rapidly supplanted by innovative, minimally invasive approaches toward the repair of these valves. Patients are experiencing benefits ranging from less bleeding and pain to faster recovery and greater satisfaction. These operations are proving to be safe, highly effective, and durable, and their use will likely continue to increase and become even more widely applicable.

  11. Contribution of stable isotopes and age dating tools to the understanding of pesticide transfer into surface and ground-waters in Martinique (French West Indies)

    NASA Astrophysics Data System (ADS)

    Gourcy, Laurence; Arnaud, Luc; Baran, Nicole; Petelet-Giraud, Emmanuelle

    2013-04-01

    giving necessary data for apparent age estimation using dissolved gases tracers (CFCs). Apparent age (or CFC and SF6 concentrations) and δ18O and δ2H (and calculated d-excess) of groundwater are very stable with time even during intensive rainfall episodes and high water stage. Limited variability of chemistry and isotopes in surface water allow demonstrating that the Falaise River is highly sustained by groundwater. As a consequence, regarding chlordecone, the quality of surface water is governed by groundwater quality. Besides, during the dry season when the contribution of groundwater to the flow is the highest, chlordecone concentrations fluctuations are similar for both surface and ground-waters. During the period December 2011 - August 2012, chlordecone concentration varies from 0.25 to 0.45 µg/L at Chez Lélène borehole and 0.02 to 0.1 µg/L at Falaise River. In this area, groundwater contributes to the degradation of surface water quality.

  12. Modeled Chl:C ratio and derived estimates of phytoplankton carbon biomass and its contribution to total particulate organic carbon in the global surface ocean

    NASA Astrophysics Data System (ADS)

    Arteaga, Lionel; Pahlow, Markus; Oschlies, Andreas

    2016-12-01

    Chlorophyll (Chl) is a distinctive component of autotrophic organisms, often used as an indicator of phytoplankton biomass in the ocean. However, assessment of phytoplankton biomass from Chl relies on the accurate estimation of the Chl:carbon(C) ratio. Here we present global patterns of Chl:C ratios in the surface ocean obtained from a phytoplankton growth model that accounts for the optimal acclimation of phytoplankton to ambient nutrient, light, and temperature conditions. The model agrees largely with observed/expected global patterns of Chl:C. Combining our Chl:C estimates with satellite Chl and particulate organic carbon (POC), we infer phytoplankton C concentration in the surface ocean and its contribution to the total POC pool. Our results suggest that the portion of POC corresponding to living phytoplankton is higher in subtropical latitudes and less productive regions (˜30-70%) and decreases to ˜10-30% toward high latitudes and productive regions. An important caveat of our model is the lack of iron limiting effects on phytoplankton physiology. Comparison of our predicted phytoplankton biomass with an independent estimate of total POC reveals a positive correlation between nitrate concentrations and nonphotosynthetic POC in the surface ocean. This correlation disappears when a constant Chl:C is applied. Our analysis is not constrained by assumptions of constant Chl:C or phytoplankton:POC ratio, providing a novel independent analysis of phytoplankton biomass in the surface ocean. These results highlight the importance of accounting for the variability in Chl:C and its application in distinguishing the autotrophic and heterotrophic components in the assemblage of the marine plankton ecosystem.

  13. Surface Defects on Plate-Shaped Silver Nanoparticles Contribute to Its Hazard Potential in a Fish Gill Cell Line and Zebrafish Embyos

    PubMed Central

    George, Saji; Lin, Sijie; Ji, Zhaoxia; Thomas, Courtney; Li, LinJiang; Mecklenburg, Mathew; Meng, Huan; Wang, Xiang; Zhang, Haiyuan; Xia, Tian; Lin, Shuo; Hohman, J. Nathan; Zink, Jeffrey I.; Weiss, Paul; Nel, André E.

    2014-01-01

    We investigated and compared nano-size Ag spheres, plates, and wires in a fish gill epithelial cell line (RT-W1) and in zebrafish embryos to understand the mechanism of toxicity of an engineered nanomaterial raising considerable environmental concern. While most of the Ag nanoparticles induced N-acetyl cysteine sensitive toxic oxidative stress effects in RT-W1, Ag nanoplates were considerably more toxic than other particle shapes. Interestingly, while Ag ion shedding and bioavailability failed to explain the high toxicity of the nanoplates, cellular injury required direct particle contact, resulting in cell membrane lysis in RT-W1 as well as red blood cells (RBC). Ag nanoplates were also considerably more toxic in zebrafish embryos in spite of their lesser ability to shed Ag into the exposure medium. In order to elucidate the “surface reactivity” of Ag nanoplates, high-resolution transmission electron microscopy was performed and demonstrated a high level of crystal defects (stacking faults and point defects) on the nanoplate surfaces. Surface coating with cysteine was used to passivate the surface defects and demonstrated a reduction of toxicity in RT-W1 cells, RBC, and zebrafish embryos. This study demonstrates the important role of crystal defects in contributing to Ag nanoparticle toxicity in addition to the established roles of Ag ion shed from spherical nanoparticles. The excellent correlation between the in vitro and in vivo toxicological assessment illustrates the utility of using a fish cell line in parallel with zebrafish embryos to perform a predictive environmental toxicological paradigm. PMID:22482460

  14. Instabilities and Solitons in Minimal Strips

    NASA Astrophysics Data System (ADS)

    Machon, Thomas; Alexander, Gareth P.; Goldstein, Raymond E.; Pesci, Adriana I.

    2016-07-01

    We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ4 theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation.

  15. Instabilities and Solitons in Minimal Strips.

    PubMed

    Machon, Thomas; Alexander, Gareth P; Goldstein, Raymond E; Pesci, Adriana I

    2016-07-01

    We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ^{4} theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation.

  16. Minimal hepatic encephalopathy.

    PubMed

    Zamora Nava, Luis Eduardo; Torre Delgadillo, Aldo

    2011-06-01

    The term minimal hepatic encephalopathy (MHE) refers to the subtle changes in cognitive function, electrophysiological parameters, cerebral neurochemical/neurotransmitter homeostasis, cerebral blood flow, metabolism, and fluid homeostasis that can be observed in patients with cirrhosis who have no clinical evidence of hepatic encephalopathy; the prevalence is as high as 84% in patients with hepatic cirrhosis. Physician does generally not perceive cirrhosis complications, and neuropsychological tests and another especial measurement like evoked potentials and image studies like positron emission tomography can only make diagnosis. Diagnosis of minimal hepatic encephalopathy may have prognostic and therapeutic implications in cirrhotic patients. The present review pretends to explore the clinic, therapeutic, diagnosis and prognostic aspects of this complication.

  17. Minimally symmetric Higgs boson

    SciTech Connect

    Low, Ian

    2015-06-17

    Models addressing the naturalness of a light Higgs boson typically employ symmetries, either bosonic or fermionic, to stabilize the Higgs mass. We consider a setup with the minimal amount of symmetries: four shift symmetries acting on the four components of the Higgs doublet, subject to the constraints of linearly realized SU(2)(L) x U(1)(Y) electroweak symmetry. Up to terms that explicitly violate the shift symmetries, the effective Lagrangian can be derived, irrespective of the spontaneously broken group G in the ultraviolet, and is universal among all models where the Higgs arises as a pseudo-Nambu-Goldstone boson. Very high energy scatterings of vector bosons could provide smoking gun signals of a minimally symmetric Higgs boson.

  18. Individual contributions of the human metapneumovirus F, G, and SH surface glycoproteins to the induction of neutralizing antibodies and protective immunity

    SciTech Connect

    Skiadopoulos, Mario H. . E-mail: mskiadopoulos@niaid.nih.gov; Biacchesi, Stephane; Buchholz, Ursula J.; Amaro-Carambot, Emerito; Surman, Sonja R.; Collins, Peter L.; Murphy, Brian R.

    2006-02-20

    We evaluated the individual contributions of the three surface glycoproteins of human metapneumovirus (HMPV), namely the fusion F, attachment G, and small hydrophobic SH proteins, to the induction of serum HMPV-binding antibodies, serum HMPV-neutralizing antibodies, and protective immunity. Using reverse genetics, each HMPV protein was expressed individually from an added gene in recombinant human parainfluenza virus type 1 (rHPIV1) and used to infect hamsters once or twice by the intranasal route. The F protein was highly immunogenic and protective, whereas G and SH were only weakly or negligibly immunogenic and protective, respectively. Thus, in contrast to other paramyxoviruses, the HMPV attachment G protein is not a major neutralization or protective antigen. Also, although the SH protein of HMPV is a virion protein that is much larger than its counterparts in previously studied paramyxoviruses, it does not appear to be a significant neutralization or protective antigen.

  19. Challenging the minimal supersymmetric SU(5) model

    SciTech Connect

    Bajc, Borut; Lavignac, Stéphane; Mede, Timon

    2014-06-24

    We review the main constraints on the parameter space of the minimal renormalizable supersymmetric SU(5) grand unified theory. They consist of the Higgs mass, proton decay, electroweak symmetry breaking and fermion masses. Superpartner masses are constrained both from below and from above, giving hope for confirming or definitely ruling out the theory in the future. This contribution is based on Ref. [1].

  20. Waste Minimization Crosscut Plan

    SciTech Connect

    Not Available

    1992-05-13

    On November 27, 1991, the Secretary of Energy directed that a Department of Energy (DOE) crosscut plan for waste minimization (WMin) be prepared and submitted by March 1, 1992. This Waste Minimization Crosscut Plan responds to the Secretary's direction and supports the National Energy Strategy (NES) goals of achieving greater energy security, increasing energy and economic efficiency, and enhancing environmental quality. It provides a DOE-wide planning framework for effective coordination of all DOE WMin activities. This Plan was jointly prepared by the following Program Secretarial Officer (PSO) organizations: Civilian Radioactive Waste Management (RW); Conservation and Renewable Energy (CE); Defense Programs (DP); Environmental Restoration and Waste Management (EM), lead; Energy Research (ER); Fossil Energy (FE); Nuclear Energy (NE); and New Production Reactors (NP). Assistance and guidance was provided by the offices of Policy, Planning, and Analysis (PE) and Environment, Safety and Health (EH). Comprehensive application of waste minimization within the Department and in both the public and private sectors will provide significant benefits and support National Energy Strategy goals. These benefits include conservation of a substantial proportion of the energy now used by industry and Government, improved environmental quality, reduced health risks, improved production efficiencies, and longer useful life of disposal capacity. Taken together, these benefits will mean improved US global competitiveness, expanded job opportunities, and a better quality of life for all citizens.

  1. Waste Minimization Crosscut Plan

    SciTech Connect

    Not Available

    1992-05-13

    On November 27, 1991, the Secretary of Energy directed that a Department of Energy (DOE) crosscut plan for waste minimization (WMin) be prepared and submitted by March 1, 1992. This Waste Minimization Crosscut Plan responds to the Secretary`s direction and supports the National Energy Strategy (NES) goals of achieving greater energy security, increasing energy and economic efficiency, and enhancing environmental quality. It provides a DOE-wide planning framework for effective coordination of all DOE WMin activities. This Plan was jointly prepared by the following Program Secretarial Officer (PSO) organizations: Civilian Radioactive Waste Management (RW); Conservation and Renewable Energy (CE); Defense Programs (DP); Environmental Restoration and Waste Management (EM), lead; Energy Research (ER); Fossil Energy (FE); Nuclear Energy (NE); and New Production Reactors (NP). Assistance and guidance was provided by the offices of Policy, Planning, and Analysis (PE) and Environment, Safety and Health (EH). Comprehensive application of waste minimization within the Department and in both the public and private sectors will provide significant benefits and support National Energy Strategy goals. These benefits include conservation of a substantial proportion of the energy now used by industry and Government, improved environmental quality, reduced health risks, improved production efficiencies, and longer useful life of disposal capacity. Taken together, these benefits will mean improved US global competitiveness, expanded job opportunities, and a better quality of life for all citizens.

  2. [Minimally invasive thymus surgery].

    PubMed

    Rückert, J C; Ismail, M; Swierzy, M; Braumann, C; Badakhshi, H; Rogalla, P; Meisel, A; Rückert, R I; Müller, J M

    2008-01-01

    There are absolute and relative indications for complete removal of the thymus gland. In the complex therapy of autoimmune-related myasthenia gravis, thymectomy plays a central role and is performed with relative indication. In case of thymoma with or without myasthenia, thymectomy is absolutely indicated. Thymus resection is further necessary for cases of hyperparathyroidism with ectopic intrathymic parathyroids or with certain forms of multiple endocrine neoplasia. The transcervical operation technique traditionally reflected the well-founded desire for minimal invasiveness for thymectomy. Due to the requirement of radicality however, most of these operations were performed using sternotomy. With the evolution of therapeutic thoracoscopy in thoracic surgery, several pure or extended minimally invasive operation techniques for thymectomy have been developed. At present uni- or bilateral, subxiphoid, and modified transcervical single or combination thoracoscopic techniques are in use. Recently a very precise new level of thoracoscopic operation technique was developed using robotic-assisted surgery. There are special advantages of this technique for thymectomy. An overview of the development and experiences with minimally invasive thymectomy is presented, including data from the largest series published so far.

  3. "Workshop to Promote and Coordinate U.S.A. Contributions to AMMA on Land Surface, Water Cycle, Aerosol and Radiation Budget Issues".

    SciTech Connect

    Lamb, Peter

    2008-05-05

    RIMS ID: ER64245-1028054-0012347 Consistent with the original proposal (dated February 28, 2006), the grant supported the participation in the above Workshop of a diverse group of West African, British, and American atmospheric scientists. All of these individuals contributed strongly to Workshop, with the result that ARM’s involvement in and contribution to AMMA was enhanced with respect to land surface, water cycle, aerosol, and radiation issues. Also, the Workshop gave these participants early exposure to ARM’s 2007 CLASIC Campaign over the U.S. Southern Great Plains, which is addressing parts of the same problem complex. The following eight individuals were fully funded (complete airfare, accommodations, registration, meals) to participate in the Workshop -- Dr. Aiguo Dai (NCAR, USA), Dr. Adamou Ousmane Manga (University of Niamey, Niger), Professor Abdelkrim Ben Mohamed (University of Niamey, Niger), Dr. Gary Robinson (University of Reading, UK), Dr. Amadou Gaye (University of Dakar, Senegal), Dr. Anne Jefferson (NOAA, USA), Dr. Aondover Tarhule (University of Oklahoma, USA), and Dr. Sally McFarlane (Pacific Northwest National Laboratory, USA). Partial funding also was provided for Professor Peter Lamb (University of Oklahoma, USA). To deepen the involvement of ARM in AMMA, the grant also paid for participation in the AMMA Special Observing Period in Niamey during August (Professor Peter J. Lamb) and in a follow-up Workshop at Méteo France (Toulouse) in November (Dr. Zeinabou Mindaodou Souley, University of Niamey, Niger; Professor Peter J. Lamb). When he was in Niamey for 11 days in August, Professor Lamb had considerable involvement with the ARM Mobile Facility there. I am confident that the participation of the above individuals in the two AMMA Workshops and the AMMA Special Observing Period strengthened the ARM Program’s contribution to AMMA, increased the associated international attention on ARM, and provided a bridge to the ARM CLASIC Campaign

  4. Biogenic and anthropogenic contributions to the observed correlations of surface O3 with CO and CH2O in Washington-Baltimore regions

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; Wang, Y.; Zhang, Y.; Crawford, J. H.

    2016-12-01

    The reported strong correlation between O3 and CO over continental outflow regions has long been used as an indication of the effect of anthropogenic emissions on O3 formation. In this study, the observation data from DISCOVER-AQ aircraft experiment in July 2011 over the Washington-Baltimore area and a Regional chEmical trAnsport Model (REAM) were used to study the possible contributions to correlations of boundary layer O3 with CO and CH2O in urban areas. REAM model simulations reasonably reproduced the mixing ratios of the observed trace gases and the correlations of O3 with CO and CH2O in both temporal and vertical scales. Different contributions to the observed linear correlation of O3 and CO were quantified by separating CO sources into four different categories: direct anthropogenic emission, oxidation of anthropogenic VOCs, oxidation of biogenic isoprene, and the transport from model lateral boundaries. We found that biogenic emissions made as much significant contribution to the correlation and slope of O3 to CO as anthropogenic emissions did in Washington-Baltimore regions. This finding implies that observed or simulated slope of O3 to CO cannot be directly used to estimate O3 production by anthropogenic emissions. In contrast, the correlation between O3 and CH2O was controlled almost exclusively by biogenic isoprene. We show that the O3-CH2O correlation can be applied to derive the distribution of surface O3 on the basis of CH2O observations.

  5. SANS and Contrast Variation Measurement of the Different Contributions to the Total Surface Area in PBX 9501 as a Function of Pressing Intensity

    NASA Astrophysics Data System (ADS)

    Mang, Joseph

    2005-07-01

    We have used small-angle neutron scattering (SANS) with the method of contrast variation to measure the surface area (SHB, SHV and SBV) associated with the three interfaces (HMX-binder(HB), HMX-voids(HV) and binder-voids(BV)) in pressed pellets of PBX 9501. These interfaces are of interest as they may influence the transmission of microstresses under shock conditions. Because of the difficulty in making measurements, little is known about the microstructure of pressed PBX 9501 parts and thus how it is affected by processing. Here, we explore the effect of varying the pressing intensity on the PBX 9501 microstructure and in particular how the three interfaces are affected. Disk-shaped samples of PBX 9501 were die-pressed with applied pressures ranging between 5,000 - 29,000 psi. SANS measurements were performed, on the LOW-Q Diffractometer at the Manuel Lujan Jr. Neutron Scattering Center, on 4 - 5 pellets at each pressure. Analysis of the SANS data indicates systematic changes in SHB, SHV and SBV with applied pressure. Our ability to measure the different contributions to the total surface area is novel for this system and future measurements will aid in the development of full-scale constitutive models for both pristine and damaged high explosive materials.

  6. Separating Bulk and Surface Contributions to Electronic Excited-State Processes in Hybrid Mixed Perovskite Thin Films via Multimodal All-Optical Imaging

    DOE PAGES

    Simpson, Mary Jane; Doughty, Benjamin; Das, Sanjib; ...

    2017-07-04

    A comprehensive understanding of electronic excited-state phenomena underlying the impressive performance of solution-processed hybrid halide perovskite solar cells requires access to both spatially resolved electronic processes and corresponding sample morphological characteristics. In this paper, we demonstrate an all-optical multimodal imaging approach that enables us to obtain both electronic excited-state and morphological information on a single optical microscope platform with simultaneous high temporal and spatial resolution. Specifically, images were acquired for the same region of interest in thin films of chloride containing mixed lead halide perovskites (CH3NH3PbI3–xClx) using femtosecond transient absorption, time-integrated photoluminescence, confocal reflectance, and transmission microscopies. Comprehensive image analysismore » revealed the presence of surface- and bulk-dominated contributions to the various images, which describe either spatially dependent electronic excited-state properties or morphological variations across the probed region of the thin films. Finally, these results show that PL probes effectively the species near or at the film surface.« less

  7. Regional aspects of the North American land surface: Atmosphere interactions and their contributions to the variability and predictability of the regional hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Luo, Yan

    In this study, we investigate the pathways responsible for soil moisture-precipitation interactions and the mechanisms for soil moisture memory at regional scales through analysis of NCEP's North American Regional Reanalysis dataset, which is derived from a system using the mesoscale Eta model coupled with Noah land surface model. The consideration of the relative availability of water and energy leads to the relative strengths of land-atmosphere interaction and soil moisture memory, which are related to the predictability of the regional hydrologic cycle. The seasonal and geographical variations in estimated interaction and memory may establish the relative predictability among the North American basins. The potential for seasonal predictability of the regional hydrologic cycle is conditioned by the foreknowledge of the land surface soil state, which contributes significantly to summer precipitation: (i) The precipitation variability and predictability by strong land-atmosphere interactions are most important in the monsoon regions of Mexico; (ii) Although strong in interactions, the poor soil moisture memory in the Colorado basin and the western part of the Mississippi basin lowers the predictability; (iii) The Columbia basin and the eastern part of the Mississippi basin also stand out as low predictability basins, in that they have good soil moisture memory, but weak strength in interactions, limiting their predictabilities. Our analysis has revealed a highly physically and statistically consistent picture, providing solid support to studies of predictability based on model simulations.

  8. Urban and agricultural contribution of annual loads of glyphosate and AMPA towards surface waters at the Orge River catchment scale (France)

    NASA Astrophysics Data System (ADS)

    Botta, Fabrizio; Chevreuil, Marc; Blanchoud, Hélène

    2010-05-01

    exported amounts was carried out at the River scale. Different origins (agricultural zones, urban areas and wastewater treatment plants) were assessed to determine the contribution of each usage. These investigations showed the high impact of storm waters and wastewaters upon the Orge River contamination (90%), whereas the agricultural zone contributed to only 10 % of the glyphosate contamination of the River. Glyphosate contaminates the river by direct flow of rainfall sewers towards surface waters. AMPA in the Orge river originates from both degradation of glyphosate in agricultural soils (29%) and from urban sewers (79%). Glyphosate amount transferred via overflows between sewers is the main source (more than 95%) in wastewaters during application period and rainfall events, but represents only 50% of the annual load in wastewaters that reach treatment plants (WWTP). AMPA, always detected in wastewaters and WWTP, is partly related to domestic wastewaters (18 to 23% of the total load). A difference between glyphosate and AMPA load inputs in the Orge River and outputs load at the outlet was registered: Glyphosate load is decreasing downstream as AMPA is increasing, suggesting a degradation of glyphosate into the river. The rule of sediments could have a significant influence of the dynamic transport of glyphosate. The results of the budget calculation are supported by a strong and logical data collection, coupled with detailed spatial information and consciousness of estimation accuracy. Keywords: Catchment, glyphosate, AMPA, inputs, budget

  9. The relative contributions of the folds and caveolae to the surface membrane of frog skeletal muscle fibres at different sarcomere lengths.

    PubMed Central

    Dulhunty, A F; Franzini-Armstrong, C

    1975-01-01

    The plasmalemmal area of striated muscle fibres is greater than the apparent surface area (A = circumference x length) because of variable folds and the invaginations of the caveolae and T-tubules. Freeze-fracture replicas of the surface membrane of sartorius and semitendinosus muscles from Rana pipiens have been used to determine the numbers and distribution of folds and caveolae at different sarcomere lengths. (1) The plasmalemma folds are variable in size and shape, but are always oriented perpendicular to the long axis of the fibre. The folds vary with stretch, being more prominent at short sarcomere lengths. The caveolae are elliptical invaginations of the plasmalemma which open to the outside by a narrow "neck" of approximately 20 nm. The caveolar lumen has an average long dimension of 81.6 +/- 11.7 nm and an average short dimension of 66.9 +/- 7.9 nm. The caveolar "necks" only can be seen in freeze-fracture replicas and these are distributed in two circumferential bands on either side of the Z-line, and in longitudinal bands separated by distances of 1-5 mum. In the sartorius muscle, at a sarcomere length of 2.8 mum, there is an average number of thirty-seven caveolae per square micrometer of fibre surface. (2) During passive stretch the opening of folds provides membrane for the necessary increase in surface area up to a sarcomere length of about 3.0 mum. This length is defined as the critical sarcomere length (Sc). The number of caveolae remains constant at all sarcomere lengths less than Sc and thus their "necks" have been used as membrane markers to determine the amount of folding at different sarcomere lengths. The membrane area contained in folds and caveolae is expressed as a fraction of the apparent surface area (A). For example, in the sartorius muscle, at a sarcomere length of 2.4 mum, the membrane area, excluding the T-tubules, is: A + 0.1A (folding) + 0.7A (caveolae) = 1.8A. (3) For stretch beyond Sc membrane is provided by the opening of

  10. Minimally invasive mediastinal surgery

    PubMed Central

    Melfi, Franca M. A.; Mussi, Alfredo

    2016-01-01

    In the past, mediastinal surgery was associated with the necessity of a maximum exposure, which was accomplished through various approaches. In the early 1990s, many surgical fields, including thoracic surgery, observed the development of minimally invasive techniques. These included video-assisted thoracic surgery (VATS), which confers clear advantages over an open approach, such as less trauma, short hospital stay, increased cosmetic results and preservation of lung function. However, VATS is associated with several disadvantages. For this reason, it is not routinely performed for resection of mediastinal mass lesions, especially those located in the anterior mediastinum, a tiny and remote space that contains vital structures at risk of injury. Robotic systems can overcome the limits of VATS, offering three-dimensional (3D) vision and wristed instrumentations, and are being increasingly used. With regards to thymectomy for myasthenia gravis (MG), unilateral and bilateral VATS approaches have demonstrated good long-term neurologic results with low complication rates. Nevertheless, some authors still advocate the necessity of maximum exposure, especially when considering the distribution of normal and ectopic thymic tissue. In recent studies, the robotic approach has shown to provide similar neurological outcomes when compared to transsternal and VATS approaches, and is associated with a low morbidity. Importantly, through a unilateral robotic technique, it is possible to dissect and remove at least the same amount of mediastinal fat tissue. Preliminary results on early-stage thymomatous disease indicated that minimally invasive approaches are safe and feasible, with a low rate of pleural recurrence, underlining the necessity of a “no-touch” technique. However, especially for thymomatous disease characterized by an indolent nature, further studies with long follow-up period are necessary in order to assess oncologic and neurologic results through minimally

  11. Minimally refined biomass fuel

    DOEpatents

    Pearson, Richard K.; Hirschfeld, Tomas B.

    1984-01-01

    A minimally refined fluid composition, suitable as a fuel mixture and derived from biomass material, is comprised of one or more water-soluble carbohydrates such as sucrose, one or more alcohols having less than four carbons, and water. The carbohydrate provides the fuel source; water solubilizes the carbohydrates; and the alcohol aids in the combustion of the carbohydrate and reduces the vicosity of the carbohydrate/water solution. Because less energy is required to obtain the carbohydrate from the raw biomass than alcohol, an overall energy savings is realized compared to fuels employing alcohol as the primary fuel.

  12. Wake Vortex Minimization

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A status report is presented on research directed at reducing the vortex disturbances of aircraft wakes. The objective of such a reduction is to minimize the hazard to smaller aircraft that might encounter these wakes. Inviscid modeling was used to study trailing vortices and viscous effects were investigated. Laser velocimeters were utilized in the measurement of aircraft wakes. Flight and wind tunnel tests were performed on scale and full model scale aircraft of various design. Parameters investigated included the effect of wing span, wing flaps, spoilers, splines and engine thrust on vortex attenuation. Results indicate that vortives may be alleviated through aerodynamic means.

  13. The ZOOM minimization package

    SciTech Connect

    Fischler, Mark S.; Sachs, D.; /Fermilab

    2004-11-01

    A new object-oriented Minimization package is available for distribution in the same manner as CLHEP. This package, designed for use in HEP applications, has all the capabilities of Minuit, but is a re-write from scratch, adhering to modern C++ design principles. A primary goal of this package is extensibility in several directions, so that its capabilities can be kept fresh with as little maintenance effort as possible. This package is distinguished by the priority that was assigned to C++ design issues, and the focus on producing an extensible system that will resist becoming obsolete.

  14. Spatial distribution of trace elements in the surface sediments of a major European estuary (Loire Estuary, France): Source identification and evaluation of anthropogenic contribution

    NASA Astrophysics Data System (ADS)

    Coynel, Alexandra; Gorse, Laureline; Curti, Cécile; Schafer, Jörg; Grosbois, Cécile; Morelli, Guia; Ducassou, Emmanuelle; Blanc, Gérard; Maillet, Grégoire M.; Mojtahid, Meryem

    2016-12-01

    Assessing the extent of metal contamination in estuarine surface sediments is hampered by the high heterogeneity of sediment characteristics, the spatial variability of trace element sources, sedimentary dynamics and geochemical processes in addition to the need of accurate reference values for deciphering natural to anthropogenic contribution. Based on 285 surface sediment samples from the Loire Estuary, the first high-resolution spatial distributions are presented for grain-size, particulate organic carbon (POC) and the eight metals/metalloids identified as priority contaminants (Cd, Zn, Pb, Cu, As, Cr, Ni, Hg) plus Ag (an urban tracer). Grain-size and/or POC are major factors controlling the spatial distribution of trace element concentrations. The V-normalized trace metal concentrations divided by the V-normalized concentrations in the basin geochemical background showed the highest Enrichment Factors for Ag and Hg (EF; up to 34 and 140, respectively). These results suggest a severe contamination in the Loire Estuary for both elements. Intra-estuarine Ag and Hg anomalies were identified by comparison between respective normalized concentrations in the Loire Estuary surface sediments and those measured in the surface sediments at the outlet of the Loire River System (watershed-derived). Anthropogenic intra-estuarine Ag and Hg stocks in the uppermost centimetre of the sediment compared with rough annual fluvial flux estimates suggest that the overall strong Enrichment Factors for Ag (EFAg) and and Hg (EFHg) in the Loire Estuary sediments are mainly due to watershed-derived inputs, highlighting the need of high temporal hydro-geochemical monitoring to establish reliable incoming fluxes. Significant correlations obtained between EFCd and EFAg, EFCu and POC and EFHg and POC revealed common behavior and/or sources. Comparison of trace element concentrations with ecotoxicological indices (Sediment Quality Guidelines) provides first standardized information on the

  15. Logarithmic superconformal minimal models

    NASA Astrophysics Data System (ADS)

    Pearce, Paul A.; Rasmussen, Jørgen; Tartaglia, Elena

    2014-05-01

    The higher fusion level logarithmic minimal models {\\cal LM}(P,P';n) have recently been constructed as the diagonal GKO cosets {(A_1^{(1)})_k\\oplus (A_1^ {(1)})_n}/ {(A_1^{(1)})_{k+n}} where n ≥ 1 is an integer fusion level and k = nP/(P‧- P) - 2 is a fractional level. For n = 1, these are the well-studied logarithmic minimal models {\\cal LM}(P,P')\\equiv {\\cal LM}(P,P';1). For n ≥ 2, we argue that these critical theories are realized on the lattice by n × n fusion of the n = 1 models. We study the critical fused lattice models {\\cal LM}(p,p')_{n\\times n} within a lattice approach and focus our study on the n = 2 models. We call these logarithmic superconformal minimal models {\\cal LSM}(p,p')\\equiv {\\cal LM}(P,P';2) where P = |2p - p‧|, P‧ = p‧ and p, p‧ are coprime. These models share the central charges c=c^{P,P';2}=\\frac {3}{2}\\big (1-{2(P'-P)^2}/{P P'}\\big ) of the rational superconformal minimal models {\\cal SM}(P,P'). Lattice realizations of these theories are constructed by fusing 2 × 2 blocks of the elementary face operators of the n = 1 logarithmic minimal models {\\cal LM}(p,p'). Algebraically, this entails the fused planar Temperley-Lieb algebra which is a spin-1 Birman-Murakami-Wenzl tangle algebra with loop fugacity β2 = [x]3 = x2 + 1 + x-2 and twist ω = x4 where x = eiλ and λ = (p‧- p)π/p‧. The first two members of this n = 2 series are superconformal dense polymers {\\cal LSM}(2,3) with c=-\\frac {5}{2}, β2 = 0 and superconformal percolation {\\cal LSM}(3,4) with c = 0, β2 = 1. We calculate the bulk and boundary free energies analytically. By numerically studying finite-size conformal spectra on the strip with appropriate boundary conditions, we argue that, in the continuum scaling limit, these lattice models are associated with the logarithmic superconformal models {\\cal LM}(P,P';2). For system size N, we propose finitized Kac character formulae of the form q^{-{c^{P,P';2}}/{24}+\\Delta ^{P,P';2} _{r

  16. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each

  17. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each

  18. Dissection of the relative contribution of the Schizosaccharomyces pombe Ctr4 and Ctr5 proteins to the copper transport and cell surface delivery functions

    PubMed Central

    Beaudoin, Jude; Thiele, Dennis J.; Labbé, Simon; Puig, Sergi

    2011-01-01

    The Ctr1 family of proteins mediates high-affinity copper (Cu) acquisition in eukaryotic organisms. In the fission yeast Schizosaccharomyces pombe, Cu uptake is carried out by a heteromeric complex formed by the Ctr4 and Ctr5 proteins. Unlike human and Saccharomyces cerevisiae Ctr1 proteins, Ctr4 and Ctr5 are unable to function independently in Cu acquisition. Instead, both proteins physically interact with each other to form a Ctr4–Ctr5 heteromeric complex, and are interdependent for secretion to the plasma membrane and Cu transport activity. In this study, we used S. cerevisiae mutants that are defective in high-affinity Cu uptake to dissect the relative contribution of Ctr4 and Ctr5 to the Cu transport function. Functional complementation and localization assays show that the conserved Met-X3-Met motif in transmembrane domain 2 of the Ctr5 protein is dispensable for the functionality of the Ctr4–Ctr5 complex, whereas the Met-X3-Met motif in the Ctr4 protein is essential for function and for localization of the hetero-complex to the plasma membrane. Moreover, Ctr4/Ctr5 chimeric proteins reveal unique properties found either in Ctr4 or in Ctr5, and are sufficient for Cu uptake on the cell surface of Sch. pombe cells. Functional chimeras contain the Ctr4 central and Ctr5 carboxyl-terminal domains (CTDs). We propose that the Ctr4 central domain mediates Cu transport in this hetero-complex, whereas the Ctr5 CTD functions in the regulation of trafficking of the Cu transport complex to the cell surface. PMID:21273250

  19. Porous V2O5/RGO/CNT hierarchical architecture as a cathode material: Emphasis on the contribution of surface lithium storage.

    PubMed

    Palanisamy, Kowsalya; Um, Ji Hyun; Jeong, Mihee; Yoon, Won-Sub

    2016-08-11

    A three dimensional vanadium pentoxide/reduced graphene oxide/carbon nanotube (3D V2O5/RGO/CNT) composite is synthesized by microwave-assisted hydrothermal method. The combination of 2D RGO and 1D CNT establishes continuous 3D conductive network, and most notably, the 1D CNT is designed to form hierarchically porous structure by penetrating into V2O5 microsphere assembly constituted of numerous V2O5 nanoparticles. The highly porous V2O5 microsphere enhances electrolyte contact and shortens Li(+) diffusion path as a consequence of its developed surface area and mesoporosity. The successive phase transformations of 3D V2O5/RGO/CNT from α-phase to ε-, δ-, γ-, and ω-phase and its structural reversibility upon Li(+) intercalation/de-intercalation are investigated by in situ XRD analysis, and the electronic and local structure reversibility around vanadium atom in 3D V2O5/RGO/CNT is observed by in situ XANES analysis. The 3D V2O5/RGO/CNT achieves a high capacity of 220 mAh g(-1) at 1 C after 80 cycles and an excellent rate capability of 100 mAh g(-1) even at a considerably high rate of 20 C. The porous 3D V2O5/RGO/CNT structure not only provides facile Li(+) diffusion into bulk but contributes to surface Li(+) storage as well, which enables the design of 3D V2O5/RGO/CNT composite to become a promising cathode architecture for high performance LIBs.

  20. Porous V2O5/RGO/CNT hierarchical architecture as a cathode material: Emphasis on the contribution of surface lithium storage

    NASA Astrophysics Data System (ADS)

    Palanisamy, Kowsalya; Um, Ji Hyun; Jeong, Mihee; Yoon, Won-Sub

    2016-08-01

    A three dimensional vanadium pentoxide/reduced graphene oxide/carbon nanotube (3D V2O5/RGO/CNT) composite is synthesized by microwave-assisted hydrothermal method. The combination of 2D RGO and 1D CNT establishes continuous 3D conductive network, and most notably, the 1D CNT is designed to form hierarchically porous structure by penetrating into V2O5 microsphere assembly constituted of numerous V2O5 nanoparticles. The highly porous V2O5 microsphere enhances electrolyte contact and shortens Li+ diffusion path as a consequence of its developed surface area and mesoporosity. The successive phase transformations of 3D V2O5/RGO/CNT from α-phase to ε-, δ-, γ-, and ω-phase and its structural reversibility upon Li+ intercalation/de-intercalation are investigated by in situ XRD analysis, and the electronic and local structure reversibility around vanadium atom in 3D V2O5/RGO/CNT is observed by in situ XANES analysis. The 3D V2O5/RGO/CNT achieves a high capacity of 220 mAh g‑1 at 1 C after 80 cycles and an excellent rate capability of 100 mAh g‑1 even at a considerably high rate of 20 C. The porous 3D V2O5/RGO/CNT structure not only provides facile Li+ diffusion into bulk but contributes to surface Li+ storage as well, which enables the design of 3D V2O5/RGO/CNT composite to become a promising cathode architecture for high performance LIBs.

  1. Porous V2O5/RGO/CNT hierarchical architecture as a cathode material: Emphasis on the contribution of surface lithium storage

    PubMed Central

    Palanisamy, Kowsalya; Um, Ji Hyun; Jeong, Mihee; Yoon, Won-Sub

    2016-01-01

    A three dimensional vanadium pentoxide/reduced graphene oxide/carbon nanotube (3D V2O5/RGO/CNT) composite is synthesized by microwave-assisted hydrothermal method. The combination of 2D RGO and 1D CNT establishes continuous 3D conductive network, and most notably, the 1D CNT is designed to form hierarchically porous structure by penetrating into V2O5 microsphere assembly constituted of numerous V2O5 nanoparticles. The highly porous V2O5 microsphere enhances electrolyte contact and shortens Li+ diffusion path as a consequence of its developed surface area and mesoporosity. The successive phase transformations of 3D V2O5/RGO/CNT from α-phase to ε-, δ-, γ-, and ω-phase and its structural reversibility upon Li+ intercalation/de-intercalation are investigated by in situ XRD analysis, and the electronic and local structure reversibility around vanadium atom in 3D V2O5/RGO/CNT is observed by in situ XANES analysis. The 3D V2O5/RGO/CNT achieves a high capacity of 220 mAh g−1 at 1 C after 80 cycles and an excellent rate capability of 100 mAh g−1 even at a considerably high rate of 20 C. The porous 3D V2O5/RGO/CNT structure not only provides facile Li+ diffusion into bulk but contributes to surface Li+ storage as well, which enables the design of 3D V2O5/RGO/CNT composite to become a promising cathode architecture for high performance LIBs. PMID:27511434

  2. Transanal Minimally Invasive Surgery

    PubMed Central

    deBeche-Adams, Teresa; Nassif, George

    2015-01-01

    Transanal minimally invasive surgery (TAMIS) was first described in 2010 as a crossover between single-incision laparoscopic surgery and transanal endoscopic microsurgery (TEM) to allow access to the proximal and mid-rectum for resection of benign and early-stage malignant rectal lesions. The TAMIS technique can also be used for noncurative intent surgery of more advanced lesions in patients who are not candidates for radical surgery. Proper workup and staging should be done before surgical decision-making. In addition to the TAMIS port, instrumentation and set up include readily available equipment found in most operating suites. TAMIS has proven its usefulness in a wide range of applications outside of local excision, including repair of rectourethral fistula, removal of rectal foreign body, control of rectal hemorrhage, and as an adjunct in total mesorectal excision for rectal cancer. TAMIS is an easily accessible, technically feasible, and cost-effective alternative to TEM. PMID:26491410

  3. Membranes minimize liquid discharge

    SciTech Connect

    Cappos, S.

    1995-07-01

    Zero discharge is a matter of concentration. Liquid and solid waste are repeatedly reduced to minimize or eliminate their discharge. But the process is intense, requiring an array of filtering and purifying technologies to achieve discharge goals. One of the most productive and effective technologies for this purpose is reverse osmosis (RO). Developed in the 1960s, RO produces a high-quality permeate for reuse, and a small concentrated stream for further treatment. The addition of RO to a wastewater treatment system can reduce overall operating costs and the capital costs of other components, as well as reduce a waste treatment system`s reliance on chemical treatment. The paper discusses how RO works, when RO is the best solution, where the waste goes, alternative technologies (clarifiers, vapor compression evaporators, and ion exchange demineralizers), and recent advances in membrane technology.

  4. Minimally invasive esophagectomy

    PubMed Central

    Herbella, Fernando A; Patti, Marco G

    2010-01-01

    Esophageal resection is associated with a high morbidity and mortality rate. Minimally invasive esophagectomy (MIE) might theoretically decrease this rate. We reviewed the current literature on MIE, with a focus on the available techniques, outcomes and comparison with open surgery. This review shows that the available literature on MIE is still crowded with heterogeneous studies with different techniques. There are no controlled and randomized trials, and the few retrospective comparative cohort studies are limited by small numbers of patients and biased by historical controls of open surgery. Based on the available literature, there is no evidence that MIE brings clear benefits compared to conventional esophagectomy. Increasing experience and the report of larger series might change this scenario. PMID:20698044

  5. Minimally invasive valve surgery.

    PubMed

    Woo, Y Joseph; Seeburger, Joerg; Mohr, Friedrich W

    2007-01-01

    As alternatives to standard sternotomy, surgeons have developed innovative, minimally invasive approaches to conducting valve surgery. Through very small skin incisions and partial upper sternal division for aortic valve surgery and right minithoracotomy for mitral surgery, surgeons have become adept at performing complex valve procedures. Beyond cosmetic appeal, apparent benefits range from decreased pain and bleeding to improved respiratory function and recovery time. The large retrospective studies and few small prospective randomized studies are herein briefly summarized. The focus is then directed toward describing specific intraoperative technical details in current clinical use, covering anesthetic preparation, incision, mediastinal access, cardiovascular cannulation, valve exposure, and valve reconstruction. Finally, unique situations such as pulmonic valve surgery, reoperations, beating heart surgery, and robotics are discussed.

  6. Minimally invasive parathyroid surgery

    PubMed Central

    Noureldine, Salem I.; Gooi, Zhen

    2015-01-01

    Traditionally, bilateral cervical exploration for localization of all four parathyroid glands and removal of any that are grossly enlarged has been the standard surgical treatment for primary hyperparathyroidism (PHPT). With the advances in preoperative localization studies and greater public demand for less invasive procedures, novel targeted, minimally invasive techniques to the parathyroid glands have been described and practiced over the past 2 decades. Minimally invasive parathyroidectomy (MIP) can be done either through the standard Kocher incision, a smaller midline incision, with video assistance (purely endoscopic and video-assisted techniques), or through an ectopically placed, extracervical, incision. In current practice, once PHPT is diagnosed, preoperative evaluation using high-resolution radiographic imaging to localize the offending parathyroid gland is essential if MIP is to be considered. The imaging study results suggest where the surgeon should begin the focused procedure and serve as a road map to allow tailoring of an efficient, imaging-guided dissection while eliminating the unnecessary dissection of multiple glands or a bilateral exploration. Intraoperative parathyroid hormone (IOPTH) levels may be measured during the procedure, or a gamma probe used during radioguided parathyroidectomy, to ascertain that the correct gland has been excised and that no other hyperfunctional tissue is present. MIP has many advantages over the traditional bilateral, four-gland exploration. MIP can be performed using local anesthesia, requires less operative time, results in fewer complications, and offers an improved cosmetic result and greater patient satisfaction. Additional advantages of MIP are earlier hospital discharge and decreased overall associated costs. This article aims to address the considerations for accomplishing MIP, including the role of preoperative imaging studies, intraoperative adjuncts, and surgical techniques. PMID:26425454

  7. The Fractional Free Volume of the Sorbed Vapor in Modeling the Viscoelastic Contribution to Polymer-Coated Surface Acoustic Wave Vapor Sensor Responses

    SciTech Connect

    Grate, Jay W. ); Zellers, Edward T.

    1999-12-01

    Surface acoustic wave (SAW) vapor sensors with polymeric sorbent layers can respond to vapors based on mass-loading and modulus decreases of the polymer film. The modulus changes are associated with volume changes that occur as vapor is sorbed by the film. A factor based on the fractional free volume of the vapor as a liquid has been incorporated into a model for the contribution of swelling-induced modulus changes to observed SAW vapor sensor responses. In this model, it is not the entire volume added to the film by the vapor molecules that causes the modulus to decrease. The free volume effect is calibrated from thermal expansion experiments. The amplification of the SAW vapor sensor response due to modulus effects that are predicted by this model have been compared to amplification factors determined by comparing the responses of polymer-coated SAW vapor sensors with the responses of similarly-coated thickness shear mode (TSM) vapor sensors, the latter being gravimetric. Results for six vapors on each of two polymers, poly(isobutylene) and poly(epichlorohydrin), were examined. The model correctly predicts amplification factors are related to the specific volume of the vapor as a liquid. The fractional free volume factor provides a physically meaningful addition to the model and is consistent with conventional polymer physics treatments of the effects of temperature and plasticization on polymer modulus.

  8. The Surface Sensor NlpE of Enterohemorrhagic Escherichia coli Contributes to Regulation of the Type III Secretion System and Flagella by the Cpx Response to Adhesion.

    PubMed

    Shimizu, Takeshi; Ichimura, Kimitoshi; Noda, Masatoshi

    2015-12-07

    Although the adhesion of enterohemorrhagic Escherichia coli (EHEC) is central to the EHEC-host interaction during infection, it remains unclear how such adhesion regulates virulence factors. Adhesion to abiotic surfaces by E. coli has been reported to be an outer membrane lipoprotein NlpE-dependent activation cue of the Cpx pathway. Therefore, we investigated the role of NlpE in EHEC on the adhesion-mediated expression of virulence genes. NlpE in EHEC contributed to upregulation of the locus of enterocyte effacement (LEE) genes encoded type III secretion system and to downregulated expression of the flagellin gene by activation of the Cpx pathway during adherence to hydrophobic glass beads and undifferentiated Caco-2 cells. Moreover, LysR homologue A (LrhA) in EHEC was involved in regulating the expression of the LEE genes and flagellin gene in response to adhesion. Gel mobility shift analysis revealed that response regulator CpxR bound to the lrhA promoter region and thereby regulated expressions of the LEE genes and flagellin gene via the transcriptional regulator LrhA in EHEC. Therefore, these results suggest that the sensing of adhesion signals via NlpE is important for regulation of the expression of the type III secretion system and flagella in EHEC during infection.

  9. Cyclone Simulation via Action Minimization

    NASA Astrophysics Data System (ADS)

    Plotkin, D. A.; Weare, J.; Abbot, D. S.

    2016-12-01

    A postulated impact of climate change is an increase in intensity of tropical cyclones (TCs). This hypothesized effect results from the fact that TCs are powered subsaturated boundary layer air picking up water vapor from the surface ocean as it flows inwards towards the eye. This water vapor serves as the energy input for TCs, which can be idealized as heat engines. The inflowing air has a nearly identical temperature as the surface ocean; therefore, warming of the surface leads to a warmer atmospheric boundary layer. By the Clausius-Clapeyron relationship, warmer boundary layer air can hold more water vapor and thus results in more energetic storms. Changes in TC intensity are difficult to predict due to the presence of fine structures (e.g. convective structures and rainbands) with length scales of less than 1 km, while general circulation models (GCMs) generally have horizontal resolutions of tens of kilometers. The models are therefore unable to capture these features, which are critical to accurately simulating cyclone structure and intensity. Further, strong TCs are rare events, meaning that long multi-decadal simulations are necessary to generate meaningful statistics about intense TC activity. This adds to the computational expense, making it yet more difficult to generate accurate statistics about long-term changes in TC intensity due to global warming via direct simulation. We take an alternative approach, applying action minimization techniques developed in molecular dynamics to the WRF weather/climate model. We construct artificial model trajectories that lead from quiescent (TC-free) states to TC states, then minimize the deviation of these trajectories from true model dynamics. We can thus create Monte Carlo model ensembles that are biased towards cyclogenesis, which reduces computational expense by limiting time spent in non-TC states. This allows for: 1) selective interrogation of model states with TCs; 2) finding the likeliest paths for

  10. On Equilibria for ADM Minimization Games

    NASA Astrophysics Data System (ADS)

    Epstein, Leah; Levin, Asaf

    In the ADM minimization problem, the input is a set of arcs along a directed ring. The input arcs need to be partitioned into non-overlapping chains and cycles so as to minimize the total number of endpoints, where a k-arc cycle contributes k endpoints and a k-arc chain contains k + 1 endpoints. We study ADM minimization problem both as a non-cooperative and a cooperative games. In these games, each arc corresponds to a player, and the players share the cost of the ADM switches. We consider two cost allocation models, a model which was considered by Flammini et al., and a new cost allocation model, which is inspired by congestion games. We compare the price of anarchy and price of stability in the two cost allocation models, as well as the strong price of anarchy and the strong price of stability.

  11. Minimal Marking: A Success Story

    ERIC Educational Resources Information Center

    McNeilly, Anne

    2014-01-01

    The minimal-marking project conducted in Ryerson's School of Journalism throughout 2012 and early 2013 resulted in significantly higher grammar scores in two first-year classes of minimally marked university students when compared to two traditionally marked classes. The "minimal-marking" concept (Haswell, 1983), which requires…

  12. Minimal Higgs inflation

    NASA Astrophysics Data System (ADS)

    Maity, Debaprasad

    2017-06-01

    In this paper we propose minimal Higgs inflation scenarios by non-polynomial modification of the Higgs potential. The modification is done in such a way that it creates a flat plateau for a huge range of field values at the inflationary energy scale μ ≃(λ) 1 / 4 α. Assuming the perturbative Higgs quartic coupling, λ ≃ O (1), our model prediction for all the cosmologically relevant quantities, (ns , r , dnsk), fit extremely well with observations made by PLANCK. For both the models the inflation energy scale turned out to be μ ≃ (1014 ,1015) GeV. Considering observed central value of the scalar spectral index, ns = 0.968, models predict efolding number, N = (52 , 47). Within a wide range of viable parameter space, we found that the prediction of tensor to scalar ratio r (≤10-5) is far below the current experimental limit. The prediction for the running of scalar spectral index, dnsk, remains very small. We also computed the background field dependent unitarity scale Λ (h), which turned out to be much larger than the aforementioned inflationary energy scale.

  13. Contributions of ocular surface components to matrix-metalloproteinases (MMP)-2 and MMP-9 in feline tears following corneal epithelial wounding.

    PubMed

    Petznick, Andrea; Madigan, Michele C; Garrett, Qian; Sweeney, Deborah F; Evans, Margaret D M

    2013-01-01

    This study investigated ocular surface components that contribute to matrix-metalloproteinase (MMP)-2 and MMP-9 found in tears following corneal epithelial wounding. Laboratory short-haired cats underwent corneal epithelial debridement in one randomly chosen eye (n = 18). Eye-flush tears were collected at baseline and during various healing stages. Procedural control eyes (identical experimental protocol as wounded eyes except for wounding, n = 5) served as controls for tear analysis. MMP activity was analyzed in tears using gelatin zymography. MMP staining patterns were evaluated in ocular tissues using immunohistochemistry and used to determine MMP expression sites responsible for tear-derived MMPs. The proMMP-2 and proMMP-9 activity in tears was highest in wounded and procedural control eyes during epithelial migration (8 to 36 hours post-wounding). Wounded eyes showed significantly higher proMMP-9 in tears only during and after epithelial restratification (day 3 to 4 and day 7 to 28 post-wounding, respectively) as compared to procedural controls (p<0.05). Tears from wounded and procedural control eyes showed no statistical differences for pro-MMP-2 and MMP-9 (p>0.05). Immunohistochemistry showed increased MMP-2 and MMP-9 expression in the cornea during epithelial migration and wound closure. The conjunctival epithelium exhibited highest levels of both MMPs during wound closure, while MMP-9 expression was reduced in conjunctival goblet cells during corneal epithelial migration followed by complete absence of the cells during wound closure. The immunostaining for both MMPs was elevated in the lacrimal gland during corneal healing, with little/no change in the meibomian glands. Conjunctival-associated lymphoid tissue (CALT) showed weak MMP-2 and intense MMP-9 staining. Following wounding, migrating corneal epithelium contributed little to the observed MMP levels in tears. The major sources assessed in the present study for tear-derived MMP-2 and MMP-9

  14. Global and regional aspects for genesis of catastrophic floods - the problems of forecasting and estimates for mass and water balance (surface and groundwater contribution)

    NASA Astrophysics Data System (ADS)

    Trifonova, Tatiana; Arakelian, Sergei; Trifonov, Dmitriy; Abrakhin, Sergei

    2017-04-01

    1. The principal goal of present talk is, to discuss the existing uncertainty and discrepancy between water balance estimation for the area under heavy rain flood, on the one hand from the theoretical approach and reasonable data base due to rainfall going from atmosphere and, on the other hand the real practicle surface water flow parameters measured by some methods and/or fixed by some eye-witness (cf. [1]). The vital item for our discussion is that the last characteristics sometimes may be noticeably grater than the first ones. Our estimations show the grater water mass discharge observation during the events than it could be expected from the rainfall process estimation only [2]. The fact gives us the founding to take into account the groundwater possible contribution to the event. 2. We carried out such analysis, at least, for two catastrophic water events in 2015, i.e. (1) torrential rain and catastrophic floods in Lousiana (USA), June 16-20; (2) Assam flood (India), Aug. 22 - Sept. 8. 3. Groundwater flood of a river terrace discussed e.g. in [3] but in respect when rise of the water table above the land surface occurs coincided with intense rainfall and being as a relatively rare phenomenon. In our hypothesis the principal part of possible groundwater exit to surface is connected with a crack-net system state in earth-crust (including deep layers) as a water transportation system, first, being in variated pressure field for groundwater basin and, second, modified by different reasons ( both suddenly (the Krimsk-city flash flood event, July 2012, Russia) and/or smoothly (the Amur river flood event, Aug.-Sept. 2013, Russia) ). Such reconstruction of 3D crack-net under external reasons (resulting even in local variation of pressures in any crack-section) is a principal item for presented approach. 4. We believe that in some cases the interconnection of floods and preceding earthquakes may occur. The problem discuss by us for certain events ( e.g. in addition to

  15. [Mastopexy with minimal scar].

    PubMed

    Tepavicharova-Romanska, P; Romanski, R K

    2004-01-01

    The image of the breast as a symbol of femininity plays an essential role in the way a woman looks at herself and contributes to her personal and social development. Fashion nowadays uncovers rather than covers a woman's body, and long scars resulting from mammaplasty are less accepted now than they were in the past, more so because the scar quality is unforeseeable. The main concern of mastopexy is to limit the scars, creating a nice breast shape. Ideally scarring is confined to the periareolar circle.

  16. Minimally Invasive Diagnosis of Secondary Intracranial Lymphoma

    PubMed Central

    Healy, G. M.; Redmond, C. E.; Stocker, E.; Connaghan, G.; Skehan, S. J.; Killeen, R. P.

    2016-01-01

    Diffuse large B cell lymphomas (DLBCL) are an aggressive group of non-Hodgkin lymphoid malignancies which have diverse presentation and can have high mortality. Central nervous system relapse is rare but has poor survival. We present the diagnosis of primary mandibular DLBCL and a unique minimally invasive diagnosis of secondary intracranial recurrence. This case highlights the manifold radiological contributions to the diagnosis and management of lymphoma. PMID:28018686

  17. On 3D minimal massive gravity

    NASA Astrophysics Data System (ADS)

    Alishahiha, Mohsen; Qaemmaqami, Mohammad M.; Naseh, Ali; Shirzad, Ahmad

    2014-12-01

    We study linearized equations of motion of the newly proposed three dimensional gravity, known as minimal massive gravity, using its metric formulation. By making use of a redefinition of the parameters of the model, we observe that the resulting linearized equations are exactly the same as that of TMG. In particular the model admits logarithmic modes at critical points. We also study several vacuum solutions of the model, specially at a certain limit where the contribution of Chern-Simons term vanishes.

  18. Discrete minimal flavor violation

    SciTech Connect

    Zwicky, Roman; Fischbacher, Thomas

    2009-10-01

    We investigate the consequences of replacing the global flavor symmetry of minimal flavor violation (MFV) SU(3){sub Q}xSU(3){sub U}xSU(3){sub D}x{center_dot}{center_dot}{center_dot} by a discrete D{sub Q}xD{sub U}xD{sub D}x{center_dot}{center_dot}{center_dot} symmetry. Goldstone bosons resulting from the breaking of the flavor symmetry generically lead to bounds on new flavor structure many orders of magnitude above the TeV scale. The absence of Goldstone bosons for discrete symmetries constitute the primary motivation of our work. Less symmetry implies further invariants and renders the mass-flavor basis transformation observable in principle and calls for a hierarchy in the Yukawa matrix expansion. We show, through the dimension of the representations, that the (discrete) symmetry in principle does allow for additional {delta}F=2 operators. If though the {delta}F=2 transitions are generated by two subsequent {delta}F=1 processes, as, for example, in the standard model, then the four crystal-like groups {sigma}(168){approx_equal}PSL(2,F{sub 7}), {sigma}(72{phi}), {sigma}(216{phi}) and especially {sigma}(360{phi}) do provide enough protection for a TeV-scale discrete MFV scenario. Models where this is not the case have to be investigated case by case. Interestingly {sigma}(216{phi}) has a (nonfaithful) representation corresponding to an A{sub 4} symmetry. Moreover we argue that the, apparently often omitted, (D) groups are subgroups of an appropriate {delta}(6g{sup 2}). We would like to stress that we do not provide an actual model that realizes the MFV scenario nor any other theory of flavor.

  19. Minimal Change Disease.

    PubMed

    Vivarelli, Marina; Massella, Laura; Ruggiero, Barbara; Emma, Francesco

    2017-02-07

    Minimal change disease (MCD) is a major cause of idiopathic nephrotic syndrome (NS), characterized by intense proteinuria leading to edema and intravascular volume depletion. In adults, it accounts for approximately 15% of patients with idiopathic NS, reaching a much higher percentage at younger ages, up to 70%-90% in children >1 year of age. In the pediatric setting, a renal biopsy is usually not performed if presentation is typical and the patient responds to therapy with oral prednisone at conventional doses. Therefore, in this setting steroid-sensitive NS can be considered synonymous with MCD. The pathologic hallmark of disease is absence of visible alterations by light microscopy and effacement of foot processes by electron microscopy. Although the cause is unknown and it is likely that different subgroups of disease recognize a different pathogenesis, immunologic dysregulation and modifications of the podocyte are thought to synergize in altering the integrity of the glomerular basement membrane and therefore determining proteinuria. The mainstay of therapy is prednisone, but steroid-sensitive forms frequently relapse and this leads to a percentage of patients requiring second-line steroid-sparing immunosuppression. The outcome is variable, but forms of MCD that respond to steroids usually do not lead to chronic renal damage, whereas forms that are unresponsive to steroids may subsequently reveal themselves as FSGS. However, in a substantial number of patients the disease is recurrent and requires long-term immunosuppression, with significant morbidity because of side effects. Recent therapeutic advances, such as the use of anti-CD20 antibodies, have provided long-term remission off-therapy and suggest new hypotheses for disease pathogenesis. Copyright © 2017 by the American Society of Nephrology.

  20. In-duct removal of mercury from coal-fired power plant flue gas by activated carbon: assessment of entrained flow versus wall surface contributions

    SciTech Connect

    Scala, F.; Chirone, R.; Lancia, A.

    2008-12-15

    In-duct mercury capture efficiency by activated carbon from coal-combustion flue gas was investigated. To this end, elemental mercury capture experiments were conducted at 100 C in a purposely designed 65-mm ID labscale pyrex apparatus operated as an entrained flow reactor. Gas residence times were varied between 0.7 and 2.0 s. Commercial-powdered activated carbon was continuously injected in the reactor and both mercury concentration and carbon elutriation rate were followed at the outlet. Transient mercury concentration profiles at the outlet showed that steady-state conditions were reached in a time interval of 15-20 min, much longer than the gas residence time in the reactor. Results indicate that the influence of the walls is non-negligible in determining the residence time of fine carbon particles in the adsorption zone, because of surface deposition and/or the establishment of a fluid-dynamic boundary layer near the walls. Total mercury capture efficiencies of 20-50% were obtained with carbon injection rates in the range 0.07-0.25 g/min. However, only a fraction of this capture was attributable to free-flowing carbon particles, a significant contribution coming from activated carbon staying near the reactor walls. Entrained bed experiments at lab-scale conditions are probably not properly representative of full-scale conditions, where the influence of wall interactions is lower. Moreover, previously reported entrained flow lab-scale mercury capture data should be reconsidered by taking into account the influence of particle-wall interactions.

  1. Surface expression of hippocampal NMDA GluN2B receptors regulated by fear conditioning determines its contribution to memory consolidation in adult rats.

    PubMed

    Sun, Yan-Yan; Cai, Wei; Yu, Jie; Liu, Shu-Su; Zhuo, Min; Li, Bao-Ming; Zhang, Xue-Han

    2016-08-04

    The number and subtype composition of N-methyl-d-aspartate receptor (NMDAR) at synapses determines their functional properties and role in learning and memory. Genetically increased or decreased amount of GluN2B affects hippocampus-dependent memory in the adult brain. But in some experimental conditions (e.g., memory elicited by a single conditioning trial (1 CS-US)), GluN2B is not a necessary factor, which indicates that the precise role of GluN2B in memory formation requires further exploration. Here, we examined the role of GluN2B in the consolidation of fear memory using two training paradigms. We found that GluN2B was only required for the consolidation of memory elicited by five conditioning trials (5 CS-US), not by 1 CS-US. Strikingly, the expression of membrane GluN2B in CA1was training-strength-dependently increased after conditioning, and that the amount of membrane GluN2B determined its involvement in memory consolidation. Additionally, we demonstrated the increases in the activities of cAMP, ERK, and CREB in the CA1 after conditioning, as well as the enhanced intrinsic excitability and synaptic efficacy in CA1 neurons. Up-regulation of membrane GluN2B contributed to these enhancements. These studies uncover a novel mechanism for the involvement of GluN2B in memory consolidation by its accumulation at the cell surface in response to behavioral training.

  2. Surface expression of hippocampal NMDA GluN2B receptors regulated by fear conditioning determines its contribution to memory consolidation in adult rats

    PubMed Central

    Sun, Yan-Yan; Cai, Wei; Yu, Jie; Liu, Shu-Su; Zhuo, Min; Li, Bao-Ming; Zhang, Xue-Han

    2016-01-01

    The number and subtype composition of N-methyl-d-aspartate receptor (NMDAR) at synapses determines their functional properties and role in learning and memory. Genetically increased or decreased amount of GluN2B affects hippocampus-dependent memory in the adult brain. But in some experimental conditions (e.g., memory elicited by a single conditioning trial (1 CS-US)), GluN2B is not a necessary factor, which indicates that the precise role of GluN2B in memory formation requires further exploration. Here, we examined the role of GluN2B in the consolidation of fear memory using two training paradigms. We found that GluN2B was only required for the consolidation of memory elicited by five conditioning trials (5 CS-US), not by 1 CS-US. Strikingly, the expression of membrane GluN2B in CA1was training-strength-dependently increased after conditioning, and that the amount of membrane GluN2B determined its involvement in memory consolidation. Additionally, we demonstrated the increases in the activities of cAMP, ERK, and CREB in the CA1 after conditioning, as well as the enhanced intrinsic excitability and synaptic efficacy in CA1 neurons. Up-regulation of membrane GluN2B contributed to these enhancements. These studies uncover a novel mechanism for the involvement of GluN2B in memory consolidation by its accumulation at the cell surface in response to behavioral training. PMID:27487820

  3. Minimize pump downtime

    SciTech Connect

    Myers, R.D.

    1995-06-01

    In refineries and petrochemical plants, centrifugal pumps usually lead the list of equipment that is most susceptible to failure. Using guidelines, maintenance mechanics can improve troubleshooting methods when investigating pump bedplates, underlying concrete foundations and grouting problems. Too often, mechanics may improperly diagnose a misalignment--caused by grouting problems--as an unbalance or a bearing-wearing problem when troubleshooting pump failure. Result: bearing, shaft and seal failures occur from a flawed maintenance procedure. Identifying mounting-surface problems can improve pump performance and decrease unit downtime.

  4. Genes ycfR, sirA and yigG contribute to the surface attachment of Salmonella enterica Typhimurium and Saintpaul to fresh produce

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica is frequently implicated in human foodborne disease outbreaks associated with minimally-processed produce. However, the molecular mechanisms underlying the association of this enteric pathogen with fresh produce remain largely unexplored.In previous studies, we determined that th...

  5. CONTRIBUTION OF NUTRIENTS AND E. COLI TO SURFACE WATER CONDITION IN THE OZARKS I. USING PARTIAL LEAST SQUARES PREDICTIONS WHEN STANDARD REGRESSION ASSUMPTIONS ARE VIOLATED

    EPA Science Inventory

    We present here the application of PLS regression to predicting surface water total phosphorous, total ammonia and Escherichia coli from landscape metrics. The amount of variability in surface water constituents explained by each model reflects the composition of the contributi...

  6. CONTRIBUTION OF NUTRIENTS AND E. COLI TO SURFACE WATER CONDITION IN THE OZARKS I. USING PARTIAL LEAST SQUARES PREDICTIONS WHEN STANDARD REGRESSION ASSUMPTIONS ARE VIOLATED

    EPA Science Inventory

    We present here the application of PLS regression to predicting surface water total phosphorous, total ammonia and Escherichia coli from landscape metrics. The amount of variability in surface water constituents explained by each model reflects the composition of the contributi...

  7. Bacterial colonization and biofilm development on minimally processed vegetables.

    PubMed

    Carmichael, I; Harper, I S; Coventry, M J; Taylor, P W; Wan, J; Hickey, M W

    1998-12-01

    Bacterial biofilms have been observed and reported on food and food-processing surfaces and can contribute to increased risks for product quality and food safety. The colonization of fruit and vegetables by pectynolitic bacteria like Pseudonomas fluorescens attributable to conditions such as soft rot, can also manifest as biofilms. A developed biofilm structure can provide a protective environment for pathogens such as Listeria monocytogenes reducing the effectiveness of sanitisers and other inhibitory agents. Understanding the colonization of bacteria on leaf surfaces is essential to the development of a better understanding of the leaf ecology of vegetable products. Studies of microbial colonization of leaf surfaces have been conducted using SEM and more recently using confocal microsocpy techniques. In the current study, a Leica TCS NT laser scanning confocal microscope was used to investigate biofilm formation using vital fluorescence staining on intact vegetable leaves. Reflection contrast and fluorescence three-dimensional imaging successfully delineated bacterial and biofilm morphology without disturbing the bacterial or leaf surface structure. The results demonstrate the presence and development of biofilm on the surface of lettuce. The biofilms appeared to originate on the cuticle in distinct micro-environments such as in the natural depression of the stomata, or in the intercellular junction. Bacteria also adhered to and developed biofilm colonies within an hour of contact and with clean stainless steel surfaces. Our study investigates the progression of biofilm formation from leaf colonization, and will assist in characterising the critical mechanisms of plant/host interaction and facilitate the development of improved preservation, sanitising and packaging strategies for minimally processed vegetable products.

  8. System for etching thick aluminum layers minimizes bridging and undercutting

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Four step photoresist process for etching thick aluminum layers for semiconductor device contacts produces uniform contact surfaces, eliminates bridging, minimizes undercutting, and may be used on various materials of any thickness.

  9. Development of a bioanalytical test battery for water quality monitoring: Fingerprinting identified micropollutants and their contribution to effects in surface water.

    PubMed

    Neale, Peta A; Altenburger, Rolf; Aït-Aïssa, Selim; Brion, François; Busch, Wibke; de Aragão Umbuzeiro, Gisela; Denison, Michael S; Du Pasquier, David; Hilscherová, Klára; Hollert, Henner; Morales, Daniel A; Novák, Jiří; Schlichting, Rita; Seiler, Thomas-Benjamin; Serra, Helene; Shao, Ying; Tindall, Andrew J; Tollefsen, Knut Erik; Williams, Timothy D; Escher, Beate I

    2017-10-15

    Surface waters can contain a diverse range of organic pollutants, including pesticides, pharmaceuticals and industrial compounds. While bioassays have been used for water quality monitoring, there is limited knowledge regarding the effects of individual micropollutants and their relationship to the overall mixture effect in water samples. In this study, a battery of in vitro bioassays based on human and fish cell lines and whole organism assays using bacteria, algae, daphnids and fish embryos was assembled for use in water quality monitoring. The selection of bioassays was guided by the principles of adverse outcome pathways in order to cover relevant steps in toxicity pathways known to be triggered by environmental water samples. The effects of 34 water pollutants, which were selected based on hazard quotients, available environmental quality standards and mode of action information, were fingerprinted in the bioassay test battery. There was a relatively good agreement between the experimental results and available literature effect data. The majority of the chemicals were active in the assays indicative of apical effects, while fewer chemicals had a response in the specific reporter gene assays, but these effects were typically triggered at lower concentrations. The single chemical effect data were used to improve published mixture toxicity modeling of water samples from the Danube River. While there was a slight increase in the fraction of the bioanalytical equivalents explained for the Danube River samples, for some endpoints less than 1% of the observed effect could be explained by the studied chemicals. The new mixture models essentially confirmed previous findings from many studies monitoring water quality using both chemical analysis and bioanalytical tools. In short, our results indicate that many more chemicals contribute to the biological effect than those that are typically quantified by chemical monitoring programs or those regulated by environmental

  10. Minimizing timestamp size for completely asynchronous optimistic recovery with minimal rollback

    SciTech Connect

    Smith, S.W.; Johnson, D.B.

    1996-10-01

    Basing rollback recovery on optimistic message logging and replay avoids the need for synchronization between processes during failure- free execution. Some previous research has also attempted to reduce the need for synchronization during recovery, but these protocols have suffered from three problems. not eliminating all synchronization during recovery, not minimizing rollback, or providing these properties but requiring large timestamps. This paper makes two contributions. we present a new rollback recovery protocol, based on our previous work, that provides these properties (asynchronous recovery, minimal rollback) while reducing the timestamp size; and we prove that no protocol can provide these properties and have asymptotically smaller timestamps.

  11. Minimally Invasive Surgery for Inflammatory Bowel Disease

    PubMed Central

    Holder-Murray, Jennifer; Marsicovetere, Priscilla

    2015-01-01

    Abstract: Surgical management of inflammatory bowel disease is a challenging endeavor given infectious and inflammatory complications, such as fistula, and abscess, complex often postoperative anatomy, including adhesive disease from previous open operations. Patients with Crohn's disease and ulcerative colitis also bring to the table the burden of their chronic illness with anemia, malnutrition, and immunosuppression, all common and contributing independently as risk factors for increased surgical morbidity in this high-risk population. However, to reduce the physical trauma of surgery, technologic advances and worldwide experience with minimally invasive surgery have allowed laparoscopic management of patients to become standard of care, with significant short- and long-term patient benefits compared with the open approach. In this review, we will describe the current state-of the-art for minimally invasive surgery for inflammatory bowel disease and the caveats inherent with this practice in this complex patient population. Also, we will review the applicability of current and future trends in minimally invasive surgical technique, such as laparoscopic “incisionless,” single-incision laparoscopic surgery (SILS), robotic-assisted, and other techniques for the patient with inflammatory bowel disease. There can be no doubt that minimally invasive surgery has been proven to decrease the short- and long-term burden of surgery of these chronic illnesses and represents high-value care for both patient and society. PMID:25989341

  12. Guidelines for mixed waste minimization

    SciTech Connect

    Owens, C.

    1992-02-01

    Currently, there is no commercial mixed waste disposal available in the United States. Storage and treatment for commercial mixed waste is limited. Host States and compacts region officials are encouraging their mixed waste generators to minimize their mixed wastes because of management limitations. This document provides a guide to mixed waste minimization.

  13. Influenza SIRS with Minimal Pneumonitis.

    PubMed

    Erramilli, Shruti; Mannam, Praveen; Manthous, Constantine A

    2016-01-01

    Although systemic inflammatory response syndrome (SIRS) is a known complication of severe influenza pneumonia, it has been reported very rarely in patients with minimal parenchymal lung disease. We here report a case of severe SIRS, anasarca, and marked vascular phenomena with minimal or no pneumonitis. This case highlights that viruses, including influenza, may cause vascular dysregulation causing SIRS, even without substantial visceral organ involvement.

  14. Waste minimization handbook, Volume 1

    SciTech Connect

    Boing, L.E.; Coffey, M.J.

    1995-12-01

    This technical guide presents various methods used by industry to minimize low-level radioactive waste (LLW) generated during decommissioning and decontamination (D and D) activities. Such activities generate significant amounts of LLW during their operations. Waste minimization refers to any measure, procedure, or technique that reduces the amount of waste generated during a specific operation or project. Preventive waste minimization techniques implemented when a project is initiated can significantly reduce waste. Techniques implemented during decontamination activities reduce the cost of decommissioning. The application of waste minimization techniques is not limited to D and D activities; it is also useful during any phase of a facility`s life cycle. This compendium will be supplemented with a second volume of abstracts of hundreds of papers related to minimizing low-level nuclear waste. This second volume is expected to be released in late 1996.

  15. Surface Partitioning in Organic-Inorganic Mixtures Contributes to the Size-Dependence of the Phase-State of Atmospheric Nanoparticles.

    PubMed

    Werner, Josephina; Dalirian, Maryam; Walz, Marie-Madeleine; Ekholm, Victor; Wideqvist, Ulla; Lowe, Samuel J; Öhrwall, Gunnar; Persson, Ingmar; Riipinen, Ilona; Björneholm, Olle

    2016-07-19

    Atmospheric particulate matter is one of the main factors governing the Earth's radiative budget, but its exact effects on the global climate are still uncertain. Knowledge on the molecular-scale surface phenomena as well as interactions between atmospheric organic and inorganic compounds is necessary for understanding the role of airborne nanoparticles in the Earth system. In this work, surface composition of aqueous model systems containing succinic acid and sodium chloride or ammonium sulfate is determined using a novel approach combining X-ray photoelectron spectroscopy, surface tension measurements and thermodynamic modeling. It is shown that succinic acid molecules are accumulated in the surface, yielding a 10-fold surface concentration as compared with the bulk for saturated succinic acid solutions. Inorganic salts further enhance this enrichment due to competition for hydration in the bulk. The surface compositions for various mixtures are parametrized to yield generalizable results and used to explain changes in surface tension. The enhanc