Sample records for minimize human error

  1. Managing human fallibility in critical aerospace situations

    NASA Astrophysics Data System (ADS)

    Tew, Larry

    2014-11-01

    Human fallibility is pervasive in the aerospace industry with over 50% of errors attributed to human error. Consider the benefits to any organization if those errors were significantly reduced. Aerospace manufacturing involves high value, high profile systems with significant complexity and often repetitive build, assembly, and test operations. In spite of extensive analysis, planning, training, and detailed procedures, human factors can cause unexpected errors. Handling such errors involves extensive cause and corrective action analysis and invariably schedule slips and cost growth. We will discuss success stories, including those associated with electro-optical systems, where very significant reductions in human fallibility errors were achieved after receiving adapted and specialized training. In the eyes of company and customer leadership, the steps used to achieve these results lead to in a major culture change in both the workforce and the supporting management organization. This approach has proven effective in other industries like medicine, firefighting, law enforcement, and aviation. The roadmap to success and the steps to minimize human error are known. They can be used by any organization willing to accept human fallibility and take a proactive approach to incorporate the steps needed to manage and minimize error.

  2. Managing Errors to Reduce Accidents in High Consequence Networked Information Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ganter, J.H.

    1999-02-01

    Computers have always helped to amplify and propagate errors made by people. The emergence of Networked Information Systems (NISs), which allow people and systems to quickly interact worldwide, has made understanding and minimizing human error more critical. This paper applies concepts from system safety to analyze how hazards (from hackers to power disruptions) penetrate NIS defenses (e.g., firewalls and operating systems) to cause accidents. Such events usually result from both active, easily identified failures and more subtle latent conditions that have resided in the system for long periods. Both active failures and latent conditions result from human errors. We classifymore » these into several types (slips, lapses, mistakes, etc.) and provide NIS examples of how they occur. Next we examine error minimization throughout the NIS lifecycle, from design through operation to reengineering. At each stage, steps can be taken to minimize the occurrence and effects of human errors. These include defensive design philosophies, architectural patterns to guide developers, and collaborative design that incorporates operational experiences and surprises into design efforts. We conclude by looking at three aspects of NISs that will cause continuing challenges in error and accident management: immaturity of the industry, limited risk perception, and resource tradeoffs.« less

  3. Minimizing Accidents and Risks in High Adventure Outdoor Pursuits.

    ERIC Educational Resources Information Center

    Meier, Joel

    The fundamental dilemma in adventure programming is eliminating unreasonable risks to participants without also reducing levels of excitement, challenge, and stress. Most accidents are caused by a combination of unsafe conditions, unsafe acts, and error judgments. The best and only way to minimize critical human error in adventure programs is…

  4. [Using some modern mathematical models of postmortem cooling of the human body for the time of death determination].

    PubMed

    Vavilov, A Iu; Viter, V I

    2007-01-01

    Mathematical questions of data errors of modern thermometrical models of postmortem cooling of the human body are considered. The main diagnostic areas used for thermometry are analyzed to minimize these data errors. The authors propose practical recommendations to decrease data errors of determination of prescription of death coming.

  5. Human Error and the International Space Station: Challenges and Triumphs in Science Operations

    NASA Technical Reports Server (NTRS)

    Harris, Samantha S.; Simpson, Beau C.

    2016-01-01

    Any system with a human component is inherently risky. Studies in human factors and psychology have repeatedly shown that human operators will inevitably make errors, regardless of how well they are trained. Onboard the International Space Station (ISS) where crew time is arguably the most valuable resource, errors by the crew or ground operators can be costly to critical science objectives. Operations experts at the ISS Payload Operations Integration Center (POIC), located at NASA's Marshall Space Flight Center in Huntsville, Alabama, have learned that from payload concept development through execution, there are countless opportunities to introduce errors that can potentially result in costly losses of crew time and science. To effectively address this challenge, we must approach the design, testing, and operation processes with two specific goals in mind. First, a systematic approach to error and human centered design methodology should be implemented to minimize opportunities for user error. Second, we must assume that human errors will be made and enable rapid identification and recoverability when they occur. While a systematic approach and human centered development process can go a long way toward eliminating error, the complete exclusion of operator error is not a reasonable expectation. The ISS environment in particular poses challenging conditions, especially for flight controllers and astronauts. Operating a scientific laboratory 250 miles above the Earth is a complicated and dangerous task with high stakes and a steep learning curve. While human error is a reality that may never be fully eliminated, smart implementation of carefully chosen tools and techniques can go a long way toward minimizing risk and increasing the efficiency of NASA's space science operations.

  6. Human error mitigation initiative (HEMI) : summary report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Susan M.; Ramos, M. Victoria; Wenner, Caren A.

    2004-11-01

    Despite continuing efforts to apply existing hazard analysis methods and comply with requirements, human errors persist across the nuclear weapons complex. Due to a number of factors, current retroactive and proactive methods to understand and minimize human error are highly subjective, inconsistent in numerous dimensions, and are cumbersome to characterize as thorough. An alternative and proposed method begins with leveraging historical data to understand what the systemic issues are and where resources need to be brought to bear proactively to minimize the risk of future occurrences. An illustrative analysis was performed using existing incident databases specific to Pantex weapons operationsmore » indicating systemic issues associated with operating procedures that undergo notably less development rigor relative to other task elements such as tooling and process flow. Future recommended steps to improve the objectivity, consistency, and thoroughness of hazard analysis and mitigation were delineated.« less

  7. Analysis of measured data of human body based on error correcting frequency

    NASA Astrophysics Data System (ADS)

    Jin, Aiyan; Peipei, Gao; Shang, Xiaomei

    2014-04-01

    Anthropometry is to measure all parts of human body surface, and the measured data is the basis of analysis and study of the human body, establishment and modification of garment size and formulation and implementation of online clothing store. In this paper, several groups of the measured data are gained, and analysis of data error is gotten by analyzing the error frequency and using analysis of variance method in mathematical statistics method. Determination of the measured data accuracy and the difficulty of measured parts of human body, further studies of the causes of data errors, and summarization of the key points to minimize errors possibly are also mentioned in the paper. This paper analyses the measured data based on error frequency, and in a way , it provides certain reference elements to promote the garment industry development.

  8. Method of grid generation

    DOEpatents

    Barnette, Daniel W.

    2002-01-01

    The present invention provides a method of grid generation that uses the geometry of the problem space and the governing relations to generate a grid. The method can generate a grid with minimized discretization errors, and with minimal user interaction. The method of the present invention comprises assigning grid cell locations so that, when the governing relations are discretized using the grid, at least some of the discretization errors are substantially zero. Conventional grid generation is driven by the problem space geometry; grid generation according to the present invention is driven by problem space geometry and by governing relations. The present invention accordingly can provide two significant benefits: more efficient and accurate modeling since discretization errors are minimized, and reduced cost grid generation since less human interaction is required.

  9. Human error in aviation operations

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Lanber, J. K.; Cooper, G. E.

    1974-01-01

    This report is a brief description of research being undertaken by the National Aeronautics and Space Administration. The project is designed to seek out factors in the aviation system which contribute to human error, and to search for ways of minimizing the potential threat posed by these factors. The philosophy and assumptions underlying the study are discussed, together with an outline of the research plan.

  10. Does the sensorimotor system minimize prediction error or select the most likely prediction during object lifting?

    PubMed Central

    McGregor, Heather R.; Pun, Henry C. H.; Buckingham, Gavin; Gribble, Paul L.

    2016-01-01

    The human sensorimotor system is routinely capable of making accurate predictions about an object's weight, which allows for energetically efficient lifts and prevents objects from being dropped. Often, however, poor predictions arise when the weight of an object can vary and sensory cues about object weight are sparse (e.g., picking up an opaque water bottle). The question arises, what strategies does the sensorimotor system use to make weight predictions when one is dealing with an object whose weight may vary? For example, does the sensorimotor system use a strategy that minimizes prediction error (minimal squared error) or one that selects the weight that is most likely to be correct (maximum a posteriori)? In this study we dissociated the predictions of these two strategies by having participants lift an object whose weight varied according to a skewed probability distribution. We found, using a small range of weight uncertainty, that four indexes of sensorimotor prediction (grip force rate, grip force, load force rate, and load force) were consistent with a feedforward strategy that minimizes the square of prediction errors. These findings match research in the visuomotor system, suggesting parallels in underlying processes. We interpret our findings within a Bayesian framework and discuss the potential benefits of using a minimal squared error strategy. NEW & NOTEWORTHY Using a novel experimental model of object lifting, we tested whether the sensorimotor system models the weight of objects by minimizing lifting errors or by selecting the statistically most likely weight. We found that the sensorimotor system minimizes the square of prediction errors for object lifting. This parallels the results of studies that investigated visually guided reaching, suggesting an overlap in the underlying mechanisms between tasks that involve different sensory systems. PMID:27760821

  11. Safety coaches in radiology: decreasing human error and minimizing patient harm.

    PubMed

    Dickerson, Julie M; Koch, Bernadette L; Adams, Janet M; Goodfriend, Martha A; Donnelly, Lane F

    2010-09-01

    Successful programs to improve patient safety require a component aimed at improving safety culture and environment, resulting in a reduced number of human errors that could lead to patient harm. Safety coaching provides peer accountability. It involves observing for safety behaviors and use of error prevention techniques and provides immediate feedback. For more than a decade, behavior-based safety coaching has been a successful strategy for reducing error within the context of occupational safety in industry. We describe the use of safety coaches in radiology. Safety coaches are an important component of our comprehensive patient safety program.

  12. Background field removal technique based on non-regularized variable kernels sophisticated harmonic artifact reduction for phase data for quantitative susceptibility mapping.

    PubMed

    Kan, Hirohito; Arai, Nobuyuki; Takizawa, Masahiro; Omori, Kazuyoshi; Kasai, Harumasa; Kunitomo, Hiroshi; Hirose, Yasujiro; Shibamoto, Yuta

    2018-06-11

    We developed a non-regularized, variable kernel, sophisticated harmonic artifact reduction for phase data (NR-VSHARP) method to accurately estimate local tissue fields without regularization for quantitative susceptibility mapping (QSM). We then used a digital brain phantom to evaluate the accuracy of the NR-VSHARP method, and compared it with the VSHARP and iterative spherical mean value (iSMV) methods through in vivo human brain experiments. Our proposed NR-VSHARP method, which uses variable spherical mean value (SMV) kernels, minimizes L2 norms only within the volume of interest to reduce phase errors and save cortical information without regularization. In a numerical phantom study, relative local field and susceptibility map errors were determined using NR-VSHARP, VSHARP, and iSMV. Additionally, various background field elimination methods were used to image the human brain. In a numerical phantom study, the use of NR-VSHARP considerably reduced the relative local field and susceptibility map errors throughout a digital whole brain phantom, compared with VSHARP and iSMV. In the in vivo experiment, the NR-VSHARP-estimated local field could sufficiently achieve minimal boundary losses and phase error suppression throughout the brain. Moreover, the susceptibility map generated using NR-VSHARP minimized the occurrence of streaking artifacts caused by insufficient background field removal. Our proposed NR-VSHARP method yields minimal boundary losses and highly precise phase data. Our results suggest that this technique may facilitate high-quality QSM. Copyright © 2017. Published by Elsevier Inc.

  13. Development and implementation of a human accuracy program in patient foodservice.

    PubMed

    Eden, S H; Wood, S M; Ptak, K M

    1987-04-01

    For many years, industry has utilized the concept of human error rates to monitor and minimize human errors in the production process. A consistent quality-controlled product increases consumer satisfaction and repeat purchase of product. Administrative dietitians have applied the concepts of using human error rates (the number of errors divided by the number of opportunities for error) at four hospitals, with a total bed capacity of 788, within a tertiary-care medical center. Human error rate was used to monitor and evaluate trayline employee performance and to evaluate layout and tasks of trayline stations, in addition to evaluating employees in patient service areas. Long-term employees initially opposed the error rate system with some hostility and resentment, while newer employees accepted the system. All employees now believe that the constant feedback given by supervisors enhances their self-esteem and productivity. Employee error rates are monitored daily and are used to counsel employees when necessary; they are also utilized during annual performance evaluation. Average daily error rates for a facility staffed by new employees decreased from 7% to an acceptable 3%. In a facility staffed by long-term employees, the error rate increased, reflecting improper error documentation. Patient satisfaction surveys reveal satisfaction, for tray accuracy increased from 88% to 92% in the facility staffed by long-term employees and has remained above the 90% standard in the facility staffed by new employees.

  14. A study on the theoretical and practical accuracy of conoscopic holography-based surface measurements: toward image registration in minimally invasive surgery†

    PubMed Central

    Burgner, J.; Simpson, A. L.; Fitzpatrick, J. M.; Lathrop, R. A.; Herrell, S. D.; Miga, M. I.; Webster, R. J.

    2013-01-01

    Background Registered medical images can assist with surgical navigation and enable image-guided therapy delivery. In soft tissues, surface-based registration is often used and can be facilitated by laser surface scanning. Tracked conoscopic holography (which provides distance measurements) has been recently proposed as a minimally invasive way to obtain surface scans. Moving this technique from concept to clinical use requires a rigorous accuracy evaluation, which is the purpose of our paper. Methods We adapt recent non-homogeneous and anisotropic point-based registration results to provide a theoretical framework for predicting the accuracy of tracked distance measurement systems. Experiments are conducted a complex objects of defined geometry, an anthropomorphic kidney phantom and a human cadaver kidney. Results Experiments agree with model predictions, producing point RMS errors consistently < 1 mm, surface-based registration with mean closest point error < 1 mm in the phantom and a RMS target registration error of 0.8 mm in the human cadaver kidney. Conclusions Tracked conoscopic holography is clinically viable; it enables minimally invasive surface scan accuracy comparable to current clinical methods that require open surgery. PMID:22761086

  15. Using APEX to Model Anticipated Human Error: Analysis of a GPS Navigational Aid

    NASA Technical Reports Server (NTRS)

    VanSelst, Mark; Freed, Michael; Shefto, Michael (Technical Monitor)

    1997-01-01

    The interface development process can be dramatically improved by predicting design facilitated human error at an early stage in the design process. The approach we advocate is to SIMULATE the behavior of a human agent carrying out tasks with a well-specified user interface, ANALYZE the simulation for instances of human error, and then REFINE the interface or protocol to minimize predicted error. This approach, incorporated into the APEX modeling architecture, differs from past approaches to human simulation in Its emphasis on error rather than e.g. learning rate or speed of response. The APEX model consists of two major components: (1) a powerful action selection component capable of simulating behavior in complex, multiple-task environments; and (2) a resource architecture which constrains cognitive, perceptual, and motor capabilities to within empirically demonstrated limits. The model mimics human errors arising from interactions between limited human resources and elements of the computer interface whose design falls to anticipate those limits. We analyze the design of a hand-held Global Positioning System (GPS) device used for radical and navigational decisions in small yacht recalls. The analysis demonstrates how human system modeling can be an effective design aid, helping to accelerate the process of refining a product (or procedure).

  16. Human factors in aircraft incidents - Results of a 7-year study (Andre Allard Memorial Lecture)

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Reynard, W. D.

    1984-01-01

    It is pointed out that nearly all fatal aircraft accidents are preventable, and that most such accidents are due to human error. The present discussion is concerned with the results of a seven-year study of the data collected by the NASA Aviation Safety Reporting System (ASRS). The Aviation Safety Reporting System was designed to stimulate as large a flow as possible of information regarding errors and operational problems in the conduct of air operations. It was implemented in April, 1976. In the following 7.5 years, 35,000 reports have been received from pilots, controllers, and the armed forces. Human errors are found in more than 80 percent of these reports. Attention is given to the types of events reported, possible causal factors in incidents, the relationship of incidents and accidents, and sources of error in the data. ASRS reports include sufficient detail to permit authorities to institute changes in the national aviation system designed to minimize the likelihood of human error, and to insulate the system against the effects of errors.

  17. Minimizing human error in radiopharmaceutical preparation and administration via a bar code-enhanced nuclear pharmacy management system.

    PubMed

    Hakala, John L; Hung, Joseph C; Mosman, Elton A

    2012-09-01

    The objective of this project was to ensure correct radiopharmaceutical administration through the use of a bar code system that links patient and drug profiles with on-site information management systems. This new combined system would minimize the amount of manual human manipulation, which has proven to be a primary source of error. The most common reason for dosing errors is improper patient identification when a dose is obtained from the nuclear pharmacy or when a dose is administered. A standardized electronic transfer of information from radiopharmaceutical preparation to injection will further reduce the risk of misadministration. Value stream maps showing the flow of the patient dose information, as well as potential points of human error, were developed. Next, a future-state map was created that included proposed corrections for the most common critical sites of error. Transitioning the current process to the future state will require solutions that address these sites. To optimize the future-state process, a bar code system that links the on-site radiology management system with the nuclear pharmacy management system was proposed. A bar-coded wristband connects the patient directly to the electronic information systems. The bar code-enhanced process linking the patient dose with the electronic information reduces the number of crucial points for human error and provides a framework to ensure that the prepared dose reaches the correct patient. Although the proposed flowchart is designed for a site with an in-house central nuclear pharmacy, much of the framework could be applied by nuclear medicine facilities using unit doses. An electronic connection between information management systems to allow the tracking of a radiopharmaceutical from preparation to administration can be a useful tool in preventing the mistakes that are an unfortunate reality for any facility.

  18. Normal accidents: human error and medical equipment design.

    PubMed

    Dain, Steven

    2002-01-01

    High-risk systems, which are typical of our technologically complex era, include not just nuclear power plants but also hospitals, anesthesia systems, and the practice of medicine and perfusion. In high-risk systems, no matter how effective safety devices are, some types of accidents are inevitable because the system's complexity leads to multiple and unexpected interactions. It is important for healthcare providers to apply a risk assessment and management process to decisions involving new equipment and procedures or staffing matters in order to minimize the residual risks of latent errors, which are amenable to correction because of the large window of opportunity for their detection. This article provides an introduction to basic risk management and error theory principles and examines ways in which they can be applied to reduce and mitigate the inevitable human errors that accompany high-risk systems. The article also discusses "human factor engineering" (HFE), the process which is used to design equipment/ human interfaces in order to mitigate design errors. The HFE process involves interaction between designers and endusers to produce a series of continuous refinements that are incorporated into the final product. The article also examines common design problems encountered in the operating room that may predispose operators to commit errors resulting in harm to the patient. While recognizing that errors and accidents are unavoidable, organizations that function within a high-risk system must adopt a "safety culture" that anticipates problems and acts aggressively through an anonymous, "blameless" reporting mechanism to resolve them. We must continuously examine and improve the design of equipment and procedures, personnel, supplies and materials, and the environment in which we work to reduce error and minimize its effects. Healthcare providers must take a leading role in the day-to-day management of the "Perioperative System" and be a role model in promoting a culture of safety in their organizations.

  19. Temporal uncertainty analysis of human errors based on interrelationships among multiple factors: a case of Minuteman III missile accident.

    PubMed

    Rong, Hao; Tian, Jin; Zhao, Tingdi

    2016-01-01

    In traditional approaches of human reliability assessment (HRA), the definition of the error producing conditions (EPCs) and the supporting guidance are such that some of the conditions (especially organizational or managerial conditions) can hardly be included, and thus the analysis is burdened with incomprehensiveness without reflecting the temporal trend of human reliability. A method based on system dynamics (SD), which highlights interrelationships among technical and organizational aspects that may contribute to human errors, is presented to facilitate quantitatively estimating the human error probability (HEP) and its related variables changing over time in a long period. Taking the Minuteman III missile accident in 2008 as a case, the proposed HRA method is applied to assess HEP during missile operations over 50 years by analyzing the interactions among the variables involved in human-related risks; also the critical factors are determined in terms of impact that the variables have on risks in different time periods. It is indicated that both technical and organizational aspects should be focused on to minimize human errors in a long run. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  20. Development of a new calibration procedure and its experimental validation applied to a human motion capture system.

    PubMed

    Royo Sánchez, Ana Cristina; Aguilar Martín, Juan José; Santolaria Mazo, Jorge

    2014-12-01

    Motion capture systems are often used for checking and analyzing human motion in biomechanical applications. It is important, in this context, that the systems provide the best possible accuracy. Among existing capture systems, optical systems are those with the highest accuracy. In this paper, the development of a new calibration procedure for optical human motion capture systems is presented. The performance and effectiveness of that new calibration procedure are also checked by experimental validation. The new calibration procedure consists of two stages. In the first stage, initial estimators of intrinsic and extrinsic parameters are sought. The camera calibration method used in this stage is the one proposed by Tsai. These parameters are determined from the camera characteristics, the spatial position of the camera, and the center of the capture volume. In the second stage, a simultaneous nonlinear optimization of all parameters is performed to identify the optimal values, which minimize the objective function. The objective function, in this case, minimizes two errors. The first error is the distance error between two markers placed in a wand. The second error is the error of position and orientation of the retroreflective markers of a static calibration object. The real co-ordinates of the two objects are calibrated in a co-ordinate measuring machine (CMM). The OrthoBio system is used to validate the new calibration procedure. Results are 90% lower than those from the previous calibration software and broadly comparable with results from a similarly configured Vicon system.

  1. An all-joint-control master device for single-port laparoscopic surgery robots.

    PubMed

    Shim, Seongbo; Kang, Taehun; Ji, Daekeun; Choi, Hyunseok; Joung, Sanghyun; Hong, Jaesung

    2016-08-01

    Robots for single-port laparoscopic surgery (SPLS) typically have all of their joints located inside abdomen during surgery, whereas with the da Vinci system, only the tip part of the robot arm is inserted and manipulated. A typical master device that controls only the tip with six degrees of freedom (DOFs) is not suitable for use with SPLS robots because of safety concerns. We designed an ergonomic six-DOF master device that can control all of the joints of an SPLS robot. We matched each joint of the master, the slave, and the human arm to decouple all-joint motions of the slave robot. Counterbalance masses were used to reduce operator fatigue. Mapping factors were determined based on kinematic analysis and were used to achieve all-joint control with minimal error at the tip of the slave robot. The proposed master device has two noteworthy features: efficient joint matching to the human arm to decouple each joint motion of the slave robot and accurate mapping factors, which can minimize the trajectory error of the tips between the master and the slave. We confirmed that the operator can manipulate the slave robot intuitively with the master device and that both tips have similar trajectories with minimal error.

  2. Model-based color halftoning using direct binary search.

    PubMed

    Agar, A Ufuk; Allebach, Jan P

    2005-12-01

    In this paper, we develop a model-based color halftoning method using the direct binary search (DBS) algorithm. Our method strives to minimize the perceived error between the continuous tone original color image and the color halftone image. We exploit the differences in how the human viewers respond to luminance and chrominance information and use the total squared error in a luminance/chrominance based space as our metric. Starting with an initial halftone, we minimize this error metric using the DBS algorithm. Our method also incorporates a measurement based color printer dot interaction model to prevent the artifacts due to dot overlap and to improve color texture quality. We calibrate our halftoning algorithm to ensure accurate colorant distributions in resulting halftones. We present the color halftones which demonstrate the efficacy of our method.

  3. MEASUREMENT ERROR ESTIMATION AND CORRECTION METHODS TO MINIMIZE EXPOSURE MISCLASSIFICATION IN EPIDEMIOLOGICAL STUDIES: PROJECT SUMMARY

    EPA Science Inventory

    This project summary highlights recent findings from research undertaken to develop improved methods to assess potential human health risks related to drinking water disinfection byproduct (DBP) exposures.

  4. Action errors, error management, and learning in organizations.

    PubMed

    Frese, Michael; Keith, Nina

    2015-01-03

    Every organization is confronted with errors. Most errors are corrected easily, but some may lead to negative consequences. Organizations often focus on error prevention as a single strategy for dealing with errors. Our review suggests that error prevention needs to be supplemented by error management--an approach directed at effectively dealing with errors after they have occurred, with the goal of minimizing negative and maximizing positive error consequences (examples of the latter are learning and innovations). After defining errors and related concepts, we review research on error-related processes affected by error management (error detection, damage control). Empirical evidence on positive effects of error management in individuals and organizations is then discussed, along with emotional, motivational, cognitive, and behavioral pathways of these effects. Learning from errors is central, but like other positive consequences, learning occurs under certain circumstances--one being the development of a mind-set of acceptance of human error.

  5. A Framework for Modeling Human-Machine Interactions

    NASA Technical Reports Server (NTRS)

    Shafto, Michael G.; Rosekind, Mark R. (Technical Monitor)

    1996-01-01

    Modern automated flight-control systems employ a variety of different behaviors, or modes, for managing the flight. While developments in cockpit automation have resulted in workload reduction and economical advantages, they have also given rise to an ill-defined class of human-machine problems, sometimes referred to as 'automation surprises'. Our interest in applying formal methods for describing human-computer interaction stems from our ongoing research on cockpit automation. In this area of aeronautical human factors, there is much concern about how flight crews interact with automated flight-control systems, so that the likelihood of making errors, in particular mode-errors, is minimized and the consequences of such errors are contained. The goal of the ongoing research on formal methods in this context is: (1) to develop a framework for describing human interaction with control systems; (2) to formally categorize such automation surprises; and (3) to develop tests for identification of these categories early in the specification phase of a new human-machine system.

  6. Interface design and human factors considerations for model-based tight glycemic control in critical care.

    PubMed

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. © 2012 Diabetes Technology Society.

  7. Interface Design and Human Factors Considerations for Model-Based Tight Glycemic Control in Critical Care

    PubMed Central

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Introduction Tight glycemic control (TGC) has shown benefits but has been difficult to implement. Model-based methods and computerized protocols offer the opportunity to improve TGC quality and compliance. This research presents an interface design to maximize compliance, minimize real and perceived clinical effort, and minimize error based on simple human factors and end user input. Method The graphical user interface (GUI) design is presented by construction based on a series of simple, short design criteria based on fundamental human factors engineering and includes the use of user feedback and focus groups comprising nursing staff at Christchurch Hospital. The overall design maximizes ease of use and minimizes (unnecessary) interaction and use. It is coupled to a protocol that allows nurse staff to select measurement intervals and thus self-manage workload. Results The overall GUI design is presented and requires only one data entry point per intervention cycle. The design and main interface are heavily focused on the nurse end users who are the predominant users, while additional detailed and longitudinal data, which are of interest to doctors guiding overall patient care, are available via tabs. This dichotomy of needs and interests based on the end user's immediate focus and goals shows how interfaces must adapt to offer different information to multiple types of users. Conclusions The interface is designed to minimize real and perceived clinical effort, and ongoing pilot trials have reported high levels of acceptance. The overall design principles, approach, and testing methods are based on fundamental human factors principles designed to reduce user effort and error and are readily generalizable. PMID:22401330

  8. An Error-Entropy Minimization Algorithm for Tracking Control of Nonlinear Stochastic Systems with Non-Gaussian Variables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yunlong; Wang, Aiping; Guo, Lei

    This paper presents an error-entropy minimization tracking control algorithm for a class of dynamic stochastic system. The system is represented by a set of time-varying discrete nonlinear equations with non-Gaussian stochastic input, where the statistical properties of stochastic input are unknown. By using Parzen windowing with Gaussian kernel to estimate the probability densities of errors, recursive algorithms are then proposed to design the controller such that the tracking error can be minimized. The performance of the error-entropy minimization criterion is compared with the mean-square-error minimization in the simulation results.

  9. Optimizing Processes to Minimize Risk

    NASA Technical Reports Server (NTRS)

    Loyd, David

    2017-01-01

    NASA, like the other hazardous industries, has suffered very catastrophic losses. Human error will likely never be completely eliminated as a factor in our failures. When you can't eliminate risk, focus on mitigating the worst consequences and recovering operations. Bolstering processes to emphasize the role of integration and problem solving is key to success. Building an effective Safety Culture bolsters skill-based performance that minimizes risk and encourages successful engagement.

  10. Statistical Characterization of Environmental Error Sources Affecting Electronically Scanned Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Green, Del L.; Walker, Eric L.; Everhart, Joel L.

    2006-01-01

    Minimization of uncertainty is essential to extend the usable range of the 15-psid Electronically Scanned Pressure [ESP) transducer measurements to the low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources inducing much of this uncertainty requires a well defined and controlled calibration method. Employing such a controlled calibration system, several studies were conducted that provide quantitative information detailing the required controls needed to minimize environmental and human induced error sources. Results of temperature, environmental pressure, over-pressurization, and set point randomization studies for the 15-psid transducers are presented along with a comparison of two regression methods using data acquired with both 0.36-psid and 15-psid transducers. Together these results provide insight into procedural and environmental controls required for long term high-accuracy pressure measurements near 0.01 psia in the hypersonic testing environment using 15-psid ESP transducers.

  11. Statistical Characterization of Environmental Error Sources Affecting Electronically Scanned Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Green, Del L.; Walker, Eric L.; Everhart, Joel L.

    2006-01-01

    Minimization of uncertainty is essential to extend the usable range of the 15-psid Electronically Scanned Pressure (ESP) transducer measurements to the low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources inducing much of this uncertainty requires a well defined and controlled calibration method. Employing such a controlled calibration system, several studies were conducted that provide quantitative information detailing the required controls needed to minimize environmental and human induced error sources. Results of temperature, environmental pressure, over-pressurization, and set point randomization studies for the 15-psid transducers are presented along with a comparison of two regression methods using data acquired with both 0.36-psid and 15-psid transducers. Together these results provide insight into procedural and environmental controls required for long term high-accuracy pressure measurements near 0.01 psia in the hypersonic testing environment using 15-psid ESP transducers.

  12. Safeguarding Databases Basic Concepts Revisited.

    ERIC Educational Resources Information Center

    Cardinali, Richard

    1995-01-01

    Discusses issues of database security and integrity, including computer crime and vandalism, human error, computer viruses, employee and user access, and personnel policies. Suggests some precautions to minimize system vulnerability such as careful personnel screening, audit systems, passwords, and building and software security systems. (JKP)

  13. Columbus safety and reliability

    NASA Astrophysics Data System (ADS)

    Longhurst, F.; Wessels, H.

    1988-10-01

    Analyses carried out to ensure Columbus reliability, availability, and maintainability, and operational and design safety are summarized. Failure modes/effects/criticality is the main qualitative tool used. The main aspects studied are fault tolerance, hazard consequence control, risk minimization, human error effects, restorability, and safe-life design.

  14. Multi-muscle FES force control of the human arm for arbitrary goals.

    PubMed

    Schearer, Eric M; Liao, Yu-Wei; Perreault, Eric J; Tresch, Matthew C; Memberg, William D; Kirsch, Robert F; Lynch, Kevin M

    2014-05-01

    We present a method for controlling a neuroprosthesis for a paralyzed human arm using functional electrical stimulation (FES) and characterize the errors of the controller. The subject has surgically implanted electrodes for stimulating muscles in her shoulder and arm. Using input/output data, a model mapping muscle stimulations to isometric endpoint forces measured at the subject's hand was identified. We inverted the model of this redundant and coupled multiple-input multiple-output system by minimizing muscle activations and used this inverse for feedforward control. The magnitude of the total root mean square error over a grid in the volume of achievable isometric endpoint force targets was 11% of the total range of achievable forces. Major sources of error were random error due to trial-to-trial variability and model bias due to nonstationary system properties. Because the muscles working collectively are the actuators of the skeletal system, the quantification of errors in force control guides designs of motion controllers for multi-joint, multi-muscle FES systems that can achieve arbitrary goals.

  15. The effect of dimple error on the horizontal launch angle and side spin of the golf ball during putting.

    PubMed

    Richardson, Ashley K; Mitchell, Andrew C S; Hughes, Gerwyn

    2017-02-01

    This study aimed to examine the effect of the impact point on the golf ball on the horizontal launch angle and side spin during putting with a mechanical putting arm and human participants. Putts of 3.2 m were completed with a mechanical putting arm (four putter-ball combinations, total of 160 trials) and human participants (two putter-ball combinations, total of 337 trials). The centre of the dimple pattern (centroid) was located and the following variables were measured: distance and angle of the impact point from the centroid and surface area of the impact zone. Multiple regression analysis was conducted to identify whether impact variables had significant associations with ball roll variables, horizontal launch angle and side spin. Significant associations were identified between impact variables and horizontal launch angle with the mechanical putting arm but this was not replicated with human participants. The variability caused by "dimple error" was minimal with the mechanical putting arm and not evident with human participants. Differences between the mechanical putting arm and human participants may be due to the way impulse is imparted on the ball. Therefore it is concluded that variability of impact point on the golf ball has a minimal effect on putting performance.

  16. Review of Significant Incidents and Close Calls in Human Spaceflight from a Human Factors Perspective

    NASA Technical Reports Server (NTRS)

    Silva-Martinez, Jackelynne; Ellenberger, Richard; Dory, Jonathan

    2017-01-01

    This project aims to identify poor human factors design decisions that led to error-prone systems, or did not facilitate the flight crew making the right choices; and to verify that NASA is effectively preventing similar incidents from occurring again. This analysis was performed by reviewing significant incidents and close calls in human spaceflight identified by the NASA Johnson Space Center Safety and Mission Assurance Flight Safety Office. The review of incidents shows whether the identified human errors were due to the operational phase (flight crew and ground control) or if they initiated at the design phase (includes manufacturing and test). This classification was performed with the aid of the NASA Human Systems Integration domains. This in-depth analysis resulted in a tool that helps with the human factors classification of significant incidents and close calls in human spaceflight, which can be used to identify human errors at the operational level, and how they were or should be minimized. Current governing documents on human systems integration for both government and commercial crew were reviewed to see if current requirements, processes, training, and standard operating procedures protect the crew and ground control against these issues occurring in the future. Based on the findings, recommendations to target those areas are provided.

  17. How to minimize perceptual error and maximize expertise in medical imaging

    NASA Astrophysics Data System (ADS)

    Kundel, Harold L.

    2007-03-01

    Visual perception is such an intimate part of human experience that we assume that it is entirely accurate. Yet, perception accounts for about half of the errors made by radiologists using adequate imaging technology. The true incidence of errors that directly affect patient well being is not known but it is probably at the lower end of the reported values of 3 to 25%. Errors in screening for lung and breast cancer are somewhat better characterized than errors in routine diagnosis. About 25% of cancers actually recorded on the images are missed and cancer is falsely reported in about 5% of normal people. Radiologists must strive to decrease error not only because of the potential impact on patient care but also because substantial variation among observers undermines confidence in the reliability of imaging diagnosis. Observer variation also has a major impact on technology evaluation because the variation between observers is frequently greater than the difference in the technologies being evaluated. This has become particularly important in the evaluation of computer aided diagnosis (CAD). Understanding the basic principles that govern the perception of medical images can provide a rational basis for making recommendations for minimizing perceptual error. It is convenient to organize thinking about perceptual error into five steps. 1) The initial acquisition of the image by the eye-brain (contrast and detail perception). 2) The organization of the retinal image into logical components to produce a literal perception (bottom-up, global, holistic). 3) Conversion of the literal perception into a preferred perception by resolving ambiguities in the literal perception (top-down, simulation, synthesis). 4) Selective visual scanning to acquire details that update the preferred perception. 5) Apply decision criteria to the preferred perception. The five steps are illustrated with examples from radiology with suggestions for minimizing error. The role of perceptual learning in the development of expertise is also considered.

  18. On parameters identification of computational models of vibrations during quiet standing of humans

    NASA Astrophysics Data System (ADS)

    Barauskas, R.; Krušinskienė, R.

    2007-12-01

    Vibration of the center of pressure (COP) of human body on the base of support during quiet standing is a very popular clinical research, which provides useful information about the physical and health condition of an individual. In this work, vibrations of COP of a human body in forward-backward direction during still standing are generated using controlled inverted pendulum (CIP) model with a single degree of freedom (dof) supplied with proportional, integral and differential (PID) controller, which represents the behavior of the central neural system of a human body and excited by cumulative disturbance vibration, generated within the body due to breathing or any other physical condition. The identification of the model and disturbance parameters is an important stage while creating a close-to-reality computational model able to evaluate features of disturbance. The aim of this study is to present the CIP model parameters identification approach based on the information captured by time series of the COP signal. The identification procedure is based on an error function minimization. Error function is formulated in terms of time laws of computed and experimentally measured COP vibrations. As an alternative, error function is formulated in terms of the stabilogram diffusion function (SDF). The minimization of error functions is carried out by employing methods based on sensitivity functions of the error with respect to model and excitation parameters. The sensitivity functions are obtained by using the variational techniques. The inverse dynamic problem approach has been employed in order to establish the properties of the disturbance time laws ensuring the satisfactory coincidence of measured and computed COP vibration laws. The main difficulty of the investigated problem is encountered during the model validation stage. Generally, neither the PID controller parameter set nor the disturbance time law are known in advance. In this work, an error function formulated in terms of time derivative of disturbance torque has been proposed in order to obtain PID controller parameters, as well as the reference time law of the disturbance. The disturbance torque is calculated from experimental data using the inverse dynamic approach. Experiments presented in this study revealed that vibrations of disturbance torque and PID controller parameters identified by the method may be qualified as feasible in humans. Presented approach may be easily extended to structural models with any number of dof or higher structural complexity.

  19. A Method for Testing the Dynamic Accuracy of Micro-Electro-Mechanical Systems (MEMS) Magnetic, Angular Rate, and Gravity (MARG) Sensors for Inertial Navigation Systems (INS) and Human Motion Tracking Applications

    DTIC Science & Technology

    2010-06-01

    32 2. Low-Cost Framework........................................................................33 3. Low Magnetic Field ...that have a significant impact on the magnetic field measured by a MARG, which could potentially add errors that are due entirely to the test...minimize the impact on the local magnetic field , and the apparatus was made as rigidly as possible using 2 x 4s to minimize any out of plane motions that

  20. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  1. Hedging Your Bets by Learning Reward Correlations in the Human Brain

    PubMed Central

    Wunderlich, Klaus; Symmonds, Mkael; Bossaerts, Peter; Dolan, Raymond J.

    2011-01-01

    Summary Human subjects are proficient at tracking the mean and variance of rewards and updating these via prediction errors. Here, we addressed whether humans can also learn about higher-order relationships between distinct environmental outcomes, a defining ecological feature of contexts where multiple sources of rewards are available. By manipulating the degree to which distinct outcomes are correlated, we show that subjects implemented an explicit model-based strategy to learn the associated outcome correlations and were adept in using that information to dynamically adjust their choices in a task that required a minimization of outcome variance. Importantly, the experimentally generated outcome correlations were explicitly represented neuronally in right midinsula with a learning prediction error signal expressed in rostral anterior cingulate cortex. Thus, our data show that the human brain represents higher-order correlation structures between rewards, a core adaptive ability whose immediate benefit is optimized sampling. PMID:21943609

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, J.J.; Bouchard, A.M.; Osbourn, G.C.

    Future generation automated human biometric identification and verification will require multiple features/sensors together with internal and external information sources to achieve high performance, accuracy, and reliability in uncontrolled environments. The primary objective of the proposed research is to develop a theoretical and practical basis for identifying and verifying people using standoff biometric features that can be obtained with minimal inconvenience during the verification process. The basic problem involves selecting sensors and discovering features that provide sufficient information to reliably verify a person`s identity under the uncertainties caused by measurement errors and tactics of uncooperative subjects. A system was developed formore » discovering hand, face, ear, and voice features and fusing them to verify the identity of people. The system obtains its robustness and reliability by fusing many coarse and easily measured features into a near minimal probability of error decision algorithm.« less

  3. Using lean "automation with a human touch" to improve medication safety: a step closer to the "perfect dose".

    PubMed

    Ching, Joan M; Williams, Barbara L; Idemoto, Lori M; Blackmore, C Craig

    2014-08-01

    Virginia Mason Medical Center (Seattle) employed the Lean concept of Jidoka (automation with a human touch) to plan for and deploy bar code medication administration (BCMA) to hospitalized patients. Integrating BCMA technology into the nursing work flow with minimal disruption was accomplished using three steps ofJidoka: (1) assigning work to humans and machines on the basis of their differing abilities, (2) adapting machines to the human work flow, and (3) monitoring the human-machine interaction. Effectiveness of BCMA to both reinforce safe administration practices and reduce medication errors was measured using the Collaborative Alliance for Nursing Outcomes (CALNOC) Medication Administration Accuracy Quality Study methodology. Trained nurses observed a total of 16,149 medication doses for 3,617 patients in a three-year period. Following BCMA implementation, the number of safe practice violations decreased from 54.8 violations/100 doses (January 2010-September 2011) to 29.0 violations/100 doses (October 2011-December 2012), resulting in an absolute risk reduction of 25.8 violations/100 doses (95% confidence interval [CI]: 23.7, 27.9, p < .001). The number of medication errors decreased from 5.9 errors/100 doses at baseline to 3.0 errors/100 doses after BCMA implementation (absolute risk reduction: 2.9 errors/100 doses [95% CI: 2.2, 3.6,p < .001]). The number of unsafe administration practices (estimate, -5.481; standard error 1.133; p < .001; 95% CI: -7.702, -3.260) also decreased. As more hospitals respond to health information technology meaningful use incentives, thoughtful, methodical, and well-managed approaches to technology deployment are crucial. This work illustrates how Jidoka offers opportunities for a smooth transition to new technology.

  4. ADP and brucellosis indemnity systems development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, W.M.; Harlan, B.L.

    1976-01-01

    Our initial study of the USDA/TAHC Brucellosis Indemnity Program in Texas has shown that both the efficiency and rate of claim payments can be increased by the application of present day computer technologies. Two main factors contribute to these increases: the number of discrepancies that are caused by poor penmanship, transposition of numbers, and other human errors can be monitored and minimized; and the documented information can be indexed, sorted, and searched faster, more efficiently, and without human error. The overall flow of documentation that is used to control the movement of infected or exposed animals through commerce should bemore » studied. A new system should be designed that fully utilizes present day computer and electronic technologies.« less

  5. The human factors of quality and QA in R D environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, S.G.

    1990-01-01

    Achieving quality is a human activity. It is therefore important to consider the human in the design, development and evaluation of work processes and environments in an effort to enhance human performance and minimize error. It is also important to allow for individual differences when considering human factors issues. Human Factors is the field of study which can provide information on integrating the human into the system. Human factors and quality are related for the customer of R D work, R D personnel who perform the work, and the quality professional who overviews the process of quality in the work.more » 18 refs., 1 fig.« less

  6. Data entry errors and design for model-based tight glycemic control in critical care.

    PubMed

    Ward, Logan; Steel, James; Le Compte, Aaron; Evans, Alicia; Tan, Chia-Siong; Penning, Sophie; Shaw, Geoffrey M; Desaive, Thomas; Chase, J Geoffrey

    2012-01-01

    Tight glycemic control (TGC) has shown benefits but has been difficult to achieve consistently. Model-based methods and computerized protocols offer the opportunity to improve TGC quality but require human data entry, particularly of blood glucose (BG) values, which can be significantly prone to error. This study presents the design and optimization of data entry methods to minimize error for a computerized and model-based TGC method prior to pilot clinical trials. To minimize data entry error, two tests were carried out to optimize a method with errors less than the 5%-plus reported in other studies. Four initial methods were tested on 40 subjects in random order, and the best two were tested more rigorously on 34 subjects. The tests measured entry speed and accuracy. Errors were reported as corrected and uncorrected errors, with the sum comprising a total error rate. The first set of tests used randomly selected values, while the second set used the same values for all subjects to allow comparisons across users and direct assessment of the magnitude of errors. These research tests were approved by the University of Canterbury Ethics Committee. The final data entry method tested reduced errors to less than 1-2%, a 60-80% reduction from reported values. The magnitude of errors was clinically significant and was typically by 10.0 mmol/liter or an order of magnitude but only for extreme values of BG < 2.0 mmol/liter or BG > 15.0-20.0 mmol/liter, both of which could be easily corrected with automated checking of extreme values for safety. The data entry method selected significantly reduced data entry errors in the limited design tests presented, and is in use on a clinical pilot TGC study. The overall approach and testing methods are easily performed and generalizable to other applications and protocols. © 2012 Diabetes Technology Society.

  7. Designing safety into the minimally invasive surgical revolution: a commentary based on the Jacques Perissat Lecture of the International Congress of the European Association for Endoscopic Surgery.

    PubMed

    Clarke, John R

    2009-01-01

    Surgical errors with minimally invasive surgery differ from those in open surgery. Perforations are typically the result of trocar introduction or electrosurgery. Infections include bioburdens, notably enteric viruses, on complex instruments. Retained foreign objects are primarily unretrieved device fragments and lost gallstones or other specimens. Fires and burns come from illuminated ends of fiber-optic cables and from electrosurgery. Pressure ischemia is more likely with longer endoscopic surgical procedures. Gas emboli can occur. Minimally invasive surgery is more dependent on complex equipment, with high likelihood of failures. Standardization, checklists, and problem reporting are solutions for minimizing failures. The necessity of electrosurgery makes education about best electrosurgical practices important. The recording of minimally invasive surgical procedures is an opportunity to debrief in a way that improves the reliability of future procedures. Safety depends on reliability, designing systems to withstand inevitable human errors. Safe systems are characterized by a commitment to safety, formal protocols for communications, teamwork, standardization around best practice, and reporting of problems for improvement of the system. Teamwork requires shared goals, mental models, and situational awareness in order to facilitate mutual monitoring and backup. An effective team has a flat hierarchy; team members are empowered to speak up if they are concerned about problems. Effective teams plan, rehearse, distribute the workload, and debrief. Surgeons doing minimally invasive surgery have a unique opportunity to incorporate the principles of safety into the development of their discipline.

  8. A circadian rhythm in skill-based errors in aviation maintenance.

    PubMed

    Hobbs, Alan; Williamson, Ann; Van Dongen, Hans P A

    2010-07-01

    In workplaces where activity continues around the clock, human error has been observed to exhibit a circadian rhythm, with a characteristic peak in the early hours of the morning. Errors are commonly distinguished by the nature of the underlying cognitive failure, particularly the level of intentionality involved in the erroneous action. The Skill-Rule-Knowledge (SRK) framework of Rasmussen is used widely in the study of industrial errors and accidents. The SRK framework describes three fundamental types of error, according to whether behavior is under the control of practiced sensori-motor skill routines with minimal conscious awareness; is guided by implicit or explicit rules or expertise; or where the planning of actions requires the conscious application of domain knowledge. Up to now, examinations of circadian patterns of industrial errors have not distinguished between different types of error. Consequently, it is not clear whether all types of error exhibit the same circadian rhythm. A survey was distributed to aircraft maintenance personnel in Australia. Personnel were invited to anonymously report a safety incident and were prompted to describe, in detail, the human involvement (if any) that contributed to it. A total of 402 airline maintenance personnel reported an incident, providing 369 descriptions of human error in which the time of the incident was reported and sufficient detail was available to analyze the error. Errors were categorized using a modified version of the SRK framework, in which errors are categorized as skill-based, rule-based, or knowledge-based, or as procedure violations. An independent check confirmed that the SRK framework had been applied with sufficient consistency and reliability. Skill-based errors were the most common form of error, followed by procedure violations, rule-based errors, and knowledge-based errors. The frequency of errors was adjusted for the estimated proportion of workers present at work/each hour of the day, and the 24 h pattern of each error type was examined. Skill-based errors exhibited a significant circadian rhythm, being most prevalent in the early hours of the morning. Variation in the frequency of rule-based errors, knowledge-based errors, and procedure violations over the 24 h did not reach statistical significance. The results suggest that during the early hours of the morning, maintenance technicians are at heightened risk of "absent minded" errors involving failures to execute action plans as intended.

  9. Common but unappreciated sources of error in one, two, and multiple-color pyrometry

    NASA Technical Reports Server (NTRS)

    Spjut, R. Erik

    1988-01-01

    The most common sources of error in optical pyrometry are examined. They can be classified as either noise and uncertainty errors, stray radiation errors, or speed-of-response errors. Through judicious choice of detectors and optical wavelengths the effect of noise errors can be minimized, but one should strive to determine as many of the system properties as possible. Careful consideration of the optical-collection system can minimize stray radiation errors. Careful consideration must also be given to the slowest elements in a pyrometer when measuring rapid phenomena.

  10. Target Uncertainty Mediates Sensorimotor Error Correction

    PubMed Central

    Vijayakumar, Sethu; Wolpert, Daniel M.

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects’ scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one’s response. By suggesting that subjects’ decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated. PMID:28129323

  11. Target Uncertainty Mediates Sensorimotor Error Correction.

    PubMed

    Acerbi, Luigi; Vijayakumar, Sethu; Wolpert, Daniel M

    2017-01-01

    Human movements are prone to errors that arise from inaccuracies in both our perceptual processing and execution of motor commands. We can reduce such errors by both improving our estimates of the state of the world and through online error correction of the ongoing action. Two prominent frameworks that explain how humans solve these problems are Bayesian estimation and stochastic optimal feedback control. Here we examine the interaction between estimation and control by asking if uncertainty in estimates affects how subjects correct for errors that may arise during the movement. Unbeknownst to participants, we randomly shifted the visual feedback of their finger position as they reached to indicate the center of mass of an object. Even though participants were given ample time to compensate for this perturbation, they only fully corrected for the induced error on trials with low uncertainty about center of mass, with correction only partial in trials involving more uncertainty. The analysis of subjects' scores revealed that participants corrected for errors just enough to avoid significant decrease in their overall scores, in agreement with the minimal intervention principle of optimal feedback control. We explain this behavior with a term in the loss function that accounts for the additional effort of adjusting one's response. By suggesting that subjects' decision uncertainty, as reflected in their posterior distribution, is a major factor in determining how their sensorimotor system responds to error, our findings support theoretical models in which the decision making and control processes are fully integrated.

  12. Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes. Part 3; The Map and Related Decoding Algirithms

    NASA Technical Reports Server (NTRS)

    Lin, Shu; Fossorier, Marc

    1998-01-01

    In a coded communication system with equiprobable signaling, MLD minimizes the word error probability and delivers the most likely codeword associated with the corresponding received sequence. This decoding has two drawbacks. First, minimization of the word error probability is not equivalent to minimization of the bit error probability. Therefore, MLD becomes suboptimum with respect to the bit error probability. Second, MLD delivers a hard-decision estimate of the received sequence, so that information is lost between the input and output of the ML decoder. This information is important in coded schemes where the decoded sequence is further processed, such as concatenated coding schemes, multi-stage and iterative decoding schemes. In this chapter, we first present a decoding algorithm which both minimizes bit error probability, and provides the corresponding soft information at the output of the decoder. This algorithm is referred to as the MAP (maximum aposteriori probability) decoding algorithm.

  13. Perceptual Color Characterization of Cameras

    PubMed Central

    Vazquez-Corral, Javier; Connah, David; Bertalmío, Marcelo

    2014-01-01

    Color camera characterization, mapping outputs from the camera sensors to an independent color space, such as XY Z, is an important step in the camera processing pipeline. Until now, this procedure has been primarily solved by using a 3 × 3 matrix obtained via a least-squares optimization. In this paper, we propose to use the spherical sampling method, recently published by Finlayson et al., to perform a perceptual color characterization. In particular, we search for the 3 × 3 matrix that minimizes three different perceptual errors, one pixel based and two spatially based. For the pixel-based case, we minimize the CIE ΔE error, while for the spatial-based case, we minimize both the S-CIELAB error and the CID error measure. Our results demonstrate an improvement of approximately 3% for the ΔE error, 7% for the S-CIELAB error and 13% for the CID error measures. PMID:25490586

  14. Does the brain use sliding variables for the control of movements?

    PubMed

    Hanneton, S; Berthoz, A; Droulez, J; Slotine, J J

    1997-12-01

    Delays in the transmission of sensory and motor information prevent errors from being instantaneously available to the central nervous system (CNS) and can reduce the stability of a closed-loop control strategy. On the other hand, the use of a pure feedforward control (inverse dynamics) requires a perfect knowledge of the dynamic behavior of the body and of manipulated objects. Sensory feedback is essential both to accommodate unexpected errors and events and to compensate for uncertainties about the dynamics of the body. Experimental observations concerning the control of posture, gaze and limbs have shown that the CNS certainly uses a combination of closed-loop and open-loop control. Feedforward components of movement, such as eye saccades, occur intermittently and present a stereotyped kinematic profile. In visuo-manual tracking tasks, hand movements exhibit velocity peaks that occur intermittently. When a delay or a slow dynamics are inserted in the visuo-manual control loop, intermittent step-and-hold movements appear clearly in the hand trajectory. In this study, we investigated strategies used by human subjects involved in the control of a particular dynamic system. We found strong evidence for substantial nonlinearities in the commands produced. The presence of step-and-hold movements seemed to be the major source of nonlinearities in the control loop. Furthermore, the stereotyped ballistic-like kinematics of these rapid and corrective movements suggests that they were produced in an open-loop way by the CNS. We analyzed the generation of ballistic movements in the light of sliding control theory assuming that they occurred when a sliding variable exceeded a constant threshold. In this framework, a sliding variable is defined as a composite variable (a combination of the instantaneous tracking error and its temporal derivatives) that fulfills a specific stability criterion. Based on this hypothesis and on the assumption of a constant reaction time, the tracking error and its derivatives should be correlated at a particular time lag before movement onset. A peak of correlation was found for a physiologically plausible reaction time, corresponding to a stable composite variable. The direction and amplitude of the ongoing stereotyped movements seemed also be adjusted in order to minimize this variable. These findings suggest that, during visually guided movements, human subjects attempt to minimize such a composite variable and not the instantaneous error. This minimization seems to be obtained by the execution of stereotyped corrective movements.

  15. Optimized tuner selection for engine performance estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L. (Inventor); Garg, Sanjay (Inventor)

    2013-01-01

    A methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. Theoretical Kalman filter estimation error bias and variance values are derived at steady-state operating conditions, and the tuner selection routine is applied to minimize these values. The new methodology yields an improvement in on-line engine performance estimation accuracy.

  16. Dynamic Simulation of Human Gait Model With Predictive Capability.

    PubMed

    Sun, Jinming; Wu, Shaoli; Voglewede, Philip A

    2018-03-01

    In this paper, it is proposed that the central nervous system (CNS) controls human gait using a predictive control approach in conjunction with classical feedback control instead of exclusive classical feedback control theory that controls based on past error. To validate this proposition, a dynamic model of human gait is developed using a novel predictive approach to investigate the principles of the CNS. The model developed includes two parts: a plant model that represents the dynamics of human gait and a controller that represents the CNS. The plant model is a seven-segment, six-joint model that has nine degrees-of-freedom (DOF). The plant model is validated using data collected from able-bodied human subjects. The proposed controller utilizes model predictive control (MPC). MPC uses an internal model to predict the output in advance, compare the predicted output to the reference, and optimize the control input so that the predicted error is minimal. To decrease the complexity of the model, two joints are controlled using a proportional-derivative (PD) controller. The developed predictive human gait model is validated by simulating able-bodied human gait. The simulation results show that the developed model is able to simulate the kinematic output close to experimental data.

  17. Errors in otology.

    PubMed

    Kartush, J M

    1996-11-01

    Practicing medicine successfully requires that errors in diagnosis and treatment be minimized. Malpractice laws encourage litigators to ascribe all medical errors to incompetence and negligence. There are, however, many other causes of unintended outcomes. This article describes common causes of errors and suggests ways to minimize mistakes in otologic practice. Widespread dissemination of knowledge about common errors and their precursors can reduce the incidence of their occurrence. Consequently, laws should be passed to allow for a system of non-punitive, confidential reporting of errors and "near misses" that can be shared by physicians nationwide.

  18. Pilot-Vehicle Interface

    DTIC Science & Technology

    1993-11-01

    way is to develop a crude but working model of an entire system. The other is by developing a realistic model of the user interface , leaving out most...devices or by incorporating software for a more user -friendly interface . Automation introduces the possibility of making data entry errors. Multimode...across various human- computer interfaces . 127 a Memory: Minimize the amount of information that the user must maintain in short-term memory

  19. Digital halftoning methods for selectively partitioning error into achromatic and chromatic channels

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.

    1990-01-01

    A method is described for reducing the visibility of artifacts arising in the display of quantized color images on CRT displays. The method is based on the differential spatial sensitivity of the human visual system to chromatic and achromatic modulations. Because the visual system has the highest spatial and temporal acuity for the luminance component of an image, a technique which will reduce luminance artifacts at the expense of introducing high-frequency chromatic errors is sought. A method based on controlling the correlations between the quantization errors in the individual phosphor images is explored. The luminance component is greatest when the phosphor errors are positively correlated, and is minimized when the phosphor errors are negatively correlated. The greatest effect of the correlation is obtained when the intensity quantization step sizes of the individual phosphors have equal luminances. For the ordered dither algorithm, a version of the method can be implemented by simply inverting the matrix of thresholds for one of the color components.

  20. 77 FR 74196 - Draft Guidance for Industry on Safety Considerations for Product Design To Minimize Medication...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-13

    ... document, which addresses safety achieved through drug product design, is the first in a series of planned...] Draft Guidance for Industry on Safety Considerations for Product Design To Minimize Medication Errors... Considerations for Product Design to Minimize Medication Errors.'' The draft guidance provides sponsors of...

  1. Improving Safety through Human Factors Engineering.

    PubMed

    Siewert, Bettina; Hochman, Mary G

    2015-10-01

    Human factors engineering (HFE) focuses on the design and analysis of interactive systems that involve people, technical equipment, and work environment. HFE is informed by knowledge of human characteristics. It complements existing patient safety efforts by specifically taking into consideration that, as humans, frontline staff will inevitably make mistakes. Therefore, the systems with which they interact should be designed for the anticipation and mitigation of human errors. The goal of HFE is to optimize the interaction of humans with their work environment and technical equipment to maximize safety and efficiency. Special safeguards include usability testing, standardization of processes, and use of checklists and forcing functions. However, the effectiveness of the safety program and resiliency of the organization depend on timely reporting of all safety events independent of patient harm, including perceived potential risks, bad outcomes that occur even when proper protocols have been followed, and episodes of "improvisation" when formal guidelines are found not to exist. Therefore, an institution must adopt a robust culture of safety, where the focus is shifted from blaming individuals for errors to preventing future errors, and where barriers to speaking up-including barriers introduced by steep authority gradients-are minimized. This requires creation of formal guidelines to address safety concerns, establishment of unified teams with open communication and shared responsibility for patient safety, and education of managers and senior physicians to perceive the reporting of safety concerns as a benefit rather than a threat. © RSNA, 2015.

  2. A negentropy minimization approach to adaptive equalization for digital communication systems.

    PubMed

    Choi, Sooyong; Lee, Te-Won

    2004-07-01

    In this paper, we introduce and investigate a new adaptive equalization method based on minimizing approximate negentropy of the estimation error for a finite-length equalizer. We consider an approximate negentropy using nonpolynomial expansions of the estimation error as a new performance criterion to improve performance of a linear equalizer based on minimizing minimum mean squared error (MMSE). Negentropy includes higher order statistical information and its minimization provides improved converge, performance and accuracy compared to traditional methods such as MMSE in terms of bit error rate (BER). The proposed negentropy minimization (NEGMIN) equalizer has two kinds of solutions, the MMSE solution and the other one, depending on the ratio of the normalization parameters. The NEGMIN equalizer has best BER performance when the ratio of the normalization parameters is properly adjusted to maximize the output power(variance) of the NEGMIN equalizer. Simulation experiments show that BER performance of the NEGMIN equalizer with the other solution than the MMSE one has similar characteristics to the adaptive minimum bit error rate (AMBER) equalizer. The main advantage of the proposed equalizer is that it needs significantly fewer training symbols than the AMBER equalizer. Furthermore, the proposed equalizer is more robust to nonlinear distortions than the MMSE equalizer.

  3. Inspection error and its adverse effects - A model with implications for practitioners

    NASA Technical Reports Server (NTRS)

    Collins, R. D., Jr.; Case, K. E.; Bennett, G. K.

    1978-01-01

    Inspection error has clearly been shown to have adverse effects upon the results desired from a quality assurance sampling plan. These effects upon performance measures have been well documented from a statistical point of view. However, little work has been presented to convince the QC manager of the unfavorable cost consequences resulting from inspection error. This paper develops a very general, yet easily used, mathematical cost model. The basic format of the well-known Guthrie-Johns model is used. However, it is modified as required to assess the effects of attributes sampling errors of the first and second kind. The economic results, under different yet realistic conditions, will no doubt be of interest to QC practitioners who face similar problems daily. Sampling inspection plans are optimized to minimize economic losses due to inspection error. Unfortunately, any error at all results in some economic loss which cannot be compensated for by sampling plan design; however, improvements over plans which neglect the presence of inspection error are possible. Implications for human performance betterment programs are apparent, as are trade-offs between sampling plan modification and inspection and training improvements economics.

  4. Method and Apparatus for Evaluating the Visual Quality of Processed Digital Video Sequences

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    2002-01-01

    A Digital Video Quality (DVQ) apparatus and method that incorporate a model of human visual sensitivity to predict the visibility of artifacts. The DVQ method and apparatus are used for the evaluation of the visual quality of processed digital video sequences and for adaptively controlling the bit rate of the processed digital video sequences without compromising the visual quality. The DVQ apparatus minimizes the required amount of memory and computation. The input to the DVQ apparatus is a pair of color image sequences: an original (R) non-compressed sequence, and a processed (T) sequence. Both sequences (R) and (T) are sampled, cropped, and subjected to color transformations. The sequences are then subjected to blocking and discrete cosine transformation, and the results are transformed to local contrast. The next step is a time filtering operation which implements the human sensitivity to different time frequencies. The results are converted to threshold units by dividing each discrete cosine transform coefficient by its respective visual threshold. At the next stage the two sequences are subtracted to produce an error sequence. The error sequence is subjected to a contrast masking operation, which also depends upon the reference sequence (R). The masked errors can be pooled in various ways to illustrate the perceptual error over various dimensions, and the pooled error can be converted to a visual quality measure.

  5. Lessons from aviation - the role of checklists in minimally invasive cardiac surgery.

    PubMed

    Hussain, S; Adams, C; Cleland, A; Jones, P M; Walsh, G; Kiaii, B

    2016-01-01

    We describe an adverse event during minimally invasive cardiac surgery that resulted in a multi-disciplinary review of intra-operative errors and the creation of a procedural checklist. This checklist aims to prevent errors of omission and communication failures that result in increased morbidity and mortality. We discuss the application of the aviation - led "threats and errors model" to medical practice and the role of checklists and other strategies aimed at reducing medical errors. © The Author(s) 2015.

  6. Attention in the predictive mind.

    PubMed

    Ransom, Madeleine; Fazelpour, Sina; Mole, Christopher

    2017-01-01

    It has recently become popular to suggest that cognition can be explained as a process of Bayesian prediction error minimization. Some advocates of this view propose that attention should be understood as the optimization of expected precisions in the prediction-error signal (Clark, 2013, 2016; Feldman & Friston, 2010; Hohwy, 2012, 2013). This proposal successfully accounts for several attention-related phenomena. We claim that it cannot account for all of them, since there are certain forms of voluntary attention that it cannot accommodate. We therefore suggest that, although the theory of Bayesian prediction error minimization introduces some powerful tools for the explanation of mental phenomena, its advocates have been wrong to claim that Bayesian prediction error minimization is 'all the brain ever does'. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Development and Characterization of a Low-Pressure Calibration System for Hypersonic Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Green, Del L.; Everhart, Joel L.; Rhode, Matthew N.

    2004-01-01

    Minimization of uncertainty is essential for accurate ESP measurements at very low free-stream static pressures found in hypersonic wind tunnels. Statistical characterization of environmental error sources requires a well defined and controlled calibration method. A calibration system has been constructed and environmental control software developed to control experimentation to eliminate human induced error sources. The initial stability study of the calibration system shows a high degree of measurement accuracy and precision in temperature and pressure control. Control manometer drift and reference pressure instabilities induce uncertainty into the repeatability of voltage responses measured from the PSI System 8400 between calibrations. Methods of improving repeatability are possible through software programming and further experimentation.

  8. Impact of gradient timing error on the tissue sodium concentration bioscale measured using flexible twisted projection imaging

    NASA Astrophysics Data System (ADS)

    Lu, Aiming; Atkinson, Ian C.; Vaughn, J. Thomas; Thulborn, Keith R.

    2011-12-01

    The rapid biexponential transverse relaxation of the sodium MR signal from brain tissue requires efficient k-space sampling for quantitative imaging in a time that is acceptable for human subjects. The flexible twisted projection imaging (flexTPI) sequence has been shown to be suitable for quantitative sodium imaging with an ultra-short echo time to minimize signal loss. The fidelity of the k-space center location is affected by the readout gradient timing errors on the three physical axes, which is known to cause image distortion for projection-based acquisitions. This study investigated the impact of these timing errors on the voxel-wise accuracy of the tissue sodium concentration (TSC) bioscale measured with the flexTPI sequence. Our simulations show greater than 20% spatially varying quantification errors when the gradient timing errors are larger than 10 μs on all three axes. The quantification is more tolerant of gradient timing errors on the Z-axis. An existing method was used to measure the gradient timing errors with <1 μs error. The gradient timing error measurement is shown to be RF coil dependent, and timing error differences of up to ˜16 μs have been observed between different RF coils used on the same scanner. The measured timing errors can be corrected prospectively or retrospectively to obtain accurate TSC values.

  9. Assessing the Performance of Human-Automation Collaborative Planning Systems

    DTIC Science & Technology

    2011-06-01

    process- ing and incorporating vast amounts of incoming information into their solutions. How- ever, these algorithms are brittle and unable to account for...planning system, a descriptive Mission Performance measure may address the total travel time on the path or the cost of the path (e.g. total work...minimizing costs or collisions [4, 32, 33]. Error measures for such a path planning system may track how many collisions occur or how much threat

  10. Cascade control of superheated steam temperature with neuro-PID controller.

    PubMed

    Zhang, Jianhua; Zhang, Fenfang; Ren, Mifeng; Hou, Guolian; Fang, Fang

    2012-11-01

    In this paper, an improved cascade control methodology for superheated processes is developed, in which the primary PID controller is implemented by neural networks trained by minimizing error entropy criterion. The entropy of the tracking error can be estimated recursively by utilizing receding horizon window technique. The measurable disturbances in superheated processes are input to the neuro-PID controller besides the sequences of tracking error in outer loop control system, hence, feedback control is combined with feedforward control in the proposed neuro-PID controller. The convergent condition of the neural networks is analyzed. The implementation procedures of the proposed cascade control approach are summarized. Compared with the neuro-PID controller using minimizing squared error criterion, the proposed neuro-PID controller using minimizing error entropy criterion may decrease fluctuations of the superheated steam temperature. A simulation example shows the advantages of the proposed method. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  11. CCD Camera Lens Interface for Real-Time Theodolite Alignment

    NASA Technical Reports Server (NTRS)

    Wake, Shane; Scott, V. Stanley, III

    2012-01-01

    Theodolites are a common instrument in the testing, alignment, and building of various systems ranging from a single optical component to an entire instrument. They provide a precise way to measure horizontal and vertical angles. They can be used to align multiple objects in a desired way at specific angles. They can also be used to reference a specific location or orientation of an object that has moved. Some systems may require a small margin of error in position of components. A theodolite can assist with accurately measuring and/or minimizing that error. The technology is an adapter for a CCD camera with lens to attach to a Leica Wild T3000 Theodolite eyepiece that enables viewing on a connected monitor, and thus can be utilized with multiple theodolites simultaneously. This technology removes a substantial part of human error by relying on the CCD camera and monitors. It also allows image recording of the alignment, and therefore provides a quantitative means to measure such error.

  12. Effect of contrast on human speed perception

    NASA Technical Reports Server (NTRS)

    Stone, Leland S.; Thompson, Peter

    1992-01-01

    This study is part of an ongoing collaborative research effort between the Life Science and Human Factors Divisions at NASA ARC to measure the accuracy of human motion perception in order to predict potential errors in human perception/performance and to facilitate the design of display systems that minimize the effects of such deficits. The study describes how contrast manipulations can produce significant errors in human speed perception. Specifically, when two simultaneously presented parallel gratings are moving at the same speed within stationary windows, the lower-contrast grating appears to move more slowly. This contrast-induced misperception of relative speed is evident across a wide range of contrasts (2.5-50 percent) and does not appear to saturate (e.g., a 50 percent contrast grating appears slower than a 70 percent contrast grating moving at the same speed). The misperception is large: a 70 percent contrast grating must, on average, be slowed by 35 percent to match a 10 percent contrast grating moving at 2 deg/sec (N = 6). Furthermore, it is largely independent of the absolute contrast level and is a quasilinear function of log contrast ratio. A preliminary parametric study shows that, although spatial frequency has little effect, the relative orientation of the two gratings is important. Finally, the effect depends on the temporal presentation of the stimuli: the effects of contrast on perceived speed appears lessened when the stimuli to be matched are presented sequentially. These data constrain both physiological models of visual cortex and models of human performance. We conclude that viewing conditions that effect contrast, such as fog, may cause significant errors in speed judgments.

  13. Optimized universal color palette design for error diffusion

    NASA Astrophysics Data System (ADS)

    Kolpatzik, Bernd W.; Bouman, Charles A.

    1995-04-01

    Currently, many low-cost computers can only simultaneously display a palette of 256 color. However, this palette is usually selectable from a very large gamut of available colors. For many applications, this limited palette size imposes a significant constraint on the achievable image quality. We propose a method for designing an optimized universal color palette for use with halftoning methods such as error diffusion. The advantage of a universal color palette is that it is fixed and therefore allows multiple images to be displayed simultaneously. To design the palette, we employ a new vector quantization method known as sequential scalar quantization (SSQ) to allocate the colors in a visually uniform color space. The SSQ method achieves near-optimal allocation, but may be efficiently implemented using a series of lookup tables. When used with error diffusion, SSQ adds little computational overhead and may be used to minimize the visual error in an opponent color coordinate system. We compare the performance of the optimized algorithm to standard error diffusion by evaluating a visually weighted mean-squared-error measure. Our metric is based on the color difference in CIE L*AL*B*, but also accounts for the lowpass characteristic of human contrast sensitivity.

  14. The State and Trends of Barcode, RFID, Biometric and Pharmacy Automation Technologies in US Hospitals.

    PubMed

    Uy, Raymonde Charles Y; Kury, Fabricio P; Fontelo, Paul A

    2015-01-01

    The standard of safe medication practice requires strict observance of the five rights of medication administration: the right patient, drug, time, dose, and route. Despite adherence to these guidelines, medication errors remain a public health concern that has generated health policies and hospital processes that leverage automation and computerization to reduce these errors. Bar code, RFID, biometrics and pharmacy automation technologies have been demonstrated in literature to decrease the incidence of medication errors by minimizing human factors involved in the process. Despite evidence suggesting the effectivity of these technologies, adoption rates and trends vary across hospital systems. The objective of study is to examine the state and adoption trends of automatic identification and data capture (AIDC) methods and pharmacy automation technologies in U.S. hospitals. A retrospective descriptive analysis of survey data from the HIMSS Analytics® Database was done, demonstrating an optimistic growth in the adoption of these patient safety solutions.

  15. Automated and unsupervised detection of malarial parasites in microscopic images.

    PubMed

    Purwar, Yashasvi; Shah, Sirish L; Clarke, Gwen; Almugairi, Areej; Muehlenbachs, Atis

    2011-12-13

    Malaria is a serious infectious disease. According to the World Health Organization, it is responsible for nearly one million deaths each year. There are various techniques to diagnose malaria of which manual microscopy is considered to be the gold standard. However due to the number of steps required in manual assessment, this diagnostic method is time consuming (leading to late diagnosis) and prone to human error (leading to erroneous diagnosis), even in experienced hands. The focus of this study is to develop a robust, unsupervised and sensitive malaria screening technique with low material cost and one that has an advantage over other techniques in that it minimizes human reliance and is, therefore, more consistent in applying diagnostic criteria. A method based on digital image processing of Giemsa-stained thin smear image is developed to facilitate the diagnostic process. The diagnosis procedure is divided into two parts; enumeration and identification. The image-based method presented here is designed to automate the process of enumeration and identification; with the main advantage being its ability to carry out the diagnosis in an unsupervised manner and yet have high sensitivity and thus reducing cases of false negatives. The image based method is tested over more than 500 images from two independent laboratories. The aim is to distinguish between positive and negative cases of malaria using thin smear blood slide images. Due to the unsupervised nature of method it requires minimal human intervention thus speeding up the whole process of diagnosis. Overall sensitivity to capture cases of malaria is 100% and specificity ranges from 50-88% for all species of malaria parasites. Image based screening method will speed up the whole process of diagnosis and is more advantageous over laboratory procedures that are prone to errors and where pathological expertise is minimal. Further this method provides a consistent and robust way of generating the parasite clearance curves.

  16. Priors in perception: Top-down modulation, Bayesian perceptual learning rate, and prediction error minimization.

    PubMed

    Hohwy, Jakob

    2017-01-01

    I discuss top-down modulation of perception in terms of a variable Bayesian learning rate, revealing a wide range of prior hierarchical expectations that can modulate perception. I then switch to the prediction error minimization framework and seek to conceive cognitive penetration specifically as prediction error minimization deviations from a variable Bayesian learning rate. This approach retains cognitive penetration as a category somewhat distinct from other top-down effects, and carves a reasonable route between penetrability and impenetrability. It prevents rampant, relativistic cognitive penetration of perception and yet is consistent with the continuity of cognition and perception. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Feedback controlled optics with wavefront compensation

    NASA Technical Reports Server (NTRS)

    Breckenridge, William G. (Inventor); Redding, David C. (Inventor)

    1993-01-01

    The sensitivity model of a complex optical system obtained by linear ray tracing is used to compute a control gain matrix by imposing the mathematical condition for minimizing the total wavefront error at the optical system's exit pupil. The most recent deformations or error states of the controlled segments or optical surfaces of the system are then assembled as an error vector, and the error vector is transformed by the control gain matrix to produce the exact control variables which will minimize the total wavefront error at the exit pupil of the optical system. These exact control variables are then applied to the actuators controlling the various optical surfaces in the system causing the immediate reduction in total wavefront error observed at the exit pupil of the optical system.

  18. Error minimization algorithm for comparative quantitative PCR analysis: Q-Anal.

    PubMed

    OConnor, William; Runquist, Elizabeth A

    2008-07-01

    Current methods for comparative quantitative polymerase chain reaction (qPCR) analysis, the threshold and extrapolation methods, either make assumptions about PCR efficiency that require an arbitrary threshold selection process or extrapolate to estimate relative levels of messenger RNA (mRNA) transcripts. Here we describe an algorithm, Q-Anal, that blends elements from current methods to by-pass assumptions regarding PCR efficiency and improve the threshold selection process to minimize error in comparative qPCR analysis. This algorithm uses iterative linear regression to identify the exponential phase for both target and reference amplicons and then selects, by minimizing linear regression error, a fluorescence threshold where efficiencies for both amplicons have been defined. From this defined fluorescence threshold, cycle time (Ct) and the error for both amplicons are calculated and used to determine the expression ratio. Ratios in complementary DNA (cDNA) dilution assays from qPCR data were analyzed by the Q-Anal method and compared with the threshold method and an extrapolation method. Dilution ratios determined by the Q-Anal and threshold methods were 86 to 118% of the expected cDNA ratios, but relative errors for the Q-Anal method were 4 to 10% in comparison with 4 to 34% for the threshold method. In contrast, ratios determined by an extrapolation method were 32 to 242% of the expected cDNA ratios, with relative errors of 67 to 193%. Q-Anal will be a valuable and quick method for minimizing error in comparative qPCR analysis.

  19. Optimized System Identification

    NASA Technical Reports Server (NTRS)

    Juang, Jer-Nan; Longman, Richard W.

    1999-01-01

    In system identification, one usually cares most about finding a model whose outputs are as close as possible to the true system outputs when the same input is applied to both. However, most system identification algorithms do not minimize this output error. Often they minimize model equation error instead, as in typical least-squares fits using a finite-difference model, and it is seen here that this distinction is significant. Here, we develop a set of system identification algorithms that minimize output error for multi-input/multi-output and multi-input/single-output systems. This is done with sequential quadratic programming iterations on the nonlinear least-squares problems, with an eigendecomposition to handle indefinite second partials. This optimization minimizes a nonlinear function of many variables, and hence can converge to local minima. To handle this problem, we start the iterations from the OKID (Observer/Kalman Identification) algorithm result. Not only has OKID proved very effective in practice, it minimizes an output error of an observer which has the property that as the data set gets large, it converges to minimizing the criterion of interest here. Hence, it is a particularly good starting point for the nonlinear iterations here. Examples show that the methods developed here eliminate the bias that is often observed using any system identification methods of either over-estimating or under-estimating the damping of vibration modes in lightly damped structures.

  20. Optimal Tuner Selection for Kalman Filter-Based Aircraft Engine Performance Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2010-01-01

    A linear point design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented. This technique specifically addresses the underdetermined estimation problem, where there are more unknown parameters than available sensor measurements. A systematic approach is applied to produce a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. Tuning parameter selection is performed using a multi-variable iterative search routine which seeks to minimize the theoretical mean-squared estimation error. This paper derives theoretical Kalman filter estimation error bias and variance values at steady-state operating conditions, and presents the tuner selection routine applied to minimize these values. Results from the application of the technique to an aircraft engine simulation are presented and compared to the conventional approach of tuner selection. Experimental simulation results are found to be in agreement with theoretical predictions. The new methodology is shown to yield a significant improvement in on-line engine performance estimation accuracy

  1. Developing an App by Exploiting Web-Based Mobile Technology to Inspect Controlled Substances in Patient Care Units

    PubMed Central

    2017-01-01

    We selected iOS in this study as the App operation system, Objective-C as the programming language, and Oracle as the database to develop an App to inspect controlled substances in patient care units. Using a web-enabled smartphone, pharmacist inspection can be performed on site and the inspection result can be directly recorded into HIS through the Internet, so human error of data translation can be minimized and the work efficiency and data processing can be improved. This system not only is fast and convenient compared to the conventional paperwork, but also provides data security and accuracy. In addition, there are several features to increase inspecting quality: (1) accuracy of drug appearance, (2) foolproof mechanism to avoid input errors or miss, (3) automatic data conversion without human judgments, (4) online alarm of expiry date, and (5) instant inspection result to show not meted items. This study has successfully turned paper-based medication inspection into inspection using a web-based mobile device. PMID:28286761

  2. Operational Activations Of Maritime Surveillance Services Within The Framework Of MARISS, NEREIDS And SAGRES Projects

    NASA Astrophysics Data System (ADS)

    Margarit, G.

    2013-12-01

    This paper presents the results obtained by GMV in the maritime surveillance operational activations conducted in a set of research projects. These activations have been actively supported by users, which feedback has been essential for better understanding their needs and the most urgent requested improvements. Different domains have been evaluated from pure theoretical and scientific background (in terms of processing algorithms) up to pure logistic issues (IT configuration issues, strategies for improving system performance and avoiding bottlenecks, parallelization and back-up procedures). In all the cases, automatizing is the key work because users need almost real time operations where the interaction of human operators is minimized. In addition, automatizing permits reducing human-derived errors and provides better error tracking procedures. In the paper, different examples will be depicted and analysed. For sake of space limitation, only the most representative ones will be selected. Feedback from users will be include and analysed as well.

  3. Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells

    DOE PAGES

    Yurkovich, James T.; Yang, Laurence; Palsson, Bernhard O.; ...

    2017-03-06

    Deep-coverage metabolomic profiling has revealed a well-defined development of metabolic decay in human red blood cells (RBCs) under cold storage conditions. A set of extracellular biomarkers has been recently identified that reliably defines the qualitative state of the metabolic network throughout this metabolic decay process. Here, we extend the utility of these biomarkers by using them to quantitatively predict the concentrations of other metabolites in the red blood cell. We are able to accurately predict the concentration profile of 84 of the 91 (92%) measured metabolites ( p < 0.05) in RBC metabolism using only measurements of these five biomarkers.more » The median of prediction errors (symmetric mean absolute percent error) across all metabolites was 13%. Furthermore, the ability to predict numerous metabolite concentrations from a simple set of biomarkers offers the potential for the development of a powerful workflow that could be used to evaluate the metabolic state of a biological system using a minimal set of measurements.« less

  4. Developing an App by Exploiting Web-Based Mobile Technology to Inspect Controlled Substances in Patient Care Units.

    PubMed

    Lu, Ying-Hao; Lee, Li-Yao; Chen, Ying-Lan; Cheng, Hsing-I; Tsai, Wen-Tsung; Kuo, Chen-Chun; Chen, Chung-Yu; Huang, Yaw-Bin

    2017-01-01

    We selected iOS in this study as the App operation system, Objective-C as the programming language, and Oracle as the database to develop an App to inspect controlled substances in patient care units. Using a web-enabled smartphone, pharmacist inspection can be performed on site and the inspection result can be directly recorded into HIS through the Internet, so human error of data translation can be minimized and the work efficiency and data processing can be improved. This system not only is fast and convenient compared to the conventional paperwork, but also provides data security and accuracy. In addition, there are several features to increase inspecting quality: (1) accuracy of drug appearance, (2) foolproof mechanism to avoid input errors or miss, (3) automatic data conversion without human judgments, (4) online alarm of expiry date, and (5) instant inspection result to show not meted items. This study has successfully turned paper-based medication inspection into inspection using a web-based mobile device.

  5. Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yurkovich, James T.; Yang, Laurence; Palsson, Bernhard O.

    Deep-coverage metabolomic profiling has revealed a well-defined development of metabolic decay in human red blood cells (RBCs) under cold storage conditions. A set of extracellular biomarkers has been recently identified that reliably defines the qualitative state of the metabolic network throughout this metabolic decay process. Here, we extend the utility of these biomarkers by using them to quantitatively predict the concentrations of other metabolites in the red blood cell. We are able to accurately predict the concentration profile of 84 of the 91 (92%) measured metabolites ( p < 0.05) in RBC metabolism using only measurements of these five biomarkers.more » The median of prediction errors (symmetric mean absolute percent error) across all metabolites was 13%. Furthermore, the ability to predict numerous metabolite concentrations from a simple set of biomarkers offers the potential for the development of a powerful workflow that could be used to evaluate the metabolic state of a biological system using a minimal set of measurements.« less

  6. Accuracy Study of a Robotic System for MRI-guided Prostate Needle Placement

    PubMed Central

    Seifabadi, Reza; Cho, Nathan BJ.; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Fichtinger, Gabor; Iordachita, Iulian

    2013-01-01

    Background Accurate needle placement is the first concern in percutaneous MRI-guided prostate interventions. In this phantom study, different sources contributing to the overall needle placement error of a MRI-guided robot for prostate biopsy have been identified, quantified, and minimized to the possible extent. Methods and Materials The overall needle placement error of the system was evaluated in a prostate phantom. This error was broken into two parts: the error associated with the robotic system (called before-insertion error) and the error associated with needle-tissue interaction (called due-to-insertion error). The before-insertion error was measured directly in a soft phantom and different sources contributing into this part were identified and quantified. A calibration methodology was developed to minimize the 4-DOF manipulator’s error. The due-to-insertion error was indirectly approximated by comparing the overall error and the before-insertion error. The effect of sterilization on the manipulator’s accuracy and repeatability was also studied. Results The average overall system error in phantom study was 2.5 mm (STD=1.1mm). The average robotic system error in super soft phantom was 1.3 mm (STD=0.7 mm). Assuming orthogonal error components, the needle-tissue interaction error was approximated to be 2.13 mm thus having larger contribution to the overall error. The average susceptibility artifact shift was 0.2 mm. The manipulator’s targeting accuracy was 0.71 mm (STD=0.21mm) after robot calibration. The robot’s repeatability was 0.13 mm. Sterilization had no noticeable influence on the robot’s accuracy and repeatability. Conclusions The experimental methodology presented in this paper may help researchers to identify, quantify, and minimize different sources contributing into the overall needle placement error of an MRI-guided robotic system for prostate needle placement. In the robotic system analyzed here, the overall error of the studied system remained within the acceptable range. PMID:22678990

  7. Accuracy study of a robotic system for MRI-guided prostate needle placement.

    PubMed

    Seifabadi, Reza; Cho, Nathan B J; Song, Sang-Eun; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M; Fichtinger, Gabor; Iordachita, Iulian

    2013-09-01

    Accurate needle placement is the first concern in percutaneous MRI-guided prostate interventions. In this phantom study, different sources contributing to the overall needle placement error of a MRI-guided robot for prostate biopsy have been identified, quantified and minimized to the possible extent. The overall needle placement error of the system was evaluated in a prostate phantom. This error was broken into two parts: the error associated with the robotic system (called 'before-insertion error') and the error associated with needle-tissue interaction (called 'due-to-insertion error'). Before-insertion error was measured directly in a soft phantom and different sources contributing into this part were identified and quantified. A calibration methodology was developed to minimize the 4-DOF manipulator's error. The due-to-insertion error was indirectly approximated by comparing the overall error and the before-insertion error. The effect of sterilization on the manipulator's accuracy and repeatability was also studied. The average overall system error in the phantom study was 2.5 mm (STD = 1.1 mm). The average robotic system error in the Super Soft plastic phantom was 1.3 mm (STD = 0.7 mm). Assuming orthogonal error components, the needle-tissue interaction error was found to be approximately 2.13 mm, thus making a larger contribution to the overall error. The average susceptibility artifact shift was 0.2 mm. The manipulator's targeting accuracy was 0.71 mm (STD = 0.21 mm) after robot calibration. The robot's repeatability was 0.13 mm. Sterilization had no noticeable influence on the robot's accuracy and repeatability. The experimental methodology presented in this paper may help researchers to identify, quantify and minimize different sources contributing into the overall needle placement error of an MRI-guided robotic system for prostate needle placement. In the robotic system analysed here, the overall error of the studied system remained within the acceptable range. Copyright © 2012 John Wiley & Sons, Ltd.

  8. JPEG2000 encoding with perceptual distortion control.

    PubMed

    Liu, Zhen; Karam, Lina J; Watson, Andrew B

    2006-07-01

    In this paper, a new encoding approach is proposed to control the JPEG2000 encoding in order to reach a desired perceptual quality. The new method is based on a vision model that incorporates various masking effects of human visual perception and a perceptual distortion metric that takes spatial and spectral summation of individual quantization errors into account. Compared with the conventional rate-based distortion minimization JPEG2000 encoding, the new method provides a way to generate consistent quality images at a lower bit rate.

  9. Chain pooling to minimize prediction error in subset regression. [Monte Carlo studies using population models

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1974-01-01

    Monte Carlo studies using population models intended to represent response surface applications are reported. Simulated experiments were generated by adding pseudo random normally distributed errors to population values to generate observations. Model equations were fitted to the observations and the decision procedure was used to delete terms. Comparison of values predicted by the reduced models with the true population values enabled the identification of deletion strategies that are approximately optimal for minimizing prediction errors.

  10. Cirrus Cloud Retrieval Using Infrared Sounding Data: Multilevel Cloud Errors.

    NASA Astrophysics Data System (ADS)

    Baum, Bryan A.; Wielicki, Bruce A.

    1994-01-01

    In this study we perform an error analysis for cloud-top pressure retrieval using the High-Resolution Infrared Radiometric Sounder (HIRS/2) 15-µm CO2 channels for the two-layer case of transmissive cirrus overlying an overcast, opaque stratiform cloud. This analysis includes standard deviation and bias error due to instrument noise and the presence of two cloud layers, the lower of which is opaque. Instantaneous cloud pressure retrieval errors are determined for a range of cloud amounts (0.1 1.0) and cloud-top pressures (850250 mb). Large cloud-top pressure retrieval errors are found to occur when a lower opaque layer is present underneath an upper transmissive cloud layer in the satellite field of view (FOV). Errors tend to increase with decreasing upper-cloud elective cloud amount and with decreasing cloud height (increasing pressure). Errors in retrieved upper-cloud pressure result in corresponding errors in derived effective cloud amount. For the case in which a HIRS FOV has two distinct cloud layers, the difference between the retrieved and actual cloud-top pressure is positive in all casts, meaning that the retrieved upper-cloud height is lower than the actual upper-cloud height. In addition, errors in retrieved cloud pressure are found to depend upon the lapse rate between the low-level cloud top and the surface. We examined which sounder channel combinations would minimize the total errors in derived cirrus cloud height caused by instrument noise and by the presence of a lower-level cloud. We find that while the sounding channels that peak between 700 and 1000 mb minimize random errors, the sounding channels that peak at 300—500 mb minimize bias errors. For a cloud climatology, the bias errors are most critical.

  11. Fusion of magnetometer and gradiometer sensors of MEG in the presence of multiplicative error.

    PubMed

    Mohseni, Hamid R; Woolrich, Mark W; Kringelbach, Morten L; Luckhoo, Henry; Smith, Penny Probert; Aziz, Tipu Z

    2012-07-01

    Novel neuroimaging techniques have provided unprecedented information on the structure and function of the living human brain. Multimodal fusion of data from different sensors promises to radically improve this understanding, yet optimal methods have not been developed. Here, we demonstrate a novel method for combining multichannel signals. We show how this method can be used to fuse signals from the magnetometer and gradiometer sensors used in magnetoencephalography (MEG), and through extensive experiments using simulation, head phantom and real MEG data, show that it is both robust and accurate. This new approach works by assuming that the lead fields have multiplicative error. The criterion to estimate the error is given within a spatial filter framework such that the estimated power is minimized in the worst case scenario. The method is compared to, and found better than, existing approaches. The closed-form solution and the conditions under which the multiplicative error can be optimally estimated are provided. This novel approach can also be employed for multimodal fusion of other multichannel signals such as MEG and EEG. Although the multiplicative error is estimated based on beamforming, other methods for source analysis can equally be used after the lead-field modification.

  12. Testing boundary conditions for the conjunction fallacy: effects of response mode, conceptual focus, and problem type.

    PubMed

    Wedell, Douglas H; Moro, Rodrigo

    2008-04-01

    Two experiments used within-subject designs to examine how conjunction errors depend on the use of (1) choice versus estimation tasks, (2) probability versus frequency language, and (3) conjunctions of two likely events versus conjunctions of likely and unlikely events. All problems included a three-option format verified to minimize misinterpretation of the base event. In both experiments, conjunction errors were reduced when likely events were conjoined. Conjunction errors were also reduced for estimations compared with choices, with this reduction greater for likely conjuncts, an interaction effect. Shifting conceptual focus from probabilities to frequencies did not affect conjunction error rates. Analyses of numerical estimates for a subset of the problems provided support for the use of three general models by participants for generating estimates. Strikingly, the order in which the two tasks were carried out did not affect the pattern of results, supporting the idea that the mode of responding strongly determines the mode of thinking about conjunctions and hence the occurrence of the conjunction fallacy. These findings were evaluated in terms of implications for rationality of human judgment and reasoning.

  13. Optimized Assistive Human-Robot Interaction Using Reinforcement Learning.

    PubMed

    Modares, Hamidreza; Ranatunga, Isura; Lewis, Frank L; Popa, Dan O

    2016-03-01

    An intelligent human-robot interaction (HRI) system with adjustable robot behavior is presented. The proposed HRI system assists the human operator to perform a given task with minimum workload demands and optimizes the overall human-robot system performance. Motivated by human factor studies, the presented control structure consists of two control loops. First, a robot-specific neuro-adaptive controller is designed in the inner loop to make the unknown nonlinear robot behave like a prescribed robot impedance model as perceived by a human operator. In contrast to existing neural network and adaptive impedance-based control methods, no information of the task performance or the prescribed robot impedance model parameters is required in the inner loop. Then, a task-specific outer-loop controller is designed to find the optimal parameters of the prescribed robot impedance model to adjust the robot's dynamics to the operator skills and minimize the tracking error. The outer loop includes the human operator, the robot, and the task performance details. The problem of finding the optimal parameters of the prescribed robot impedance model is transformed into a linear quadratic regulator (LQR) problem which minimizes the human effort and optimizes the closed-loop behavior of the HRI system for a given task. To obviate the requirement of the knowledge of the human model, integral reinforcement learning is used to solve the given LQR problem. Simulation results on an x - y table and a robot arm, and experimental implementation results on a PR2 robot confirm the suitability of the proposed method.

  14. Calibration method of microgrid polarimeters with image interpolation.

    PubMed

    Chen, Zhenyue; Wang, Xia; Liang, Rongguang

    2015-02-10

    Microgrid polarimeters have large advantages over conventional polarimeters because of the snapshot nature and because they have no moving parts. However, they also suffer from several error sources, such as fixed pattern noise (FPN), photon response nonuniformity (PRNU), pixel cross talk, and instantaneous field-of-view (IFOV) error. A characterization method is proposed to improve the measurement accuracy in visible waveband. We first calibrate the camera with uniform illumination so that the response of the sensor is uniform over the entire field of view without IFOV error. Then a spline interpolation method is implemented to minimize IFOV error. Experimental results show the proposed method can effectively minimize the FPN and PRNU.

  15. Practical Procedures for Constructing Mastery Tests to Minimize Errors of Classification and to Maximize or Optimize Decision Reliability.

    ERIC Educational Resources Information Center

    Byars, Alvin Gregg

    The objectives of this investigation are to develop, describe, assess, and demonstrate procedures for constructing mastery tests to minimize errors of classification and to maximize decision reliability. The guidelines are based on conditions where item exchangeability is a reasonable assumption and the test constructor can control the number of…

  16. Flux control coefficients determined by inhibitor titration: the design and analysis of experiments to minimize errors.

    PubMed Central

    Small, J R

    1993-01-01

    This paper is a study into the effects of experimental error on the estimated values of flux control coefficients obtained using specific inhibitors. Two possible techniques for analysing the experimental data are compared: a simple extrapolation method (the so-called graph method) and a non-linear function fitting method. For these techniques, the sources of systematic errors are identified and the effects of systematic and random errors are quantified, using both statistical analysis and numerical computation. It is shown that the graph method is very sensitive to random errors and, under all conditions studied, that the fitting method, even under conditions where the assumptions underlying the fitted function do not hold, outperformed the graph method. Possible ways of designing experiments to minimize the effects of experimental errors are analysed and discussed. PMID:8257434

  17. Adjoint-Based, Three-Dimensional Error Prediction and Grid Adaptation

    NASA Technical Reports Server (NTRS)

    Park, Michael A.

    2002-01-01

    Engineering computational fluid dynamics (CFD) analysis and design applications focus on output functions (e.g., lift, drag). Errors in these output functions are generally unknown and conservatively accurate solutions may be computed. Computable error estimates can offer the possibility to minimize computational work for a prescribed error tolerance. Such an estimate can be computed by solving the flow equations and the linear adjoint problem for the functional of interest. The computational mesh can be modified to minimize the uncertainty of a computed error estimate. This robust mesh-adaptation procedure automatically terminates when the simulation is within a user specified error tolerance. This procedure for estimating and adapting to error in a functional is demonstrated for three-dimensional Euler problems. An adaptive mesh procedure that links to a Computer Aided Design (CAD) surface representation is demonstrated for wing, wing-body, and extruded high lift airfoil configurations. The error estimation and adaptation procedure yielded corrected functions that are as accurate as functions calculated on uniformly refined grids with ten times as many grid points.

  18. Spatial midsession reversal learning in rats: Effects of egocentric Cue use and memory.

    PubMed

    Rayburn-Reeves, Rebecca M; Moore, Mary K; Smith, Thea E; Crafton, Daniel A; Marden, Kelly L

    2018-07-01

    The midsession reversal task has been used to investigate behavioral flexibility and cue use in non-human animals, with results indicating differences in the degree of control by environmental cues across species. For example, time-based control has been found in rats only when tested in a T-maze apparatus and under specific conditions in which position and orientation (i.e., egocentric) cues during the intertrial interval could not be used to aid performance. Other research in an operant setting has shown that rats often produce minimal errors around the reversal location, demonstrating response patterns similar to patterns exhibited by humans and primates in this task. The current study aimed to reduce, but not eliminate, the ability for rats to utilize egocentric cues by placing the response levers on the opposite wall of the chamber in relation to the pellet dispenser. Results showed that rats made minimal errors prior to the reversal, suggesting time-based cues were not controlling responses, and that they switched to the second correct stimulus within a few trials after the reversal event. Video recordings also revealed highly structured patterns of behavior by the majority of rats, which often differed depending on which response was reinforced. We interpret these findings as evidence that rats are adept at utilizing their own egocentric cues and that these cues, along with memory for the recent response-reinforcement contingencies, aid in maximizing reinforcement over the session. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation.

    PubMed

    Frick, Eric; Rahmatalla, Salam

    2018-04-04

    The biomechanical models used to refine and stabilize motion capture processes are almost invariably driven by joint center estimates, and any errors in joint center calculation carry over and can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact (STA). This paper proposes a novel approach to joint center estimation implemented via sequential application of single-frame optimization (SFO). First, the method minimizes the variance of individual time frames’ joint center estimations via the developed variance minimization method to obtain accurate overall initial conditions. These initial conditions are used to stabilize an optimization-based linearization of human motion that determines a time-varying joint center estimation. In this manner, the complex and nonlinear behavior of human motion contaminated by STA can be captured as a continuous series of unique rigid-body realizations without requiring a complex analytical model to describe the behavior of STA. This article intends to offer proof of concept, and the presented method must be further developed before it can be reasonably applied to human motion. Numerical simulations were introduced to verify and substantiate the efficacy of the proposed methodology. When directly compared with a state-of-the-art inertial method, SFO reduced the error due to soft-tissue artifact in all cases by more than 45%. Instead of producing a single vector value to describe the joint center location during a motion capture trial as existing methods often do, the proposed method produced time-varying solutions that were highly correlated ( r > 0.82) with the true, time-varying joint center solution.

  20. Extended scene Shack-Hartmann wavefront sensor algorithm: minimization of scene content dependent shift estimation errors.

    PubMed

    Sidick, Erkin

    2013-09-10

    An adaptive periodic-correlation (APC) algorithm was developed for use in extended-scene Shack-Hartmann wavefront sensors. It provides high accuracy even when the subimages in a frame captured by a Shack-Hartmann camera are not only shifted but also distorted relative to each other. Recently we found that the shift estimate error of the APC algorithm has a component that depends on the content of the extended scene. In this paper, we assess the amount of that error and propose a method to minimize it.

  1. Extended Scene SH Wavefront Sensor Algorithm: Minimization of Scene Content Dependent Shift Estimation Errors

    NASA Technical Reports Server (NTRS)

    Sidick, Erkin

    2012-01-01

    Adaptive Periodic-Correlation (APC) algorithm was developed for use in extended-scene Shack-Hartmann wavefront sensors. It provides high-accuracy even when the sub-images in a frame captured by a Shack-Hartmann camera are not only shifted but also distorted relative to each other. Recently we found that the shift-estimate error of the APC algorithm has a component that depends on the content of extended-scene. In this paper we assess the amount of that error and propose a method to minimize it.

  2. Dilution space ratio of 2H and 18O of doubly labeled water method in humans.

    PubMed

    Sagayama, Hiroyuki; Yamada, Yosuke; Racine, Natalie M; Shriver, Timothy C; Schoeller, Dale A

    2016-06-01

    Variation of the dilution space ratio (Nd/No) between deuterium ((2)H) and oxygen-18 ((18)O) impacts the calculation of total energy expenditure (TEE) by doubly labeled water (DLW). Our aim was to examine the physiological and methodological sources of variation of Nd/No in humans. We analyzed data from 2,297 humans (0.25-89 yr old). This included the variables Nd/No, total body water, TEE, body mass index (BMI), and percent body fat (%fat). To differentiate between physiologic and methodologic sources of variation, the urine samples from 54 subjects were divided and blinded and analyzed separately, and repeated DLW dosing was performed in an additional 55 participants after 6 mo. Sex, BMI, and %fat did not significantly affect Nd/No, for which the interindividual SD was 0.017. The measurement error from the duplicate urine sample sets was 0.010, and intraindividual SD of Nd/No in repeats experiments was 0.013. An additional SD of 0.008 was contributed by calibration of the DLW dose water. The variation of measured Nd/No in humans was distributed within a small range and measurement error accounted for 68% of this variation. There was no evidence that Nd/No differed with respect to sex, BMI, and age between 1 and 80 yr, and thus use of a constant value is suggested to minimize the effect of stable isotope analysis error on calculation of TEE in the DLW studies in humans. Based on a review of 103 publications, the average dilution space ratio is 1.036 for individuals between 1 and 80 yr of age. Copyright © 2016 the American Physiological Society.

  3. Controlled sound field with a dual layer loudspeaker array

    NASA Astrophysics Data System (ADS)

    Shin, Mincheol; Fazi, Filippo M.; Nelson, Philip A.; Hirono, Fabio C.

    2014-08-01

    Controlled sound interference has been extensively investigated using a prototype dual layer loudspeaker array comprised of 16 loudspeakers. Results are presented for measures of array performance such as input signal power, directivity of sound radiation and accuracy of sound reproduction resulting from the application of conventional control methods such as minimization of error in mean squared pressure, maximization of energy difference and minimization of weighted pressure error and energy. Procedures for selecting the tuning parameters have also been introduced. With these conventional concepts aimed at the production of acoustically bright and dark zones, all the control methods used require a trade-off between radiation directivity and reproduction accuracy in the bright zone. An alternative solution is proposed which can achieve better performance based on the measures presented simultaneously by inserting a low priority zone named as the “gray” zone. This involves the weighted minimization of mean-squared errors in both bright and dark zones together with the gray zone in which the minimization error is given less importance. This results in the production of directional bright zone in which the accuracy of sound reproduction is maintained with less required input power. The results of simulations and experiments are shown to be in excellent agreement.

  4. Trial-by-trial adaptation of movements during mental practice under force field.

    PubMed

    Anwar, Muhammad Nabeel; Khan, Salman Hameed

    2013-01-01

    Human nervous system tries to minimize the effect of any external perturbing force by bringing modifications in the internal model. These modifications affect the subsequent motor commands generated by the nervous system. Adaptive compensation along with the appropriate modifications of internal model helps in reducing human movement errors. In the current study, we studied how motor imagery influences trial-to-trial learning in a robot-based adaptation task. Two groups of subjects performed reaching movements with or without motor imagery in a velocity-dependent force field. The results show that reaching movements performed with motor imagery have relatively a more focused generalization pattern and a higher learning rate in training direction.

  5. The State and Trends of Barcode, RFID, Biometric and Pharmacy Automation Technologies in US Hospitals

    PubMed Central

    Uy, Raymonde Charles Y.; Kury, Fabricio P.; Fontelo, Paul A.

    2015-01-01

    The standard of safe medication practice requires strict observance of the five rights of medication administration: the right patient, drug, time, dose, and route. Despite adherence to these guidelines, medication errors remain a public health concern that has generated health policies and hospital processes that leverage automation and computerization to reduce these errors. Bar code, RFID, biometrics and pharmacy automation technologies have been demonstrated in literature to decrease the incidence of medication errors by minimizing human factors involved in the process. Despite evidence suggesting the effectivity of these technologies, adoption rates and trends vary across hospital systems. The objective of study is to examine the state and adoption trends of automatic identification and data capture (AIDC) methods and pharmacy automation technologies in U.S. hospitals. A retrospective descriptive analysis of survey data from the HIMSS Analytics® Database was done, demonstrating an optimistic growth in the adoption of these patient safety solutions. PMID:26958264

  6. Landmark-based elastic registration using approximating thin-plate splines.

    PubMed

    Rohr, K; Stiehl, H S; Sprengel, R; Buzug, T M; Weese, J; Kuhn, M H

    2001-06-01

    We consider elastic image registration based on a set of corresponding anatomical point landmarks and approximating thin-plate splines. This approach is an extension of the original interpolating thin-plate spline approach and allows to take into account landmark localization errors. The extension is important for clinical applications since landmark extraction is always prone to error. Our approach is based on a minimizing functional and can cope with isotropic as well as anisotropic landmark errors. In particular, in the latter case it is possible to include different types of landmarks, e.g., unique point landmarks as well as arbitrary edge points. Also, the scheme is general with respect to the image dimension and the order of smoothness of the underlying functional. Optimal affine transformations as well as interpolating thin-plate splines are special cases of this scheme. To localize landmarks we use a semi-automatic approach which is based on three-dimensional (3-D) differential operators. Experimental results are presented for two-dimensional as well as 3-D tomographic images of the human brain.

  7. Using integrated models to minimize environmentally induced wavefront error in optomechanical design and analysis

    NASA Astrophysics Data System (ADS)

    Genberg, Victor L.; Michels, Gregory J.

    2017-08-01

    The ultimate design goal of an optical system subjected to dynamic loads is to minimize system level wavefront error (WFE). In random response analysis, system WFE is difficult to predict from finite element results due to the loss of phase information. In the past, the use of ystem WFE was limited by the difficulty of obtaining a linear optics model. In this paper, an automated method for determining system level WFE using a linear optics model is presented. An error estimate is included in the analysis output based on fitting errors of mode shapes. The technique is demonstrated by example with SigFit, a commercially available tool integrating mechanical analysis with optical analysis.

  8. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model.

    PubMed

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher; Gail, Alexander

    2015-04-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement ("jump") consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. Copyright © 2015 the American Physiological Society.

  9. Asymmetric generalization in adaptation to target displacement errors in humans and in a neural network model

    PubMed Central

    Westendorff, Stephanie; Kuang, Shenbing; Taghizadeh, Bahareh; Donchin, Opher

    2015-01-01

    Different error signals can induce sensorimotor adaptation during visually guided reaching, possibly evoking different neural adaptation mechanisms. Here we investigate reach adaptation induced by visual target errors without perturbing the actual or sensed hand position. We analyzed the spatial generalization of adaptation to target error to compare it with other known generalization patterns and simulated our results with a neural network model trained to minimize target error independent of prediction errors. Subjects reached to different peripheral visual targets and had to adapt to a sudden fixed-amplitude displacement (“jump”) consistently occurring for only one of the reach targets. Subjects simultaneously had to perform contralateral unperturbed saccades, which rendered the reach target jump unnoticeable. As a result, subjects adapted by gradually decreasing reach errors and showed negative aftereffects for the perturbed reach target. Reach errors generalized to unperturbed targets according to a translational rather than rotational generalization pattern, but locally, not globally. More importantly, reach errors generalized asymmetrically with a skewed generalization function in the direction of the target jump. Our neural network model reproduced the skewed generalization after adaptation to target jump without having been explicitly trained to produce a specific generalization pattern. Our combined psychophysical and simulation results suggest that target jump adaptation in reaching can be explained by gradual updating of spatial motor goal representations in sensorimotor association networks, independent of learning induced by a prediction-error about the hand position. The simulations make testable predictions about the underlying changes in the tuning of sensorimotor neurons during target jump adaptation. PMID:25609106

  10. Comparison of known food weights with image-based portion-size automated estimation and adolescents' self-reported portion size.

    PubMed

    Lee, Christina D; Chae, Junghoon; Schap, TusaRebecca E; Kerr, Deborah A; Delp, Edward J; Ebert, David S; Boushey, Carol J

    2012-03-01

    Diet is a critical element of diabetes self-management. An emerging area of research is the use of images for dietary records using mobile telephones with embedded cameras. These tools are being designed to reduce user burden and to improve accuracy of portion-size estimation through automation. The objectives of this study were to (1) assess the error of automatically determined portion weights compared to known portion weights of foods and (2) to compare the error between automation and human. Adolescents (n = 15) captured images of their eating occasions over a 24 h period. All foods and beverages served were weighed. Adolescents self-reported portion sizes for one meal. Image analysis was used to estimate portion weights. Data analysis compared known weights, automated weights, and self-reported portions. For the 19 foods, the mean ratio of automated weight estimate to known weight ranged from 0.89 to 4.61, and 9 foods were within 0.80 to 1.20. The largest error was for lettuce and the most accurate was strawberry jam. The children were fairly accurate with portion estimates for two foods (sausage links, toast) using one type of estimation aid and two foods (sausage links, scrambled eggs) using another aid. The automated method was fairly accurate for two foods (sausage links, jam); however, the 95% confidence intervals for the automated estimates were consistently narrower than human estimates. The ability of humans to estimate portion sizes of foods remains a problem and a perceived burden. Errors in automated portion-size estimation can be systematically addressed while minimizing the burden on people. Future applications that take over the burden of these processes may translate to better diabetes self-management. © 2012 Diabetes Technology Society.

  11. Accurate typing of short tandem repeats from genome-wide sequencing data and its applications.

    PubMed

    Fungtammasan, Arkarachai; Ananda, Guruprasad; Hile, Suzanne E; Su, Marcia Shu-Wei; Sun, Chen; Harris, Robert; Medvedev, Paul; Eckert, Kristin; Makova, Kateryna D

    2015-05-01

    Short tandem repeats (STRs) are implicated in dozens of human genetic diseases and contribute significantly to genome variation and instability. Yet profiling STRs from short-read sequencing data is challenging because of their high sequencing error rates. Here, we developed STR-FM, short tandem repeat profiling using flank-based mapping, a computational pipeline that can detect the full spectrum of STR alleles from short-read data, can adapt to emerging read-mapping algorithms, and can be applied to heterogeneous genetic samples (e.g., tumors, viruses, and genomes of organelles). We used STR-FM to study STR error rates and patterns in publicly available human and in-house generated ultradeep plasmid sequencing data sets. We discovered that STRs sequenced with a PCR-free protocol have up to ninefold fewer errors than those sequenced with a PCR-containing protocol. We constructed an error correction model for genotyping STRs that can distinguish heterozygous alleles containing STRs with consecutive repeat numbers. Applying our model and pipeline to Illumina sequencing data with 100-bp reads, we could confidently genotype several disease-related long trinucleotide STRs. Utilizing this pipeline, for the first time we determined the genome-wide STR germline mutation rate from a deeply sequenced human pedigree. Additionally, we built a tool that recommends minimal sequencing depth for accurate STR genotyping, depending on repeat length and sequencing read length. The required read depth increases with STR length and is lower for a PCR-free protocol. This suite of tools addresses the pressing challenges surrounding STR genotyping, and thus is of wide interest to researchers investigating disease-related STRs and STR evolution. © 2015 Fungtammasan et al.; Published by Cold Spring Harbor Laboratory Press.

  12. Round-off errors in cutting plane algorithms based on the revised simplex procedure

    NASA Technical Reports Server (NTRS)

    Moore, J. E.

    1973-01-01

    This report statistically analyzes computational round-off errors associated with the cutting plane approach to solving linear integer programming problems. Cutting plane methods require that the inverse of a sequence of matrices be computed. The problem basically reduces to one of minimizing round-off errors in the sequence of inverses. Two procedures for minimizing this problem are presented, and their influence on error accumulation is statistically analyzed. One procedure employs a very small tolerance factor to round computed values to zero. The other procedure is a numerical analysis technique for reinverting or improving the approximate inverse of a matrix. The results indicated that round-off accumulation can be effectively minimized by employing a tolerance factor which reflects the number of significant digits carried for each calculation and by applying the reinversion procedure once to each computed inverse. If 18 significant digits plus an exponent are carried for each variable during computations, then a tolerance value of 0.1 x 10 to the minus 12th power is reasonable.

  13. Sulcal set optimization for cortical surface registration.

    PubMed

    Joshi, Anand A; Pantazis, Dimitrios; Li, Quanzheng; Damasio, Hanna; Shattuck, David W; Toga, Arthur W; Leahy, Richard M

    2010-04-15

    Flat mapping based cortical surface registration constrained by manually traced sulcal curves has been widely used for inter subject comparisons of neuroanatomical data. Even for an experienced neuroanatomist, manual sulcal tracing can be quite time consuming, with the cost increasing with the number of sulcal curves used for registration. We present a method for estimation of an optimal subset of size N(C) from N possible candidate sulcal curves that minimizes a mean squared error metric over all combinations of N(C) curves. The resulting procedure allows us to estimate a subset with a reduced number of curves to be traced as part of the registration procedure leading to optimal use of manual labeling effort for registration. To minimize the error metric we analyze the correlation structure of the errors in the sulcal curves by modeling them as a multivariate Gaussian distribution. For a given subset of sulci used as constraints in surface registration, the proposed model estimates registration error based on the correlation structure of the sulcal errors. The optimal subset of constraint curves consists of the N(C) sulci that jointly minimize the estimated error variance for the subset of unconstrained curves conditioned on the N(C) constraint curves. The optimal subsets of sulci are presented and the estimated and actual registration errors for these subsets are computed. Copyright 2009 Elsevier Inc. All rights reserved.

  14. An ILP based Algorithm for Optimal Customer Selection for Demand Response in SmartGrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuppannagari, Sanmukh R.; Kannan, Rajgopal; Prasanna, Viktor K.

    Demand Response (DR) events are initiated by utilities during peak demand periods to curtail consumption. They ensure system reliability and minimize the utility’s expenditure. Selection of the right customers and strategies is critical for a DR event. An effective DR scheduling algorithm minimizes the curtailment error which is the absolute difference between the achieved curtailment value and the target. State-of-the-art heuristics exist for customer selection, however their curtailment errors are unbounded and can be as high as 70%. In this work, we develop an Integer Linear Programming (ILP) formulation for optimally selecting customers and curtailment strategies that minimize the curtailmentmore » error during DR events in SmartGrids. We perform experiments on real world data obtained from the University of Southern California’s SmartGrid and show that our algorithm achieves near exact curtailment values with errors in the range of 10 -7 to 10 -5, which are within the range of numerical errors. We compare our results against the state-of-the-art heuristic being deployed in practice in the USC SmartGrid. We show that for the same set of available customer strategy pairs our algorithm performs 103 to 107 times better in terms of the curtailment errors incurred.« less

  15. A meta-cognitive learning algorithm for a Fully Complex-valued Relaxation Network.

    PubMed

    Savitha, R; Suresh, S; Sundararajan, N

    2012-08-01

    This paper presents a meta-cognitive learning algorithm for a single hidden layer complex-valued neural network called "Meta-cognitive Fully Complex-valued Relaxation Network (McFCRN)". McFCRN has two components: a cognitive component and a meta-cognitive component. A Fully Complex-valued Relaxation Network (FCRN) with a fully complex-valued Gaussian like activation function (sech) in the hidden layer and an exponential activation function in the output layer forms the cognitive component. The meta-cognitive component contains a self-regulatory learning mechanism which controls the learning ability of FCRN by deciding what-to-learn, when-to-learn and how-to-learn from a sequence of training data. The input parameters of cognitive components are chosen randomly and the output parameters are estimated by minimizing a logarithmic error function. The problem of explicit minimization of magnitude and phase errors in the logarithmic error function is converted to system of linear equations and output parameters of FCRN are computed analytically. McFCRN starts with zero hidden neuron and builds the number of neurons required to approximate the target function. The meta-cognitive component selects the best learning strategy for FCRN to acquire the knowledge from training data and also adapts the learning strategies to implement best human learning components. Performance studies on a function approximation and real-valued classification problems show that proposed McFCRN performs better than the existing results reported in the literature. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Constrained binary classification using ensemble learning: an application to cost-efficient targeted PrEP strategies.

    PubMed

    Zheng, Wenjing; Balzer, Laura; van der Laan, Mark; Petersen, Maya

    2018-01-30

    Binary classification problems are ubiquitous in health and social sciences. In many cases, one wishes to balance two competing optimality considerations for a binary classifier. For instance, in resource-limited settings, an human immunodeficiency virus prevention program based on offering pre-exposure prophylaxis (PrEP) to select high-risk individuals must balance the sensitivity of the binary classifier in detecting future seroconverters (and hence offering them PrEP regimens) with the total number of PrEP regimens that is financially and logistically feasible for the program. In this article, we consider a general class of constrained binary classification problems wherein the objective function and the constraint are both monotonic with respect to a threshold. These include the minimization of the rate of positive predictions subject to a minimum sensitivity, the maximization of sensitivity subject to a maximum rate of positive predictions, and the Neyman-Pearson paradigm, which minimizes the type II error subject to an upper bound on the type I error. We propose an ensemble approach to these binary classification problems based on the Super Learner methodology. This approach linearly combines a user-supplied library of scoring algorithms, with combination weights and a discriminating threshold chosen to minimize the constrained optimality criterion. We then illustrate the application of the proposed classifier to develop an individualized PrEP targeting strategy in a resource-limited setting, with the goal of minimizing the number of PrEP offerings while achieving a minimum required sensitivity. This proof of concept data analysis uses baseline data from the ongoing Sustainable East Africa Research in Community Health study. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  17. Error Sources in Asteroid Astrometry

    NASA Technical Reports Server (NTRS)

    Owen, William M., Jr.

    2000-01-01

    Asteroid astrometry, like any other scientific measurement process, is subject to both random and systematic errors, not all of which are under the observer's control. To design an astrometric observing program or to improve an existing one requires knowledge of the various sources of error, how different errors affect one's results, and how various errors may be minimized by careful observation or data reduction techniques.

  18. Efficient Variational Quantum Simulator Incorporating Active Error Minimization

    NASA Astrophysics Data System (ADS)

    Li, Ying; Benjamin, Simon C.

    2017-04-01

    One of the key applications for quantum computers will be the simulation of other quantum systems that arise in chemistry, materials science, etc., in order to accelerate the process of discovery. It is important to ask the following question: Can this simulation be achieved using near-future quantum processors, of modest size and under imperfect control, or must it await the more distant era of large-scale fault-tolerant quantum computing? Here, we propose a variational method involving closely integrated classical and quantum coprocessors. We presume that all operations in the quantum coprocessor are prone to error. The impact of such errors is minimized by boosting them artificially and then extrapolating to the zero-error case. In comparison to a more conventional optimized Trotterization technique, we find that our protocol is efficient and appears to be fundamentally more robust against error accumulation.

  19. Minimization of model representativity errors in identification of point source emission from atmospheric concentration measurements

    NASA Astrophysics Data System (ADS)

    Sharan, Maithili; Singh, Amit Kumar; Singh, Sarvesh Kumar

    2017-11-01

    Estimation of an unknown atmospheric release from a finite set of concentration measurements is considered an ill-posed inverse problem. Besides ill-posedness, the estimation process is influenced by the instrumental errors in the measured concentrations and model representativity errors. The study highlights the effect of minimizing model representativity errors on the source estimation. This is described in an adjoint modelling framework and followed in three steps. First, an estimation of point source parameters (location and intensity) is carried out using an inversion technique. Second, a linear regression relationship is established between the measured concentrations and corresponding predicted using the retrieved source parameters. Third, this relationship is utilized to modify the adjoint functions. Further, source estimation is carried out using these modified adjoint functions to analyse the effect of such modifications. The process is tested for two well known inversion techniques, called renormalization and least-square. The proposed methodology and inversion techniques are evaluated for a real scenario by using concentrations measurements from the Idaho diffusion experiment in low wind stable conditions. With both the inversion techniques, a significant improvement is observed in the retrieval of source estimation after minimizing the representativity errors.

  20. Distribution of standing-wave errors in real-ear sound-level measurements.

    PubMed

    Richmond, Susan A; Kopun, Judy G; Neely, Stephen T; Tan, Hongyang; Gorga, Michael P

    2011-05-01

    Standing waves can cause measurement errors when sound-pressure level (SPL) measurements are performed in a closed ear canal, e.g., during probe-microphone system calibration for distortion-product otoacoustic emission (DPOAE) testing. Alternative calibration methods, such as forward-pressure level (FPL), minimize the influence of standing waves by calculating the forward-going sound waves separate from the reflections that cause errors. Previous research compared test performance (Burke et al., 2010) and threshold prediction (Rogers et al., 2010) using SPL and multiple FPL calibration conditions, and surprisingly found no significant improvements when using FPL relative to SPL, except at 8 kHz. The present study examined the calibration data collected by Burke et al. and Rogers et al. from 155 human subjects in order to describe the frequency location and magnitude of standing-wave pressure minima to see if these errors might explain trends in test performance. Results indicate that while individual results varied widely, pressure variability was larger around 4 kHz and smaller at 8 kHz, consistent with the dimensions of the adult ear canal. The present data suggest that standing-wave errors are not responsible for the historically poor (8 kHz) or good (4 kHz) performance of DPOAE measures at specific test frequencies.

  1. Stochastic Least-Squares Petrov--Galerkin Method for Parameterized Linear Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Kookjin; Carlberg, Kevin; Elman, Howard C.

    Here, we consider the numerical solution of parameterized linear systems where the system matrix, the solution, and the right-hand side are parameterized by a set of uncertain input parameters. We explore spectral methods in which the solutions are approximated in a chosen finite-dimensional subspace. It has been shown that the stochastic Galerkin projection technique fails to minimize any measure of the solution error. As a remedy for this, we propose a novel stochatic least-squares Petrov--Galerkin (LSPG) method. The proposed method is optimal in the sense that it produces the solution that minimizes a weightedmore » $$\\ell^2$$-norm of the residual over all solutions in a given finite-dimensional subspace. Moreover, the method can be adapted to minimize the solution error in different weighted $$\\ell^2$$-norms by simply applying a weighting function within the least-squares formulation. In addition, a goal-oriented seminorm induced by an output quantity of interest can be minimized by defining a weighting function as a linear functional of the solution. We establish optimality and error bounds for the proposed method, and extensive numerical experiments show that the weighted LSPG method outperforms other spectral methods in minimizing corresponding target weighted norms.« less

  2. Summation-by-Parts operators with minimal dispersion error for coarse grid flow calculations

    NASA Astrophysics Data System (ADS)

    Linders, Viktor; Kupiainen, Marco; Nordström, Jan

    2017-07-01

    We present a procedure for constructing Summation-by-Parts operators with minimal dispersion error both near and far from numerical interfaces. Examples of such operators are constructed and compared with a higher order non-optimised Summation-by-Parts operator. Experiments show that the optimised operators are superior for wave propagation and turbulent flows involving large wavenumbers, long solution times and large ranges of resolution scales.

  3. Design principles in telescope development: invariance, innocence, and the costs

    NASA Astrophysics Data System (ADS)

    Steinbach, Manfred

    1997-03-01

    Instrument design is, for the most part, a battle against errors and costs. Passive methods of error damping are in many cases effective and inexpensive. This paper shows examples of error minimization in our design of telescopes, instrumentation and evaluation instruments.

  4. Robust Least-Squares Support Vector Machine With Minimization of Mean and Variance of Modeling Error.

    PubMed

    Lu, Xinjiang; Liu, Wenbo; Zhou, Chuang; Huang, Minghui

    2017-06-13

    The least-squares support vector machine (LS-SVM) is a popular data-driven modeling method and has been successfully applied to a wide range of applications. However, it has some disadvantages, including being ineffective at handling non-Gaussian noise as well as being sensitive to outliers. In this paper, a robust LS-SVM method is proposed and is shown to have more reliable performance when modeling a nonlinear system under conditions where Gaussian or non-Gaussian noise is present. The construction of a new objective function allows for a reduction of the mean of the modeling error as well as the minimization of its variance, and it does not constrain the mean of the modeling error to zero. This differs from the traditional LS-SVM, which uses a worst-case scenario approach in order to minimize the modeling error and constrains the mean of the modeling error to zero. In doing so, the proposed method takes the modeling error distribution information into consideration and is thus less conservative and more robust in regards to random noise. A solving method is then developed in order to determine the optimal parameters for the proposed robust LS-SVM. An additional analysis indicates that the proposed LS-SVM gives a smaller weight to a large-error training sample and a larger weight to a small-error training sample, and is thus more robust than the traditional LS-SVM. The effectiveness of the proposed robust LS-SVM is demonstrated using both artificial and real life cases.

  5. TED: A Tolerant Edit Distance for segmentation evaluation.

    PubMed

    Funke, Jan; Klein, Jonas; Moreno-Noguer, Francesc; Cardona, Albert; Cook, Matthew

    2017-02-15

    In this paper, we present a novel error measure to compare a computer-generated segmentation of images or volumes against ground truth. This measure, which we call Tolerant Edit Distance (TED), is motivated by two observations that we usually encounter in biomedical image processing: (1) Some errors, like small boundary shifts, are tolerable in practice. Which errors are tolerable is application dependent and should be explicitly expressible in the measure. (2) Non-tolerable errors have to be corrected manually. The effort needed to do so should be reflected by the error measure. Our measure is the minimal weighted sum of split and merge operations to apply to one segmentation such that it resembles another segmentation within specified tolerance bounds. This is in contrast to other commonly used measures like Rand index or variation of information, which integrate small, but tolerable, differences. Additionally, the TED provides intuitive numbers and allows the localization and classification of errors in images or volumes. We demonstrate the applicability of the TED on 3D segmentations of neurons in electron microscopy images where topological correctness is arguable more important than exact boundary locations. Furthermore, we show that the TED is not just limited to evaluation tasks. We use it as the loss function in a max-margin learning framework to find parameters of an automatic neuron segmentation algorithm. We show that training to minimize the TED, i.e., to minimize crucial errors, leads to higher segmentation accuracy compared to other learning methods. Copyright © 2016. Published by Elsevier Inc.

  6. Human Error: A Concept Analysis

    NASA Technical Reports Server (NTRS)

    Hansen, Frederick D.

    2007-01-01

    Human error is the subject of research in almost every industry and profession of our times. This term is part of our daily language and intuitively understood by most people however, it would be premature to assume that everyone's understanding of human error s the same. For example, human error is used to describe the outcome or consequence of human action, the causal factor of an accident, deliberate violations,a nd the actual action taken by a human being. As a result, researchers rarely agree on the either a specific definition or how to prevent human error. The purpose of this article is to explore the specific concept of human error using Concept Analysis as described by Walker and Avant (1995). The concept of human error is examined as currently used in the literature of a variety of industries and professions. Defining attributes and examples of model, borderline, and contrary cases are described. The antecedents and consequences of human error are also discussed and a definition of human error is offered.

  7. Minimizing the effect of process mismatch in a neuromorphic system using spike-timing-dependent adaptation.

    PubMed

    Cameron, Katherine; Murray, Alan

    2008-05-01

    This paper investigates whether spike-timing-dependent plasticity (STDP) can minimize the effect of mismatch within the context of a depth-from-motion algorithm. To improve noise rejection, this algorithm contains a spike prediction element, whose performance is degraded by analog very large scale integration (VLSI) mismatch. The error between the actual spike arrival time and the prediction is used as the input to an STDP circuit, to improve future predictions. Before STDP adaptation, the error reflects the degree of mismatch within the prediction circuitry. After STDP adaptation, the error indicates to what extent the adaptive circuitry can minimize the effect of transistor mismatch. The circuitry is tested with static and varying prediction times and chip results are presented. The effect of noisy spikes is also investigated. Under all conditions the STDP adaptation is shown to improve performance.

  8. The Impact of Environmental and Endogenous Damage on Somatic Mutation Load in Human Skin Fibroblasts

    PubMed Central

    Saini, Natalie; Chan, Kin; Grimm, Sara A.; Dai, Shuangshuang; Fargo, David C.; Kaufmann, William K.; Taylor, Jack A.; Lee, Eunjung; Cortes-Ciriano, Isidro; Park, Peter J.; Schurman, Shepherd H.; Malc, Ewa P.; Mieczkowski, Piotr A.

    2016-01-01

    Accumulation of somatic changes, due to environmental and endogenous lesions, in the human genome is associated with aging and cancer. Understanding the impacts of these processes on mutagenesis is fundamental to understanding the etiology, and improving the prognosis and prevention of cancers and other genetic diseases. Previous methods relying on either the generation of induced pluripotent stem cells, or sequencing of single-cell genomes were inherently error-prone and did not allow independent validation of the mutations. In the current study we eliminated these potential sources of error by high coverage genome sequencing of single-cell derived clonal fibroblast lineages, obtained after minimal propagation in culture, prepared from skin biopsies of two healthy adult humans. We report here accurate measurement of genome-wide magnitude and spectra of mutations accrued in skin fibroblasts of healthy adult humans. We found that every cell contains at least one chromosomal rearrangement and 600–13,000 base substitutions. The spectra and correlation of base substitutions with epigenomic features resemble many cancers. Moreover, because biopsies were taken from body parts differing by sun exposure, we can delineate the precise contributions of environmental and endogenous factors to the accrual of genetic changes within the same individual. We show here that UV-induced and endogenous DNA damage can have a comparable impact on the somatic mutation loads in skin fibroblasts. Trial Registration ClinicalTrials.gov NCT01087307 PMID:27788131

  9. Performance optimization of dense-array concentrator photovoltaic system considering effects of circumsolar radiation and slope error.

    PubMed

    Wong, Chee-Woon; Chong, Kok-Keong; Tan, Ming-Hui

    2015-07-27

    This paper presents an approach to optimize the electrical performance of dense-array concentrator photovoltaic system comprised of non-imaging dish concentrator by considering the circumsolar radiation and slope error effects. Based on the simulated flux distribution, a systematic methodology to optimize the layout configuration of solar cells interconnection circuit in dense array concentrator photovoltaic module has been proposed by minimizing the current mismatch caused by non-uniformity of concentrated sunlight. An optimized layout of interconnection solar cells circuit with minimum electrical power loss of 6.5% can be achieved by minimizing the effects of both circumsolar radiation and slope error.

  10. A simplified satellite navigation system for an autonomous Mars roving vehicle.

    NASA Technical Reports Server (NTRS)

    Janosko, R. E.; Shen, C. N.

    1972-01-01

    The use of a retroflecting satellite and a laser rangefinder to navigate a Martian roving vehicle is considered in this paper. It is shown that a simple system can be employed to perform this task. An error analysis is performed on the navigation equations and it is shown that the error inherent in the scheme proposed can be minimized by the proper choice of measurement geometry. A nonlinear programming approach is used to minimize the navigation error subject to constraints that are due to geometric and laser requirements. The problem is solved for a particular set of laser parameters and the optimal solution is presented.

  11. It Pays to Go Off-Track: Practicing with Error-Augmenting Haptic Feedback Facilitates Learning of a Curve-Tracing Task

    PubMed Central

    Williams, Camille K.; Tremblay, Luc; Carnahan, Heather

    2016-01-01

    Researchers in the domain of haptic training are now entering the long-standing debate regarding whether or not it is best to learn a skill by experiencing errors. Haptic training paradigms provide fertile ground for exploring how various theories about feedback, errors and physical guidance intersect during motor learning. Our objective was to determine how error minimizing, error augmenting and no haptic feedback while learning a self-paced curve-tracing task impact performance on delayed (1 day) retention and transfer tests, which indicate learning. We assessed performance using movement time and tracing error to calculate a measure of overall performance – the speed accuracy cost function. Our results showed that despite exhibiting the worst performance during skill acquisition, the error augmentation group had significantly better accuracy (but not overall performance) than the error minimization group on delayed retention and transfer tests. The control group’s performance fell between that of the two experimental groups but was not significantly different from either on the delayed retention test. We propose that the nature of the task (requiring online feedback to guide performance) coupled with the error augmentation group’s frequent off-target experience and rich experience of error-correction promoted information processing related to error-detection and error-correction that are essential for motor learning. PMID:28082937

  12. Biologically inspired robotic inspectors: the engineering reality and future outlook (Keynote address)

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2005-04-01

    Human errors have long been recognized as a major factor in the reliability of nondestructive evaluation results. To minimize such errors, there is an increasing reliance on automatic inspection tools that allow faster and consistent tests. Crawlers and various manipulation devices are commonly used to perform variety of inspection procedures that include C-scan with contour following capability to rapidly inspect complex structures. The emergence of robots has been the result of the need to deal with parts that are too complex to handle by a simple automatic system. Economical factors are continuing to hamper the wide use of robotics for inspection applications however technology advances are increasingly changing this paradigm. Autonomous robots, which may look like human, can potentially address the need to inspect structures with configuration that are not predetermined. The operation of such robots that mimic biology may take place at harsh or hazardous environments that are too dangerous for human presence. Biomimetic technologies such as artificial intelligence, artificial muscles, artificial vision and numerous others are increasingly becoming common engineering tools. Inspired by science fiction, making biomimetic robots is increasingly becoming an engineering reality and in this paper the state-of-the-art will be reviewed and the outlook for the future will be discussed.

  13. Fuzzy modelling and efficiency in health care systems.

    PubMed

    Ozok, Ahmet F

    2012-01-01

    American Medical Institute reports that each year, because of the medical error, minimum fifty thousand people are dead. For a safety and quality medical system, it is important that information systems are used in health care systems. Health information applications help us to reduce the human error and to support patient care systems. Recently, it is reported that medical information systems applications have also some negative effect on all medical integral elements. The cost of health care information systems is about 4.6% of the total cost. In this paper, it is tried a risk determination model according to principles of fuzzy logic. The improvement of health care systems has become a very popular topic in Turkey recent years. Using necessary information system; it became possible to care patients in a safer way. However, using the necessary HIS tools to manage of administrative and clinical processes at hospitals became more important than before. For example; clinical work flows and communication among pharmacists, nurses and physicians are still not enough investigated. We use fuzzy modeling as a research strategy and developed sum fuzzy membership functions to minimize human error. In application in Turkey the results are significantly related with each other. Besides, the sign differences in health care information systems strongly effects of risk magnitude. The obtained results are discussed and some comments are added.

  14. Selecting a restoration technique to minimize OCR error.

    PubMed

    Cannon, M; Fugate, M; Hush, D R; Scovel, C

    2003-01-01

    This paper introduces a learning problem related to the task of converting printed documents to ASCII text files. The goal of the learning procedure is to produce a function that maps documents to restoration techniques in such a way that on average the restored documents have minimum optical character recognition error. We derive a general form for the optimal function and use it to motivate the development of a nonparametric method based on nearest neighbors. We also develop a direct method of solution based on empirical error minimization for which we prove a finite sample bound on estimation error that is independent of distribution. We show that this empirical error minimization problem is an extension of the empirical optimization problem for traditional M-class classification with general loss function and prove computational hardness for this problem. We then derive a simple iterative algorithm called generalized multiclass ratchet (GMR) and prove that it produces an optimal function asymptotically (with probability 1). To obtain the GMR algorithm we introduce a new data map that extends Kesler's construction for the multiclass problem and then apply an algorithm called Ratchet to this mapped data, where Ratchet is a modification of the Pocket algorithm . Finally, we apply these methods to a collection of documents and report on the experimental results.

  15. Accurate Sample Assignment in a Multiplexed, Ultrasensitive, High-Throughput Sequencing Assay for Minimal Residual Disease.

    PubMed

    Bartram, Jack; Mountjoy, Edward; Brooks, Tony; Hancock, Jeremy; Williamson, Helen; Wright, Gary; Moppett, John; Goulden, Nick; Hubank, Mike

    2016-07-01

    High-throughput sequencing (HTS) (next-generation sequencing) of the rearranged Ig and T-cell receptor genes promises to be less expensive and more sensitive than current methods of monitoring minimal residual disease (MRD) in patients with acute lymphoblastic leukemia. However, the adoption of new approaches by clinical laboratories requires careful evaluation of all potential sources of error and the development of strategies to ensure the highest accuracy. Timely and efficient clinical use of HTS platforms will depend on combining multiple samples (multiplexing) in each sequencing run. Here we examine the Ig heavy-chain gene HTS on the Illumina MiSeq platform for MRD. We identify errors associated with multiplexing that could potentially impact the accuracy of MRD analysis. We optimize a strategy that combines high-purity, sequence-optimized oligonucleotides, dual indexing, and an error-aware demultiplexing approach to minimize errors and maximize sensitivity. We present a probability-based, demultiplexing pipeline Error-Aware Demultiplexer that is suitable for all MiSeq strategies and accurately assigns samples to the correct identifier without excessive loss of data. Finally, using controls quantified by digital PCR, we show that HTS-MRD can accurately detect as few as 1 in 10(6) copies of specific leukemic MRD. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  16. Reliable LC-MS quantitative glycomics using iGlycoMab stable isotope labeled glycans as internal standards.

    PubMed

    Zhou, Shiyue; Tello, Nadia; Harvey, Alex; Boyes, Barry; Orlando, Ron; Mechref, Yehia

    2016-06-01

    Glycans have numerous functions in various biological processes and participate in the progress of diseases. Reliable quantitative glycomic profiling techniques could contribute to the understanding of the biological functions of glycans, and lead to the discovery of potential glycan biomarkers for diseases. Although LC-MS is a powerful analytical tool for quantitative glycomics, the variation of ionization efficiency and MS intensity bias are influencing quantitation reliability. Internal standards can be utilized for glycomic quantitation by MS-based methods to reduce variability. In this study, we used stable isotope labeled IgG2b monoclonal antibody, iGlycoMab, as an internal standard to reduce potential for errors and to reduce variabililty due to sample digestion, derivatization, and fluctuation of nanoESI efficiency in the LC-MS analysis of permethylated N-glycans released from model glycoproteins, human blood serum, and breast cancer cell line. We observed an unanticipated degradation of isotope labeled glycans, tracked a source of such degradation, and optimized a sample preparation protocol to minimize degradation of the internal standard glycans. All results indicated the effectiveness of using iGlycoMab to minimize errors originating from sample handling and instruments. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Forces associated with pneumatic power screwdriver operation: statics and dynamics.

    PubMed

    Lin, Jia-Hua; Radwin, Robert G; Fronczak, Frank J; Richard, Terry G

    2003-10-10

    The statics and dynamics of pneumatic power screwdriver operation were investigated in the context of predicting forces acting against the human operator. A static force model is described in the paper, based on tool geometry, mass, orientation in space, feed force, torque build up, and stall torque. Three common power hand tool shapes are considered, including pistol grip, right angle, and in-line. The static model estimates handle force needed to support a power nutrunner when it acts against the tightened fastener with a constant torque. A system of equations for static force and moment equilibrium conditions are established, and the resultant handle force (resolved in orthogonal directions) is calculated in matrix form. A dynamic model is formulated to describe pneumatic motor torque build-up characteristics dependent on threaded fastener joint hardness. Six pneumatic tools were tested to validate the deterministic model. The average torque prediction error was 6.6% (SD = 5.4%) and the average handle force prediction error was 6.7% (SD = 6.4%) for a medium-soft threaded fastener joint. The average torque prediction error was 5.2% (SD = 5.3%) and the average handle force prediction error was 3.6% (SD = 3.2%) for a hard threaded fastener joint. Use of these equations for estimating handle forces based on passive mechanical elements representing the human operator is also described. These models together should be useful for considering tool handle force in the selection and design of power screwdrivers, particularly for minimizing handle forces in the prevention of injuries and work related musculoskeletal disorders.

  18. Advanced Interactive Display Formats for Terminal Area Traffic Control

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Shaviv, G. E.

    1999-01-01

    This research project deals with an on-line dynamic method for automated viewing parameter management in perspective displays. Perspective images are optimized such that a human observer will perceive relevant spatial geometrical features with minimal errors. In order to compute the errors at which observers reconstruct spatial features from perspective images, a visual spatial-perception model was formulated. The model was employed as the basis of an optimization scheme aimed at seeking the optimal projection parameter setting. These ideas are implemented in the context of an air traffic control (ATC) application. A concept, referred to as an active display system, was developed. This system uses heuristic rules to identify relevant geometrical features of the three-dimensional air traffic situation. Agile, on-line optimization was achieved by a specially developed and custom-tailored genetic algorithm (GA), which was to deal with the multi-modal characteristics of the objective function and exploit its time-evolving nature.

  19. The perceptual shaping of anticipatory actions.

    PubMed

    Maffei, Giovanni; Herreros, Ivan; Sanchez-Fibla, Marti; Friston, Karl J; Verschure, Paul F M J

    2017-12-20

    Humans display anticipatory motor responses to minimize the adverse effects of predictable perturbations. A widely accepted explanation for this behaviour relies on the notion of an inverse model that, learning from motor errors, anticipates corrective responses. Here, we propose and validate the alternative hypothesis that anticipatory control can be realized through a cascade of purely sensory predictions that drive the motor system, reflecting the causal sequence of the perceptual events preceding the error. We compare both hypotheses in a simulated anticipatory postural adjustment task. We observe that adaptation in the sensory domain, but not in the motor one, supports the robust and generalizable anticipatory control characteristic of biological systems. Our proposal unites the neurobiology of the cerebellum with the theory of active inference and provides a concrete implementation of its core tenets with great relevance both to our understanding of biological control systems and, possibly, to their emulation in complex artefacts. © 2017 The Author(s).

  20. Autonomous calibration of single spin qubit operations

    NASA Astrophysics Data System (ADS)

    Frank, Florian; Unden, Thomas; Zoller, Jonathan; Said, Ressa S.; Calarco, Tommaso; Montangero, Simone; Naydenov, Boris; Jelezko, Fedor

    2017-12-01

    Fully autonomous precise control of qubits is crucial for quantum information processing, quantum communication, and quantum sensing applications. It requires minimal human intervention on the ability to model, to predict, and to anticipate the quantum dynamics, as well as to precisely control and calibrate single qubit operations. Here, we demonstrate single qubit autonomous calibrations via closed-loop optimisations of electron spin quantum operations in diamond. The operations are examined by quantum state and process tomographic measurements at room temperature, and their performances against systematic errors are iteratively rectified by an optimal pulse engineering algorithm. We achieve an autonomous calibrated fidelity up to 1.00 on a time scale of minutes for a spin population inversion and up to 0.98 on a time scale of hours for a single qubit π/2 -rotation within the experimental error of 2%. These results manifest a full potential for versatile quantum technologies.

  1. Epinephrine Auto-Injector Versus Drawn Up Epinephrine for Anaphylaxis Management: A Scoping Review.

    PubMed

    Chime, Nnenna O; Riese, Victoria G; Scherzer, Daniel J; Perretta, Julianne S; McNamara, LeAnn; Rosen, Michael A; Hunt, Elizabeth A

    2017-08-01

    Anaphylaxis is a life-threatening event. Most clinical symptoms of anaphylaxis can be reversed by prompt intramuscular administration of epinephrine using an auto-injector or epinephrine drawn up in a syringe and delays and errors may be fatal. The aim of this scoping review is to identify and compare errors associated with use of epinephrine drawn up in a syringe versus epinephrine auto-injectors in order to assist hospitals as they choose which approach minimizes risk of adverse events for their patients. PubMed, Embase, CINAHL, Web of Science, and the Cochrane Library were searched using terms agreed to a priori. We reviewed human and simulation studies reporting errors associated with the use of epinephrine in anaphylaxis. There were multiple screening stages with evolving feedback. Each study was independently assessed by two reviewers for eligibility. Data were extracted using an instrument modeled from the Zaza et al instrument and grouped into themes. Three main themes were noted: 1) ergonomics, 2) dosing errors, and 3) errors due to route of administration. Significant knowledge gaps in the operation of epinephrine auto-injectors among healthcare providers, patients, and caregivers were identified. For epinephrine in a syringe, there were more frequent reports of incorrect dosing and erroneous IV administration with associated adverse cardiac events. For the epinephrine auto-injector, unintentional administration to the digit was an error reported on multiple occasions. This scoping review highlights knowledge gaps and a diverse set of errors regardless of the approach to epinephrine preparation during management of anaphylaxis. There are more potentially life-threatening errors reported for epinephrine drawn up in a syringe than with the auto-injectors. The impact of these knowledge gaps and potentially fatal errors on patient outcomes, cost, and quality of care is worthy of further investigation.

  2. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation

    PubMed Central

    Balachandran, Ramya; Labadie, Robert F.

    2015-01-01

    Purpose A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. Methods An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. Results The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of 45° and higher as well as longer cantilevered drill lengths. Conclusion The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure. PMID:26183149

  3. Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation.

    PubMed

    Dillon, Neal P; Balachandran, Ramya; Labadie, Robert F

    2016-03-01

    A minimally invasive approach for cochlear implantation involves drilling a narrow linear path through the temporal bone from the skull surface directly to the cochlea for insertion of the electrode array without the need for an invasive mastoidectomy. Potential drill positioning errors must be accounted for to predict the effectiveness and safety of the procedure. The drilling accuracy of a system used for this procedure was evaluated in bone surrogate material under a range of clinically relevant parameters. Additional experiments were performed to isolate the error at various points along the path to better understand why deflections occur. An experimental setup to precisely position the drill press over a target was used. Custom bone surrogate test blocks were manufactured to resemble the mastoid region of the temporal bone. The drilling error was measured by creating divots in plastic sheets before and after drilling and using a microscope to localize the divots. The drilling error was within the tolerance needed to avoid vital structures and ensure accurate placement of the electrode; however, some parameter sets yielded errors that may impact the effectiveness of the procedure when combined with other error sources. The error increases when the lateral stage of the path terminates in an air cell and when the guide bushings are positioned further from the skull surface. At contact points due to air cells along the trajectory, higher errors were found for impact angles of [Formula: see text] and higher as well as longer cantilevered drill lengths. The results of these experiments can be used to define more accurate and safe drill trajectories for this minimally invasive surgical procedure.

  4. Minimizing driver errors: examining factors leading to failed target tracking and detection.

    DOT National Transportation Integrated Search

    2013-06-01

    Driving a motor vehicle is a common practice for many individuals. Although driving becomes : repetitive and a very habitual task, errors can occur that lead to accidents. One factor that can be a : cause for such errors is a lapse in attention or a ...

  5. Management of radioactive waste gases from PET radiopharmaceutical synthesis using cost effective capture systems integrated with a cyclotron safety system.

    PubMed

    Stimson, D H R; Pringle, A J; Maillet, D; King, A R; Nevin, S T; Venkatachalam, T K; Reutens, D C; Bhalla, R

    2016-09-01

    The emphasis on the reduction of gaseous radioactive effluent associated with PET radiochemistry laboratories has increased. Various radioactive gas capture strategies have been employed historically including expensive automated compression systems. We have implemented a new cost-effective strategy employing gas capture bags with electronic feedback that are integrated with the cyclotron safety system. Our strategy is suitable for multiple automated 18 F radiosynthesis modules and individual automated 11 C radiosynthesis modules. We describe novel gas capture systems that minimize the risk of human error and are routinely used in our facility.

  6. Toward autonomous spacecraft

    NASA Technical Reports Server (NTRS)

    Fogel, L. J.; Calabrese, P. G.; Walsh, M. J.; Owens, A. J.

    1982-01-01

    Ways in which autonomous behavior of spacecraft can be extended to treat situations wherein a closed loop control by a human may not be appropriate or even possible are explored. Predictive models that minimize mean least squared error and arbitrary cost functions are discussed. A methodology for extracting cyclic components for an arbitrary environment with respect to usual and arbitrary criteria is developed. An approach to prediction and control based on evolutionary programming is outlined. A computer program capable of predicting time series is presented. A design of a control system for a robotic dense with partially unknown physical properties is presented.

  7. In-Bore Prostate Transperineal Interventions with an MRI-guided Parallel Manipulator: System Development and Preliminary Evaluation

    PubMed Central

    Eslami, Sohrab; Shang, Weijian; Li, Gang; Patel, Nirav; Fischer, Gregory S.; Tokuda, Junichi; Hata, Nobuhiko; Tempany, Clare M.; Iordachita, Iulian

    2015-01-01

    Background The robot-assisted minimally-invasive surgery is well recognized as a feasible solution for diagnosis and treatment of the prostate cancer in human. Methods In this paper the kinematics of a parallel 4 Degrees-of-Freedom (DOF) surgical manipulator designed for minimally invasive in-bore prostate percutaneous interventions through the patient's perineum. The proposed manipulator takes advantage of 4 sliders actuated by MRI-compatible piezoelectric motors and incremental rotary encoders. Errors, mostly originating from the design and manufacturing process, need to be identified and reduced before the robot is deployed in the clinical trials. Results The manipulator has undergone several experiments to evaluate the repeatability and accuracy of the needle placement which is an essential concern in percutaneous prostate interventions. Conclusion The acquired results endorse the sustainability, precision (about 1 mm in air (in x or y direction) at the needle's reference point) and reliability of the manipulator. PMID:26111458

  8. Medical Errors Reduction Initiative

    DTIC Science & Technology

    2005-05-01

    working with great success to minimize error. 14. SUBJECT TERMS 15. NUMBER OF PAGES Medical Error, Patient Safety, Personal Data Terminal, Barcodes, 9...AD Award Number: W81XWH-04-1-0536 TITLE: Medical Errors Reduction Initiative PRINCIPAL INVESTIGATOR: Michael L. Mutter 1To CONTRACTING ORGANIZATION...The Valley Hospital Ridgewood, NJ 07450 REPORT DATE: May 2005 TYPE OF REPORT: Annual PREPARED FOR: U.S. Army Medical Research and Materiel Command

  9. Field Comparison between Sling Psychrometer and Meteorological Measuring Set AN/TMQ-22

    DTIC Science & Technology

    the ML-224 Sling Psychrometer . From a series of independent tests designed to minimize error it was concluded that the AN/TMQ-22 yielded a more accurate...dew point reading. The average relative humidity error using the sling psychrometer was +9% while the AN/TMQ-22 had a plus or minus 2% error. Even with cautious measurement the sling yielded a +4% error.

  10. Context-dependent sequential effects of target selection for action.

    PubMed

    Moher, Jeff; Song, Joo-Hyun

    2013-07-11

    Humans exhibit variation in behavior from moment to moment even when performing a simple, repetitive task. Errors are typically followed by cautious responses, minimizing subsequent distractor interference. However, less is known about how variation in the execution of an ultimately correct response affects subsequent behavior. We asked participants to reach toward a uniquely colored target presented among distractors and created two categories to describe participants' responses in correct trials based on analyses of movement trajectories; partial errors referred to trials in which observers initially selected a nontarget for action before redirecting the movement and accurately pointing to the target, and direct movements referred to trials in which the target was directly selected for action. We found that latency to initiate a hand movement was shorter in trials following partial errors compared to trials following direct movements. Furthermore, when the target and distractor colors were repeated, movement time and reach movement curvature toward distractors were greater following partial errors compared to direct movements. Finally, when the colors were repeated, partial errors were more frequent than direct movements following partial-error trials, and direct movements were more frequent following direct-movement trials. The dependence of these latter effects on repeated-task context indicates the involvement of higher-level cognitive mechanisms in an integrated attention-action system in which execution of a partial-error or direct-movement response affects memory representations that bias performance in subsequent trials. Altogether, these results demonstrate that whether a nontarget is selected for action or not has a measurable impact on subsequent behavior.

  11. Analysis of the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery☆

    PubMed Central

    Arba-Mosquera, Samuel; Aslanides, Ioannis M.

    2012-01-01

    Purpose To analyze the effects of Eye-Tracker performance on the pulse positioning errors during refractive surgery. Methods A comprehensive model, which directly considers eye movements, including saccades, vestibular, optokinetic, vergence, and miniature, as well as, eye-tracker acquisition rate, eye-tracker latency time, scanner positioning time, laser firing rate, and laser trigger delay have been developed. Results Eye-tracker acquisition rates below 100 Hz correspond to pulse positioning errors above 1.5 mm. Eye-tracker latency times to about 15 ms correspond to pulse positioning errors of up to 3.5 mm. Scanner positioning times to about 9 ms correspond to pulse positioning errors of up to 2 mm. Laser firing rates faster than eye-tracker acquisition rates basically duplicate pulse-positioning errors. Laser trigger delays to about 300 μs have minor to no impact on pulse-positioning errors. Conclusions The proposed model can be used for comparison of laser systems used for ablation processes. Due to the pseudo-random nature of eye movements, positioning errors of single pulses are much larger than observed decentrations in the clinical settings. There is no single parameter that ‘alone’ minimizes the positioning error. It is the optimal combination of the several parameters that minimizes the error. The results of this analysis are important to understand the limitations of correcting very irregular ablation patterns.

  12. Human Error In Complex Systems

    NASA Technical Reports Server (NTRS)

    Morris, Nancy M.; Rouse, William B.

    1991-01-01

    Report presents results of research aimed at understanding causes of human error in such complex systems as aircraft, nuclear powerplants, and chemical processing plants. Research considered both slips (errors of action) and mistakes (errors of intention), and influence of workload on them. Results indicated that: humans respond to conditions in which errors expected by attempting to reduce incidence of errors; and adaptation to conditions potent influence on human behavior in discretionary situations.

  13. Intrinsic errors in transporting a single-spin qubit through a double quantum dot

    NASA Astrophysics Data System (ADS)

    Li, Xiao; Barnes, Edwin; Kestner, J. P.; Das Sarma, S.

    2017-07-01

    Coherent spatial transport or shuttling of a single electron spin through semiconductor nanostructures is an important ingredient in many spintronic and quantum computing applications. In this work we analyze the possible errors in solid-state quantum computation due to leakage in transporting a single-spin qubit through a semiconductor double quantum dot. In particular, we consider three possible sources of leakage errors associated with such transport: finite ramping times, spin-dependent tunneling rates between quantum dots induced by finite spin-orbit couplings, and the presence of multiple valley states. In each case we present quantitative estimates of the leakage errors, and discuss how they can be minimized. The emphasis of this work is on how to deal with the errors intrinsic to the ideal semiconductor structure, such as leakage due to spin-orbit couplings, rather than on errors due to defects or noise sources. In particular, we show that in order to minimize leakage errors induced by spin-dependent tunnelings, it is necessary to apply pulses to perform certain carefully designed spin rotations. We further develop a formalism that allows one to systematically derive constraints on the pulse shapes and present a few examples to highlight the advantage of such an approach.

  14. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    NASA Technical Reports Server (NTRS)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  15. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    NASA Technical Reports Server (NTRS)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps/incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  16. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    NASA Technical Reports Server (NTRS)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Quality within space exploration ground processing operations, the identification and or classification of underlying contributors and causes of human error must be identified, in order to manage human error.This presentation will provide a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  17. Analytical study of the effects of soft tissue artefacts on functional techniques to define axes of rotation.

    PubMed

    De Rosario, Helios; Page, Álvaro; Besa, Antonio

    2017-09-06

    The accurate location of the main axes of rotation (AoR) is a crucial step in many applications of human movement analysis. There are different formal methods to determine the direction and position of the AoR, whose performance varies across studies, depending on the pose and the source of errors. Most methods are based on minimizing squared differences between observed and modelled marker positions or rigid motion parameters, implicitly assuming independent and uncorrelated errors, but the largest error usually results from soft tissue artefacts (STA), which do not have such statistical properties and are not effectively cancelled out by such methods. However, with adequate methods it is possible to assume that STA only account for a small fraction of the observed motion and to obtain explicit formulas through differential analysis that relate STA components to the resulting errors in AoR parameters. In this paper such formulas are derived for three different functional calibration techniques (Geometric Fitting, mean Finite Helical Axis, and SARA), to explain why each technique behaves differently from the others, and to propose strategies to compensate for those errors. These techniques were tested with published data from a sit-to-stand activity, where the true axis was defined using bi-planar fluoroscopy. All the methods were able to estimate the direction of the AoR with an error of less than 5°, whereas there were errors in the location of the axis of 30-40mm. Such location errors could be reduced to less than 17mm by the methods based on equations that use rigid motion parameters (mean Finite Helical Axis, SARA) when the translation component was calculated using the three markers nearest to the axis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Calibration of stereo rigs based on the backward projection process

    NASA Astrophysics Data System (ADS)

    Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui; Zhao, Zixin

    2016-08-01

    High-accuracy 3D measurement based on binocular vision system is heavily dependent on the accurate calibration of two rigidly-fixed cameras. In most traditional calibration methods, stereo parameters are iteratively optimized through the forward imaging process (FIP). However, the results can only guarantee the minimal 2D pixel errors, but not the minimal 3D reconstruction errors. To address this problem, a simple method to calibrate a stereo rig based on the backward projection process (BPP) is proposed. The position of a spatial point can be determined separately from each camera by planar constraints provided by the planar pattern target. Then combined with pre-defined spatial points, intrinsic and extrinsic parameters of the stereo-rig can be optimized by minimizing the total 3D errors of both left and right cameras. An extensive performance study for the method in the presence of image noise and lens distortions is implemented. Experiments conducted on synthetic and real data demonstrate the accuracy and robustness of the proposed method.

  19. Artificial neural networks as alternative tool for minimizing error predictions in manufacturing ultradeformable nanoliposome formulations.

    PubMed

    León Blanco, José M; González-R, Pedro L; Arroyo García, Carmen Martina; Cózar-Bernal, María José; Calle Suárez, Marcos; Canca Ortiz, David; Rabasco Álvarez, Antonio María; González Rodríguez, María Luisa

    2018-01-01

    This work was aimed at determining the feasibility of artificial neural networks (ANN) by implementing backpropagation algorithms with default settings to generate better predictive models than multiple linear regression (MLR) analysis. The study was hypothesized on timolol-loaded liposomes. As tutorial data for ANN, causal factors were used, which were fed into the computer program. The number of training cycles has been identified in order to optimize the performance of the ANN. The optimization was performed by minimizing the error between the predicted and real response values in the training step. The results showed that training was stopped at 10 000 training cycles with 80% of the pattern values, because at this point the ANN generalizes better. Minimum validation error was achieved at 12 hidden neurons in a single layer. MLR has great prediction ability, with errors between predicted and real values lower than 1% in some of the parameters evaluated. Thus, the performance of this model was compared to that of the MLR using a factorial design. Optimal formulations were identified by minimizing the distance among measured and theoretical parameters, by estimating the prediction errors. Results indicate that the ANN shows much better predictive ability than the MLR model. These findings demonstrate the increased efficiency of the combination of ANN and design of experiments, compared to the conventional MLR modeling techniques.

  20. Understanding human management of automation errors

    PubMed Central

    McBride, Sara E.; Rogers, Wendy A.; Fisk, Arthur D.

    2013-01-01

    Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance. PMID:25383042

  1. Understanding human management of automation errors.

    PubMed

    McBride, Sara E; Rogers, Wendy A; Fisk, Arthur D

    2014-01-01

    Automation has the potential to aid humans with a diverse set of tasks and support overall system performance. Automated systems are not always reliable, and when automation errs, humans must engage in error management, which is the process of detecting, understanding, and correcting errors. However, this process of error management in the context of human-automation interaction is not well understood. Therefore, we conducted a systematic review of the variables that contribute to error management. We examined relevant research in human-automation interaction and human error to identify critical automation, person, task, and emergent variables. We propose a framework for management of automation errors to incorporate and build upon previous models. Further, our analysis highlights variables that may be addressed through design and training to positively influence error management. Additional efforts to understand the error management process will contribute to automation designed and implemented to support safe and effective system performance.

  2. Minimal entropy reconstructions of thermal images for emissivity correction

    NASA Astrophysics Data System (ADS)

    Allred, Lloyd G.

    1999-03-01

    Low emissivity with corresponding low thermal emission is a problem which has long afflicted infrared thermography. The problem is aggravated by reflected thermal energy which increases as the emissivity decreases, thus reducing the net signal-to-noise ratio, which degrades the resulting temperature reconstructions. Additional errors are introduced from the traditional emissivity-correction approaches, wherein one attempts to correct for emissivity either using thermocouples or using one or more baseline images, collected at known temperatures. These corrections are numerically equivalent to image differencing. Errors in the baseline images are therefore additive, causing the resulting measurement error to either double or triple. The practical application of thermal imagery usually entails coating the objective surface to increase the emissivity to a uniform and repeatable value. While the author recommends that the thermographer still adhere to this practice, he has devised a minimal entropy reconstructions which not only correct for emissivity variations, but also corrects for variations in sensor response, using the baseline images at known temperatures to correct for these values. The minimal energy reconstruction is actually based on a modified Hopfield neural network which finds the resulting image which best explains the observed data and baseline data, having minimal entropy change between adjacent pixels. The autocorrelation of temperatures between adjacent pixels is a feature of most close-up thermal images. A surprising result from transient heating data indicates that the resulting corrected thermal images have less measurement error and are closer to the situational truth than the original data.

  3. Human operator response to error-likely situations in complex engineering systems

    NASA Technical Reports Server (NTRS)

    Morris, Nancy M.; Rouse, William B.

    1988-01-01

    The causes of human error in complex systems are examined. First, a conceptual framework is provided in which two broad categories of error are discussed: errors of action, or slips, and errors of intention, or mistakes. Conditions in which slips and mistakes might be expected to occur are identified, based on existing theories of human error. Regarding the role of workload, it is hypothesized that workload may act as a catalyst for error. Two experiments are presented in which humans' response to error-likely situations were examined. Subjects controlled PLANT under a variety of conditions and periodically provided subjective ratings of mental effort. A complex pattern of results was obtained, which was not consistent with predictions. Generally, the results of this research indicate that: (1) humans respond to conditions in which errors might be expected by attempting to reduce the possibility of error, and (2) adaptation to conditions is a potent influence on human behavior in discretionary situations. Subjects' explanations for changes in effort ratings are also explored.

  4. Human error and human factors engineering in health care.

    PubMed

    Welch, D L

    1997-01-01

    Human error is inevitable. It happens in health care systems as it does in all other complex systems, and no measure of attention, training, dedication, or punishment is going to stop it. The discipline of human factors engineering (HFE) has been dealing with the causes and effects of human error since the 1940's. Originally applied to the design of increasingly complex military aircraft cockpits, HFE has since been effectively applied to the problem of human error in such diverse systems as nuclear power plants, NASA spacecraft, the process control industry, and computer software. Today the health care industry is becoming aware of the costs of human error and is turning to HFE for answers. Just as early experimental psychologists went beyond the label of "pilot error" to explain how the design of cockpits led to air crashes, today's HFE specialists are assisting the health care industry in identifying the causes of significant human errors in medicine and developing ways to eliminate or ameliorate them. This series of articles will explore the nature of human error and how HFE can be applied to reduce the likelihood of errors and mitigate their effects.

  5. Beyond the Mechanics of Spreadsheets: Using Design Instruction to Address Spreadsheet Errors

    ERIC Educational Resources Information Center

    Schneider, Kent N.; Becker, Lana L.; Berg, Gary G.

    2017-01-01

    Given that the usage and complexity of spreadsheets in the accounting profession are expected to increase, it is more important than ever to ensure that accounting graduates are aware of the dangers of spreadsheet errors and are equipped with design skills to minimize those errors. Although spreadsheet mechanics are prevalent in accounting…

  6. Applications of integrated human error identification techniques on the chemical cylinder change task.

    PubMed

    Cheng, Ching-Min; Hwang, Sheue-Ling

    2015-03-01

    This paper outlines the human error identification (HEI) techniques that currently exist to assess latent human errors. Many formal error identification techniques have existed for years, but few have been validated to cover latent human error analysis in different domains. This study considers many possible error modes and influential factors, including external error modes, internal error modes, psychological error mechanisms, and performance shaping factors, and integrates several execution procedures and frameworks of HEI techniques. The case study in this research was the operational process of changing chemical cylinders in a factory. In addition, the integrated HEI method was used to assess the operational processes and the system's reliability. It was concluded that the integrated method is a valuable aid to develop much safer operational processes and can be used to predict human error rates on critical tasks in the plant. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  7. The Automated Assessment of Postural Stability: Balance Detection Algorithm.

    PubMed

    Napoli, Alessandro; Glass, Stephen M; Tucker, Carole; Obeid, Iyad

    2017-12-01

    Impaired balance is a common indicator of mild traumatic brain injury, concussion and musculoskeletal injury. Given the clinical relevance of such injuries, especially in military settings, it is paramount to develop more accurate and reliable on-field evaluation tools. This work presents the design and implementation of the automated assessment of postural stability (AAPS) system, for on-field evaluations following concussion. The AAPS is a computer system, based on inexpensive off-the-shelf components and custom software, that aims to automatically and reliably evaluate balance deficits, by replicating a known on-field clinical test, namely, the Balance Error Scoring System (BESS). The AAPS main innovation is its balance error detection algorithm that has been designed to acquire data from a Microsoft Kinect ® sensor and convert them into clinically-relevant BESS scores, using the same detection criteria defined by the original BESS test. In order to assess the AAPS balance evaluation capability, a total of 15 healthy subjects (7 male, 8 female) were required to perform the BESS test, while simultaneously being tracked by a Kinect 2.0 sensor and a professional-grade motion capture system (Qualisys AB, Gothenburg, Sweden). High definition videos with BESS trials were scored off-line by three experienced observers for reference scores. AAPS performance was assessed by comparing the AAPS automated scores to those derived by three experienced observers. Our results show that the AAPS error detection algorithm presented here can accurately and precisely detect balance deficits with performance levels that are comparable to those of experienced medical personnel. Specifically, agreement levels between the AAPS algorithm and the human average BESS scores ranging between 87.9% (single-leg on foam) and 99.8% (double-leg on firm ground) were detected. Moreover, statistically significant differences in balance scores were not detected by an ANOVA test with alpha equal to 0.05. Despite some level of disagreement between human and AAPS-generated scores, the use of an automated system yields important advantages over currently available human-based alternatives. These results underscore the value of using the AAPS, that can be quickly deployed in the field and/or in outdoor settings with minimal set-up time. Finally, the AAPS can record multiple error types and their time course with extremely high temporal resolution. These features are not achievable by humans, who cannot keep track of multiple balance errors with such a high resolution. Together, these results suggest that computerized BESS calculation may provide more accurate and consistent measures of balance than those derived from human experts.

  8. Measurement uncertainty associated with chromatic confocal profilometry for 3D surface texture characterization of natural human enamel.

    PubMed

    Mullan, F; Bartlett, D; Austin, R S

    2017-06-01

    To investigate the measurement performance of a chromatic confocal profilometer for quantification of surface texture of natural human enamel in vitro. Contributions to the measurement uncertainty from all potential sources of measurement error using a chromatic confocal profilometer and surface metrology software were quantified using a series of surface metrology calibration artifacts and pre-worn enamel samples. The 3D surface texture analysis protocol was optimized across 0.04mm 2 of natural and unpolished enamel undergoing dietary acid erosion (pH 3.2, titratable acidity 41.3mmolOH/L). Flatness deviations due to the x, y stage mechanical movement were the major contribution to the measurement uncertainty; with maximum Sz flatness errors of 0.49μm. Whereas measurement noise; non-linearity's in x, y, z and enamel sample dimensional instability contributed minimal errors. The measurement errors were propagated into an uncertainty budget following a Type B uncertainty evaluation in order to calculate the Standard Combined Uncertainty (u c ), which was ±0.28μm. Statistically significant increases in the median (IQR) roughness (Sa) of the polished samples occurred after 15 (+0.17 (0.13)μm), 30 (+0.12 (0.09)μm) and 45 (+0.18 (0.15)μm) min of erosion (P<0.001 vs. baseline). In contrast, natural unpolished enamel samples revealed a statistically significant decrease in Sa roughness of -0.14 (0.34) μm only after 45min erosion (P<0.05s vs. baseline). The main contribution to measurement uncertainty using chromatic confocal profilometry was from flatness deviations however by optimizing measurement protocols the profilometer successfully characterized surface texture changes in enamel from erosive wear in vitro. Copyright © 2017 The Academy of Dental Materials. All rights reserved.

  9. Automation bias and verification complexity: a systematic review.

    PubMed

    Lyell, David; Coiera, Enrico

    2017-03-01

    While potentially reducing decision errors, decision support systems can introduce new types of errors. Automation bias (AB) happens when users become overreliant on decision support, which reduces vigilance in information seeking and processing. Most research originates from the human factors literature, where the prevailing view is that AB occurs only in multitasking environments. This review seeks to compare the human factors and health care literature, focusing on the apparent association of AB with multitasking and task complexity. EMBASE, Medline, Compendex, Inspec, IEEE Xplore, Scopus, Web of Science, PsycINFO, and Business Source Premiere from 1983 to 2015. Evaluation studies where task execution was assisted by automation and resulted in errors were included. Participants needed to be able to verify automation correctness and perform the task manually. Tasks were identified and grouped. Task and automation type and presence of multitasking were noted. Each task was rated for its verification complexity. Of 890 papers identified, 40 met the inclusion criteria; 6 were in health care. Contrary to the prevailing human factors view, AB was found in single tasks, typically involving diagnosis rather than monitoring, and with high verification complexity. The literature is fragmented, with large discrepancies in how AB is reported. Few studies reported the statistical significance of AB compared to a control condition. AB appears to be associated with the degree of cognitive load experienced in decision tasks, and appears to not be uniquely associated with multitasking. Strategies to minimize AB might focus on cognitive load reduction. © The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  10. Model and experiments to optimize co-adaptation in a simplified myoelectric control system.

    PubMed

    Couraud, M; Cattaert, D; Paclet, F; Oudeyer, P Y; de Rugy, A

    2018-04-01

    To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this approach to more complex and functional myoelectric contexts are discussed.

  11. Designing Measurement Studies under Budget Constraints: Controlling Error of Measurement and Power.

    ERIC Educational Resources Information Center

    Marcoulides, George A.

    1995-01-01

    A methodology is presented for minimizing the mean error variance-covariance component in studies with resource constraints. The method is illustrated using a one-facet multivariate design. Extensions to other designs are discussed. (SLD)

  12. A New Automated Method and Sample Data Flow for Analysis of Volatile Nitrosamines in Human Urine*

    PubMed Central

    Hodgson, James A.; Seyler, Tiffany H.; McGahee, Ernest; Arnstein, Stephen; Wang, Lanqing

    2016-01-01

    Volatile nitrosamines (VNAs) are a group of compounds classified as probable (group 2A) and possible (group 2B) carcinogens in humans. Along with certain foods and contaminated drinking water, VNAs are detected at high levels in tobacco products and in both mainstream and sidestream smoke. Our laboratory monitors six urinary VNAs—N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), N-nitrosopyrrolidine (NPYR), and N-nitrosomorpholine (NMOR)—using isotope dilution GC-MS/MS (QQQ) for large population studies such as the National Health and Nutrition Examination Survey (NHANES). In this paper, we report for the first time a new automated sample preparation method to more efficiently quantitate these VNAs. Automation is done using Hamilton STAR™ and Caliper Staccato™ workstations. This new automated method reduces sample preparation time from 4 hours to 2.5 hours while maintaining precision (inter-run CV < 10%) and accuracy (85% - 111%). More importantly this method increases sample throughput while maintaining a low limit of detection (<10 pg/mL) for all analytes. A streamlined sample data flow was created in parallel to the automated method, in which samples can be tracked from receiving to final LIMs output with minimal human intervention, further minimizing human error in the sample preparation process. This new automated method and the sample data flow are currently applied in bio-monitoring of VNAs in the US non-institutionalized population NHANES 2013-2014 cycle. PMID:26949569

  13. Deformation of angle profiles in forward kinematics for nullifying end-point offset while preserving movement properties.

    PubMed

    Zhang, Xudong

    2002-10-01

    This work describes a new approach that allows an angle-domain human movement model to generate, via forward kinematics, Cartesian-space human movement representation with otherwise inevitable end-point offset nullified but much of the kinematic authenticity retained. The approach incorporates a rectification procedure that determines the minimum postural angle change at the final frame to correct the end-point offset, and a deformation procedure that deforms the angle profile accordingly to preserve maximum original kinematic authenticity. Two alternative deformation schemes, named amplitude-proportional (AP) and time-proportional (TP) schemes, are proposed and formulated. As an illustration and empirical evaluation, the proposed approach, along with two deformation schemes, was applied to a set of target-directed right-hand reaching movements that had been previously measured and modeled. The evaluation showed that both deformation schemes nullified the final frame end-point offset and significantly reduced time-averaged position errors for the end-point as well as the most distal intermediate joint while causing essentially no change in the remaining joints. A comparison between the two schemes based on time-averaged joint and end-point position errors indicated that overall the TP scheme outperformed the AP scheme. In addition, no statistically significant difference in time-averaged angle error was identified between the raw prediction and either of the deformation schemes, nor between the two schemes themselves, suggesting minimal angle-domain distortion incurred by the deformation.

  14. Environmental fate model for ultra-low-volume insecticide applications used for adult mosquito management

    USGS Publications Warehouse

    Schleier, Jerome J.; Peterson, Robert K.D.; Irvine, Kathryn M.; Marshall, Lucy M.; Weaver, David K.; Preftakes, Collin J.

    2012-01-01

    One of the more effective ways of managing high densities of adult mosquitoes that vector human and animal pathogens is ultra-low-volume (ULV) aerosol applications of insecticides. The U.S. Environmental Protection Agency uses models that are not validated for ULV insecticide applications and exposure assumptions to perform their human and ecological risk assessments. Currently, there is no validated model that can accurately predict deposition of insecticides applied using ULV technology for adult mosquito management. In addition, little is known about the deposition and drift of small droplets like those used under conditions encountered during ULV applications. The objective of this study was to perform field studies to measure environmental concentrations of insecticides and to develop a validated model to predict the deposition of ULV insecticides. The final regression model was selected by minimizing the Bayesian Information Criterion and its prediction performance was evaluated using k-fold cross validation. Density of the formulation and the density and CMD interaction coefficients were the largest in the model. The results showed that as density of the formulation decreases, deposition increases. The interaction of density and CMD showed that higher density formulations and larger droplets resulted in greater deposition. These results are supported by the aerosol physics literature. A k-fold cross validation demonstrated that the mean square error of the selected regression model is not biased, and the mean square error and mean square prediction error indicated good predictive ability.

  15. Accuracy Improvement of Multi-Axis Systems Based on Laser Correction of Volumetric Geometric Errors

    NASA Astrophysics Data System (ADS)

    Teleshevsky, V. I.; Sokolov, V. A.; Pimushkin, Ya I.

    2018-04-01

    The article describes a volumetric geometric errors correction method for CNC- controlled multi-axis systems (machine-tools, CMMs etc.). The Kalman’s concept of “Control and Observation” is used. A versatile multi-function laser interferometer is used as Observer in order to measure machine’s error functions. A systematic error map of machine’s workspace is produced based on error functions measurements. The error map results into error correction strategy. The article proposes a new method of error correction strategy forming. The method is based on error distribution within machine’s workspace and a CNC-program postprocessor. The postprocessor provides minimal error values within maximal workspace zone. The results are confirmed by error correction of precision CNC machine-tools.

  16. Human error in airway facilities.

    DOT National Transportation Integrated Search

    2001-01-01

    This report examines human errors in Airway Facilities (AF) with the intent of preventing these errors from being : passed on to the new Operations Control Centers. To effectively manage errors, they first have to be identified. : Human factors engin...

  17. Basics for sensorimotor information processing: some implications for learning

    PubMed Central

    Vidal, Franck; Meckler, Cédric; Hasbroucq, Thierry

    2015-01-01

    In sensorimotor activities, learning requires efficient information processing, whether in car driving, sport activities or human–machine interactions. Several factors may affect the efficiency of such processing: they may be extrinsic (i.e., task-related) or intrinsic (i.e., subjects-related). The effects of these factors are intimately related to the structure of human information processing. In the present article we will focus on some of them, which are poorly taken into account, even when minimizing errors or their consequences is an essential issue at stake. Among the extrinsic factors, we will discuss, first, the effects of the quantity and quality of information, secondly, the effects of instruction and thirdly motor program learning. Among the intrinsic factors, we will discuss first the influence of prior information, secondly how individual strategies affect performance and, thirdly, we will stress the fact that although the human brain is not structured to function errorless (which is not new) humans are able to detect their errors very quickly and (in most of the cases), fast enough to correct them before they result in an overt failure. Extrinsic and intrinsic factors are important to take into account for learning because (1) they strongly affect performance, either in terms of speed or accuracy, which facilitates or impairs learning, (2) the effect of certain extrinsic factors may be strongly modified by learning and (3) certain intrinsic factors might be exploited for learning strategies. PMID:25762944

  18. Latent human error analysis and efficient improvement strategies by fuzzy TOPSIS in aviation maintenance tasks.

    PubMed

    Chiu, Ming-Chuan; Hsieh, Min-Chih

    2016-05-01

    The purposes of this study were to develop a latent human error analysis process, to explore the factors of latent human error in aviation maintenance tasks, and to provide an efficient improvement strategy for addressing those errors. First, we used HFACS and RCA to define the error factors related to aviation maintenance tasks. Fuzzy TOPSIS with four criteria was applied to evaluate the error factors. Results show that 1) adverse physiological states, 2) physical/mental limitations, and 3) coordination, communication, and planning are the factors related to airline maintenance tasks that could be addressed easily and efficiently. This research establishes a new analytic process for investigating latent human error and provides a strategy for analyzing human error using fuzzy TOPSIS. Our analysis process complements shortages in existing methodologies by incorporating improvement efficiency, and it enhances the depth and broadness of human error analysis methodology. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  19. On framing the research question and choosing the appropriate research design.

    PubMed

    Parfrey, Patrick S; Ravani, Pietro

    2015-01-01

    Clinical epidemiology is the science of human disease investigation with a focus on diagnosis, prognosis, and treatment. The generation of a reasonable question requires definition of patients, interventions, controls, and outcomes. The goal of research design is to minimize error, to ensure adequate samples, to measure input and output variables appropriately, to consider external and internal validities, to limit bias, and to address clinical as well as statistical relevance. The hierarchy of evidence for clinical decision-making places randomized controlled trials (RCT) or systematic review of good quality RCTs at the top of the evidence pyramid. Prognostic and etiologic questions are best addressed with longitudinal cohort studies.

  20. Initial steps toward automation of a propellant processor

    NASA Technical Reports Server (NTRS)

    Schallhorn, Paul; Ramohalli, Kumar

    1990-01-01

    This paper presents the results from an experimental study aimed at ultimately automating the mixing of propellants in order to minimize unintended variations usually attributed to human error. The water heater and delivery system of a one-pint Baker-Perkins (APV) vertical mixer are automated with computer control. Various innovations are employed to introduce economy and low thermal inertia. Some of these include twin heaters/reservoirs instead of one large reservoir, a compact water mixer for achieving the desired temperature quickly, and thorough insulation of the entire water system. The completed system is tested during two propellant mixes. The temperature uniformly is proven through careful measurements employing several local thermocouples.

  1. On framing the research question and choosing the appropriate research design.

    PubMed

    Parfrey, Patrick; Ravani, Pietro

    2009-01-01

    Clinical epidemiology is the science of human disease investigation with a focus on diagnosis, prognosis, and treatment. The generation of a reasonable question requires the definition of patients, interventions, controls, and outcomes. The goal of research design is to minimize error, ensure adequate samples, measure input and output variables appropriately, consider external and internal validities, limit bias, and address clinical as well as statistical relevance. The hierarchy of evidence for clinical decision making places randomized controlled trials (RCT) or systematic review of good quality RCTs at the top of the evidence pyramid. Prognostic and etiologic questions are best addressed with longitudinal cohort studies.

  2. Albertian errors in head-mounted displays: I. Choice of eye-point location for a near- or far-field task visualization.

    PubMed

    Rolland, Jannick; Ha, Yonggang; Fidopiastis, Cali

    2004-06-01

    A theoretical investigation of rendered depth and angular errors, or Albertian errors, linked to natural eye movements in binocular head-mounted displays (HMDs) is presented for three possible eye-point locations: the center of the entrance pupil, the nodal point, and the center of rotation of the eye. A numerical quantification was conducted for both the pupil and the center of rotation of the eye under the assumption that the user will operate solely in either the near field under an associated instrumentation setting or the far field under a different setting. Under these conditions, the eyes are taken to gaze in the plane of the stereoscopic images. Across conditions, results show that the center of the entrance pupil minimizes rendered angular errors, while the center of rotation minimizes rendered position errors. Significantly, this investigation quantifies that under proper setting of the HMD and correct choice of the eye points, rendered depth and angular errors can be brought to be either negligible or within specification of even the most stringent applications in performance of tasks in either the near field or the far field.

  3. Theoretical Bounds of Direct Binary Search Halftoning.

    PubMed

    Liao, Jan-Ray

    2015-11-01

    Direct binary search (DBS) produces the images of the best quality among half-toning algorithms. The reason is that it minimizes the total squared perceived error instead of using heuristic approaches. The search for the optimal solution involves two operations: (1) toggle and (2) swap. Both operations try to find the binary states for each pixel to minimize the total squared perceived error. This error energy minimization leads to a conjecture that the absolute value of the filtered error after DBS converges is bounded by half of the peak value of the autocorrelation filter. However, a proof of the bound's existence has not yet been found. In this paper, we present a proof that shows the bound existed as conjectured under the condition that at least one swap occurs after toggle converges. The theoretical analysis also indicates that a swap with a pixel further away from the center of the autocorrelation filter results in a tighter bound. Therefore, we propose a new DBS algorithm which considers toggle and swap separately, and the swap operations are considered in the order from the edge to the center of the filter. Experimental results show that the new algorithm is more efficient than the previous algorithm and can produce half-toned images of the same quality as the previous algorithm.

  4. An optimization-based framework for anisotropic simplex mesh adaptation

    NASA Astrophysics Data System (ADS)

    Yano, Masayuki; Darmofal, David L.

    2012-09-01

    We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.

  5. Increasing accuracy of dispersal kernels in grid-based population models

    USGS Publications Warehouse

    Slone, D.H.

    2011-01-01

    Dispersal kernels in grid-based population models specify the proportion, distance and direction of movements within the model landscape. Spatial errors in dispersal kernels can have large compounding effects on model accuracy. Circular Gaussian and Laplacian dispersal kernels at a range of spatial resolutions were investigated, and methods for minimizing errors caused by the discretizing process were explored. Kernels of progressively smaller sizes relative to the landscape grid size were calculated using cell-integration and cell-center methods. These kernels were convolved repeatedly, and the final distribution was compared with a reference analytical solution. For large Gaussian kernels (σ > 10 cells), the total kernel error was <10 &sup-11; compared to analytical results. Using an invasion model that tracked the time a population took to reach a defined goal, the discrete model results were comparable to the analytical reference. With Gaussian kernels that had σ ≤ 0.12 using the cell integration method, or σ ≤ 0.22 using the cell center method, the kernel error was greater than 10%, which resulted in invasion times that were orders of magnitude different than theoretical results. A goal-seeking routine was developed to adjust the kernels to minimize overall error. With this, corrections for small kernels were found that decreased overall kernel error to <10-11 and invasion time error to <5%.

  6. Understanding Decision Making in Critical Care

    PubMed Central

    Lighthall, Geoffrey K.; Vazquez-Guillamet, Cristina

    2015-01-01

    Background Human decision making involves the deliberate formulation of hypotheses and plans as well as the use of subconscious means of judging probability, likely outcome, and proper action. Rationale There is a growing recognition that intuitive strategies such as use of heuristics and pattern recognition described in other industries are applicable to high-acuity environments in medicine. Despite the applicability of theories of cognition to the intensive care unit, a discussion of decision-making strategies is currently absent in the critical care literature. Content This article provides an overview of known cognitive strategies, as well as a synthesis of their use in critical care. By understanding the ways by which humans formulate diagnoses and make critical decisions, we may be able to minimize errors in our own judgments as well as build training activities around known strengths and limitations of cognition. PMID:26387708

  7. Information systems and human error in the lab.

    PubMed

    Bissell, Michael G

    2004-01-01

    Health system costs in clinical laboratories are incurred daily due to human error. Indeed, a major impetus for automating clinical laboratories has always been the opportunity it presents to simultaneously reduce cost and improve quality of operations by decreasing human error. But merely automating these processes is not enough. To the extent that introduction of these systems results in operators having less practice in dealing with unexpected events or becoming deskilled in problemsolving, however new kinds of error will likely appear. Clinical laboratories could potentially benefit by integrating findings on human error from modern behavioral science into their operations. Fully understanding human error requires a deep understanding of human information processing and cognition. Predicting and preventing negative consequences requires application of this understanding to laboratory operations. Although the occurrence of a particular error at a particular instant cannot be absolutely prevented, human error rates can be reduced. The following principles are key: an understanding of the process of learning in relation to error; understanding the origin of errors since this knowledge can be used to reduce their occurrence; optimal systems should be forgiving to the operator by absorbing errors, at least for a time; although much is known by industrial psychologists about how to write operating procedures and instructions in ways that reduce the probability of error, this expertise is hardly ever put to use in the laboratory; and a feedback mechanism must be designed into the system that enables the operator to recognize in real time that an error has occurred.

  8. Perceived Cost and Intrinsic Motor Variability Modulate the Speed-Accuracy Trade-Off

    PubMed Central

    Bertucco, Matteo; Bhanpuri, Nasir H.; Sanger, Terence D.

    2015-01-01

    Fitts’ Law describes the speed-accuracy trade-off of human movements, and it is an elegant strategy that compensates for random and uncontrollable noise in the motor system. The control strategy during targeted movements may also take into account the rewards or costs of any outcomes that may occur. The aim of this study was to test the hypothesis that movement time in Fitts’ Law emerges not only from the accuracy constraints of the task, but also depends on the perceived cost of error for missing the targets. Subjects were asked to touch targets on an iPad® screen with different costs for missed targets. We manipulated the probability of error by comparing children with dystonia (who are characterized by increased intrinsic motor variability) to typically developing children. The results show a strong effect of the cost of error on the Fitts’ Law relationship characterized by an increase in movement time as cost increased. In addition, we observed a greater sensitivity to increased cost for children with dystonia, and this behavior appears to minimize the average cost. The findings support a proposed mathematical model that explains how movement time in a Fitts-like task is related to perceived risk. PMID:26447874

  9. The impact of OCR accuracy on automated cancer classification of pathology reports.

    PubMed

    Zuccon, Guido; Nguyen, Anthony N; Bergheim, Anton; Wickman, Sandra; Grayson, Narelle

    2012-01-01

    To evaluate the effects of Optical Character Recognition (OCR) on the automatic cancer classification of pathology reports. Scanned images of pathology reports were converted to electronic free-text using a commercial OCR system. A state-of-the-art cancer classification system, the Medical Text Extraction (MEDTEX) system, was used to automatically classify the OCR reports. Classifications produced by MEDTEX on the OCR versions of the reports were compared with the classification from a human amended version of the OCR reports. The employed OCR system was found to recognise scanned pathology reports with up to 99.12% character accuracy and up to 98.95% word accuracy. Errors in the OCR processing were found to minimally impact on the automatic classification of scanned pathology reports into notifiable groups. However, the impact of OCR errors is not negligible when considering the extraction of cancer notification items, such as primary site, histological type, etc. The automatic cancer classification system used in this work, MEDTEX, has proven to be robust to errors produced by the acquisition of freetext pathology reports from scanned images through OCR software. However, issues emerge when considering the extraction of cancer notification items.

  10. Experimental/clinical evaluation of EIT image reconstruction with l1 data and image norms

    NASA Astrophysics Data System (ADS)

    Mamatjan, Yasin; Borsic, Andrea; Gürsoy, Doga; Adler, Andy

    2013-04-01

    Electrical impedance tomography (EIT) image reconstruction is ill-posed, and the spatial resolution of reconstructed images is low due to the diffuse propagation of current and limited number of independent measurements. Generally, image reconstruction is formulated using a regularized scheme in which l2 norms are preferred for both the data misfit and image prior terms due to computational convenience which result in smooth solutions. However, recent work on a Primal Dual-Interior Point Method (PDIPM) framework showed its effectiveness in dealing with the minimization problem. l1 norms on data and regularization terms in EIT image reconstruction address both problems of reconstruction with sharp edges and dealing with measurement errors. We aim for a clinical and experimental evaluation of the PDIPM method by selecting scenarios (human lung and dog breathing) with known electrode errors, which require a rigorous regularization and cause the failure of reconstructions with l2 norm. Results demonstrate the applicability of PDIPM algorithms, especially l1 data and regularization norms for clinical applications of EIT showing that l1 solution is not only more robust to measurement errors in clinical setting, but also provides high contrast resolution on organ boundaries.

  11. Comparison of various error functions in predicting the optimum isotherm by linear and non-linear regression analysis for the sorption of basic red 9 by activated carbon.

    PubMed

    Kumar, K Vasanth; Porkodi, K; Rocha, F

    2008-01-15

    A comparison of linear and non-linear regression method in selecting the optimum isotherm was made to the experimental equilibrium data of basic red 9 sorption by activated carbon. The r(2) was used to select the best fit linear theoretical isotherm. In the case of non-linear regression method, six error functions namely coefficient of determination (r(2)), hybrid fractional error function (HYBRID), Marquardt's percent standard deviation (MPSD), the average relative error (ARE), sum of the errors squared (ERRSQ) and sum of the absolute errors (EABS) were used to predict the parameters involved in the two and three parameter isotherms and also to predict the optimum isotherm. Non-linear regression was found to be a better way to obtain the parameters involved in the isotherms and also the optimum isotherm. For two parameter isotherm, MPSD was found to be the best error function in minimizing the error distribution between the experimental equilibrium data and predicted isotherms. In the case of three parameter isotherm, r(2) was found to be the best error function to minimize the error distribution structure between experimental equilibrium data and theoretical isotherms. The present study showed that the size of the error function alone is not a deciding factor to choose the optimum isotherm. In addition to the size of error function, the theory behind the predicted isotherm should be verified with the help of experimental data while selecting the optimum isotherm. A coefficient of non-determination, K(2) was explained and was found to be very useful in identifying the best error function while selecting the optimum isotherm.

  12. Laboratory errors and patient safety.

    PubMed

    Miligy, Dawlat A

    2015-01-01

    Laboratory data are extensively used in medical practice; consequently, laboratory errors have a tremendous impact on patient safety. Therefore, programs designed to identify and reduce laboratory errors, as well as, setting specific strategies are required to minimize these errors and improve patient safety. The purpose of this paper is to identify part of the commonly encountered laboratory errors throughout our practice in laboratory work, their hazards on patient health care and some measures and recommendations to minimize or to eliminate these errors. Recording the encountered laboratory errors during May 2008 and their statistical evaluation (using simple percent distribution) have been done in the department of laboratory of one of the private hospitals in Egypt. Errors have been classified according to the laboratory phases and according to their implication on patient health. Data obtained out of 1,600 testing procedure revealed that the total number of encountered errors is 14 tests (0.87 percent of total testing procedures). Most of the encountered errors lay in the pre- and post-analytic phases of testing cycle (representing 35.7 and 50 percent, respectively, of total errors). While the number of test errors encountered in the analytic phase represented only 14.3 percent of total errors. About 85.7 percent of total errors were of non-significant implication on patients health being detected before test reports have been submitted to the patients. On the other hand, the number of test errors that have been already submitted to patients and reach the physician represented 14.3 percent of total errors. Only 7.1 percent of the errors could have an impact on patient diagnosis. The findings of this study were concomitant with those published from the USA and other countries. This proves that laboratory problems are universal and need general standardization and bench marking measures. Original being the first data published from Arabic countries that evaluated the encountered laboratory errors and launch the great need for universal standardization and bench marking measures to control the laboratory work.

  13. Error in telemetry studies: Effects of animal movement on triangulation

    USGS Publications Warehouse

    Schmutz, Joel A.; White, Gary C.

    1990-01-01

    We used Monte Carlo simulations to investigate the effects of animal movement on error of estimated animal locations derived from radio-telemetry triangulation of sequentially obtained bearings. Simulated movements of 0-534 m resulted in up to 10-fold increases in average location error but <10% decreases in location precision when observer-to-animal distances were <1,000 m. Location error and precision were minimally affected by censorship of poor locations with Chi-square goodness-of-fit tests. Location error caused by animal movement can only be eliminated by taking simultaneous bearings.

  14. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    PubMed

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  15. Avoiding common pitfalls in qualitative data collection and transcription.

    PubMed

    Easton, K L; McComish, J F; Greenberg, R

    2000-09-01

    The subjective nature of qualitative research necessitates scrupulous scientific methods to ensure valid results. Although qualitative methods such as grounded theory, phenomenology, and ethnography yield rich data, consumers of research need to be able to trust the findings reported in such studies. Researchers are responsible for establishing the trustworthiness of qualitative research through a variety of ways. Specific challenges faced in the field can seriously threaten the dependability of the data. However, by minimizing potential errors that can occur when doing fieldwork, researchers can increase the trustworthiness of the study. The purpose of this article is to present three of the pitfalls that can occur in qualitative research during data collection and transcription: equipment failure, environmental hazards, and transcription errors. Specific strategies to minimize the risk for avoidable errors will be discussed.

  16. Stochastic Models of Human Errors

    NASA Technical Reports Server (NTRS)

    Elshamy, Maged; Elliott, Dawn M. (Technical Monitor)

    2002-01-01

    Humans play an important role in the overall reliability of engineering systems. More often accidents and systems failure are traced to human errors. Therefore, in order to have meaningful system risk analysis, the reliability of the human element must be taken into consideration. Describing the human error process by mathematical models is a key to analyzing contributing factors. Therefore, the objective of this research effort is to establish stochastic models substantiated by sound theoretic foundation to address the occurrence of human errors in the processing of the space shuttle.

  17. Operational Interventions to Maintenance Error

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Walter, Diane; Dulchinos, VIcki

    1997-01-01

    A significant proportion of aviation accidents and incidents are known to be tied to human error. However, research of flight operational errors has shown that so-called pilot error often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the team7 concept for maintenance operations and in tailoring programs to fit the needs of technical opeRAtions. Nevertheless, there remains a dual challenge: 1) to develop human factors interventions which are directly supported by reliable human error data, and 2) to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.

  18. Reduction of Maintenance Error Through Focused Interventions

    NASA Technical Reports Server (NTRS)

    Kanki, Barbara G.; Walter, Diane; Rosekind, Mark R. (Technical Monitor)

    1997-01-01

    It is well known that a significant proportion of aviation accidents and incidents are tied to human error. In flight operations, research of operational errors has shown that so-called "pilot error" often involves a variety of human factors issues and not a simple lack of individual technical skills. In aircraft maintenance operations, there is similar concern that maintenance errors which may lead to incidents and accidents are related to a large variety of human factors issues. Although maintenance error data and research are limited, industry initiatives involving human factors training in maintenance have become increasingly accepted as one type of maintenance error intervention. Conscientious efforts have been made in re-inventing the "team" concept for maintenance operations and in tailoring programs to fit the needs of technical operations. Nevertheless, there remains a dual challenge: to develop human factors interventions which are directly supported by reliable human error data, and to integrate human factors concepts into the procedures and practices of everyday technical tasks. In this paper, we describe several varieties of human factors interventions and focus on two specific alternatives which target problems related to procedures and practices; namely, 1) structured on-the-job training and 2) procedure re-design. We hope to demonstrate that the key to leveraging the impact of these solutions comes from focused interventions; that is, interventions which are derived from a clear understanding of specific maintenance errors, their operational context and human factors components.

  19. Algorithm for correcting the keratometric error in the estimation of the corneal power in eyes with previous myopic laser refractive surgery.

    PubMed

    Camps, Vicente J; Piñero, David P; Mateo, Veronica; Ribera, David; de Fez, Dolores; Blanes-Mompó, Francisco J; Alzamora-Rodríguez, Antonio

    2013-11-01

    To calculate theoretically the errors in the estimation of corneal power when using the keratometric index (nk) in eyes that underwent laser refractive surgery for the correction of myopia and to define and validate clinically an algorithm for minimizing such errors. Differences between corneal power estimation by using the classical nk and by using the Gaussian equation in eyes that underwent laser myopic refractive surgery were simulated and evaluated theoretically. Additionally, an adjusted keratometric index (nkadj) model dependent on r1c was developed for minimizing these differences. The model was validated clinically by retrospectively using the data from 32 myopic eyes [range, -1.00 to -6.00 diopters (D)] that had undergone laser in situ keratomileusis using a solid-state laser platform. The agreement between Gaussian (Pc) and adjusted keratometric (Pkadj) corneal powers in such eyes was evaluated. It was found that overestimations of corneal power up to 3.5 D were possible for nk = 1.3375 according to our simulations. The nk value to avoid the keratometric error ranged between 1.2984 and 1.3297. The following nkadj models were obtained: nkadj = -0.0064286r1c + 1.37688 (Gullstrand eye model) and nkadj = -0.0063804r1c + 1.37806 (Le Grand). The mean difference between Pkadj and Pc was 0.00 D, with limits of agreement of -0.45 and +0.46 D. This difference correlated significantly with the posterior corneal radius (r = -0.94, P < 0.01). The use of a single nk for estimating the corneal power in eyes that underwent a laser myopic refractive surgery can lead to significant errors. These errors can be minimized by using a variable nk dependent on r1c.

  20. Design ATE systems for complex assemblies

    NASA Astrophysics Data System (ADS)

    Napier, R. S.; Flammer, G. H.; Moser, S. A.

    1983-06-01

    The use of ATE systems in radio specification testing can reduce the test time by approximately 90 to 95 percent. What is more, the test station does not require a highly trained operator. Since the system controller has full power over all the measurements, human errors are not introduced into the readings. The controller is immune to any need to increase output by allowing marginal units to pass through the system. In addition, the software compensates for predictable, repeatable system errors, for example, cabling losses, which are an inherent part of the test setup. With no variation in test procedures from unit to unit, there is a constant repeatability factor. Preparing the software, however, usually entails considerable expense. It is pointed out that many of the problems associated with ATE system software can be avoided with the use of a software-intensive, or computer-intensive, system organization. Its goal is to minimize the user's need for software development, thereby saving time and money.

  1. Ecological footprint model using the support vector machine technique.

    PubMed

    Ma, Haibo; Chang, Wenjuan; Cui, Guangbai

    2012-01-01

    The per capita ecological footprint (EF) is one of the most widely recognized measures of environmental sustainability. It aims to quantify the Earth's biological resources required to support human activity. In this paper, we summarize relevant previous literature, and present five factors that influence per capita EF. These factors are: National gross domestic product (GDP), urbanization (independent of economic development), distribution of income (measured by the Gini coefficient), export dependence (measured by the percentage of exports to total GDP), and service intensity (measured by the percentage of service to total GDP). A new ecological footprint model based on a support vector machine (SVM), which is a machine-learning method based on the structural risk minimization principle from statistical learning theory was conducted to calculate the per capita EF of 24 nations using data from 123 nations. The calculation accuracy was measured by average absolute error and average relative error. They were 0.004883 and 0.351078% respectively. Our results demonstrate that the EF model based on SVM has good calculation performance.

  2. Vanishing Point Extraction and Refinement for Robust Camera Calibration

    PubMed Central

    Tsai, Fuan

    2017-01-01

    This paper describes a flexible camera calibration method using refined vanishing points without prior information. Vanishing points are estimated from human-made features like parallel lines and repeated patterns. With the vanishing points extracted from the three mutually orthogonal directions, the interior and exterior orientation parameters can be further calculated using collinearity condition equations. A vanishing point refinement process is proposed to reduce the uncertainty caused by vanishing point localization errors. The fine-tuning algorithm is based on the divergence of grouped feature points projected onto the reference plane, minimizing the standard deviation of each of the grouped collinear points with an O(1) computational complexity. This paper also presents an automated vanishing point estimation approach based on the cascade Hough transform. The experiment results indicate that the vanishing point refinement process can significantly improve camera calibration parameters and the root mean square error (RMSE) of the constructed 3D model can be reduced by about 30%. PMID:29280966

  3. Estimating False Positive Contamination in Crater Annotations from Citizen Science Data

    NASA Astrophysics Data System (ADS)

    Tar, P. D.; Bugiolacchi, R.; Thacker, N. A.; Gilmour, J. D.

    2017-01-01

    Web-based citizen science often involves the classification of image features by large numbers of minimally trained volunteers, such as the identification of lunar impact craters under the Moon Zoo project. Whilst such approaches facilitate the analysis of large image data sets, the inexperience of users and ambiguity in image content can lead to contamination from false positive identifications. We give an approach, using Linear Poisson Models and image template matching, that can quantify levels of false positive contamination in citizen science Moon Zoo crater annotations. Linear Poisson Models are a form of machine learning which supports predictive error modelling and goodness-of-fits, unlike most alternative machine learning methods. The proposed supervised learning system can reduce the variability in crater counts whilst providing predictive error assessments of estimated quantities of remaining true verses false annotations. In an area of research influenced by human subjectivity, the proposed method provides a level of objectivity through the utilisation of image evidence, guided by candidate crater identifications.

  4. Analysis of Relationships between the Level of Errors in Leg and Monofin Movement and Stroke Parameters in Monofin Swimming

    PubMed Central

    Rejman, Marek

    2013-01-01

    The aim of this study was to analyze the error structure in propulsive movements with regard to its influence on monofin swimming speed. The random cycles performed by six swimmers were filmed during a progressive test (900m). An objective method to estimate errors committed in the area of angular displacement of the feet and monofin segments was employed. The parameters were compared with a previously described model. Mutual dependences between the level of errors, stroke frequency, stroke length and amplitude in relation to swimming velocity were analyzed. The results showed that proper foot movements and the avoidance of errors, arising at the distal part of the fin, ensure the progression of swimming speed. The individual stroke parameters distribution which consists of optimally increasing stroke frequency to the maximal possible level that enables the stabilization of stroke length leads to the minimization of errors. Identification of key elements in the stroke structure based on the analysis of errors committed should aid in improving monofin swimming technique. Key points The monofin swimming technique was evaluated through the prism of objectively defined errors committed by the swimmers. The dependences between the level of errors, stroke rate, stroke length and amplitude in relation to swimming velocity were analyzed. Optimally increasing stroke rate to the maximal possible level that enables the stabilization of stroke length leads to the minimization of errors. Propriety foot movement and the avoidance of errors arising at the distal part of fin, provide for the progression of swimming speed. The key elements improving monofin swimming technique, based on the analysis of errors committed, were designated. PMID:24149742

  5. Human Factors Process Task Analysis: Liquid Oxygen Pump Acceptance Test Procedure at the Advanced Technology Development Center

    NASA Technical Reports Server (NTRS)

    Diorio, Kimberly A.; Voska, Ned (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on Human Factors Process Failure Modes and Effects Analysis (HF PFMEA). HF PFMEA includes the following 10 steps: Describe mission; Define System; Identify human-machine; List human actions; Identify potential errors; Identify factors that effect error; Determine likelihood of error; Determine potential effects of errors; Evaluate risk; Generate solutions (manage error). The presentation also describes how this analysis was applied to a liquid oxygen pump acceptance test.

  6. A theory of human error

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1981-01-01

    Human errors tend to be treated in terms of clinical and anecdotal descriptions, from which remedial measures are difficult to derive. Correction of the sources of human error requires an attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A comprehensive analytical theory of the cause-effect relationships governing propagation of human error is indispensable to a reconstruction of the underlying and contributing causes. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation, maritime, automotive, and process control operations is highlighted. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  7. Review of medication errors that are new or likely to occur more frequently with electronic medication management systems.

    PubMed

    Van de Vreede, Melita; McGrath, Anne; de Clifford, Jan

    2018-05-14

    Objective. The aim of the present study was to identify and quantify medication errors reportedly related to electronic medication management systems (eMMS) and those considered likely to occur more frequently with eMMS. This included developing a new classification system relevant to eMMS errors. Methods. Eight Victorian hospitals with eMMS participated in a retrospective audit of reported medication incidents from their incident reporting databases between May and July 2014. Site-appointed project officers submitted deidentified incidents they deemed new or likely to occur more frequently due to eMMS, together with the Incident Severity Rating (ISR). The authors reviewed and classified incidents. Results. There were 5826 medication-related incidents reported. In total, 93 (47 prescribing errors, 46 administration errors) were identified as new or potentially related to eMMS. Only one ISR2 (moderate) and no ISR1 (severe or death) errors were reported, so harm to patients in this 3-month period was minimal. The most commonly reported error types were 'human factors' and 'unfamiliarity or training' (70%) and 'cross-encounter or hybrid system errors' (22%). Conclusions. Although the results suggest that the errors reported were of low severity, organisations must remain vigilant to the risk of new errors and avoid the assumption that eMMS is the panacea to all medication error issues. What is known about the topic? eMMS have been shown to reduce some types of medication errors, but it has been reported that some new medication errors have been identified and some are likely to occur more frequently with eMMS. There are few published Australian studies that have reported on medication error types that are likely to occur more frequently with eMMS in more than one organisation and that include administration and prescribing errors. What does this paper add? This paper includes a new simple classification system for eMMS that is useful and outlines the most commonly reported incident types and can inform organisations and vendors on possible eMMS improvements. The paper suggests a new classification system for eMMS medication errors. What are the implications for practitioners? The results of the present study will highlight to organisations the need for ongoing review of system design, refinement of workflow issues, staff education and training and reporting and monitoring of errors.

  8. The contributions of human factors on human error in Malaysia aviation maintenance industries

    NASA Astrophysics Data System (ADS)

    Padil, H.; Said, M. N.; Azizan, A.

    2018-05-01

    Aviation maintenance is a multitasking activity in which individuals perform varied tasks under constant pressure to meet deadlines as well as challenging work conditions. These situational characteristics combined with human factors can lead to various types of human related errors. The primary objective of this research is to develop a structural relationship model that incorporates human factors, organizational factors, and their impact on human errors in aviation maintenance. Towards that end, a questionnaire was developed which was administered to Malaysian aviation maintenance professionals. Structural Equation Modelling (SEM) approach was used in this study utilizing AMOS software. Results showed that there were a significant relationship of human factors on human errors and were tested in the model. Human factors had a partial effect on organizational factors while organizational factors had a direct and positive impact on human errors. It was also revealed that organizational factors contributed to human errors when coupled with human factors construct. This study has contributed to the advancement of knowledge on human factors effecting safety and has provided guidelines for improving human factors performance relating to aviation maintenance activities and could be used as a reference for improving safety performance in the Malaysian aviation maintenance companies.

  9. A theory of human error

    NASA Technical Reports Server (NTRS)

    Mcruer, D. T.; Clement, W. F.; Allen, R. W.

    1980-01-01

    Human error, a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents is investigated. Correction of the sources of human error requires that one attempt to reconstruct underlying and contributing causes of error from the circumstantial causes cited in official investigative reports. A validated analytical theory of the input-output behavior of human operators involving manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations is presented. This theory of behavior, both appropriate and inappropriate, provides an insightful basis for investigating, classifying, and quantifying the needed cause-effect relationships governing propagation of human error.

  10. Human Reliability and the Cost of Doing Business

    NASA Technical Reports Server (NTRS)

    DeMott, Diana

    2014-01-01

    Most businesses recognize that people will make mistakes and assume errors are just part of the cost of doing business, but does it need to be? Companies with high risk, or major consequences, should consider the effect of human error. In a variety of industries, Human Errors have caused costly failures and workplace injuries. These have included: airline mishaps, medical malpractice, administration of medication and major oil spills have all been blamed on human error. A technique to mitigate or even eliminate some of these costly human errors is the use of Human Reliability Analysis (HRA). Various methodologies are available to perform Human Reliability Assessments that range from identifying the most likely areas for concern to detailed assessments with human error failure probabilities calculated. Which methodology to use would be based on a variety of factors that would include: 1) how people react and act in different industries, and differing expectations based on industries standards, 2) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 3) type and availability of data and 4) how the industry views risk & reliability influences ( types of emergencies, contingencies and routine tasks versus cost based concerns). The Human Reliability Assessments should be the first step to reduce, mitigate or eliminate the costly mistakes or catastrophic failures. Using Human Reliability techniques to identify and classify human error risks allows a company more opportunities to mitigate or eliminate these risks and prevent costly failures.

  11. Depth Perception of Surgeons in Minimally Invasive Surgery.

    PubMed

    Bogdanova, Rositsa; Boulanger, Pierre; Zheng, Bin

    2016-10-01

    Minimally invasive surgery (MIS) poses visual challenges to the surgeons. In MIS, binocular disparity is not freely available for surgeons, who are required to mentally rebuild the 3-dimensional (3D) patient anatomy from a limited number of monoscopic visual cues. The insufficient depth cues from the MIS environment could cause surgeons to misjudge spatial depth, which could lead to performance errors thus jeopardizing patient safety. In this article, we will first discuss the natural human depth perception by exploring the main depth cues available for surgeons in open procedures. Subsequently, we will reveal what depth cues are lost in MIS and how surgeons compensate for the incomplete depth presentation. Next, we will further expand our knowledge by exploring some of the available solutions for improving depth presentation to surgeons. Here we will review the innovative approaches (multiple 2D camera assembly, shadow introduction) and devices (3D monitors, head-mounted devices, and auto-stereoscopic monitors) for 3D image presentation from the past few years. © The Author(s) 2016.

  12. Human Reliability and the Cost of Doing Business

    NASA Technical Reports Server (NTRS)

    DeMott, D. L.

    2014-01-01

    Human error cannot be defined unambiguously in advance of it happening, it often becomes an error after the fact. The same action can result in a tragic accident for one situation or a heroic action given a more favorable outcome. People often forget that we employ humans in business and industry for the flexibility and capability to change when needed. In complex systems, operations are driven by their specifications of the system and the system structure. People provide the flexibility to make it work. Human error has been reported as being responsible for 60%-80% of failures, accidents and incidents in high-risk industries. We don't have to accept that all human errors are inevitable. Through the use of some basic techniques, many potential human error events can be addressed. There are actions that can be taken to reduce the risk of human error.

  13. TOWARD GREATER IMPLEMENTATION OF THE EXPOSOME RESEARCH PARADIGM WITHIN ENVIRONMENTAL EPIDEMIOLOGY

    PubMed Central

    Stingone, Jeanette A.; Buck Louis, Germaine M.; Nakayama, Shoji F.; Vermeulen, Roel C. H.; Kwok, Richard K.; Cui, Yuxia; Balshaw, David M.; Teitelbaum, Susan L.

    2017-01-01

    Investigating a single environmental exposure in isolation does not reflect the actual human exposure circumstance nor does it capture the multifactorial etiology of health and disease. The exposome, defined as the totality of environmental exposures from conception onward, may advance our understanding of environmental contributors to disease by more fully assessing the multitude of human exposures across the life course. Implementation into studies of human health has been limited, in part owing to theoretical and practical challenges including a lack of infrastructure to support comprehensive exposure assessment, difficulty in differentiating physiologic variation from environmentally induced changes, and the need for study designs and analytic methods that accommodate specific aspects of the exposome, such as high-dimensional exposure data and multiple windows of susceptibility. Recommendations for greater data sharing and coordination, methods development, and acknowledgment and minimization of multiple types of measurement error are offered to encourage researchers to embark on exposome research to promote the environmental health and well-being of all populations. PMID:28125387

  14. Haptic communication between humans is tuned by the hard or soft mechanics of interaction

    PubMed Central

    Usai, Francesco; Ganesh, Gowrishankar; Sanguineti, Vittorio; Burdet, Etienne

    2018-01-01

    To move a hard table together, humans may coordinate by following the dominant partner’s motion [1–4], but this strategy is unsuitable for a soft mattress where the perceived forces are small. How do partners readily coordinate in such differing interaction dynamics? To address this, we investigated how pairs tracked a target using flexion-extension of their wrists, which were coupled by a hard, medium or soft virtual elastic band. Tracking performance monotonically increased with a stiffer band for the worse partner, who had higher tracking error, at the cost of the skilled partner’s muscular effort. This suggests that the worse partner followed the skilled one’s lead, but simulations show that the results are better explained by a model where partners share movement goals through the forces, whilst the coupling dynamics determine the capacity of communicable information. This model elucidates the versatile mechanism by which humans can coordinate during both hard and soft physical interactions to ensure maximum performance with minimal effort. PMID:29565966

  15. Minimizing distortion and internal forces in truss structures by simulated annealing

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1989-01-01

    Inaccuracies in the length of members and the diameters of joints of large truss reflector backup structures may produce unacceptable levels of surface distortion and member forces. However, if the member lengths and joint diameters can be measured accurately it is possible to configure the members and joints so that root-mean-square (rms) surface error and/or rms member forces is minimized. Following Greene and Haftka (1989) it is assumed that the force vector f is linearly proportional to the member length errors e(sub M) of dimension NMEMB (the number of members) and joint errors e(sub J) of dimension NJOINT (the number of joints), and that the best-fit displacement vector d is a linear function of f. Let NNODES denote the number of positions on the surface of the truss where error influences are measured. The solution of the problem is discussed. To classify, this problem was compared to a similar combinatorial optimization problem. In particular, when only the member length errors are considered, minimizing d(sup 2)(sub rms) is equivalent to the quadratic assignment problem. The quadratic assignment problem is a well known NP-complete problem in operations research literature. Hence minimizing d(sup 2)(sub rms) is is also an NP-complete problem. The focus of the research is the development of a simulated annealing algorithm to reduce d(sup 2)(sub rms). The plausibility of this technique is its recent success on a variety of NP-complete combinatorial optimization problems including the quadratic assignment problem. A physical analogy for simulated annealing is the way liquids freeze and crystallize. All computational experiments were done on a MicroVAX. The two interchange heuristic is very fast but produces widely varying results. The two and three interchange heuristic provides less variability in the final objective function values but runs much more slowly. Simulated annealing produced the best objective function values for every starting configuration and was faster than the two and three interchange heuristic.

  16. Leveraging human oversight and intervention in large-scale parallel processing of open-source data

    NASA Astrophysics Data System (ADS)

    Casini, Enrico; Suri, Niranjan; Bradshaw, Jeffrey M.

    2015-05-01

    The popularity of cloud computing along with the increased availability of cheap storage have led to the necessity of elaboration and transformation of large volumes of open-source data, all in parallel. One way to handle such extensive volumes of information properly is to take advantage of distributed computing frameworks like Map-Reduce. Unfortunately, an entirely automated approach that excludes human intervention is often unpredictable and error prone. Highly accurate data processing and decision-making can be achieved by supporting an automatic process through human collaboration, in a variety of environments such as warfare, cyber security and threat monitoring. Although this mutual participation seems easily exploitable, human-machine collaboration in the field of data analysis presents several challenges. First, due to the asynchronous nature of human intervention, it is necessary to verify that once a correction is made, all the necessary reprocessing is done in chain. Second, it is often needed to minimize the amount of reprocessing in order to optimize the usage of resources due to limited availability. In order to improve on these strict requirements, this paper introduces improvements to an innovative approach for human-machine collaboration in the processing of large amounts of open-source data in parallel.

  17. Human Error Analysis in a Permit to Work System: A Case Study in a Chemical Plant

    PubMed Central

    Jahangiri, Mehdi; Hoboubi, Naser; Rostamabadi, Akbar; Keshavarzi, Sareh; Hosseini, Ali Akbar

    2015-01-01

    Background A permit to work (PTW) is a formal written system to control certain types of work which are identified as potentially hazardous. However, human error in PTW processes can lead to an accident. Methods This cross-sectional, descriptive study was conducted to estimate the probability of human errors in PTW processes in a chemical plant in Iran. In the first stage, through interviewing the personnel and studying the procedure in the plant, the PTW process was analyzed using the hierarchical task analysis technique. In doing so, PTW was considered as a goal and detailed tasks to achieve the goal were analyzed. In the next step, the standardized plant analysis risk-human (SPAR-H) reliability analysis method was applied for estimation of human error probability. Results The mean probability of human error in the PTW system was estimated to be 0.11. The highest probability of human error in the PTW process was related to flammable gas testing (50.7%). Conclusion The SPAR-H method applied in this study could analyze and quantify the potential human errors and extract the required measures for reducing the error probabilities in PTW system. Some suggestions to reduce the likelihood of errors, especially in the field of modifying the performance shaping factors and dependencies among tasks are provided. PMID:27014485

  18. Quantitative evaluation for accumulative calibration error and video-CT registration errors in electromagnetic-tracked endoscopy.

    PubMed

    Liu, Sheena Xin; Gutiérrez, Luis F; Stanton, Doug

    2011-05-01

    Electromagnetic (EM)-guided endoscopy has demonstrated its value in minimally invasive interventions. Accuracy evaluation of the system is of paramount importance to clinical applications. Previously, a number of researchers have reported the results of calibrating the EM-guided endoscope; however, the accumulated errors of an integrated system, which ultimately reflect intra-operative performance, have not been characterized. To fill this vacancy, we propose a novel system to perform this evaluation and use a 3D metric to reflect the intra-operative procedural accuracy. This paper first presents a portable design and a method for calibration of an electromagnetic (EM)-tracked endoscopy system. An evaluation scheme is then described that uses the calibration results and EM-CT registration to enable real-time data fusion between CT and endoscopic video images. We present quantitative evaluation results for estimating the accuracy of this system using eight internal fiducials as the targets on an anatomical phantom: the error is obtained by comparing the positions of these targets in the CT space, EM space and endoscopy image space. To obtain 3D error estimation, the 3D locations of the targets in the endoscopy image space are reconstructed from stereo views of the EM-tracked monocular endoscope. Thus, the accumulated errors are evaluated in a controlled environment, where the ground truth information is present and systematic performance (including the calibration error) can be assessed. We obtain the mean in-plane error to be on the order of 2 pixels. To evaluate the data integration performance for virtual navigation, target video-CT registration error (TRE) is measured as the 3D Euclidean distance between the 3D-reconstructed targets of endoscopy video images and the targets identified in CT. The 3D error (TRE) encapsulates EM-CT registration error, EM-tracking error, fiducial localization error, and optical-EM calibration error. We present in this paper our calibration method and a virtual navigation evaluation system for quantifying the overall errors of the intra-operative data integration. We believe this phantom not only offers us good insights to understand the systematic errors encountered in all phases of an EM-tracked endoscopy procedure but also can provide quality control of laboratory experiments for endoscopic procedures before the experiments are transferred from the laboratory to human subjects.

  19. Linearizing feedforward/feedback attitude control

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1991-01-01

    An approach to attitude control theory is introduced in which a linear form is postulated for the closed-loop rotation error dynamics, then the exact control law required to realize it is derived. The nonminimal (four-component) quaternion form is used to attitude because it is globally nonsingular, but the minimal (three-component) quaternion form is used for attitude error because it has no nonlinear constraints to prevent the rotational error dynamics from being linearized, and the definition of the attitude error is based on quaternion algebra. This approach produces an attitude control law that linearizes the closed-loop rotational error dynamics exactly, without any attitude singularities, even if the control errors become large.

  20. Analysis of Monoclonal Antibodies in Human Serum as a Model for Clinical Monoclonal Gammopathy by Use of 21 Tesla FT-ICR Top-Down and Middle-Down MS/MS

    NASA Astrophysics Data System (ADS)

    He, Lidong; Anderson, Lissa C.; Barnidge, David R.; Murray, David L.; Hendrickson, Christopher L.; Marshall, Alan G.

    2017-05-01

    With the rapid growth of therapeutic monoclonal antibodies (mAbs), stringent quality control is needed to ensure clinical safety and efficacy. Monoclonal antibody primary sequence and post-translational modifications (PTM) are conventionally analyzed with labor-intensive, bottom-up tandem mass spectrometry (MS/MS), which is limited by incomplete peptide sequence coverage and introduction of artifacts during the lengthy analysis procedure. Here, we describe top-down and middle-down approaches with the advantages of fast sample preparation with minimal artifacts, ultrahigh mass accuracy, and extensive residue cleavages by use of 21 tesla FT-ICR MS/MS. The ultrahigh mass accuracy yields an RMS error of 0.2-0.4 ppm for antibody light chain, heavy chain, heavy chain Fc/2, and Fd subunits. The corresponding sequence coverages are 81%, 38%, 72%, and 65% with MS/MS RMS error 4 ppm. Extension to a monoclonal antibody in human serum as a monoclonal gammopathy model yielded 53% sequence coverage from two nano-LC MS/MS runs. A blind analysis of five therapeutic monoclonal antibodies at clinically relevant concentrations in human serum resulted in correct identification of all five antibodies. Nano-LC 21 T FT-ICR MS/MS provides nonpareil mass resolution, mass accuracy, and sequence coverage for mAbs, and sets a benchmark for MS/MS analysis of multiple mAbs in serum. This is the first time that extensive cleavages for both variable and constant regions have been achieved for mAbs in a human serum background.

  1. Selection of optimal spectral sensitivity functions for color filter arrays.

    PubMed

    Parmar, Manu; Reeves, Stanley J

    2010-12-01

    A color image meant for human consumption can be appropriately displayed only if at least three distinct color channels are present. Typical digital cameras acquire three-color images with only one sensor. A color filter array (CFA) is placed on the sensor such that only one color is sampled at a particular spatial location. This sparsely sampled signal is then reconstructed to form a color image with information about all three colors at each location. In this paper, we show that the wavelength sensitivity functions of the CFA color filters affect both the color reproduction ability and the spatial reconstruction quality of recovered images. We present a method to select perceptually optimal color filter sensitivity functions based upon a unified spatial-chromatic sampling framework. A cost function independent of particular scenes is defined that expresses the error between a scene viewed by the human visual system and the reconstructed image that represents the scene. A constrained minimization of the cost function is used to obtain optimal values of color-filter sensitivity functions for several periodic CFAs. The sensitivity functions are shown to perform better than typical RGB and CMY color filters in terms of both the s-CIELAB ∆E error metric and a qualitative assessment.

  2. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review.

    PubMed

    Du, Jiaying; Gerdtman, Christer; Lindén, Maria

    2018-04-06

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented.

  3. Signal Quality Improvement Algorithms for MEMS Gyroscope-Based Human Motion Analysis Systems: A Systematic Review

    PubMed Central

    Gerdtman, Christer

    2018-01-01

    Motion sensors such as MEMS gyroscopes and accelerometers are characterized by a small size, light weight, high sensitivity, and low cost. They are used in an increasing number of applications. However, they are easily influenced by environmental effects such as temperature change, shock, and vibration. Thus, signal processing is essential for minimizing errors and improving signal quality and system stability. The aim of this work is to investigate and present a systematic review of different signal error reduction algorithms that are used for MEMS gyroscope-based motion analysis systems for human motion analysis or have the potential to be used in this area. A systematic search was performed with the search engines/databases of the ACM Digital Library, IEEE Xplore, PubMed, and Scopus. Sixteen papers that focus on MEMS gyroscope-related signal processing and were published in journals or conference proceedings in the past 10 years were found and fully reviewed. Seventeen algorithms were categorized into four main groups: Kalman-filter-based algorithms, adaptive-based algorithms, simple filter algorithms, and compensation-based algorithms. The algorithms were analyzed and presented along with their characteristics such as advantages, disadvantages, and time limitations. A user guide to the most suitable signal processing algorithms within this area is presented. PMID:29642412

  4. Mechanical Ventilation-Related Safety Incidents in General Care Wards and ICU Settings.

    PubMed

    Kamio, Tadashi; Masamune, Ken

    2018-05-29

    Although the ICU is the most appropriate place to care for mechanically ventilated patients, a considerable number are ventilated in general medical care wards all over the world. However, adverse events focusing on mechanically ventilated patients in general care have not been explored. Data from the Japan Council for Quality Health Care database were analyzed. Patient safety incidents from January 2010 to November 2017 regarding mechanical ventilation were collected, and comparisons of patient safety incidents between ICUs/high care units (HCUs) and general care wards were made. We identified 261 adverse events (with at least 20 adverse events resulting in death) and 702 near-miss events related to mechanical ventilation in Japan between 2010 and 2017. Furthermore, among all adverse events, 19% (49 of 261 events) caused serious harm (residual disability or death). Human-factor issues were most frequent in both ICU/HCU and general care settings (55% and 53%, respectively), while knowledge-based errors were higher in the general care setting. Human-factor issues were the most frequent reasons in both settings, while knowledge-based error rates were higher in general care. Our results suggest that proper education and training is needed to minimize patient safety incidents in facilities without respiratory therapists. Copyright © 2018 by Daedalus Enterprises.

  5. Prediction of human errors by maladaptive changes in event-related brain networks.

    PubMed

    Eichele, Tom; Debener, Stefan; Calhoun, Vince D; Specht, Karsten; Engel, Andreas K; Hugdahl, Kenneth; von Cramon, D Yves; Ullsperger, Markus

    2008-04-22

    Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve approximately 30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations.

  6. Prediction of human errors by maladaptive changes in event-related brain networks

    PubMed Central

    Eichele, Tom; Debener, Stefan; Calhoun, Vince D.; Specht, Karsten; Engel, Andreas K.; Hugdahl, Kenneth; von Cramon, D. Yves; Ullsperger, Markus

    2008-01-01

    Humans engaged in monotonous tasks are susceptible to occasional errors that may lead to serious consequences, but little is known about brain activity patterns preceding errors. Using functional MRI and applying independent component analysis followed by deconvolution of hemodynamic responses, we studied error preceding brain activity on a trial-by-trial basis. We found a set of brain regions in which the temporal evolution of activation predicted performance errors. These maladaptive brain activity changes started to evolve ≈30 sec before the error. In particular, a coincident decrease of deactivation in default mode regions of the brain, together with a decline of activation in regions associated with maintaining task effort, raised the probability of future errors. Our findings provide insights into the brain network dynamics preceding human performance errors and suggest that monitoring of the identified precursor states may help in avoiding human errors in critical real-world situations. PMID:18427123

  7. Defining the Relationship Between Human Error Classes and Technology Intervention Strategies

    NASA Technical Reports Server (NTRS)

    Wiegmann, Douglas A.; Rantanen, Eas M.

    2003-01-01

    The modus operandi in addressing human error in aviation systems is predominantly that of technological interventions or fixes. Such interventions exhibit considerable variability both in terms of sophistication and application. Some technological interventions address human error directly while others do so only indirectly. Some attempt to eliminate the occurrence of errors altogether whereas others look to reduce the negative consequences of these errors. In any case, technological interventions add to the complexity of the systems and may interact with other system components in unforeseeable ways and often create opportunities for novel human errors. Consequently, there is a need to develop standards for evaluating the potential safety benefit of each of these intervention products so that resources can be effectively invested to produce the biggest benefit to flight safety as well as to mitigate any adverse ramifications. The purpose of this project was to help define the relationship between human error and technological interventions, with the ultimate goal of developing a set of standards for evaluating or measuring the potential benefits of new human error fixes.

  8. Applying lessons learned to enhance human performance and reduce human error for ISS operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, W.R.

    1999-01-01

    A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy{close_quote}s Idaho National Engineering and Environmental Laboratory (INEEL) is developing a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper will describe previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS. {copyright} {ital 1999 American Institute of Physics.}« less

  9. Applying lessons learned to enhance human performance and reduce human error for ISS operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, W.R.

    1998-09-01

    A major component of reliability, safety, and mission success for space missions is ensuring that the humans involved (flight crew, ground crew, mission control, etc.) perform their tasks and functions as required. This includes compliance with training and procedures during normal conditions, and successful compensation when malfunctions or unexpected conditions occur. A very significant issue that affects human performance in space flight is human error. Human errors can invalidate carefully designed equipment and procedures. If certain errors combine with equipment failures or design flaws, mission failure or loss of life can occur. The control of human error during operation ofmore » the International Space Station (ISS) will be critical to the overall success of the program. As experience from Mir operations has shown, human performance plays a vital role in the success or failure of long duration space missions. The Department of Energy`s Idaho National Engineering and Environmental Laboratory (INEEL) is developed a systematic approach to enhance human performance and reduce human errors for ISS operations. This approach is based on the systematic identification and evaluation of lessons learned from past space missions such as Mir to enhance the design and operation of ISS. This paper describes previous INEEL research on human error sponsored by NASA and how it can be applied to enhance human reliability for ISS.« less

  10. The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers.

    PubMed

    Amalric, Marie; Wang, Liping; Pica, Pierre; Figueira, Santiago; Sigman, Mariano; Dehaene, Stanislas

    2017-01-01

    During language processing, humans form complex embedded representations from sequential inputs. Here, we ask whether a "geometrical language" with recursive embedding also underlies the human ability to encode sequences of spatial locations. We introduce a novel paradigm in which subjects are exposed to a sequence of spatial locations on an octagon, and are asked to predict future locations. The sequences vary in complexity according to a well-defined language comprising elementary primitives and recursive rules. A detailed analysis of error patterns indicates that primitives of symmetry and rotation are spontaneously detected and used by adults, preschoolers, and adult members of an indigene group in the Amazon, the Munduruku, who have a restricted numerical and geometrical lexicon and limited access to schooling. Furthermore, subjects readily combine these geometrical primitives into hierarchically organized expressions. By evaluating a large set of such combinations, we obtained a first view of the language needed to account for the representation of visuospatial sequences in humans, and conclude that they encode visuospatial sequences by minimizing the complexity of the structured expressions that capture them.

  11. Graph pyramids as models of human problem solving

    NASA Astrophysics Data System (ADS)

    Pizlo, Zygmunt; Li, Zheng

    2004-05-01

    Prior theories have assumed that human problem solving involves estimating distances among states and performing search through the problem space. The role of mental representation in those theories was minimal. Results of our recent experiments suggest that humans are able to solve some difficult problems quickly and accurately. Specifically, in solving these problems humans do not seem to rely on distances or on search. It is quite clear that producing good solutions without performing search requires a very effective mental representation. In this paper we concentrate on studying the nature of this representation. Our theory takes the form of a graph pyramid. To verify the psychological plausibility of this theory we tested subjects in a Euclidean Traveling Salesman Problem in the presence of obstacles. The role of the number and size of obstacles was tested for problems with 6-50 cities. We analyzed the effect of experimental conditions on solution time per city and on solution error. The main result is that time per city is systematically affected only by the size of obstacles, but not by their number, or by the number of cities.

  12. The language of geometry: Fast comprehension of geometrical primitives and rules in human adults and preschoolers

    PubMed Central

    Amalric, Marie; Wang, Liping; Figueira, Santiago; Sigman, Mariano; Dehaene, Stanislas

    2017-01-01

    During language processing, humans form complex embedded representations from sequential inputs. Here, we ask whether a “geometrical language” with recursive embedding also underlies the human ability to encode sequences of spatial locations. We introduce a novel paradigm in which subjects are exposed to a sequence of spatial locations on an octagon, and are asked to predict future locations. The sequences vary in complexity according to a well-defined language comprising elementary primitives and recursive rules. A detailed analysis of error patterns indicates that primitives of symmetry and rotation are spontaneously detected and used by adults, preschoolers, and adult members of an indigene group in the Amazon, the Munduruku, who have a restricted numerical and geometrical lexicon and limited access to schooling. Furthermore, subjects readily combine these geometrical primitives into hierarchically organized expressions. By evaluating a large set of such combinations, we obtained a first view of the language needed to account for the representation of visuospatial sequences in humans, and conclude that they encode visuospatial sequences by minimizing the complexity of the structured expressions that capture them. PMID:28125595

  13. Intellicount: High-Throughput Quantification of Fluorescent Synaptic Protein Puncta by Machine Learning

    PubMed Central

    Fantuzzo, J. A.; Mirabella, V. R.; Zahn, J. D.

    2017-01-01

    Abstract Synapse formation analyses can be performed by imaging and quantifying fluorescent signals of synaptic markers. Traditionally, these analyses are done using simple or multiple thresholding and segmentation approaches or by labor-intensive manual analysis by a human observer. Here, we describe Intellicount, a high-throughput, fully-automated synapse quantification program which applies a novel machine learning (ML)-based image processing algorithm to systematically improve region of interest (ROI) identification over simple thresholding techniques. Through processing large datasets from both human and mouse neurons, we demonstrate that this approach allows image processing to proceed independently of carefully set thresholds, thus reducing the need for human intervention. As a result, this method can efficiently and accurately process large image datasets with minimal interaction by the experimenter, making it less prone to bias and less liable to human error. Furthermore, Intellicount is integrated into an intuitive graphical user interface (GUI) that provides a set of valuable features, including automated and multifunctional figure generation, routine statistical analyses, and the ability to run full datasets through nested folders, greatly expediting the data analysis process. PMID:29218324

  14. Comparative assessment of LANDSAT-D MSS and TM data quality for mapping applications in the Southeast

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Rectifications of multispectral scanner and thematic mapper data sets for full and subscene areas, analyses of planimetric errors, assessments of the number and distribution of ground control points required to minimize errors, and factors contributing to error residual are examined. Other investigations include the generation of three dimensional terrain models and the effects of spatial resolution on digital classification accuracies.

  15. Structured methods for identifying and correcting potential human errors in aviation operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, W.R.

    1997-10-01

    Human errors have been identified as the source of approximately 60% of the incidents and accidents that occur in commercial aviation. It can be assumed that a very large number of human errors occur in aviation operations, even though in most cases the redundancies and diversities built into the design of aircraft systems prevent the errors from leading to serious consequences. In addition, when it is acknowledged that many system failures have their roots in human errors that occur in the design phase, it becomes apparent that the identification and elimination of potential human errors could significantly decrease the risksmore » of aviation operations. This will become even more critical during the design of advanced automation-based aircraft systems as well as next-generation systems for air traffic management. Structured methods to identify and correct potential human errors in aviation operations have been developed and are currently undergoing testing at the Idaho National Engineering and Environmental Laboratory (INEEL).« less

  16. Application of an Optimal Tuner Selection Approach for On-Board Self-Tuning Engine Models

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Armstrong, Jeffrey B.; Garg, Sanjay

    2012-01-01

    An enhanced design methodology for minimizing the error in on-line Kalman filter-based aircraft engine performance estimation applications is presented in this paper. It specific-ally addresses the under-determined estimation problem, in which there are more unknown parameters than available sensor measurements. This work builds upon an existing technique for systematically selecting a model tuning parameter vector of appropriate dimension to enable estimation by a Kalman filter, while minimizing the estimation error in the parameters of interest. While the existing technique was optimized for open-loop engine operation at a fixed design point, in this paper an alternative formulation is presented that enables the technique to be optimized for an engine operating under closed-loop control throughout the flight envelope. The theoretical Kalman filter mean squared estimation error at a steady-state closed-loop operating point is derived, and the tuner selection approach applied to minimize this error is discussed. A technique for constructing a globally optimal tuning parameter vector, which enables full-envelope application of the technology, is also presented, along with design steps for adjusting the dynamic response of the Kalman filter state estimates. Results from the application of the technique to linear and nonlinear aircraft engine simulations are presented and compared to the conventional approach of tuner selection. The new methodology is shown to yield a significant improvement in on-line Kalman filter estimation accuracy.

  17. Human errors and violations in computer and information security: the viewpoint of network administrators and security specialists.

    PubMed

    Kraemer, Sara; Carayon, Pascale

    2007-03-01

    This paper describes human errors and violations of end users and network administration in computer and information security. This information is summarized in a conceptual framework for examining the human and organizational factors contributing to computer and information security. This framework includes human error taxonomies to describe the work conditions that contribute adversely to computer and information security, i.e. to security vulnerabilities and breaches. The issue of human error and violation in computer and information security was explored through a series of 16 interviews with network administrators and security specialists. The interviews were audio taped, transcribed, and analyzed by coding specific themes in a node structure. The result is an expanded framework that classifies types of human error and identifies specific human and organizational factors that contribute to computer and information security. Network administrators tended to view errors created by end users as more intentional than unintentional, while errors created by network administrators as more unintentional than intentional. Organizational factors, such as communication, security culture, policy, and organizational structure, were the most frequently cited factors associated with computer and information security.

  18. Intervention strategies for the management of human error

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1993-01-01

    This report examines the management of human error in the cockpit. The principles probably apply as well to other applications in the aviation realm (e.g. air traffic control, dispatch, weather, etc.) as well as other high-risk systems outside of aviation (e.g. shipping, high-technology medical procedures, military operations, nuclear power production). Management of human error is distinguished from error prevention. It is a more encompassing term, which includes not only the prevention of error, but also a means of disallowing an error, once made, from adversely affecting system output. Such techniques include: traditional human factors engineering, improvement of feedback and feedforward of information from system to crew, 'error-evident' displays which make erroneous input more obvious to the crew, trapping of errors within a system, goal-sharing between humans and machines (also called 'intent-driven' systems), paperwork management, and behaviorally based approaches, including procedures, standardization, checklist design, training, cockpit resource management, etc. Fifteen guidelines for the design and implementation of intervention strategies are included.

  19. Precision and repeatability of the Optotrak 3020 motion measurement system.

    PubMed

    States, R A; Pappas, E

    2006-01-01

    Several motion analysis systems are used by researchers to quantify human motion and to perform accurate surgical procedures. The Optotrak 3020 is one of these systems and despite its widespread use there is not any published information on its precision and repeatability. We used a repeated measures design study to evaluate the precision and repeatability of the Optotrak 3020 by measuring distance and angle in three sessions, four distances and three conditions (motion, static vertical, and static tilted). Precision and repeatability were found to be excellent for both angle and distance although they decreased with increasing distance from the sensors and with tilt from the plane of the sensors. Motion did not have a significant effect on the precision of the measurements. In conclusion, the measurement error of the Optotrak is minimal. Further studies are needed to evaluate its precision and repeatability under human motion conditions.

  20. Elucidation of cross-species proteomic effects in human and hominin bone proteome identification through a bioinformatics experiment.

    PubMed

    Welker, F

    2018-02-20

    The study of ancient protein sequences is increasingly focused on the analysis of older samples, including those of ancient hominins. The analysis of such ancient proteomes thereby potentially suffers from "cross-species proteomic effects": the loss of peptide and protein identifications at increased evolutionary distances due to a larger number of protein sequence differences between the database sequence and the analyzed organism. Error-tolerant proteomic search algorithms should theoretically overcome this problem at both the peptide and protein level; however, this has not been demonstrated. If error-tolerant searches do not overcome the cross-species proteomic issue then there might be inherent biases in the identified proteomes. Here, a bioinformatics experiment is performed to test this using a set of modern human bone proteomes and three independent searches against sequence databases at increasing evolutionary distances: the human (0 Ma), chimpanzee (6-8 Ma) and orangutan (16-17 Ma) reference proteomes, respectively. Incorrectly suggested amino acid substitutions are absent when employing adequate filtering criteria for mutable Peptide Spectrum Matches (PSMs), but roughly half of the mutable PSMs were not recovered. As a result, peptide and protein identification rates are higher in error-tolerant mode compared to non-error-tolerant searches but did not recover protein identifications completely. Data indicates that peptide length and the number of mutations between the target and database sequences are the main factors influencing mutable PSM identification. The error-tolerant results suggest that the cross-species proteomics problem is not overcome at increasing evolutionary distances, even at the protein level. Peptide and protein loss has the potential to significantly impact divergence dating and proteome comparisons when using ancient samples as there is a bias towards the identification of conserved sequences and proteins. Effects are minimized between moderately divergent proteomes, as indicated by almost complete recovery of informative positions in the search against the chimpanzee proteome (≈90%, 6-8 Ma). This provides a bioinformatic background to future phylogenetic and proteomic analysis of ancient hominin proteomes, including the future description of novel hominin amino acid sequences, but also has negative implications for the study of fast-evolving proteins in hominins, non-hominin animals, and ancient bacterial proteins in evolutionary contexts.

  1. Exploring Reactions to Pilot Reliability Certification and Changing Attitudes on the Reduction of Errors

    ERIC Educational Resources Information Center

    Boedigheimer, Dan

    2010-01-01

    Approximately 70% of aviation accidents are attributable to human error. The greatest opportunity for further improving aviation safety is found in reducing human errors in the cockpit. The purpose of this quasi-experimental, mixed-method research was to evaluate whether there was a difference in pilot attitudes toward reducing human error in the…

  2. Sampling Error in a Particulate Mixture: An Analytical Chemistry Experiment.

    ERIC Educational Resources Information Center

    Kratochvil, Byron

    1980-01-01

    Presents an undergraduate experiment demonstrating sampling error. Selected as the sampling system is a mixture of potassium hydrogen phthalate and sucrose; using a self-zeroing, automatically refillable buret to minimize titration time of multiple samples and employing a dilute back-titrant to obtain high end-point precision. (CS)

  3. Amplify Errors to Minimize Them

    ERIC Educational Resources Information Center

    Stewart, Maria Shine

    2009-01-01

    In this article, the author offers her experience of modeling mistakes and writing spontaneously in the computer classroom to get students' attention and elicit their editorial response. She describes how she taught her class about major sentence errors--comma splices, run-ons, and fragments--through her Sentence Meditation exercise, a rendition…

  4. Fluctuating asymmetry and stress in a medieval Nubian population.

    PubMed

    Deleon, Valerie B

    2007-04-01

    Fluctuating asymmetry is commonly used as a bioindicator of developmental stress. This study addresses asymmetry under nutritional/systemic stress in the human craniofacial skeleton and its utility as an indicator of developmental instability. Crania from the diachronic Christian cemeteries at Kulubnarti (Sudanese Nubia) were chosen as a model for nutrition/systemic stress. Previous studies indicate that individuals from the Early Christian cemetery were subjected to greater developmental stress when compared with individuals from the Late Christian cemetery. Therefore, crania from the Early Christian cemetery should display a greater magnitude of fluctuating asymmetry than crania from the Late Christian cemetery. Thirty adult crania of comparable age and sex were selected from each population. Landmark coordinates were digitized in two separate trials and averaged to minimize error. Euclidean distance matrix analysis (EDMA) was used to measure and compare the magnitude of fluctuating asymmetry in each sample. Results indicate that crania from the Early Christian cemetery display greater amounts of fluctuating asymmetry than those from the Late Christian cemetery, as predicted. The degree of fluctuating asymmetry for each linear distance is highly correlated between the cemeteries, suggesting that all humans may share common patterns of fluctuating asymmetry in the skull. In contrast, there is little correlation between magnitude of fluctuating asymmetry and length of linear distance, between-subject variability, or measurement error. These results support the hypothesis that poor nutrition/systemic stress increases developmental instability in the human skull and that increased fluctuating asymmetry constitutes morphological evidence of this stress.

  5. Evaluating a medical error taxonomy.

    PubMed

    Brixey, Juliana; Johnson, Todd R; Zhang, Jiajie

    2002-01-01

    Healthcare has been slow in using human factors principles to reduce medical errors. The Center for Devices and Radiological Health (CDRH) recognizes that a lack of attention to human factors during product development may lead to errors that have the potential for patient injury, or even death. In response to the need for reducing medication errors, the National Coordinating Council for Medication Errors Reporting and Prevention (NCC MERP) released the NCC MERP taxonomy that provides a standard language for reporting medication errors. This project maps the NCC MERP taxonomy of medication error to MedWatch medical errors involving infusion pumps. Of particular interest are human factors associated with medical device errors. The NCC MERP taxonomy of medication errors is limited in mapping information from MEDWATCH because of the focus on the medical device and the format of reporting.

  6. An Evaluation of Departmental Radiation Oncology Incident Reports: Anticipating a National Reporting System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Terezakis, Stephanie A., E-mail: stereza1@jhmi.edu; Harris, Kendra M.; Ford, Eric

    Purpose: Systems to ensure patient safety are of critical importance. The electronic incident reporting systems (IRS) of 2 large academic radiation oncology departments were evaluated for events that may be suitable for submission to a national reporting system (NRS). Methods and Materials: All events recorded in the combined IRS were evaluated from 2007 through 2010. Incidents were graded for potential severity using the validated French Nuclear Safety Authority (ASN) 5-point scale. These incidents were categorized into 7 groups: (1) human error, (2) software error, (3) hardware error, (4) error in communication between 2 humans, (5) error at the human-software interface,more » (6) error at the software-hardware interface, and (7) error at the human-hardware interface. Results: Between the 2 systems, 4407 incidents were reported. Of these events, 1507 (34%) were considered to have the potential for clinical consequences. Of these 1507 events, 149 (10%) were rated as having a potential severity of ≥2. Of these 149 events, the committee determined that 79 (53%) of these events would be submittable to a NRS of which the majority was related to human error or to the human-software interface. Conclusions: A significant number of incidents were identified in this analysis. The majority of events in this study were related to human error and to the human-software interface, further supporting the need for a NRS to facilitate field-wide learning and system improvement.« less

  7. Sleep quality, posttraumatic stress, depression, and human errors in train drivers: a population-based nationwide study in South Korea.

    PubMed

    Jeon, Hong Jin; Kim, Ji-Hae; Kim, Bin-Na; Park, Seung Jin; Fava, Maurizio; Mischoulon, David; Kang, Eun-Ho; Roh, Sungwon; Lee, Dongsoo

    2014-12-01

    Human error is defined as an unintended error that is attributable to humans rather than machines, and that is important to avoid to prevent accidents. We aimed to investigate the association between sleep quality and human errors among train drivers. Cross-sectional. Population-based. A sample of 5,480 subjects who were actively working as train drivers were recruited in South Korea. The participants were 4,634 drivers who completed all questionnaires (response rate 84.6%). None. The Pittsburgh Sleep Quality Index (PSQI), the Center for Epidemiologic Studies Depression Scale (CES-D), the Impact of Event Scale-Revised (IES-R), the State-Trait Anxiety Inventory (STAI), and the Korean Occupational Stress Scale (KOSS). Of 4,634 train drivers, 349 (7.5%) showed more than one human error per 5 y. Human errors were associated with poor sleep quality, higher PSQI total scores, short sleep duration at night, and longer sleep latency. Among train drivers with poor sleep quality, those who experienced severe posttraumatic stress showed a significantly higher number of human errors than those without. Multiple logistic regression analysis showed that human errors were significantly associated with poor sleep quality and posttraumatic stress, whereas there were no significant associations with depression, trait and state anxiety, and work stress after adjusting for age, sex, education years, marital status, and career duration. Poor sleep quality was found to be associated with more human errors in train drivers, especially in those who experienced severe posttraumatic stress. © 2014 Associated Professional Sleep Societies, LLC.

  8. Compensating additional optical power in the central zone of a multifocal contact lens forminimization of the shrinkage error of the shell mold in the injection molding process.

    PubMed

    Vu, Lien T; Chen, Chao-Chang A; Lee, Chia-Cheng; Yu, Chia-Wei

    2018-04-20

    This study aims to develop a compensating method to minimize the shrinkage error of the shell mold (SM) in the injection molding (IM) process to obtain uniform optical power in the central optical zone of soft axial symmetric multifocal contact lenses (CL). The Z-shrinkage error along the Z axis or axial axis of the anterior SM corresponding to the anterior surface of a dry contact lens in the IM process can be minimized by optimizing IM process parameters and then by compensating for additional (Add) powers in the central zone of the original lens design. First, the shrinkage error is minimized by optimizing three levels of four IM parameters, including mold temperature, injection velocity, packing pressure, and cooling time in 18 IM simulations based on an orthogonal array L 18 (2 1 ×3 4 ). Then, based on the Z-shrinkage error from IM simulation, three new contact lens designs are obtained by increasing the Add power in the central zone of the original multifocal CL design to compensate for the optical power errors. Results obtained from IM process simulations and the optical simulations show that the new CL design with 0.1 D increasing in Add power has the closest shrinkage profile to the original anterior SM profile with percentage of reduction in absolute Z-shrinkage error of 55% and more uniform power in the central zone than in the other two cases. Moreover, actual experiments of IM of SM for casting soft multifocal CLs have been performed. The final product of wet CLs has been completed for the original design and the new design. Results of the optical performance have verified the improvement of the compensated design of CLs. The feasibility of this compensating method has been proven based on the measurement results of the produced soft multifocal CLs of the new design. Results of this study can be further applied to predict or compensate for the total optical power errors of the soft multifocal CLs.

  9. tPA Prescription and Administration Errors within a Regional Stroke System

    PubMed Central

    Chung, Lee S; Tkach, Aleksander; Lingenfelter, Erin M; Dehoney, Sarah; Rollo, Jeannie; de Havenon, Adam; DeWitt, Lucy Dana; Grantz, Matthew Ryan; Wang, Haimei; Wold, Jana J; Hannon, Peter M; Weathered, Natalie R; Majersik, Jennifer J

    2015-01-01

    Background IV tPA utilization in acute ischemic stroke (AIS) requires weight-based dosing and a standardized infusion rate. In our regional network, we have tried to minimize tPA dosing errors. We describe the frequency and types of tPA administration errors made in our comprehensive stroke center (CSC) and at community hospitals (CHs) prior to transfer. Methods Using our stroke quality database, we extracted clinical and pharmacy information on all patients who received IV tPA from 2010–11 at the CSC or CH prior to transfer. All records were analyzed for the presence of inclusion/exclusion criteria deviations or tPA errors in prescription, reconstitution, dispensing, or administration, and analyzed for association with outcomes. Results We identified 131 AIS cases treated with IV tPA: 51% female; mean age 68; 32% treated at CSC, 68% at CH (including 26% by telestroke) from 22 CHs. tPA prescription and administration errors were present in 64% of all patients (41% CSC, 75% CH, p<0.001), the most common being incorrect dosage for body weight (19% CSC, 55% CH, p<0.001). Of the 27 overdoses, there were 3 deaths due to systemic hemorrhage or ICH. Nonetheless, outcomes (parenchymal hematoma, mortality, mRS) did not differ between CSC and CH patients nor between those with and without errors. Conclusion Despite focus on minimization of tPA administration errors in AIS patients, such errors were very common in our regional stroke system. Although an association between tPA errors and stroke outcomes was not demonstrated, quality assurance mechanisms are still necessary to reduce potentially dangerous, avoidable errors. PMID:26698642

  10. Design and evaluation of a slave manipulator with roll-pitch-roll wrist and automatic tool loading mechanism in telerobotic surgery.

    PubMed

    Kim, Ki-Young; Lee, Jung-Ju

    2012-12-01

    As there is a shortage of scrub nurses in many hospitals, automatic surgical tool exchanging mechanism without human labour has been studied. Minimally invasive robotic surgeries (MIRS) also require scrub nurses. A surgical tool loading mechanism without a scrub nurse's assistance for MIRS is proposed. Many researchers have developed minimally invasive surgical instruments with a wrist joint that can be movable inside the abdomen. However, implementation of a distal rolling joint on a gripper is rare. To implement surgical tool exchanging without a scrub nurse's assistance, a slave manipulator and a tool loader were developed to load and unload a surgical tool unit. A surgical tool unit with a roll-pitch-roll wrist was developed. Several experiments were performed to validate the effectiveness of the slave manipulator and the surgical tool unit. The slave manipulator and the tool loader were able to successfully unload and load the surgical tool unit without human assistance. The total duration of unloading and loading the surgical tool unit was 97 s. Motion tracking experiments of the distal rolling joint were performed. The maximum positioning error of the step input response was 2°. The advantage of the proposed slave manipulator and tool loader is that other robotic systems or human labour are not needed for surgical tool loading. The feasibility of the distal rolling joint in MIS is verified. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Optimal estimation of large structure model errors. [in Space Shuttle controller design

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.

    1979-01-01

    In-flight estimation of large structure model errors is usually required as a means of detecting inevitable deficiencies in large structure controller/estimator models. The present paper deals with a least-squares formulation which seeks to minimize a quadratic functional of the model errors. The properties of these error estimates are analyzed. It is shown that an arbitrary model error can be decomposed as the sum of two components that are orthogonal in a suitably defined function space. Relations between true and estimated errors are defined. The estimates are found to be approximations that retain many of the significant dynamics of the true model errors. Current efforts are directed toward application of the analytical results to a reference large structure model.

  12. The Effects of Wiggler Errors on Free Electron Laser Performance

    DTIC Science & Technology

    1990-04-02

    phase deviation at the end of the wiggler by 113. The detrimental effects of wiggler errors may be reduced by arranging the magent poles in an optimal...fdz6BI. To meet these specifications, the vendor may arrange the mIagnet pole iD an optimum sequence such that If dz6BI is minimized. The present research...zc a- A,,/2. By considering a wiggler in which the error for a given magnet pole is correlated to the errors of the surrounding poles , one may

  13. Analyzing human errors in flight mission operations

    NASA Technical Reports Server (NTRS)

    Bruno, Kristin J.; Welz, Linda L.; Barnes, G. Michael; Sherif, Josef

    1993-01-01

    A long-term program is in progress at JPL to reduce cost and risk of flight mission operations through a defect prevention/error management program. The main thrust of this program is to create an environment in which the performance of the total system, both the human operator and the computer system, is optimized. To this end, 1580 Incident Surprise Anomaly reports (ISA's) from 1977-1991 were analyzed from the Voyager and Magellan projects. A Pareto analysis revealed that 38 percent of the errors were classified as human errors. A preliminary cluster analysis based on the Magellan human errors (204 ISA's) is presented here. The resulting clusters described the underlying relationships among the ISA's. Initial models of human error in flight mission operations are presented. Next, the Voyager ISA's will be scored and included in the analysis. Eventually, these relationships will be used to derive a theoretically motivated and empirically validated model of human error in flight mission operations. Ultimately, this analysis will be used to make continuous process improvements continuous process improvements to end-user applications and training requirements. This Total Quality Management approach will enable the management and prevention of errors in the future.

  14. Neural Network Compensation for Frequency Cross-Talk in Laser Interferometry

    NASA Astrophysics Data System (ADS)

    Lee, Wooram; Heo, Gunhaeng; You, Kwanho

    The heterodyne laser interferometer acts as an ultra-precise measurement apparatus in semiconductor manufacture. However the periodical nonlinearity property caused from frequency cross-talk is an obstacle to improve the high measurement accuracy in nanometer scale. In order to minimize the nonlinearity error of the heterodyne interferometer, we propose a frequency cross-talk compensation algorithm using an artificial intelligence method. The feedforward neural network trained by back-propagation compensates the nonlinearity error and regulates to minimize the difference with the reference signal. With some experimental results, the improved accuracy is proved through comparison with the position value from a capacitive displacement sensor.

  15. A Numerical Optimization Approach for Tuning Fuzzy Logic Controllers

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.; Garg, Devendra P.

    1998-01-01

    This paper develops a method to tune fuzzy controllers using numerical optimization. The main attribute of this approach is that it allows fuzzy logic controllers to be tuned to achieve global performance requirements. Furthermore, this approach allows design constraints to be implemented during the tuning process. The method tunes the controller by parameterizing the membership functions for error, change-in-error and control output. The resulting parameters form a design vector which is iteratively changed to minimize an objective function. The minimal objective function results in an optimal performance of the system. A spacecraft mounted science instrument line-of-sight pointing control is used to demonstrate results.

  16. RMP: Reduced-set matching pursuit approach for efficient compressed sensing signal reconstruction.

    PubMed

    Abdel-Sayed, Michael M; Khattab, Ahmed; Abu-Elyazeed, Mohamed F

    2016-11-01

    Compressed sensing enables the acquisition of sparse signals at a rate that is much lower than the Nyquist rate. Compressed sensing initially adopted [Formula: see text] minimization for signal reconstruction which is computationally expensive. Several greedy recovery algorithms have been recently proposed for signal reconstruction at a lower computational complexity compared to the optimal [Formula: see text] minimization, while maintaining a good reconstruction accuracy. In this paper, the Reduced-set Matching Pursuit (RMP) greedy recovery algorithm is proposed for compressed sensing. Unlike existing approaches which either select too many or too few values per iteration, RMP aims at selecting the most sufficient number of correlation values per iteration, which improves both the reconstruction time and error. Furthermore, RMP prunes the estimated signal, and hence, excludes the incorrectly selected values. The RMP algorithm achieves a higher reconstruction accuracy at a significantly low computational complexity compared to existing greedy recovery algorithms. It is even superior to [Formula: see text] minimization in terms of the normalized time-error product, a new metric introduced to measure the trade-off between the reconstruction time and error. RMP superior performance is illustrated with both noiseless and noisy samples.

  17. Skylab water balance error analysis

    NASA Technical Reports Server (NTRS)

    Leonard, J. I.

    1977-01-01

    Estimates of the precision of the net water balance were obtained for the entire Skylab preflight and inflight phases as well as for the first two weeks of flight. Quantitative estimates of both total sampling errors and instrumentation errors were obtained. It was shown that measurement error is minimal in comparison to biological variability and little can be gained from improvement in analytical accuracy. In addition, a propagation of error analysis demonstrated that total water balance error could be accounted for almost entirely by the errors associated with body mass changes. Errors due to interaction between terms in the water balance equation (covariances) represented less than 10% of the total error. Overall, the analysis provides evidence that daily measurements of body water changes obtained from the indirect balance technique are reasonable, precise, and relaible. The method is not biased toward net retention or loss.

  18. Modeling human response errors in synthetic flight simulator domain

    NASA Technical Reports Server (NTRS)

    Ntuen, Celestine A.

    1992-01-01

    This paper presents a control theoretic approach to modeling human response errors (HRE) in the flight simulation domain. The human pilot is modeled as a supervisor of a highly automated system. The synthesis uses the theory of optimal control pilot modeling for integrating the pilot's observation error and the error due to the simulation model (experimental error). Methods for solving the HRE problem are suggested. Experimental verification of the models will be tested in a flight quality handling simulation.

  19. Integration of MSFC Usability Lab with Usability Testing

    NASA Technical Reports Server (NTRS)

    Cheng, Yiwei; Richardson, Sally

    2010-01-01

    As part of the Stage Analysis Branch, human factors engineering plays an important role in relating humans to the systems of hardware and structure designs of the new launch vehicle. While many branches are involved in the technical aspects of creating a launch vehicle, human factors connects humans to the scientific systems with the goal of improving operational performance and safety while reducing operational error and damage to the hardware. Human factors engineers use physical and computerized models to visualize possible areas for improvements to ensure human accessibility to components requiring maintenance and that the necessary maintenance activities can be accomplished with minimal risks to human and hardware. Many methods of testing are used to fulfill this goal, such as physical mockups, computerized visualization, and usability testing. In this analysis, a usability test is conducted to test how usable a website is to users who are and are not familiar with it. The testing is performed using participants and Morae software to record and analyze the results. This analysis will be a preliminary test of the usability lab in preparation for use in new spacecraft programs, NASA Enterprise, or other NASA websites. The usability lab project is divided into two parts: integration of the usability lab and a preliminary test of the usability lab.

  20. Defining the Relationship Between Human Error Classes and Technology Intervention Strategies

    NASA Technical Reports Server (NTRS)

    Wiegmann, Douglas A.; Rantanen, Esa; Crisp, Vicki K. (Technical Monitor)

    2002-01-01

    One of the main factors in all aviation accidents is human error. The NASA Aviation Safety Program (AvSP), therefore, has identified several human-factors safety technologies to address this issue. Some technologies directly address human error either by attempting to reduce the occurrence of errors or by mitigating the negative consequences of errors. However, new technologies and system changes may also introduce new error opportunities or even induce different types of errors. Consequently, a thorough understanding of the relationship between error classes and technology "fixes" is crucial for the evaluation of intervention strategies outlined in the AvSP, so that resources can be effectively directed to maximize the benefit to flight safety. The purpose of the present project, therefore, was to examine the repositories of human factors data to identify the possible relationship between different error class and technology intervention strategies. The first phase of the project, which is summarized here, involved the development of prototype data structures or matrices that map errors onto "fixes" (and vice versa), with the hope of facilitating the development of standards for evaluating safety products. Possible follow-on phases of this project are also discussed. These additional efforts include a thorough and detailed review of the literature to fill in the data matrix and the construction of a complete database and standards checklists.

  1. Methods for increasing cooperation rates for surveys of family forest owners

    Treesearch

    Brett J. Butler; Jaketon H. Hewes; Mary L. Tyrrell; Sarah M. Butler

    2016-01-01

    To maximize the representativeness of results from surveys, coverage, sampling, nonresponse, measurement, and analysis errors must be minimized. Although not a cure-all, one approach for mitigating nonresponse errors is to maximize cooperation rates. In this study, personalizing mailings, token financial incentives, and the use of real stamps were tested for their...

  2. Continued Driving and Time to Transition to Nondriver Status through Error-Specific Driving Restrictions

    ERIC Educational Resources Information Center

    Freund, Barbara; Petrakos, Davithoula

    2008-01-01

    We developed driving restrictions that are linked to specific driving errors, allowing cognitively impaired individuals to continue to independently meet mobility needs while minimizing risk to themselves and others. The purpose of this project was to evaluate the efficacy and duration expectancy of these restrictions in promoting safe continued…

  3. Minimization of the hole overcut and cylindricity errors during rotary ultrasonic drilling of Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Nasr, M.; Anwar, S.; El-Tamimi, A.; Pervaiz, S.

    2018-04-01

    Titanium and its alloys e.g. Ti6Al4V have widespread applications in aerospace, automotive and medical industry. At the same time titanium and its alloys are regarded as difficult to machine materials due to their high strength and low thermal conductivity. Significant efforts have been dispensed to improve the accuracy of the machining processes for Ti6Al4V. The current study present the use of the rotary ultrasonic drilling (RUD) process for machining high quality holes in Ti6Al4V. The study takes into account the effects of the main RUD input parameters including spindle speed, ultrasonic power, feed rate and tool diameter on the key output responses related to the accuracy of the drilled holes including cylindricity and overcut errors. Analysis of variance (ANOVA) was employed to study the influence of the input parameters on cylindricity and overcut error. Later, regression models were developed to find the optimal set of input parameters to minimize the cylindricity and overcut errors.

  4. Magnitude of pseudopotential localization errors in fixed node diffusion quantum Monte Carlo

    DOE PAGES

    Kent, Paul R.; Krogel, Jaron T.

    2017-06-22

    Growth in computational resources has lead to the application of real space diffusion quantum Monte Carlo to increasingly heavy elements. Although generally assumed to be small, we find that when using standard techniques, the pseudopotential localization error can be large, on the order of an electron volt for an isolated cerium atom. We formally show that the localization error can be reduced to zero with improvements to the Jastrow factor alone, and we define a metric of Jastrow sensitivity that may be useful in the design of pseudopotentials. We employ an extrapolation scheme to extract the bare fixed node energymore » and estimate the localization error in both the locality approximation and the T-moves schemes for the Ce atom in charge states 3+/4+. The locality approximation exhibits the lowest Jastrow sensitivity and generally smaller localization errors than T-moves although the locality approximation energy approaches the localization free limit from above/below for the 3+/4+ charge state. We find that energy minimized Jastrow factors including three-body electron-electron-ion terms are the most effective at reducing the localization error for both the locality approximation and T-moves for the case of the Ce atom. Less complex or variance minimized Jastrows are generally less effective. Finally, our results suggest that further improvements to Jastrow factors and trial wavefunction forms may be needed to reduce localization errors to chemical accuracy when medium core pseudopotentials are applied to heavy elements such as Ce.« less

  5. State estimation bias induced by optimization under uncertainty and error cost asymmetry is likely reflected in perception.

    PubMed

    Shimansky, Y P

    2011-05-01

    It is well known from numerous studies that perception can be significantly affected by intended action in many everyday situations, indicating that perception and related decision-making is not a simple, one-way sequence, but a complex iterative cognitive process. However, the underlying functional mechanisms are yet unclear. Based on an optimality approach, a quantitative computational model of one such mechanism has been developed in this study. It is assumed in the model that significant uncertainty about task-related parameters of the environment results in parameter estimation errors and an optimal control system should minimize the cost of such errors in terms of the optimality criterion. It is demonstrated that, if the cost of a parameter estimation error is significantly asymmetrical with respect to error direction, the tendency to minimize error cost creates a systematic deviation of the optimal parameter estimate from its maximum likelihood value. Consequently, optimization of parameter estimate and optimization of control action cannot be performed separately from each other under parameter uncertainty combined with asymmetry of estimation error cost, thus making the certainty equivalence principle non-applicable under those conditions. A hypothesis that not only the action, but also perception itself is biased by the above deviation of parameter estimate is supported by ample experimental evidence. The results provide important insights into the cognitive mechanisms of interaction between sensory perception and planning an action under realistic conditions. Implications for understanding related functional mechanisms of optimal control in the CNS are discussed.

  6. Epistemic-based investigation of the probability of hazard scenarios using Bayesian network for the lifting operation of floating objects

    NASA Astrophysics Data System (ADS)

    Toroody, Ahmad Bahoo; Abaiee, Mohammad Mahdi; Gholamnia, Reza; Ketabdari, Mohammad Javad

    2016-09-01

    Owing to the increase in unprecedented accidents with new root causes in almost all operational areas, the importance of risk management has dramatically risen. Risk assessment, one of the most significant aspects of risk management, has a substantial impact on the system-safety level of organizations, industries, and operations. If the causes of all kinds of failure and the interactions between them are considered, effective risk assessment can be highly accurate. A combination of traditional risk assessment approaches and modern scientific probability methods can help in realizing better quantitative risk assessment methods. Most researchers face the problem of minimal field data with respect to the probability and frequency of each failure. Because of this limitation in the availability of epistemic knowledge, it is important to conduct epistemic estimations by applying the Bayesian theory for identifying plausible outcomes. In this paper, we propose an algorithm and demonstrate its application in a case study for a light-weight lifting operation in the Persian Gulf of Iran. First, we identify potential accident scenarios and present them in an event tree format. Next, excluding human error, we use the event tree to roughly estimate the prior probability of other hazard-promoting factors using a minimal amount of field data. We then use the Success Likelihood Index Method (SLIM) to calculate the probability of human error. On the basis of the proposed event tree, we use the Bayesian network of the provided scenarios to compensate for the lack of data. Finally, we determine the resulting probability of each event based on its evidence in the epistemic estimation format by building on two Bayesian network types: the probability of hazard promotion factors and the Bayesian theory. The study results indicate that despite the lack of available information on the operation of floating objects, a satisfactory result can be achieved using epistemic data.

  7. Flood Forecast Accuracy and Decision Support System Approach: the Venice Case

    NASA Astrophysics Data System (ADS)

    Canestrelli, A.; Di Donato, M.

    2016-02-01

    In the recent years numerical models for weather predictions have experienced continuous advances in technology. As a result, all the disciplines making use of weather forecasts have made significant steps forward. In the case of the Safeguard of Venice, a large effort has been put in order to improve the forecast of tidal levels. In this context, the Istituzione Centro Previsioni e Segnalazioni Maree (ICPSM) of the Venice Municipality has developed and tested many different forecast models, both of the statistical and deterministic type, and has shown to produce very accurate forecasts. For Venice, the maximum admissible forecast error should be (ideally) of the order of ten centimeters at 24 hours. The entity of the forecast error clearly affects the decisional process, which mainly consists of alerting the population, activating the movable barriers installed at the three tidal inlets and contacting the port authority. This process becomes more challenging whenever the weather predictions, and therefore the water level forecasts, suddenly change. These new forecasts have to be quickly transformed into operational tasks. Therefore, it is of the utter importance to set up scheduled alerts and emergency plans by means of easy-to-follow procedures. On this direction, Technital has set up a Decision Support System based on expert procedures that minimizes the human mistakes and, as a consequence, reduces the risk of flooding of the historical center. Moreover, the Decision Support System can communicate predefined alerts to all the interested subjects. The System uses the water levels forecasts produced by the ICPSM by taking into account the accuracy at different leading times. The Decision Support System has been successfully tested with 8 years of data, 6 of them in real time. Venice experience shows that the Decision Support System is an essential tool which assesses the risks associated with a particular event, provides clear operational procedures and minimizes the impact of natural floods on human lives, private properties and historical monuments.

  8. A constrained-gradient method to control divergence errors in numerical MHD

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2016-10-01

    In numerical magnetohydrodynamics (MHD), a major challenge is maintaining nabla \\cdot {B}=0. Constrained transport (CT) schemes achieve this but have been restricted to specific methods. For more general (meshless, moving-mesh, ALE) methods, `divergence-cleaning' schemes reduce the nabla \\cdot {B} errors; however they can still be significant and can lead to systematic errors which converge away slowly. We propose a new constrained gradient (CG) scheme which augments these with a projection step, and can be applied to any numerical scheme with a reconstruction. This iteratively approximates the least-squares minimizing, globally divergence-free reconstruction of the fluid. Unlike `locally divergence free' methods, this actually minimizes the numerically unstable nabla \\cdot {B} terms, without affecting the convergence order of the method. We implement this in the mesh-free code GIZMO and compare various test problems. Compared to cleaning schemes, our CG method reduces the maximum nabla \\cdot {B} errors by ˜1-3 orders of magnitude (˜2-5 dex below typical errors if no nabla \\cdot {B} cleaning is used). By preventing large nabla \\cdot {B} at discontinuities, this eliminates systematic errors at jumps. Our CG results are comparable to CT methods; for practical purposes, the nabla \\cdot {B} errors are eliminated. The cost is modest, ˜30 per cent of the hydro algorithm, and the CG correction can be implemented in a range of numerical MHD methods. While for many problems, we find Dedner-type cleaning schemes are sufficient for good results, we identify a range of problems where using only Powell or `8-wave' cleaning can produce order-of-magnitude errors.

  9. Error reduction in three-dimensional metrology combining optical and touch probe data

    NASA Astrophysics Data System (ADS)

    Gerde, Janice R.; Christens-Barry, William A.

    2010-08-01

    Analysis of footwear under the Harmonized Tariff Schedule of the United States (HTSUS) is partly based on identifying the boundary ("parting line") between the "external surface area upper" (ESAU) and the sample's sole. Often, that boundary is obscured. We establish the parting line as the curved intersection between the sample outer surface and its insole surface. The outer surface is determined by discrete point cloud coordinates obtained using a laser scanner. The insole surface is defined by point cloud data, obtained using a touch probe device-a coordinate measuring machine (CMM). Because these point cloud data sets do not overlap spatially, a polynomial surface is fitted to the insole data and extended to intersect a mesh fitted to the outer surface point cloud. This line of intersection defines the ESAU boundary, permitting further fractional area calculations to proceed. The defined parting line location is sensitive to the polynomial used to fit experimental data. Extrapolation to the intersection with the ESAU can heighten this sensitivity. We discuss a methodology for transforming these data into a common reference frame. Three scenarios are considered: measurement error in point cloud coordinates, from fitting a polynomial surface to a point cloud then extrapolating beyond the data set, and error from reference frame transformation. These error sources can influence calculated surface areas. We describe experiments to assess error magnitude, the sensitivity of calculated results on these errors, and minimizing error impact on calculated quantities. Ultimately, we must ensure that statistical error from these procedures is minimized and within acceptance criteria.

  10. Reflections on human error - Matters of life and death

    NASA Technical Reports Server (NTRS)

    Wiener, Earl L.

    1989-01-01

    The last two decades have witnessed a rapid growth in the introduction of automatic devices into aircraft cockpits, and eleswhere in human-machine systems. This was motivated in part by the assumption that when human functioning is replaced by machine functioning, human error is eliminated. Experience to date shows that this is far from true, and that automation does not replace humans, but changes their role in the system, as well as the types and severity of the errors they make. This altered role may lead to fewer, but more critical errors. Intervention strategies to prevent these errors, or ameliorate their consequences include basic human factors engineering of the interface, enhanced warning and alerting systems, and more intelligent interfaces that understand the strategic intent of the crew and can detect and trap inconsistent or erroneous input before it affects the system.

  11. Representation of deformable motion for compression of dynamic cardiac image data

    NASA Astrophysics Data System (ADS)

    Weinlich, Andreas; Amon, Peter; Hutter, Andreas; Kaup, André

    2012-02-01

    We present a new approach for efficient estimation and storage of tissue deformation in dynamic medical image data like 3-D+t computed tomography reconstructions of human heart acquisitions. Tissue deformation between two points in time can be described by means of a displacement vector field indicating for each voxel of a slice, from which position in the previous slice at a fixed position in the third dimension it has moved to this position. Our deformation model represents the motion in a compact manner using a down-sampled potential function of the displacement vector field. This function is obtained by a Gauss-Newton minimization of the estimation error image, i. e., the difference between the current and the deformed previous slice. For lossless or lossy compression of volume slices, the potential function and the error image can afterwards be coded separately. By assuming deformations instead of translational motion, a subsequent coding algorithm using this method will achieve better compression ratios for medical volume data than with conventional block-based motion compensation known from video coding. Due to the smooth prediction without block artifacts, particularly whole-image transforms like wavelet decomposition as well as intra-slice prediction methods can benefit from this approach. We show that with discrete cosine as well as with Karhunen-Lo`eve transform the method can achieve a better energy compaction of the error image than block-based motion compensation while reaching approximately the same prediction error energy.

  12. A stochastic dynamic model for human error analysis in nuclear power plants

    NASA Astrophysics Data System (ADS)

    Delgado-Loperena, Dharma

    Nuclear disasters like Three Mile Island and Chernobyl indicate that human performance is a critical safety issue, sending a clear message about the need to include environmental press and competence aspects in research. This investigation was undertaken to serve as a roadmap for studying human behavior through the formulation of a general solution equation. The theoretical model integrates models from two heretofore-disassociated disciplines (behavior specialists and technical specialists), that historically have independently studied the nature of error and human behavior; including concepts derived from fractal and chaos theory; and suggests re-evaluation of base theory regarding human error. The results of this research were based on comprehensive analysis of patterns of error, with the omnipresent underlying structure of chaotic systems. The study of patterns lead to a dynamic formulation, serving for any other formula used to study human error consequences. The search for literature regarding error yielded insight for the need to include concepts rooted in chaos theory and strange attractors---heretofore unconsidered by mainstream researchers who investigated human error in nuclear power plants or those who employed the ecological model in their work. The study of patterns obtained from the rupture of a steam generator tube (SGTR) event simulation, provided a direct application to aspects of control room operations in nuclear power plant operations. In doing so, the conceptual foundation based in the understanding of the patterns of human error analysis can be gleaned, resulting in reduced and prevent undesirable events.

  13. An introduction of component fusion extend Kalman filtering method

    NASA Astrophysics Data System (ADS)

    Geng, Yue; Lei, Xusheng

    2018-05-01

    In this paper, the Component Fusion Extend Kalman Filtering (CFEKF) algorithm is proposed. Assuming each component of error propagation are independent with Gaussian distribution. The CFEKF can be obtained through the maximum likelihood of propagation error, which can adjust the state transition matrix and the measured matrix adaptively. With minimize linearization error, CFEKF can an effectively improve the estimation accuracy of nonlinear system state. The computation of CFEKF is similar to EKF which is easy for application.

  14. Wheel speed management control system for spacecraft

    NASA Technical Reports Server (NTRS)

    Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)

    1991-01-01

    A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.

  15. Inelastic scattering with Chebyshev polynomials and preconditioned conjugate gradient minimization.

    PubMed

    Temel, Burcin; Mills, Greg; Metiu, Horia

    2008-03-27

    We describe and test an implementation, using a basis set of Chebyshev polynomials, of a variational method for solving scattering problems in quantum mechanics. This minimum error method (MEM) determines the wave function Psi by minimizing the least-squares error in the function (H Psi - E Psi), where E is the desired scattering energy. We compare the MEM to an alternative, the Kohn variational principle (KVP), by solving the Secrest-Johnson model of two-dimensional inelastic scattering, which has been studied previously using the KVP and for which other numerical solutions are available. We use a conjugate gradient (CG) method to minimize the error, and by preconditioning the CG search, we are able to greatly reduce the number of iterations necessary; the method is thus faster and more stable than a matrix inversion, as is required in the KVP. Also, we avoid errors due to scattering off of the boundaries, which presents substantial problems for other methods, by matching the wave function in the interaction region to the correct asymptotic states at the specified energy; the use of Chebyshev polynomials allows this boundary condition to be implemented accurately. The use of Chebyshev polynomials allows for a rapid and accurate evaluation of the kinetic energy. This basis set is as efficient as plane waves but does not impose an artificial periodicity on the system. There are problems in surface science and molecular electronics which cannot be solved if periodicity is imposed, and the Chebyshev basis set is a good alternative in such situations.

  16. Accurate prediction of cardiorespiratory fitness using cycle ergometry in minimally disabled persons with relapsing-remitting multiple sclerosis.

    PubMed

    Motl, Robert W; Fernhall, Bo

    2012-03-01

    To examine the accuracy of predicting peak oxygen consumption (VO(2peak)) primarily from peak work rate (WR(peak)) recorded during a maximal, incremental exercise test on a cycle ergometer among persons with relapsing-remitting multiple sclerosis (RRMS) who had minimal disability. Cross-sectional study. Clinical research laboratory. Women with RRMS (n=32) and sex-, age-, height-, and weight-matched healthy controls (n=16) completed an incremental exercise test on a cycle ergometer to volitional termination. Not applicable. Measured and predicted VO(2peak) and WR(peak). There were strong, statistically significant associations between measured and predicted VO(2peak) in the overall sample (R(2)=.89, standard error of the estimate=127.4 mL/min) and subsamples with (R(2)=.89, standard error of the estimate=131.3 mL/min) and without (R(2)=.85, standard error of the estimate=126.8 mL/min) multiple sclerosis (MS) based on the linear regression analyses. Based on the 95% confidence limits for worst-case errors, the equation predicted VO(2peak) within 10% of its true value in 95 of every 100 subjects with MS. Peak VO(2) can be accurately predicted in persons with RRMS who have minimal disability as it is in controls by using established equations and WR(peak) recorded from a maximal, incremental exercise test on a cycle ergometer. Copyright © 2012 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Boosted ARTMAP: modifications to fuzzy ARTMAP motivated by boosting theory.

    PubMed

    Verzi, Stephen J; Heileman, Gregory L; Georgiopoulos, Michael

    2006-05-01

    In this paper, several modifications to the Fuzzy ARTMAP neural network architecture are proposed for conducting classification in complex, possibly noisy, environments. The goal of these modifications is to improve upon the generalization performance of Fuzzy ART-based neural networks, such as Fuzzy ARTMAP, in these situations. One of the major difficulties of employing Fuzzy ARTMAP on such learning problems involves over-fitting of the training data. Structural risk minimization is a machine-learning framework that addresses the issue of over-fitting by providing a backbone for analysis as well as an impetus for the design of better learning algorithms. The theory of structural risk minimization reveals a trade-off between training error and classifier complexity in reducing generalization error, which will be exploited in the learning algorithms proposed in this paper. Boosted ART extends Fuzzy ART by allowing the spatial extent of each cluster formed to be adjusted independently. Boosted ARTMAP generalizes upon Fuzzy ARTMAP by allowing non-zero training error in an effort to reduce the hypothesis complexity and hence improve overall generalization performance. Although Boosted ARTMAP is strictly speaking not a boosting algorithm, the changes it encompasses were motivated by the goals that one strives to achieve when employing boosting. Boosted ARTMAP is an on-line learner, it does not require excessive parameter tuning to operate, and it reduces precisely to Fuzzy ARTMAP for particular parameter values. Another architecture described in this paper is Structural Boosted ARTMAP, which uses both Boosted ART and Boosted ARTMAP to perform structural risk minimization learning. Structural Boosted ARTMAP will allow comparison of the capabilities of off-line versus on-line learning as well as empirical risk minimization versus structural risk minimization using Fuzzy ARTMAP-based neural network architectures. Both empirical and theoretical results are presented to enhance the understanding of these architectures.

  18. Alternative Regression Equations for Estimation of Annual Peak-Streamflow Frequency for Undeveloped Watersheds in Texas using PRESS Minimization

    USGS Publications Warehouse

    Asquith, William H.; Thompson, David B.

    2008-01-01

    The U.S. Geological Survey, in cooperation with the Texas Department of Transportation and in partnership with Texas Tech University, investigated a refinement of the regional regression method and developed alternative equations for estimation of peak-streamflow frequency for undeveloped watersheds in Texas. A common model for estimation of peak-streamflow frequency is based on the regional regression method. The current (2008) regional regression equations for 11 regions of Texas are based on log10 transformations of all regression variables (drainage area, main-channel slope, and watershed shape). Exclusive use of log10-transformation does not fully linearize the relations between the variables. As a result, some systematic bias remains in the current equations. The bias results in overestimation of peak streamflow for both the smallest and largest watersheds. The bias increases with increasing recurrence interval. The primary source of the bias is the discernible curvilinear relation in log10 space between peak streamflow and drainage area. Bias is demonstrated by selected residual plots with superimposed LOWESS trend lines. To address the bias, a statistical framework based on minimization of the PRESS statistic through power transformation of drainage area is described and implemented, and the resulting regression equations are reported. Compared to log10-exclusive equations, the equations derived from PRESS minimization have PRESS statistics and residual standard errors less than the log10 exclusive equations. Selected residual plots for the PRESS-minimized equations are presented to demonstrate that systematic bias in regional regression equations for peak-streamflow frequency estimation in Texas can be reduced. Because the overall error is similar to the error associated with previous equations and because the bias is reduced, the PRESS-minimized equations reported here provide alternative equations for peak-streamflow frequency estimation.

  19. Model and experiments to optimize co-adaptation in a simplified myoelectric control system

    NASA Astrophysics Data System (ADS)

    Couraud, M.; Cattaert, D.; Paclet, F.; Oudeyer, P. Y.; de Rugy, A.

    2018-04-01

    Objective. To compensate for a limb lost in an amputation, myoelectric prostheses use surface electromyography (EMG) from the remaining muscles to control the prosthesis. Despite considerable progress, myoelectric controls remain markedly different from the way we normally control movements, and require intense user adaptation. To overcome this, our goal is to explore concurrent machine co-adaptation techniques that are developed in the field of brain-machine interface, and that are beginning to be used in myoelectric controls. Approach. We combined a simplified myoelectric control with a perturbation for which human adaptation is well characterized and modeled, in order to explore co-adaptation settings in a principled manner. Results. First, we reproduced results obtained in a classical visuomotor rotation paradigm in our simplified myoelectric context, where we rotate the muscle pulling vectors used to reconstruct wrist force from EMG. Then, a model of human adaptation in response to directional error was used to simulate various co-adaptation settings, where perturbations and machine co-adaptation are both applied on muscle pulling vectors. These simulations established that a relatively low gain of machine co-adaptation that minimizes final errors generates slow and incomplete adaptation, while higher gains increase adaptation rate but also errors by amplifying noise. After experimental verification on real subjects, we tested a variable gain that cumulates the advantages of both, and implemented it with directionally tuned neurons similar to those used to model human adaptation. This enables machine co-adaptation to locally improve myoelectric control, and to absorb more challenging perturbations. Significance. The simplified context used here enabled to explore co-adaptation settings in both simulations and experiments, and to raise important considerations such as the need for a variable gain encoded locally. The benefits and limits of extending this approach to more complex and functional myoelectric contexts are discussed.

  20. Comparing Parameter Estimation Techniques for an Electrical Power Transformer Oil Temperature Prediction Model

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1999-01-01

    This paper examines various sources of error in MIT's improved top oil temperature rise over ambient temperature model and estimation process. The sources of error are the current parameter estimation technique, quantization noise, and post-processing of the transformer data. Results from this paper will show that an output error parameter estimation technique should be selected to replace the current least squares estimation technique. The output error technique obtained accurate predictions of transformer behavior, revealed the best error covariance, obtained consistent parameter estimates, and provided for valid and sensible parameters. This paper will also show that the output error technique should be used to minimize errors attributed to post-processing (decimation) of the transformer data. Models used in this paper are validated using data from a large transformer in service.

  1. Attitude control with realization of linear error dynamics

    NASA Technical Reports Server (NTRS)

    Paielli, Russell A.; Bach, Ralph E.

    1993-01-01

    An attitude control law is derived to realize linear unforced error dynamics with the attitude error defined in terms of rotation group algebra (rather than vector algebra). Euler parameters are used in the rotational dynamics model because they are globally nonsingular, but only the minimal three Euler parameters are used in the error dynamics model because they have no nonlinear mathematical constraints to prevent the realization of linear error dynamics. The control law is singular only when the attitude error angle is exactly pi rad about any eigenaxis, and a simple intuitive modification at the singularity allows the control law to be used globally. The forced error dynamics are nonlinear but stable. Numerical simulation tests show that the control law performs robustly for both initial attitude acquisition and attitude control.

  2. Human factors process failure modes and effects analysis (HF PFMEA) software tool

    NASA Technical Reports Server (NTRS)

    Chandler, Faith T. (Inventor); Relvini, Kristine M. (Inventor); Shedd, Nathaneal P. (Inventor); Valentino, William D. (Inventor); Philippart, Monica F. (Inventor); Bessette, Colette I. (Inventor)

    2011-01-01

    Methods, computer-readable media, and systems for automatically performing Human Factors Process Failure Modes and Effects Analysis for a process are provided. At least one task involved in a process is identified, where the task includes at least one human activity. The human activity is described using at least one verb. A human error potentially resulting from the human activity is automatically identified, the human error is related to the verb used in describing the task. A likelihood of occurrence, detection, and correction of the human error is identified. The severity of the effect of the human error is identified. The likelihood of occurrence, and the severity of the risk of potential harm is identified. The risk of potential harm is compared with a risk threshold to identify the appropriateness of corrective measures.

  3. Air Force Academy Homepage

    Science.gov Websites

    Chaplain Corps Cadet Chapel Community Center Chapel Institutional Review Board Not Human Subjects Research Requirements 7 Not Human Subjects Research Form 8 Researcher Instructions - Activities Submitted to DoD IRB 9 Review 18 Not Human Subjects Errors 19 Exempt Research Most Frequent Errors 20 Most Frequent Errors for

  4. Development of an FAA-EUROCONTROL technique for the analysis of human error in ATM : final report.

    DOT National Transportation Integrated Search

    2002-07-01

    Human error has been identified as a dominant risk factor in safety-oriented industries such as air traffic control (ATC). However, little is known about the factors leading to human errors in current air traffic management (ATM) systems. The first s...

  5. Human Error: The Stakes Are Raised.

    ERIC Educational Resources Information Center

    Greenberg, Joel

    1980-01-01

    Mistakes related to the operation of nuclear power plants and other technologically complex systems are discussed. Recommendations are given for decreasing the chance of human error in the operation of nuclear plants. The causes of the Three Mile Island incident are presented in terms of the human error element. (SA)

  6. Avoiding Human Error in Mission Operations: Cassini Flight Experience

    NASA Technical Reports Server (NTRS)

    Burk, Thomas A.

    2012-01-01

    Operating spacecraft is a never-ending challenge and the risk of human error is ever- present. Many missions have been significantly affected by human error on the part of ground controllers. The Cassini mission at Saturn has not been immune to human error, but Cassini operations engineers use tools and follow processes that find and correct most human errors before they reach the spacecraft. What is needed are skilled engineers with good technical knowledge, good interpersonal communications, quality ground software, regular peer reviews, up-to-date procedures, as well as careful attention to detail and the discipline to test and verify all commands that will be sent to the spacecraft. Two areas of special concern are changes to flight software and response to in-flight anomalies. The Cassini team has a lot of practical experience in all these areas and they have found that well-trained engineers with good tools who follow clear procedures can catch most errors before they get into command sequences to be sent to the spacecraft. Finally, having a robust and fault-tolerant spacecraft that allows ground controllers excellent visibility of its condition is the most important way to ensure human error does not compromise the mission.

  7. Good people who try their best can have problems: recognition of human factors and how to minimise error.

    PubMed

    Brennan, Peter A; Mitchell, David A; Holmes, Simon; Plint, Simon; Parry, David

    2016-01-01

    Human error is as old as humanity itself and is an appreciable cause of mistakes by both organisations and people. Much of the work related to human factors in causing error has originated from aviation where mistakes can be catastrophic not only for those who contribute to the error, but for passengers as well. The role of human error in medical and surgical incidents, which are often multifactorial, is becoming better understood, and includes both organisational issues (by the employer) and potential human factors (at a personal level). Mistakes as a result of individual human factors and surgical teams should be better recognised and emphasised. Attitudes and acceptance of preoperative briefing has improved since the introduction of the World Health Organization (WHO) surgical checklist. However, this does not address limitations or other safety concerns that are related to performance, such as stress and fatigue, emotional state, hunger, awareness of what is going on situational awareness, and other factors that could potentially lead to error. Here we attempt to raise awareness of these human factors, and highlight how they can lead to error, and how they can be minimised in our day-to-day practice. Can hospitals move from being "high risk industries" to "high reliability organisations"? Copyright © 2015 The British Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Two-Step Fair Scheduling of Continuous Media Streams over Error-Prone Wireless Channels

    NASA Astrophysics Data System (ADS)

    Oh, Soohyun; Lee, Jin Wook; Park, Taejoon; Jo, Tae-Chang

    In wireless cellular networks, streaming of continuous media (with strict QoS requirements) over wireless links is challenging due to their inherent unreliability characterized by location-dependent, bursty errors. To address this challenge, we present a two-step scheduling algorithm for a base station to provide streaming of continuous media to wireless clients over the error-prone wireless links. The proposed algorithm is capable of minimizing the packet loss rate of individual clients in the presence of error bursts, by transmitting packets in the round-robin manner and also adopting a mechanism for channel prediction and swapping.

  9. Posteriori error determination and grid adaptation for AMR and ALE computational fluid dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lapenta, G. M.

    2002-01-01

    We discuss grid adaptation for application to AMR and ALE codes. Two new contributions are presented. First, a new method to locate the regions where the truncation error is being created due to an insufficient accuracy: the operator recovery error origin (OREO) detector. The OREO detector is automatic, reliable, easy to implement and extremely inexpensive. Second, a new grid motion technique is presented for application to ALE codes. The method is based on the Brackbill-Saltzman approach but it is directly linked to the OREO detector and moves the grid automatically to minimize the error.

  10. Does the cost function matter in Bayes decision rule?

    PubMed

    Schlü ter, Ralf; Nussbaum-Thom, Markus; Ney, Hermann

    2012-02-01

    In many tasks in pattern recognition, such as automatic speech recognition (ASR), optical character recognition (OCR), part-of-speech (POS) tagging, and other string recognition tasks, we are faced with a well-known inconsistency: The Bayes decision rule is usually used to minimize string (symbol sequence) error, whereas, in practice, we want to minimize symbol (word, character, tag, etc.) error. When comparing different recognition systems, we do indeed use symbol error rate as an evaluation measure. The topic of this work is to analyze the relation between string (i.e., 0-1) and symbol error (i.e., metric, integer valued) cost functions in the Bayes decision rule, for which fundamental analytic results are derived. Simple conditions are derived for which the Bayes decision rule with integer-valued metric cost function and with 0-1 cost gives the same decisions or leads to classes with limited cost. The corresponding conditions can be tested with complexity linear in the number of classes. The results obtained do not make any assumption w.r.t. the structure of the underlying distributions or the classification problem. Nevertheless, the general analytic results are analyzed via simulations of string recognition problems with Levenshtein (edit) distance cost function. The results support earlier findings that considerable improvements are to be expected when initial error rates are high.

  11. Using a Delphi Method to Identify Human Factors Contributing to Nursing Errors.

    PubMed

    Roth, Cheryl; Brewer, Melanie; Wieck, K Lynn

    2017-07-01

    The purpose of this study was to identify human factors associated with nursing errors. Using a Delphi technique, this study used feedback from a panel of nurse experts (n = 25) on an initial qualitative survey questionnaire followed by summarizing the results with feedback and confirmation. Synthesized factors regarding causes of errors were incorporated into a quantitative Likert-type scale, and the original expert panel participants were queried a second time to validate responses. The list identified 24 items as most common causes of nursing errors, including swamping and errors made by others that nurses are expected to recognize and fix. The responses provided a consensus top 10 errors list based on means with heavy workload and fatigue at the top of the list. The use of the Delphi survey established consensus and developed a platform upon which future study of nursing errors can evolve as a link to future solutions. This list of human factors in nursing errors should serve to stimulate dialogue among nurses about how to prevent errors and improve outcomes. Human and system failures have been the subject of an abundance of research, yet nursing errors continue to occur. © 2016 Wiley Periodicals, Inc.

  12. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators.

    PubMed

    Belley, Matthew D; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J; Chen, Benny J; Dewhirst, Mark W; Yoshizumi, Terry T

    2014-03-01

    Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Average doses in soft-tissue organs were found to vary by as much as 23%-32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.

  13. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators

    PubMed Central

    Belley, Matthew D.; Wang, Chu; Nguyen, Giao; Gunasingha, Rathnayaka; Chao, Nelson J.; Chen, Benny J.; Dewhirst, Mark W.; Yoshizumi, Terry T.

    2014-01-01

    Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application for tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigning a single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs. PMID:24593746

  14. Toward an organ based dose prescription method for the improved accuracy of murine dose in orthovoltage x-ray irradiators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belley, Matthew D.; Wang, Chu; Nguyen, Giao

    2014-03-15

    Purpose: Accurate dosimetry is essential when irradiating mice to ensure that functional and molecular endpoints are well understood for the radiation dose delivered. Conventional methods of prescribing dose in mice involve the use of a single dose rate measurement and assume a uniform average dose throughout all organs of the entire mouse. Here, the authors report the individual average organ dose values for the irradiation of a 12, 23, and 33 g mouse on a 320 kVp x-ray irradiator and calculate the resulting error from using conventional dose prescription methods. Methods: Organ doses were simulated in the Geant4 application formore » tomographic emission toolkit using the MOBY mouse whole-body phantom. Dosimetry was performed for three beams utilizing filters A (1.65 mm Al), B (2.0 mm Al), and C (0.1 mm Cu + 2.5 mm Al), respectively. In addition, simulated x-ray spectra were validated with physical half-value layer measurements. Results: Average doses in soft-tissue organs were found to vary by as much as 23%–32% depending on the filter. Compared to filters A and B, filter C provided the hardest beam and had the lowest variation in soft-tissue average organ doses across all mouse sizes, with a difference of 23% for the median mouse size of 23 g. Conclusions: This work suggests a new dose prescription method in small animal dosimetry: it presents a departure from the conventional approach of assigninga single dose value for irradiation of mice to a more comprehensive approach of characterizing individual organ doses to minimize the error and uncertainty. In human radiation therapy, clinical treatment planning establishes the target dose as well as the dose distribution, however, this has generally not been done in small animal research. These results suggest that organ dose errors will be minimized by calibrating the dose rates for all filters, and using different dose rates for different organs.« less

  15. MO-G-18C-05: Real-Time Prediction in Free-Breathing Perfusion MRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, H; Liu, W; Ruan, D

    Purpose: The aim is to minimize frame-wise difference errors caused by respiratory motion and eliminate the need for breath-holds in magnetic resonance imaging (MRI) sequences with long acquisitions and repeat times (TRs). The technique is being applied to perfusion MRI using arterial spin labeling (ASL). Methods: Respiratory motion prediction (RMP) using navigator echoes was implemented in ASL. A least-square method was used to extract the respiratory motion information from the 1D navigator. A generalized artificial neutral network (ANN) with three layers was developed to simultaneously predict 10 time points forward in time and correct for respiratory motion during MRI acquisition.more » During the training phase, the parameters of the ANN were optimized to minimize the aggregated prediction error based on acquired navigator data. During realtime prediction, the trained ANN was applied to the most recent estimated displacement trajectory to determine in real-time the amount of spatial Results: The respiratory motion information extracted from the least-square method can accurately represent the navigator profiles, with a normalized chi-square value of 0.037±0.015 across the training phase. During the 60-second training phase, the ANN successfully learned the respiratory motion pattern from the navigator training data. During real-time prediction, the ANN received displacement estimates and predicted the motion in the continuum of a 1.0 s prediction window. The ANN prediction was able to provide corrections for different respiratory states (i.e., inhalation/exhalation) during real-time scanning with a mean absolute error of < 1.8 mm. Conclusion: A new technique enabling free-breathing acquisition during MRI is being developed. A generalized ANN development has demonstrated its efficacy in predicting a continuum of motion profile for volumetric imaging based on navigator inputs. Future work will enhance the robustness of ANN and verify its effectiveness with human subjects. Research supported by National Institutes of Health National Cancer Institute Grant R01 CA159471-01.« less

  16. Equivalent Linearization Analysis of Geometrically Nonlinear Random Vibrations Using Commercial Finite Element Codes

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Muravyov, Alexander A.

    2002-01-01

    Two new equivalent linearization implementations for geometrically nonlinear random vibrations are presented. Both implementations are based upon a novel approach for evaluating the nonlinear stiffness within commercial finite element codes and are suitable for use with any finite element code having geometrically nonlinear static analysis capabilities. The formulation includes a traditional force-error minimization approach and a relatively new version of a potential energy-error minimization approach, which has been generalized for multiple degree-of-freedom systems. Results for a simply supported plate under random acoustic excitation are presented and comparisons of the displacement root-mean-square values and power spectral densities are made with results from a nonlinear time domain numerical simulation.

  17. There is more to accommodation of the eye than simply minimizing retinal blur

    PubMed Central

    Marín-Franch, I.; Del Águila-Carrasco, A. J.; Bernal-Molina, P.; Esteve-Taboada, J. J.; López-Gil, N.; Montés-Micó, R.; Kruger, P. B.

    2017-01-01

    Eyes of children and young adults change their optical power to focus nearby objects at the retina. But does accommodation function by trial and error to minimize blur and maximize contrast as is generally accepted? Three experiments in monocular and monochromatic vision were performed under two conditions while aberrations were being corrected. In the first condition, feedback was available to the eye from both optical vergence and optical blur. In the second, feedback was only available from target blur. Accommodation was less precise for the second condition, suggesting that it is more than a trial-and-error function. Optical vergence itself seems to be an important cue for accommodation. PMID:29082097

  18. Boredom begets creativity: A solution to the exploitation-exploration trade-off in predictive coding.

    PubMed

    Gomez-Ramirez, Jaime; Costa, Tommaso

    2017-12-01

    Here we investigate whether systems that minimize prediction error e.g. predictive coding, can also show creativity, or on the contrary, prediction error minimization unqualifies for the design of systems that respond in creative ways to non-recurrent problems. We argue that there is a key ingredient that has been overlooked by researchers that needs to be incorporated to understand intelligent behavior in biological and technical systems. This ingredient is boredom. We propose a mathematical model based on the Black-Scholes-Merton equation which provides mechanistic insights into the interplay between boredom and prediction pleasure as the key drivers of behavior. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A study of pilot modeling in multi-controller tasks

    NASA Technical Reports Server (NTRS)

    Whitbeck, R. F.; Knight, J. R.

    1972-01-01

    A modeling approach, which utilizes a matrix of transfer functions to describe the human pilot in multiple input, multiple output control situations, is studied. The approach used was to extend a well established scalar Wiener-Hopf minimization technique to the matrix case and then study, via a series of experiments, the data requirements when only finite record lengths are available. One of these experiments was a two-controller roll tracking experiment designed to force the pilot to use rudder in order to coordinate and reduce the effects of aileron yaw. One model was computed for the case where the signals used to generate the spectral matrix are error and bank angle while another model was computed for the case where error and yaw angle are the inputs. Several anomalies were observed to be present in the experimental data. These are defined by the descriptive terms roll up, break up, and roll down. Due to these algorithm induced anomalies, the frequency band over which reliable estimates of power spectra can be achieved is considerably less than predicted by the sampling theorem.

  20. QR images: optimized image embedding in QR codes.

    PubMed

    Garateguy, Gonzalo J; Arce, Gonzalo R; Lau, Daniel L; Villarreal, Ofelia P

    2014-07-01

    This paper introduces the concept of QR images, an automatic method to embed QR codes into color images with bounded probability of detection error. These embeddings are compatible with standard decoding applications and can be applied to any color image with full area coverage. The QR information bits are encoded into the luminance values of the image, taking advantage of the immunity of QR readers against local luminance disturbances. To mitigate the visual distortion of the QR image, the algorithm utilizes halftoning masks for the selection of modified pixels and nonlinear programming techniques to locally optimize luminance levels. A tractable model for the probability of error is developed and models of the human visual system are considered in the quality metric used to optimize the luminance levels of the QR image. To minimize the processing time, the optimization techniques proposed to consider the mechanics of a common binarization method and are designed to be amenable for parallel implementations. Experimental results show the graceful degradation of the decoding rate and the perceptual quality as a function the embedding parameters. A visual comparison between the proposed and existing methods is presented.

  1. IMU-Based Gait Recognition Using Convolutional Neural Networks and Multi-Sensor Fusion.

    PubMed

    Dehzangi, Omid; Taherisadr, Mojtaba; ChangalVala, Raghvendar

    2017-11-27

    The wide spread usage of wearable sensors such as in smart watches has provided continuous access to valuable user generated data such as human motion that could be used to identify an individual based on his/her motion patterns such as, gait. Several methods have been suggested to extract various heuristic and high-level features from gait motion data to identify discriminative gait signatures and distinguish the target individual from others. However, the manual and hand crafted feature extraction is error prone and subjective. Furthermore, the motion data collected from inertial sensors have complex structure and the detachment between manual feature extraction module and the predictive learning models might limit the generalization capabilities. In this paper, we propose a novel approach for human gait identification using time-frequency (TF) expansion of human gait cycles in order to capture joint 2 dimensional (2D) spectral and temporal patterns of gait cycles. Then, we design a deep convolutional neural network (DCNN) learning to extract discriminative features from the 2D expanded gait cycles and jointly optimize the identification model and the spectro-temporal features in a discriminative fashion. We collect raw motion data from five inertial sensors placed at the chest, lower-back, right hand wrist, right knee, and right ankle of each human subject synchronously in order to investigate the impact of sensor location on the gait identification performance. We then present two methods for early (input level) and late (decision score level) multi-sensor fusion to improve the gait identification generalization performance. We specifically propose the minimum error score fusion (MESF) method that discriminatively learns the linear fusion weights of individual DCNN scores at the decision level by minimizing the error rate on the training data in an iterative manner. 10 subjects participated in this study and hence, the problem is a 10-class identification task. Based on our experimental results, 91% subject identification accuracy was achieved using the best individual IMU and 2DTF-DCNN. We then investigated our proposed early and late sensor fusion approaches, which improved the gait identification accuracy of the system to 93.36% and 97.06%, respectively.

  2. Minimizing Experimental Error in Thinning Research

    Treesearch

    C. B. Briscoe

    1964-01-01

    Many diverse approaches have been made prescribing and evaluating thinnings on an objective basis. None of the techniques proposed hasbeen widely accepted. Indeed. none has been proven superior to the others nor even widely applicable. There are at least two possible reasons for this: none of the techniques suggested is of any general utility and/or experimental error...

  3. Temporally diffeomorphic cardiac motion estimation from three-dimensional echocardiography by minimization of intensity consistency error.

    PubMed

    Zhang, Zhijun; Ashraf, Muhammad; Sahn, David J; Song, Xubo

    2014-05-01

    Quantitative analysis of cardiac motion is important for evaluation of heart function. Three dimensional (3D) echocardiography is among the most frequently used imaging modalities for motion estimation because it is convenient, real-time, low-cost, and nonionizing. However, motion estimation from 3D echocardiographic sequences is still a challenging problem due to low image quality and image corruption by noise and artifacts. The authors have developed a temporally diffeomorphic motion estimation approach in which the velocity field instead of the displacement field was optimized. The optimal velocity field optimizes a novel similarity function, which we call the intensity consistency error, defined as multiple consecutive frames evolving to each time point. The optimization problem is solved by using the steepest descent method. Experiments with simulated datasets, images of anex vivo rabbit phantom, images of in vivo open-chest pig hearts, and healthy human images were used to validate the authors' method. Simulated and real cardiac sequences tests showed that results in the authors' method are more accurate than other competing temporal diffeomorphic methods. Tests with sonomicrometry showed that the tracked crystal positions have good agreement with ground truth and the authors' method has higher accuracy than the temporal diffeomorphic free-form deformation (TDFFD) method. Validation with an open-access human cardiac dataset showed that the authors' method has smaller feature tracking errors than both TDFFD and frame-to-frame methods. The authors proposed a diffeomorphic motion estimation method with temporal smoothness by constraining the velocity field to have maximum local intensity consistency within multiple consecutive frames. The estimated motion using the authors' method has good temporal consistency and is more accurate than other temporally diffeomorphic motion estimation methods.

  4. Auditory Alterations in Children Infected by Human Immunodeficiency Virus Verified Through Auditory Processing Test

    PubMed Central

    Romero, Ana Carla Leite; Alfaya, Lívia Marangoni; Gonçales, Alina Sanches; Frizzo, Ana Claudia Figueiredo; Isaac, Myriam de Lima

    2016-01-01

    Introduction The auditory system of HIV-positive children may have deficits at various levels, such as the high incidence of problems in the middle ear that can cause hearing loss. Objective The objective of this study is to characterize the development of children infected by the Human Immunodeficiency Virus (HIV) in the Simplified Auditory Processing Test (SAPT) and the Staggered Spondaic Word Test. Methods We performed behavioral tests composed of the Simplified Auditory Processing Test and the Portuguese version of the Staggered Spondaic Word Test (SSW). The participants were 15 children infected by HIV, all using antiretroviral medication. Results The children had abnormal auditory processing verified by Simplified Auditory Processing Test and the Portuguese version of SSW. In the Simplified Auditory Processing Test, 60% of the children presented hearing impairment. In the SAPT, the memory test for verbal sounds showed more errors (53.33%); whereas in SSW, 86.67% of the children showed deficiencies indicating deficit in figure-ground, attention, and memory auditory skills. Furthermore, there are more errors in conditions of background noise in both age groups, where most errors were in the left ear in the Group of 8-year-olds, with similar results for the group aged 9 years. Conclusion The high incidence of hearing loss in children with HIV and comorbidity with several biological and environmental factors indicate the need for: 1) familiar and professional awareness of the impact on auditory alteration on the developing and learning of the children with HIV, and 2) access to educational plans and follow-up with multidisciplinary teams as early as possible to minimize the damage caused by auditory deficits. PMID:28050213

  5. FRamework Assessing Notorious Contributing Influences for Error (FRANCIE): Perspective on Taxonomy Development to Support Error Reporting and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lon N. Haney; David I. Gertman

    2003-04-01

    Beginning in the 1980s a primary focus of human reliability analysis was estimation of human error probabilities. However, detailed qualitative modeling with comprehensive representation of contextual variables often was lacking. This was likely due to the lack of comprehensive error and performance shaping factor taxonomies, and the limited data available on observed error rates and their relationship to specific contextual variables. In the mid 90s Boeing, America West Airlines, NASA Ames Research Center and INEEL partnered in a NASA sponsored Advanced Concepts grant to: assess the state of the art in human error analysis, identify future needs for human errormore » analysis, and develop an approach addressing these needs. Identified needs included the need for a method to identify and prioritize task and contextual characteristics affecting human reliability. Other needs identified included developing comprehensive taxonomies to support detailed qualitative modeling and to structure meaningful data collection efforts across domains. A result was the development of the FRamework Assessing Notorious Contributing Influences for Error (FRANCIE) with a taxonomy for airline maintenance tasks. The assignment of performance shaping factors to generic errors by experts proved to be valuable to qualitative modeling. Performance shaping factors and error types from such detailed approaches can be used to structure error reporting schemes. In a recent NASA Advanced Human Support Technology grant FRANCIE was refined, and two new taxonomies for use on space missions were developed. The development, sharing, and use of error taxonomies, and the refinement of approaches for increased fidelity of qualitative modeling is offered as a means to help direct useful data collection strategies.« less

  6. Reliability, Safety and Error Recovery for Advanced Control Software

    NASA Technical Reports Server (NTRS)

    Malin, Jane T.

    2003-01-01

    For long-duration automated operation of regenerative life support systems in space environments, there is a need for advanced integration and control systems that are significantly more reliable and safe, and that support error recovery and minimization of operational failures. This presentation outlines some challenges of hazardous space environments and complex system interactions that can lead to system accidents. It discusses approaches to hazard analysis and error recovery for control software and challenges of supporting effective intervention by safety software and the crew.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preston, Leiph

    Although using standard Taylor series coefficients for finite-difference operators is optimal in the sense that in the limit of infinitesimal space and time discretization, the solution approaches the correct analytic solution to the acousto-dynamic system of differential equations, other finite-difference operators may provide optimal computational run time given certain error bounds or source bandwidth constraints. This report describes the results of investigation of alternative optimal finite-difference coefficients based on several optimization/accuracy scenarios and provides recommendations for minimizing run time while retaining error within given error bounds.

  8. Using a motion capture system for spatial localization of EEG electrodes

    PubMed Central

    Reis, Pedro M. R.; Lochmann, Matthias

    2015-01-01

    Electroencephalography (EEG) is often used in source analysis studies, in which the locations of cortex regions responsible for a signal are determined. For this to be possible, accurate positions of the electrodes at the scalp surface must be determined, otherwise errors in the source estimation will occur. Today, several methods for acquiring these positions exist but they are often not satisfyingly accurate or take a long time to perform. Therefore, in this paper we describe a method capable of determining the positions accurately and fast. This method uses an infrared light motion capture system (IR-MOCAP) with 8 cameras arranged around a human participant. It acquires 3D coordinates of each electrode and automatically labels them. Each electrode has a small reflector on top of it thus allowing its detection by the cameras. We tested the accuracy of the presented method by acquiring the electrodes positions on a rigid sphere model and comparing these with measurements from computer tomography (CT). The average Euclidean distance between the sphere model CT measurements and the presented method was 1.23 mm with an average standard deviation of 0.51 mm. We also tested the method with a human participant. The measurement was quickly performed and all positions were captured. These results tell that, with this method, it is possible to acquire electrode positions with minimal error and little time effort for the study participants and investigators. PMID:25941468

  9. Generalization in Adaptation to Stable and Unstable Dynamics

    PubMed Central

    Kadiallah, Abdelhamid; Franklin, David W.; Burdet, Etienne

    2012-01-01

    Humans skillfully manipulate objects and tools despite the inherent instability. In order to succeed at these tasks, the sensorimotor control system must build an internal representation of both the force and mechanical impedance. As it is not practical to either learn or store motor commands for every possible future action, the sensorimotor control system generalizes a control strategy for a range of movements based on learning performed over a set of movements. Here, we introduce a computational model for this learning and generalization, which specifies how to learn feedforward muscle activity in a function of the state space. Specifically, by incorporating co-activation as a function of error into the feedback command, we are able to derive an algorithm from a gradient descent minimization of motion error and effort, subject to maintaining a stability margin. This algorithm can be used to learn to coordinate any of a variety of motor primitives such as force fields, muscle synergies, physical models or artificial neural networks. This model for human learning and generalization is able to adapt to both stable and unstable dynamics, and provides a controller for generating efficient adaptive motor behavior in robots. Simulation results exhibit predictions consistent with all experiments on learning of novel dynamics requiring adaptation of force and impedance, and enable us to re-examine some of the previous interpretations of experiments on generalization. PMID:23056191

  10. The Mauna Loa carbon dioxide record: lessons for long-term Earth observations

    USGS Publications Warehouse

    Sundquist, Eric T.; Keeling, Ralph F.

    2009-01-01

    The Mauna Loa carbon dioxide record is an iconic symbol of the human capacity to alter the planet. Yet this record would not have been possible without the remarkable work of one man, Charles David Keeling. We describe three emergent themes that characterized his work: (1) his desire to study and understand the processes that control atmospheric CO2 and the global carbon cycle, (2) his campaign to identify and minimize systematic measurement error, and (3) his tenacious efforts to maintain continuous funding despite changing government priorities and institutions. In many ways, the story of the Mauna Loa record demonstrates that distinctions between research and “routine” measurements are not very useful in long-term monitoring of Earth properties and processes.

  11. Comparison of sorting algorithms to increase the range of Hartmann-Shack aberrometry.

    PubMed

    Bedggood, Phillip; Metha, Andrew

    2010-01-01

    Recently many software-based approaches have been suggested for improving the range and accuracy of Hartmann-Shack aberrometry. We compare the performance of four representative algorithms, with a focus on aberrometry for the human eye. Algorithms vary in complexity from the simplistic traditional approach to iterative spline extrapolation based on prior spot measurements. Range is assessed for a variety of aberration types in isolation using computer modeling, and also for complex wavefront shapes using a real adaptive optics system. The effects of common sources of error for ocular wavefront sensing are explored. The results show that the simplest possible iterative algorithm produces comparable range and robustness compared to the more complicated algorithms, while keeping processing time minimal to afford real-time analysis.

  12. Comparison of sorting algorithms to increase the range of Hartmann-Shack aberrometry

    NASA Astrophysics Data System (ADS)

    Bedggood, Phillip; Metha, Andrew

    2010-11-01

    Recently many software-based approaches have been suggested for improving the range and accuracy of Hartmann-Shack aberrometry. We compare the performance of four representative algorithms, with a focus on aberrometry for the human eye. Algorithms vary in complexity from the simplistic traditional approach to iterative spline extrapolation based on prior spot measurements. Range is assessed for a variety of aberration types in isolation using computer modeling, and also for complex wavefront shapes using a real adaptive optics system. The effects of common sources of error for ocular wavefront sensing are explored. The results show that the simplest possible iterative algorithm produces comparable range and robustness compared to the more complicated algorithms, while keeping processing time minimal to afford real-time analysis.

  13. Effectiveness of basic display augmentation in vehicular control by visual field cues

    NASA Technical Reports Server (NTRS)

    Grunwald, A. J.; Merhav, S. J.

    1978-01-01

    The paper investigates the effectiveness of different basic display augmentation concepts - fixed reticle, velocity vector, and predicted future vehicle path - for RPVs controlled by a vehicle-mounted TV camera. The task is lateral manual control of a low flying RPV along a straight reference line in the presence of random side gusts. The man-machine system and the visual interface are modeled as a linear time-invariant system. Minimization of a quadratic performance criterion is assumed to underlie the control strategy of a well-trained human operator. The solution for the optimal feedback matrix enables the explicit computation of the variances of lateral deviation and directional error of the vehicle and of the control force that are used as performance measures.

  14. Sulci segmentation using geometric active contours

    NASA Astrophysics Data System (ADS)

    Torkaman, Mahsa; Zhu, Liangjia; Karasev, Peter; Tannenbaum, Allen

    2017-02-01

    Sulci are groove-like regions lying in the depth of the cerebral cortex between gyri, which together, form a folded appearance in human and mammalian brains. Sulci play an important role in the structural analysis of the brain, morphometry (i.e., the measurement of brain structures), anatomical labeling and landmark-based registration.1 Moreover, sulcal morphological changes are related to cortical thickness, whose measurement may provide useful information for studying variety of psychiatric disorders. Manually extracting sulci requires complying with complex protocols, which make the procedure both tedious and error prone.2 In this paper, we describe an automatic procedure, employing geometric active contours, which extract the sulci. Sulcal boundaries are obtained by minimizing a certain energy functional whose minimum is attained at the boundary of the given sulci.

  15. Resource Balancing Control Allocation

    NASA Technical Reports Server (NTRS)

    Frost, Susan A.; Bodson, Marc

    2010-01-01

    Next generation aircraft with a large number of actuators will require advanced control allocation methods to compute the actuator commands needed to follow desired trajectories while respecting system constraints. Previously, algorithms were proposed to minimize the l1 or l2 norms of the tracking error and of the control effort. The paper discusses the alternative choice of using the l1 norm for minimization of the tracking error and a normalized l(infinity) norm, or sup norm, for minimization of the control effort. The algorithm computes the norm of the actuator deflections scaled by the actuator limits. Minimization of the control effort then translates into the minimization of the maximum actuator deflection as a percentage of its range of motion. The paper shows how the problem can be solved effectively by converting it into a linear program and solving it using a simplex algorithm. Properties of the algorithm are investigated through examples. In particular, the min-max criterion results in a type of resource balancing, where the resources are the control surfaces and the algorithm balances these resources to achieve the desired command. A study of the sensitivity of the algorithms to the data is presented, which shows that the normalized l(infinity) algorithm has the lowest sensitivity, although high sensitivities are observed whenever the limits of performance are reached.

  16. Determination of real machine-tool settings and minimization of real surface deviation by computerized inspection

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Kuan, Chihping; Zhang, YI

    1991-01-01

    A numerical method is developed for the minimization of deviations of real tooth surfaces from the theoretical ones. The deviations are caused by errors of manufacturing, errors of installment of machine-tool settings and distortion of surfaces by heat-treatment. The deviations are determined by coordinate measurements of gear tooth surfaces. The minimization of deviations is based on the proper correction of initially applied machine-tool settings. The contents of accomplished research project cover the following topics: (1) Descriptions of the principle of coordinate measurements of gear tooth surfaces; (2) Deviation of theoretical tooth surfaces (with examples of surfaces of hypoid gears and references for spiral bevel gears); (3) Determination of the reference point and the grid; (4) Determination of the deviations of real tooth surfaces at the points of the grid; and (5) Determination of required corrections of machine-tool settings for minimization of deviations. The procedure for minimization of deviations is based on numerical solution of an overdetermined system of n linear equations in m unknowns (m much less than n ), where n is the number of points of measurements and m is the number of parameters of applied machine-tool settings to be corrected. The developed approach is illustrated with numerical examples.

  17. Reliable and energy-efficient communications for wireless biomedical implant systems.

    PubMed

    Ntouni, Georgia D; Lioumpas, Athanasios S; Nikita, Konstantina S

    2014-11-01

    Implant devices are used to measure biological parameters and transmit their results to remote off-body devices. As implants are characterized by strict requirements on size, reliability, and power consumption, applying the concept of cooperative communications to wireless body area networks offers several benefits. In this paper, we aim to minimize the power consumption of the implant device by utilizing on-body wearable devices, while providing the necessary reliability in terms of outage probability and bit error rate. Taking into account realistic power considerations and wireless propagation environments based on the IEEE P802.l5 channel model, an exact theoretical analysis is conducted for evaluating several communication scenarios with respect to the position of the wearable device and the motion of the human body. The derived closed-form expressions are employed toward minimizing the required transmission power, subject to a minimum quality-of-service requirement. In this way, the complexity and power consumption are transferred from the implant device to the on-body relay, which is an efficient approach since they can be easily replaced, in contrast to the in-body implants.

  18. Performance Test Data Analysis of Scintillation Cameras

    NASA Astrophysics Data System (ADS)

    Demirkaya, Omer; Mazrou, Refaat Al

    2007-10-01

    In this paper, we present a set of image analysis tools to calculate the performance parameters of gamma camera systems from test data acquired according to the National Electrical Manufacturers Association NU 1-2001 guidelines. The calculation methods are either completely automated or require minimal user interaction; minimizing potential human errors. The developed methods are robust with respect to varying conditions under which these tests may be performed. The core algorithms have been validated for accuracy. They have been extensively tested on images acquired by the gamma cameras from different vendors. All the algorithms are incorporated into a graphical user interface that provides a convenient way to process the data and report the results. The entire application has been developed in MATLAB programming environment and is compiled to run as a stand-alone program. The developed image analysis tools provide an automated, convenient and accurate means to calculate the performance parameters of gamma cameras and SPECT systems. The developed application is available upon request for personal or non-commercial uses. The results of this study have been partially presented in Society of Nuclear Medicine Annual meeting as an InfoSNM presentation.

  19. Virtual reconstruction of very large skull defects featuring partly and completely missing midsagittal planes.

    PubMed

    Senck, Sascha; Coquerelle, Michael; Weber, Gerhard W; Benazzi, Stefano

    2013-05-01

    Despite the development of computer-based methods, cranial reconstruction of very large skull defects remains a challenge particularly if the damage affects the midsagittal region hampering the usage of mirror imaging techniques. This pilot study aims to deliver a new method that goes beyond mirror imaging, giving the possibility to reconstruct crania characterized by large missing areas, which might be useful in the fields of paleoanthropology, bioarcheology, and forensics. We test the accuracy of digital reconstructions in cases where two-thirds or more of a human cranium were missing. A three-dimensional (3D) virtual model of a human cranium was virtually damaged twice to compare two destruction-reconstruction scenarios. In the first case, a small fraction of the midsagittal region was still preserved, allowing the application of mirror imaging techniques. In the second case, the damage affected the complete midsagittal region, which demands a new approach to estimate the position of the midsagittal plane. Reconstructions were carried out using CT scans from a sample of modern humans (12 males and 13 females), to which 3D digital modeling techniques and geometric morphometric methods were applied. As expected, the second simulation showed a larger variability than the first one, which underlines the fact that the individual midsagittal plane is of course preferable in order to minimize the reconstruction error. However, in both simulations the Procrustes mean shape was an effective reference for the reconstruction of the entire cranium, producing models that showed a remarkably low error of about 3 mm, given the extent of missing data. Copyright © 2013 Wiley Periodicals, Inc.

  20. Tailoring a Human Reliability Analysis to Your Industry Needs

    NASA Technical Reports Server (NTRS)

    DeMott, D. L.

    2016-01-01

    Companies at risk of accidents caused by human error that result in catastrophic consequences include: airline industry mishaps, medical malpractice, medication mistakes, aerospace failures, major oil spills, transportation mishaps, power production failures and manufacturing facility incidents. Human Reliability Assessment (HRA) is used to analyze the inherent risk of human behavior or actions introducing errors into the operation of a system or process. These assessments can be used to identify where errors are most likely to arise and the potential risks involved if they do occur. Using the basic concepts of HRA, an evolving group of methodologies are used to meet various industry needs. Determining which methodology or combination of techniques will provide a quality human reliability assessment is a key element to developing effective strategies for understanding and dealing with risks caused by human errors. There are a number of concerns and difficulties in "tailoring" a Human Reliability Assessment (HRA) for different industries. Although a variety of HRA methodologies are available to analyze human error events, determining the most appropriate tools to provide the most useful results can depend on industry specific cultures and requirements. Methodology selection may be based on a variety of factors that include: 1) how people act and react in different industries, 2) expectations based on industry standards, 3) factors that influence how the human errors could occur such as tasks, tools, environment, workplace, support, training and procedure, 4) type and availability of data, 5) how the industry views risk & reliability, and 6) types of emergencies, contingencies and routine tasks. Other considerations for methodology selection should be based on what information is needed from the assessment. If the principal concern is determination of the primary risk factors contributing to the potential human error, a more detailed analysis method may be employed versus a requirement to provide a numerical value as part of a probabilistic risk assessment. Industries involved with humans operating large equipment or transport systems (ex. railroads or airlines) would have more need to address the man machine interface than medical workers administering medications. Human error occurs in every industry; in most cases the consequences are relatively benign and occasionally beneficial. In cases where the results can have disastrous consequences, the use of Human Reliability techniques to identify and classify the risk of human errors allows a company more opportunities to mitigate or eliminate these types of risks and prevent costly tragedies.

  1. DebriSat Fragment Characterization System and Processing Status

    NASA Technical Reports Server (NTRS)

    Rivero, M.; Shiotani, B.; M. Carrasquilla; Fitz-Coy, N.; Liou, J. C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2016-01-01

    The DebriSat project is a continuing effort sponsored by NASA and DoD to update existing break-up models using data obtained from hypervelocity impact tests performed to simulate on-orbit collisions. After the impact tests, a team at the University of Florida has been working to characterize the fragments in terms of their mass, size, shape, color and material content. The focus of the post-impact effort has been the collection of 2 mm and larger fragments resulting from the hypervelocity impact test. To date, in excess of 125K fragments have been recovered which is approximately 40K more than the 85K fragments predicted by the existing models. While the fragment collection activities continue, there has been a transition to the characterization of the recovered fragments. Since the start of the characterization effort, the focus has been on the use of automation to (i) expedite the fragment characterization process and (ii) minimize the effects of human subjectivity on the results; e.g., automated data entry processes were developed and implemented to minimize errors during transcription of the measurement data. At all steps of the process, however, there is human oversight to ensure the integrity of the data. Additionally, repeatability and reproducibility tests have been developed and implemented to ensure that the instrumentations used in the characterization process are accurate and properly calibrated.

  2. Accounting for optical errors in microtensiometry.

    PubMed

    Hinton, Zachary R; Alvarez, Nicolas J

    2018-09-15

    Drop shape analysis (DSA) techniques measure interfacial tension subject to error in image analysis and the optical system. While considerable efforts have been made to minimize image analysis errors, very little work has treated optical errors. There are two main sources of error when considering the optical system: the angle of misalignment and the choice of focal plane. Due to the convoluted nature of these sources, small angles of misalignment can lead to large errors in measured curvature. We demonstrate using microtensiometry the contributions of these sources to measured errors in radius, and, more importantly, deconvolute the effects of misalignment and focal plane. Our findings are expected to have broad implications on all optical techniques measuring interfacial curvature. A geometric model is developed to analytically determine the contributions of misalignment angle and choice of focal plane on measurement error for spherical cap interfaces. This work utilizes a microtensiometer to validate the geometric model and to quantify the effect of both sources of error. For the case of a microtensiometer, an empirical calibration is demonstrated that corrects for optical errors and drastically simplifies implementation. The combination of geometric modeling and experimental results reveal a convoluted relationship between the true and measured interfacial radius as a function of the misalignment angle and choice of focal plane. The validated geometric model produces a full operating window that is strongly dependent on the capillary radius and spherical cap height. In all cases, the contribution of optical errors is minimized when the height of the spherical cap is equivalent to the capillary radius, i.e. a hemispherical interface. The understanding of these errors allow for correct measure of interfacial curvature and interfacial tension regardless of experimental setup. For the case of microtensiometry, this greatly decreases the time for experimental setup and increases experiential accuracy. In a broad sense, this work outlines the importance of optical errors in all DSA techniques. More specifically, these results have important implications for all microscale and microfluidic measurements of interface curvature. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Exploring human error in military aviation flight safety events using post-incident classification systems.

    PubMed

    Hooper, Brionny J; O'Hare, David P A

    2013-08-01

    Human error classification systems theoretically allow researchers to analyze postaccident data in an objective and consistent manner. The Human Factors Analysis and Classification System (HFACS) framework is one such practical analysis tool that has been widely used to classify human error in aviation. The Cognitive Error Taxonomy (CET) is another. It has been postulated that the focus on interrelationships within HFACS can facilitate the identification of the underlying causes of pilot error. The CET provides increased granularity at the level of unsafe acts. The aim was to analyze the influence of factors at higher organizational levels on the unsafe acts of front-line operators and to compare the errors of fixed-wing and rotary-wing operations. This study analyzed 288 aircraft incidents involving human error from an Australasian military organization occurring between 2001 and 2008. Action errors accounted for almost twice (44%) the proportion of rotary wing compared to fixed wing (23%) incidents. Both classificatory systems showed significant relationships between precursor factors such as the physical environment, mental and physiological states, crew resource management, training and personal readiness, and skill-based, but not decision-based, acts. The CET analysis showed different predisposing factors for different aspects of skill-based behaviors. Skill-based errors in military operations are more prevalent in rotary wing incidents and are related to higher level supervisory processes in the organization. The Cognitive Error Taxonomy provides increased granularity to HFACS analyses of unsafe acts.

  4. Perceptual learning of degraded speech by minimizing prediction error.

    PubMed

    Sohoglu, Ediz; Davis, Matthew H

    2016-03-22

    Human perception is shaped by past experience on multiple timescales. Sudden and dramatic changes in perception occur when prior knowledge or expectations match stimulus content. These immediate effects contrast with the longer-term, more gradual improvements that are characteristic of perceptual learning. Despite extensive investigation of these two experience-dependent phenomena, there is considerable debate about whether they result from common or dissociable neural mechanisms. Here we test single- and dual-mechanism accounts of experience-dependent changes in perception using concurrent magnetoencephalographic and EEG recordings of neural responses evoked by degraded speech. When speech clarity was enhanced by prior knowledge obtained from matching text, we observed reduced neural activity in a peri-auditory region of the superior temporal gyrus (STG). Critically, longer-term improvements in the accuracy of speech recognition following perceptual learning resulted in reduced activity in a nearly identical STG region. Moreover, short-term neural changes caused by prior knowledge and longer-term neural changes arising from perceptual learning were correlated across subjects with the magnitude of learning-induced changes in recognition accuracy. These experience-dependent effects on neural processing could be dissociated from the neural effect of hearing physically clearer speech, which similarly enhanced perception but increased rather than decreased STG responses. Hence, the observed neural effects of prior knowledge and perceptual learning cannot be attributed to epiphenomenal changes in listening effort that accompany enhanced perception. Instead, our results support a predictive coding account of speech perception; computational simulations show how a single mechanism, minimization of prediction error, can drive immediate perceptual effects of prior knowledge and longer-term perceptual learning of degraded speech.

  5. Perceptual learning of degraded speech by minimizing prediction error

    PubMed Central

    Sohoglu, Ediz

    2016-01-01

    Human perception is shaped by past experience on multiple timescales. Sudden and dramatic changes in perception occur when prior knowledge or expectations match stimulus content. These immediate effects contrast with the longer-term, more gradual improvements that are characteristic of perceptual learning. Despite extensive investigation of these two experience-dependent phenomena, there is considerable debate about whether they result from common or dissociable neural mechanisms. Here we test single- and dual-mechanism accounts of experience-dependent changes in perception using concurrent magnetoencephalographic and EEG recordings of neural responses evoked by degraded speech. When speech clarity was enhanced by prior knowledge obtained from matching text, we observed reduced neural activity in a peri-auditory region of the superior temporal gyrus (STG). Critically, longer-term improvements in the accuracy of speech recognition following perceptual learning resulted in reduced activity in a nearly identical STG region. Moreover, short-term neural changes caused by prior knowledge and longer-term neural changes arising from perceptual learning were correlated across subjects with the magnitude of learning-induced changes in recognition accuracy. These experience-dependent effects on neural processing could be dissociated from the neural effect of hearing physically clearer speech, which similarly enhanced perception but increased rather than decreased STG responses. Hence, the observed neural effects of prior knowledge and perceptual learning cannot be attributed to epiphenomenal changes in listening effort that accompany enhanced perception. Instead, our results support a predictive coding account of speech perception; computational simulations show how a single mechanism, minimization of prediction error, can drive immediate perceptual effects of prior knowledge and longer-term perceptual learning of degraded speech. PMID:26957596

  6. Plasma-Generating Glucose Monitor Accuracy Demonstrated in an Animal Model

    PubMed Central

    Magarian, Peggy; Sterling, Bernhard

    2009-01-01

    Introduction Four randomized controlled trials have compared mortality and morbidity of tight glycemic control versus conventional glucose for intensive care unit (ICU) patients. Two trials showed a positive outcome. However, one single-center trial and a large multicenter trial had negative results. The positive trials used accurate portable lab analyzers. The negative trial allowed the use of meters. The portable analyzer measures in filtered plasma, minimizing the interference effects. OptiScan Biomedical Corporation is developing a continuous glucose monitor using centrifuged plasma and mid-infrared spectroscopy for use in ICU medicine. The OptiScanner draws approximately 0.1 ml of blood every 15 min and creates a centrifuged plasma sample. Internal quality control minimizes sample preparation error. Interference adjustment using this technique has been presented at the Society of Critical Care Medicine in separate studies since 2006. Method A good laboratory practice study was conducted on three Yorkshire pigs using a central venous catheter over 6 h while performing a glucose challenge. Matching Yellow Springs Instrument glucose readings were obtained. Results Some 95.7% of the predicted values were in the Clarke Error Grid A zone and 4.3% in the B zone. Of those in the B zone, all were within 3.3% of the A zone boundaries. The coefficient of determination (R2) was 0.993. The coefficient of variance was 5.02%. Animal necropsy and blood panels demonstrated safety. Conclusion The OptiScanner investigational device performed safely and accurately in an animal model. Human studies using the device will begin soon. PMID:20144396

  7. The application of SHERPA (Systematic Human Error Reduction and Prediction Approach) in the development of compensatory cognitive rehabilitation strategies for stroke patients with left and right brain damage.

    PubMed

    Hughes, Charmayne M L; Baber, Chris; Bienkiewicz, Marta; Worthington, Andrew; Hazell, Alexa; Hermsdörfer, Joachim

    2015-01-01

    Approximately 33% of stroke patients have difficulty performing activities of daily living, often committing errors during the planning and execution of such activities. The objective of this study was to evaluate the ability of the human error identification (HEI) technique SHERPA (Systematic Human Error Reduction and Prediction Approach) to predict errors during the performance of daily activities in stroke patients with left and right hemisphere lesions. Using SHERPA we successfully predicted 36 of the 38 observed errors, with analysis indicating that the proportion of predicted and observed errors was similar for all sub-tasks and severity levels. HEI results were used to develop compensatory cognitive strategies that clinicians could employ to reduce or prevent errors from occurring. This study provides evidence for the reliability and validity of SHERPA in the design of cognitive rehabilitation strategies in stroke populations.

  8. An Analysis of U.S. Army Fratricide Incidents during the Global War on Terror (11 September 2001 to 31 March 2008)

    DTIC Science & Technology

    2010-03-15

    Swiss cheese model of human error causation. ................................................................... 3  2. Results for the classification of...based on Reason’s “ Swiss cheese ” model of human error (1990). Figure 1 describes how an accident is likely to occur when all of the errors, or “holes...align. A detailed description of HFACS can be found in Wiegmann and Shappell (2003). Figure 1. The Swiss cheese model of human error

  9. Towards reporting standards for neuropsychological study results: A proposal to minimize communication errors with standardized qualitative descriptors for normalized test scores.

    PubMed

    Schoenberg, Mike R; Rum, Ruba S

    2017-11-01

    Rapid, clear and efficient communication of neuropsychological results is essential to benefit patient care. Errors in communication are a lead cause of medical errors; nevertheless, there remains a lack of consistency in how neuropsychological scores are communicated. A major limitation in the communication of neuropsychological results is the inconsistent use of qualitative descriptors for standardized test scores and the use of vague terminology. PubMed search from 1 Jan 2007 to 1 Aug 2016 to identify guidelines or consensus statements for the description and reporting of qualitative terms to communicate neuropsychological test scores was conducted. The review found the use of confusing and overlapping terms to describe various ranges of percentile standardized test scores. In response, we propose a simplified set of qualitative descriptors for normalized test scores (Q-Simple) as a means to reduce errors in communicating test results. The Q-Simple qualitative terms are: 'very superior', 'superior', 'high average', 'average', 'low average', 'borderline' and 'abnormal/impaired'. A case example illustrates the proposed Q-Simple qualitative classification system to communicate neuropsychological results for neurosurgical planning. The Q-Simple qualitative descriptor system is aimed as a means to improve and standardize communication of standardized neuropsychological test scores. Research are needed to further evaluate neuropsychological communication errors. Conveying the clinical implications of neuropsychological results in a manner that minimizes risk for communication errors is a quintessential component of evidence-based practice. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kent, Paul R.; Krogel, Jaron T.

    Growth in computational resources has lead to the application of real space diffusion quantum Monte Carlo to increasingly heavy elements. Although generally assumed to be small, we find that when using standard techniques, the pseudopotential localization error can be large, on the order of an electron volt for an isolated cerium atom. We formally show that the localization error can be reduced to zero with improvements to the Jastrow factor alone, and we define a metric of Jastrow sensitivity that may be useful in the design of pseudopotentials. We employ an extrapolation scheme to extract the bare fixed node energymore » and estimate the localization error in both the locality approximation and the T-moves schemes for the Ce atom in charge states 3+/4+. The locality approximation exhibits the lowest Jastrow sensitivity and generally smaller localization errors than T-moves although the locality approximation energy approaches the localization free limit from above/below for the 3+/4+ charge state. We find that energy minimized Jastrow factors including three-body electron-electron-ion terms are the most effective at reducing the localization error for both the locality approximation and T-moves for the case of the Ce atom. Less complex or variance minimized Jastrows are generally less effective. Finally, our results suggest that further improvements to Jastrow factors and trial wavefunction forms may be needed to reduce localization errors to chemical accuracy when medium core pseudopotentials are applied to heavy elements such as Ce.« less

  11. A Guide for Setting the Cut-Scores to Minimize Weighted Classification Errors in Test Batteries

    ERIC Educational Resources Information Center

    Grabovsky, Irina; Wainer, Howard

    2017-01-01

    In this article, we extend the methodology of the Cut-Score Operating Function that we introduced previously and apply it to a testing scenario with multiple independent components and different testing policies. We derive analytically the overall classification error rate for a test battery under the policy when several retakes are allowed for…

  12. Lessons to be Learned from Evidence-based Medicine: Practice and Promise of Evidence-based Medicine and Evidence-based Education.

    ERIC Educational Resources Information Center

    Wolf, Fredric M.

    2000-01-01

    Presents statistics of deaths caused by medical errors and argues the effects of misconceptions in diagnosis and treatment. Suggests evidence-based medicine to enhance the quality of practice and minimize error rates. Presents 10 evidence-based lessons and discusses the possible benefits of evidence-based medicine to evidence-based education and…

  13. Implementation of Tree and Butterfly Barriers with Optimistic Time Management Algorithms for Discrete Event Simulation

    NASA Astrophysics Data System (ADS)

    Rizvi, Syed S.; Shah, Dipali; Riasat, Aasia

    The Time Wrap algorithm [3] offers a run time recovery mechanism that deals with the causality errors. These run time recovery mechanisms consists of rollback, anti-message, and Global Virtual Time (GVT) techniques. For rollback, there is a need to compute GVT which is used in discrete-event simulation to reclaim the memory, commit the output, detect the termination, and handle the errors. However, the computation of GVT requires dealing with transient message problem and the simultaneous reporting problem. These problems can be dealt in an efficient manner by the Samadi's algorithm [8] which works fine in the presence of causality errors. However, the performance of both Time Wrap and Samadi's algorithms depends on the latency involve in GVT computation. Both algorithms give poor latency for large simulation systems especially in the presence of causality errors. To improve the latency and reduce the processor ideal time, we implement tree and butterflies barriers with the optimistic algorithm. Our analysis shows that the use of synchronous barriers such as tree and butterfly with the optimistic algorithm not only minimizes the GVT latency but also minimizes the processor idle time.

  14. Methods to Prescribe Particle Motion to Minimize Quadrature Error in Meshfree Methods

    NASA Astrophysics Data System (ADS)

    Templeton, Jeremy; Erickson, Lindsay; Morris, Karla; Poliakoff, David

    2015-11-01

    Meshfree methods are an attractive approach for simulating material systems undergoing large-scale deformation, such as spray break up, free surface flows, and droplets. Particles, which can be easily moved, are used as nodes and/or quadrature points rather than a relying on a fixed mesh. Most methods move particles according to the local fluid velocity that allows for the convection terms in the Navier-Stokes equations to be easily accounted for. However, this is a trade-off against numerical accuracy as the flow can often move particles to configurations with high quadrature error, and artificial compressibility is often required to prevent particles from forming undesirable regions of high and low concentrations. In this work, we consider the other side of the trade-off: moving particles based on reducing numerical error. Methods derived from molecular dynamics show that particles can be moved to minimize a surrogate for the solution error, resulting in substantially more accurate simulations at a fixed cost. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  15. Quantification of evaporation induced error in atom probe tomography using molecular dynamics simulation.

    PubMed

    Chen, Shu Jian; Yao, Xupei; Zheng, Changxi; Duan, Wen Hui

    2017-11-01

    Non-equilibrium molecular dynamics was used to simulate the dynamics of atoms at the atom probe surface and five objective functions were used to quantify errors. The results suggested that before ionization, thermal vibration and collision caused the atoms to displace up to 1Å and 25Å respectively. The average atom displacements were found to vary between 0.2 and 0.5Å. About 9 to 17% of the atoms were affected by collision. Due to the effects of collision and ion-ion repulsion, the back-calculated positions were on average 0.3-0.5Å different from the pre-ionized positions of the atoms when the number of ions generated per pulse was minimal. This difference could increase up to 8-10Å when 1.5ion/nm 2 were evaporated per pulse. On the basis of the results, surface ion density was considered an important factor that needed to be controlled to minimize error in the evaporation process. Copyright © 2017. Published by Elsevier B.V.

  16. A Systematic Approach to Sensor Selection for Aircraft Engine Health Estimation

    NASA Technical Reports Server (NTRS)

    Simon, Donald L.; Garg, Sanjay

    2009-01-01

    A systematic approach for selecting an optimal suite of sensors for on-board aircraft gas turbine engine health estimation is presented. The methodology optimally chooses the engine sensor suite and the model tuning parameter vector to minimize the Kalman filter mean squared estimation error in the engine s health parameters or other unmeasured engine outputs. This technique specifically addresses the underdetermined estimation problem where there are more unknown system health parameters representing degradation than available sensor measurements. This paper presents the theoretical estimation error equations, and describes the optimization approach that is applied to select the sensors and model tuning parameters to minimize these errors. Two different model tuning parameter vector selection approaches are evaluated: the conventional approach of selecting a subset of health parameters to serve as the tuning parameters, and an alternative approach that selects tuning parameters as a linear combination of all health parameters. Results from the application of the technique to an aircraft engine simulation are presented, and compared to those from an alternative sensor selection strategy.

  17. Prediction of thermal conductivity of polyvinylpyrrolidone (PVP) electrospun nanocomposite fibers using artificial neural network and prey-predator algorithm.

    PubMed

    Khan, Waseem S; Hamadneh, Nawaf N; Khan, Waqar A

    2017-01-01

    In this study, multilayer perception neural network (MLPNN) was employed to predict thermal conductivity of PVP electrospun nanocomposite fibers with multiwalled carbon nanotubes (MWCNTs) and Nickel Zinc ferrites [(Ni0.6Zn0.4) Fe2O4]. This is the second attempt on the application of MLPNN with prey predator algorithm for the prediction of thermal conductivity of PVP electrospun nanocomposite fibers. The prey predator algorithm was used to train the neural networks to find the best models. The best models have the minimal of sum squared error between the experimental testing data and the corresponding models results. The minimal error was found to be 0.0028 for MWCNTs model and 0.00199 for Ni-Zn ferrites model. The predicted artificial neural networks (ANNs) responses were analyzed statistically using z-test, correlation coefficient, and the error functions for both inclusions. The predicted ANN responses for PVP electrospun nanocomposite fibers were compared with the experimental data and were found in good agreement.

  18. Radar detection with the Neyman-Pearson criterion using supervised-learning-machines trained with the cross-entropy error

    NASA Astrophysics Data System (ADS)

    Jarabo-Amores, María-Pilar; la Mata-Moya, David de; Gil-Pita, Roberto; Rosa-Zurera, Manuel

    2013-12-01

    The application of supervised learning machines trained to minimize the Cross-Entropy error to radar detection is explored in this article. The detector is implemented with a learning machine that implements a discriminant function, which output is compared to a threshold selected to fix a desired probability of false alarm. The study is based on the calculation of the function the learning machine approximates to during training, and the application of a sufficient condition for a discriminant function to be used to approximate the optimum Neyman-Pearson (NP) detector. In this article, the function a supervised learning machine approximates to after being trained to minimize the Cross-Entropy error is obtained. This discriminant function can be used to implement the NP detector, which maximizes the probability of detection, maintaining the probability of false alarm below or equal to a predefined value. Some experiments about signal detection using neural networks are also presented to test the validity of the study.

  19. Super-linear Precision in Simple Neural Population Codes

    NASA Astrophysics Data System (ADS)

    Schwab, David; Fiete, Ila

    2015-03-01

    A widely used tool for quantifying the precision with which a population of noisy sensory neurons encodes the value of an external stimulus is the Fisher Information (FI). Maximizing the FI is also a commonly used objective for constructing optimal neural codes. The primary utility and importance of the FI arises because it gives, through the Cramer-Rao bound, the smallest mean-squared error achievable by any unbiased stimulus estimator. However, it is well-known that when neural firing is sparse, optimizing the FI can result in codes that perform very poorly when considering the resulting mean-squared error, a measure with direct biological relevance. Here we construct optimal population codes by minimizing mean-squared error directly and study the scaling properties of the resulting network, focusing on the optimal tuning curve width. We then extend our results to continuous attractor networks that maintain short-term memory of external stimuli in their dynamics. Here we find similar scaling properties in the structure of the interactions that minimize diffusive information loss.

  20. Type I error probability spending for post-market drug and vaccine safety surveillance with binomial data.

    PubMed

    Silva, Ivair R

    2018-01-15

    Type I error probability spending functions are commonly used for designing sequential analysis of binomial data in clinical trials, but it is also quickly emerging for near-continuous sequential analysis of post-market drug and vaccine safety surveillance. It is well known that, for clinical trials, when the null hypothesis is not rejected, it is still important to minimize the sample size. Unlike in post-market drug and vaccine safety surveillance, that is not important. In post-market safety surveillance, specially when the surveillance involves identification of potential signals, the meaningful statistical performance measure to be minimized is the expected sample size when the null hypothesis is rejected. The present paper shows that, instead of the convex Type I error spending shape conventionally used in clinical trials, a concave shape is more indicated for post-market drug and vaccine safety surveillance. This is shown for both, continuous and group sequential analysis. Copyright © 2017 John Wiley & Sons, Ltd.

  1. A Quality Improvement Project to Decrease Human Milk Errors in the NICU.

    PubMed

    Oza-Frank, Reena; Kachoria, Rashmi; Dail, James; Green, Jasmine; Walls, Krista; McClead, Richard E

    2017-02-01

    Ensuring safe human milk in the NICU is a complex process with many potential points for error, of which one of the most serious is administration of the wrong milk to the wrong infant. Our objective was to describe a quality improvement initiative that was associated with a reduction in human milk administration errors identified over a 6-year period in a typical, large NICU setting. We employed a quasi-experimental time series quality improvement initiative by using tools from the model for improvement, Six Sigma methodology, and evidence-based interventions. Scanned errors were identified from the human milk barcode medication administration system. Scanned errors of interest were wrong-milk-to-wrong-infant, expired-milk, or preparation errors. The scanned error rate and the impact of additional improvement interventions from 2009 to 2015 were monitored by using statistical process control charts. From 2009 to 2015, the total number of errors scanned declined from 97.1 per 1000 bottles to 10.8. Specifically, the number of expired milk error scans declined from 84.0 per 1000 bottles to 8.9. The number of preparation errors (4.8 per 1000 bottles to 2.2) and wrong-milk-to-wrong-infant errors scanned (8.3 per 1000 bottles to 2.0) also declined. By reducing the number of errors scanned, the number of opportunities for errors also decreased. Interventions that likely had the greatest impact on reducing the number of scanned errors included installation of bedside (versus centralized) scanners and dedicated staff to handle milk. Copyright © 2017 by the American Academy of Pediatrics.

  2. Evaluation of random errors in Williams’ series coefficients obtained with digital image correlation

    NASA Astrophysics Data System (ADS)

    Lychak, Oleh V.; Holyns'kiy, Ivan S.

    2016-03-01

    The use of the Williams’ series parameters for fracture analysis requires valid information about their error values. The aim of this investigation is the development of the method for estimation of the standard deviation of random errors of the Williams’ series parameters, obtained from the measured components of the stress field. Also, the criteria for choosing the optimal number of terms in the truncated Williams’ series for derivation of their parameters with minimal errors is proposed. The method was used for the evaluation of the Williams’ parameters, obtained from the data, and measured by the digital image correlation technique for testing a three-point bending specimen.

  3. The application of Aronson's taxonomy to medication errors in nursing.

    PubMed

    Johnson, Maree; Young, Helen

    2011-01-01

    Medication administration is a frequent nursing activity that is prone to error. In this study of 318 self-reported medication incidents (including near misses), very few resulted in patient harm-7% required intervention or prolonged hospitalization or caused temporary harm. Aronson's classification system provided an excellent framework for analysis of the incidents with a close connection between the type of error and the change strategy to minimize medication incidents. Taking a behavioral approach to medication error classification has provided helpful strategies for nurses such as nurse-call cards on patient lockers when patients are absent and checking of medication sign-off by outgoing and incoming staff at handover.

  4. Human errors and measurement uncertainty

    NASA Astrophysics Data System (ADS)

    Kuselman, Ilya; Pennecchi, Francesca

    2015-04-01

    Evaluating the residual risk of human errors in a measurement and testing laboratory, remaining after the error reduction by the laboratory quality system, and quantifying the consequences of this risk for the quality of the measurement/test results are discussed based on expert judgments and Monte Carlo simulations. A procedure for evaluation of the contribution of the residual risk to the measurement uncertainty budget is proposed. Examples are provided using earlier published sets of expert judgments on human errors in pH measurement of groundwater, elemental analysis of geological samples by inductively coupled plasma mass spectrometry, and multi-residue analysis of pesticides in fruits and vegetables. The human error contribution to the measurement uncertainty budget in the examples was not negligible, yet also not dominant. This was assessed as a good risk management result.

  5. Attitude determination using vector observations: A fast optimal matrix algorithm

    NASA Technical Reports Server (NTRS)

    Markley, F. Landis

    1993-01-01

    The attitude matrix minimizing Wahba's loss function is computed directly by a method that is competitive with the fastest known algorithm for finding this optimal estimate. The method also provides an estimate of the attitude error covariance matrix. Analysis of the special case of two vector observations identifies those cases for which the TRIAD or algebraic method minimizes Wahba's loss function.

  6. Accurate Degradation Rate Calculation with RdTools | Photovoltaic Research

    Science.gov Websites

    , seasonal effects such as soiling, shading and temperature bias are minimized by use of year-on-year (YOY , and 4) Rd and error calculation. Data normalization is comprised of PR + temperature correction, PVLIB . Seasonal effects are minimized by only comparing points at similar times of year. Graphic of a 10 multi

  7. Triton Mosaic

    NASA Image and Video Library

    1999-08-25

    Mosaic of Triton constructed from 16 individual images. After globally minimizing the camera pointing errors, the frames we reprocessed by map projections, photometric function removal and placement in the mosaic.

  8. Differential multi-MOSFET nuclear radiation sensor

    NASA Technical Reports Server (NTRS)

    Deoliveira, W. A.

    1977-01-01

    Circuit allows minimization of thermal-drift errors, low power consumption, operation over wide dynamic range, improved sensitivity and stability with metaloxide-semiconductor field-effect transistor sensors.

  9. Simple summation rule for optimal fixation selection in visual search.

    PubMed

    Najemnik, Jiri; Geisler, Wilson S

    2009-06-01

    When searching for a known target in a natural texture, practiced humans achieve near-optimal performance compared to a Bayesian ideal searcher constrained with the human map of target detectability across the visual field [Najemnik, J., & Geisler, W. S. (2005). Optimal eye movement strategies in visual search. Nature, 434, 387-391]. To do so, humans must be good at choosing where to fixate during the search [Najemnik, J., & Geisler, W.S. (2008). Eye movement statistics in humans are consistent with an optimal strategy. Journal of Vision, 8(3), 1-14. 4]; however, it seems unlikely that a biological nervous system would implement the computations for the Bayesian ideal fixation selection because of their complexity. Here we derive and test a simple heuristic for optimal fixation selection that appears to be a much better candidate for implementation within a biological nervous system. Specifically, we show that the near-optimal fixation location is the maximum of the current posterior probability distribution for target location after the distribution is filtered by (convolved with) the square of the retinotopic target detectability map. We term the model that uses this strategy the entropy limit minimization (ELM) searcher. We show that when constrained with human-like retinotopic map of target detectability and human search error rates, the ELM searcher performs as well as the Bayesian ideal searcher, and produces fixation statistics similar to human.

  10. Human factors evaluation of remote afterloading brachytherapy: Human error and critical tasks in remote afterloading brachytherapy and approaches for improved system performance. Volume 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callan, J.R.; Kelly, R.T.; Quinn, M.L.

    1995-05-01

    Remote Afterloading Brachytherapy (RAB) is a medical process used in the treatment of cancer. RAB uses a computer-controlled device to remotely insert and remove radioactive sources close to a target (or tumor) in the body. Some RAB problems affecting the radiation dose to the patient have been reported and attributed to human error. To determine the root cause of human error in the RAB system, a human factors team visited 23 RAB treatment sites in the US The team observed RAB treatment planning and delivery, interviewed RAB personnel, and performed walk-throughs, during which staff demonstrated the procedures and practices usedmore » in performing RAB tasks. Factors leading to human error in the RAB system were identified. The impact of those factors on the performance of RAB was then evaluated and prioritized in terms of safety significance. Finally, the project identified and evaluated alternative approaches for resolving the safety significant problems related to human error.« less

  11. Effects of Simplifying Choice Tasks on Estimates of Taste Heterogeneity in Stated-Choice Surveys

    PubMed Central

    Johnson, F. Reed; Ozdemir, Semra; Phillips, Kathryn A

    2011-01-01

    Researchers usually employ orthogonal arrays or D-optimal designs with little or no attribute overlap in stated-choice surveys. The challenge is to balance statistical efficiency and respondent burden to minimize the overall error in the survey responses. This study examined whether simplifying the choice task, by using a design with more overlap, provides advantages over standard minimum-overlap methods. We administered two designs for eliciting HIV test preferences to split samples. Surveys were undertaken at four HIV testing locations in San Francisco, California. Personal characteristics had different effects on willingness to pay for the two treatments, and gains in statistical efficiency in the minimal-overlap version more than compensated for possible imprecision from increased measurement error. PMID:19880234

  12. Human error analysis of commercial aviation accidents using the human factors analysis and classification system (HFACS)

    DOT National Transportation Integrated Search

    2001-02-01

    The Human Factors Analysis and Classification System (HFACS) is a general human error framework : originally developed and tested within the U.S. military as a tool for investigating and analyzing the human : causes of aviation accidents. Based upon ...

  13. Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments.

    PubMed

    Rincon, J A; Poza-Lujan, Jose-Luis; Julian, V; Posadas-Yagüe, Juan-Luis; Carrascosa, C

    2016-01-01

    This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system.

  14. Extending MAM5 Meta-Model and JaCalIV E Framework to Integrate Smart Devices from Real Environments

    PubMed Central

    2016-01-01

    This paper presents the extension of a meta-model (MAM5) and a framework based on the model (JaCalIVE) for developing intelligent virtual environments. The goal of this extension is to develop augmented mirror worlds that represent a real and virtual world coupled, so that the virtual world not only reflects the real one, but also complements it. A new component called a smart resource artifact, that enables modelling and developing devices to access the real physical world, and a human in the loop agent to place a human in the system have been included in the meta-model and framework. The proposed extension of MAM5 has been tested by simulating a light control system where agents can access both virtual and real sensor/actuators through the smart resources developed. The results show that the use of real environment interactive elements (smart resource artifacts) in agent-based simulations allows to minimize the error between simulated and real system. PMID:26926691

  15. Estimating Bias Error Distributions

    NASA Technical Reports Server (NTRS)

    Liu, Tian-Shu; Finley, Tom D.

    2001-01-01

    This paper formulates the general methodology for estimating the bias error distribution of a device in a measuring domain from less accurate measurements when a minimal number of standard values (typically two values) are available. A new perspective is that the bias error distribution can be found as a solution of an intrinsic functional equation in a domain. Based on this theory, the scaling- and translation-based methods for determining the bias error distribution arc developed. These methods are virtually applicable to any device as long as the bias error distribution of the device can be sufficiently described by a power series (a polynomial) or a Fourier series in a domain. These methods have been validated through computational simulations and laboratory calibration experiments for a number of different devices.

  16. Optimization of multimagnetometer systems on a spacecraft

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.

    1975-01-01

    The problem of optimizing the position of magnetometers along a boom of given length to yield a minimized total error is investigated. The discussion is limited to at most four magnetometers, which seems to be a practical limit due to weight, power, and financial considerations. The outlined error analysis is applied to some illustrative cases. The optimal magnetometer locations, for which the total error is minimum, are computed for given boom length, instrument errors, and very conservative magnetic field models characteristic for spacecraft with only a restricted or ineffective magnetic cleanliness program. It is shown that the error contribution by the magnetometer inaccuracy is increased as the number of magnetometers is increased, whereas the spacecraft field uncertainty is diminished by an appreciably larger amount.

  17. Hepatic glucose output in humans measured with labeled glucose to reduce negative errors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, J.C.; Brown, G.; Matthews, D.R.

    Steele and others have suggested that minimizing changes in glucose specific activity when estimating hepatic glucose output (HGO) during glucose infusions could reduce non-steady-state errors. This approach was assessed in nondiabetic and type II diabetic subjects during constant low dose (27 mumol.kg ideal body wt (IBW)-1.min-1) glucose infusion followed by a 12 mmol/l hyperglycemic clamp. Eight subjects had paired tests with and without labeled infusions. Labeled infusion was used to compare HGO in 11 nondiabetic and 15 diabetic subjects. Whereas unlabeled infusions produced negative values for endogenous glucose output, labeled infusions largely eliminated this error and reduced the dependence ofmore » the Steele model on the pool fraction in the paired tests. By use of labeled infusions, 11 nondiabetic subjects suppressed HGO from 10.2 +/- 0.6 (SE) fasting to 0.8 +/- 0.9 mumol.kg IBW-1.min-1 after 90 min of glucose infusion and to -1.9 +/- 0.5 mumol.kg IBW-1.min-1 after 90 min of a 12 mmol/l glucose clamp, but 15 diabetic subjects suppressed only partially from 13.0 +/- 0.9 fasting to 5.7 +/- 1.2 at the end of the glucose infusion and 5.6 +/- 1.0 mumol.kg IBW-1.min-1 in the clamp (P = 0.02, 0.002, and less than 0.001, respectively).« less

  18. Optimal design method to minimize users' thinking mapping load in human-machine interactions.

    PubMed

    Huang, Yanqun; Li, Xu; Zhang, Jie

    2015-01-01

    The discrepancy between human cognition and machine requirements/behaviors usually results in serious mental thinking mapping loads or even disasters in product operating. It is important to help people avoid human-machine interaction confusions and difficulties in today's mental work mastered society. Improving the usability of a product and minimizing user's thinking mapping and interpreting load in human-machine interactions. An optimal human-machine interface design method is introduced, which is based on the purpose of minimizing the mental load in thinking mapping process between users' intentions and affordance of product interface states. By analyzing the users' thinking mapping problem, an operating action model is constructed. According to human natural instincts and acquired knowledge, an expected ideal design with minimized thinking loads is uniquely determined at first. Then, creative alternatives, in terms of the way human obtains operational information, are provided as digital interface states datasets. In the last, using the cluster analysis method, an optimum solution is picked out from alternatives, by calculating the distances between two datasets. Considering multiple factors to minimize users' thinking mapping loads, a solution nearest to the ideal value is found in the human-car interaction design case. The clustering results show its effectiveness in finding an optimum solution to the mental load minimizing problems in human-machine interaction design.

  19. Patterning control strategies for minimum edge placement error in logic devices

    NASA Astrophysics Data System (ADS)

    Mulkens, Jan; Hanna, Michael; Slachter, Bram; Tel, Wim; Kubis, Michael; Maslow, Mark; Spence, Chris; Timoshkov, Vadim

    2017-03-01

    In this paper we discuss the edge placement error (EPE) for multi-patterning semiconductor manufacturing. In a multi-patterning scheme the creation of the final pattern is the result of a sequence of lithography and etching steps, and consequently the contour of the final pattern contains error sources of the different process steps. We describe the fidelity of the final pattern in terms of EPE, which is defined as the relative displacement of the edges of two features from their intended target position. We discuss our holistic patterning optimization approach to understand and minimize the EPE of the final pattern. As an experimental test vehicle we use the 7-nm logic device patterning process flow as developed by IMEC. This patterning process is based on Self-Aligned-Quadruple-Patterning (SAQP) using ArF lithography, combined with line cut exposures using EUV lithography. The computational metrology method to determine EPE is explained. It will be shown that ArF to EUV overlay, CDU from the individual process steps, and local CD and placement of the individual pattern features, are the important contributors. Based on the error budget, we developed an optimization strategy for each individual step and for the final pattern. Solutions include overlay and CD metrology based on angle resolved scatterometry, scanner actuator control to enable high order overlay corrections and computational lithography optimization to minimize imaging induced pattern placement errors of devices and metrology targets.

  20. Test functions for three-dimensional control-volume mixed finite-element methods on irregular grids

    USGS Publications Warehouse

    Naff, R.L.; Russell, T.F.; Wilson, J.D.; ,; ,; ,; ,; ,

    2000-01-01

    Numerical methods based on unstructured grids, with irregular cells, usually require discrete shape functions to approximate the distribution of quantities across cells. For control-volume mixed finite-element methods, vector shape functions are used to approximate the distribution of velocities across cells and vector test functions are used to minimize the error associated with the numerical approximation scheme. For a logically cubic mesh, the lowest-order shape functions are chosen in a natural way to conserve intercell fluxes that vary linearly in logical space. Vector test functions, while somewhat restricted by the mapping into the logical reference cube, admit a wider class of possibilities. Ideally, an error minimization procedure to select the test function from an acceptable class of candidates would be the best procedure. Lacking such a procedure, we first investigate the effect of possible test functions on the pressure distribution over the control volume; specifically, we look for test functions that allow for the elimination of intermediate pressures on cell faces. From these results, we select three forms for the test function for use in a control-volume mixed method code and subject them to an error analysis for different forms of grid irregularity; errors are reported in terms of the discrete L2 norm of the velocity error. Of these three forms, one appears to produce optimal results for most forms of grid irregularity.

  1. Statistical learning from nonrecurrent experience with discrete input variables and recursive-error-minimization equations

    NASA Astrophysics Data System (ADS)

    Carter, Jeffrey R.; Simon, Wayne E.

    1990-08-01

    Neural networks are trained using Recursive Error Minimization (REM) equations to perform statistical classification. Using REM equations with continuous input variables reduces the required number of training experiences by factors of one to two orders of magnitude over standard back propagation. Replacing the continuous input variables with discrete binary representations reduces the number of connections by a factor proportional to the number of variables reducing the required number of experiences by another order of magnitude. Undesirable effects of using recurrent experience to train neural networks for statistical classification problems are demonstrated and nonrecurrent experience used to avoid these undesirable effects. 1. THE 1-41 PROBLEM The statistical classification problem which we address is is that of assigning points in ddimensional space to one of two classes. The first class has a covariance matrix of I (the identity matrix) the covariance matrix of the second class is 41. For this reason the problem is known as the 1-41 problem. Both classes have equal probability of occurrence and samples from both classes may appear anywhere throughout the ddimensional space. Most samples near the origin of the coordinate system will be from the first class while most samples away from the origin will be from the second class. Since the two classes completely overlap it is impossible to have a classifier with zero error. The minimum possible error is known as the Bayes error and

  2. Peak-locking centroid bias in Shack-Hartmann wavefront sensing

    NASA Astrophysics Data System (ADS)

    Anugu, Narsireddy; Garcia, Paulo J. V.; Correia, Carlos M.

    2018-05-01

    Shack-Hartmann wavefront sensing relies on accurate spot centre measurement. Several algorithms were developed with this aim, mostly focused on precision, i.e. minimizing random errors. In the solar and extended scene community, the importance of the accuracy (bias error due to peak-locking, quantization, or sampling) of the centroid determination was identified and solutions proposed. But these solutions only allow partial bias corrections. To date, no systematic study of the bias error was conducted. This article bridges the gap by quantifying the bias error for different correlation peak-finding algorithms and types of sub-aperture images and by proposing a practical solution to minimize its effects. Four classes of sub-aperture images (point source, elongated laser guide star, crowded field, and solar extended scene) together with five types of peak-finding algorithms (1D parabola, the centre of gravity, Gaussian, 2D quadratic polynomial, and pyramid) are considered, in a variety of signal-to-noise conditions. The best performing peak-finding algorithm depends on the sub-aperture image type, but none is satisfactory to both bias and random errors. A practical solution is proposed that relies on the antisymmetric response of the bias to the sub-pixel position of the true centre. The solution decreases the bias by a factor of ˜7 to values of ≲ 0.02 pix. The computational cost is typically twice of current cross-correlation algorithms.

  3. Bi-Objective Optimal Control Modification Adaptive Control for Systems with Input Uncertainty

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    This paper presents a new model-reference adaptive control method based on a bi-objective optimal control formulation for systems with input uncertainty. A parallel predictor model is constructed to relate the predictor error to the estimation error of the control effectiveness matrix. In this work, we develop an optimal control modification adaptive control approach that seeks to minimize a bi-objective linear quadratic cost function of both the tracking error norm and predictor error norm simultaneously. The resulting adaptive laws for the parametric uncertainty and control effectiveness uncertainty are dependent on both the tracking error and predictor error, while the adaptive laws for the feedback gain and command feedforward gain are only dependent on the tracking error. The optimal control modification term provides robustness to the adaptive laws naturally from the optimal control framework. Simulations demonstrate the effectiveness of the proposed adaptive control approach.

  4. A practical method of estimating standard error of age in the fission track dating method

    USGS Publications Warehouse

    Johnson, N.M.; McGee, V.E.; Naeser, C.W.

    1979-01-01

    A first-order approximation formula for the propagation of error in the fission track age equation is given by PA = C[P2s+P2i+P2??-2rPsPi] 1 2, where PA, Ps, Pi and P?? are the percentage error of age, of spontaneous track density, of induced track density, and of neutron dose, respectively, and C is a constant. The correlation, r, between spontaneous are induced track densities is a crucial element in the error analysis, acting generally to improve the standard error of age. In addition, the correlation parameter r is instrumental is specifying the level of neutron dose, a controlled variable, which will minimize the standard error of age. The results from the approximation equation agree closely with the results from an independent statistical model for the propagation of errors in the fission-track dating method. ?? 1979.

  5. Improved L-BFGS diagonal preconditioners for a large-scale 4D-Var inversion system: application to CO2 flux constraints and analysis error calculation

    NASA Astrophysics Data System (ADS)

    Bousserez, Nicolas; Henze, Daven; Bowman, Kevin; Liu, Junjie; Jones, Dylan; Keller, Martin; Deng, Feng

    2013-04-01

    This work presents improved analysis error estimates for 4D-Var systems. From operational NWP models to top-down constraints on trace gas emissions, many of today's data assimilation and inversion systems in atmospheric science rely on variational approaches. This success is due to both the mathematical clarity of these formulations and the availability of computationally efficient minimization algorithms. However, unlike Kalman Filter-based algorithms, these methods do not provide an estimate of the analysis or forecast error covariance matrices, these error statistics being propagated only implicitly by the system. From both a practical (cycling assimilation) and scientific perspective, assessing uncertainties in the solution of the variational problem is critical. For large-scale linear systems, deterministic or randomization approaches can be considered based on the equivalence between the inverse Hessian of the cost function and the covariance matrix of analysis error. For perfectly quadratic systems, like incremental 4D-Var, Lanczos/Conjugate-Gradient algorithms have proven to be most efficient in generating low-rank approximations of the Hessian matrix during the minimization. For weakly non-linear systems though, the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS), a quasi-Newton descent algorithm, is usually considered the best method for the minimization. Suitable for large-scale optimization, this method allows one to generate an approximation to the inverse Hessian using the latest m vector/gradient pairs generated during the minimization, m depending upon the available core memory. At each iteration, an initial low-rank approximation to the inverse Hessian has to be provided, which is called preconditioning. The ability of the preconditioner to retain useful information from previous iterations largely determines the efficiency of the algorithm. Here we assess the performance of different preconditioners to estimate the inverse Hessian of a large-scale 4D-Var system. The impact of using the diagonal preconditioners proposed by Gilbert and Le Maréchal (1989) instead of the usual Oren-Spedicato scalar will be first presented. We will also introduce new hybrid methods that combine randomization estimates of the analysis error variance with L-BFGS diagonal updates to improve the inverse Hessian approximation. Results from these new algorithms will be evaluated against standard large ensemble Monte-Carlo simulations. The methods explored here are applied to the problem of inferring global atmospheric CO2 fluxes using remote sensing observations, and are intended to be integrated with the future NASA Carbon Monitoring System.

  6. Errors in the determination of the solar constant by the Langley method due to the presence of volcanic aerosol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schotland, R.M.; Hartman, J.E.

    1989-02-01

    The accuracy in the determination of the solar constant by means of the Langley method is strongly influenced by the spatial inhomogeneities of the atmospheric aerosol. Volcanos frequently inject aerosol into the upper troposphere and lower stratosphere. This paper evaluates the solar constant error that would occur if observations had been taken throughout the plume of El Chichon observed by NASA aircraft in the fall of 1982 and the spring of 1983. A lidar method is suggested to minimize this error. 15 refs.

  7. Bolus-dependent dosimetric effect of positioning errors for tangential scalp radiotherapy with helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobb, Eric, E-mail: eclobb2@gmail.com

    2014-04-01

    The dosimetric effect of errors in patient position is studied on-phantom as a function of simulated bolus thickness to assess the need for bolus utilization in scalp radiotherapy with tomotherapy. A treatment plan is generated on a cylindrical phantom, mimicking a radiotherapy technique for the scalp utilizing primarily tangential beamlets. A planning target volume with embedded scalplike clinical target volumes (CTVs) is planned to a uniform dose of 200 cGy. Translational errors in phantom position are introduced in 1-mm increments and dose is recomputed from the original sinogram. For each error the maximum dose, minimum dose, clinical target dose homogeneitymore » index (HI), and dose-volume histogram (DVH) are presented for simulated bolus thicknesses from 0 to 10 mm. Baseline HI values for all bolus thicknesses were in the 5.5 to 7.0 range, increasing to a maximum of 18.0 to 30.5 for the largest positioning errors when 0 to 2 mm of bolus is used. Utilizing 5 mm of bolus resulted in a maximum HI value of 9.5 for the largest positioning errors. Using 0 to 2 mm of bolus resulted in minimum and maximum dose values of 85% to 94% and 118% to 125% of the prescription dose, respectively. When using 5 mm of bolus these values were 98.5% and 109.5%. DVHs showed minimal changes in CTV dose coverage when using 5 mm of bolus, even for the largest positioning errors. CTV dose homogeneity becomes increasingly sensitive to errors in patient position as bolus thickness decreases when treating the scalp with primarily tangential beamlets. Performing a radial expansion of the scalp CTV into 5 mm of bolus material minimizes dosimetric sensitivity to errors in patient position as large as 5 mm and is therefore recommended.« less

  8. Compound Stimulus Presentation Does Not Deepen Extinction in Human Causal Learning

    PubMed Central

    Griffiths, Oren; Holmes, Nathan; Westbrook, R. Fred

    2017-01-01

    Models of associative learning have proposed that cue-outcome learning critically depends on the degree of prediction error encountered during training. Two experiments examined the role of error-driven extinction learning in a human causal learning task. Target cues underwent extinction in the presence of additional cues, which differed in the degree to which they predicted the outcome, thereby manipulating outcome expectancy and, in the absence of any change in reinforcement, prediction error. These prediction error manipulations have each been shown to modulate extinction learning in aversive conditioning studies. While both manipulations resulted in increased prediction error during training, neither enhanced extinction in the present human learning task (one manipulation resulted in less extinction at test). The results are discussed with reference to the types of associations that are regulated by prediction error, the types of error terms involved in their regulation, and how these interact with parameters involved in training. PMID:28232809

  9. Minimal Absent Words in Four Human Genome Assemblies

    PubMed Central

    Garcia, Sara P.; Pinho, Armando J.

    2011-01-01

    Minimal absent words have been computed in genomes of organisms from all domains of life. Here, we aim to contribute to the catalogue of human genomic variation by investigating the variation in number and content of minimal absent words within a species, using four human genome assemblies. We compare the reference human genome GRCh37 assembly, the HuRef assembly of the genome of Craig Venter, the NA12878 assembly from cell line GM12878, and the YH assembly of the genome of a Han Chinese individual. We find the variation in number and content of minimal absent words between assemblies more significant for large and very large minimal absent words, where the biases of sequencing and assembly methodologies become more pronounced. Moreover, we find generally greater similarity between the human genome assemblies sequenced with capillary-based technologies (GRCh37 and HuRef) than between the human genome assemblies sequenced with massively parallel technologies (NA12878 and YH). Finally, as expected, we find the overall variation in number and content of minimal absent words within a species to be generally smaller than the variation between species. PMID:22220210

  10. Optimal information transfer in enzymatic networks: A field theoretic formulation

    NASA Astrophysics Data System (ADS)

    Samanta, Himadri S.; Hinczewski, Michael; Thirumalai, D.

    2017-07-01

    Signaling in enzymatic networks is typically triggered by environmental fluctuations, resulting in a series of stochastic chemical reactions, leading to corruption of the signal by noise. For example, information flow is initiated by binding of extracellular ligands to receptors, which is transmitted through a cascade involving kinase-phosphatase stochastic chemical reactions. For a class of such networks, we develop a general field-theoretic approach to calculate the error in signal transmission as a function of an appropriate control variable. Application of the theory to a simple push-pull network, a module in the kinase-phosphatase cascade, recovers the exact results for error in signal transmission previously obtained using umbral calculus [Hinczewski and Thirumalai, Phys. Rev. X 4, 041017 (2014), 10.1103/PhysRevX.4.041017]. We illustrate the generality of the theory by studying the minimal errors in noise reduction in a reaction cascade with two connected push-pull modules. Such a cascade behaves as an effective three-species network with a pseudointermediate. In this case, optimal information transfer, resulting in the smallest square of the error between the input and output, occurs with a time delay, which is given by the inverse of the decay rate of the pseudointermediate. Surprisingly, in these examples the minimum error computed using simulations that take nonlinearities and discrete nature of molecules into account coincides with the predictions of a linear theory. In contrast, there are substantial deviations between simulations and predictions of the linear theory in error in signal propagation in an enzymatic push-pull network for a certain range of parameters. Inclusion of second-order perturbative corrections shows that differences between simulations and theoretical predictions are minimized. Our study establishes that a field theoretic formulation of stochastic biological signaling offers a systematic way to understand error propagation in networks of arbitrary complexity.

  11. Piece-wise quadratic approximations of arbitrary error functions for fast and robust machine learning.

    PubMed

    Gorban, A N; Mirkes, E M; Zinovyev, A

    2016-12-01

    Most of machine learning approaches have stemmed from the application of minimizing the mean squared distance principle, based on the computationally efficient quadratic optimization methods. However, when faced with high-dimensional and noisy data, the quadratic error functionals demonstrated many weaknesses including high sensitivity to contaminating factors and dimensionality curse. Therefore, a lot of recent applications in machine learning exploited properties of non-quadratic error functionals based on L 1 norm or even sub-linear potentials corresponding to quasinorms L p (0

  12. Human errors and occupational injuries of older female workers in the residential healthcare facilities for the elderly.

    PubMed

    Kim, Jun Sik; Jeong, Byung Yong

    2018-05-03

    The study aimed to describe the characteristics of occupational injuries of female workers in the residential healthcare facilities for the elderly, and analyze human errors as causes of accidents. From the national industrial accident compensation data, 506 female injuries were analyzed by age and occupation. The results showed that medical service worker was the most prevalent (54.1%), followed by social welfare worker (20.4%). Among injuries, 55.7% were <1 year of work experience, and 37.9% were ≥60 years old. Slips/falls were the most common type of accident (42.7%), and proportion of injured by slips/falls increases with age. Among human errors, action errors were the primary reasons, followed by perception errors, and cognition errors. Besides, the ratios of injuries by perception errors and action errors increase with age, respectively. The findings of this study suggest that there is a need to design workplaces that accommodate the characteristics of older female workers.

  13. An active constraint environment for minimally invasive heart surgery: early experience of a cutting operation.

    PubMed

    Borelli, Joao; Bello, Fernando; Rodriguez Y Bena, Ferdinando; Davies, Brian

    2004-01-01

    Master/slave telemanipulator systems can be applied in minimally invasive heart surgery. However, due to the beating heart and difficulties of finding inner points inside the heart, a surgical task operation such as cutting can be very difficult. In order to avoid surgical error, the "active constraint" concept can be applied. This paper shows an example of an "active constraint" environment used for minimally invasive heart surgery. Experiments have been carried out for a 2-DOF master and the preliminary results validate the present approach.

  14. The neutral emergence of error minimized genetic codes superior to the standard genetic code.

    PubMed

    Massey, Steven E

    2016-11-07

    The standard genetic code (SGC) assigns amino acids to codons in such a way that the impact of point mutations is reduced, this is termed 'error minimization' (EM). The occurrence of EM has been attributed to the direct action of selection, however it is difficult to explain how the searching of alternative codes for an error minimized code can occur via codon reassignments, given that these are likely to be disruptive to the proteome. An alternative scenario is that EM has arisen via the process of genetic code expansion, facilitated by the duplication of genes encoding charging enzymes and adaptor molecules. This is likely to have led to similar amino acids being assigned to similar codons. Strikingly, we show that if during code expansion the most similar amino acid to the parent amino acid, out of the set of unassigned amino acids, is assigned to codons related to those of the parent amino acid, then genetic codes with EM superior to the SGC easily arise. This scheme mimics code expansion via the gene duplication of charging enzymes and adaptors. The result is obtained for a variety of different schemes of genetic code expansion and provides a mechanistically realistic manner in which EM has arisen in the SGC. These observations might be taken as evidence for self-organization in the earliest stages of life. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Nuclear power: Siting and safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Openshaw, S.

    1986-01-01

    By 2030, half, or even two-thirds, of all electricity may be generated by nuclear power. Major reactor accidents are still expected to be rare occurrences, but nuclear safety is largely a matter of faith. Terrorist attacks, sabotage, and human error could cause a significant accident. Reactor siting can offer an additional, design-independent margin of safety. Remote geographical sites for new plants would minimize health risks, protect the industry from negative changes in public opinion concerning nuclear energy, and improve long-term public acceptance of nuclear power. U.K. siting practices usually do not consider the contribution to safety that could be obtainedmore » from remote sites. This book discusses the present trends of siting policies of nuclear power and their design-independent margin of safety.« less

  16. A multiple-drawer medication layout problem in automated dispensing cabinets.

    PubMed

    Pazour, Jennifer A; Meller, Russell D

    2012-12-01

    In this paper we investigate the problem of locating medications in automated dispensing cabinets (ADCs) to minimize human selection errors. We formulate the multiple-drawer medication layout problem and show that the problem can be formulated as a quadratic assignment problem. As a way to evaluate various medication layouts, we develop a similarity rating for medication pairs. To solve industry-sized problem instances, we develop a heuristic approach. We use hospital ADC transaction data to conduct a computational experiment to test the performance of our developed heuristics, to demonstrate how our approach can aid in ADC design trade-offs, and to illustrate the potential improvements that can be made when applying an analytical process to the multiple-drawer medication layout problem. Finally, we present conclusions and future research directions.

  17. Sensor Spatial Distortion, Visual Latency, and Update Rate Effects on 3D Tracking in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.; Adelstein, B. D.; Baumeler, S.; Jense, G. J.; Jacoby, R. H.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Several common defects that we have sought to minimize in immersing virtual environments are: static sensor spatial distortion, visual latency, and low update rates. Human performance within our environments during large amplitude 3D tracking was assessed by objective and subjective methods in the presence and absence of these defects. Results show that 1) removal of our relatively small spatial sensor distortion had minor effects on the tracking activity, 2) an Adapted Cooper-Harper controllability scale proved the most sensitive subjective indicator of the degradation of dynamic fidelity caused by increasing latency and decreasing frame rates, and 3) performance, as measured by normalized RMS tracking error or subjective impressions, was more markedly influenced by changing visual latency than by update rate.

  18. [Risk and risk management in aviation].

    PubMed

    Müller, Manfred

    2004-10-01

    RISK MANAGEMENT: The large proportion of human errors in aviation accidents suggested the solution--at first sight brilliant--to replace the fallible human being by an "infallible" digitally-operating computer. However, even after the introduction of the so-called HITEC-airplanes, the factor human error still accounts for 75% of all accidents. Thus, if the computer is ruled out as the ultimate safety system, how else can complex operations involving quick and difficult decisions be controlled? OPTIMIZED TEAM INTERACTION/PARALLEL CONNECTION OF THOUGHT MACHINES: Since a single person is always "highly error-prone", support and control have to be guaranteed by a second person. The independent work of mind results in a safety network that more efficiently cushions human errors. NON-PUNITIVE ERROR MANAGEMENT: To be able to tackle the actual problems, the open discussion of intervened errors must not be endangered by the threat of punishment. It has been shown in the past that progress is primarily achieved by investigating and following up mistakes, failures and catastrophes shortly after they happened. HUMAN FACTOR RESEARCH PROJECT: A comprehensive survey showed the following result: By far the most frequent safety-critical situation (37.8% of all events) consists of the following combination of risk factors: 1. A complication develops. 2. In this situation of increased stress a human error occurs. 3. The negative effects of the error cannot be corrected or eased because there are deficiencies in team interaction on the flight deck. This means, for example, that a negative social climate has the effect of a "turbocharger" when a human error occurs. It needs to be pointed out that a negative social climate is not identical with a dispute. In many cases the working climate is burdened without the responsible person even noticing it: A first negative impression, too much or too little respect, contempt, misunderstandings, not expressing unclear concern, etc. can considerably reduce the efficiency of a team.

  19. Competition between learned reward and error outcome predictions in anterior cingulate cortex.

    PubMed

    Alexander, William H; Brown, Joshua W

    2010-02-15

    The anterior cingulate cortex (ACC) is implicated in performance monitoring and cognitive control. Non-human primate studies of ACC show prominent reward signals, but these are elusive in human studies, which instead show mainly conflict and error effects. Here we demonstrate distinct appetitive and aversive activity in human ACC. The error likelihood hypothesis suggests that ACC activity increases in proportion to the likelihood of an error, and ACC is also sensitive to the consequence magnitude of the predicted error. Previous work further showed that error likelihood effects reach a ceiling as the potential consequences of an error increase, possibly due to reductions in the average reward. We explored this issue by independently manipulating reward magnitude of task responses and error likelihood while controlling for potential error consequences in an Incentive Change Signal Task. The fMRI results ruled out a modulatory effect of expected reward on error likelihood effects in favor of a competition effect between expected reward and error likelihood. Dynamic causal modeling showed that error likelihood and expected reward signals are intrinsic to the ACC rather than received from elsewhere. These findings agree with interpretations of ACC activity as signaling both perceptions of risk and predicted reward. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Bias in error estimation when using cross-validation for model selection.

    PubMed

    Varma, Sudhir; Simon, Richard

    2006-02-23

    Cross-validation (CV) is an effective method for estimating the prediction error of a classifier. Some recent articles have proposed methods for optimizing classifiers by choosing classifier parameter values that minimize the CV error estimate. We have evaluated the validity of using the CV error estimate of the optimized classifier as an estimate of the true error expected on independent data. We used CV to optimize the classification parameters for two kinds of classifiers; Shrunken Centroids and Support Vector Machines (SVM). Random training datasets were created, with no difference in the distribution of the features between the two classes. Using these "null" datasets, we selected classifier parameter values that minimized the CV error estimate. 10-fold CV was used for Shrunken Centroids while Leave-One-Out-CV (LOOCV) was used for the SVM. Independent test data was created to estimate the true error. With "null" and "non null" (with differential expression between the classes) data, we also tested a nested CV procedure, where an inner CV loop is used to perform the tuning of the parameters while an outer CV is used to compute an estimate of the error. The CV error estimate for the classifier with the optimal parameters was found to be a substantially biased estimate of the true error that the classifier would incur on independent data. Even though there is no real difference between the two classes for the "null" datasets, the CV error estimate for the Shrunken Centroid with the optimal parameters was less than 30% on 18.5% of simulated training data-sets. For SVM with optimal parameters the estimated error rate was less than 30% on 38% of "null" data-sets. Performance of the optimized classifiers on the independent test set was no better than chance. The nested CV procedure reduces the bias considerably and gives an estimate of the error that is very close to that obtained on the independent testing set for both Shrunken Centroids and SVM classifiers for "null" and "non-null" data distributions. We show that using CV to compute an error estimate for a classifier that has itself been tuned using CV gives a significantly biased estimate of the true error. Proper use of CV for estimating true error of a classifier developed using a well defined algorithm requires that all steps of the algorithm, including classifier parameter tuning, be repeated in each CV loop. A nested CV procedure provides an almost unbiased estimate of the true error.

  1. Application of Exactly Linearized Error Transport Equations to AIAA CFD Prediction Workshops

    NASA Technical Reports Server (NTRS)

    Derlaga, Joseph M.; Park, Michael A.; Rallabhandi, Sriram

    2017-01-01

    The computational fluid dynamics (CFD) prediction workshops sponsored by the AIAA have created invaluable opportunities in which to discuss the predictive capabilities of CFD in areas in which it has struggled, e.g., cruise drag, high-lift, and sonic boom pre diction. While there are many factors that contribute to disagreement between simulated and experimental results, such as modeling or discretization error, quantifying the errors contained in a simulation is important for those who make decisions based on the computational results. The linearized error transport equations (ETE) combined with a truncation error estimate is a method to quantify one source of errors. The ETE are implemented with a complex-step method to provide an exact linearization with minimal source code modifications to CFD and multidisciplinary analysis methods. The equivalency of adjoint and linearized ETE functional error correction is demonstrated. Uniformly refined grids from a series of AIAA prediction workshops demonstrate the utility of ETE for multidisciplinary analysis with a connection between estimated discretization error and (resolved or under-resolved) flow features.

  2. Impact of random pointing and tracking errors on the design of coherent and incoherent optical intersatellite communication links

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Gardner, Chester S.

    1989-01-01

    Given the rms transmitter pointing error and the desired probability of bit error (PBE), it can be shown that an optimal transmitter antenna gain exists which minimizes the required transmitter power. Given the rms local oscillator tracking error, an optimum receiver antenna gain can be found which optimizes the receiver performance. The impact of pointing and tracking errors on the design of direct-detection pulse-position modulation (PPM) and heterodyne noncoherent frequency-shift keying (NCFSK) systems are then analyzed in terms of constraints on the antenna size and the power penalty incurred. It is shown that in the limit of large spatial tracking errors, the advantage in receiver sensitivity for the heterodyne system is quickly offset by the smaller antenna gain and the higher power penalty due to tracking errors. In contrast, for systems with small spatial tracking errors, the heterodyne system is superior because of the higher receiver sensitivity.

  3. The effect of hip positioning on the projected femoral neck-shaft angle: a modeling study.

    PubMed

    Bhashyam, Abhiram R; Rodriguez, Edward K; Appleton, Paul; Wixted, John J

    2018-04-03

    The femoral neck-shaft angle (NSA) is used to restore normal hip geometry during hip fracture repair. Femoral rotation is known to affect NSA measurement, but the effect of hip flexion-extension is unknown. The goals of this study were to determine and test mathematical models of the relationship between hip flexion-extension, femoral rotation and NSA. We hypothesized that hip flexion-extension and femoral rotation would result in NSA measurement error. Two mathematical models were developed to predict NSA in varying degrees of hip flexion-extension and femoral rotation. The predictions of the equations were tested in vitro using a model that varied hip flexion-extension while keeping rotation constant, and vice versa. The NSA was measured from an AP radiograph obtained with a C-arm. Attributable measurement error based on hip positioning was calculated from the models. The predictions of the model correlated well with the experimental data (correlation coefficient = 0.82 - 0.90). A wide range of patient positioning was found to result in less than 5-10 degree error in the measurement of NSA. Hip flexion-extension and femoral rotation had a synergistic effect in measurement error of the NSA. Measurement error was minimized when hip flexion-extension was within 10 degrees of neutral. This study demonstrates that hip flexion-extension and femoral rotation significantly affect the measurement of the NSA. To avoid inadvertently fixing the proximal femur in varus or valgus, the hip should be positioned within 10 degrees of neutral flexion-extension with respect to the C-arm to minimize positional measurement error. N/A, basic science study.

  4. A greedy algorithm for species selection in dimension reduction of combustion chemistry

    NASA Astrophysics Data System (ADS)

    Hiremath, Varun; Ren, Zhuyin; Pope, Stephen B.

    2010-09-01

    Computational calculations of combustion problems involving large numbers of species and reactions with a detailed description of the chemistry can be very expensive. Numerous dimension reduction techniques have been developed in the past to reduce the computational cost. In this paper, we consider the rate controlled constrained-equilibrium (RCCE) dimension reduction method, in which a set of constrained species is specified. For a given number of constrained species, the 'optimal' set of constrained species is that which minimizes the dimension reduction error. The direct determination of the optimal set is computationally infeasible, and instead we present a greedy algorithm which aims at determining a 'good' set of constrained species; that is, one leading to near-minimal dimension reduction error. The partially-stirred reactor (PaSR) involving methane premixed combustion with chemistry described by the GRI-Mech 1.2 mechanism containing 31 species is used to test the algorithm. Results on dimension reduction errors for different sets of constrained species are presented to assess the effectiveness of the greedy algorithm. It is shown that the first four constrained species selected using the proposed greedy algorithm produce lower dimension reduction error than constraints on the major species: CH4, O2, CO2 and H2O. It is also shown that the first ten constrained species selected using the proposed greedy algorithm produce a non-increasing dimension reduction error with every additional constrained species; and produce the lowest dimension reduction error in many cases tested over a wide range of equivalence ratios, pressures and initial temperatures.

  5. MRI-guided prostate focal laser ablation therapy using a mechatronic needle guidance system

    NASA Astrophysics Data System (ADS)

    Cepek, Jeremy; Lindner, Uri; Ghai, Sangeet; Davidson, Sean R. H.; Trachtenberg, John; Fenster, Aaron

    2014-03-01

    Focal therapy of localized prostate cancer is receiving increased attention due to its potential for providing effective cancer control in select patients with minimal treatment-related side effects. Magnetic resonance imaging (MRI)-guided focal laser ablation (FLA) therapy is an attractive modality for such an approach. In FLA therapy, accurate placement of laser fibers is critical to ensuring that the full target volume is ablated. In practice, error in needle placement is invariably present due to pre- to intra-procedure image registration error, needle deflection, prostate motion, and variability in interventionalist skill. In addition, some of these sources of error are difficult to control, since the available workspace and patient positions are restricted within a clinical MRI bore. In an attempt to take full advantage of the utility of intraprocedure MRI, while minimizing error in needle placement, we developed an MRI-compatible mechatronic system for guiding needles to the prostate for FLA therapy. The system has been used to place interstitial catheters for MRI-guided FLA therapy in eight subjects in an ongoing Phase I/II clinical trial. Data from these cases has provided quantification of the level of uncertainty in needle placement error. To relate needle placement error to clinical outcome, we developed a model for predicting the probability of achieving complete focal target ablation for a family of parameterized treatment plans. Results from this work have enabled the specification of evidence-based selection criteria for the maximum target size that can be confidently ablated using this technique, and quantify the benefit that may be gained with improvements in needle placement accuracy.

  6. Systematic analysis of video data from different human-robot interaction studies: a categorization of social signals during error situations.

    PubMed

    Giuliani, Manuel; Mirnig, Nicole; Stollnberger, Gerald; Stadler, Susanne; Buchner, Roland; Tscheligi, Manfred

    2015-01-01

    Human-robot interactions are often affected by error situations that are caused by either the robot or the human. Therefore, robots would profit from the ability to recognize when error situations occur. We investigated the verbal and non-verbal social signals that humans show when error situations occur in human-robot interaction experiments. For that, we analyzed 201 videos of five human-robot interaction user studies with varying tasks from four independent projects. The analysis shows that there are two types of error situations: social norm violations and technical failures. Social norm violations are situations in which the robot does not adhere to the underlying social script of the interaction. Technical failures are caused by technical shortcomings of the robot. The results of the video analysis show that the study participants use many head movements and very few gestures, but they often smile, when in an error situation with the robot. Another result is that the participants sometimes stop moving at the beginning of error situations. We also found that the participants talked more in the case of social norm violations and less during technical failures. Finally, the participants use fewer non-verbal social signals (for example smiling, nodding, and head shaking), when they are interacting with the robot alone and no experimenter or other human is present. The results suggest that participants do not see the robot as a social interaction partner with comparable communication skills. Our findings have implications for builders and evaluators of human-robot interaction systems. The builders need to consider including modules for recognition and classification of head movements to the robot input channels. The evaluators need to make sure that the presence of an experimenter does not skew the results of their user studies.

  7. Mesh refinement in finite element analysis by minimization of the stiffness matrix trace

    NASA Technical Reports Server (NTRS)

    Kittur, Madan G.; Huston, Ronald L.

    1989-01-01

    Most finite element packages provide means to generate meshes automatically. However, the user is usually confronted with the problem of not knowing whether the mesh generated is appropriate for the problem at hand. Since the accuracy of the finite element results is mesh dependent, mesh selection forms a very important step in the analysis. Indeed, in accurate analyses, meshes need to be refined or rezoned until the solution converges to a value so that the error is below a predetermined tolerance. A-posteriori methods use error indicators, developed by using the theory of interpolation and approximation theory, for mesh refinements. Some use other criterions, such as strain energy density variation and stress contours for example, to obtain near optimal meshes. Although these methods are adaptive, they are expensive. Alternatively, a priori methods, until now available, use geometrical parameters, for example, element aspect ratio. Therefore, they are not adaptive by nature. An adaptive a-priori method is developed. The criterion is that the minimization of the trace of the stiffness matrix with respect to the nodal coordinates, leads to a minimization of the potential energy, and as a consequence provide a good starting mesh. In a few examples the method is shown to provide the optimal mesh. The method is also shown to be relatively simple and amenable to development of computer algorithms. When the procedure is used in conjunction with a-posteriori methods of grid refinement, it is shown that fewer refinement iterations and fewer degrees of freedom are required for convergence as opposed to when the procedure is not used. The mesh obtained is shown to have uniform distribution of stiffness among the nodes and elements which, as a consequence, leads to uniform error distribution. Thus the mesh obtained meets the optimality criterion of uniform error distribution.

  8. Optimal wavefront control for adaptive segmented mirrors

    NASA Technical Reports Server (NTRS)

    Downie, John D.; Goodman, Joseph W.

    1989-01-01

    A ground-based astronomical telescope with a segmented primary mirror will suffer image-degrading wavefront aberrations from at least two sources: (1) atmospheric turbulence and (2) segment misalignment or figure errors of the mirror itself. This paper describes the derivation of a mirror control feedback matrix that assumes the presence of both types of aberration and is optimum in the sense that it minimizes the mean-squared residual wavefront error. Assumptions of the statistical nature of the wavefront measurement errors, atmospheric phase aberrations, and segment misalignment errors are made in the process of derivation. Examples of the degree of correlation are presented for three different types of wavefront measurement data and compared to results of simple corrections.

  9. Approach to the Pediatric Prescription in a Community Pharmacy

    PubMed Central

    Benavides, Sandra; Huynh, Donna; Morgan, Jill; Briars, Leslie

    2011-01-01

    Pediatric patients are more susceptible to medication errors for a variety of reasons including physical and social differences and the necessity for patient-specific dosing. As such, community pharmacists may feel uncomfortable in verifying or dispensing a prescription for a pediatric patient. However, the use of a systematic approach to the pediatric prescription can provide confidence to pharmacists and minimize the possibility of a medication error. The objective of this article is to provide the community pharmacist with an overview of the potential areas of medication errors in a prescription for a pediatric patient. Additionally, the article guides the community pharmacist through a pediatric prescription, highlighting common areas of medication errors. PMID:22768015

  10. Statistical model for speckle pattern optimization.

    PubMed

    Su, Yong; Zhang, Qingchuan; Gao, Zeren

    2017-11-27

    Image registration is the key technique of optical metrologies such as digital image correlation (DIC), particle image velocimetry (PIV), and speckle metrology. Its performance depends critically on the quality of image pattern, and thus pattern optimization attracts extensive attention. In this article, a statistical model is built to optimize speckle patterns that are composed of randomly positioned speckles. It is found that the process of speckle pattern generation is essentially a filtered Poisson process. The dependence of measurement errors (including systematic errors, random errors, and overall errors) upon speckle pattern generation parameters is characterized analytically. By minimizing the errors, formulas of the optimal speckle radius are presented. Although the primary motivation is from the field of DIC, we believed that scholars in other optical measurement communities, such as PIV and speckle metrology, will benefit from these discussions.

  11. Gradient, contact-free volume transfers minimize compound loss in dose-response experiments.

    PubMed

    Harris, David; Olechno, Joe; Datwani, Sammy; Ellson, Richard

    2010-01-01

    More accurate dose-response curves can be constructed by eliminating aqueous serial dilution of compounds. Traditional serial dilutions that use aqueous diluents can result in errors in dose-response values of up to 4 orders of magnitude for a significant percentage of a compound library. When DMSO is used as the diluent, the errors are reduced but not eliminated. The authors use acoustic drop ejection (ADE) to transfer different volumes of model library compounds, directly creating a concentration gradient series in the receiver assay plate. Sample losses and contamination associated with compound handling are therefore avoided or minimized, particularly in the case of less water-soluble compounds. ADE is particularly well suited for assay miniaturization, but gradient volume dispensing is not limited to miniaturized applications.

  12. Advanced Receiver tracking of Voyager 2 near solar conjunction

    NASA Technical Reports Server (NTRS)

    Brown, D. H.; Hurd, W. J.; Vilnrotter, V. A.; Wiggins, J. D.

    1988-01-01

    The Advanced Receiver (ARX) was used to track the Voyager 2 spacecraft at low Sun-Earth-Probe (SEP) angles near solar conjunction in December of 1987. The received carrier signal exhibited strong fluctuations in both phase and amplitude. The ARX used spectral estimation and mathematical modeling of the phase and receiver noise processes to set an optimum carrier tracking bandwidth. This minimized the mean square phase error in tracking carrier phase and thus minimized the loss in the telemetry signal-to-noise ratio due to the carrier loop. Recovered symbol SNRs and errors in decoded engineering data for the ARX are compared with those for the current Block 3 telemetry stream. Optimum bandwidths are plotted against SEP angle. Measurements of the power spectral density of the solar phase and amplitude fluctuations are also given.

  13. Estimates of the absolute error and a scheme for an approximate solution to scheduling problems

    NASA Astrophysics Data System (ADS)

    Lazarev, A. A.

    2009-02-01

    An approach is proposed for estimating absolute errors and finding approximate solutions to classical NP-hard scheduling problems of minimizing the maximum lateness for one or many machines and makespan is minimized. The concept of a metric (distance) between instances of the problem is introduced. The idea behind the approach is, given the problem instance, to construct another instance for which an optimal or approximate solution can be found at the minimum distance from the initial instance in the metric introduced. Instead of solving the original problem (instance), a set of approximating polynomially/pseudopolynomially solvable problems (instances) are considered, an instance at the minimum distance from the given one is chosen, and the resulting schedule is then applied to the original instance.

  14. A Liberal Account of Addiction

    PubMed Central

    Foddy, Bennett; Savulescu, Julian

    2014-01-01

    Philosophers and psychologists have been attracted to two differing accounts of addictive motivation. In this paper, we investigate these two accounts and challenge their mutual claim that addictions compromise a person’s self-control. First, we identify some incompatibilities between this claim of reduced self-control and the available evidence from various disciplines. A critical assessment of the evidence weakens the empirical argument for reduced autonomy. Second, we identify sources of unwarranted normative bias in the popular theories of addiction that introduce systematic errors in interpreting the evidence. By eliminating these errors, we are able to generate a minimal, but correct account, of addiction that presumes addicts to be autonomous in their addictive behavior, absent further evidence to the contrary. Finally, we explore some of the implications of this minimal, correct view. PMID:24659901

  15. Feature-based respiratory motion tracking in native fluoroscopic sequences for dynamic roadmaps during minimally invasive procedures in the thorax and abdomen

    NASA Astrophysics Data System (ADS)

    Wagner, Martin G.; Laeseke, Paul F.; Schubert, Tilman; Slagowski, Jordan M.; Speidel, Michael A.; Mistretta, Charles A.

    2017-03-01

    Fluoroscopic image guidance for minimally invasive procedures in the thorax and abdomen suffers from respiratory and cardiac motion, which can cause severe subtraction artifacts and inaccurate image guidance. This work proposes novel techniques for respiratory motion tracking in native fluoroscopic images as well as a model based estimation of vessel deformation. This would allow compensation for respiratory motion during the procedure and therefore simplify the workflow for minimally invasive procedures such as liver embolization. The method first establishes dynamic motion models for both the contrast-enhanced vasculature and curvilinear background features based on a native (non-contrast) and a contrast-enhanced image sequence acquired prior to device manipulation, under free breathing conditions. The model of vascular motion is generated by applying the diffeomorphic demons algorithm to an automatic segmentation of the subtraction sequence. The model of curvilinear background features is based on feature tracking in the native sequence. The two models establish the relationship between the respiratory state, which is inferred from curvilinear background features, and the vascular morphology during that same respiratory state. During subsequent fluoroscopy, curvilinear feature detection is applied to determine the appropriate vessel mask to display. The result is a dynamic motioncompensated vessel mask superimposed on the fluoroscopic image. Quantitative evaluation of the proposed methods was performed using a digital 4D CT-phantom (XCAT), which provides realistic human anatomy including sophisticated respiratory and cardiac motion models. Four groups of datasets were generated, where different parameters (cycle length, maximum diaphragm motion and maximum chest expansion) were modified within each image sequence. Each group contains 4 datasets consisting of the initial native and contrast enhanced sequences as well as a sequence, where the respiratory motion is tracked. The respiratory motion tracking error was between 1.00 % and 1.09 %. The estimated dynamic vessel masks yielded a Sørensen-Dice coefficient between 0.94 and 0.96. Finally, the accuracy of the vessel contours was measured in terms of the 99th percentile of the error, which ranged between 0.64 and 0.96 mm. The presented results show that the approach is feasible for respiratory motion tracking and compensation and could therefore considerably improve the workflow of minimally invasive procedures in the thorax and abdomen

  16. Human error analysis of commercial aviation accidents: application of the Human Factors Analysis and Classification system (HFACS).

    PubMed

    Wiegmann, D A; Shappell, S A

    2001-11-01

    The Human Factors Analysis and Classification System (HFACS) is a general human error framework originally developed and tested within the U.S. military as a tool for investigating and analyzing the human causes of aviation accidents. Based on Reason's (1990) model of latent and active failures, HFACS addresses human error at all levels of the system, including the condition of aircrew and organizational factors. The purpose of the present study was to assess the utility of the HFACS framework as an error analysis and classification tool outside the military. The HFACS framework was used to analyze human error data associated with aircrew-related commercial aviation accidents that occurred between January 1990 and December 1996 using database records maintained by the NTSB and the FAA. Investigators were able to reliably accommodate all the human causal factors associated with the commercial aviation accidents examined in this study using the HFACS system. In addition, the classification of data using HFACS highlighted several critical safety issues in need of intervention research. These results demonstrate that the HFACS framework can be a viable tool for use within the civil aviation arena. However, additional research is needed to examine its applicability to areas outside the flight deck, such as aircraft maintenance and air traffic control domains.

  17. Drawing for Traffic Marking Using Bidirectional Gradient-Based Detection with MMS LIDAR Intensity

    NASA Astrophysics Data System (ADS)

    Takahashi, G.; Takeda, H.; Nakamura, K.

    2016-06-01

    Recently, the development of autonomous cars is accelerating on the integration of highly advanced artificial intelligence, which increases demand for a digital map with high accuracy. In particular, traffic markings are required to be precisely digitized since automatic driving utilizes them for position detection. To draw traffic markings, we benefit from Mobile Mapping Systems (MMS) equipped with high-density Laser imaging Detection and Ranging (LiDAR) scanners, which produces large amount of data efficiently with XYZ coordination along with reflectance intensity. Digitizing this data, on the other hand, conventionally has been dependent on human operation, which thus suffers from human errors, subjectivity errors, and low reproductivity. We have tackled this problem by means of automatic extraction of traffic marking, which partially accomplished to draw several traffic markings (G. Takahashi et al., 2014). The key idea of the method was extracting lines using the Hough transform strategically focused on changes in local reflection intensity along scan lines. However, it failed to extract traffic markings properly in a densely marked area, especially when local changing points are close each other. In this paper, we propose a bidirectional gradient-based detection method where local changing points are labelled with plus or minus group. Given that each label corresponds to the boundary between traffic markings and background, we can identify traffic markings explicitly, meaning traffic lines are differentiated correctly by the proposed method. As such, our automated method, a highly accurate and non-human-operator-dependent method using bidirectional gradient-based algorithm, can successfully extract traffic lines composed of complex shapes such as a cross walk, resulting in minimizing cost and obtaining highly accurate results.

  18. To Err Is Human; To Structurally Prime from Errors Is Also Human

    ERIC Educational Resources Information Center

    Slevc, L. Robert; Ferreira, Victor S.

    2013-01-01

    Natural language contains disfluencies and errors. Do listeners simply discard information that was clearly produced in error, or can erroneous material persist to affect subsequent processing? Two experiments explored this question using a structural priming paradigm. Speakers described dative-eliciting pictures after hearing prime sentences that…

  19. Human factors analysis and classification system-HFACS.

    DOT National Transportation Integrated Search

    2000-02-01

    Human error has been implicated in 70 to 80% of all civil and military aviation accidents. Yet, most accident : reporting systems are not designed around any theoretical framework of human error. As a result, most : accident databases are not conduci...

  20. Stem revenue losses with effective CDM management.

    PubMed

    Alwell, Michael

    2003-09-01

    Effective CDM management not only minimizes revenue losses due to denied claims, but also helps eliminate administrative costs associated with correcting coding errors. Accountability for CDM management should be assigned to a single individual, who ideally reports to the CFO or high-level finance director. If your organization is prone to making billing errors due to CDM deficiencies, you should consider purchasing CDM software to help you manage your CDM.

  1. Computer program to minimize prediction error in models from experiments with 16 hypercube points and 0 to 6 center points

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1982-01-01

    A previous report described a backward deletion procedure of model selection that was optimized for minimum prediction error and which used a multiparameter combination of the F - distribution and an order statistics distribution of Cochran's. A computer program is described that applies the previously optimized procedure to real data. The use of the program is illustrated by examples.

  2. A Decision Theoretic Approach to Evaluate Radiation Detection Algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nobles, Mallory A.; Sego, Landon H.; Cooley, Scott K.

    2013-07-01

    There are a variety of sensor systems deployed at U.S. border crossings and ports of entry that scan for illicit nuclear material. In this work, we develop a framework for comparing the performance of detection algorithms that interpret the output of these scans and determine when secondary screening is needed. We optimize each algorithm to minimize its risk, or expected loss. We measure an algorithm’s risk by considering its performance over a sample, the probability distribution of threat sources, and the consequence of detection errors. While it is common to optimize algorithms by fixing one error rate and minimizing another,more » our framework allows one to simultaneously consider multiple types of detection errors. Our framework is flexible and easily adapted to many different assumptions regarding the probability of a vehicle containing illicit material, and the relative consequences of a false positive and false negative errors. Our methods can therefore inform decision makers of the algorithm family and parameter values which best reduce the threat from illicit nuclear material, given their understanding of the environment at any point in time. To illustrate the applicability of our methods, in this paper, we compare the risk from two families of detection algorithms and discuss the policy implications of our results.« less

  3. Automation for Air Traffic Control: The Rise of a New Discipline

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; Tobias, Leonard (Technical Monitor)

    1997-01-01

    The current debate over the concept of Free Flight has renewed interest in automated conflict detection and resolution in the enroute airspace. An essential requirement for effective conflict detection is accurate prediction of trajectories. Trajectory prediction is, however, an inexact process which accumulates errors that grow in proportion to the length of the prediction time interval. Using a model of prediction errors for the trajectory predictor incorporated in the Center-TRACON Automation System (CTAS), a computationally fast algorithm for computing conflict probability has been derived. Furthermore, a method of conflict resolution has been formulated that minimizes the average cost of resolution, when cost is defined as the increment in airline operating costs incurred in flying the resolution maneuver. The method optimizes the trade off between early resolution at lower maneuver costs but higher prediction error on the one hand and late resolution with higher maneuver costs but lower prediction errors on the other. The method determines both the time to initiate the resolution maneuver as well as the characteristics of the resolution trajectory so as to minimize the cost of the resolution. Several computational examples relevant to the design of a conflict probe that can support user-preferred trajectories in the enroute airspace will be presented.

  4. Practice parameters facilitating adoption of advanced technologies for enhancing neuropsychological assessment paradigms.

    PubMed

    Parsons, Thomas D; McMahan, Timothy; Kane, Robert

    2018-01-01

    Clinical neuropsychologists have long underutilized computer technologies for neuropsychological assessment. Given the rapid advances in technology (e.g. virtual reality; tablets; iPhones) and the increased accessibility in the past decade, there is an on-going need to identify optimal specifications for advanced technologies while minimizing potential sources of error. Herein, we discuss concerns raised by a joint American Academy of Clinical Neuropsychology/National Academy of Neuropsychology position paper. Moreover, we proffer parameters for the development and use of advanced technologies in neuropsychological assessments. We aim to first describe software and hardware configurations that can impact a computerized neuropsychological assessment. This is followed by a description of best practices for developers and practicing neuropsychologists to minimize error in neuropsychological assessments using advanced technologies. We also discuss the relevance of weighing potential computer error in light of possible errors associated with traditional testing. Throughout there is an emphasis on the need for developers to provide bench test results for their software's performance on various devices and minimum specifications (documented in manuals) for the hardware (e.g. computer, monitor, input devices) in the neuropsychologist's practice. Advances in computerized assessment platforms offer both opportunities and challenges. The challenges can appear daunting but are a manageable and require informed consumers who can appreciate the issues and ask pertinent questions in evaluating their options.

  5. Videopanorama Frame Rate Requirements Derived from Visual Discrimination of Deceleration During Simulated Aircraft Landing

    NASA Technical Reports Server (NTRS)

    Furnstenau, Norbert; Ellis, Stephen R.

    2015-01-01

    In order to determine the required visual frame rate (FR) for minimizing prediction errors with out-the-window video displays at remote/virtual airport towers, thirteen active air traffic controllers viewed high dynamic fidelity simulations of landing aircraft and decided whether aircraft would stop as if to be able to make a turnoff or whether a runway excursion would be expected. The viewing conditions and simulation dynamics replicated visual rates and environments of transport aircraft landing at small commercial airports. The required frame rate was estimated using Bayes inference on prediction errors by linear FRextrapolation of event probabilities conditional on predictions (stop, no-stop). Furthermore estimates were obtained from exponential model fits to the parametric and non-parametric perceptual discriminabilities d' and A (average area under ROC-curves) as dependent on FR. Decision errors are biased towards preference of overshoot and appear due to illusionary increase in speed at low frames rates. Both Bayes and A - extrapolations yield a framerate requirement of 35 < FRmin < 40 Hz. When comparing with published results [12] on shooter game scores the model based d'(FR)-extrapolation exhibits the best agreement and indicates even higher FRmin > 40 Hz for minimizing decision errors. Definitive recommendations require further experiments with FR > 30 Hz.

  6. Technical approaches for measurement of human errors

    NASA Technical Reports Server (NTRS)

    Clement, W. F.; Heffley, R. K.; Jewell, W. F.; Mcruer, D. T.

    1980-01-01

    Human error is a significant contributing factor in a very high proportion of civil transport, general aviation, and rotorcraft accidents. The technical details of a variety of proven approaches for the measurement of human errors in the context of the national airspace system are presented. Unobtrusive measurements suitable for cockpit operations and procedures in part of full mission simulation are emphasized. Procedure, system performance, and human operator centered measurements are discussed as they apply to the manual control, communication, supervisory, and monitoring tasks which are relevant to aviation operations.

  7. Use of scan overlap redundancy to enhance multispectral aircraft scanner data

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Keat, J.

    1973-01-01

    Two criteria were suggested for optimizing the resolution error versus signal-to-noise-ratio tradeoff. The first criterion uses equal weighting coefficients and chooses n, the number of lines averaged, so as to make the average resolution error equal to the noise error. The second criterion adjusts both the number and relative sizes of the weighting coefficients so as to minimize the total error (resolution error plus noise error). The optimum set of coefficients depends upon the geometry of the resolution element, the number of redundant scan lines, the scan line increment, and the original signal-to-noise ratio of the channel. Programs were developed to find the optimum number and relative weights of the averaging coefficients. A working definition of signal-to-noise ratio was given and used to try line averaging on a typical set of data. Line averaging was evaluated only with respect to its effect on classification accuracy.

  8. High Precision Metrology on the Ultra-Lightweight W 50.8 cm f/1.25 Parabolic SHARPI Primary Mirror using a CGH Null Lens

    NASA Technical Reports Server (NTRS)

    Antonille, Scott

    2004-01-01

    For potential use on the SHARPI mission, Eastman Kodak has delivered a 50.8cm CA f/1.25 ultra-lightweight UV parabolic mirror with a surface figure error requirement of 6nm RMS. We address the challenges involved in verifying and mapping the surface error of this large lightweight mirror to +/-3nm using a diffractive CGH null lens. Of main concern is removal of large systematic errors resulting from surface deflections of the mirror due to gravity as well as smaller contributions from system misalignment and reference optic errors. We present our efforts to characterize these errors and remove their wavefront error contribution in post-processing as well as minimizing the uncertainty these calculations introduce. Data from Kodak and preliminary measurements from NASA Goddard will be included.

  9. Estimation of electrical conductivity distribution within the human head from magnetic flux density measurement.

    PubMed

    Gao, Nuo; Zhu, S A; He, Bin

    2005-06-07

    We have developed a new algorithm for magnetic resonance electrical impedance tomography (MREIT), which uses only one component of the magnetic flux density to reconstruct the electrical conductivity distribution within the body. The radial basis function (RBF) network and simplex method are used in the present approach to estimate the conductivity distribution by minimizing the errors between the 'measured' and model-predicted magnetic flux densities. Computer simulations were conducted in a realistic-geometry head model to test the feasibility of the proposed approach. Single-variable and three-variable simulations were performed to estimate the brain-skull conductivity ratio and the conductivity values of the brain, skull and scalp layers. When SNR = 15 for magnetic flux density measurements with the target skull-to-brain conductivity ratio being 1/15, the relative error (RE) between the target and estimated conductivity was 0.0737 +/- 0.0746 in the single-variable simulations. In the three-variable simulations, the RE was 0.1676 +/- 0.0317. Effects of electrode position uncertainty were also assessed by computer simulations. The present promising results suggest the feasibility of estimating important conductivity values within the head from noninvasive magnetic flux density measurements.

  10. Automated reconstruction of standing posture panoramas from multi-sector long limb x-ray images

    NASA Astrophysics Data System (ADS)

    Miller, Linzey; Trier, Caroline; Ben-Zikri, Yehuda K.; Linte, Cristian A.

    2016-03-01

    Due to the digital X-ray imaging system's limited field of view, several individual sector images are required to capture the posture of an individual in standing position. These images are then "stitched together" to reconstruct the standing posture. We have created an image processing application that automates the stitching, therefore minimizing user input, optimizing workflow, and reducing human error. The application begins with pre-processing the input images by removing artifacts, filtering out isolated noisy regions, and amplifying a seamless bone edge. The resulting binary images are then registered together using a rigid-body intensity based registration algorithm. The identified registration transformations are then used to map the original sector images into the panorama image. Our method focuses primarily on the use of the anatomical content of the images to generate the panoramas as opposed to using external markers employed to aid with the alignment process. Currently, results show robust edge detection prior to registration and we have tested our approach by comparing the resulting automatically-stitched panoramas to the manually stitched panoramas in terms of registration parameters, target registration error of homologous markers, and the homogeneity of the digitally subtracted automatically- and manually-stitched images using 26 patient datasets.

  11. The dynamics of error processing in the human brain as reflected by high-gamma activity in noninvasive and intracranial EEG.

    PubMed

    Völker, Martin; Fiederer, Lukas D J; Berberich, Sofie; Hammer, Jiří; Behncke, Joos; Kršek, Pavel; Tomášek, Martin; Marusič, Petr; Reinacher, Peter C; Coenen, Volker A; Helias, Moritz; Schulze-Bonhage, Andreas; Burgard, Wolfram; Ball, Tonio

    2018-06-01

    Error detection in motor behavior is a fundamental cognitive function heavily relying on local cortical information processing. Neural activity in the high-gamma frequency band (HGB) closely reflects such local cortical processing, but little is known about its role in error processing, particularly in the healthy human brain. Here we characterize the error-related response of the human brain based on data obtained with noninvasive EEG optimized for HGB mapping in 31 healthy subjects (15 females, 16 males), and additional intracranial EEG data from 9 epilepsy patients (4 females, 5 males). Our findings reveal a multiscale picture of the global and local dynamics of error-related HGB activity in the human brain. On the global level as reflected in the noninvasive EEG, the error-related response started with an early component dominated by anterior brain regions, followed by a shift to parietal regions, and a subsequent phase characterized by sustained parietal HGB activity. This phase lasted for more than 1 s after the error onset. On the local level reflected in the intracranial EEG, a cascade of both transient and sustained error-related responses involved an even more extended network, spanning beyond frontal and parietal regions to the insula and the hippocampus. HGB mapping appeared especially well suited to investigate late, sustained components of the error response, possibly linked to downstream functional stages such as error-related learning and behavioral adaptation. Our findings establish the basic spatio-temporal properties of HGB activity as a neural correlate of error processing, complementing traditional error-related potential studies. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Automation and Optimization of Multipulse Laser Zona Drilling of Mouse Embryos During Embryo Biopsy.

    PubMed

    Wong, Christopher Yee; Mills, James K

    2017-03-01

    Laser zona drilling (LZD) is a required step in many embryonic surgical procedures, for example, assisted hatching and preimplantation genetic diagnosis. LZD involves the ablation of the zona pellucida (ZP) using a laser while minimizing potentially harmful thermal effects on critical internal cell structures. Develop a method for the automation and optimization of multipulse LZD, applied to cleavage-stage embryos. A two-stage optimization is used. The first stage uses computer vision algorithms to identify embryonic structures and determines the optimal ablation zone farthest away from critical structures such as blastomeres. The second stage combines a genetic algorithm with a previously reported thermal analysis of LZD to optimize the combination of laser pulse locations and pulse durations. The goal is to minimize the peak temperature experienced by the blastomeres while creating the desired opening in the ZP. A proof of concept of the proposed LZD automation and optimization method is demonstrated through experiments on mouse embryos with positive results, as adequately sized openings are created. Automation of LZD is feasible and is a viable step toward the automation of embryo biopsy procedures. LZD is a common but delicate procedure performed by human operators using subjective methods to gauge proper LZD procedure. Automation of LZD removes human error to increase the success rate of LZD. Although the proposed methods are developed for cleavage-stage embryos, the same methods may be applied to most types LZD procedures, embryos at different developmental stages, or nonembryonic cells.

  13. 6.6-hour inhalation of ozone concentrations from 60 to 87 parts per billion in healthy humans.

    PubMed

    Schelegle, Edward S; Morales, Christopher A; Walby, William F; Marion, Susan; Allen, Roblee P

    2009-08-01

    Identification of the minimal ozone (O(3)) concentration and/or dose that induces measurable lung function decrements in humans is considered in the risk assessment leading to establishing an appropriate National Ambient Air Quality Standard for O(3) that protects public health. To identify and/or predict the minimal mean O(3) concentration that produces a decrement in FEV(1) and symptoms in healthy individuals completing 6.6-hour exposure protocols. Pulmonary function and subjective symptoms were measured in 31 healthy adults (18-25 yr, male and female, nonsmokers) who completed five 6.6-hour chamber exposures: filtered air and four variable hourly patterns with mean O(3) concentrations of 60, 70, 80, and 87 parts per billion (ppb). Compared with filtered air, statistically significant decrements in FEV(1) and increases in total subjective symptoms scores (P < 0.05) were measured after exposure to mean concentrations of 70, 80, and 87 ppb O(3). The mean percent change in FEV(1) (+/-standard error) at the end of each protocol was 0.80 +/- 0.90, -2.72 +/- 1.48, -5.34 +/- 1.42, -7.02 +/- 1.60, and -11.42 +/- 2.20% for exposure to filtered air and 60, 70, 80, and 87 ppb O(3), respectively. Inhalation of 70 ppb O(3) for 6.6 hours, a concentration below the current 8-hour National Ambient Air Quality Standard of 75 ppb, is sufficient to induce statistically significant decrements in FEV(1) in healthy young adults.

  14. Providing haptic feedback in robot-assisted minimally invasive surgery: a direct optical force-sensing solution for haptic rendering of deformable bodies.

    PubMed

    Ehrampoosh, Shervin; Dave, Mohit; Kia, Michael A; Rablau, Corneliu; Zadeh, Mehrdad H

    2013-01-01

    This paper presents an enhanced haptic-enabled master-slave teleoperation system which can be used to provide force feedback to surgeons in minimally invasive surgery (MIS). One of the research goals was to develop a combined-control architecture framework that included both direct force reflection (DFR) and position-error-based (PEB) control strategies. To achieve this goal, it was essential to measure accurately the direct contact forces between deformable bodies and a robotic tool tip. To measure the forces at a surgical tool tip and enhance the performance of the teleoperation system, an optical force sensor was designed, prototyped, and added to a robot manipulator. The enhanced teleoperation architecture was formulated by developing mathematical models for the optical force sensor, the extended slave robot manipulator, and the combined-control strategy. Human factor studies were also conducted to (a) examine experimentally the performance of the enhanced teleoperation system with the optical force sensor, and (b) study human haptic perception during the identification of remote object deformability. The first experiment was carried out to discriminate deformability of objects when human subjects were in direct contact with deformable objects by means of a laparoscopic tool. The control parameters were then tuned based on the results of this experiment using a gain-scheduling method. The second experiment was conducted to study the effectiveness of the force feedback provided through the enhanced teleoperation system. The results show that the force feedback increased the ability of subjects to correctly identify materials of different deformable types. In addition, the virtual force feedback provided by the teleoperation system comes close to the real force feedback experienced in direct MIS. The experimental results provide design guidelines for choosing and validating the control architecture and the optical force sensor.

  15. A wireless electronic monitoring system for securing milk from farm to processor

    NASA Astrophysics Data System (ADS)

    Womble, Phillip; Hopper, Lindsay; Thompson, Chris; Alexander, Suraj M.; Crist, William; Payne, Fred; Stombaugh, Tim; Paschal, Jon; Moore, Ryan; Luck, Brian; Tabayehnejab, Nasrin

    2008-04-01

    The Department of Homeland Security and the Department of Health and Human Services have targeted bulk food contamination as a focus for attention. The contamination of bulk food poses a high consequence threat to our society. Milk transport falls into three of the 17 targeted NIPP (National Infrastructure Protection Plan) sectors including agriculture-food, public health, and commercial facilities. Minimal security safeguards have been developed for bulk milk transport. The current manual methods of securing milk are paper intensive and prone to errors. The bulk milk transportation sector requires a security enhancement that will both reduce recording errors and enable normal transport activities to occur while providing security against unauthorized access. Milk transportation companies currently use voluntary seal programs that utilize plastic, numbered seals on milk transport tank openings. Our group has developed a Milk Transport Security System which is an electromechanical access control and communication system that assures the secure transport of milk, milk samples, milk data, and security data between locations and specifically between dairy farms, transfer stations, receiving stations, and milk plants. It includes a security monitoring system installed on the milk transport tank, a hand held device, optional printers, data server, and security evaluation software. The system operates automatically and requires minimal or no attention by the bulk milk hauler/sampler. The system is compatible with existing milk transport infrastructure, and has the support of the milk producers, milk transportation companies, milk marketing agencies, and dairy processors. The security protocol developed is applicable for transport of other bulk foods both nationally and internationally. This system adds significantly to the national security infrastructure for bulk food transport. We are currently demonstrating the system in central Kentucky and will report on the results of the demonstration.

  16. Analysis of recreational closed-circuit rebreather deaths 1998-2010.

    PubMed

    Fock, Andrew W

    2013-06-01

    Since the introduction of recreational closed-circuit rebreathers (CCRs) in 1998, there have been many recorded deaths. Rebreather deaths have been quoted to be as high as 1 in 100 users. Rebreather fatalities between 1998 and 2010 were extracted from the Deeplife rebreather mortality database, and inaccuracies were corrected where known. Rebreather absolute numbers were derived from industry discussions and training agency statistics. Relative numbers and brands were extracted from the Rebreather World website database and a Dutch rebreather survey. Mortality was compared with data from other databases. A fault-tree analysis of rebreathers was compared to that of open-circuit scuba of various configurations. Finally, a risk analysis was applied to the mortality database. The 181 recorded recreational rebreather deaths occurred at about 10 times the rate of deaths amongst open-circuit recreational scuba divers. No particular brand or type of rebreather was over-represented. Closed-circuit rebreathers have a 25-fold increased risk of component failure compared to a manifolded twin-cylinder open-circuit system. This risk can be offset by carrying a redundant 'bailout' system. Two-thirds of fatal dives were associated with a high-risk dive or high-risk behaviour. There are multiple points in the human-machine interface (HMI) during the use of rebreathers that can result in errors that may lead to a fatality. While rebreathers have an intrinsically higher risk of mechanical failure as a result of their complexity, this can be offset by good design incorporating redundancy and by carrying adequate 'bailout' or alternative gas sources for decompression in the event of a failure. Designs that minimize the chances of HMI errors and training that highlights this area may help to minimize fatalities.

  17. Evaluation of Hand Written and Computerized Out-Patient Prescriptions in Urban Part of Central Gujarat.

    PubMed

    Joshi, Anuradha; Buch, Jatin; Kothari, Nitin; Shah, Nishal

    2016-06-01

    Prescription order is an important therapeutic transaction between physician and patient. A good quality prescription is an extremely important factor for minimizing errors in dispensing medication and it should be adherent to guidelines for prescription writing for benefit of the patient. To evaluate frequency and type of prescription errors in outpatient prescriptions and find whether prescription writing abides with WHO standards of prescription writing. A cross-sectional observational study was conducted at Anand city. Allopathic private practitioners practising at Anand city of different specialities were included in study. Collection of prescriptions was started a month after the consent to minimize bias in prescription writing. The prescriptions were collected from local pharmacy stores of Anand city over a period of six months. Prescriptions were analysed for errors in standard information, according to WHO guide to good prescribing. Descriptive analysis was performed to estimate frequency of errors, data were expressed as numbers and percentage. Total 749 (549 handwritten and 200 computerised) prescriptions were collected. Abundant omission errors were identified in handwritten prescriptions e.g., OPD number was mentioned in 6.19%, patient's age was mentioned in 25.50%, gender in 17.30%, address in 9.29% and weight of patient mentioned in 11.29%, while in drug items only 2.97% drugs were prescribed by generic name. Route and Dosage form was mentioned in 77.35%-78.15%, dose mentioned in 47.25%, unit in 13.91%, regimens were mentioned in 72.93% while signa (direction for drug use) in 62.35%. Total 4384 errors out of 549 handwritten prescriptions and 501 errors out of 200 computerized prescriptions were found in clinicians and patient details. While in drug item details, total number of errors identified were 5015 and 621 in handwritten and computerized prescriptions respectively. As compared to handwritten prescriptions, computerized prescriptions appeared to be associated with relatively lower rates of error. Since out-patient prescription errors are abundant and often occur in handwritten prescriptions, prescribers need to adapt themselves to computerized prescription order entry in their daily practice.

  18. Evaluation of Hand Written and Computerized Out-Patient Prescriptions in Urban Part of Central Gujarat

    PubMed Central

    Buch, Jatin; Kothari, Nitin; Shah, Nishal

    2016-01-01

    Introduction Prescription order is an important therapeutic transaction between physician and patient. A good quality prescription is an extremely important factor for minimizing errors in dispensing medication and it should be adherent to guidelines for prescription writing for benefit of the patient. Aim To evaluate frequency and type of prescription errors in outpatient prescriptions and find whether prescription writing abides with WHO standards of prescription writing. Materials and Methods A cross-sectional observational study was conducted at Anand city. Allopathic private practitioners practising at Anand city of different specialities were included in study. Collection of prescriptions was started a month after the consent to minimize bias in prescription writing. The prescriptions were collected from local pharmacy stores of Anand city over a period of six months. Prescriptions were analysed for errors in standard information, according to WHO guide to good prescribing. Statistical Analysis Descriptive analysis was performed to estimate frequency of errors, data were expressed as numbers and percentage. Results Total 749 (549 handwritten and 200 computerised) prescriptions were collected. Abundant omission errors were identified in handwritten prescriptions e.g., OPD number was mentioned in 6.19%, patient’s age was mentioned in 25.50%, gender in 17.30%, address in 9.29% and weight of patient mentioned in 11.29%, while in drug items only 2.97% drugs were prescribed by generic name. Route and Dosage form was mentioned in 77.35%-78.15%, dose mentioned in 47.25%, unit in 13.91%, regimens were mentioned in 72.93% while signa (direction for drug use) in 62.35%. Total 4384 errors out of 549 handwritten prescriptions and 501 errors out of 200 computerized prescriptions were found in clinicians and patient details. While in drug item details, total number of errors identified were 5015 and 621 in handwritten and computerized prescriptions respectively. Conclusion As compared to handwritten prescriptions, computerized prescriptions appeared to be associated with relatively lower rates of error. Since out-patient prescription errors are abundant and often occur in handwritten prescriptions, prescribers need to adapt themselves to computerized prescription order entry in their daily practice. PMID:27504305

  19. A Data Mining Approach for Acoustic Diagnosis of Cardiopulmonary Disease

    DTIC Science & Technology

    2008-06-01

    chocolate chip cookies are amazing! This thesis was prepared at The Charles Stark Draper Laboratory, Inc., under Internal Company Research Project 21796...very expensive to perform. New medical technology has been the primary cause for the rising health care costs and insurance premiums. There are two...empirical risk minimization ( ERM ) principle. Generalization error can be minimized by using cross validation to select the best parameters for the

  20. Polyhedral Interpolation for Optimal Reaction Control System Jet Selection

    NASA Technical Reports Server (NTRS)

    Gefert, Leon P.; Wright, Theodore

    2014-01-01

    An efficient algorithm is described for interpolating optimal values for spacecraft Reaction Control System jet firing duty cycles. The algorithm uses the symmetrical geometry of the optimal solution to reduce the number of calculations and data storage requirements to a level that enables implementation on the small real time flight control systems used in spacecraft. The process minimizes acceleration direction errors, maximizes control authority, and minimizes fuel consumption.

  1. Digital filtering of plume emission spectra

    NASA Technical Reports Server (NTRS)

    Madzsar, George C.

    1990-01-01

    Fourier transformation and digital filtering techniques were used to separate the superpositioned spectral phenomena observed in the exhaust plumes of liquid propellant rocket engines. Space shuttle main engine (SSME) spectral data were used to show that extraction of spectral lines in the spatial frequency domain does not introduce error, and extraction of the background continuum introduces only minimal error. Error introduced during band extraction could not be quantified due to poor spectrometer resolution. Based on the atomic and molecular species found in the SSME plume, it was determined that spectrometer resolution must be 0.03 nm for SSME plume spectral monitoring.

  2. Orbit determination strategy and results for the Pioneer 10 Jupiter mission

    NASA Technical Reports Server (NTRS)

    Wong, S. K.; Lubeley, A. J.

    1974-01-01

    Pioneer 10 is the first earth-based vehicle to encounter Jupiter and occult its moon, Io. In contributing to the success of the mission, the Orbit Determination Group evaluated the effects of the dominant error sources on the spacecraft's computed orbit and devised an encounter strategy minimizing the effects of these error sources. The encounter results indicated that: (1) errors in the satellite model played a very important role in the accuracy of the computed orbit, (2) encounter strategy was sound, (3) all mission objectives were met, and (4) Jupiter-Saturn mission for Pioneer 11 is within the navigation capability.

  3. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  4. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  5. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  6. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  7. 40 CFR 230.76 - Actions affecting human use.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Actions affecting human use. 230.76... Minimize Adverse Effects § 230.76 Actions affecting human use. Minimization of adverse effects on human use... aquatic areas; (c) Timing the discharge to avoid the seasons or periods when human recreational activity...

  8. Optimal error functional for parameter identification in anisotropic finite strain elasto-plasticity

    NASA Astrophysics Data System (ADS)

    Shutov, A. V.; Kaygorodtseva, A. A.; Dranishnikov, N. S.

    2017-10-01

    A problem of parameter identification for a model of finite strain elasto-plasticity is discussed. The utilized phenomenological material model accounts for nonlinear isotropic and kinematic hardening; the model kinematics is described by a nested multiplicative split of the deformation gradient. A hierarchy of optimization problems is considered. First, following the standard procedure, the material parameters are identified through minimization of a certain least square error functional. Next, the focus is placed on finding optimal weighting coefficients which enter the error functional. Toward that end, a stochastic noise with systematic and non-systematic components is introduced to the available measurement results; a superordinate optimization problem seeks to minimize the sensitivity of the resulting material parameters to the introduced noise. The advantage of this approach is that no additional experiments are required; it also provides an insight into the robustness of the identification procedure. As an example, experimental data for the steel 42CrMo4 are considered and a set of weighting coefficients is found, which is optimal in a certain class.

  9. Coarse-graining errors and numerical optimization using a relative entropy framework

    NASA Astrophysics Data System (ADS)

    Chaimovich, Aviel; Shell, M. Scott

    2011-03-01

    The ability to generate accurate coarse-grained models from reference fully atomic (or otherwise "first-principles") ones has become an important component in modeling the behavior of complex molecular systems with large length and time scales. We recently proposed a novel coarse-graining approach based upon variational minimization of a configuration-space functional called the relative entropy, Srel, that measures the information lost upon coarse-graining. Here, we develop a broad theoretical framework for this methodology and numerical strategies for its use in practical coarse-graining settings. In particular, we show that the relative entropy offers tight control over the errors due to coarse-graining in arbitrary microscopic properties, and suggests a systematic approach to reducing them. We also describe fundamental connections between this optimization methodology and other coarse-graining strategies like inverse Monte Carlo, force matching, energy matching, and variational mean-field theory. We suggest several new numerical approaches to its minimization that provide new coarse-graining strategies. Finally, we demonstrate the application of these theoretical considerations and algorithms to a simple, instructive system and characterize convergence and errors within the relative entropy framework.

  10. Experimental measurement of structural power flow on an aircraft fuselage

    NASA Technical Reports Server (NTRS)

    Cuschieri, J. M.

    1989-01-01

    An experimental technique is used to measure the structural power flow through an aircraft fuselage with the excitation near the wing attachment location. Because of the large number of measurements required to analyze the whole of an aircraft fuselage, it is necessary that a balance be achieved between the number of measurement transducers, the mounting of these transducers, and the accuracy of the measurements. Using four transducers mounted on a bakelite platform, the structural intensity vectors at locations distributed throughout the fuselage are measured. To minimize the errors associated with using a four transducers technique the measurement positions are selected away from bulkheads and stiffeners. Because four separate transducers are used, with each transducer having its own drive and conditioning amplifiers, phase errors are introduced in the measurements that can be much greater than the phase differences associated with the measurements. To minimize these phase errors two sets of measurements are taken for each position with the orientation of the transducers rotated by 180 deg and an average taken between the two sets of measurements. Results are presented and discussed.

  11. Analysis and optimization of cyclic methods in orbit computation

    NASA Technical Reports Server (NTRS)

    Pierce, S.

    1973-01-01

    The mathematical analysis and computation of the K=3, order 4; K=4, order 6; and K=5, order 7 cyclic methods and the K=5, order 6 Cowell method and some results of optimizing the 3 backpoint cyclic multistep methods for solving ordinary differential equations are presented. Cyclic methods have the advantage over traditional methods of having higher order for a given number of backpoints while at the same time having more free parameters. After considering several error sources the primary source for the cyclic methods has been isolated. The free parameters for three backpoint methods were used to minimize the effects of some of these error sources. They now yield more accuracy with the same computing time as Cowell's method on selected problems. This work is being extended to the five backpoint methods. The analysis and optimization are more difficult here since the matrices are larger and the dimension of the optimizing space is larger. Indications are that the primary error source can be reduced. This will still leave several parameters free to minimize other sources.

  12. Development of an errorable car-following driver model

    NASA Astrophysics Data System (ADS)

    Yang, H.-H.; Peng, H.

    2010-06-01

    An errorable car-following driver model is presented in this paper. An errorable driver model is one that emulates human driver's functions and can generate both nominal (error-free), as well as devious (with error) behaviours. This model was developed for evaluation and design of active safety systems. The car-following data used for developing and validating the model were obtained from a large-scale naturalistic driving database. The stochastic car-following behaviour was first analysed and modelled as a random process. Three error-inducing behaviours were then introduced. First, human perceptual limitation was studied and implemented. Distraction due to non-driving tasks was then identified based on the statistical analysis of the driving data. Finally, time delay of human drivers was estimated through a recursive least-square identification process. By including these three error-inducing behaviours, rear-end collisions with the lead vehicle could occur. The simulated crash rate was found to be similar but somewhat higher than that reported in traffic statistics.

  13. Algorithm for Correcting the Keratometric Error in the Estimation of the Corneal Power in Keratoconus Eyes after Accelerated Corneal Collagen Crosslinking

    PubMed Central

    Caravaca-Arens, Esteban; de Fez, Dolores; Blanes-Mompó, Francisco J.

    2017-01-01

    Purpose To analyze the errors associated to corneal power calculation using the keratometric approach in keratoconus eyes after accelerated corneal collagen crosslinking (CXL) surgery and to obtain a model for the estimation of an adjusted corneal refractive index (nkadj) minimizing such errors. Methods Potential differences (ΔPc) among keratometric (Pk) and Gaussian corneal power (PcGauss) were simulated. Three algorithms based on the use of nkadj for the estimation of an adjusted keratometric corneal power (Pkadj) were developed. The agreement between Pk(1.3375) (keratometric power using the keratometric index of 1.3375), PcGauss, and Pkadj was evaluated. The validity of the algorithm developed was investigated in 21 keratoconus eyes undergoing accelerated CXL. Results P k(1.3375) overestimated corneal power between 0.3 and 3.2 D in theoretical simulations and between 0.8 and 2.9 D in the clinical study (ΔPc). Three linear equations were defined for nkadj to be used for different ranges of r1c. In the clinical study, differences between Pkadj and PcGauss did not exceed ±0.8 D nk = 1.3375. No statistically significant differences were found between Pkadj and PcGauss (p > 0.05) and Pk(1.3375) and Pkadj (p < 0.001). Conclusions The use of the keratometric approach in keratoconus eyes after accelerated CXL can lead to significant clinical errors. These errors can be minimized with an adjusted keratometric approach. PMID:29201459

  14. Rate-distortion theory and human perception.

    PubMed

    Sims, Chris R

    2016-07-01

    The fundamental goal of perception is to aid in the achievement of behavioral objectives. This requires extracting and communicating useful information from noisy and uncertain sensory signals. At the same time, given the complexity of sensory information and the limitations of biological information processing, it is necessary that some information must be lost or discarded in the act of perception. Under these circumstances, what constitutes an 'optimal' perceptual system? This paper describes the mathematical framework of rate-distortion theory as the optimal solution to the problem of minimizing the costs of perceptual error subject to strong constraints on the ability to communicate or transmit information. Rate-distortion theory offers a general and principled theoretical framework for developing computational-level models of human perception (Marr, 1982). Models developed in this framework are capable of producing quantitatively precise explanations for human perceptual performance, while yielding new insights regarding the nature and goals of perception. This paper demonstrates the application of rate-distortion theory to two benchmark domains where capacity limits are especially salient in human perception: discrete categorization of stimuli (also known as absolute identification) and visual working memory. A software package written for the R statistical programming language is described that aids in the development of models based on rate-distortion theory. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.

  15. Lost in Translation: the Case for Integrated Testing

    NASA Technical Reports Server (NTRS)

    Young, Aaron

    2017-01-01

    The building of a spacecraft is complex and often involves multiple suppliers and companies that have their own designs and processes. Standards have been developed across the industries to reduce the chances for critical flight errors at the system level, but the spacecraft is still vulnerable to the introduction of critical errors during integration of these systems. Critical errors can occur at any time during the process and in many cases, human reliability analysis (HRA) identifies human error as a risk driver. Most programs have a test plan in place that is intended to catch these errors, but it is not uncommon for schedule and cost stress to result in less testing than initially planned. Therefore, integrated testing, or "testing as you fly," is essential as a final check on the design and assembly to catch any errors prior to the mission. This presentation will outline the unique benefits of integrated testing by catching critical flight errors that can otherwise go undetected, discuss HRA methods that are used to identify opportunities for human error, lessons learned and challenges over ownership of testing will be discussed.

  16. Human factors in surgery: from Three Mile Island to the operating room.

    PubMed

    D'Addessi, Alessandro; Bongiovanni, Luca; Volpe, Andrea; Pinto, Francesco; Bassi, PierFrancesco

    2009-01-01

    Human factors is a definition that includes the science of understanding the properties of human capability, the application of this understanding to the design and development of systems and services, the art of ensuring their successful applications to a program. The field of human factors traces its origins to the Second World War, but Three Mile Island has been the best example of how groups of people react and make decisions under stress: this nuclear accident was exacerbated by wrong decisions made because the operators were overwhelmed with irrelevant, misleading or incorrect information. Errors and their nature are the same in all human activities. The predisposition for error is so intrinsic to human nature that scientifically it is best considered as inherently biologic. The causes of error in medical care may not be easily generalized. Surgery differs in important ways: most errors occur in the operating room and are technical in nature. Commonly, surgical error has been thought of as the consequence of lack of skill or ability, and is the result of thoughtless actions. Moreover the 'operating theatre' has a unique set of team dynamics: professionals from multiple disciplines are required to work in a closely coordinated fashion. This complex environment provides multiple opportunities for unclear communication, clashing motivations, errors arising not from technical incompetence but from poor interpersonal skills. Surgeons have to work closely with human factors specialists in future studies. By improving processes already in place in many operating rooms, safety will be enhanced and quality increased.

  17. The minimal local-asperity hypothesis of early retinal lateral inhibition.

    PubMed

    Balboa, R M; Grzywacz, N M

    2000-07-01

    Recently we found that the theories related to information theory existent in the literature cannot explain the behavior of the extent of the lateral inhibition mediated by retinal horizontal cells as a function of background light intensity. These theories can explain the fall of the extent from intermediate to high intensities, but not its rise from dim to intermediate intensities. We propose an alternate hypothesis that accounts for the extent's bell-shape behavior. This hypothesis proposes that the lateral-inhibition adaptation in the early retina is part of a system to extract several image attributes, such as occlusion borders and contrast. To do so, this system would use prior probabilistic knowledge about the biological processing and relevant statistics in natural images. A key novel statistic used here is the probability of the presence of an occlusion border as a function of local contrast. Using this probabilistic knowledge, the retina would optimize the spatial profile of lateral inhibition to minimize attribute-extraction error. The two significant errors that this minimization process must reduce are due to the quantal noise in photoreceptors and the straddling of occlusion borders by lateral inhibition.

  18. Multiple point least squares equalization in a room

    NASA Technical Reports Server (NTRS)

    Elliott, S. J.; Nelson, P. A.

    1988-01-01

    Equalization filters designed to minimize the mean square error between a delayed version of the original electrical signal and the equalized response at a point in a room have previously been investigated. In general, such a strategy degrades the response at positions in a room away from the equalization point. A method is presented for designing an equalization filter by adjusting the filter coefficients to minimize the sum of the squares of the errors between the equalized responses at multiple points in the room and delayed versions of the original, electrical signal. Such an equalization filter can give a more uniform frequency response over a greater volume of the enclosure than can the single point equalizer above. Computer simulation results are presented of equalizing the frequency responses from a loudspeaker to various typical ear positions, in a room with dimensions and acoustic damping typical of a car interior, using the two approaches outlined above. Adaptive filter algorithms, which can automatically adjust the coefficients of a digital equalization filter to achieve this minimization, will also be discussed.

  19. Smoothing the Marmousi Model

    NASA Astrophysics Data System (ADS)

    Žáček, K.

    Summary- The only way to make an excessively complex velocity model suitable for application of ray-based methods, such as the Gaussian beam or Gaussian packet methods, is to smooth it. We have smoothed the Marmousi model by choosing a coarser grid and by minimizing the second spatial derivatives of the slowness. This was done by minimizing the relevant Sobolev norm of slowness. We show that minimizing the relevant Sobolev norm of slowness is a suitable technique for preparing the optimum models for asymptotic ray theory methods. However, the price we pay for a model suitable for ray tracing is an increase of the difference between the smoothed and original model. Similarly, the estimated error in the travel time also increases due to the difference between the models. In smoothing the Marmousi model, we have found the estimated error of travel times at the verge of acceptability. Due to the low frequencies in the wavefield of the original Marmousi data set, we have found the Gaussian beams and Gaussian packets at the verge of applicability even in models sufficiently smoothed for ray tracing.

  20. A Minimal Path Searching Approach for Active Shape Model (ASM)-based Segmentation of the Lung.

    PubMed

    Guo, Shengwen; Fei, Baowei

    2009-03-27

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.

  1. A minimal path searching approach for active shape model (ASM)-based segmentation of the lung

    NASA Astrophysics Data System (ADS)

    Guo, Shengwen; Fei, Baowei

    2009-02-01

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 +/- 0.33 pixels, while the error is 1.99 +/- 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs.

  2. A Minimal Path Searching Approach for Active Shape Model (ASM)-based Segmentation of the Lung

    PubMed Central

    Guo, Shengwen; Fei, Baowei

    2013-01-01

    We are developing a minimal path searching method for active shape model (ASM)-based segmentation for detection of lung boundaries on digital radiographs. With the conventional ASM method, the position and shape parameters of the model points are iteratively refined and the target points are updated by the least Mahalanobis distance criterion. We propose an improved searching strategy that extends the searching points in a fan-shape region instead of along the normal direction. A minimal path (MP) deformable model is applied to drive the searching procedure. A statistical shape prior model is incorporated into the segmentation. In order to keep the smoothness of the shape, a smooth constraint is employed to the deformable model. To quantitatively assess the ASM-MP segmentation, we compare the automatic segmentation with manual segmentation for 72 lung digitized radiographs. The distance error between the ASM-MP and manual segmentation is 1.75 ± 0.33 pixels, while the error is 1.99 ± 0.45 pixels for the ASM. Our results demonstrate that our ASM-MP method can accurately segment the lung on digital radiographs. PMID:24386531

  3. The Human Factors Analysis and Classification System : HFACS : final report.

    DOT National Transportation Integrated Search

    2000-02-01

    Human error has been implicated in 70 to 80% of all civil and military aviation accidents. Yet, most accident reporting systems are not designed around any theoretical framework of human error. As a result, most accident databases are not conducive t...

  4. Differential reliance of chimpanzees and humans on automatic and deliberate control of motor actions.

    PubMed

    Kaneko, Takaaki; Tomonaga, Masaki

    2014-06-01

    Humans are often unaware of how they control their limb motor movements. People pay attention to their own motor movements only when their usual motor routines encounter errors. Yet little is known about the extent to which voluntary actions rely on automatic control and when automatic control shifts to deliberate control in nonhuman primates. In this study, we demonstrate that chimpanzees and humans showed similar limb motor adjustment in response to feedback error during reaching actions, whereas attentional allocation inferred from gaze behavior differed. We found that humans shifted attention to their own motor kinematics as errors were induced in motor trajectory feedback regardless of whether the errors actually disrupted their reaching their action goals. In contrast, chimpanzees shifted attention to motor execution only when errors actually interfered with their achieving a planned action goal. These results indicate that the species differed in their criteria for shifting from automatic to deliberate control of motor actions. It is widely accepted that sophisticated motor repertoires have evolved in humans. Our results suggest that the deliberate monitoring of one's own motor kinematics may have evolved in the human lineage. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Preventable Medical Errors Driven Modeling of Medical Best Practice Guidance Systems.

    PubMed

    Ou, Andrew Y-Z; Jiang, Yu; Wu, Po-Liang; Sha, Lui; Berlin, Richard B

    2017-01-01

    In a medical environment such as Intensive Care Unit, there are many possible reasons to cause errors, and one important reason is the effect of human intellectual tasks. When designing an interactive healthcare system such as medical Cyber-Physical-Human Systems (CPHSystems), it is important to consider whether the system design can mitigate the errors caused by these tasks or not. In this paper, we first introduce five categories of generic intellectual tasks of humans, where tasks among each category may lead to potential medical errors. Then, we present an integrated modeling framework to model a medical CPHSystem and use UPPAAL as the foundation to integrate and verify the whole medical CPHSystem design models. With a verified and comprehensive model capturing the human intellectual tasks effects, we can design a more accurate and acceptable system. We use a cardiac arrest resuscitation guidance and navigation system (CAR-GNSystem) for such medical CPHSystem modeling. Experimental results show that the CPHSystem models help determine system design flaws and can mitigate the potential medical errors caused by the human intellectual tasks.

  6. Human reliability assessment: tools for law enforcement

    NASA Astrophysics Data System (ADS)

    Ryan, Thomas G.; Overlin, Trudy K.

    1997-01-01

    This paper suggests ways in which human reliability analysis (HRA) can assist the United State Justice System, and more specifically law enforcement, in enhancing the reliability of the process from evidence gathering through adjudication. HRA is an analytic process identifying, describing, quantifying, and interpreting the state of human performance, and developing and recommending enhancements based on the results of individual HRA. It also draws on lessons learned from compilations of several HRA. Given the high legal standards the Justice System is bound to, human errors that might appear to be trivial in other venues can make the difference between a successful and unsuccessful prosecution. HRA has made a major contribution to the efficiency, favorable cost-benefit ratio, and overall success of many enterprises where humans interface with sophisticated technologies, such as the military, ground transportation, chemical and oil production, nuclear power generation, commercial aviation and space flight. Each of these enterprises presents similar challenges to the humans responsible for executing action and action sequences, especially where problem solving and decision making are concerned. Nowhere are humans confronted, to a greater degree, with problem solving and decision making than are the diverse individuals and teams responsible for arrest and adjudication of criminal proceedings. This paper concludes that because of the parallels between the aforementioned technologies and the adjudication process, especially crime scene evidence gathering, there is reason to believe that the HRA technology, developed and enhanced in other applications, can be transferred to the Justice System with minimal cost and with significant payoff.

  7. Investigation of writing error in staggered heated-dot magnetic recording systems

    NASA Astrophysics Data System (ADS)

    Tipcharoen, W.; Warisarn, C.; Tongsomporn, D.; Karns, D.; Kovintavewat, P.

    2017-05-01

    To achieve an ultra-high storage capacity, heated-dot magnetic recording (HDMR) has been proposed, which heats a bit-patterned medium before recording data. Generally, an error during the HDMR writing process comes from several sources; however, we only investigate the effects of staggered island arrangement, island size fluctuation caused by imperfect fabrication, and main pole position fluctuation. Simulation results demonstrate that a writing error can be minimized by using a staggered array (hexagonal lattice) instead of a square array. Under the effect of main pole position fluctuation, the writing error is higher than the system without main pole position fluctuation. Finally, we found that the error percentage can drop below 10% when the island size is 8.5 nm and the standard deviation of the island size is 1 nm in the absence of main pole jitter.

  8. Medication errors in the obstetrics emergency ward in a low resource setting.

    PubMed

    Kandil, Mohamed; Sayyed, Tarek; Emarh, Mohamed; Ellakwa, Hamed; Masood, Alaa

    2012-08-01

    To investigate the patterns of medication errors in the obstetric emergency ward in a low resource setting. This prospective observational study included 10,000 women who presented at the obstetric emergency ward, department of Obstetrics and Gynecology, Menofyia University Hospital, Egypt between March and December 2010. All medications prescribed in the emergency ward were monitored for different types of errors. The head nurse in each shift was asked to monitor each pharmacologic order from the moment of prescribing till its administration. Retrospective review of the patients' charts and nurses' notes was carried out by the authors of this paper. Results were tabulated and statistically analyzed. A total of 1976 medication errors were detected. Administration errors were the commonest error reported. Omitted errors ranked second followed by unauthorized and prescription errors. Three administration errors resulted in three Cesareans were performed for fetal distress because of wrong doses of oxytocin infusion. The rest of errors did not cause patients harm but may have lead to an increase in monitoring. Most errors occurred during night shifts. The availability of automated infusion pumps will probably decrease administration errors significantly. There is a need for more obstetricians and nurses during the nightshifts to minimize errors resulting from working under stressful conditions.

  9. An International Survey of Industrial Applications of Formal Methods. Volume 2. Case Studies

    DTIC Science & Technology

    1993-09-30

    impact of the product on IBM revenues. 4. Error rates were claimed to be below industrial average and errors were minimal to fix. Formal methods, as...critical applications. These include: 3 I I International Survey of Industrial Applications 41 i) "Software failures, particularly under first use, seem...project to add improved modelling capability. I U International Survey of Industrial Applications 93 I Design and Implementation These products are being

  10. Dynamic assertion testing of flight control software

    NASA Technical Reports Server (NTRS)

    Andrews, D. M.; Mahmood, A.; Mccluskey, E. J.

    1985-01-01

    An experiment in using assertions to dynamically test fault tolerant flight software is described. The experiment showed that 87% of typical errors introduced into the program would be detected by assertions. Detailed analysis of the test data showed that the number of assertions needed to detect those errors could be reduced to a minimal set. The analysis also revealed that the most effective assertions tested program parameters that provided greater indirect (collateral) testing of other parameters.

  11. Why humans might help strangers

    PubMed Central

    Raihani, Nichola J.; Bshary, Redouan

    2015-01-01

    Humans regularly help strangers, even when interactions are apparently unobserved and unlikely to be repeated. Such situations have been simulated in the laboratory using anonymous one-shot games (e.g., prisoner’s dilemma) where the payoff matrices used make helping biologically altruistic. As in real-life, participants often cooperate in the lab in these one-shot games with non-relatives, despite that fact that helping is under negative selection under these circumstances. Two broad explanations for such behavior prevail. The “big mistake” or “mismatch” theorists argue that behavior is constrained by psychological mechanisms that evolved predominantly in the context of repeated interactions with known individuals. In contrast, the cultural group selection theorists posit that humans have been selected to cooperate in anonymous one-shot interactions due to strong between-group competition, which creates interdependence among in-group members. We present these two hypotheses before discussing alternative routes by which humans could increase their direct fitness by cooperating with strangers under natural conditions. In doing so, we explain why the standard lab games do not capture real-life in various important aspects. First, asymmetries in the cost of perceptual errors regarding the context of the interaction (one-shot vs. repeated; anonymous vs. public) might have selected for strategies that minimize the chance of making costly behavioral errors. Second, helping strangers might be a successful strategy for identifying other cooperative individuals in the population, where partner choice can turn strangers into interaction partners. Third, in contrast to the assumptions of the prisoner’s dilemma model, it is possible that benefits of cooperation follow a non-linear function of investment. Non-linear benefits result in negative frequency dependence even in one-shot games. Finally, in many real-world situations individuals are able to parcel investments such that a one-shot interaction is turned into a repeated game of many decisions. PMID:25750619

  12. Noninvasive oxygen partial pressure measurement of human body fluids in vivo using magnetic resonance imaging.

    PubMed

    Zaharchuk, Greg; Busse, Reed F; Rosenthal, Guy; Manley, Geoffery T; Glenn, Orit A; Dillon, William P

    2006-08-01

    The oxygen partial pressure (pO2) of human body fluids reflects the oxygenation status of surrounding tissues. All existing fluid pO2 measurements are invasive, requiring either microelectrode/optode placement or fluid removal. The purpose of this study is to develop a noninvasive magnetic resonance imaging method to measure the pO2 of human body fluids. We developed an imaging paradigm that exploits the paramagnetism of molecular oxygen to create quantitative images of fluid oxygenation. A single-shot fast spin echo pulse sequence was modified to minimize artifacts from motion, fluid flow, and partial volume. Longitudinal relaxation rate (R1 = 1/T1) was measured with a time-efficient nonequilibrium saturation recovery method and correlated with pO2 measured in phantoms. pO2 images of human and fetal cerebrospinal fluid, bladder urine, and vitreous humor are presented and quantitative oxygenation levels are compared with prior literature estimates, where available. Significant pO2 increases are shown in cerebrospinal fluid and vitreous following 100% oxygen inhalation. Potential errors due to temperature, fluid flow, and partial volume are discussed. Noninvasive measurements of human body fluid pO2 in vivo are presented, which yield reasonable values based on prior literature estimates. This rapid imaging-based measurement of fluid oxygenation may provide insight into normal physiology as well as changes due to disease or during treatment.

  13. Knowledge about Human Papillomavirus and Cervical Cancer: Predictors of HPV Vaccination among Dental Students

    PubMed

    Rajiah, Kingston; Maharajan, Mari Kannan; Fang Num, Kelly Sze; How Koh, Raymond Chee

    2017-06-25

    Background: The objective of this study is to determine the influence of dental students’ knowledge and attitude regarding human papillomavirus infection of cervical cancer on willingness to pay for vaccination. Basic research design: A convenience sampling method was used. The minimal sample size of 136 was calculated using the Raosoft calculator with a 5 % margin of error and 95% confidence level. Participants: The study population were all final year dental students from the School of Dentistry. Methods: A self-administered questionnaire was used to measure knowledge levels and attitudes regarding human papillomavirus vaccination. Contingent valuation was conducted for willingness to pay for vaccination. Main outcome measures: The Center for Disease Control and Prevention has stated that human papillomavirus are associated with oropharynx cancer and the American Dental Association insist on expanding public awareness of the oncogenic potential of some HPV infections. Thus, as future dental practitioners, dental students should be aware of human papillomavirus and their links with cancer and the benefits of vaccination. Results: Knowledge on HPV and cervical cancer did not impact on attitudes towards vaccines. However, significant correlation existed between knowledge and willingness to pay for vaccination. Conclusions: Dental students’ knowledge on HPV and cervical cancer has no influence on their attitude towards HPV vaccines. However, their willingness to pay for HPV vaccination is influenced by their knowledge of cervical cancer and HPV vaccination. Creative Commons Attribution License

  14. Modeling human tracking error in several different anti-tank systems

    NASA Technical Reports Server (NTRS)

    Kleinman, D. L.

    1981-01-01

    An optimal control model for generating time histories of human tracking errors in antitank systems is outlined. Monte Carlo simulations of human operator responses for three Army antitank systems are compared. System/manipulator dependent data comparisons reflecting human operator limitations in perceiving displayed quantities and executing intended control motions are presented. Motor noise parameters are also discussed.

  15. Interaction-free measurement as quantum channel discrimination

    NASA Astrophysics Data System (ADS)

    Zhou, You; Yung, Man-Hong

    2017-12-01

    Interaction-free measurement is a quantum process where, in the ideal situation, an object can be detected as if no interaction took place with the probing photon. Here we show that the problem of interaction-free measurement can be regarded as a problem of quantum-channel discrimination. In particular, we look for the optimal photonic states that can minimize the detection error and the photon loss in detecting the presence or absence of the object, which is taken to be semitransparent, and the number of the interrogation cycle is assumed to be finite. Furthermore, we also investigated the possibility of minimizing the detection error through the use of entangled photons, which is essentially a setting of quantum illumination. However, our results indicate that entanglement does not exhibit a clear advantage; the same performance can be achieved with unentangled photonic states.

  16. Error minimizing algorithms for nearest eighbor classifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Porter, Reid B; Hush, Don; Zimmer, G. Beate

    2011-01-03

    Stack Filters define a large class of discrete nonlinear filter first introd uced in image and signal processing for noise removal. In recent years we have suggested their application to classification problems, and investigated their relationship to other types of discrete classifiers such as Decision Trees. In this paper we focus on a continuous domain version of Stack Filter Classifiers which we call Ordered Hypothesis Machines (OHM), and investigate their relationship to Nearest Neighbor classifiers. We show that OHM classifiers provide a novel framework in which to train Nearest Neighbor type classifiers by minimizing empirical error based loss functions. Wemore » use the framework to investigate a new cost sensitive loss function that allows us to train a Nearest Neighbor type classifier for low false alarm rate applications. We report results on both synthetic data and real-world image data.« less

  17. Temporal bone borehole accuracy for cochlear implantation influenced by drilling strategy: an in vitro study.

    PubMed

    Kobler, Jan-Philipp; Schoppe, Michael; Lexow, G Jakob; Rau, Thomas S; Majdani, Omid; Kahrs, Lüder A; Ortmaier, Tobias

    2014-11-01

    Minimally invasive cochlear implantation is a surgical technique which requires drilling a canal from the mastoid surface toward the basal turn of the cochlea. The choice of an appropriate drilling strategy is hypothesized to have significant influence on the achievable targeting accuracy. Therefore, a method is presented to analyze the contribution of the drilling process and drilling tool to the targeting error isolated from other error sources. The experimental setup to evaluate the borehole accuracy comprises a drill handpiece attached to a linear slide as well as a highly accurate coordinate measuring machine (CMM). Based on the specific requirements of the minimally invasive cochlear access, three drilling strategies, mainly characterized by different drill tools, are derived. The strategies are evaluated by drilling into synthetic temporal bone substitutes containing air-filled cavities to simulate mastoid cells. Deviations from the desired drill trajectories are determined based on measurements using the CMM. Using the experimental setup, a total of 144 holes were drilled for accuracy evaluation. Errors resulting from the drilling process depend on the specific geometry of the tool as well as the angle at which the drill contacts the bone surface. Furthermore, there is a risk of the drill bit deflecting due to synthetic mastoid cells. A single-flute gun drill combined with a pilot drill of the same diameter provided the best results for simulated minimally invasive cochlear implantation, based on an experimental method that may be used for testing further drilling process improvements.

  18. The study about forming high-precision optical lens minimalized sinuous error structures for designed surface

    NASA Astrophysics Data System (ADS)

    Katahira, Yu; Fukuta, Masahiko; Katsuki, Masahide; Momochi, Takeshi; Yamamoto, Yoshihiro

    2016-09-01

    Recently, it has been required to improve qualities of aspherical lenses mounted on camera units. Optical lenses in highvolume production generally are applied with molding process using cemented carbide or Ni-P coated steel, which can be selected from lens material such as glass and plastic. Additionally it can be obtained high quality of the cut or ground surface on mold due to developments of different mold product technologies. As results, it can be less than 100nmPV as form-error and 1nmRa as surface roughness in molds. Furthermore it comes to need higher quality, not only formerror( PV) and surface roughness(Ra) but also other surface characteristics. For instance, it can be caused distorted shapes at imaging by middle spatial frequency undulations on the lens surface. In this study, we made focus on several types of sinuous structures, which can be classified into form errors for designed surface and deteriorate optical system performances. And it was obtained mold product processes minimalizing undulations on the surface. In the report, it was mentioned about the analyzing process by using PSD so as to evaluate micro undulations on the machined surface quantitatively. In addition, it was mentioned that the grinding process with circumferential velocity control was effective for large aperture lenses fabrication and could minimalize undulations appeared on outer area of the machined surface, and mentioned about the optical glass lens molding process by using the high precision press machine.

  19. Artifacts in Digital Coincidence Timing

    PubMed Central

    Moses, W. W.; Peng, Q.

    2014-01-01

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into a time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator. All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e., the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the “optimal” method. The purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization. PMID:25321885

  20. Artifacts in digital coincidence timing

    DOE PAGES

    Moses, W. W.; Peng, Q.

    2014-10-16

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into amore » time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator.All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e. the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the 'optimal' method. In conclusion, the purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization.« less

  1. RGB-to-RGBG conversion algorithm with adaptive weighting factors based on edge detection and minimal square error.

    PubMed

    Huang, Chengqiang; Yang, Youchang; Wu, Bo; Yu, Weize

    2018-06-01

    The sub-pixel arrangement of the RGBG panel and the image with RGB format are different and the algorithm that converts RGB to RGBG is urgently needed to display an image with RGB arrangement on the RGBG panel. However, the information loss is still large although color fringing artifacts are weakened in the published papers that study this conversion. In this paper, an RGB-to-RGBG conversion algorithm with adaptive weighting factors based on edge detection and minimal square error (EDMSE) is proposed. The main points of innovation include the following: (1) the edge detection is first proposed to distinguish image details with serious color fringing artifacts and image details which are prone to be lost in the process of RGB-RGBG conversion; (2) for image details with serious color fringing artifacts, the weighting factor 0.5 is applied to weaken the color fringing artifacts; and (3) for image details that are prone to be lost in the process of RGB-RGBG conversion, a special mechanism to minimize square error is proposed. The experiment shows that the color fringing artifacts are slightly improved by EDMSE, and the values of MSE of the image processed are 19.6% and 7% smaller than those of the image processed by the direct assignment and weighting factor algorithm, respectively. The proposed algorithm is implemented on a field programmable gate array to enable the image display on the RGBG panel.

  2. Artifacts in digital coincidence timing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moses, W. W.; Peng, Q.

    Digital methods are becoming increasingly popular for measuring time differences, and are the de facto standard in PET cameras. These methods usually include a master system clock and a (digital) arrival time estimate for each detector that is obtained by comparing the detector output signal to some reference portion of this clock (such as the rising edge). Time differences between detector signals are then obtained by subtracting the digitized estimates from a detector pair. A number of different methods can be used to generate the digitized arrival time of the detector output, such as sending a discriminator output into amore » time to digital converter (TDC) or digitizing the waveform and applying a more sophisticated algorithm to extract a timing estimator.All measurement methods are subject to error, and one generally wants to minimize these errors and so optimize the timing resolution. A common method for optimizing timing methods is to measure the coincidence timing resolution between two timing signals whose time difference should be constant (such as detecting gammas from positron annihilation) and selecting the method that minimizes the width of the distribution (i.e. the timing resolution). Unfortunately, a common form of error (a nonlinear transfer function) leads to artifacts that artificially narrow this resolution, which can lead to erroneous selection of the 'optimal' method. In conclusion, the purpose of this note is to demonstrate the origin of this artifact and suggest that caution should be used when optimizing time digitization systems solely on timing resolution minimization.« less

  3. The Hinton train disaster.

    PubMed

    Smiley, A M

    1990-10-01

    In February of 1986 a head-on collision occurred between a freight train and a passenger train in western Canada killing 23 people and causing over $30 million of damage. A Commission of Inquiry appointed by the Canadian government concluded that human error was the major reason for the collision. This report discusses the factors contributing to the human error: mainly poor work-rest schedules, the monotonous nature of the train driving task, insufficient information about train movements, and the inadequate backup systems in case of human error.

  4. A Conceptual Framework for Predicting Error in Complex Human-Machine Environments

    NASA Technical Reports Server (NTRS)

    Freed, Michael; Remington, Roger; Null, Cynthia H. (Technical Monitor)

    1998-01-01

    We present a Goals, Operators, Methods, and Selection Rules-Model Human Processor (GOMS-MHP) style model-based approach to the problem of predicting human habit capture errors. Habit captures occur when the model fails to allocate limited cognitive resources to retrieve task-relevant information from memory. Lacking the unretrieved information, decision mechanisms act in accordance with implicit default assumptions, resulting in error when relied upon assumptions prove incorrect. The model helps interface designers identify situations in which such failures are especially likely.

  5. STAMP-Based HRA Considering Causality Within a Sociotechnical System: A Case of Minuteman III Missile Accident.

    PubMed

    Rong, Hao; Tian, Jin

    2015-05-01

    The study contributes to human reliability analysis (HRA) by proposing a method that focuses more on human error causality within a sociotechnical system, illustrating its rationality and feasibility by using a case of the Minuteman (MM) III missile accident. Due to the complexity and dynamics within a sociotechnical system, previous analyses of accidents involving human and organizational factors clearly demonstrated that the methods using a sequential accident model are inadequate to analyze human error within a sociotechnical system. System-theoretic accident model and processes (STAMP) was used to develop a universal framework of human error causal analysis. To elaborate the causal relationships and demonstrate the dynamics of human error, system dynamics (SD) modeling was conducted based on the framework. A total of 41 contributing factors, categorized into four types of human error, were identified through the STAMP-based analysis. All factors are related to a broad view of sociotechnical systems, and more comprehensive than the causation presented in the accident investigation report issued officially. Recommendations regarding both technical and managerial improvement for a lower risk of the accident are proposed. The interests of an interdisciplinary approach provide complementary support between system safety and human factors. The integrated method based on STAMP and SD model contributes to HRA effectively. The proposed method will be beneficial to HRA, risk assessment, and control of the MM III operating process, as well as other sociotechnical systems. © 2014, Human Factors and Ergonomics Society.

  6. The forecast for RAC extrapolation: mostly cloudy.

    PubMed

    Goldman, Elizabeth; Jacobs, Robert; Scott, Ellen; Scott, Bonnie

    2011-09-01

    The current statutory and regulatory guidance for recovery audit contractor (RAC) extrapolation leaves providers with minimal protection against the process and a limited ability to challenge overpayment demands. Providers not only should understand the statutory and regulatory basis for extrapolation forecast, but also should be able to assess their extrapolation risk and their recourse through regulatory safeguards against contractor error. Providers also should aggressively appeal all incorrect RAC denials to minimize the potential impact of extrapolation.

  7. Artificial intelligence (AI)-based relational matching and multimodal medical image fusion: generalized 3D approaches

    NASA Astrophysics Data System (ADS)

    Vajdic, Stevan M.; Katz, Henry E.; Downing, Andrew R.; Brooks, Michael J.

    1994-09-01

    A 3D relational image matching/fusion algorithm is introduced. It is implemented in the domain of medical imaging and is based on Artificial Intelligence paradigms--in particular, knowledge base representation and tree search. The 2D reference and target images are selected from 3D sets and segmented into non-touching and non-overlapping regions, using iterative thresholding and/or knowledge about the anatomical shapes of human organs. Selected image region attributes are calculated. Region matches are obtained using a tree search, and the error is minimized by evaluating a `goodness' of matching function based on similarities of region attributes. Once the matched regions are found and the spline geometric transform is applied to regional centers of gravity, images are ready for fusion and visualization into a single 3D image of higher clarity.

  8. "Lost in a shopping mall" -- a breach of professional ethics.

    PubMed

    Crook, Lynn S; Dean, Martha C

    1999-01-01

    The "lost in a shopping mall" study has been cited to support claims that psychotherapists can implant memories of false autobiographical information of childhood trauma in their patients. The mall study originated in 1991 as 5 pilot experiments involving 3 children and 2 adult participants. The University of Washington Human Subjects Committee granted approval for the mall study on August 10, 1992. The preliminary results with the 5 pilot subjects were announced 4 days laters. An analysis of the mall study shows that beyond the external misrepresentions, internal scientific methodological errors cast doubt on the validity of the claims that have been attributed to the mall study within scholarly and legal arenas. The minimal involvement -- or, in some cases, negative impact -- of collegial consultation, acadmic supervision, and peer review throughout the evolution of the mall study are reviewed.

  9. The effect of a robot-assisted surgical system on the kinematics of user movements.

    PubMed

    Nisky, Ilana; Hsieh, Michael H; Okamura, Allison M

    2013-01-01

    Teleoperated robot-assisted surgery (RAS) offers many advantages over traditional minimally invasive surgery. However, RAS has not yet realized its full potential, and it is not clear how to optimally train surgeons to use these systems. We hypothesize that the dynamics of the master manipulator impact the ability of users to make desired movements with the robot. We compared freehand and teleoperated movements of novices and experienced surgeons. To isolate the effects of dynamics from procedural knowledge, we chose simple movements rather than surgical tasks. We found statistically significant effects of teleoperation and user expertise in several aspects of motion, including target acquisition error, movement speed, and movement smoothness. Such quantitative assessment of human motor performance in RAS can impact the design of surgical robots, their control, and surgeon training methods, and eventually, improve patient outcomes.

  10. Slope Error Measurement Tool for Solar Parabolic Trough Collectors: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stynes, J. K.; Ihas, B.

    2012-04-01

    The National Renewable Energy Laboratory (NREL) has developed an optical measurement tool for parabolic solar collectors that measures the combined errors due to absorber misalignment and reflector slope error. The combined absorber alignment and reflector slope errors are measured using a digital camera to photograph the reflected image of the absorber in the collector. Previous work using the image of the reflection of the absorber finds the reflector slope errors from the reflection of the absorber and an independent measurement of the absorber location. The accuracy of the reflector slope error measurement is thus dependent on the accuracy of themore » absorber location measurement. By measuring the combined reflector-absorber errors, the uncertainty in the absorber location measurement is eliminated. The related performance merit, the intercept factor, depends on the combined effects of the absorber alignment and reflector slope errors. Measuring the combined effect provides a simpler measurement and a more accurate input to the intercept factor estimate. The minimal equipment and setup required for this measurement technique make it ideal for field measurements.« less

  11. Steer-PROP: a GRASE-PROPELLER sequence with interecho steering gradient pulses.

    PubMed

    Srinivasan, Girish; Rangwala, Novena; Zhou, Xiaohong Joe

    2018-05-01

    This study demonstrates a novel PROPELLER (periodically rotated overlapping parallel lines with enhanced reconstruction) pulse sequence, termed Steer-PROP, based on gradient and spin echo (GRASE), to reduce the imaging times and address phase errors inherent to GRASE. The study also illustrates the feasibility of using Steer-PROP as an alternative to single-shot echo planar imaging (SS-EPI) to produce distortion-free diffusion images in all imaging planes. Steer-PROP uses a series of blip gradient pulses to produce N (N = 3-5) adjacent k-space blades in each repetition time, where N is the number of gradient echoes in a GRASE sequence. This sampling strategy enables a phase correction algorithm to systematically address the GRASE phase errors as well as the motion-induced phase inconsistency. Steer-PROP was evaluated on phantoms and healthy human subjects at both 1.5T and 3.0T for T 2 - and diffusion-weighted imaging. Steer-PROP produced similar image quality as conventional PROPELLER based on fast spin echo (FSE), while taking only a fraction (e.g., 1/3) of the scan time. The robustness against motion in Steer-PROP was comparable to that of FSE-based PROPELLER. Using Steer-PROP, high quality and distortion-free diffusion images were obtained from human subjects in all imaging planes, demonstrating a considerable advantage over SS-EPI. The proposed Steer-PROP sequence can substantially reduce the scan times compared with FSE-based PROPELLER while achieving adequate image quality. The novel k-space sampling strategy in Steer-PROP not only enables an integrated phase correction method that addresses various sources of phase errors, but also minimizes the echo spacing compared with alternative sampling strategies. Steer-PROP can also be a viable alternative to SS-EPI to decrease image distortion in all imaging planes. Magn Reson Med 79:2533-2541, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  12. TU-D-201-06: HDR Plan Prechecks Using Eclipse Scripting API

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palaniswaamy, G; Morrow, A; Kim, S

    Purpose: Automate brachytherapy treatment plan quality check using Eclipse v13.6 scripting API based on pre-configured rules to minimize human error and maximize efficiency. Methods: The HDR Precheck system is developed based on a rules-driven approach using Eclipse scripting API. This system checks for critical plan parameters like channel length, first source position, source step size and channel mapping. The planned treatment time is verified independently based on analytical methods. For interstitial or SAVI APBI treatment plans, a Patterson-Parker system calculation is performed to verify the planned treatment time. For endobronchial treatments, an analytical formula from TG-59 is used. Acceptable tolerancesmore » were defined based on clinical experiences in our department. The system was designed to show PASS/FAIL status levels. Additional information, if necessary, is indicated appropriately in a separate comments field in the user interface. Results: The HDR Precheck system has been developed and tested to verify the treatment plan parameters that are routinely checked by the clinical physicist. The report also serves as a reminder or checklist for the planner to perform any additional critical checks such as applicator digitization or scenarios where the channel mapping was intentionally changed. It is expected to reduce the current manual plan check time from 15 minutes to <1 minute. Conclusion: Automating brachytherapy plan prechecks significantly reduces treatment plan precheck time and reduces human errors. When fully developed, this system will be able to perform TG-43 based second check of the treatment planning system’s dose calculation using random points in the target and critical structures. A histogram will be generated along with tabulated mean and standard deviation values for each structure. A knowledge database will also be developed for Brachyvision plans which will then be used for knowledge-based plan quality checks to further reduce treatment planning errors and increase confidence in the planned treatment.« less

  13. Nature of the refractive errors in rhesus monkeys (Macaca mulatta) with experimentally induced ametropias.

    PubMed

    Qiao-Grider, Ying; Hung, Li-Fang; Kee, Chea-Su; Ramamirtham, Ramkumar; Smith, Earl L

    2010-08-23

    We analyzed the contribution of individual ocular components to vision-induced ametropias in 210 rhesus monkeys. The primary contribution to refractive-error development came from vitreous chamber depth; a minor contribution from corneal power was also detected. However, there was no systematic relationship between refractive error and anterior chamber depth or between refractive error and any crystalline lens parameter. Our results are in good agreement with previous studies in humans, suggesting that the refractive errors commonly observed in humans are created by vision-dependent mechanisms that are similar to those operating in monkeys. This concordance emphasizes the applicability of rhesus monkeys in refractive-error studies. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. Nature of the Refractive Errors in Rhesus Monkeys (Macaca mulatta) with Experimentally Induced Ametropias

    PubMed Central

    Qiao-Grider, Ying; Hung, Li-Fang; Kee, Chea-su; Ramamirtham, Ramkumar; Smith, Earl L.

    2010-01-01

    We analyzed the contribution of individual ocular components to vision-induced ametropias in 210 rhesus monkeys. The primary contribution to refractive-error development came from vitreous chamber depth; a minor contribution from corneal power was also detected. However, there was no systematic relationship between refractive error and anterior chamber depth or between refractive error and any crystalline lens parameter. Our results are in good agreement with previous studies in humans, suggesting that the refractive errors commonly observed in humans are created by vision-dependent mechanisms that are similar to those operating in monkeys. This concordance emphasizes the applicability of rhesus monkeys in refractive-error studies. PMID:20600237

  15. Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D).

    PubMed

    van de Streek, Jacco; Neumann, Marcus A

    2014-12-01

    In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom.

  16. Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D)

    PubMed Central

    van de Streek, Jacco; Neumann, Marcus A.

    2014-01-01

    In 2010 we energy-minimized 225 high-quality single-crystal (SX) structures with dispersion-corrected density functional theory (DFT-D) to establish a quantitative benchmark. For the current paper, 215 organic crystal structures determined from X-ray powder diffraction (XRPD) data and published in an IUCr journal were energy-minimized with DFT-D and compared to the SX benchmark. The on average slightly less accurate atomic coordinates of XRPD structures do lead to systematically higher root mean square Cartesian displacement (RMSCD) values upon energy minimization than for SX structures, but the RMSCD value is still a good indicator for the detection of structures that deserve a closer look. The upper RMSCD limit for a correct structure must be increased from 0.25 Å for SX structures to 0.35 Å for XRPD structures; the grey area must be extended from 0.30 to 0.40 Å. Based on the energy minimizations, three structures are re-refined to give more precise atomic coordinates. For six structures our calculations provide the missing positions for the H atoms, for five structures they provide corrected positions for some H atoms. Seven crystal structures showed a minor error for a non-H atom. For five structures the energy minimizations suggest a higher space-group symmetry. For the 225 SX structures, the only deviations observed upon energy minimization were three minor H-atom related issues. Preferred orientation is the most important cause of problems. A preferred-orientation correction is the only correction where the experimental data are modified to fit the model. We conclude that molecular crystal structures determined from powder diffraction data that are published in IUCr journals are of high quality, with less than 4% containing an error in a non-H atom. PMID:25449625

  17. 78 FR 15030 - Introduction of the Revised Employment Eligibility Verification Form

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... several improvements designed to minimize errors in form completion. The key revisions to Form I-9 include... and email addresses. Improving the form's instructions. Revising the layout of the form, expanding the...

  18. Self-adaptive difference method for the effective solution of computationally complex problems of boundary layer theory

    NASA Technical Reports Server (NTRS)

    Schoenauer, W.; Daeubler, H. G.; Glotz, G.; Gruening, J.

    1986-01-01

    An implicit difference procedure for the solution of equations for a chemically reacting hypersonic boundary layer is described. Difference forms of arbitrary error order in the x and y coordinate plane were used to derive estimates for discretization error. Computational complexity and time were minimized by the use of this difference method and the iteration of the nonlinear boundary layer equations was regulated by discretization error. Velocity and temperature profiles are presented for Mach 20.14 and Mach 18.5; variables are velocity profiles, temperature profiles, mass flow factor, Stanton number, and friction drag coefficient; three figures include numeric data.

  19. Chapter 11: Sample Design Cross-Cutting Protocol. The Uniform Methods Project: Methods for Determining Energy Efficiency Savings for Specific Measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurnik, Charles W; Khawaja, M. Sami; Rushton, Josh

    Evaluating an energy efficiency program requires assessing the total energy and demand saved through all of the energy efficiency measures provided by the program. For large programs, the direct assessment of savings for each participant would be cost-prohibitive. Even if a program is small enough that a full census could be managed, such an undertaking would almost always be an inefficient use of evaluation resources. The bulk of this chapter describes methods for minimizing and quantifying sampling error. Measurement error and regression error are discussed in various contexts in other chapters.

  20. a Global Registration Algorithm of the Single-Closed Ring Multi-Stations Point Cloud

    NASA Astrophysics Data System (ADS)

    Yang, R.; Pan, L.; Xiang, Z.; Zeng, H.

    2018-04-01

    Aimed at the global registration problem of the single-closed ring multi-stations point cloud, a formula in order to calculate the error of rotation matrix was constructed according to the definition of error. The global registration algorithm of multi-station point cloud was derived to minimize the error of rotation matrix. And fast-computing formulas of transformation matrix with whose implementation steps and simulation experiment scheme was given. Compared three different processing schemes of multi-station point cloud, the experimental results showed that the effectiveness of the new global registration method was verified, and it could effectively complete the global registration of point cloud.

  1. Radiologic Errors in Patients With Lung Cancer

    PubMed Central

    Forrest, John V.; Friedman, Paul J.

    1981-01-01

    Some 20 percent to 50 percent of detectable malignant lesions are missed or misdiagnosed at the time of their first radiologic appearance. These errors can result in delayed diagnosis and treatment, which may affect a patient's survival. Use of moderately high (130 to 150) kilovolt peak films, awareness of portions of the lung where lesions are often missed (such as lung apices and paramediastinal and hilar areas), careful comparison of current roentgenograms with those taken previously and the use of an independent second observer can help to minimize the rate of radiologic diagnostic errors in patients with lung cancer. ImagesFigure 3.Figure 4. PMID:7257363

  2. Box-Counting Dimension Revisited: Presenting an Efficient Method of Minimizing Quantization Error and an Assessment of the Self-Similarity of Structural Root Systems

    PubMed Central

    Bouda, Martin; Caplan, Joshua S.; Saiers, James E.

    2016-01-01

    Fractal dimension (FD), estimated by box-counting, is a metric used to characterize plant anatomical complexity or space-filling characteristic for a variety of purposes. The vast majority of published studies fail to evaluate the assumption of statistical self-similarity, which underpins the validity of the procedure. The box-counting procedure is also subject to error arising from arbitrary grid placement, known as quantization error (QE), which is strictly positive and varies as a function of scale, making it problematic for the procedure's slope estimation step. Previous studies either ignore QE or employ inefficient brute-force grid translations to reduce it. The goals of this study were to characterize the effect of QE due to translation and rotation on FD estimates, to provide an efficient method of reducing QE, and to evaluate the assumption of statistical self-similarity of coarse root datasets typical of those used in recent trait studies. Coarse root systems of 36 shrubs were digitized in 3D and subjected to box-counts. A pattern search algorithm was used to minimize QE by optimizing grid placement and its efficiency was compared to the brute force method. The degree of statistical self-similarity was evaluated using linear regression residuals and local slope estimates. QE, due to both grid position and orientation, was a significant source of error in FD estimates, but pattern search provided an efficient means of minimizing it. Pattern search had higher initial computational cost but converged on lower error values more efficiently than the commonly employed brute force method. Our representations of coarse root system digitizations did not exhibit details over a sufficient range of scales to be considered statistically self-similar and informatively approximated as fractals, suggesting a lack of sufficient ramification of the coarse root systems for reiteration to be thought of as a dominant force in their development. FD estimates did not characterize the scaling of our digitizations well: the scaling exponent was a function of scale. Our findings serve as a caution against applying FD under the assumption of statistical self-similarity without rigorously evaluating it first. PMID:26925073

  3. Reliability, validity, and minimal detectable change of the push-off test scores in assessing upper extremity weight-bearing ability.

    PubMed

    Mehta, Saurabh P; George, Hannah R; Goering, Christian A; Shafer, Danielle R; Koester, Alan; Novotny, Steven

    2017-11-01

    Clinical measurement study. The push-off test (POT) was recently conceived and found to be reliable and valid for assessing weight bearing through injured wrist or elbow. However, further research with larger sample can lend credence to the preliminary findings supporting the use of the POT. This study examined the interrater reliability, construct validity, and measurement error for the POT in patients with wrist conditions. Participants with musculoskeletal (MSK) wrist conditions were recruited. The performance on the POT, grip isometric strength of wrist extensors was assessed. The shortened version of the Disabilities of the Arm, Shoulder and Hand and numeric pain rating scale were completed. The intraclass correlation coefficient assessed interrater reliability of the POT. Pearson correlation coefficients (r) examined the concurrent relationships between the POT and other measures. The standard error of measurement and the minimal detectable change at 90% confidence interval were assessed as measurement error and index of true change for the POT. A total of 50 participants with different elbow or wrist conditions (age: 48.1 ± 16.6 years) were included in this study. The results of this study strongly supported the interrater reliability (intraclass correlation coefficient: 0.96 and 0.93 for the affected and unaffected sides, respectively) of the POT in patients with wrist MSK conditions. The POT showed convergent relationships with the grip strength on the injured side (r = 0.89) and the wrist extensor strength (r = 0.7). The POT showed smaller standard error of measurement (1.9 kg). The minimal detectable change at 90% confidence interval for the POT was 4.4 kg for the sample. This study provides additional evidence to support the reliability and validity of the POT. This is the first study that provides the values for the measurement error and true change on the POT scores in patients with wrist MSK conditions. Further research should examine the responsiveness and discriminant validity of the POT in patients with wrist conditions. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  4. Optimal External Wrench Distribution During a Multi-Contact Sit-to-Stand Task.

    PubMed

    Bonnet, Vincent; Azevedo-Coste, Christine; Robert, Thomas; Fraisse, Philippe; Venture, Gentiane

    2017-07-01

    This paper aims at developing and evaluating a new practical method for the real-time estimate of joint torques and external wrenches during multi-contact sit-to-stand (STS) task using kinematics data only. The proposed method allows also identifying subject specific body inertial segment parameters that are required to perform inverse dynamics. The identification phase is performed using simple and repeatable motions. Thanks to an accurately identified model the estimate of the total external wrench can be used as an input to solve an under-determined multi-contact problem. It is solved using a constrained quadratic optimization process minimizing a hybrid human-like energetic criterion. The weights of this hybrid cost function are adjusted and a sensitivity analysis is performed in order to reproduce robustly human external wrench distribution. The results showed that the proposed method could successfully estimate the external wrenches under buttocks, feet, and hands during STS tasks (RMS error lower than 20 N and 6 N.m). The simplicity and generalization abilities of the proposed method allow paving the way of future diagnosis solutions and rehabilitation applications, including in-home use.

  5. Statistical mechanics of image processing by digital halftoning

    NASA Astrophysics Data System (ADS)

    Inoue, Jun-Ichi; Norimatsu, Wataru; Saika, Yohei; Okada, Masato

    2009-03-01

    We consider the problem of digital halftoning (DH). The DH is an image processing representing each grayscale in images in terms of black and white dots, and it is achieved by making use of the threshold dither mask, namely, each pixel is determined as black if the grayscale pixel is greater than or equal to the mask value and as white vice versa. To determine the mask for a given grayscale image, we assume that human-eyes might recognize the BW dots as the corresponding grayscale by linear filters. Then, the Hamiltonian is constructed as a distance between the original and recognized images which is written in terms of the mask. Finding the ground state of the Hamiltonian via deterministic annealing, we obtain the optimal mask and the BW dots simultaneously. From the spectrum analysis, we find that the BW dots are desirable from the view point of human-eyes modulation properties. We also show that the lower bound of the mean square error for the inverse process of the DH is minimized on the Nishimori line which is well-known in the research field of spin glasses.

  6. Further reply to remarks of R Cross on ‘A comparative study of two types of ball-on-ball collision’

    NASA Astrophysics Data System (ADS)

    White, Colin

    2018-03-01

    In this letter, I show how a perceived approximation error in my first letter, White (2017 Phys. Ed. 53 016502) concerning my explanation of the dynamic motion of two interacting Newtons Cradle balls, proves to me insignificant. Although these second and third order errors described are shown to be minimal, they do raise the opportunity to discuss the precise and more intricate ball interactions in finer detail.

  7. An information-theoretic approach to motor action decoding with a reconfigurable parallel architecture.

    PubMed

    Craciun, Stefan; Brockmeier, Austin J; George, Alan D; Lam, Herman; Príncipe, José C

    2011-01-01

    Methods for decoding movements from neural spike counts using adaptive filters often rely on minimizing the mean-squared error. However, for non-Gaussian distribution of errors, this approach is not optimal for performance. Therefore, rather than using probabilistic modeling, we propose an alternate non-parametric approach. In order to extract more structure from the input signal (neuronal spike counts) we propose using minimum error entropy (MEE), an information-theoretic approach that minimizes the error entropy as part of an iterative cost function. However, the disadvantage of using MEE as the cost function for adaptive filters is the increase in computational complexity. In this paper we present a comparison between the decoding performance of the analytic Wiener filter and a linear filter trained with MEE, which is then mapped to a parallel architecture in reconfigurable hardware tailored to the computational needs of the MEE filter. We observe considerable speedup from the hardware design. The adaptation of filter weights for the multiple-input, multiple-output linear filters, necessary in motor decoding, is a highly parallelizable algorithm. It can be decomposed into many independent computational blocks with a parallel architecture readily mapped to a field-programmable gate array (FPGA) and scales to large numbers of neurons. By pipelining and parallelizing independent computations in the algorithm, the proposed parallel architecture has sublinear increases in execution time with respect to both window size and filter order.

  8. Human Error as an Emergent Property of Action Selection and Task Place-Holding.

    PubMed

    Tamborello, Franklin P; Trafton, J Gregory

    2017-05-01

    A computational process model could explain how the dynamic interaction of human cognitive mechanisms produces each of multiple error types. With increasing capability and complexity of technological systems, the potential severity of consequences of human error is magnified. Interruption greatly increases people's error rates, as does the presence of other information to maintain in an active state. The model executed as a software-instantiated Monte Carlo simulation. It drew on theoretical constructs such as associative spreading activation for prospective memory, explicit rehearsal strategies as a deliberate cognitive operation to aid retrospective memory, and decay. The model replicated the 30% effect of interruptions on postcompletion error in Ratwani and Trafton's Stock Trader task, the 45% interaction effect on postcompletion error of working memory capacity and working memory load from Byrne and Bovair's Phaser Task, as well as the 5% perseveration and 3% omission effects of interruption from the UNRAVEL Task. Error classes including perseveration, omission, and postcompletion error fall naturally out of the theory. The model explains post-interruption error in terms of task state representation and priming for recall of subsequent steps. Its performance suggests that task environments providing more cues to current task state will mitigate error caused by interruption. For example, interfaces could provide labeled progress indicators or facilities for operators to quickly write notes about their task states when interrupted.

  9. Aspects of spatial and temporal aggregation in estimating regional carbon dioxide fluxes from temperate forest soils

    NASA Technical Reports Server (NTRS)

    Kicklighter, David W.; Melillo, Jerry M.; Peterjohn, William T.; Rastetter, Edward B.; Mcguire, A. David; Steudler, Paul A.; Aber, John D.

    1994-01-01

    We examine the influence of aggregation errors on developing estimates of regional soil-CO2 flux from temperate forests. We find daily soil-CO2 fluxes to be more sensitive to changes in soil temperatures (Q(sub 10) = 3.08) than air temperatures (Q(sub 10) = 1.99). The direct use of mean monthly air temperatures with a daily flux model underestimates regional fluxes by approximately 4%. Temporal aggregation error varies with spatial resolution. Overall, our calibrated modeling approach reduces spatial aggregation error by 9.3% and temporal aggregation error by 15.5%. After minimizing spatial and temporal aggregation errors, mature temperate forest soils are estimated to contribute 12.9 Pg C/yr to the atmosphere as carbon dioxide. Georeferenced model estimates agree well with annual soil-CO2 fluxes measured during chamber studies in mature temperate forest stands around the globe.

  10. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Zhu, Fujing; Huang, Jiaqi; Ma, Zhen; Zhang, Rui

    2015-11-01

    A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.

  11. The NASA F-15 Intelligent Flight Control Systems: Generation II

    NASA Technical Reports Server (NTRS)

    Buschbacher, Mark; Bosworth, John

    2006-01-01

    The Second Generation (Gen II) control system for the F-15 Intelligent Flight Control System (IFCS) program implements direct adaptive neural networks to demonstrate robust tolerance to faults and failures. The direct adaptive tracking controller integrates learning neural networks (NNs) with a dynamic inversion control law. The term direct adaptive is used because the error between the reference model and the aircraft response is being compensated or directly adapted to minimize error without regard to knowing the cause of the error. No parameter estimation is needed for this direct adaptive control system. In the Gen II design, the feedback errors are regulated with a proportional-plus-integral (PI) compensator. This basic compensator is augmented with an online NN that changes the system gains via an error-based adaptation law to improve aircraft performance at all times, including normal flight, system failures, mispredicted behavior, or changes in behavior resulting from damage.

  12. Servo control booster system for minimizing following error

    DOEpatents

    Wise, William L.

    1985-01-01

    A closed-loop feedback-controlled servo system is disclosed which reduces command-to-response error to the system's position feedback resolution least increment, .DELTA.S.sub.R, on a continuous real-time basis for all operating speeds. The servo system employs a second position feedback control loop on a by exception basis, when the command-to-response error .gtoreq..DELTA.S.sub.R, to produce precise position correction signals. When the command-to-response error is less than .DELTA.S.sub.R, control automatically reverts to conventional control means as the second position feedback control loop is disconnected, becoming transparent to conventional servo control means. By operating the second unique position feedback control loop used herein at the appropriate clocking rate, command-to-response error may be reduced to the position feedback resolution least increment. The present system may be utilized in combination with a tachometer loop for increased stability.

  13. Simulating a transmon implementation of the surface code, Part II

    NASA Astrophysics Data System (ADS)

    O'Brien, Thomas; Tarasinski, Brian; Rol, Adriaan; Bultink, Niels; Fu, Xiang; Criger, Ben; Dicarlo, Leonardo

    The majority of quantum error correcting circuit simulations use Pauli error channels, as they can be efficiently calculated. This raises two questions: what is the effect of more complicated physical errors on the logical qubit error rate, and how much more efficient can decoders become when accounting for realistic noise? To answer these questions, we design a minimal weight perfect matching decoder parametrized by a physically motivated noise model and test it on the full density matrix simulation of Surface-17, a distance-3 surface code. We compare performance against other decoders, for a range of physical parameters. Particular attention is paid to realistic sources of error for transmon qubits in a circuit QED architecture, and the requirements for real-time decoding via an FPGA Research funded by the Foundation for Fundamental Research on Matter (FOM), the Netherlands Organization for Scientific Research (NWO/OCW), IARPA, an ERC Synergy Grant, the China Scholarship Council, and Intel Corporation.

  14. High-precision pointing with the Sardinia Radio Telescope

    NASA Astrophysics Data System (ADS)

    Poppi, Sergio; Pernechele, Claudio; Pisanu, Tonino; Morsiani, Marco

    2010-07-01

    We present here the systems aimed to measure and minimize the pointing errors for the Sardinia Radio Telescope: they consist of an optical telescope to measure errors due to the mechanical structure deformations and a lasers system for the errors due to the subreflector displacement. We show here the results of the tests that we have done on the Medicina 32 meters VLBI radio telescope. The measurements demonstrate we can measure the pointing errors of the mechanical structure, with an accuracy of about ~1 arcsec. Moreover, we show the technique to measure the displacement of the subreflector, placed in the SRT at 22 meters from the main mirror, within +/-0.1 mm from its optimal position. These measurements show that we can obtain the needed accuracy to correct also the non repeatable pointing errors, which arise on time scale varying from seconds to minutes.

  15. High‐resolution trench photomosaics from image‐based modeling: Workflow and error analysis

    USGS Publications Warehouse

    Reitman, Nadine G.; Bennett, Scott E. K.; Gold, Ryan D.; Briggs, Richard; Duross, Christopher

    2015-01-01

    Photomosaics are commonly used to construct maps of paleoseismic trench exposures, but the conventional process of manually using image‐editing software is time consuming and produces undesirable artifacts and distortions. Herein, we document and evaluate the application of image‐based modeling (IBM) for creating photomosaics and 3D models of paleoseismic trench exposures, illustrated with a case‐study trench across the Wasatch fault in Alpine, Utah. Our results include a structure‐from‐motion workflow for the semiautomated creation of seamless, high‐resolution photomosaics designed for rapid implementation in a field setting. Compared with conventional manual methods, the IBM photomosaic method provides a more accurate, continuous, and detailed record of paleoseismic trench exposures in approximately half the processing time and 15%–20% of the user input time. Our error analysis quantifies the effect of the number and spatial distribution of control points on model accuracy. For this case study, an ∼87  m2 exposure of a benched trench photographed at viewing distances of 1.5–7 m yields a model with <2  cm root mean square error (rmse) with as few as six control points. Rmse decreases as more control points are implemented, but the gains in accuracy are minimal beyond 12 control points. Spreading control points throughout the target area helps to minimize error. We propose that 3D digital models and corresponding photomosaics should be standard practice in paleoseismic exposure archiving. The error analysis serves as a guide for future investigations that seek balance between speed and accuracy during photomosaic and 3D model construction.

  16. Tooth-meshing-harmonic static-transmission-error amplitudes of helical gears

    NASA Astrophysics Data System (ADS)

    Mark, William D.

    2018-01-01

    The static transmission errors of meshing gear pairs arise from deviations of loaded tooth working surfaces from equispaced perfect involute surfaces. Such deviations consist of tooth-pair elastic deformations and geometric deviations (modifications) of tooth working surfaces. To a very good approximation, the static-transmission-error tooth-meshing-harmonic amplitudes of helical gears are herein expressed by superposition of Fourier transforms of the quantities: (1) the combination of tooth-pair elastic deformations and geometric tooth-pair modifications and (2) fractional mesh-stiffness fluctuations, each quantity (1) and (2) expressed as a function of involute "roll distance." Normalization of the total roll-distance single-tooth contact span to unity allows tooth-meshing-harmonic amplitudes to be computed for different shapes of the above-described quantities (1) and (2). Tooth-meshing harmonics p = 1, 2, … are shown to occur at Fourier-transform harmonic values of Qp, p = 1, 2, …, where Q is the actual (total) contact ratio, thereby verifying its importance in minimizing transmission-error tooth-meshing-harmonic amplitudes. Two individual shapes and two series of shapes of the quantities (1) and (2) are chosen to illustrate a wide variety of shapes. In most cases representative of helical gears, tooth-meshing-harmonic values p = 1, 2, … are shown to occur in Fourier-transform harmonic regions governed by discontinuities arising from tooth-pair-contact initiation and termination, thereby showing the importance of minimizing such discontinuities. Plots and analytical expressions for all such Fourier transforms are presented, thereby illustrating the effects of various types of tooth-working-surface modifications and tooth-pair stiffnesses on transmission-error generation.

  17. Field evaluation of the error arising from inadequate time averaging in the standard use of depth-integrating suspended-sediment samplers

    USGS Publications Warehouse

    Topping, David J.; Rubin, David M.; Wright, Scott A.; Melis, Theodore S.

    2011-01-01

    Several common methods for measuring suspended-sediment concentration in rivers in the United States use depth-integrating samplers to collect a velocity-weighted suspended-sediment sample in a subsample of a river cross section. Because depth-integrating samplers are always moving through the water column as they collect a sample, and can collect only a limited volume of water and suspended sediment, they collect only minimally time-averaged data. Four sources of error exist in the field use of these samplers: (1) bed contamination, (2) pressure-driven inrush, (3) inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration, and (4) inadequate time averaging. The first two of these errors arise from misuse of suspended-sediment samplers, and the third has been the subject of previous study using data collected in the sand-bedded Middle Loup River in Nebraska. Of these four sources of error, the least understood source of error arises from the fact that depth-integrating samplers collect only minimally time-averaged data. To evaluate this fourth source of error, we collected suspended-sediment data between 1995 and 2007 at four sites on the Colorado River in Utah and Arizona, using a P-61 suspended-sediment sampler deployed in both point- and one-way depth-integrating modes, and D-96-A1 and D-77 bag-type depth-integrating suspended-sediment samplers. These data indicate that the minimal duration of time averaging during standard field operation of depth-integrating samplers leads to an error that is comparable in magnitude to that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. This random error arising from inadequate time averaging is positively correlated with grain size and does not largely depend on flow conditions or, for a given size class of suspended sediment, on elevation above the bed. Averaging over time scales >1 minute is the likely minimum duration required to result in substantial decreases in this error. During standard two-way depth integration, a depth-integrating suspended-sediment sampler collects a sample of the water-sediment mixture during two transits at each vertical in a cross section: one transit while moving from the water surface to the bed, and another transit while moving from the bed to the water surface. As the number of transits is doubled at an individual vertical, this error is reduced by ~30 percent in each size class of suspended sediment. For a given size class of suspended sediment, the error arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration depends only on the number of verticals collected, whereas the error arising from inadequate time averaging depends on both the number of verticals collected and the number of transits collected at each vertical. Summing these two errors in quadrature yields a total uncertainty in an equal-discharge-increment (EDI) or equal-width-increment (EWI) measurement of the time-averaged velocity-weighted suspended-sediment concentration in a river cross section (exclusive of any laboratory-processing errors). By virtue of how the number of verticals and transits influences the two individual errors within this total uncertainty, the error arising from inadequate time averaging slightly dominates that arising from inadequate sampling of the cross-stream spatial structure in suspended-sediment concentration. Adding verticals to an EDI or EWI measurement is slightly more effective in reducing the total uncertainty than adding transits only at each vertical, because a new vertical contributes both temporal and spatial information. However, because collection of depth-integrated samples at more transits at each vertical is generally easier and faster than at more verticals, addition of a combination of verticals and transits is likely a more practical approach to reducing the total uncertainty in most field situatio

  18. Simultaneous Control of Error Rates in fMRI Data Analysis

    PubMed Central

    Kang, Hakmook; Blume, Jeffrey; Ombao, Hernando; Badre, David

    2015-01-01

    The key idea of statistical hypothesis testing is to fix, and thereby control, the Type I error (false positive) rate across samples of any size. Multiple comparisons inflate the global (family-wise) Type I error rate and the traditional solution to maintaining control of the error rate is to increase the local (comparison-wise) Type II error (false negative) rates. However, in the analysis of human brain imaging data, the number of comparisons is so large that this solution breaks down: the local Type II error rate ends up being so large that scientifically meaningful analysis is precluded. Here we propose a novel solution to this problem: allow the Type I error rate to converge to zero along with the Type II error rate. It works because when the Type I error rate per comparison is very small, the accumulation (or global) Type I error rate is also small. This solution is achieved by employing the Likelihood paradigm, which uses likelihood ratios to measure the strength of evidence on a voxel-by-voxel basis. In this paper, we provide theoretical and empirical justification for a likelihood approach to the analysis of human brain imaging data. In addition, we present extensive simulations that show the likelihood approach is viable, leading to ‘cleaner’ looking brain maps and operationally superiority (lower average error rate). Finally, we include a case study on cognitive control related activation in the prefrontal cortex of the human brain. PMID:26272730

  19. Exploiting data representation for fault tolerance

    DOE PAGES

    Hoemmen, Mark Frederick; Elliott, J.; Sandia National Lab.; ...

    2015-01-06

    Incorrect computer hardware behavior may corrupt intermediate computations in numerical algorithms, possibly resulting in incorrect answers. Prior work models misbehaving hardware by randomly flipping bits in memory. We start by accepting this premise, and present an analytic model for the error introduced by a bit flip in an IEEE 754 floating-point number. We then relate this finding to the linear algebra concepts of normalization and matrix equilibration. In particular, we present a case study illustrating that normalizing both vector inputs of a dot product minimizes the probability of a single bit flip causing a large error in the dot product'smore » result. Moreover, the absolute error is either less than one or very large, which allows detection of large errors. Then, we apply this to the GMRES iterative solver. We count all possible errors that can be introduced through faults in arithmetic in the computationally intensive orthogonalization phase of GMRES, and show that when the matrix is equilibrated, the absolute error is bounded above by one.« less

  20. Measurement of Fracture Aperture Fields Using Ttransmitted Light: An Evaluation of Measurement Errors and their Influence on Simulations of Flow and Transport through a Single Fracture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Detwiler, Russell L.; Glass, Robert J.; Pringle, Scott E.

    Understanding of single and multi-phase flow and transport in fractures can be greatly enhanced through experimentation in transparent systems (analogs or replicas) where light transmission techniques yield quantitative measurements of aperture, solute concentration, and phase saturation fields. Here we quanti@ aperture field measurement error and demonstrate the influence of this error on the results of flow and transport simulations (hypothesized experimental results) through saturated and partially saturated fractures. find that precision and accuracy can be balanced to greatly improve the technique and We present a measurement protocol to obtain a minimum error field. Simulation results show an increased sensitivity tomore » error as we move from flow to transport and from saturated to partially saturated conditions. Significant sensitivity under partially saturated conditions results in differences in channeling and multiple-peaked breakthrough curves. These results emphasize the critical importance of defining and minimizing error for studies of flow and transpoti in single fractures.« less

Top