Sample records for minimizing defects caused

  1. Problem of quality assurance during metal constructions welding via robotic technological complexes

    NASA Astrophysics Data System (ADS)

    Fominykh, D. S.; Rezchikov, A. F.; Kushnikov, V. A.; Ivashchenko, V. A.; Bogomolov, A. S.; Filimonyuk, L. Yu; Dolinina, O. N.; Kushnikov, O. V.; Shulga, T. E.; Tverdokhlebov, V. A.

    2018-05-01

    The problem of minimizing the probability for critical combinations of events that lead to a loss in welding quality via robotic process automation is examined. The problem is formulated, models and algorithms for its solution are developed. The problem is solved by minimizing the criterion characterizing the losses caused by defective products. Solving the problem may enhance the quality and accuracy of operations performed and reduce the losses caused by defective product

  2. Minimization of Defective Products in The Department of Press Bridge & Rib Through Six Sigma DMAIC Phases

    NASA Astrophysics Data System (ADS)

    Rochman, YA; Agustin, A.

    2017-06-01

    This study proposes the DMAIC Six Sigma approach of Define, Measure, Analyze, Improve/Implement and Control (DMAIC) to minimizing the number of defective products in the bridge & rib department. There are 5 types of defects were the most dominant are broken rib, broken sound board, strained rib, rib sliding and sound board minori. The imperative objective is to improve the quality through the DMAIC phases. In the define phase, the critical to quality (CTQ) parameters was identified minimization of product defects through the pareto chart and FMEA. In this phase, to identify waste based on the current value stream mapping. In the measure phase, the specified control limits product used to maintain the variations of the product, the calculation of the value of DPMO (Defect Per Million Opportunities) and the calculation of the value of sigma level. In analyze phase, determine the type of defect of the most dominant and identify the causes of defective products. In the improve phase, the existing design was modified through various alternative solutions by conducting brainstorming sessions. In this phase, the solution was identified based on the results of FMEA. Improvements were made to the seven priority causes of disability based on the highest RPN value. In the control phase, focusing on improvements to be made. Proposed improvements include making and define standard operating procedures, improving the quality and eliminate waste defective products.

  3. Developing lettuce with improved quality for processed salads.

    USDA-ARS?s Scientific Manuscript database

    Lettuce is increasingly consumed as minimally processed salads. Cultivars grown for this market may require breeding for improved shelf-life and resistance to physiological defects such as tipburn (TB). Tipburn is a calcium deficiency related defect causing necrosis on the leaf margins, typically on...

  4. Dye penetrant indications caused by superficial surface defects in 2014 aluminum alloy welds.

    NASA Technical Reports Server (NTRS)

    Hocker, R. G.; Wilson, K. R.

    1971-01-01

    Demonstration that dye penetrant indications on the heat-affected zone of 2014-T6 aluminum GMA weldments are frequently caused by superficial surface conditions and are less than 0.007 in. deep. The following methods are suggested for minimization of these surface defects: stabilization of the arc, application of dc ?GTA' welding procedures, reduction of the caustic etch time, and use of fine grain materials.

  5. A new reconstructive technique for posterior vaginal wall defects, a case report.

    PubMed

    Zetlitz, Elisabeth; Manook, Miriam; MacLeod, Alison; Hamilton, Stuart

    2013-10-01

    Post-partum vaginal laxity is a problem encountered by many women. More uncommon is a resulting vaginal defect. In most cases of laxity, a period of extensive physiotherapy can strengthen the pelvic muscles enough for symptoms to be minimized. However, this is not the case once there is a tissue defect. To present a new reconstructive method for patients with posterior vaginal wall defects. We present a case of a 38-year-old female who, 12 years prior to presentation, had a vaginal delivery. Due to complications during the delivery, she sustained pelvic trauma and developed a posterior vaginal wall defect. She had a sizable soft tissue defect, causing sexual, urinary, and confidence problems. Fat was harvested from the patient's abdomen and injected into the defect after more conservative treatment options were exhausted. The defect was corrected successfully using the minimally invasive Coleman fat grafting technique. This is to our knowledge the first case in the literature where a posterior vaginal defect has been corrected using Coleman fat grafting, and we believe that this treatment method may be of benefit to more patients. © 2013 International Society for Sexual Medicine.

  6. Creep Behavior of Oxide/Oxide Composites with Monazite Fiber Coating at 1100 deg C in Air and in Steam Environments

    DTIC Science & Technology

    2008-09-01

    monolithic ceramics initiates at small defects formed during processing. Minimization of such defects may improve performance, but thermal shock and cyclic...fiber tows are used in CMCs, where the use of small -diameter fibers causes a reduction in scale of microstructural defects associated with the fibers [7... Small Diameter · Improves matrix strength and facilitates fab- rication of thin and complex-shaped CMCs. · Low Density · Improves CMC specific properties

  7. Do NiTi instruments show defects before separation? Defects caused by torsional fatigue in hand and rotary nickel-titanium (NiTi) instruments which lead to failure during clinical use.

    PubMed

    Chakka, N V Murali Krishna; Ratnakar, P; Das, Sanjib; Bagchi, Anandamy; Sudhir, Sudhir; Anumula, Lavanya

    2012-11-01

    Visual and microscopic evaluation of defects caused by torsional fatigue in hand and rotary nickel titanium (NiTi) instruments. Ninety-six NiTi greater taper instruments which were routinely used for root canal treatment only in anterior teeth were selected for the study. The files taken include ProTaper for hand use, ProTaper Rotary files and Endowave rotary files. After every use, the files were observed visually and microscopically (Stereomicroscope at 10×) to evaluate the defects caused by torsional fatigue. Scoring was given according to a new classification formulated which gives an indication of the severity of the defect or damage. Data was statistically analyzed using KruskallWallis and Mann-Whitney U test. Number of files showing defects were more under stereomicroscope than visual examination. But, the difference in the evaluation methods was not statistically significant. The different types of defects observed were bent instrument, straightening/stretching of twist contour and partial reverse twisting. Endowave files showed maximum number of defects followed by ProTaper for hand use and least in ProTaper Rotary. Visible defects due to torsional fatigue do occur in NiTi instruments after clinical use. Both visual and microscopic examinations were efficient in detecting defects caused due to torsional fatigue. This study emphasizes that all files should be observed for any visible defects before and after every instrumentation cycle to minimize the risk of instrument separation and failure of endodontic therapy.

  8. Stereomicroscopic evaluation of defects caused by torsional fatigue in used hand and rotary nickel-titanium instruments.

    PubMed

    Asthana, Geeta; Kapadwala, Marsrat I; Parmar, Girish J

    2016-01-01

    The aim of this study was to evaluate defects caused by torsional fatigue in used hand and rotary nickel-titanium (Ni-Ti) instruments by stereomicroscopic examination. One hundred five greater taper Ni-Ti instruments were used including Protaper universal hand (Dentsply Maillefer, Ballaigues, Switzerland), Protaper universal rotary (Dentsply Maillefer, Ballaigues, Switzerland), and Revo-S rotary (MicroMega, Besançon, France) files. Files were used on lower anterior teeth. After every use, the files were observed with both naked eyes and stereomicroscope at 20× magnification (Olympus, Shinjuku, Tokyo, Japan) to evaluate defects caused by torsional fatigue. Scoring was assigned to each file according to the degree of damage. The results were statistically analyzed using the Mann-Whitney U test and the Kruskal-Wallis test. A greater number of defects were seen under the stereomicroscope than on examining with naked eyes. However, the difference in methods of evaluation was not statistically significant. Revo-S files showed minimum defects, while Protaper universal hand showed maximum defects. The intergroup comparison of defects showed that the bend in Protaper universal hand instruments was statistically significant. Visible defects in Ni-Ti files due to torsional fatigue were seen by naked eyes as well as by stereomicroscope. This study emphasizes that all the files should be observed before and after every instrument cycle to minimize the risk of separation.

  9. Automated reticle inspection data analysis for wafer fabs

    NASA Astrophysics Data System (ADS)

    Summers, Derek; Chen, Gong; Reese, Bryan; Hutchinson, Trent; Liesching, Marcus; Ying, Hai; Dover, Russell

    2009-04-01

    To minimize potential wafer yield loss due to mask defects, most wafer fabs implement some form of reticle inspection system to monitor photomask quality in high-volume wafer manufacturing environments. Traditionally, experienced operators review reticle defects found by an inspection tool and then manually classify each defect as 'pass, warn, or fail' based on its size and location. However, in the event reticle defects are suspected of causing repeating wafer defects on a completed wafer, potential defects on all associated reticles must be manually searched on a layer-by-layer basis in an effort to identify the reticle responsible for the wafer yield loss. This 'problem reticle' search process is a very tedious and time-consuming task and may cause extended manufacturing line-down situations. Often times, Process Engineers and other team members need to manually investigate several reticle inspection reports to determine if yield loss can be tied to a specific layer. Because of the very nature of this detailed work, calculation errors may occur resulting in an incorrect root cause analysis effort. These delays waste valuable resources that could be spent working on other more productive activities. This paper examines an automated software solution for converting KLA-Tencor reticle inspection defect maps into a format compatible with KLA-Tencor's Klarity Defect(R) data analysis database. The objective is to use the graphical charting capabilities of Klarity Defect to reveal a clearer understanding of defect trends for individual reticle layers or entire mask sets. Automated analysis features include reticle defect count trend analysis and potentially stacking reticle defect maps for signature analysis against wafer inspection defect data. Other possible benefits include optimizing reticle inspection sample plans in an effort to support "lean manufacturing" initiatives for wafer fabs.

  10. Automated reticle inspection data analysis for wafer fabs

    NASA Astrophysics Data System (ADS)

    Summers, Derek; Chen, Gong; Reese, Bryan; Hutchinson, Trent; Liesching, Marcus; Ying, Hai; Dover, Russell

    2009-03-01

    To minimize potential wafer yield loss due to mask defects, most wafer fabs implement some form of reticle inspection system to monitor photomask quality in high-volume wafer manufacturing environments. Traditionally, experienced operators review reticle defects found by an inspection tool and then manually classify each defect as 'pass, warn, or fail' based on its size and location. However, in the event reticle defects are suspected of causing repeating wafer defects on a completed wafer, potential defects on all associated reticles must be manually searched on a layer-by-layer basis in an effort to identify the reticle responsible for the wafer yield loss. This 'problem reticle' search process is a very tedious and time-consuming task and may cause extended manufacturing line-down situations. Often times, Process Engineers and other team members need to manually investigate several reticle inspection reports to determine if yield loss can be tied to a specific layer. Because of the very nature of this detailed work, calculation errors may occur resulting in an incorrect root cause analysis effort. These delays waste valuable resources that could be spent working on other more productive activities. This paper examines an automated software solution for converting KLA-Tencor reticle inspection defect maps into a format compatible with KLA-Tencor's Klarity DefectTM data analysis database. The objective is to use the graphical charting capabilities of Klarity Defect to reveal a clearer understanding of defect trends for individual reticle layers or entire mask sets. Automated analysis features include reticle defect count trend analysis and potentially stacking reticle defect maps for signature analysis against wafer inspection defect data. Other possible benefits include optimizing reticle inspection sample plans in an effort to support "lean manufacturing" initiatives for wafer fabs.

  11. Automated reticle inspection data analysis for wafer fabs

    NASA Astrophysics Data System (ADS)

    Summers, Derek; Chen, Gong; Reese, Bryan; Hutchinson, Trent; Liesching, Marcus; Ying, Hai; Dover, Russell

    2008-10-01

    To minimize potential wafer yield loss due to mask defects, most wafer fabs implement some form of reticle inspection system to monitor photomask quality in high-volume wafer manufacturing environments. Traditionally, experienced operators review reticle defects found by an inspection tool and then manually classify each defect as 'pass, warn, or fail' based on its size and location. However, in the event reticle defects are suspected of causing repeating wafer defects on a completed wafer, potential defects on all associated reticles must be manually searched on a layer-by-layer basis in an effort to identify the reticle responsible for the wafer yield loss. This 'problem reticle' search process is a very tedious and time-consuming task and may cause extended manufacturing line-down situations. Often times, Process Engineers and other team members need to manually investigate several reticle inspection reports to determine if yield loss can be tied to a specific layer. Because of the very nature of this detailed work, calculation errors may occur resulting in an incorrect root cause analysis effort. These delays waste valuable resources that could be spent working on other more productive activities. This paper examines an automated software solution for converting KLA-Tencor reticle inspection defect maps into a format compatible with KLA-Tencor's Klarity DefecTM data analysis database. The objective is to use the graphical charting capabilities of Klarity Defect to reveal a clearer understanding of defect trends for individual reticle layers or entire mask sets. Automated analysis features include reticle defect count trend analysis and potentially stacking reticle defect maps for signature analysis against wafer inspection defect data. Other possible benefits include optimizing reticle inspection sample plans in an effort to support "lean manufacturing" initiatives for wafer fabs.

  12. Stereomicroscopic evaluation of defects caused by torsional fatigue in used hand and rotary nickel-titanium instruments

    PubMed Central

    Asthana, Geeta; Kapadwala, Marsrat I.; Parmar, Girish J.

    2016-01-01

    Objective: The aim of this study was to evaluate defects caused by torsional fatigue in used hand and rotary nickel-titanium (Ni-Ti) instruments by stereomicroscopic examination. Materials and Methods: One hundred five greater taper Ni-Ti instruments were used including Protaper universal hand (Dentsply Maillefer, Ballaigues, Switzerland), Protaper universal rotary (Dentsply Maillefer, Ballaigues, Switzerland), and Revo-S rotary (MicroMega, Besançon, France) files. Files were used on lower anterior teeth. After every use, the files were observed with both naked eyes and stereomicroscope at 20× magnification (Olympus, Shinjuku, Tokyo, Japan) to evaluate defects caused by torsional fatigue. Scoring was assigned to each file according to the degree of damage. Statistics: The results were statistically analyzed using the Mann-Whitney U test and the Kruskal-Wallis test. Results: A greater number of defects were seen under the stereomicroscope than on examining with naked eyes. However, the difference in methods of evaluation was not statistically significant. Revo-S files showed minimum defects, while Protaper universal hand showed maximum defects. The intergroup comparison of defects showed that the bend in Protaper universal hand instruments was statistically significant. Conclusion: Visible defects in Ni-Ti files due to torsional fatigue were seen by naked eyes as well as by stereomicroscope. This study emphasizes that all the files should be observed before and after every instrument cycle to minimize the risk of separation. PMID:27099415

  13. [Soft tissue defects treated with perforator flaps].

    PubMed

    Weum, Sven; de Weerd, Louis; Klein, Steven; Hage, J Joris

    2008-01-31

    Treatment of soft tissue defects caused by trauma, tumour surgery or pressure sores is a challenge to the reconstructive surgeon. Although contour and function may be restored by tissue transposition, traditional methods often cause significant donor site morbidity. This article describes how increased understanding of vascular anatomy has led to the development of new techniques. The article is based on textbooks of plastic surgery, selected articles and own clinical experience. Pedicled and free perforator flaps represent the latest development in surgical treatment of soft tissue defects. The use of perforator flaps can considerably reduce the disadvantages that are associated with other surgical methods. The use of perforator flaps demands microsurgical skills, but has many advantages. Reliable vascular supply and a good aesthetical result can be combined with minimal donor site morbidity. In many cases this technique may even give sensibility to the reconstructed area.

  14. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity.

    PubMed

    Chen, Shasha; Cai, Chenxu; Li, Zehua; Liu, Guangao; Wang, Yuande; Blonska, Marzenna; Li, Dan; Du, Juan; Lin, Xin; Yang, Meixiang; Dong, Zhongjun

    2017-02-01

    Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (T FH ) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in T FH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient T FH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. © 2017 Chen et al.

  15. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity

    PubMed Central

    Cai, Chenxu; Liu, Guangao; Wang, Yuande; Du, Juan; Lin, Xin; Yang, Meixiang

    2017-01-01

    Signaling lymphocytic activation molecule (SLAM)–associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (TFH) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in TFH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient TFH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP. PMID:28049627

  16. [A Case of Combined Treatment Approach of Endoscopic Submucosal Dissection and Transanal Minimally Invasive Surgery for Radiation Induced Rectal Cancer].

    PubMed

    Miyake, Toru; Sonoda, Hiromichi; Shimizu, Tomoharu; Ueki, Tomoyuki; Mori, Haruki; Takebayashi, Katsushi; Kaida, Sachiko; Yamaguchi, Tsuyoshi; Iida, Hiroya; Ban, Hiromitsu; Tani, Masaji

    2018-04-01

    It is hard to determine treatment strategy for radiation induced carcinoma, because radiation cause fibrosis to adjacent organ.The patient was in the 70's, who underwent 70 Gy radiation therapy for prostate cancer 5 years ago.He visited hospital because of fecal occult blood.Endoscopic examination revealed laterally spreading tumor(LST)in rectal front wall, and he referred to our hospital in purpose of endoscopic submucosal dissection(ESD).We performed ESD for LST, following transanal minimally invasive surgery to suture mucosal defect.He discharged out hospital 9 days after operation without any adverse event except anal pain.Suturing of mucosal defect after ESD might be potent to prevent postoperative complications in radiation induced rectal cancer.

  17. Dural closure for the treatment of superficial siderosis.

    PubMed

    Egawa, Satoru; Yoshii, Toshitaka; Sakaki, Kyohei; Inose, Hiroyuki; Kato, Tsuyoshi; Kawabata, Shigenori; Tomizawa, Shoji; Okawa, Atsushi

    2013-04-01

    Superficial siderosis (SS) of the CNS is a rare disease caused by repeated hemorrhages in the subarachnoid space. The subsequent deposition of hemosiderin in the brain and spinal cord leads to the progression of neurological deficits. The causes of bleeding include prior intradural surgery, carcinoma, arteriovenous malformation, nerve root avulsion, and dural abnormality. Recently, surgical treatment of SS associated with dural defect has been reported. The authors of the present report describe 2 surgically treated SS cases and review the literature on surgically treated SS. The patients had dural defects with fluid-filled collections in the spinal canal. In both cases, the dural defects were successfully closed, and the fluid collection was resolved postoperatively. In one case, the neurological symptoms did not progress postoperatively. In the other case, the patient had long history of SS, and the clinical manifestations partially deteriorated after surgery, despite the successful dural closure. In previously reported surgically treated cases, the dural defects were closed by sutures, patches, fibrin glue, or muscle/fat grafting. Regardless of the closing method, dural defect closure has been shown to stop CSF leakage and subarachnoid hemorrhaging. Successfully repairing the defect can halt the disease progression in most cases and may improve the symptoms that are associated with CSF hypovolemia. However, the effect of the dural closure may be limited in patients with long histories of SS because of the irreversibility of the neural tissue damage caused by hemosiderin deposition. In patients with SS, it is important to diagnose and repair the dural defect early to minimize the neurological impairments that are associated with dural defects.

  18. Pathology of Podocytopathies Causing Nephrotic Syndrome in Children.

    PubMed

    Ranganathan, Sarangarajan

    2016-01-01

    Nephrotic syndrome (NS) in children includes a diverse group of diseases that range from genetic diseases without any immunological defects to causes that are primarily due to immunological effects. Recent advances in molecular and genomic studies have resulted in a plethora of genetic defects that have been localized to the podocyte, the basic structure that is instrumental in normal filtration process. Although the disease can manifest from birth and into adulthood, the primary focus of this review would be to describe the novel genes and pathology of primary podocyte defects that cause NS in children. This review will restrict itself to the pathology of congenital NS, minimal change disease (MCD), and its variants and focal segmental glomerulosclerosis (FSGS). The two major types of congenital NS are Finnish type characterized by dilated sausage shaped tubules morphologically and diffuse mesangial sclerosis characterized by glomerulosclerosis. MCD has usually normal appearing biopsy features on light microscopy and needs electron microscopy for diagnosis, whereas FSGS in contrast has classic segmental sclerosing lesions identified in different portions of the glomeruli and tubular atrophy. This review summarizes the pathological characteristics of these conditions and also delves into the various genetic defects that have been described as the cause of these primary podocytopathies. Other secondary causes of NS in children, such as membranoproliferative and membranous glomerulonephritis, will not be covered in this review.

  19. A novel lobule rotation flap for the reconstruction of middle third auricular defects.

    PubMed

    Basu, Indraneil; Way, Benjamin; Al-Basri, Isam

    2013-12-01

    There are numerous techniques for the reconstruction of cutaneous defects of the pinna. Many of these distort the auricle, and several are challenging and time-consuming to perform. An illustrative case is presented to demonstrate a novel lobule rotational flap, which can be used to cover cutaneous defects of the middle third of the pinna. Postoperative photography illustrates that this simple one-stage technique causes minimal anatomical distortion and allows the final scar to be concealed within the inner helical rim. Small local flaps can be raised from the lobule to cover challenging defects of the middle third of the pinna. In selected patients, with abundant lobular tissue, this technique can be as effective as more complex reconstructive options. © 2013 The International Society of Dermatology.

  20. Application of statistical methods to reveal and remove the causes of welding of coil laps upon annealing of cold-rolled steel strips

    NASA Astrophysics Data System (ADS)

    Garber, E. A.; Diligenskii, E. V.; Antonov, P. V.; Shalaevskii, D. L.; Dyatlov, I. A.

    2017-09-01

    The factors of the process of production of cold-rolled steel strips that promote and hinder the appearance of a coil lap welding defect upon annealing in bell-type furnaces are analyzed using statistical methods. The works dealing with this problem are analytically reviewed to reveal the problems to be studied and refined. The ranking of the technological factors according to the significance of their influence on the probability of appearance of this defect is determined and supported by industrial data, and a regression equation is derived to calculate this probability. The process of production is improved to minimize the rejection of strips caused by the welding of coil laps.

  1. Investigation of UFO defect on DUV CAR and BARC process

    NASA Astrophysics Data System (ADS)

    Yet, Siew Ing; Ko, Bong Sang; Lee, Soo Man; May, Mike

    2004-05-01

    Photo process defect reduction is one of the most important factors to improve the process stability and yield in sub-0.18um DUV process. In this paper, a new approach to minimize the Deep-UV (DUV) Chemically Amplified Resist (CAR) and Bottom Anti-Reflective Coating (BARC) induced defect known as UFO (UnidentiFied Object) defect will be introduced. These defects have mild surface topography difference on BARC; it only exists on the wide exposed area where there is no photoresist pattern. In this test, Nikon KrF Stepper & Scanner and TEL Clean track were used. Investigation was carried out on the defect formulation on both Acetal and ESCAP type of photoresist while elemental analysis was done by Atomic Force Microscope (AFM) & Auger Electron Spectroscopy (AES). Result indicated that both BARC and photoresist induce this UFO defect; total defect quantity is related with Post Exposure Bake (PEB) condition. Based on the elemental analysis and process-split test, we can conclude that this defect is caused by lack of acid amount and low diffusivity which is related to PAG (Photo Acid Generator) and TAG (Thermal Acid Generator) in KrF photoresist and BARC material. By optimizing photoresist bake condition, this UFO defect as well as other related defect such as Satellite defect could be eliminated.

  2. Productivity improvement using industrial engineering tools

    NASA Astrophysics Data System (ADS)

    Salaam, H. A.; How, S. B.; Faisae, M. F.

    2012-09-01

    Minimizing the number of defects is important to any company since it influence their outputs and profits. The aim of this paper is to study the implementation of industrial engineering tools in a manufacturing recycle paper box company. This study starts with reading the standard operation procedures and analyzing the process flow to get the whole idea on how to manufacture paper box. At the same time, observations at the production line were made to identify problem occurs in the production line. By using check sheet, the defect data from each station were collected and have been analyzed using Pareto Chart. From the chart, it is found that glue workstation shows the highest number of defects. Based on observation at the glue workstation, the existing method used to glue the box was inappropriate because the operator used a lot of glue. Then, by using cause and effect diagram, the root cause of the problem was identified and solutions to overcome the problem were proposed. There are three suggestions proposed to overcome this problem. Cost reduction for each solution was calculated and the best solution is using three hair drier to dry the sticky glue which produce only 6.4 defects in an hour with cost of RM 0.0224.

  3. Kinematic space for conical defects

    NASA Astrophysics Data System (ADS)

    Cresswell, Jesse C.; Peet, Amanda W.

    2017-11-01

    Kinematic space can be used as an intermediate step in the AdS/CFT dictionary and lends itself naturally to the description of diffeomorphism invariant quantities. From the bulk it has been defined as the space of boundary anchored geodesics, and from the boundary as the space of pairs of CFT points. When the bulk is not globally AdS3 the appearance of non-minimal geodesics leads to ambiguities in these definitions. In this work conical defect spacetimes are considered as an example where non-minimal geodesics are common. From the bulk it is found that the conical defect kinematic space can be obtained from the AdS3 kinematic space by the same quotient under which one obtains the defect from AdS3. The resulting kinematic space is one of many equivalent fundamental regions. From the boundary the conical defect kinematic space can be determined by breaking up OPE blocks into contributions from individual bulk geodesics. A duality is established between partial OPE blocks and bulk fields integrated over individual geodesics, minimal or non-minimal.

  4. Influence of gag and RRE Sequences on HIV-1 RNA Packaging Signal Structure and Function.

    PubMed

    Kharytonchyk, Siarhei; Brown, Joshua D; Stilger, Krista; Yasin, Saif; Iyer, Aishwarya S; Collins, John; Summers, Michael F; Telesnitsky, Alice

    2018-07-06

    The packaging signal (Ψ) and Rev-responsive element (RRE) enable unspliced HIV-1 RNAs' export from the nucleus and packaging into virions. For some retroviruses, engrafting Ψ onto a heterologous RNA is sufficient to direct encapsidation. In contrast, HIV-1 RNA packaging requires 5' leader Ψ elements plus poorly defined additional features. We previously defined minimal 5' leader sequences competitive with intact Ψ for HIV-1 packaging, and here examined the potential roles of additional downstream elements. The findings confirmed that together, HIV-1 5' leader Ψ sequences plus a nuclear export element are sufficient to specify packaging. However, RNAs trafficked using a heterologous export element did not compete well with RNAs using HIV-1's RRE. Furthermore, some RNA additions to well-packaged minimal vectors rendered them packaging-defective. These defects were rescued by extending gag sequences in their native context. To understand these packaging defects' causes, in vitro dimerization properties of RNAs containing minimal packaging elements were compared to RNAs with sequence extensions that were or were not compatible with packaging. In vitro dimerization was found to correlate with packaging phenotypes, suggesting that HIV-1 evolved to prevent 5' leader residues' base pairing with downstream residues and misfolding of the packaging signal. Our findings explain why gag sequences have been implicated in packaging and show that RRE's packaging contributions appear more specific than nuclear export alone. Paired with recent work showing that sequences upstream of Ψ can dictate RNA folds, the current work explains how genetic context of minimal packaging elements contributes to HIV-1 RNA fate determination. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The study of develop optimization to control various resist defect in Photomask fabrication

    NASA Astrophysics Data System (ADS)

    Lim, JongHoon; Kim, ByungJu; Son, JaeSik; Park, EuiSang; Kim, SangPyo; Yim, DongGyu

    2015-07-01

    To reduce the pattern size in photomask is an inevitable trend because of the minimization of chip size. So it makes a big challenge to control defects in photomask industry. Defects below a certain size that had not been any problem in previous technology node are becoming an issue as the patterns are smaller. Therefore, the acceptable tolerance levels for current defect size and quantity are dramatically reduced. Because these defects on photomask can be the sources of the repeating defects on wafer, small size defects smaller than 200nm should not be ignored any more. Generally, almost defects are generated during develop process and etch process. Especially it is difficult to find the root cause of defects formed during the develop process because of their various types and very small size. In this paper, we studied how these small defects can be eliminated by analyzing the defects and tuning the develop process. There are 3 types of resist defects which are named as follows. The first type is `Popcorn' defect which is mainly occurred in negative resist and exists on the dark features. The second type is `Frog eggs' defect which is occurred in 2nd process of HTPSM and exists on the wide space area. The last type is `Spot' defect which also exists on the wide space area. These defects are generally appeared on the entire area of a plate and the number of these defects is about several hundred. It is thought that the original source is the surface's hydrophilic state before develop process or the incongruity between resist and developer. This study shows that the optimizing the develop process can be a good solution for some resist defects.

  6. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis

    PubMed Central

    Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.

    2015-01-01

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, and F-tractin – for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool within the tissue and cell type of interest in order to identify the tool that represents the best compromise between acceptable labeling and minimal disruption of the phenomenon being observed. In this case, we find that F-tractin, and perhaps Utrophin, when Utrophin expression levels are optimized to label efficiently without causing actin defects, can be used to study F-actin dynamics within the Drosophila nurse cells. PMID:24995797

  7. Gastrobronchial fistula following minimally invasive esophagectomy for esophageal cancer in a patient with myotonic dystrophy: Case report

    PubMed Central

    Hugin, Silje; Johnson, Egil; Johannessen, Hans-Olaf; Hofstad, Bjørn; Olafsen, Kjell; Mellem, Harald

    2015-01-01

    Introduction Myotonic dystrophies are inherited multisystemic diseases characterized by musculopathy, cardiac arrythmias and cognitive disorders. These patients are at increased risk for fatal post-surgical complications from pulmonary hypoventilation. We present a case with myotonic dystrophy and esophageal cancer who had a minimally invasive esophagectomy complicated with gastrobronchial fistulisation. Presentation of case A 44-year-old male with myotonic dystrophy type 1 and esophageal cancer had a minimally invasive esophagectomy performed instead of open surgery in order to reduce the risk for pulmonary complications. At day 15 respiratory failure occurred from a gastrobronchial fistula between the right intermediary bronchus (defect 7–8 mm) and the esophagogastric anastomosis (defect 10 mm). In order to minimize large leakage of air into the gastric conduit the anastomosis was stented and ventilation maintained at low airway pressures. His general condition improved and allowed extubation at day 29 and stent removal at day 35. Bronchoscopy confirmed that the fistula was healed. The patient was discharged from hospital at day 37 without further complications. Discussion The fistula was probably caused by bronchial necrosis from thermal injury during close dissection using the Ligasure instrument. Fistula treatment by non-surgical intervention was considered safer than surgery which could be followed by potentially life-threatening respiratory complications. Indications for stenting of gastrobronchial fistulas will be discussed. Conclusions Minimally invasive esophagectomy was performed instead of open surgery in a myotonic dystrophy patient as these patients are particularly vulnerable to respiratory complications. Gastrobronchial fistula, a major complication, was safely treated by stenting and low airway pressure ventilation. PMID:26520033

  8. Reconstruction Of Glenoid Bone Deficiency With Porous Titanium Nickelide In Recurrent Anterior Shoulder Instability.

    PubMed

    Prokhorenko, Valery M; Fomenko, Sergey M; Filipenko, Pavel V; Turkov, Petr S

    2015-01-01

    One of the main causes of recurrent shoulder instability is a bone defect of the front edge of the glenoid. The available techniques for reconstruction of this bone defect, however, have some disadvantages. The aim of this study was to develop a new method that can reduce the number of postoperative complications and improve the efficiency of surgical treatment of recurrent anterior shoulder instability with glenoid bone defect. We present here a new method for surgical treatment of post-traumatic recurrent anterior shoulder instability with bony defects using porous NiTi. We operated 5 patients using this method. Computed tomography was used in the preoperative preparation of the NiTi graft. The graft was sawed from a cylindrical billet about 1 cm in thickness. Two screw holes were then made with a drill. The prepared graft was subsequently installed in the area of the glenoid bone defect. There were no recurrences of the dislocation after the surgical treatment. All patients returned to their previous levels of physical activity. The proposed method is an alternative to Latarjet procedure and iliac crest bone grafting. The advantages of this method are accurate reconstruction of the bone defect, minimal risk of recurrences, no resorption, and reduction of procedure time.

  9. MPV17-related mitochondrial DNA maintenance defect: New cases and review of clinical, biochemical, and molecular aspects.

    PubMed

    El-Hattab, Ayman W; Wang, Julia; Dai, Hongzheng; Almannai, Mohammed; Staufner, Christian; Alfadhel, Majid; Gambello, Michael J; Prasun, Pankaj; Raza, Saleem; Lyons, Hernando J; Afqi, Manal; Saleh, Mohammed A M; Faqeih, Eissa A; Alzaidan, Hamad I; Alshenqiti, Abduljabbar; Flore, Leigh Anne; Hertecant, Jozef; Sacharow, Stephanie; Barbouth, Deborah S; Murayama, Kei; Shah, Amit A; Lin, Henry C; Wong, Lee-Jun C

    2018-04-01

    Mitochondrial DNA (mtDNA) maintenance defects are a group of diseases caused by deficiency of proteins involved in mtDNA synthesis, mitochondrial nucleotide supply, or mitochondrial dynamics. One of the mtDNA maintenance proteins is MPV17, which is a mitochondrial inner membrane protein involved in importing deoxynucleotides into the mitochondria. In 2006, pathogenic variants in MPV17 were first reported to cause infantile-onset hepatocerebral mtDNA depletion syndrome and Navajo neurohepatopathy. To date, 75 individuals with MPV17-related mtDNA maintenance defect have been reported with 39 different MPV17 pathogenic variants. In this report, we present an additional 25 affected individuals with nine novel MPV17 pathogenic variants. We summarize the clinical features of all 100 affected individuals and review the total 48 MPV17 pathogenic variants. The vast majority of affected individuals presented with an early-onset encephalohepatopathic disease characterized by hepatic and neurological manifestations, failure to thrive, lactic acidemia, and mtDNA depletion detected mainly in liver tissue. Rarely, MPV17 deficiency can cause a late-onset neuromyopathic disease characterized by myopathy and peripheral neuropathy with no or minimal liver involvement. Approximately half of the MPV17 pathogenic variants are missense. A genotype with biallelic missense variants, in particular homozygous p.R50Q, p.P98L, and p.R41Q, can carry a relatively better prognosis. © 2017 Wiley Periodicals, Inc.

  10. Propeller Flaps and Its Outcomes - A Prospective Study of 15 Cases Over Two-years.

    PubMed

    K T, Ramesha; J, Vijay; M, Shankarappa

    2014-01-01

    Cover flaps are needed in management of any bodily defect involving bone, tendon, nerve & vessels. The major objective of a plastic surgeon, facing a complex soft-tissue defect, is to replace "like with like" tissues at minimal donor site "cost" and with maximal accuracy & efficacy. To study the "Propeller Flaps" utility in reconstructive surgeries, evaluate its planning and complications involving donor site morbidity. The prospective study was conducted on 15 cases (11 males/4 females) of propeller flaps during the period of two years (2010-12) in Department of Plastic Surgery and Burns, Bangalore Medical College and Research Institute (BMCRI), Karnataka, India. The propeller flaps were performed in cases with defects due to any cause. Cases with Peripheral Vascular Disease (PVD). Flaps were performed and details recorded. Overall results revealed problem resolution in 87% cases (13 cases). Comprehensive description of each flap type and its related cases are given in the table. It has been categorically found that there were 2 flap partial losses. Partial necrosis has been reported in heavy-smoker patients. This current study clearly justifies that careful application, optimal designing & judicious scientific application of local perforator flaps for lower-limb wounds including rest of the body is successful in many aspects providing high-quality reconstruction ensuring minimal morbidity. It is cost-effective as well as time-saving.

  11. Orientational order in bipolar nematic microdroplets close to the phase transition

    NASA Astrophysics Data System (ADS)

    Vilfan, I.; Vilfan, M.; Žumer, S.

    1989-10-01

    The ordering in bipolar liquid-crystal droplets close to the nematic-paranematic phase translation is studied. Here, ``paranematic'' refers to the phase above the nematic-isotropic transition temperature. The structure of spherical droplets is obtained after the minimization of the Landau-de Gennes-type free energy assuming a constant value of the surface order parameter and strong anchoring of the molecules parallel to the surface. Disordered defect regions caused by elastic deformations are found close to the poles. The defect regions grow into the droplet as the coexistence temperature between the paranematic and nematic phases is approached from below. The temperature-radius phase diagram shows the first-order coexistence curve terminating in the critical point and a pronounced decrease of the coexistence temperature on approaching the critical radius.

  12. Sensor Spatial Distortion, Visual Latency, and Update Rate Effects on 3D Tracking in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.; Adelstein, B. D.; Baumeler, S.; Jense, G. J.; Jacoby, R. H.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Several common defects that we have sought to minimize in immersing virtual environments are: static sensor spatial distortion, visual latency, and low update rates. Human performance within our environments during large amplitude 3D tracking was assessed by objective and subjective methods in the presence and absence of these defects. Results show that 1) removal of our relatively small spatial sensor distortion had minor effects on the tracking activity, 2) an Adapted Cooper-Harper controllability scale proved the most sensitive subjective indicator of the degradation of dynamic fidelity caused by increasing latency and decreasing frame rates, and 3) performance, as measured by normalized RMS tracking error or subjective impressions, was more markedly influenced by changing visual latency than by update rate.

  13. Limited access atrial septal defect closure and the evolution of minimally invasive surgery.

    PubMed

    Izzat, M B; Yim, A P; El-Zufari, M H

    1998-04-01

    While minimizing the "invasiveness" in general surgery has been equated with minimizing "access", what constitutes minimally invasive intra-cardiac surgery remains controversial. Many surgeons doubt the benefits of minimizing access when the need for cardiopulmonary bypass cannot be waived. Recognizing that median sternotomy itself does entail significant morbidity, we investigated the value of alternative approaches to median sternotomy using atrial septal defect closure as our investigative model. We believe that some, but not all minimal access approaches are associated with reduced postoperative morbidity and enhanced recovery. Our current strategy is to use a mini-sternotomy approach in adult patients, whereas conventional median sternotomy remains our standard approach in the pediatric population. Considerable clinical experiences coupled with documented clinical benefits are fundamental before a certain approach is adopted in routine practice.

  14. Si amorphization by focused ion beam milling: Point defect model with dynamic BCA simulation and experimental validation.

    PubMed

    Huang, J; Loeffler, M; Muehle, U; Moeller, W; Mulders, J J L; Kwakman, L F Tz; Van Dorp, W F; Zschech, E

    2018-01-01

    A Ga focused ion beam (FIB) is often used in transmission electron microscopy (TEM) analysis sample preparation. In case of a crystalline Si sample, an amorphous near-surface layer is formed by the FIB process. In order to optimize the FIB recipe by minimizing the amorphization, it is important to predict the amorphous layer thickness from simulation. Molecular Dynamics (MD) simulation has been used to describe the amorphization, however, it is limited by computational power for a realistic FIB process simulation. On the other hand, Binary Collision Approximation (BCA) simulation is able and has been used to simulate ion-solid interaction process at a realistic scale. In this study, a Point Defect Density approach is introduced to a dynamic BCA simulation, considering dynamic ion-solid interactions. We used this method to predict the c-Si amorphization caused by FIB milling on Si. To validate the method, dedicated TEM studies are performed. It shows that the amorphous layer thickness predicted by the numerical simulation is consistent with the experimental data. In summary, the thickness of the near-surface Si amorphization layer caused by FIB milling can be well predicted using the Point Defect Density approach within the dynamic BCA model. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Combined perventricular septal defect closure and patent ductus arteriosus ligation via the lower ministernotomy approach.

    PubMed

    Voitov, Alexey; Omelchenko, Alexander; Gorbatykh, Yuriy; Bogachev-Prokophiev, Alexander; Karaskov, Alexander

    2018-02-01

    Over the past decade, minimally invasive approaches have been advocated for surgical correction of congenital defects to reduce costs related to hospitalization and for improved cosmesis. Minimal skin incisions and partial sternotomy reduce surgical trauma, however these techniques might not be successful in treating a number of congenital pathological conditions, particularly for combined congenital defects. We focused on cases with a combined presentation of ventricular septal defect and patent ductus arteriosus. We studied 12 infants who successfully underwent surgical treatment for a combined single-stage ventricular septal defect and patent ductus arteriosus closure through a lower ministernotomy without using cardiopulmonary bypass and X-rays. No intraoperative and early postoperative complications or mortality were noted. Postoperative echocardiography did not reveal residual shunts. The proposed technique is safe and reproducible in infants. © Crown copyright 2017.

  16. PCB Fault Detection Using Image Processing

    NASA Astrophysics Data System (ADS)

    Nayak, Jithendra P. R.; Anitha, K.; Parameshachari, B. D., Dr.; Banu, Reshma, Dr.; Rashmi, P.

    2017-08-01

    The importance of the Printed Circuit Board inspection process has been magnified by requirements of the modern manufacturing environment where delivery of 100% defect free PCBs is the expectation. To meet such expectations, identifying various defects and their types becomes the first step. In this PCB inspection system the inspection algorithm mainly focuses on the defect detection using the natural images. Many practical issues like tilt of the images, bad light conditions, height at which images are taken etc. are to be considered to ensure good quality of the image which can then be used for defect detection. Printed circuit board (PCB) fabrication is a multidisciplinary process, and etching is the most critical part in the PCB manufacturing process. The main objective of Etching process is to remove the exposed unwanted copper other than the required circuit pattern. In order to minimize scrap caused by the wrongly etched PCB panel, inspection has to be done in early stage. However, all of the inspections are done after the etching process where any defective PCB found is no longer useful and is simply thrown away. Since etching process costs 0% of the entire PCB fabrication, it is uneconomical to simply discard the defective PCBs. In this paper a method to identify the defects in natural PCB images and associated practical issues are addressed using Software tools and some of the major types of single layer PCB defects are Pattern Cut, Pin hole, Pattern Short, Nick etc., Therefore the defects should be identified before the etching process so that the PCB would be reprocessed. In the present approach expected to improve the efficiency of the system in detecting the defects even in low quality images

  17. Noble Logic for Preventing Scratch on Roll-to-Roll Printed Layers in Noncontacting Transportation

    NASA Astrophysics Data System (ADS)

    Lee, Changwoo; Kang, Hyunkyoo; Kim, Hojoon; Shin, Keehyun

    2010-05-01

    The use of roll-to-roll (R2R) printed electronics is a relatively new method of mass producing flexible electronic devices while keeping production costs down. The geometrical qualities of a printed pattern, such as surface roughness and uniformity, could deteriorate. Moreover, the geometric qualities of a printed layer affect the functional qualities of a printed electronic device directly. Therefore, the functional qualities (conductivity and mobility) of a multilayer electronic device could deteriorate in the presence of a scratch defect on the printed layer. In general, a scratch on a printed pattern on a flexible substrate is induced by contact between the rolls and printed pattern in R2R printing systems. To prevent such contact, one of the best solutions is to use an air flotation unit. However, a scratch defect could be induced even though an air flotation process is used to minimize contact, because the flotation height of a moving web is affected by web tension. In this paper, we discuss an analytical model of an air-floated moving substrate. For the noncontacting transfer of a moving web without a scratch defect, a mathematical tension model has been developed by considering an induced strain due to aerodynamic forces and verified by numerical and experimental studies. Additionally, the correlation between the flotation height of an air-floated moving web and speed compensation used to control the tension are investigated. The analysis shows that tension fluctuations can cause the substrate to touch the air-flotation subsystem, which is installed to prevent contact, resulting in defects such as scratches on the printed layer. On the basis of the proposed model, a logic is developed to minimize scratch defects on R2R printed layers in noncontacting transportation. Through a guideline based on this logic, the scratched area density on R2R printed layers can be reduced by approximately 70%.

  18. Minimally invasive or interventional repair of atrial septal defects in children: experience in 171 cases and comparison with conventional strategies.

    PubMed

    Formigari, R; Di Donato, R M; Mazzera, E; Carotti, A; Rinelli, G; Parisi, F; Pasquini, L; Ballerini, L

    2001-05-01

    The goal of this study was to evaluate percutaneous interventional and minimally invasive surgical closure of secundum atrial septal defect (ASD) in children. Concern has surrounded abandoning conventional midline sternotomy in favor of the less invasive approaches pursuing a better cosmetic result and a more rational resource utilization. A retrospective analysis was performed on the patients treated from June 1996 to December 1998. One hundred seventy-one children (median age 5.8 years, median weight 22.1 kg) underwent 52 device implants, 72 minimally invasive surgical operations and 50 conventional sternotomy operations. There were no deaths and no residual left to right shunt in any of the groups. The overall complication rate causing delayed discharge was 12.6% for minimally invasive surgery, 12.0% for midline sternotomy and 3.8% for transcatheter device closure (p < 0.01). The mean hospital stay was 2.8 +/- 1.0 days, 6.5 +/- 2.1 days and 2.1 +/- 0.5 days (p < 0.01); the skin-to-skin time was 196 +/- 43 min, 163 +/- 46 min and 118 +/- 58 min, respectively (p < 0.001). Extracorporeal circulation time was 49.9 +/- 10.1 min in the minithoracotomy group versus 37.2 +/- 13.8 min in the sternotomy group (p < 0.01) but without differences in aortic cross-clamping time. Sternotomy was the most expensive procedure (15,000 EUR +/- 1,050 EUR vs. 12,250 EUR +/- 472 EUR for minithoracotomy and 13,000 EUR +/- 300 EUR for percutaneous devices). While equally effective compared with sternotomy, the cosmetic and financial appeal of the percutaneous and minimally invasive approaches must be weighed against their greater exposure to technical pitfalls. Adequate training is needed if a strategy of surgical or percutaneous minimally invasive closure of ASD in children is planned in place of conventional surgery.

  19. Development of a Moldable, Biodegradable Polymeric Bone Repair Material

    DTIC Science & Technology

    1994-03-30

    minimally encapsulated by fibrous tissue. Histomorphometric analysis of day 14 specimens showed a very mild foreign body response in terms of area. This...significant visual evidence of foreign body response seen for any Atrix test article. A mass of dense fibrotic tissue was found near the defect site...article in the defect and medullary cavity. The test article was minimally encapsulated by fibrotic tissue. Histomorphometric analysis showed this

  20. Method for producing damage resistant optics

    DOEpatents

    Hackel, Lloyd A.; Burnham, Alan K.; Penetrante, Bernardino M.; Brusasco, Raymond M.; Wegner, Paul J.; Hrubesh, Lawrence W.; Kozlowski, Mark R.; Feit, Michael D.

    2003-01-01

    The present invention provides a system that mitigates the growth of surface damage in an optic. Damage to the optic is minimally initiated. In an embodiment of the invention, damage sites in the optic are initiated, located, and then treated to stop the growth of the damage sites. The step of initiating damage sites in the optic includes a scan of the optic using a laser to initiate defects. The exact positions of the initiated sites are identified. A mitigation process is performed that locally or globally removes the cause of subsequent growth of the damaged sites.

  1. Cystine calculi: challenging group of stones.

    PubMed

    Ahmed, Kamran; Dasgupta, Prokar; Khan, Mohammad Shamim

    2006-12-01

    Cystinuria is an autosomal recessive disorder in renal tubular and intestinal transport of dibasic amino acids, which results in increased urinary excretion of cystine, ornithine, lysine and arginine. It affects 1 in 20 000 people and is caused by a defect in the rBAT gene on chromosome 2. Development of urinary tract cystine calculi is the only clinical manifestation of this disease. Owing to recurrent episodes of stone formation, these patients require a multi-modal approach to management. The role of medical management and minimally invasive surgery was reviewed for the treatment of cystinuria.

  2. Pattern of defect associated with stem stubs on northern hardwoods

    Treesearch

    Alex L. Shigo

    1965-01-01

    Decay and discoloration are the principal defects that reduce quality of northern hardwoods in New England. We need to know how to minimize these defects in young growing stock, and how to recognize them in merchantable trees. To determine accurately the amount of internal defect in trees, we must know the quantitative relationships between external signs on stems and...

  3. Molecular dynamics simulation of the evolution of hydrophobic defects in one monolayer of a phosphatidylcholine bilayer: relevance for membrane fusion mechanisms.

    PubMed Central

    Tieleman, D Peter; Bentz, Joe

    2002-01-01

    The spontaneous formation of the phospholipid bilayer underlies the permeability barrier function of the biological membrane. Tears or defects that expose water to the acyl chains are spontaneously healed by lipid lateral diffusion. However, mechanical barriers, e.g., protein aggregates held in place, could sustain hydrophobic defects. Such defects have been postulated to occur in processes such as membrane fusion. This gives rise to a new question in bilayer structure: What do the lipids do in the absence of lipid lateral diffusion to minimize the free energy of a hydrophobic defect? As a first step to understand this rather fundamental question about bilayer structure, we performed molecular dynamic simulations of up to 10 ns of a planar bilayer from which lipids have been deleted randomly from one monolayer. In one set of simulations, approximately one-half of the lipids in the defect monolayer were restrained to form a mechanical barrier. In the second set, lipids were free to diffuse around. The question was simply whether the defects caused by removing a lipid would aggregate together, forming a large hydrophobic cavity, or whether the membrane would adjust in another way. When there are no mechanical barriers, the lipids in the defect monolayer simply spread out and thin with little effect on the other intact monolayer. In the presence of a mechanical barrier, the behavior of the lipids depends on the size of the defect. When 3 of 64 lipids are removed, the remaining lipids adjust the lower one-half of their chains, but the headgroup structure changes little and the intact monolayer is unaffected. When 6 to 12 lipids are removed, the defect monolayer thins, lipid disorder increases, and lipids from the intact monolayer move toward the defect monolayer. Whereas this is a highly simplified model of a fusion site, this engagement of the intact monolayer into the fusion defect is strikingly consistent with recent results for influenza hemagglutinin mediated fusion. PMID:12202375

  4. Effect of plastic-covered ultrasonic scalers on titanium implant surfaces.

    PubMed

    Mann, M; Parmar, D; Walmsley, A D; Lea, S C

    2012-01-01

    Maintaining oral health around titanium implants is essential. The formation of a biofilm on the titanium surface will influence the continuing success of the implant. These concerns have led to modified ultrasonic scaler instruments that look to reduce implant damage while maximising the cleaning effect. This study aimed to assess the effect of instrumentation, with traditional and modified ultrasonic scalers, on titanium implant surfaces and to correlate this with the oscillations of the instruments. Two ultrasonic insert designs (metallic TFI-10 and a plastic-tipped implant insert) were selected. Each scaler probe was scanned using a scanning laser vibrometer, under loaded and unloaded conditions, to determine their oscillation characteristics. Loads were applied against a titanium implant (100g and 200 g) for 10 s. The resulting implant surfaces were then scanned using laser profilometry and scanning electron microscopy (SEM). Insert probes oscillated with an elliptical motion with the maximum amplitude at the probe tip. Laser profilometry detected defects in the titanium surface only for the metallic scaler insert. Defect widths at 200 g high power were significantly larger than all other load/power conditions (P<0.02). Using SEM, it was observed that modifications to the implant surface had occurred following instrumentation with the plastic-tipped insert. Debris was also visible around the defects. Metal scalers produce defects in titanium implant surfaces and load and power are important factors in the damage caused. Plastic-coated scaler probes cause minimal damage to implant surfaces and have a polishing action but can leave plastic deposits behind on the implant surface. © 2011 John Wiley & Sons A/S.

  5. Depth-resolved ultra-violet spectroscopic photo current-voltage measurements for the analysis of AlGaN/GaN high electron mobility transistor epilayer deposited on Si

    NASA Astrophysics Data System (ADS)

    Ozden, Burcu; Yang, Chungman; Tong, Fei; Khanal, Min P.; Mirkhani, Vahid; Sk, Mobbassar Hassan; Ahyi, Ayayi Claude; Park, Minseo

    2014-10-01

    We have demonstrated that the depth-dependent defect distribution of the deep level traps in the AlGaN/GaN high electron mobility transistor (HEMT) epi-structures can be analyzed by using the depth-resolved ultra-violet (UV) spectroscopic photo current-voltage (IV) (DR-UV-SPIV). It is of great importance to analyze deep level defects in the AlGaN/GaN HEMT structure, since it is recognized that deep level defects are the main source for causing current collapse phenomena leading to reduced device reliability. The AlGaN/GaN HEMT epi-layers were grown on a 6 in. Si wafer by metal-organic chemical vapor deposition. The DR-UV-SPIV measurement was performed using a monochromatized UV light illumination from a Xe lamp. The key strength of the DR-UV-SPIV is its ability to provide information on the depth-dependent electrically active defect distribution along the epi-layer growth direction. The DR-UV-SPIV data showed variations in the depth-dependent defect distribution across the wafer. As a result, rapid feedback on the depth-dependent electrical homogeneity of the electrically active defect distribution in the AlGaN/GaN HEMT epi-structure grown on a Si wafer with minimal sample preparation can be elucidated from the DR-UV-SPIV in combination with our previously demonstrated spectroscopic photo-IV measurement with the sub-bandgap excitation.

  6. Birth Defects

    MedlinePlus

    ... both. Some birth defects like cleft lip or neural tube defects are structural problems that can be ... during pregnancy is a key factor in causing neural tube defects. For most birth defects, the cause ...

  7. Repair or replacement of defective direct resin-based composite restorations: contemporary teaching in U.S. and Canadian dental schools.

    PubMed

    Lynch, Christopher D; Blum, Igor R; Frazier, Kevin B; Haisch, Larry D; Wilson, Nairn H F

    2012-02-01

    Opportunities exist to promote minimally invasive dentistry by repairing rather than replacing defective and failing direct resin-based composite restorations. The authors conducted a study to investigate the current teaching of such techniques in U.S. and Canadian dental schools. In late 2010, the authors, with the assistance of the Consortium of Operative Dentistry Educators, invited 67 U.S. and Canadian dental schools to participate in an Internet-based survey. The response rate was 72 percent. Eighty-eight percent of the dental schools taught repair of defective direct resin-based composite restorations. Of these schools, 79 percent reported providing both didactic and clinical teaching. Although teaching repair of defective resin-based composite restorations was included in the didactic curricula of most schools, students in some schools did not gain experience in minimally invasive management of defective resin-based composite restorations by means of performing repair procedures. The American Dental Association's Code on Dental Procedures and Nomenclature does not have a procedure code for resin-based composite restoration repairs, which may limit patients' access to this dental treatment. Teaching dental students minimally invasive dentistry procedures, including restoration repair, extends the longevity of dental restorations and reduces detrimental effects on teeth induced by invasive procedures, thereby serving the interests of patients.

  8. Quality Control System using Simple Implementation of Seven Tools for Batik Textile Manufacturing

    NASA Astrophysics Data System (ADS)

    Ragil Suryoputro, Muhammad; Sugarindra, Muchamad; Erfaisalsyah, Hendy

    2017-06-01

    In order to produce better products and mitigate defect in products, every company must implement a quality control system. Company will find means to implement a quality control system that is capable and reliable. One of the methods is using the simple implementation of the seven tools in quality control defects. The case studied in this research was the level of disability xyz grey fabric on a shuttle loom 2 on the Batik manufacturing company. The seven tools that include: flowchart, check sheet, histogram, scatter diagram combined with control charts, Pareto diagrams and fishbone diagrams (causal diagram). Check sheet results obtained types of defects in the grey fabric was woven xyz is warp, double warp, the warp break, double warp, empty warp, warp tenuous, ugly edges, thick warp, and rust. Based on the analysis of control chart indicates that the process is out of control. This can be seen in the graph control where there is still a lot of outlier data. Based on a scatter diagram shows a positive correlation between the percentage of disability and the number of production. Based on Pareto diagram, repair needs priority is for the dominant type of defect is warp (44%) and based on double warp value histogram is also the highest with a value of 23635.11 m. In addition, based on the analysis of the factors causing defect by fishbone diagram double warp or other types of defects originating from the materials, methods, machines, measurements, man and environment. Thus the company can take to minimize the prevention and repair of defects and improve product quality.

  9. Nondestructive rule-based defect detection and identification system in CT images of hardwood logs

    Treesearch

    Erol Sarigul; A. Lynn Abbott; Daniel L. Schmoldt

    2001-01-01

    This paper is concerned with the detection of internal defects in hardwood logs. Because the commercial value of hardwood lumber is directly related to the quantity, type, and location of defects in the wood, sawing strategies are typically chosen in an attempt to minimize the defects in the resulting boards. Traditionally, the sawyer makes sawing decisions by visually...

  10. Effects of Vacancy Cluster Defects on Electrical and Thermodynamic Properties of Silicon Crystals

    PubMed Central

    Huang, Pei-Hsing; Lu, Chi-Ming

    2014-01-01

    A first-principle plane-wave pseudopotential method based on the density function theory (DFT) was employed to investigate the effects of vacancy cluster (VC) defects on the band structure and thermoelectric properties of silicon (Si) crystals. Simulation results showed that various VC defects changed the energy band and localized electron density distribution of Si crystals and caused the band gap to decrease with increasing VC size. The results can be ascribed to the formation of a defect level produced by the dangling bonds, floating bonds, or high-strain atoms surrounding the VC defects. The appearance of imaginary frequencies in the phonon spectrum of defective Si crystals indicates that the defect-region structure is dynamically unstable and demonstrates phase changes. The phonon dispersion relation and phonon density of state were also investigated using density functional perturbation theory. The obtained Debye temperature (θ D) for a perfect Si crystal had a minimum value of 448 K at T = 42 K and a maximum value of 671 K at the high-temperature limit, which is consistent with the experimental results reported by Flubacher. Moreover, the Debye temperature decreased with increases in the VC size. VC defects had minimal effects on the heat capacity (C v) value when temperatures were below 150 K. As the temperature was higher than 150 K, the heat capacity gradually increased with increasing temperature until it achieved a constant value of 11.8 cal/cell·K. The heat capacity significantly decreased as the VC size increased. For a 2 × 2 × 2 superlattice Si crystal containing a hexagonal ring VC (HRVC10), the heat capacity decreased by approximately 17%. PMID:24526923

  11. Horizontal ridge reconstruction of the anterior maxilla using customized allogeneic bone blocks with a minimally invasive technique - a case series.

    PubMed

    Venet, Laurent; Perriat, Michel; Mangano, Francesco Guido; Fortin, Thomas

    2017-12-08

    Different surgical procedures have been proposed to achieve horizontal ridge reconstruction of the anterior maxilla; all these procedures, however, require bone replacement materials to be adapted to the bone defect at the time of implantation, resulting in complex and time-consuming procedures. The purpose of this study was to describe how to use a 3D printed hardcopy model of the maxilla to prepare customized milled bone blocks, to be adapted on the bone defect areas using a minimally invasive subperiosteal tunneling technique. Cone beam computed tomography (CBCT) images of the atrophic maxilla of six patients were acquired and modified into 3D reconstruction models. Data were transferred to a 3D printer and solid models were fabricated using autoclavable nylon polyamide. Before the surgery, freeze-dried cortico-cancellous blocks were manually milled and adapted on the 3D printed hardcopy models of the maxillary bone, in order to obtain customized allogeneic bone blocks. In total, eleven onlay customized allogeneic bone grafts were prepared and implanted in 6 patients, using a minimally invasive subperiosteal tunneling technique. The scaffolds closely matched the shape of the defects: this reduced the operation time and contributed to good healing. The patients did not demonstrate adverse events such as inflammation, dehiscence or flap re-opening during the recovery period; however, one patient experienced scaffold resorption, which was likely caused by uncontrolled motion of the removable provisional prosthesis. Following a 6 month healing period, CBCT was used to assess graft integration, which was followed by insertion of implants into the augmented areas. Prosthetic restorations were placed 4 months later. These observations suggest that customized bone allografts can be successfully used for horizontal ridge reconstruction of the anterior maxilla: patients demonstrated reduced morbidity and decreased total surgery time. Further studies on a larger sample of patients, with histologic evaluation and longer follow-up are needed to confirm the present observations.

  12. Diameter Dependence of Planar Defects in InP Nanowires

    PubMed Central

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y. B.; Ho, Johnny C.

    2016-01-01

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of “bottom-up” InP NWs with minimized defect concentration which are suitable for various device applications. PMID:27616584

  13. Diameter Dependence of Planar Defects in InP Nanowires.

    PubMed

    Wang, Fengyun; Wang, Chao; Wang, Yiqian; Zhang, Minghuan; Han, Zhenlian; Yip, SenPo; Shen, Lifan; Han, Ning; Pun, Edwin Y B; Ho, Johnny C

    2016-09-12

    In this work, extensive characterization and complementary theoretical analysis have been carried out on Au-catalyzed InP nanowires in order to understand the planar defect formation as a function of nanowire diameter. From the detailed transmission electron microscopic measurements, the density of stacking faults and twin defects are found to monotonically decrease as the nanowire diameter is decreased to 10 nm, and the chemical analysis clearly indicates the drastic impact of In catalytic supersaturation in Au nanoparticles on the minimized planar defect formation in miniaturized nanowires. Specifically, during the chemical vapor deposition of InP nanowires, a significant amount of planar defects is created when the catalyst seed sizes are increased with the lower degree of In supersaturation as dictated by the Gibbs-Thomson effect, and an insufficient In diffusion (or Au-rich enhancement) would lead to a reduced and non-uniform In precipitation at the NW growing interface. The results presented here provide an insight into the fabrication of "bottom-up" InP NWs with minimized defect concentration which are suitable for various device applications.

  14. Paraspinal Transposition Flap for Reconstruction of Sacral Soft Tissue Defects: A Series of 53 Cases from a Single Institute

    PubMed Central

    Chattopadhyay, Debarati; Agarwal, Akhilesh Kumar; Guha, Goutam; Bhattacharya, Nirjhar; Chumbale, Pawan K; Gupta, Souradip; Murmu, Marang Buru

    2014-01-01

    Study Design Case series. Purpose To describe paraspinal transposition flap for coverage of sacral soft tissue defects. Overview of Literature Soft tissue defects in the sacral region pose a major challenge to the reconstructive surgeon. Goals of sacral wound reconstruction are to provide a durable skin and soft tissue cover adequate for even large sacral defects; minimize recurrence; and minimize donor site morbidity. Various musculocutaneous and fasciocutanous flaps have been described in the literature. Methods The flap was applied in 53 patients with sacral soft tissue defects of diverse etiology. Defects ranged in size from small (6 cm×5 cm) to extensive (21 cm×10 cm). The median age of the patients was 58 years (range, 16-78 years). Results There was no flap necrosis. Primary closure of donor sites was possible in all the cases. The median follow up of the patients was 33 months (range, 4-84 months). The aesthetic outcomes were acceptable. There has been no recurrence of pressure sores. Conclusions The authors conclude that paraspinal transposition flap is suitable for reconstruction of large sacral soft tissue defects with minimum morbidity and excellent long term results. PMID:24967044

  15. Detection of tanker defects with infrared thermography

    NASA Technical Reports Server (NTRS)

    Kantsios, A. G.

    1980-01-01

    Infrared scanning technique for finding defects in secondary barrier of liquid natural gas (LNG) tank has been successfully tested on ship under construction at Newport News Shipbuilding and Dry Dock Company. Technique determines defects with minimal expenditure of time and manpower. Tests could be repeated during life of tanker and make more complicated testing unnecessary. Tests also confirmed that tank did not have any major defects, and tank was certified.

  16. Defect reduction for semiconductor memory applications using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Ye, Zhengmao; Luo, Kang; Lu, Xiaoming; Fletcher, Brian; Liu, Weijun; Xu, Frank; LaBrake, Dwayne; Resnick, Douglas J.; Sreenivasan, S. V.

    2012-07-01

    Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the defect specifications of high-end memory devices. Defects occurring during imprinting can generally be broken into two categories; random defects and repeating defects. Examples of random defects include fluid phase imprint defects, such as bubbles, and solid phase imprint defects, such as line collapse. Examples of repeater defects include mask fabrication defects and particle induced defects. Previous studies indicated that soft particles cause nonrepeating defects. Hard particles, on the other hand, can cause either permanent resist plugging or mask damage. In a previous study, two specific defect types were examined; random nonfill defects occurring during the resist filling process and repeater defects caused by interactions with particles on the substrate. We attempted to identify the different types of imprint defect types using a mask with line/space patterns at dimensions as small as 26 nm. An Imprio 500 twenty-wafer per hour development tool was used to study the various defect types. The imprint defect density was reduced nearly four orders of magnitude, down to ˜4/cm2 in a period of two years following the availability of low defect imprint masks at 26-nm half-pitch. This reduction was achieved by identifying the root cause of various defects and then taking the appropriate corrective action.

  17. Safety and feasibility of intra-operative device closure of atrial septal defect with transthoracic minimal invasion.

    PubMed

    Chen, Qiang; Cao, Hua; Zhang, Gui-Can; Chen, Liang-Wan; Chen, Dao-Zhong

    2012-01-01

    The study aims to evaluate the safety and feasibility of intra-operative device closure of atrial septal defect with transthoracic minimal invasion. From May 2006 to June 2009, 252 patients with secundum-type atrial septal defect closure were enrolled in our institution. The patients were divided into two groups, with 182 patients in group I with intra-operative device closure and 72 in group II with surgical closure. In group I, the patients' age ranged from 3 months to 62 years (mean±standard deviation, 19.0±16.7 years). This approach involved a transthoracic minimal invasion that was performed after full evaluation of the atrial septal defect by transthoracic echocardiography, deploying the device through the delivery sheath to occlude the atrial septal defect. In group I, 180 patients were occluded successfully under this approach. The size of the occluder device implanted ranged from 6 to 48 mm. Minor complications occurred, which included transient arrhythmias (n=23) and pleural effusion (n=15). Two patients with postoperative cardiac arrest were successfully cardiopulmonary resuscitated. Another two patients with occluder dislodged back into the right atrium were turned to surgical repair with cardiopulmonary bypass on the postoperative day. In group II, all patients were occluded successfully, and almost all patients needed blood transfusion and suffered from various minor complications. All discharged patients were followed up for 1-5 years. During this period, we found no recurrence, no thrombosis, even no device failure. In our comparative studies, group II had significantly longer intensive care unit (ICU) stay and hospital stay than group I (p<0.05). The cost for group I was less than group II (p<0.05). Intra-operative device closure of atrial septal defect with transthoracic minimal invasion is a safe and feasible technique. It had the advantages of cost savings, yielding better cosmetic results, and leaving less trauma than surgical closure.

  18. Contamination Analyzer

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Measurement of the total organic carbon content in water is important in assessing contamination levels in high purity water for power generation, pharmaceutical production and electronics manufacture. Even trace levels of organic compounds can cause defects in manufactured products. The Sievers Model 800 Total Organic Carbon (TOC) Analyzer, based on technology developed for the Space Station, uses a strong chemical oxidizing agent and ultraviolet light to convert organic compounds in water to carbon dioxide. After ionizing the carbon dioxide, the amount of ions is determined by measuring the conductivity of the deionized water. The new technique is highly sensitive, does not require compressed gas, and maintenance is minimal.

  19. Cystine calculi: challenging group of stones

    PubMed Central

    Ahmed, Kamran; Dasgupta, Prokar; Khan, Mohammad Shamim

    2006-01-01

    Cystinuria is an autosomal recessive disorder in renal tubular and intestinal transport of dibasic amino acids, which results in increased urinary excretion of cystine, ornithine, lysine and arginine. It affects 1 in 20 000 people and is caused by a defect in the rBAT gene on chromosome 2. Development of urinary tract cystine calculi is the only clinical manifestation of this disease. Owing to recurrent episodes of stone formation, these patients require a multi‐modal approach to management. The role of medical management and minimally invasive surgery was reviewed for the treatment of cystinuria. PMID:17148700

  20. Light scattering techniques for the characterization of optical components

    NASA Astrophysics Data System (ADS)

    Hauptvogel, M.; Schröder, S.; Herffurth, T.; Trost, M.; von Finck, A.; Duparré, A.; Weigel, T.

    2017-11-01

    The rapid developments in optical technologies generate increasingly higher and sometimes completely new demands on the quality of materials, surfaces, components, and systems. Examples for such driving applications are the steadily shrinking feature sizes in semiconductor lithography, nanostructured functional surfaces for consumer optics, and advanced optical systems for astronomy and space applications. The reduction of surface defects as well as the minimization of roughness and other scatter-relevant irregularities are essential factors in all these areas of application. Quality-monitoring for analysing and improving those properties must ensure that even minimal defects and roughness values can be detected reliably. Light scattering methods have a high potential for a non-contact, rapid, efficient, and sensitive determination of roughness, surface structures, and defects.

  1. Repairing Fetal Membranes with a Self-adhesive Ultrathin Polymeric Film: Evaluation in Mid-gestational Rabbit Model.

    PubMed

    Pensabene, Virginia; Patel, Premal P; Williams, Phillip; Cooper, Trisha L; Kirkbride, Kellye C; Giorgio, Todd D; Tulipan, Noel B

    2015-08-01

    Preterm premature rupture of membranes causes 40% of all preterm births, affecting 150000 women each year in the United States. Prenatal diagnostic procedures and surgical interventions increase incidence of adverse events, leading to iatrogenic membrane rupture after a fetoscopic procedure in 45% of cases. We propose an ultrathin, self-adherent, poly-L-lactic acid patch ("nanofilm") as a reparative wound closure after endoscopic/fetoscopic procedures. These nanofilms are compatible with application in wet conditions and with minimally invasive instrumentation. Ex vivo studies to evaluate the nanofilm were conducted using human chorion-amnion (CA) membranes. A custom-built inflation device was used for mechanical characterization of CA membranes and for assessment of nanofilm adhesion and sealing of membrane defects up to 3 mm in size. These ex vivo tests demonstrated the ability of the nanofilm to seal human CA defects ranging in size from 1 to 3 mm in diameter. In vivo survival studies were conducted in 25 mid-gestational rabbits, defects were created by perforating the uterus and the CA membranes and subsequently using the nanofilm to seal these wounds. These in vivo studies confirmed the successful sealing of defects smaller than 3 mm observed ex vivo. Histological analysis of whole harvested uteri 7 days after surgery showed intact uterine walls in 59% of the nanofilm repaired fetuses, along with increased uterine size and intrauterine development in 63% of the cases. In summary, we have developed an ultrathin, self-adhesive nanofilm for repair of uterine membrane defects.

  2. Correction of the F508del-CFTR protein processing defect in vitro by the investigational drug VX-809

    PubMed Central

    Van Goor, Fredrick; Hadida, Sabine; Grootenhuis, Peter D. J.; Burton, Bill; Stack, Jeffrey H.; Straley, Kimberly S.; Decker, Caroline J.; Miller, Mark; McCartney, Jason; Olson, Eric R.; Wine, Jeffrey J.; Frizzell, Ray A.; Ashlock, Melissa; Negulescu, Paul A.

    2011-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR) gene that impair the function of CFTR, an epithelial chloride channel required for proper function of the lung, pancreas, and other organs. Most patients with CF carry the F508del CFTR mutation, which causes defective CFTR protein folding and processing in the endoplasmic reticulum, resulting in minimal amounts of CFTR at the cell surface. One strategy to treat these patients is to correct the processing of F508del-CFTR with small molecules. Here we describe the in vitro pharmacology of VX-809, a CFTR corrector that was advanced into clinical development for the treatment of CF. In cultured human bronchial epithelial cells isolated from patients with CF homozygous for F508del, VX-809 improved F508del-CFTR processing in the endoplasmic reticulum and enhanced chloride secretion to approximately 14% of non-CF human bronchial epithelial cells (EC50, 81 ± 19 nM), a level associated with mild CF in patients with less disruptive CFTR mutations. F508del-CFTR corrected by VX-809 exhibited biochemical and functional characteristics similar to normal CFTR, including biochemical susceptibility to proteolysis, residence time in the plasma membrane, and single-channel open probability. VX-809 was more efficacious and selective for CFTR than previously reported CFTR correctors. VX-809 represents a class of CFTR corrector that specifically addresses the underlying processing defect in F508del-CFTR. PMID:21976485

  3. Detection of orbicularis oris muscle defects in first degree relatives of cleft lip children using ultrasound.

    PubMed

    Mittal, M; Maheshwari, N; Ahlawat, K; Sharma, V; Sultan, A; Chopra, R

    2012-01-01

    The severity of cleft lip (CL) varies considerably from complete bilateral CL and palate at one end of the spectrum to a minimal CL at the other. In some cases of microform clefting, there may be no visible manifestation of the defect on the lip surface (i.e., the defect is occult) and no residual functional deficit. This study used high resolution ultrasonography to detect subclinical anomalies of orbicularis oris muscle (OOM) in first degree relatives of CL +- cleft palate children and compared it with controls. Thirty relatives of 25 children with non-syndromic CL or CL+ CP were identified for the study. Thirty subjects having negative family history of CL/P in three generations and absence of any minimal cleft features were taken as controls. Ultrasound scans of OOM of all the controls and relatives were taken. Statistical analysis was performed using standard χ2 tests with Yates correction. Defects were seen in 13.3% of relatives and no defects were seen in controls, this was not statistically significant. The data support the hypothesis that subclinical CL cases with subepithelial OOM defects do exist and Orbicularis oris discontinuities represent the mildest form of CL.

  4. Multiple-digit resurfacing using a thin latissimus dorsi perforator flap.

    PubMed

    Kim, Sang Wha; Lee, Ho Jun; Kim, Jeong Tae; Kim, Youn Hwan

    2014-01-01

    Traumatic digit defects of high complexity and with inadequate local tissue represent challenging surgical problems. Recently, perforator flaps have been proposed for reconstructing large defects of the hand because of their thinness and pliability and minimal donor site morbidity. Here, we illustrate the use of thin latissimus dorsi perforator flaps for resurfacing multiple defects of distal digits. We describe the cases of seven patients with large defects, including digits, circumferential defects and multiple-digit defects, who underwent reconstruction with thin latissimus dorsi perforator flaps between January 2008 and March 2012. Single-digit resurfacing procedures were excluded. The mean age was 56.3 years and the mean flap size was 160.4 cm(2). All the flaps survived completely. Two patients had minor complications including partial flap loss and scar contracture. The mean follow-up period was 11.7 months. The ideal flap for digit resurfacing should be thin and amenable to moulding, have a long pedicle for microanastomosis and have minimal donor site morbidity. Thin flaps can be harvested by excluding the deep adipose layer, and their high pliability enables resurfacing without multiple debulking procedures. The latissimus dorsi perforator flap may be the best flap for reconstructing complex defects of the digits, such as large, multiple-digit or circumferential defects, which require complete wrapping of volar and dorsal surfaces. Copyright © 2013 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  5. Biological countermeasures in space radiation health.

    PubMed

    Kennedy, Ann R; Todd, Paul

    2003-06-01

    Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. The major types of radiation considered to be of importance during space travel are protons and particles of high atomic number and high energy (HZE particles). It is now clear that biological countermeasures can be used to prevent or reduce the levels of biological consequences resulting from exposure to protons or HZE particles, including the induction of cancer, immunosuppression and neurological defects caused by these types of ionizing radiation. Research related to the dietary additions of agents to minimize the risks of developing health-related problems which can result from exposure to space radiations is reviewed.

  6. Biological countermeasures in space radiation health

    NASA Technical Reports Server (NTRS)

    Kennedy, Ann R.; Todd, Paul

    2003-01-01

    Exposure to the types of ionizing radiation encountered during space travel may cause a number of health-related problems, but the primary concern is related to the increased risk of cancer induction in astronauts. The major types of radiation considered to be of importance during space travel are protons and particles of high atomic number and high energy (HZE particles). It is now clear that biological countermeasures can be used to prevent or reduce the levels of biological consequences resulting from exposure to protons or HZE particles, including the induction of cancer, immunosuppression and neurological defects caused by these types of ionizing radiation. Research related to the dietary additions of agents to minimize the risks of developing health-related problems which can result from exposure to space radiations is reviewed.

  7. Suppression of thermal transients in advanced LIGO interferometers using CO2 laser preheating

    NASA Astrophysics Data System (ADS)

    Jaberian Hamedan, V.; Zhao, C.; Ju, L.; Blair, C.; Blair, D. G.

    2018-06-01

    In high optical power interferometric gravitational wave detectors, such as Advanced LIGO, the thermal effects due to optical absorption in the mirror coatings and the slow thermal response of fused silica substrate cause time dependent changes in the mirror profile. After locking, high optical power builds up in the arm cavities. Absorption induced heating causes optical cavity transverse mode frequencies to drift over a period of hours, relative to the fundamental mode. At high optical power this can cause time dependent transient parametric instability, which can lead to interferometer disfunction. In this paper, we model the use of CO2 laser heating designed to enable the interferometer to be maintained in a thermal condition such that transient changes in the mirrors are greatly reduced. This can minimize transient parametric instability and compensate dark port power fluctuations. Modeling results are presented for both single compensation where a CO2 laser acting on one test mass per cavity, and double compensation using one CO2 laser for each test mass. Using parameters of the LIGO Hanford Observatory X-arm as an example, single compensation allows the maximum mode frequency shift to be limited to 6% of its uncompensated value. However, single compensation causes transient degradation of the contrast defect. Double compensation minimise contrast defect degradation and reduces transients to less than 1% if the CO2 laser spot is positioned within 2 mm of the cavity beam position.

  8. Using birth defects registry data to evaluate infant and childhood mortality associated with birth defects: an alternative to traditional mortality assessment using underlying cause of death statistics.

    PubMed

    Copeland, Glenn E; Kirby, Russell S

    2007-11-01

    Although birth defects are a leading cause of death in infancy and early childhood, the proportion of all deaths to children with clinically diagnosed birth defects is not well documented. The study is intended to measure the proportion of all deaths to infants and children under age 10 occurring to children with birth defects and how and why this proportion differs from the proportion of deaths due to an underlying cause of congenital anomalies using standard mortality statistics. A linked file of Michigan livebirths and deaths was combined with data from a comprehensive multisource birth defects registry of Michigan livebirths born during the years 1992 through 2000. The data were analyzed to determine the mortality rate for infants and children with birth defects and for children with no reported birth defect. Mortality risk ratios were calculated. The underlying causes of death for children with birth defects were also categorized and compared to cause- specific mortality rates for the general population. Congenital anomalies were the underlying cause of death for 17.8% of all infant deaths while infants with birth defects were 33.7% of all infant deaths in the study. Almost half of all Michigan deaths to children aged 1 to 2 were within the birth defects registry, though only 15.0% had an underlying cause of death of a congenital anomaly based upon standard mortality statistics. The mortality experience among children with birth defects was significantly higher than other children throughout the first 9 years of life, ranging from 4.6 for 5 year olds to 12.8 for children 1 to 2. Mortality risk ratios examined by cause of death for infants with birth defects were highest for other endocrine (28.1), other CNS (28.1), and heart (21.9) conditions. For children 1 through 9, the highest differential risk was seen for other perinatal conditions (39.0), other endocrine (29.7), other CNS (24.5), and heart (21.4). Childhood mortality analyses that incorporate birth defects registry data provide a more comprehensive picture of the full burden of birth defects on mortality in infant and children and can provide an effective mechanism for monitoring the survival and mortality risks of children with selected birth defects on a population basis.

  9. Computed Tomography For Internal Inspection Of Castings

    NASA Technical Reports Server (NTRS)

    Hanna, Timothy L.

    1995-01-01

    Computed tomography used to detect internal flaws in metal castings before machining and otherwise processing them into finished parts. Saves time and money otherwise wasted on machining and other processing of castings eventually rejected because of internal defects. Knowledge of internal defects gained by use of computed tomography also provides guidance for changes in foundry techniques, procedures, and equipment to minimize defects and reduce costs.

  10. N-Doped Graphene with Low Intrinsic Defect Densities via a Solid Source Doping Technique.

    PubMed

    Liu, Bo; Yang, Chia-Ming; Liu, Zhiwei; Lai, Chao-Sung

    2017-09-30

    N-doped graphene with low intrinsic defect densities was obtained by combining a solid source doping technique and chemical vapor deposition (CVD). The solid source for N-doping was embedded into the copper substrate by NH₃ plasma immersion. During the treatment, NH₃ plasma radicals not only flattened the Cu substrate such that the root-mean-square roughness value gradually decreased from 51.9 nm to 15.5 nm but also enhanced the nitrogen content in the Cu substrate. The smooth surface of copper enables good control of graphene growth and the decoupling of height fluctuations and ripple effects, which compensate for the Coulomb scattering by nitrogen incorporation. On the other hand, the nitrogen atoms on the pre-treated Cu surface enable nitrogen incorporation with low defect densities, causing less damage to the graphene structure during the process. Most incorporated nitrogen atoms are found in the pyrrolic configuration, with the nitrogen fraction ranging from 1.64% to 3.05%, while the samples exhibit low defect densities, as revealed by Raman spectroscopy. In the top-gated graphene transistor measurement, N-doped graphene exhibits n-type behavior, and the obtained carrier mobilities are greater than 1100 cm²·V -1 ·s -1 . In this study, an efficient and minimally damaging n-doping approach was proposed for graphene nanoelectronic applications.

  11. Different bone regeneration patterns in periimplant circumferential gap defects grafted with two types of osteoconductive biomaterial.

    PubMed

    Lee, Jung-Seok; Sohn, Joo-Yeon; Lim, Hyun-Chang; Jung, Ui-Won; Choi, Seong-Ho

    2016-08-01

    This study aimed to determine healing patterns in periimplant gap defect grafted with demineralized bovine bone mineral (DBBM) and porous titanium granules (PTG), which are known to induce a minimal tissue reaction and to undergo minimal biodegradation in healing process. Experiments were performed using a standardized periimplant gap-defect model in dogs with two observational periods: 4 and 8 weeks. Circumferential defects were surgically induced around dental implants on unilateral mandibles in five dogs, and collagen barrier membranes were placed over the DBBM and PTG grafts at two experimental sites and over a nongrafted site. Four weeks later, the same procedures were performed on the contralateral mandible, and the animals allowed to heal for a further 4 weeks, after which they were sacrificed and their mandibles with graft/control sites harvested for histologic evaluation. Both types of grafted biomaterials significantly enhanced the defect fill with newly formed bone, but the bone-to-implant contact (BIC) was significantly increased only at sites that had been grafted with DBBM. The two experimental sites exhibited different healing patterns, with new bone formation being observed on the surface of the DBBM particles throughout the defect, while there was no de novo bone formation on the PTG surface, but rather appositional bone growth from the base and lateral walls of the defect. It has been suggested that gap-defect filling with DBBM around dental implants may enhance both BIC and defect fill; however, the present findings show that defect grafting with PTG enhances only defect fill and not BIC. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1202-1209, 2016. © 2015 Wiley Periodicals, Inc.

  12. Influence of material quality and process-induced defects on semiconductor device performance and yield

    NASA Technical Reports Server (NTRS)

    Porter, W. A.; Mckee, W. R.

    1974-01-01

    An overview of major causes of device yield degradation is presented. The relationships of device types to critical processes and typical defects are discussed, and the influence of the defect on device yield and performance is demonstrated. Various defect characterization techniques are described and applied. A correlation of device failure, defect type, and cause of defect is presented in tabular form with accompanying illustrations.

  13. Mating programs including genomic relationships

    USDA-ARS?s Scientific Manuscript database

    Computer mating programs have helped breeders minimize pedigree inbreeding and avoid recessive defects by mating animals with parents that have fewer common ancestors. With genomic selection, breed associations, AI organizations, and on-farm software providers could use new programs to minimize geno...

  14. Reconstruction of Anterolateral Thigh Defects Using Perforator-Based Propeller Flaps.

    PubMed

    Iida, Takuya; Yoshimatsu, Hidehiko; Koshima, Isao

    2017-10-01

    Usually, anterolateral thigh (ALT) defects with width more than 8 cm cannot be closed directly. Although several methods of using local flaps exist, flap mobility of these methods is limited. We introduced a perforator-based propeller flap for such reconstruction. Their maximal mobility, which minimizes their size, is their greatest advantage. In addition, we present our technical refinements including double-axes propeller flap, the use of indocyanine green real-time angiography, and supercharged propeller flap for safer flap transfer. Seven patients underwent perforator-based propeller flap reconstruction of ALT defects. Flaps were designed cranial or caudal to the defect according to the perforator locations. To maximize mobility, flaps were designed so that the perforator was located at the periphery and closer to the defect. After rotating the flap to the defect, indocyanine green angiography was performed to determine the need for supercharge. In all cases, all flaps survived completely. Defect size ranged from 12 × 11 cm to 18 × 16 cm, and flap size ranged from 7 × 5 cm to 15 × 7 cm. The number of perforators in the flap was 1 in 3 cases and 2 in 4 cases. Supercharging was performed in 3 cases. Donor-site complications, including gait disturbance, were not observed. This method achieves ALT defect closure with minimal donor-site morbidity and can provide prompt and aesthetically acceptable results. Indocyanine green real-time angiography and supercharging technique are also useful for safer and reliable flap transfer.

  15. Sub-surface defects detection of by using active thermography and advanced image edge detection

    NASA Astrophysics Data System (ADS)

    Tse, Peter W.; Wang, Gaochao

    2017-05-01

    Active or pulsed thermography is a popular non-destructive testing (NDT) tool for inspecting the integrity and anomaly of industrial equipment. One of the recent research trends in using active thermography is to automate the process in detecting hidden defects. As of today, human effort has still been using to adjust the temperature intensity of the thermo camera in order to visually observe the difference in cooling rates caused by a normal target as compared to that by a sub-surface crack exists inside the target. To avoid the tedious human-visual inspection and minimize human induced error, this paper reports the design of an automatic method that is capable of detecting subsurface defects. The method used the technique of active thermography, edge detection in machine vision and smart algorithm. An infrared thermo-camera was used to capture a series of temporal pictures after slightly heating up the inspected target by flash lamps. Then the Canny edge detector was employed to automatically extract the defect related images from the captured pictures. The captured temporal pictures were preprocessed by a packet of Canny edge detector and then a smart algorithm was used to reconstruct the whole sequences of image signals. During the processes, noise and irrelevant backgrounds exist in the pictures were removed. Consequently, the contrast of the edges of defective areas had been highlighted. The designed automatic method was verified by real pipe specimens that contains sub-surface cracks. After applying such smart method, the edges of cracks can be revealed visually without the need of using manual adjustment on the setting of thermo-camera. With the help of this automatic method, the tedious process in manually adjusting the colour contract and the pixel intensity in order to reveal defects can be avoided.

  16. Prevention of Treacher Collins syndrome craniofacial anomalies in mouse models via maternal antioxidant supplementation.

    PubMed

    Sakai, Daisuke; Dixon, Jill; Achilleos, Annita; Dixon, Michael; Trainor, Paul A

    2016-01-21

    Craniofacial anomalies account for approximately one-third of all birth defects and are a significant cause of infant mortality. Since the majority of the bones, cartilage and connective tissues that comprise the head and face are derived from a multipotent migratory progenitor cell population called the neural crest, craniofacial disorders are typically attributed to defects in neural crest cell development. Treacher Collins syndrome (TCS) is a disorder of craniofacial development and although TCS arises primarily through autosomal dominant mutations in TCOF1, no clear genotype-phenotype correlation has been documented. Here we show that Tcof1 haploinsufficiency results in oxidative stress-induced DNA damage and neuroepithelial cell death. Consistent with this discovery, maternal treatment with antioxidants minimizes cell death in the neuroepithelium and substantially ameliorates or prevents the pathogenesis of craniofacial anomalies in Tcof1(+/-) mice. Thus maternal antioxidant dietary supplementation may provide an avenue for protection against the pathogenesis of TCS and similar neurocristopathies.

  17. Prevention of Treacher Collins syndrome craniofacial anomalies in mouse models via maternal antioxidant supplementation

    PubMed Central

    Sakai, Daisuke; Dixon, Jill; Achilleos, Annita; Dixon, Michael; Trainor, Paul A.

    2016-01-01

    Craniofacial anomalies account for approximately one-third of all birth defects and are a significant cause of infant mortality. Since the majority of the bones, cartilage and connective tissues that comprise the head and face are derived from a multipotent migratory progenitor cell population called the neural crest, craniofacial disorders are typically attributed to defects in neural crest cell development. Treacher Collins syndrome (TCS) is a disorder of craniofacial development and although TCS arises primarily through autosomal dominant mutations in TCOF1, no clear genotype–phenotype correlation has been documented. Here we show that Tcof1 haploinsufficiency results in oxidative stress-induced DNA damage and neuroepithelial cell death. Consistent with this discovery, maternal treatment with antioxidants minimizes cell death in the neuroepithelium and substantially ameliorates or prevents the pathogenesis of craniofacial anomalies in Tcof1+/− mice. Thus maternal antioxidant dietary supplementation may provide an avenue for protection against the pathogenesis of TCS and similar neurocristopathies. PMID:26792133

  18. Periodontal tissue reaction to customized nano-hydroxyapatite block scaffold in one-wall intrabony defect: a histologic study in dogs

    PubMed Central

    Lee, Jung-Seok; Park, Weon-Yeong; Cha, Jae-Kook; Jung, Ui-Won; Kim, Chang-Sung; Lee, Yong-Keun

    2012-01-01

    Purpose This study evaluated histologically the tissue responses to and the effects of a customized nano-hydroxyapatite (n-HA) block bone graft on periodontal regeneration in a one-wall periodontal-defect model. Methods A customized block bone for filling in the standardized periodontal defect was fabricated from prefabricated n-HA powders and a polymeric sponge. Bilateral 4×4×5 mm (buccolingual width×mesiodistal width×depth), one-wall, critical-size intrabony periodontal defects were surgically created at the mandibular second and fourth premolars of five Beagle dogs. In each dog, one defect was filled with block-type HA and the other served as a sham-surgery control. The animals were sacrificed following an 8-week healing interval for clinical and histological evaluations. Results Although the sites that received an n-HA block showed minimal bone formation, the n-HA block was maintained within the defect with its original hexahedral shape. In addition, only a limited inflammatory reaction was observed at sites that received an n-HA block, which might have been due to the high stability of the customized block bone. Conclusions In the limitation of this study, customized n-HA block could provide a space for periodontal tissue engineering, with minimal inflammation. PMID:22586523

  19. Periodontal tissue reaction to customized nano-hydroxyapatite block scaffold in one-wall intrabony defect: a histologic study in dogs.

    PubMed

    Lee, Jung-Seok; Park, Weon-Yeong; Cha, Jae-Kook; Jung, Ui-Won; Kim, Chang-Sung; Lee, Yong-Keun; Choi, Seong-Ho

    2012-04-01

    This study evaluated histologically the tissue responses to and the effects of a customized nano-hydroxyapatite (n-HA) block bone graft on periodontal regeneration in a one-wall periodontal-defect model. A customized block bone for filling in the standardized periodontal defect was fabricated from prefabricated n-HA powders and a polymeric sponge. Bilateral 4×4×5 mm (buccolingual width×mesiodistal width×depth), one-wall, critical-size intrabony periodontal defects were surgically created at the mandibular second and fourth premolars of five Beagle dogs. In each dog, one defect was filled with block-type HA and the other served as a sham-surgery control. The animals were sacrificed following an 8-week healing interval for clinical and histological evaluations. Although the sites that received an n-HA block showed minimal bone formation, the n-HA block was maintained within the defect with its original hexahedral shape. In addition, only a limited inflammatory reaction was observed at sites that received an n-HA block, which might have been due to the high stability of the customized block bone. In the limitation of this study, customized n-HA block could provide a space for periodontal tissue engineering, with minimal inflammation.

  20. Plant alkaloids that cause developmental defects through the disruption of cholinergic neurotransmission

    USDA-ARS?s Scientific Manuscript database

    The exposure of a developing embryo or fetus to alkaloids from plants, plant products, or plant extracts has the potential to cause developmental defects in humans and animals. These defects may have multiple causes but those induced by piperidine and quinolizidine alkaloids arise from the inhibiti...

  1. The Boomerang-shaped Pectoralis Major Musculocutaneous Flap for Reconstruction of Circular Defect of Cervical Skin.

    PubMed

    Azuma, Shuchi; Arikawa, Masaki; Miyamoto, Shimpei

    2017-11-01

    We report on a patient with a recurrence of oral cancer involving a cervical lymph node. The patient's postexcision cervical skin defect was nearly circular in shape, and the size was about 12 cm in diameter. The defect was successfully reconstructed with a boomerang-shaped pectoralis major musculocutaneous flap whose skin paddle included multiple intercostal perforators of the internal mammary vessels. This flap design is effective for reconstructing an extensive neck skin defect and enables primary closure of the donor site with minimal deformity.

  2. Drying hardwood lumber

    Treesearch

    Joseph Denig; Eugene M. Wengert; William T. Simpson

    2000-01-01

    Drying Hardwood Lumber focuses on common methods for drying lumber of different thickness, with minimal drying defects, for high quality applications. This manual also includes predrying treatments that, when part of an overall quality-oriented drying system, reduce defects and improve drying quality, especially of oak lumber. Special attention is given to drying white...

  3. Fermentation cover brine reformulation for cucumber processing with low salt to reduce bloater defect

    USDA-ARS?s Scientific Manuscript database

    Reformulation of calcium chloride cover brine for cucumber fermentation was explored as a mean to minimize the incidence of bloater defect. This study particularly focused on cover brine supplementation with calcium hydroxide, sodium chloride (NaCl), and acids to enhance buffer capacity, inhibit the...

  4. Mating programs including genomic relationships and dominance effects

    USDA-ARS?s Scientific Manuscript database

    Computer mating programs have helped breeders minimize pedigree inbreeding and avoid recessive defects by mating animals with parents that have fewer common ancestors. With genomic selection, breed associations, AI organizations, and on-farm software providers could use new programs to minimize geno...

  5. Minimally Invasive, Organ-preserving Surgery for Large Submucosal Tumors in the Abdominal Esophagus.

    PubMed

    Kanehira, Eiji; Tanida, Takashi; Kamei, Aya; Takahashi, Kodai

    2017-06-01

    Surgical resection of submucosal tumors (SMTs) in the abdominal esophagus is not standardized. Enucleation may be a minimally invasive option, whereas its oncological validity is not very clear. Moreover, how to treat the esophageal wall defect after enucleation and necessity of additional antireflux procedure are also undetermined. In 13 patients with a SMT originating the abdominal esophagus laparoscopic enucleation was performed with preserving the integrity of submucosa. When the muscular layer defect was <4 cm it was directly closed by suturing, whereas it was left open in case the defect was larger. Fundoplication was added when the esophagus was dissected posteriorly or the myotomy was not closed. Tumors were resected en-bloc without rupture in all cases. In 5 patients myotomy was closed, whereas in the remaining 8 it was left open. In 11 patients fundoplication was added (Toupet in 5 and Dor in 6). The patients developed neither regurgitation nor stenosis postoperatively. The histopathologic findings revealed leiomyoma in 9 patients, whereas the other 4 were miscellaneous. The average tumor size was 5.5 cm (range, 2.8 to 8.8). Microscopically surgical margin was negative in all cases. Laparoscopic enucleation of SMTs in the abdominal esophagus seems to be safe, reproducible operation enabling preservation of function of the lower esophagus and esophagogastric junction. Even when the muscular defect is not approximated additional fundoplication can minimize the risk of postoperative reflux disease.

  6. Lateral orbital propeller flap technique for reconstruction of the lower eyelid defect.

    PubMed

    Ding, J-P; Chen, B; Yao, J

    2018-05-01

    The lower eyelid, which has a unique anatomy and esthetic importance, is a common site of basal cell carcinoma. The reconstruction of the defect after the wide excision of the tumour is a special concern of many plastic surgeons. How to achieve the most satisfying effect through minimal invasive is important for patients. We successfully applied the lateral orbital propeller flap for one-stage reconstruction of a large lower eyelid defect after tumour resection. We consider that this flap can achieve better tissue mobilisation as it provides effective coverage of soft tissue defects and thus is especially useful for repairing facial defects.

  7. Tendon Reattachment to Bone in an Ovine Tendon Defect Model of Retraction Using Allogenic and Xenogenic Demineralised Bone Matrix Incorporated with Mesenchymal Stem Cells.

    PubMed

    Thangarajah, Tanujan; Shahbazi, Shirin; Pendegrass, Catherine J; Lambert, Simon; Alexander, Susan; Blunn, Gordon W

    2016-01-01

    Tendon-bone healing following rotator cuff repairs is mainly impaired by poor tissue quality. Demineralised bone matrix promotes healing of the tendon-bone interface but its role in the treatment of tendon tears with retraction has not been investigated. We hypothesized that cortical demineralised bone matrix used with minimally manipulated mesenchymal stem cells will result in improved function and restoration of the tendon-bone interface with no difference between xenogenic and allogenic scaffolds. In an ovine model, the patellar tendon was detached from the tibial tuberosity and a complete distal tendon transverse defect measuring 1 cm was created. Suture anchors were used to reattach the tendon and xenogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5), or allogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5) were used to bridge the defect. Graft incorporation into the tendon and its effect on regeneration of the enthesis was assessed using histomorphometry. Force plate analysis was used to assess functional recovery. Compared to the xenograft, the allograft was associated with significantly higher functional weight bearing at 6 (P = 0.047), 9 (P = 0.028), and 12 weeks (P = 0.009). In the allogenic group this was accompanied by greater remodeling of the demineralised bone matrix into tendon-like tissue in the region of the defect (p = 0.015), and a more direct type of enthesis characterized by significantly more fibrocartilage (p = 0.039). No failures of tendon-bone healing were noted in either group. Demineralised bone matrix used with minimally manipulated mesenchymal stem cells promotes healing of the tendon-bone interface in an ovine model of acute tendon retraction, with superior mechanical and histological results associated with use of an allograft.

  8. Scapular tip and latissimus dorsi osteomyogenous free flap for the reconstruction of a maxillectomy defect: A minimally invasive transaxillary approach.

    PubMed

    Park, Sung Joon; Jeong, Woo-Jin; Ahn, Soon-Hyun

    2017-11-01

    The purpose of this study was to propose a novel, minimally invasive transaxillary approach for harvesting the scapular tip and latissimus dorsi osteomyogenous free flap for the reconstruction of a maxillectomy defect. A retrospective case series study of 4 patients who underwent reconstruction using a scapular tip composite free flap through the transaxillary approach was conducted. The data (age, sex, pathology, previous treatment and adjuvant treatment) were collected and analysed. Total operation time, number of hospital days and the cosmetic and functional outcome of reconstruction were analysed. Two male and two female patients were enrolled in this study. The patients' ages ranged from 52 to 59 years. All the patients had maxillectomy defects, with at least a classification of Okay type II, which were successfully reconstructed using a scapular tip and latissimus dorsi free flap through a minimally invasive transaxillary approach. The entire operation time for the primary tumour surgery and reconstruction ranged from 6.2 to 12.1 h (mean, 11.1 h). The average length of the hospital stay was 13 days (range, 10-16 days). No major donor site morbidity was observed, and there was no graft failure that required revision or exploration surgery. The minimally invasive transaxillary approach for harvesting the scapular tip and latissimus dorsi osteomyogenous free flap for the reconstruction of maxillectomy defect is a promising approach for more favourable functional and aesthetic outcomes when compared to the use of other bone containing free flaps and the classic approach for harvesting scapular tip and latissimus dorsi free flap. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Transforming Growth Factor-β1 Accelerates Resorption of a Calcium Carbonate Biomaterial in Periodontal Defects.

    PubMed

    Koo, Ki-Tae; Susin, Cristiano; Wikesjö, Ulf M E; Choi, Seong-Ho; Kim, Chong-Kwan

    2007-04-01

    In a previous study, recombinant human transforming growth factor-beta1 (rhTGF-β 1 ) in a calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for guided tissue regeneration (GTR) to study whether rhTGF-β 1 would enhance or accelerate periodontal regeneration. The results showed minimal benefits of rhTGF-β 1 , and a clear account for this could not be offered. One potential cause may be that the rhTGF-β 1 formulation was biologically inactive. Several growth or differentiation factors have been suggested to accelerate degradation of biomaterials used as carriers. The objective of this study was to evaluate possible activity of rhTGF-β 1 on biodegradation of the calcium carbonate carrier. rhTGF-β 1 in a putty-formulated particulate calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for GTR in five beagle dogs. Contralateral defects received the calcium carbonate carrier combined with GTR without rhTGF-β 1 (control). The animals were euthanized at week 4 post-surgery and block biopsies of the defect sites were collected for histologic and histometric analysis. Radiographs were obtained at defect creation and weeks 2 and 4 after defect creation. No statistically significant differences were observed in new bone formation (bone height and area) among the treatments. However, total residual carrier was significantly reduced in sites receiving rhTGF-β 1 compared to control (P = 0.04). Similarly, carrier density was considerably reduced in sites receiving rhTGF-β 1 compared to control; the difference was borderline statistically significant (P = 0.06). Within the limitations of the study, it may be concluded that rhTGF-β 1 accelerates biodegradation of a particulate calcium carbonate biomaterial, indicating a biologic activity of the rhTGF-β 1 formulation apparently not encompassing enhanced or accelerated periodontal regeneration. © 2007 American Academy of Periodontology.

  10. Transforming growth factor-beta1 accelerates resorption of a calcium carbonate biomaterial in periodontal defects.

    PubMed

    Koo, Ki-Tae; Susin, Cristiano; Wikesjö, Ulf M E; Choi, Seong-Ho; Kim, Chong-Kwan

    2007-04-01

    In a previous study, recombinant human transforming growth factor-beta1 (rhTGF-beta(1)) in a calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for guided tissue regeneration (GTR) to study whether rhTGF-beta(1) would enhance or accelerate periodontal regeneration. The results showed minimal benefits of rhTGF-beta(1), and a clear account for this could not be offered. One potential cause may be that the rhTGF-beta(1) formulation was biologically inactive. Several growth or differentiation factors have been suggested to accelerate degradation of biomaterials used as carriers. The objective of this study was to evaluate possible activity of rhTGF-beta(1) on biodegradation of the calcium carbonate carrier. rhTGF-beta(1) in a putty-formulated particulate calcium carbonate carrier was implanted into critical-size, supraalveolar periodontal defects under conditions for GTR in five beagle dogs. Contralateral defects received the calcium carbonate carrier combined with GTR without rhTGF-beta(1) (control). The animals were euthanized at week 4 post-surgery and block biopsies of the defect sites were collected for histologic and histometric analysis. Radiographs were obtained at defect creation and weeks 2 and 4 after defect creation. No statistically significant differences were observed in new bone formation (bone height and area) among the treatments. However, total residual carrier was significantly reduced in sites receiving rhTGF-beta(1) compared to control (P = 0.04). Similarly, carrier density was considerably reduced in sites receiving rhTGF-beta(1) compared to control; the difference was borderline statistically significant (P = 0.06). Within the limitations of the study, it may be concluded that rhTGF-beta(1) accelerates biodegradation of a particulate calcium carbonate biomaterial, indicating a biologic activity of the rhTGF-beta(1) formulation apparently not encompassing enhanced or accelerated periodontal regeneration.

  11. Osteogenesis Imperfecta due to Mutations in Non-Collagenous Genes-Lessons in the Biology of Bone Formation

    PubMed Central

    Marini, Joan C.; Reich, Adi; Smith, Simone M.

    2014-01-01

    Purpose of Review Osteogenesis imperfecta (OI), or “brittle bone disease”, has mainly been considered a bone disorder caused by collagen mutations. Within the last decade, however, a surge of genetic discoveries has created a new paradigm for OI as a collagen-related disorder, where autosomal dominant type I collagen defects cause most cases, while rare, mostly recessive forms are due to defects in genes whose protein products interact with collagen protein. This review is both timely and relevant in outlining the genesis, development and future of this paradigm shift in the understanding of OI. Recent Findings BRIL and PEDF defects cause types V and VI OI via defective bone mineralization, while defects in CRTAP, P3H1 and CyPB cause types VII-IX via defective collagen post-translational modification. Hsp47 and FKBP65 defects cause types X and XI OI via aberrant collagen crosslinking, folding and chaperoning, while defects in SP7, WNT1, TRIC-B and OASIS disrupt osteoblast development. Finally, absence of the type I collagen C-propeptidase BMP1 causes type XII OI due to altered collagen maturation/processing. Summary Identification of these multiple causative defects has provided crucial information for accurate genetic counseling, inspired a recently proposed functional grouping of OI types by shared mechanism to simplify current nosology, and should prod investigations into common pathways in OI. Such investigations could yield critical information on cellular and bone tissue mechanisms and translate to new mechanistic insight into clinical therapies for patients. PMID:25007323

  12. Selected environmental risk factors and congenital heart defects.

    PubMed

    Kuciene, Renata; Dulskiene, Virginija

    2008-01-01

    The aim of the article is to review the published scientific literature and epidemiological studies about the effect of selected environmental risk factors on congenital heart defects in infants. According to recent reports, the prevalence of congenital heart defects is around 1% of live births. Congenital heart malformations are the leading cause of infant mortality. Unfortunately, the majority of the causes of heart defects remain unknown. These malformations are caused by interaction of genetic and environmental factors. The article reviews selected environmental risk factors: maternal illnesses and conditions associated with metabolic disorder (maternal diabetes, obesity, phenylketonuria), maternal lifestyle factors (alcohol use, smoking), which may increase the risk of congenital heart defects.

  13. Cost minimization through optimized raw material quality composition

    Treesearch

    Urs Buehlmann; R. Edward Thomas; Xiaoqui Zuo

    2011-01-01

    Lumber, a heterogeneous, anisotropic material produced from sawing logs, contains a varying number of randomly dispersed, unusable areas (defects) distributed over each boards’ surface area. Each board's quality is determined by the frequency and distribution of these defects and the board's dimension. Typically, the industry classifies lumber into five...

  14. Water promotes the sealing of nanoscale packing defects in folding proteins.

    PubMed

    Fernández, Ariel

    2014-05-21

    A net dipole moment is shown to arise from a non-Debye component of water polarization created by nanoscale packing defects on the protein surface. Accordingly, the protein electrostatic field exerts a torque on the induced dipole, locally impeding the nucleation of ice at the protein-water interface. We evaluate the solvent orientation steering (SOS) as the reversible work needed to align the induced dipoles with the Debye electrostatic field and computed the SOS for the variable interface of a folding protein. The minimization of the SOS is shown to drive protein folding as evidenced by the entrainment of the total free energy by the SOS energy along trajectories that approach a Debye limit state where no torque arises. This result suggests that the minimization of anomalous water polarization at the interface promotes the sealing of packing defects, thereby maintaining structural integrity and committing the protein chain to fold.

  15. Minimally invasive restoration of a maxillary central incisor with a partial veneer.

    PubMed

    Horvath, Sebastian; Schulz, Claus-Peter

    2012-01-01

    Minimally invasive treatment modalities allow for the preservation of sound tooth substance. However, by limiting the preparation to the extent of a defect, the transition between restoration and natural tooth may be moved to more visible areas. The materials available for the restoration of a limited defect in the anterior area are either resin composite materials or porcelain. A patient was presented who asked for the replacement of a discolored filling on the maxillary right central incisor. Tooth preparation was limited to the extent of the old filling, and a porcelain partial veneer restoration was fabricated. Despite the horizontal finish line in the middle of the clinical crown, a result could be achieved that was regarded as a success by the patient. This type of restoration proves to be a suitable alternative to direct composite restorations in the anterior area for the reconstruction of a limited defect, eg, due to a dental trauma.

  16. Vascular Surgery, Microsurgery and Supramicrosurgery for Treatment of Chronic Diabetic Foot Ulcers to Prevent Amputations

    PubMed Central

    Schirmer, Steffen; Ritter, Ralf-Gerhard; Fansa, Hisham

    2013-01-01

    Introduction Diabetic foot ulcers occur in approximately 2,5% of patients suffering from diabetes and may lead to major infections and amputation. Such ulcers are responsible for a prolonged period of hospitalization and co- morbidities caused by infected diabetic foot ulcers. Small, superficial ulcers can be treated by special conservative means. However, exposed bones or tendons require surgical intervention in order to prevent osteomyelitis. In many cases reconstructive surgery is necessary, sometimes in combination with revascularization of the foot. There are studies on non surgical treatment of the diabetic foot ulcer. Most of them include patients, classified Wagner 1-2 without infection. Patients presenting Wagner 3D and 4D however are at a higher risk of amputation. The evolution of microsurgery has extended the possibilities of limb salvage. Perforator based flaps can minimize the donorsite morbidity. Patients and Methods 41 patients were treated with free tissue transfer for diabetic foot syndrome and chronic defects. 44 microvascular flaps were needed. The average age of patients was 64.3 years. 18 patients needed revascularization. 3 patients needed 2 microvascular flaps. In 6 cases supramicrosurgical technique was used. Results There were 2 flap losses leading to amputation. 4 other patients required amputation within 6 months postoperatively due to severe infection or bypass failure. Another 4 patients died within one year after reconstruction. The remaining patients were ambulated. Discussion Large defects of the foot can be treated by free microvascular myocutaneous or fasciocutaneous tissue transfer. If however, small defects, exposing bones or tendons, are not eligible for local flaps, small free microvascular flaps can be applied. These flaps cause a very low donor site morbidity. Arterialized venous flaps are another option for defect closure. Amputation means reduction of quality of life and can lead to an increased mortality postoperatively. PMID:24058622

  17. VID22 is required for transcriptional activation of the PSD2 gene in the yeast Saccharomyces cerevisiae.

    PubMed

    Miyata, Non; Miyoshi, Takuya; Yamaguchi, Takanori; Nakazono, Toshimitsu; Tani, Motohiro; Kuge, Osamu

    2015-12-15

    Phosphatidylethanolamine (PE) in the yeast Saccharomyces cerevisiae is synthesized through decarboxylation of phosphatidylserine (PS), catalysed by PS decarboxylase 1 (Psd1p) and 2 (Psd2p) and the cytidine 5'-diphosphate (CDP)-ethanolamine (CDP-Etn) pathway. PSD1 null (psd1Δ) and PSD2 null (psd2Δ) mutants are viable in a synthetic minimal medium, but a psd1Δ psd2Δ double mutant exhibits Etn auxotrophy, which is incorporated into PE through the CDP-Etn pathway. We have previously shown that psd1Δ is synthetic lethal with deletion of VID22 (vid22Δ) [Kuroda et al. (2011) Mol. Microbiol. 80: , 248-265]. In the present study, we found that vid22Δ mutant exhibits Etn auxotrophy under PSD1-depressed conditions. Deletion of VID22 in wild-type and PSD1-depressed cells caused partial defects in PE formation through decarboxylation of PS. The enzyme activity of PS decarboxylase in an extract of vid22Δ cells was ∼70% of that in wild-type cells and similar to that in psd2Δ cells and the PS decarboxylase activity remaining in the PSD1-depressed cells became almost negligible with deletion of VID22. Thus, the vid22Δ mutation was suggested to cause a defect in the Psd2p activity. Furthermore, vid22Δ cells were shown to be defective in expression of the PSD2 gene tagged with 6×HA, the defect being ameliorated by replacement of the native promoter of the PSD2 gene with a CYC1 promoter. In addition, an α-galactosidase reporter assay revealed that the activity of the promoter of the PSD2 gene in vid22Δ cells was ∼5% of that in wild-type cells. These results showed that VID22 is required for transcriptional activation of the PSD2 gene. © 2015 Authors; published by Portland Press Limited.

  18. Optimization of injection molding process parameters for a plastic cell phone housing component

    NASA Astrophysics Data System (ADS)

    Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya

    2016-11-01

    To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.

  19. Warpage minimization on wheel caster by optimizing process parameters using response surface methodology (RSM)

    NASA Astrophysics Data System (ADS)

    Safuan, N. S.; Fathullah, M.; Shayfull, Z.; Nasir, S. M.; Hazwan, M. H. M.

    2017-09-01

    In injection moulding process, it is important to keep the productivity increase constantly with least of waste produced such as warpage defect. Thus, this study is concerning on minimizing warpage defect on wheel caster part. Apart from eliminating product wastes, this project also giving out best optimization techniques using response surface methodology. This research studied on five parameters A-packing pressure, B-packing time, C-mold temperature, D-melting temperature and E-cooling time. The optimization showed that packing pressure is the most significant parameter. Warpage have been improved 42.64% from 0.6524 mm to 0.3742mm.

  20. Laparoendoscopic Management of Midureteral Strictures

    PubMed Central

    Komninos, Christos; Koo, Kyo Chul

    2014-01-01

    The incidence of ureteral strictures has increased worldwide owing to the widespread use of laparoscopic and endourologic procedures. Midureteral strictures can be managed by either an endoscopic approach or surgical reconstruction, including open or minimally invasive (laparoscopic/robotic) techniques. Minimally invasive surgical ureteral reconstruction is gaining in popularity in the management of midureteral strictures. However, only a few studies have been published so far regarding the safety and efficacy of laparoscopic and robotic ureteral reconstruction procedures. Nevertheless, most of the studies have reported at least equivalent outcomes with the open approach. In general, strictures more than 2 cm, injury strictures, and strictures associated either with radiation or with reduced renal function of less than 25% may be managed more appropriately by minimally invasive surgical reconstruction, although the evidence to establish these recommendations is not yet adequate. Defects of 2 to 3 cm in length may be treated with laparoscopic or robot-assisted uretero-ureterostomy, whereas defects of 12 to 15 cm may be managed either via ureteral reimplantation with a Boari flap or via transuretero-ureterostomy in case of low bladder capacity. Cases with more extended defects can be reconstructed with the incorporation of the ileum in ureteral repair. PMID:24466390

  1. The Boomerang-shaped Pectoralis Major Musculocutaneous Flap for Reconstruction of Circular Defect of Cervical Skin

    PubMed Central

    Azuma, Shuchi; Arikawa, Masaki

    2017-01-01

    Summary: We report on a patient with a recurrence of oral cancer involving a cervical lymph node. The patient’s postexcision cervical skin defect was nearly circular in shape, and the size was about 12 cm in diameter. The defect was successfully reconstructed with a boomerang-shaped pectoralis major musculocutaneous flap whose skin paddle included multiple intercostal perforators of the internal mammary vessels. This flap design is effective for reconstructing an extensive neck skin defect and enables primary closure of the donor site with minimal deformity. PMID:29263975

  2. Viewing Integrated-Circuit Interconnections By SEM

    NASA Technical Reports Server (NTRS)

    Lawton, Russel A.; Gauldin, Robert E.; Ruiz, Ronald P.

    1990-01-01

    Back-scattering of energetic electrons reveals hidden metal layers. Experiment shows that with suitable operating adjustments, scanning electron microscopy (SEM) used to look for defects in aluminum interconnections in integrated circuits. Enables monitoring, in situ, of changes in defects caused by changes in temperature. Gives truer picture of defects, as etching can change stress field of metal-and-passivation pattern, causing changes in defects.

  3. Use, misuse and abuse of diuretics.

    PubMed

    Bartoli, Ettore; Rossi, Luca; Sola, Daniele; Castello, Luigi; Sainaghi, Pier Paolo; Smirne, Carlo

    2017-04-01

    Resolution of edema requires a correct interpretation of body fluids-related renal function, to excrete the excess volume while restoring systemic hemodynamics and avoiding renal failure. In heart failure, the intensive diuresis should be matched by continuous fluids refeeding from interstitium to plasma, avoiding central volume depletion. The slowly reabsorbed ascites cannot refeed this contracted volume in cirrhosis: the ensuing activation of intrathoracic receptors, attended by increased adrenergic and Renin release, causes more avid sodium retention, producing a positive fluid and Na balance in the face of continuous treatment. High-dose-furosemide creates a defect in tubular Na causing diuresis adequate to excrete the daily water and electrolyte load in Chronic Renal Failure. Diuretic treatment requires care, caution and bedside "tricks" aimed at minimizing volume contraction by correctly assessing the homeostatic system of body fluids and related renal hemodynamics. Copyright © 2017 European Federation of Internal Medicine. Published by Elsevier B.V. All rights reserved.

  4. Idiopathic thromobocytopenic purpura in two mothers of children with DiGeorge sequence: A new component manifestation of deletion 22q11?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levy, A.; Philip, N.; Michel, G.

    1997-04-14

    The phenotypic spectrum caused by the microdeletion of chromosome 22q11 region is known to be variable. Nearly all patients with DiGeorge sequence (DGS) and approximately 60% of patients with velocardiofacial syndrome exhibit the deletion. Recent papers have reported various congenital defects in patients with 22q11 deletions. Conversely, some patients have minimal clinical expression. Ten to 25% of parents of patients with DGS exhibit the deletion and are nearly asymptomatic. Two female patients carrying a 22q11 microdeletion and presenting with idiopathic thrombocytopenic purpura are reported. Both had children with typical manifestations of DGS. 12 refs., 4 figs., 1 tab.

  5. Colour-causing defects and their related optoelectronic transitions in single crystal CVD diamond.

    PubMed

    Khan, R U A; Cann, B L; Martineau, P M; Samartseva, J; Freeth, J J P; Sibley, S J; Hartland, C B; Newton, M E; Dhillon, H K; Twitchen, D J

    2013-07-10

    Defects causing colour in nitrogen-doped chemical vapour-deposited (CVD) diamond can adversely affect the exceptional optical, electronic and spintronic properties of the material. Several techniques were used to study these defects, namely optical absorption spectroscopy, thermoluminescence (TL) and electron paramagnetic resonance (EPR). From our studies, the defects causing colour in nitrogen-doped CVD diamond are clearly not the same as those causing similar colour in natural diamonds. The brown colour arises due to a featureless absorption profile that decreases in intensity with increasing wavelength, and a broad feature at 360 nm (3.49 eV) that scales in intensity with it. Another prominent absorption band, centred at 520 nm (2.39 eV), is ascribed to the neutral nitrogen-vacancy-hydrogen defect. The defects responsible for the brown colour possess acceptor states that are 1.5 eV from the valence band (VB) edge. The brown colour is removed by heat treatment at 1600 ° C, whereupon new defects possessing shallow (<1 eV) trap states are generated.

  6. Teratology: from science to birth defects prevention.

    PubMed

    Rasmussen, Sonja A; Erickson, J David; Reef, Susan E; Ross, Danielle S

    2009-01-01

    One of the goals of birth defects research is to better understand risk or preventive factors for birth defects so that strategies for prevention can be developed. In this article, we have selected four areas of birth defects research that have led to the development of prevention strategies. These areas include rubella virus as a cause of congenital rubella syndrome, folic acid as a preventive factor for neural tube defects, cytomegalovirus infection as a cause of birth defects and developmental disabilities, and alcohol as a cause of fetal alcohol spectrum disorders. For each of these areas, we review key clinical and research findings that led to the identification of the risk or preventive factor, milestones in the development of prevention strategies, and the progress made thus far toward prevention.

  7. Evaluation of an injectable bioactive borate glass cement to heal bone defects in a rabbit femoral condyle model.

    PubMed

    Cui, Xu; Huang, Wenhai; Zhang, Yadong; Huang, Chengcheng; Yu, Zunxiong; Wang, Lei; Liu, Wenlong; Wang, Ting; Zhou, Jie; Wang, Hui; Zhou, Nai; Wang, Deping; Pan, Haobo; Rahaman, Mohamed N

    2017-04-01

    There is a need for synthetic biomaterials to heal bone defects using minimal invasive surgery. In the present study, an injectable cement composed of bioactive borate glass particles and a chitosan bonding solution was developed and evaluated for its capacity to heal bone defects in a rabbit femoral condyle model. The injectability and setting time of the cement in vitro decreased but the compressive strength increased (8±2MPa to 31±2MPa) as the ratio of glass particles to chitosan solution increased (from 1.0gml -1 to 2.5gml -1 ). Upon immersing the cement in phosphate-buffered saline, the glass particles reacted and converted to hydroxyapatite, imparting bioactivity to the cement. Osteoblastic MC3T3-E1 cells showed enhanced proliferation and alkaline phosphatase activity when incubated in media containing the soluble ionic product of the cement. The bioactive glass cement showed a better capacity to stimulate bone formation in rabbit femoral condyle defects at 12weeks postimplantation when compared to a commercial calcium sulfate cement. The injectable bioactive borate glass cement developed in this study could provide a promising biomaterial to heal bone defects by minimal invasive surgery. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Sportsmen's Groin-Diagnostic Approach and Treatment With the Minimal Repair Technique: A Single-Center Uncontrolled Clinical Review.

    PubMed

    Muschaweck, Ulrike; Berger, Luise Masami

    2010-05-01

    Sportsmen's groin, also called sports hernia and Gilmore groin, is one of the most frequent sports injuries in athletes and may place an athletic career at risk. It presents with acute or chronic groin pain exacerbated with physical activity. So far, there is little consensus regarding pathogenesis, diagnostic criteria, or treatment. There have been various attempts to explain the cause of the groin pain. The assumption is that a circumscribed weakness in the posterior wall of the inguinal canal, which leads to a localized bulge, induces a compression of the genital branch of the genitofemoral nerve, considered responsible for the symptoms. The authors developed an innovative open suture repair-the Minimal Repair technique-to fit the needs of professional athletes. With this technique, the circumscribed weakness of the posterior wall of the inguinal canal is repaired by an elastic suture; the compression on the nerve is abolished, and the cause of the pain is removed. In contrast with that of common open suture repairs, the defect of the posterior wall is not enlarged, the suture is nearly tension free, and the patient can return to full training and athletic activity within a shorter time. The outcome of patients undergoing operations with the Minimal Repair technique was compared with that of commonly used surgical procedures. THE FOLLOWING ADVANTAGES OF THE MINIMAL REPAIR TECHNIQUE WERE FOUND: no insertion of prosthetic mesh, no general anesthesia required, less traumatization, and lower risk of severe complications with equal or even faster convalescence. In 2009, a prospective cohort of 129 patients resumed training in 7 days and experienced complete pain relief in an average of 14 days. Professional athletes (67%) returned to full activity in 14 days (median). The Minimal Repair technique is an effective and safe way to treat sportsmen's groin.

  9. Sportsmen’s Groin—Diagnostic Approach and Treatment With the Minimal Repair Technique

    PubMed Central

    Muschaweck, Ulrike; Berger, Luise Masami

    2010-01-01

    Context: Sportsmen’s groin, also called sports hernia and Gilmore groin, is one of the most frequent sports injuries in athletes and may place an athletic career at risk. It presents with acute or chronic groin pain exacerbated with physical activity. So far, there is little consensus regarding pathogenesis, diagnostic criteria, or treatment. There have been various attempts to explain the cause of the groin pain. The assumption is that a circumscribed weakness in the posterior wall of the inguinal canal, which leads to a localized bulge, induces a compression of the genital branch of the genitofemoral nerve, considered responsible for the symptoms. Methods: The authors developed an innovative open suture repair—the Minimal Repair technique—to fit the needs of professional athletes. With this technique, the circumscribed weakness of the posterior wall of the inguinal canal is repaired by an elastic suture; the compression on the nerve is abolished, and the cause of the pain is removed. In contrast with that of common open suture repairs, the defect of the posterior wall is not enlarged, the suture is nearly tension free, and the patient can return to full training and athletic activity within a shorter time. The outcome of patients undergoing operations with the Minimal Repair technique was compared with that of commonly used surgical procedures. Results: The following advantages of the Minimal Repair technique were found: no insertion of prosthetic mesh, no general anesthesia required, less traumatization, and lower risk of severe complications with equal or even faster convalescence. In 2009, a prospective cohort of 129 patients resumed training in 7 days and experienced complete pain relief in an average of 14 days. Professional athletes (67%) returned to full activity in 14 days (median). Conclusion: The Minimal Repair technique is an effective and safe way to treat sportsmen’s groin. PMID:23015941

  10. Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions.

    PubMed

    Wieding, Jan; Souffrant, Robert; Mittelmeier, Wolfram; Bader, Rainer

    2013-04-01

    Repairing large segmental defects in long bones caused by fracture, tumour or infection is still a challenging problem in orthopaedic surgery. Artificial materials, i.e. titanium and its alloys performed well in clinical applications, are plenary available, and can be manufactured in a wide range of scaffold designs. Although the mechanical properties are determined, studies about the biomechanical behaviour under physiological loading conditions are rare. The goal of our numerical study was to determine the suitability of open-porous titanium scaffolds to act as bone scaffolds. Hence, the mechanical stability of fourteen different scaffold designs was characterized under both axial compression and biomechanical loading within a large segmental distal femoral defect of 30mm. This defect was stabilized with an osteosynthesis plate and physiological hip reaction forces as well as additional muscle forces were implemented to the femoral bone. Material properties of titanium scaffolds were evaluated from experimental testing. Scaffold porosity was varied between 64 and 80%. Furthermore, the amount of material was reduced up to 50%. Uniaxial compression testing revealed a structural modulus for the scaffolds between 3.5GPa and 19.1GPa depending on porosity and material consumption. The biomechanical testing showed defect gap alterations between 0.03mm and 0.22mm for the applied scaffolds and 0.09mm for the intact bone. Our results revealed that minimizing the amount of material of the inner core has a smaller influence than increasing the porosity when the scaffolds are loaded under biomechanical loading. Furthermore, an advanced scaffold design was found acting similar as the intact bone. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.

  11. Focal cartilage defect compromises fluid-pressure dependent load support in the knee joint.

    PubMed

    Dabiri, Yaghoub; Li, LePing

    2015-06-01

    A focal cartilage defect involves tissue loss or rupture. Altered mechanics in the affected joint may play an essential role in the onset and progression of osteoarthritis. The objective of the present study was to determine the compromised load support in the human knee joint during defect progression from the cartilage surface to the cartilage-bone interface. Ten normal and defect cases were simulated with a previously tested 3D finite element model of the knee. The focal defects were considered in both condyles within high load-bearing regions. Fluid pressurization, anisotropic fibril-reinforcement, and depth-dependent mechanical properties were considered for the articular cartilages and menisci. The results showed that a small cartilage defect could cause 25% reduction in the load support of the knee joint due to a reduced capacity of fluid pressurization in the defect cartilage. A partial-thickness defect could cause a fluid pressure decrease or increase in the remaining underlying cartilage depending on the defect depth. A cartilage defect also increased the shear strain at the cartilage-bone interface, which was more significant with a full-thickness defect. The effect of cartilage defect on the fluid pressurization also depended on the defect sites and contact conditions. In conclusion, a focal cartilage defect causes a fluid-pressure dependent load reallocation and a compromised load support in the joint, which depend on the defect depth, site, and contact condition. Copyright © 2015 John Wiley & Sons, Ltd.

  12. EPIDEMIOLOGY STUDY OF BIRTH DEFECTS AND DISINFECTION BYPRODUCTS (DBPS)

    EPA Science Inventory

    Birth defects are the leading cause of infant mortality in the US, accounting for more than 20% of all infant deaths. In addition, birth defects are the fifth leading cause of years of potential life lost and contribute substantially to childhood morbidity and long-term disabilit...

  13. EPIDEMIOLOGY STUDY OF BIRTH DEFECTS AND DISINFECTION BYPRODUCTS

    EPA Science Inventory

    Birth defects are the leading cause of infant mortality in the US, accounting for more than 20% of all infant deaths. In addition, birth defects are the fifth leading cause of years of potential lief life lost and contribute substantially to childhood morbidity and long-term disa...

  14. Micro-bridge defects: characterization and root cause analysis

    NASA Astrophysics Data System (ADS)

    Santoro, Gaetano; Van den Heuvel, Dieter; Braggin, Jennifer; Rosslee, Craig; Leray, Philippe J.; Cheng, Shaunee; Jehoul, Christiane; Schreutelkamp, Robert; Hillel, Noam

    2010-03-01

    Defect review of advanced lithography processes is becoming more and more challenging as feature sizes decrease. Previous studies using a defect review SEM on immersion lithography generated wafers have resulted in a defect classification scheme which, among others, includes a category for micro-bridges. Micro-bridges are small connections between two adjacent lines in photo-resist and are considered device killing defects. Micro-bridge rates also tend to increase as feature sizes decrease, making them even more important for the next technology nodes. Especially because micro-bridge defects can originate from different root causes, the need to further refine and split up the classification of this type of defect into sub groups may become a necessity. This paper focuses on finding the correlation of the different types of micro-bridge defects to a particular root cause based on a full characterization and root cause analysis of this class of defects, by using advanced SEM review capabilities like high quality imaging in very low FOV, Multi Perspective SEM Imaging (MPSI), tilted column and rotated stage (Tilt&Rotation) imaging and Focused Ion Beam (FIB) cross sectioning. Immersion lithography material has been mainly used to generate the set of data presented in this work even though, in the last part of the results, some EUV lithography data will be presented as part of the continuing effort to extend the micro-bridge defect characterization to the EUV technology on 40 nm technology node and beyond.

  15. Duplications of BHLHA9 are associated with ectrodactyly and tibia hemimelia inherited in non-Mendelian fashion.

    PubMed

    Klopocki, Eva; Lohan, Silke; Doelken, Sandra C; Stricker, Sigmar; Ockeloen, Charlotte W; Soares Thiele de Aguiar, Renata; Lezirovitz, Karina; Mingroni Netto, Regina Celia; Jamsheer, Aleksander; Shah, Hitesh; Kurth, Ingo; Habenicht, Rolf; Warman, Matthew; Devriendt, Koenraad; Kordass, Ulrike; Hempel, Maja; Rajab, Anna; Mäkitie, Outi; Naveed, Mohammed; Radhakrishna, Uppala; Antonarakis, Stylianos E; Horn, Denise; Mundlos, Stefan

    2012-02-01

    Split-hand/foot malformation (SHFM)-also known as ectrodactyly-is a congenital disorder characterised by severe malformations of the distal limbs affecting the central rays of hands and/or feet. A distinct entity termed SHFLD presents with SHFM and long bone deficiency. Mouse models suggest that a defect of the central apical ectodermal ridge leads to the phenotype. Although six different loci/mutations (SHFM1-6) have been associated with SHFM, the underlying cause in a large number of cases is still unresolved. High resolution array comparative genomic hybridisation (CGH) was performed in patients with SHFLD to detect copy number changes. Candidate genes were further evaluated for expression and function during limb development by whole mount in situ hybridisation and morpholino knock-down experiments. Array CGH showed microduplications on chromosome 17p13.3, a locus previously associated with SHFLD. Detailed analysis of 17 families revealed that this copy number variation serves as a susceptibility factor for a highly variable phenotype with reduced penetrance, particularly in females. Compared to other known causes for SHFLD 17p duplications appear to be the most frequent cause of SHFLD. A ~11.8 kb minimal critical region was identified encompassing a single gene, BHLHA9, a putative basic loop helix transcription factor. Whole mount in situ hybridisation showed expression restricted to the limb bud mesenchyme underlying the apical ectodermal ridge in mouse and zebrafish embryos. Knock down of bhlha9 in zebrafish resulted in shortening of the pectoral fins. Genomic duplications encompassing BHLHA9 are associated with SHFLD and non-Mendelian inheritance characterised by a high degree of non-penetrance with sex bias. Knock-down of bhlha9 in zebrafish causes severe reduction defects of the pectoral fin, indicating a role for this gene in limb development.

  16. 75 FR 60258 - Federal Acquisition Regulation; Termination for Default Reporting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... terminations for cause or default and defective cost or pricing data, into the Past Performance Information... defective cost or pricing data and terminations for cause or default into the FAPIIS module of the PPIRS... Pricing Information Comment: One respondent submitted two separate comments suggesting that defective...

  17. Muscle-splitting approach to superior and inferior gluteal vessels: versatile source of recipient vessels for free-tissue transfer to sacral, gluteal, and ischial regions.

    PubMed

    Park, S

    2000-07-01

    The superior gluteal vessel has been reported as a recipient in free-tissue transfer for the coverage of complex soft-tissue defects in the lumbosacral region, where a suitable recipient vessel is difficult to find. The characteristics of proximity, vessel caliber, and constancy make the superior gluteal vessel preferable to previously reported recipient vessels. However, there are technical difficulties in microsurgery (e.g., short pedicle length and deep location) and muscle injury (transection of the muscle) associated with use of the superior gluteal vessel. The purpose of this article is to present a modification of an approach to the gluteal vessel to alleviate technical difficulties and minimize muscle injury. From August of 1997 to January of 1999, six patients received microvascular transfer of the latissimus dorsi muscle or myocutaneous flap to the sacral (4) and ischial (2) regions. The causes of defects were tumor (1), trauma (1), and pressure sores (4). A muscle-splitting approach was used on the superior gluteal vessel and was later applied to the inferior gluteal vessel. The gluteus maximus muscle was split as needed in the direction of its fibers, and the perforators were dissected down to the superior or inferior gluteal artery and vein deep into the muscle. The follow-up period ranged from 6 to 22 months, and all of the flaps survived with complete recovery of the lesion. The major drawbacks of using the superior and inferior gluteal vessels can be overcome with the muscle-splitting approach, which provides increased accessibility and additional length to the vascular pedicle while causing minimal injury to the muscle itself. It also proves to be an easy, safe, and reliable method of dissection. When free-tissue transfer to sacral, gluteal, and ischial regions is indicated, the muscle-splitting approach to the superior and inferior gluteal vessels is a recommended option in the selection of a recipient vessel.

  18. Analysis of an optimization-based atomistic-to-continuum coupling method for point defects

    DOE PAGES

    Olson, Derek; Shapeev, Alexander V.; Bochev, Pavel B.; ...

    2015-11-16

    Here, we formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates.

  19. A vibroacoustic diagnostic system as an element improving road transport safety.

    PubMed

    Komorska, Iwona

    2013-01-01

    Mechanical defects of a vehicle driving system can be dangerous on the road. Diagnostic systems, which monitor operations of electric and electronic elements and devices of vehicles, are continuously developed and improved, while defects of mechanical systems are still not managed properly. This article proposes supplementing existing on-board diagnostics with a system of diagnosing selected defects to minimize their impact. It presents a method of diagnosing mechanical defects of the engine, gearbox and other elements of the driving system on the basis of a model of the vibration signal obtained adaptively. This method is suitable for engine valves, engine head gasket, main gearbox, joints, etc.

  20. On-loom, real-time, noncontact detection of fabric defects by ultrasonic imaging.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chien, H. T.

    1998-09-08

    A noncontact, on-loom ultrasonic inspection technique was developed for real-time 100% defect inspection of fabrics. A prototype was built and tested successfully on loom. The system is compact, rugged, low cost, requires minimal maintenance, is not sensitive to fabric color and vibration, and can easily be adapted to current loom configurations. Moreover, it can detect defects in both the pick and warp directions. The system is capable of determining the size, location, and orientation of each defect. To further improve the system, air-coupled transducers with higher efficiency and sensitivity need to be developed. Advanced detection algorithms also need to bemore » developed for better classification and categorization of defects in real-time.« less

  1. [Folic acid: Primary prevention of neural tube defects. Literature Review].

    PubMed

    Llamas Centeno, M J; Miguélez Lago, C

    2016-03-01

    Neural tube defects (NTD) are the most common congenital malformations of the nervous system, they have a multifactorial etiology, are caused by exposure to chemical, physical or biological toxic agents, factors deficiency, diabetes, obesity, hyperthermia, genetic alterations and unknown causes. Some of these factors are associated with malnutrition by interfering with the folic acid metabolic pathway, the vitamin responsible for neural tube closure. Its deficit produce anomalies that can cause abortions, stillbirths or newborn serious injuries that cause disability, impaired quality of life and require expensive treatments to try to alleviate in some way the alterations produced in the embryo. Folic acid deficiency is considered the ultimate cause of the production of neural tube defects, it is clear the reduction in the incidence of Espina Bifida after administration of folic acid before conception, this leads us to want to further study the action of folic acid and its application in the primary prevention of neural tube defects. More than 40 countries have made the fortification of flour with folate, achieving encouraging data of decrease in the prevalence of neural tube defects. This paper attempts to make a literature review, which clarify the current situation and future of the prevention of neural tube defects.

  2. Spherical Particle in Nematic Liquid Crystal Under an External Field: The Saturn Ring Regime

    NASA Astrophysics Data System (ADS)

    Alama, Stan; Bronsard, Lia; Lamy, Xavier

    2018-03-01

    We consider a nematic liquid crystal occupying the exterior region in R^3 outside of a spherical particle, with radial strong anchoring. Within the context of the Landau-de Gennes theory, we study minimizers subject to an external field, modeled by an additional term which favors nematic alignment parallel to the field. When the external field is high enough, we obtain a scaling law for the energy. The energy scale corresponds to minimizers concentrating their energy in a boundary layer around the particle, with quadrupolar symmetry. This suggests the presence of a Saturn ring defect around the particle, rather than a dipolar director field typical of a point defect.

  3. MECHANISMS IN ENDOCRINOLOGY: Novel genetic causes of short stature.

    PubMed

    Wit, Jan M; Oostdijk, Wilma; Losekoot, Monique; van Duyvenvoorde, Hermine A; Ruivenkamp, Claudia A L; Kant, Sarina G

    2016-04-01

    The fast technological development, particularly single nucleotide polymorphism array, array-comparative genomic hybridization, and whole exome sequencing, has led to the discovery of many novel genetic causes of growth failure. In this review we discuss a selection of these, according to a diagnostic classification centred on the epiphyseal growth plate. We successively discuss disorders in hormone signalling, paracrine factors, matrix molecules, intracellular pathways, and fundamental cellular processes, followed by chromosomal aberrations including copy number variants (CNVs) and imprinting disorders associated with short stature. Many novel causes of GH deficiency (GHD) as part of combined pituitary hormone deficiency have been uncovered. The most frequent genetic causes of isolated GHD are GH1 and GHRHR defects, but several novel causes have recently been found, such as GHSR, RNPC3, and IFT172 mutations. Besides well-defined causes of GH insensitivity (GHR, STAT5B, IGFALS, IGF1 defects), disorders of NFκB signalling, STAT3 and IGF2 have recently been discovered. Heterozygous IGF1R defects are a relatively frequent cause of prenatal and postnatal growth retardation. TRHA mutations cause a syndromic form of short stature with elevated T3/T4 ratio. Disorders of signalling of various paracrine factors (FGFs, BMPs, WNTs, PTHrP/IHH, and CNP/NPR2) or genetic defects affecting cartilage extracellular matrix usually cause disproportionate short stature. Heterozygous NPR2 or SHOX defects may be found in ∼3% of short children, and also rasopathies (e.g., Noonan syndrome) can be found in children without clear syndromic appearance. Numerous other syndromes associated with short stature are caused by genetic defects in fundamental cellular processes, chromosomal abnormalities, CNVs, and imprinting disorders. © 2016 European Society of Endocrinology.

  4. Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films

    NASA Astrophysics Data System (ADS)

    Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E.; Malko, Anton V.; Chabal, Yves J.

    2016-01-01

    The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (~1017 cm-3) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06222e

  5. Influence of angiographic collateral circulation on myocardial perfusion in patients with chronic total occlusion of a single coronary artery and no prior myocardial infarction.

    PubMed

    Aboul-Enein, Fatma; Kar, Saibal; Hayes, Sean W; Sciammarella, Maria; Abidov, Aiden; Makkar, Raj; Friedman, John D; Eigler, Neal; Berman, Daniel S

    2004-06-01

    The functional role of various angiographic grades for coronary collaterals remains controversial. The aim of this study was to assess the influence of the Rentrop angiographic grading of coronary collaterals on myocardial perfusion in patients with single-vessel chronic total occlusion (CTO) and no prior myocardial infarction (MI). The study included 56 patients with single-vessel CTO and no prior MI who underwent rest-stress myocardial perfusion SPECT and coronary angiography within 6 mo. All patients had angiographic evidence of coronary collaterals. Patients were divided according to the Rentrop classification: Group I had grade 1 or 2 (n = 25) and group II had grade 3 collaterals (n = 31). Group I had a higher frequency of resting regional wall motion abnormalities on left ventriculography (52.6% vs. 19.2% [P = 0.019]). The mean perfusion scores of the overall population showed severe and extensive stress perfusion defects (summed stress score of 14.1 +/- 7.1 and summed difference score of 12.9 +/- 6.9) but minimal resting perfusion defects (summed rest score of 1.0 +/- 2.7). No perfusion scores differed between the 2 groups. The perfusion findings suggested that chronic stunning rather than hibernation is the principal cause of regional wall motion abnormalities in these patients. In the setting of single-vessel CTO and no prior MI, coronary collaterals appear to protect against resting perfusion defects. Excellent angiographic collaterals may prevent resting regional wall motion abnormalities but do not appear to protect against stress-induced perfusion defects.

  6. Multiple Surface Regions on the Niemann-Pick C2 Protein Facilitate Intracellular Cholesterol Transport.

    PubMed

    McCauliff, Leslie A; Xu, Zhi; Li, Ran; Kodukula, Sarala; Ko, Dennis C; Scott, Matthew P; Kahn, Peter C; Storch, Judith

    2015-11-06

    The cholesterol storage disorder Niemann-Pick type C (NPC) disease is caused by defects in either of two late endosomal/lysosomal proteins, NPC1 and NPC2. NPC2 is a 16-kDa soluble protein that binds cholesterol in a 1:1 stoichiometry and can transfer cholesterol between membranes by a mechanism that involves protein-membrane interactions. To examine the structural basis of NPC2 function in cholesterol trafficking, a series of point mutations were generated across the surface of the protein. Several NPC2 mutants exhibited deficient sterol transport properties in a set of fluorescence-based assays. Notably, these mutants were also unable to promote egress of accumulated intracellular cholesterol from npc2(-/-) fibroblasts. The mutations mapped to several regions on the protein surface, suggesting that NPC2 can bind to more than one membrane simultaneously. Indeed, we have previously demonstrated that WT NPC2 promotes vesicle-vesicle interactions. These interactions were abrogated, however, by mutations causing defective sterol transfer properties. Molecular modeling shows that NPC2 is highly plastic, with several intense positively charged regions across the surface that could interact favorably with negatively charged membrane phospholipids. The point mutations generated in this study caused changes in NPC2 surface charge distribution with minimal conformational changes. The plasticity, coupled with membrane flexibility, probably allows for multiple cholesterol transfer routes. Thus, we hypothesize that, in part, NPC2 rapidly traffics cholesterol between closely appositioned membranes within the multilamellar interior of late endosomal/lysosomal proteins, ultimately effecting cholesterol egress from this compartment. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Hybrid procedure for Poland syndrome associated with a Gerbode-type defect.

    PubMed

    Gan, Changping; Hu, Jia; Luo, Shuhua; An, Qi; Lin, Ke

    2014-11-01

    Poland syndrome and Gerbode-type defect are both very rare congenital malformations. A combination of them is extremely uncommon and no literature has reported this before. We herein present a case of this combination in a 9-year-old boy. Besides the reconstruction of the chest wall, a device closure of the Gerbode-type defect was also planned due to the risk of infective endocarditis. In order to minimize the injury, an innovative hybrid therapeutic strategy was chosen to treat two anomalies simultaneously in one incision. © 2014 Japanese Teratology Society.

  8. Minimizing graphene defects enhances titania nanocomposite-based photocatalytic reduction of CO2 for improved solar fuel production.

    PubMed

    Liang, Yu Teng; Vijayan, Baiju K; Gray, Kimberly A; Hersam, Mark C

    2011-07-13

    With its unique electronic and optical properties, graphene is proposed to functionalize and tailor titania photocatalysts for improved reactivity. The two major solution-based pathways for producing graphene, oxidation-reduction and solvent exfoliation, result in nanoplatelets with different defect densities. Herein, we show that nanocomposites based on the less defective solvent-exfoliated graphene exhibit a significantly larger enhancement in CO(2) photoreduction, especially under visible light. This counterintuitive result is attributed to their superior electrical mobility, which facilitates the diffusion of photoexcited electrons to reactive sites.

  9. Minimizing shrinkage of interdental papilla height when treating multiple Miller Class III gingival recession defects.

    PubMed

    Mahn, Douglas H

    2015-04-01

    Miller Class III and IV gingival recession defects have interdental bone and soft-tissue loss that limit root coverage. Given the importance of the interdental papilla, protecting the integrity of this structure would seem prudent. Tunnel techniques have been successfully used to protect the interdental papilla. This article discusses the results of two cases in which multiple Miller Class III gingival recession defects were treated using tunnel-grafting techniques and an acellular dermal matrix. In both cases, root coverage was achieved while protecting the interdental papilla height.

  10. A Blood-Resistant Surgical Glue for Minimally Invasive Repair of Vessels and Heart Defects

    PubMed Central

    Lang, Nora; Pereira, Maria J.; Lee, Yuhan; Friehs, Ingeborg; Vasilyev, Nikolay V.; Feins, Eric N.; Ablasser, Klemens; O'Cearbhaill, Eoin D.; Xu, Chenjie; Fabozzo, Assunta; Padera, Robert; Wasserman, Steve; Freudenthal, Franz; Ferreira, Lino S.; Langer, Robert

    2014-01-01

    Currently, there are no clinically approved surgical glues that are nontoxic, bind strongly to tissue, and work well within wet and highly dynamic environments within the body. This is especially relevant to minimally invasive surgery that is increasingly performed to reduce postoperative complications, recovery times, and patient discomfort. We describe the engineering of a bioinspired elastic and biocompatible hydrophobic light-activated adhesive (HLAA) that achieves a strong level of adhesion to wet tissue and is not compromised by preexposure to blood. The HLAA provided an on-demand hemostatic seal, within seconds of light application, when applied to high-pressure large blood vessels and cardiac wall defects in pigs. HLAA-coated patches attached to the interventricular septum in a beating porcine heart and resisted supraphysiologic pressures by remaining attached for 24 hours, which is relevant to intracardiac interventions in humans. The HLAA could be used for many cardiovascular and surgical applications, with immediate application in repair of vascular defects and surgical hemostasis. PMID:24401941

  11. Effects of dispense equipment sequence on process start-up defects

    NASA Astrophysics Data System (ADS)

    Brakensiek, Nick; Sevegney, Michael

    2013-03-01

    Photofluid dispense systems within coater/developer tools have been designed with the intent to minimize cost of ownership to the end user. Waste and defect minimization, dispense quality and repeatability, and ease of use are all desired characteristics. One notable change within commercially available systems is the sequence in which process fluid encounters dispense pump and filtration elements. Traditionally, systems adopted a pump-first sequence, where fluid is "pushed through" a point-of-use filter just prior to dispensing on the wafer. Recently, systems configured in a pump-last scheme have become available, where fluid is "pulled through" the filter, into the pump, and then is subsequently dispensed. The present work constitutes a comparative evaluation of the two equipment sequences with regard to the aforementioned characteristics that impact cost of ownership. Additionally, removal rating and surface chemistry (i.e., hydrophilicity) of the point-of-use filter are varied in order to evaluate their influence on system start-up and defects.

  12. Instabilities and patterns in an active nematic film

    NASA Astrophysics Data System (ADS)

    Srivastava, Pragya; Marchetti, Cristina

    2015-03-01

    Experiments on microtubule bundles confined to an oil-water interface have motivated extensive theoretical studies of two-dimensional active nematics. Theoretical models taking into account the interplay between activity, flow and order have remarkably reproduced several experimentally observed features of the defect-dynamics in these ``living'' nematics. Here, we derive minimal description of a two-dimensional active nematic film confined between walls. At high friction, we eliminate the flow to obtain closed equations for the nematic order parameter, with renormalized Frank elastic constants. Active processes can render the ``Frank'' constants negative, resulting in the instability of the uniformly ordered nematic state. The minimal model yields emergent patterns of growing complexity with increasing activity, including bands and turbulent dynamics with a steady density of topological defects, as obtained with the full hydrodynamic equations. We report on the scaling of the length scales of these patterns and of the steady state number of defects with activity and system size. National Science Foundation grant DMR-1305184 and Syracuse Soft Matter Program.

  13. Facts about Birth Defects

    MedlinePlus

    ... Defects Language: English (US) Español (Spanish) Recommend on Facebook Tweet Share Compartir On This Page Birth Defects are Common Identifying Birth Defects Causes Prevention References Birth defects are common, costly, and critical conditions that affect 1 in every 33 babies born in the ...

  14. Technological advances shed light on left ventricular cardiac disturbances in cystic fibrosis.

    PubMed

    Sayyid, Zahra N; Sellers, Zachary M

    2017-07-01

    Cystic fibrosis (CF), the most common autosomal recessive lethal disease in Caucasians, causes chronic pulmonary disease and can lead to cor pulmonale with right ventricular dysfunction. The presence of the cystic fibrosis transmembrane conductance regulator (CFTR) in cardiac myocardia has prompted debate regarding possible defective ion channel-induced cardiomyopathy. Clinical heart disease in CF is considered rare and is restricted to case reports. It has been unclear if this is due to the lack of physiological importance of CFTR in the heart, the relatively short lifespan of those with CF, or a technical inability to detect subclinical disease. Extensive echocardiographic investigations have yielded contradictory results, leading to the dogma that left ventricular defects in CF occur secondary to lung disease. In this review, we consider why studies examining heart function in CF have not provided clarity on this topic. We then focus on data from new echocardiographic and magnetic resonance imaging technology, which are providing greater insight into cardiac function in CF and demonstrating that, in addition to secondary effects from pulmonary disease, there may be an intrinsic primary defect in the CF heart. With advancing lifespans and activity levels, understanding the risk of cardiac disease is vital to minimizing morbidity in adults with CF. Copyright © 2017 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  15. Elimination of strength degrading effects caused by surface microdefect: A prevention achieved by silicon nanotexturing to avoid catastrophic brittle fracture

    NASA Astrophysics Data System (ADS)

    Kashyap, Kunal; Kumar, Amarendra; Huang, Chuan-Torng; Lin, Yu-Yun; Hou, Max T.; Andrew Yeh, J.

    2015-06-01

    The unavoidable occurrence of microdefects in silicon wafers increase the probability of catastrophic fracture of silicon-based devices, thus highlighting the need for a strengthening mechanism to minimize fractures resulting from defects. In this study, a novel mechanism for manufacturing silicon wafers was engineered based on nanoscale reinforcement through surface nanotexturing. Because of nanotexturing, different defect depths synthetically emulated as V-notches, demonstrated a bending strength enhancement by factors of 2.5, 3.2, and 6 for 2-, 7-, and 14-μm-deep V-notches, respectively. A very large increase in the number of fragments observed during silicon fracturing was also indicative of the strengthening effect. Nanotextures surrounding the V-notch reduced the stress concentration factor at the notch tip and saturated as the nanotexture depth approached 1.5 times the V-notch depth. The stress reduction at the V-notch tip measured by micro-Raman spectroscopy revealed that nanotextures reduced the effective depth of the defect. Therefore, the nanotextured samples were able to sustain a larger fracture force. The enhancement in Weibull modulus, along with an increase in bending strength in the nanotextured samples compared to polished single-crystal silicon samples, demonstrated the reliability of the strengthening method. These results suggest that this method may be suitable for industrial implementation.

  16. Gauge Field Localization on Deformed Branes

    NASA Astrophysics Data System (ADS)

    Tofighi, A.; Moazzen, M.; Farokhtabar, A.

    2016-02-01

    In this paper, we utilise the Chumbes-Holf da Silva-Hott (CHH) mechanism to investigate the issue of gauge field localization on a deformed brane constructed with one scalar field, which can be coupled to gravity minimally or non-minimally. The study of deformed defects is important because they contain internal structures which may have implications in braneworld models. With the CHH mechanism, we find that the massless zero mode of gauge field, in the case of minimal or non-minimal coupling is localized on the brane. Moreover, in the case of non-minimal coupling, it is shown that, when the non-minimal coupling constant is larger than its critical value, then the zero mode is localized on each sub brane.

  17. Decline in snail abundance due to soil acidification causes eggshell defects in forest passerines.

    PubMed

    Graveland, J; van der Wal, R

    1996-02-01

    On poor soils in the Netherlands an increasing number of great tits, Parus major, and of other forest passerines produce eggs with defective shells and have low reproductive success as a result of calcium deficiency. A similar increase in eggshell defects has been observed in Germany and Sweden. Snail shells are the main calcium source for tits in forests where defective eggshells do not occur, but are very little taken in forests where tits often have eggshell defects. We investigated whether a decrease in snail abundance on poor soils could be responsible for the decline in eggshell quality, and if so, what caused this decrease. Snail density in forests where tits have eggshell defects was much lower than in forests where tits do not have such defects. Snail density correlated with the calcium content and to a lesser extent with pH of the litter layer. Liming of a calciumpoor forest soil with few snails resulted in snail densities comparable to those on calcium-rich soils after 4 years. Snail density has declined on calcium-poor soils over the last two decades, but not on calcium-rich soils. Acid deposition has caused a decline of soil calcium on poor soils. We conclude, therefore, that anthropogenic acidification has caused a decline in snail populations, resulting in an increase in eggshell defects in birds in forests on poor soils.

  18. Review of mitral valve insufficiency: repair or replacement

    PubMed Central

    Madesis, Athanasios; Tsakiridis, Kosmas; Katsikogiannis, Nikolaos; Machairiotis, Nikolaos; Kougioumtzi, Ioanna; Kesisis, George; Tsiouda, Theodora; Beleveslis, Thomas; Koletas, Alexander; Zarogoulidis, Konstantinos

    2014-01-01

    Mitral valve (MV) dysfunction is the second-most common clinically significant form of valvular defect in adults. MV regurgitation occurs with the increasing frequency of degenerative changes of the aging process. Moreover, other causes of clinically significant MV regurgitation include cardiac ischemia, infective endocarditis and rhematic disease more frequently in less developed countries. Recent evidence suggests that the best outcomes after repair of severe degenerative mitral regurgitation (MR) are achieved in asymptomatic or minimally symptomatic patients, who are selected for surgery soon after diagnosis on the basis of echocardiography. This review will focus on the surgical management of mitral insufficiency according to its aetiology today and will give insight to some of the perspectives that lay in the future. PMID:24672698

  19. Resist process optimization for further defect reduction

    NASA Astrophysics Data System (ADS)

    Tanaka, Keiichi; Iseki, Tomohiro; Marumoto, Hiroshi; Takayanagi, Koji; Yoshida, Yuichi; Uemura, Ryouichi; Yoshihara, Kosuke

    2012-03-01

    Defect reduction has become one of the most important technical challenges in device mass-production. Knowing that resist processing on a clean track strongly impacts defect formation in many cases, we have been trying to improve the track process to enhance customer yield. For example, residual type defect and pattern collapse are strongly related to process parameters in developer, and we have reported new develop and rinse methods in the previous papers. Also, we have reported the optimization method of filtration condition to reduce bridge type defects, which are mainly caused by foreign substances such as gels in resist. Even though we have contributed resist caused defect reduction in past studies, defect reduction requirements continue to be very important. In this paper, we will introduce further process improvements in terms of resist defect reduction, including the latest experimental data.

  20. Solid State Lighting Program (Falcon)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meeks, Steven

    2012-06-30

    Over the past two years, KLA-Tencor and partners successfully developed and deployed software and hardware tools that increase product yield for High Brightness LED (HBLED) manufacturing and reduce product development and factory ramp times. This report summarizes our development effort and details of how the results of the Solid State Light Program (Falcon) have started to help HBLED manufacturers optimize process control by enabling them to flag and correct identified killer defect conditions at any point of origin in the process manufacturing flow. This constitutes a quantum leap in yield management over current practice. Current practice consists of die dispositioningmore » which is just rejection of bad die at end of process based upon probe tests, loosely assisted by optical in-line monitoring for gross process deficiencies. For the first time, and as a result of our Solid State Lighting Program, our LED manufacturing partners have obtained the software and hardware tools that optimize individual process steps to control killer defects at the point in the processes where they originate. Products developed during our two year program enable optimized inspection strategies for many product lines to minimize cost and maximize yield. The Solid State Lighting Program was structured in three phases: i) the development of advanced imaging modes that achieve clear separation between LED defect types, improves signal to noise and scan rates, and minimizes nuisance defects for both front end and back end inspection tools, ii) the creation of defect source analysis (DSA) software that connect the defect maps from back-end and front-end HBLED manufacturing tools to permit the automatic overlay and traceability of defects between tools and process steps, suppress nuisance defects, and identify the origin of killer defects with process step and conditions, and iii) working with partners (Philips Lumileds) on product wafers, obtain a detailed statistical correlation of automated defect and DSA map overlay to failed die identified using end product probe test results. Results from our two year effort have led to “automated end-to-end defect detection” with full defect traceability and the ability to unambiguously correlate device killer defects to optically detected features and their point of origin within the process. Success of the program can be measured by yield improvements at our partner’s facilities and new product orders.« less

  1. Classification scheme and prevention measures for caught-in-between occupational fatalities.

    PubMed

    Chi, Chia-Fen; Lin, Syuan-Zih

    2018-04-01

    The current study analyzed 312 caught-in-between fatalities caused by machinery and vehicles. A comprehensive and mutually exclusive coding scheme was developed to analyze and code each caught-in-between fatality in terms of age, gender, experience of the victim, type of industry, source of injury, and causes for these accidents. Boolean algebra analysis was applied on these 312 caught-in-between fatalities to derive minimal cut set (MCS) causes associated with each source of injury. Eventually, contributing factors and common accident patterns associated with (1) special process machinery including textile, printing, packaging machinery, (2) metal, woodworking, and special material machinery, (3) conveyor, (4) vehicle, (5) crane, (6) construction machinery, and (7) elevator can be divided into three major groups through Boolean algebra and MCS analysis. The MCS causes associated with conveyor share the same primary causes as those of the special process machinery including textile, printing, packaging and metal, woodworking, and special material machinery. These fatalities can be eliminated by focusing on the prevention measures associated with lack of safeguards, working on a running machine or process, unintentional activation, unsafe posture or position, unsafe clothing, and defective safeguards. Other precise and effective intervention can be developed based on the identified groups of accident causes associated with each source of injury. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Craniofacial Prosthetic Reconstruction Using Polymethyl Methacrylate Implant: A Case Report.

    PubMed

    Simon, Paul; Mohan, Jayashree; Selvaraj, Sunantha; Saravanan, B S; Pari, Parikodaiarasan

    2014-12-01

    Large cranial defects of complex geometric shapes are challenging to reconstruct. The cranial implants has to be fabricated prior to the cranioplastic surgery. The ideal material for cranial implant has to be inert, light weight, easy to fit and adaptable to the defect, offering the best aesthetic and functional results. Here is a clinical case report of a patient who was operated for osteomyelitis in the parieto-temporal region. The defect was reconstructed with heat cure polymethylmethacrylate (PMMA). Operative closure of the defect was facilitated with ligature titanium wires with minimal prosthesis contouring. The heat cure PMMA cranial implant is a safe, easy and economic alternative with great adaptability to cranial vault defects. The cosmetic results in this patient was excellent. No post-operative complications occurred.

  3. Mitigation of substrate defects in reticles using multilayer buffer layers

    DOEpatents

    Mirkarimi, Paul B.; Bajt, Sasa; Stearns, Daniel G.

    2001-01-01

    A multilayer film is used as a buffer layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The multilayer buffer layer deposited intermediate the reticle substrate and the reflective coating produces a smoothing of small particles and other defects on the reticle substrate. The reduction in defect size is controlled by surface relaxation during the buffer layer growth process and by the degree of intermixing and volume contraction of the materials at the multilayer interfaces. The buffer layers are deposited at near-normal incidence via a low particulate ion beam sputtering process. The growth surface of the buffer layer may also be heated by a secondary ion source to increase the degree of intermixing and improve the mitigation of defects.

  4. Totally robotic repair of atrioventricular septal defect in the adult.

    PubMed

    Gao, Changqing; Yang, Ming; Xiao, Cangsong; Zhang, Huajun

    2015-11-06

    Atrioventricular septal defect (AVSD) accounts for up to 3 % of congenital cardiac defects, which is routinely repaired via median sternotomy. Minimally invasive approach such as endoscopic or robotic assisted repair for AVSD has not been reported in the literature. With the experience with robotic mitral valve surgery and congenital defect repair, we initiated robotic AVSD repair in adults. In this report, we presented three cases of successful repair of partial and intermediate AVSD by using da Vinci SI surgical system (Intuitive Surgical, Inc., Sunnyvale, CA). Totally robotic AVSD repair via right atriotomy could be safely performed in adults and it may provide superior cosmesis with the comparable surgical outcome of the repair via sternotomy.

  5. Congenital cardiac malformations in relation to central venous access.

    PubMed

    Thompson, Christine

    During the third and seventh weeks of gestation, teratogenic exposure may lead to fetal abnormality such as congenital heart defects or intrauterine death. Congenital heart defects are present from birth, but may appear at any time, or only revealed postmortem. Often defects are present by degree. Some defects are life-threatening, while other, less severe conditions, may have minimal physiological impact. Left superior vena cava exists in early embryonic development, but the vessel degenerates as the cardiovascular system matures. When not associated with other malformations, an incidence of persistent left-sided superior vena cava (PLSVC) has no clinical signs or symptoms. However, it may not be as innocuous as it appears due to its association with the cyanotic defect, tetralogy of Fallot (TOF). Using a case history as an illustration it can be shown that all cases of defect or chromosomal suspicion should be documented as there may be implications for future interventions.

  6. Time-dependent broken-symmetry density functional theory simulation of the optical response of entangled paramagnetic defects: Color centers in lithium fluoride

    NASA Astrophysics Data System (ADS)

    Janesko, Benjamin G.

    2018-02-01

    Parameter-free atomistic simulations of entangled solid-state paramagnetic defects may aid in the rational design of devices for quantum information science. This work applies time-dependent density functional theory (TDDFT) embedded-cluster simulations to a prototype entangled-defect system, namely two adjacent singlet-coupled F color centers in lithium fluoride. TDDFT calculations accurately reproduce the experimental visible absorption of both isolated and coupled F centers. The most accurate results are obtained by combining spin symmetry breaking to simulate strong correlation, a large fraction of exact (Hartree-Fock-like) exchange to minimize the defect electrons' self-interaction error, and a standard semilocal approximation for dynamical correlations between the defect electrons and the surrounding ionic lattice. These results motivate application of two-reference correlated ab initio approximations to the M-center, and application of TDDFT in parameter-free simulations of more complex entangled paramagnetic defect architectures.

  7. Beard reconstruction: A surgical algorithm.

    PubMed

    Ninkovic, M; Heidekrueger, P I; Ehrl, D; von Spiegel, F; Broer, P N

    2016-06-01

    Facial defects with loss of hair-bearing regions can be caused by trauma, infection, tumor excision, or burn injury. The presented analysis evaluates a series of different surgical approaches with a focus on male beard reconstruction, emphasizing the role of tissue expansion of regional and free flaps. Locoregional and free flap reconstructions were performed in 11 male patients with 14 facial defects affecting the hair-bearing bucco-mandibular or perioral region. In order to minimize donor-site morbidity and obtain large amounts of thin, pliable, hair-bearing tissue, pre-expansion was performed in five of 14 patients. Eight of 14 patients were treated with locoregional flap reconstructions and six with free flap reconstructions. Algorithms regarding pre- and intraoperative decision making are discussed and long-term (mean follow-up 1.5 years) results analyzed. Major complications, including tissue expander infection with the need for removal or exchange, partial or full flap loss, occurred in 0% (0/8) of patients with locoregional flaps and in 17% (1/6) of patients undergoing free flap reconstructions. Secondary refinement surgery was performed in 25% (2/8) of locoregional flaps and in 67% (4/6) of free flaps. Both locoregional and distant tissue transfers play a role in beard reconstruction, while pre-expansion remains an invaluable tool. Paying attention to the presented principles and considering the significance of aesthetic facial subunits, range of motion, aesthetics, and patient satisfaction were improved long term in all our patients while minimizing donor-site morbidity. Copyright © 2016 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  8. Minimally invasive treatment of maxillary anterior gingival recession defects by vestibular incision subperiosteal tunnel access and platelet-derived growth factor BB.

    PubMed

    Zadeh, Homayoun H

    2011-01-01

    An array of therapeutic options are available for treatment of gingival recession defects, though many of these are better suited for treatment of isolated defects. Some of the limitations of current techniques include the need for harvesting of autogenous donor tissues and their associated morbidity, as well as scar formation at the recipient site resulting from surface incisions. Moreover, muscle pull during healing often leads to incomplete root coverage or relapse of the recession. The current case reports introduce a novel, minimally invasive approach applicable for both isolated recession defects as well as multiple contiguous defects in the maxillary anterior region. Access to the surgical site is obtained by means of an approach referred to as vestibular incision subperiosteal tunnel access (VISTA). This entails making an access incision in the maxillary anterior frenum, followed by elevation of a subperiosteal tunnel. VISTA allows for both access as well as an opportunity to coronally reposition the gingival margins of all involved teeth. In this approach, recombinant human platelet-derived growth factor BB saturated onto a matrix of beta-tricalcium phosphate is introduced using VISTA over root dehiscences to enhance periodontal healing. A novel method of stabilization of the gingival margins is also introduced, referred to as coronally anchored suturing, designed to maintain the coronal positioning during healing. The current report describes the technique and two clinical case documentations for treatment of Miller Class I and II defects, demonstrating stable, long-term outcomes. Although VISTA has been applied in other regions, its application is most advantageous in the esthetic zone.

  9. Prenatal diagnosis of two fetuses with deletions of 8p23.1, critical region for congenital diaphragmatic hernia and heart defects.

    PubMed

    Keitges, Elisabeth A; Pasion, Romela; Burnside, Rachel D; Mason, Carla; Gonzalez-Ruiz, Antonio; Dunn, Teresa; Masiello, Meredith; Gebbia, Joseph A; Fernandez, Carlos O; Risheg, Hiba

    2013-07-01

    Microdeletions of 8p23.1 are mediated by low copy repeats and can cause congenital diaphragmatic hernia (CDH) and cardiac defects. Within this region, point mutations of the GATA4 gene have been shown to cause cardiac defects. However, the cause of CDH in these deletions has been difficult to determine due to the paucity of mutations that result in CDH, the lack of smaller deletions to refine the region and the reduced penetrance of CDH in these large deletions. Mice deficient for one copy of the Gata4 gene have been described with CDH and heart defects suggesting mutations in Gata4 can cause the phenotype in mice. We report on the SNP microarray analysis on two fetuses with deletions of 8p23.1. The first had CDH and a ventricular septal defect (VSD) on ultrasonography and a family history of a maternal VSD. Microarray analysis detected a 127-kb deletion which included the GATA4 and NEIL2 genes which was inherited from the mother. The second fetus had an incomplete atrioventricular canal defect on ultrasonography. Microarray analysis showed a 315-kb deletion that included seven genes, GATA4, NEIL2, FDFT1, CTSB, DEFB136, DEFB135, and DEFB134. These results suggest that haploinsufficiency of the two genes in common within 8p23.1; GATA4 and NEIL2 can cause CDH and cardiac defects in humans. Copyright © 2013 Wiley Periodicals, Inc.

  10. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes.

    PubMed

    Liu, H X; Cartegni, L; Zhang, M Q; Krainer, A R

    2001-01-01

    Point mutations can generate defective and sometimes harmful proteins. The nonsense-mediated mRNA decay (NMD) pathway minimizes the potential damage caused by nonsense mutations. In-frame nonsense codons located at a minimum distance upstream of the last exon-exon junction are recognized as premature termination codons (PTCs), targeting the mRNA for degradation. Some nonsense mutations cause skipping of one or more exons, presumably during pre-mRNA splicing in the nucleus; this phenomenon is termed nonsense-mediated altered splicing (NAS), and its underlying mechanism is unclear. By analyzing NAS in BRCA1, we show here that inappropriate exon skipping can be reproduced in vitro, and results from disruption of a splicing enhancer in the coding sequence. Enhancers can be disrupted by single nonsense, missense and translationally silent point mutations, without recognition of an open reading frame as such. These results argue against a nuclear reading-frame scanning mechanism for NAS. Coding-region single-nucleotide polymorphisms (cSNPs) within exonic splicing enhancers or silencers may affect the patterns or efficiency of mRNA splicing, which may in turn cause phenotypic variability and variable penetrance of mutations elsewhere in a gene.

  11. An unusual etiology in cold injury: Liquefied petroleum gas.

    PubMed

    Kapı, Emin; Bozkurt, Mehmet; Taylan Filinte, Gaye; Kuvat, Samet Vasfi; Alioğlu, Celal

    2017-05-01

    Cold injury is a condition that causes reversible and irreversible damage when tissues are exposed to cold. This injury occurs due to various etiologies, and the most commonly observed ones include contact with liquefied petroleum gas (LPG) used in households, vehicles, and industry. LPG is a type of gas stored in liquid state under high pressure within cylinders. LPG contains a mixture of propane and butane gases. Direct contact of these gases with the tissues has the potential to cause metabolic, toxic, and respiratory damage. In this study, we present the cases of four patients with cold injury in the face and upper extremity caused by a pressurized jet stream of liquid gas that escaped out of the valves of the LPG cylinders. The patients had bullous lesions in the upper extremities and the face and second- and third-degree cold injuries with fibrotic and necrotic areas. The superficial defects secondarily healed with minimal scarring, while the necrotic finger had to be amputated. Cold injury on the skin caused by high-pressure jet streams of liquid gas as in our study is a rare occurrence. Our patients are important cases due to the rare etiology of cold injury.

  12. Enhanced quantum yield of photoluminescent porous silicon prepared by supercritical drying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Joo, Jinmyoung; Biomedical Engineering Research Center, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505; Defforge, Thomas

    2016-04-11

    The effect of supercritical drying (SCD) on the preparation of porous silicon (pSi) powders has been investigated in terms of photoluminescence (PL) efficiency. Since the pSi contains closely spaced and possibly interconnected Si nanocrystals (<5 nm), pore collapse and morphological changes within the nanocrystalline structure after common drying processes can affect PL efficiency. We report the highly beneficial effects of using SCD for preparation of photoluminescent pSi powders. Significantly higher surface areas and pore volumes have been realized by utilizing SCD (with CO{sub 2} solvent) instead of air-drying. Correspondingly, the pSi powders better retain the porous structure and the nano-sized siliconmore » grains, thus minimizing the formation of non-radiative defects during liquid evaporation (air drying). The SCD process also minimizes capillary-stress induced contact of neighboring nanocrystals, resulting in lower exciton migration levels within the network. A significant enhancement of the PL quantum yield (>32% at room temperature) has been achieved, prompting the need for further detailed studies to establish the dominant causes of such an improvement.« less

  13. Nutritional modulation of health, egg quality and environmental pollution of the layers.

    PubMed

    Wang, Jing; Yue, Hongyuan; Wu, Shugeng; Zhang, Haijun; Qi, Guanghai

    2017-06-01

    World egg production and consumption have been increasing for the past decades. Traditional strategies in poultry nutrition have made vital contributions to this great growth in quantity. However, current global issues should be considered in modern egg production such as growing populations and food security, food safety and quality, limited resources and environmental problems. The development of knowledge of poultry nutrition and modern biotechnology provides novel nutritional approaches to closely fit the requirement of pullets and laying hens, which will consequently decrease the nutrition excretion and maintain the lower cost of feed. Nutrition has also been widely accepted as a strategy to influence health and diseases of laying hens. The maintenance of good health is an important prerequisite for improving productivity and egg quality. In addition, there are many measures and strategies for minimizing the incidence of egg defects and providing a choice of lifestyle to enhance human health. This paper reviews current research progress on developing innovative technologies and strategies to maximize animal health and performance, improve the quality of egg products and minimize pollution caused by poultry production.

  14. A novel inspection system for cosmetic defects

    NASA Astrophysics Data System (ADS)

    Hazra, S.; Roy, R.; Williams, D.; Aylmore, R.; Hollingdale, D.

    2013-12-01

    The appearance of automotive skin panels creates desirability for a product and differentiates it from the competition. Because of the importance of skin panels, considerable care is taken in minimizing defects such as the 'hollow' defect that occur around door-handle depressions. However, the inspection process is manual, subjective and time-consuming. This paper describes the development of an objective and inspection scheme for the 'hollow' defect. In this inspection process, the geometry of a panel is captured using a structured lighting system. The geometry data is subsequently analyzed by a purpose-built wavelet-based algorithm to identify the location of any defects that may be present and to estimate the perceived severity of the defects without user intervention. This paper describes and critically evaluates the behavior of this physically-based algorithm on an ideal and real geometry and compares its result to an actual audit. The results show that the algorithm is capable of objectively locating and classifying 'hollow' defects in actual panels.

  15. Kidney diseases caused by glomerular basement membrane type IV collagen defects in dogs.

    PubMed

    Lees, George E

    2013-01-01

    To review the pathogenesis, as well as the clinical and pathologic features of canine glomerular diseases caused by genetic type IV collagen defects. Original studies and review articles from human and veterinary medical fields. Presence in glomerular basement membranes (GBM) of a network composed of α3.α4.α5 heterotrimers of type IV collagen is required to maintain structure and function of glomerular capillary walls. Hereditary nephropathy (HN) is the most commonly used name for kidney diseases that occur in dogs due to genetic type IV collagen abnormalities. To date, 4 different collagen IV gene mutations have been identified in dogs with HN; 2 are COL4A5 mutations that cause X-linked HN (XL-HN), and 2 are COL4A4 mutations that cause autosomal recessive HN (AR-HN). Affected males with XL-HN and affected males and females with AR-HN develop juvenile-onset kidney disease manifested by proteinuria typically starting at 3-6 months of age and followed by progressive kidney disease leading to terminal failure usually at 6-24 months of age. Carrier female dogs with XL-HN also develop proteinuria starting at 3-6 months of age, but progressive disease causing kidney failure is uncommon until they are >5 years old. The distinctive pathologic lesions of HN are extensive multilaminar splitting and thickening of the GBM, as demonstrated by electron microscopy, and abnormal type IV collagen α-chain content of basement membranes, as demonstrated by immunolabeling. Identification of the underlying gene mutations has permitted genetic testing and selective breeding practices that currently are minimizing HN in breeds known to be at risk. Canine HN is a rare disease that should be considered whenever a dog exhibits a juvenile-onset kidney disease characterized partly by proteinuria, but highly specialized methods are required to pursue a definitive diagnosis. © Veterinary Emergency and Critical Care Society 2013.

  16. Multiple endocrine neoplasia (MEN) II

    MedlinePlus

    Sipple syndrome; MEN II; Pheochromocytoma - MEN II; Thyroid cancer - pheochromocytoma; Parathyroid cancer - pheochromocytoma ... The cause of MEN II is a defect in a gene called RET. This defect causes many tumors to appear in the same ...

  17. Principal Component Analysis of Thermographic Data

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Cramer, K. Elliott; Zalameda, Joseph N.; Howell, Patricia A.; Burke, Eric R.

    2015-01-01

    Principal Component Analysis (PCA) has been shown effective for reducing thermographic NDE data. While a reliable technique for enhancing the visibility of defects in thermal data, PCA can be computationally intense and time consuming when applied to the large data sets typical in thermography. Additionally, PCA can experience problems when very large defects are present (defects that dominate the field-of-view), since the calculation of the eigenvectors is now governed by the presence of the defect, not the "good" material. To increase the processing speed and to minimize the negative effects of large defects, an alternative method of PCA is being pursued where a fixed set of eigenvectors, generated from an analytic model of the thermal response of the material under examination, is used to process the thermal data from composite materials. This method has been applied for characterization of flaws.

  18. Osteogenesis imperfecta due to mutations in non-collagenous genes: lessons in the biology of bone formation.

    PubMed

    Marini, Joan C; Reich, Adi; Smith, Simone M

    2014-08-01

    Osteogenesis imperfecta or 'brittle bone disease' has mainly been considered a bone disorder caused by collagen mutations. Within the last decade, however, a surge of genetic discoveries has created a new paradigm for osteogenesis imperfecta as a collagen-related disorder, where most cases are due to autosomal dominant type I collagen defects, while rare, mostly recessive, forms are due to defects in genes whose protein products interact with collagen protein. This review is both timely and relevant in outlining the genesis, development, and future of this paradigm shift in the understanding of osteogenesis imperfecta. Bone-restricted interferon-induced transmembrane (IFITM)-like protein (BRIL) and pigment epithelium-derived factor (PEDF) defects cause types V and VI osteogenesis imperfecta via defective bone mineralization, while defects in cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1), and cyclophilin B (CYPB) cause types VII-IX osteogenesis imperfecta via defective collagen post-translational modification. Heat shock protein 47 (HSP47) and FK506-binding protein-65 (FKBP65) defects cause types X and XI osteogenesis imperfecta via aberrant collagen crosslinking, folding, and chaperoning, while defects in SP7 transcription factor, wingless-type MMTV integration site family member 1 (WNT1), trimeric intracellular cation channel type b (TRIC-B), and old astrocyte specifically induced substance (OASIS) disrupt osteoblast development. Finally, absence of the type I collagen C-propeptidase bone morphogenetic protein 1 (BMP1) causes type XII osteogenesis imperfecta due to altered collagen maturation/processing. Identification of these multiple causative defects has provided crucial information for accurate genetic counseling, inspired a recently proposed functional grouping of osteogenesis imperfecta types by shared mechanism to simplify current nosology, and has prodded investigations into common pathways in osteogenesis imperfecta. Such investigations could yield critical information on cellular and bone tissue mechanisms and translate to new mechanistic insight into clinical therapies for patients.

  19. Liability for Personal Injury Caused by Defective Medical Computer Programs

    PubMed Central

    Brannigan, Vincent M.

    1980-01-01

    Defective medical computer programs can cause personal injury. Financial responsibility for the injury under tort law will turn on several factors: whether the program is a product or a service, what types of defect exist in the product, and who produced the program. The factors involved in making these decisions are complex, but knowledge of the relevant issues can assist computer personnel in avoiding liability.

  20. ER stress and basement membrane defects combine to cause glomerular and tubular renal disease resulting from Col4a1 mutations in mice

    PubMed Central

    Jones, Frances E.; Bailey, Matthew A.; Murray, Lydia S.; Lu, Yinhui; McNeilly, Sarah; Schlötzer-Schrehardt, Ursula; Lennon, Rachel; Sado, Yoshikazu; Brownstein, David G.; Mullins, John J.; Kadler, Karl E.; Van Agtmael, Tom

    2016-01-01

    ABSTRACT Collagen IV is a major component of basement membranes, and mutations in COL4A1, which encodes collagen IV alpha chain 1, cause a multisystemic disease encompassing cerebrovascular, eye and kidney defects. However, COL4A1 renal disease remains poorly characterized and its pathomolecular mechanisms are unknown. We show that Col4a1 mutations in mice cause hypotension and renal disease, including proteinuria and defects in Bowman's capsule and the glomerular basement membrane, indicating a role for Col4a1 in glomerular filtration. Impaired sodium reabsorption in the loop of Henle and distal nephron despite elevated aldosterone levels indicates that tubular defects contribute to the hypotension, highlighting a novel role for the basement membrane in vascular homeostasis by modulation of the tubular response to aldosterone. Col4a1 mutations also cause diabetes insipidus, whereby the tubular defects lead to polyuria associated with medullary atrophy and a subsequent reduction in the ability to upregulate aquaporin 2 and concentrate urine. Moreover, haematuria, haemorrhage and vascular basement membrane defects confirm an important vascular component. Interestingly, although structural and compositional basement membrane defects occurred in the glomerulus and Bowman's capsule, no tubular basement membrane defects were detected. By contrast, medullary atrophy was associated with chronic ER stress, providing evidence for cell-type-dependent molecular mechanisms of Col4a1 mutations. These data show that both basement membrane defects and ER stress contribute to Col4a1 renal disease, which has important implications for the development of treatment strategies for collagenopathies. PMID:26839400

  1. Processing Optimization of Deformed Plain Woven Thermoplastic Composites

    NASA Astrophysics Data System (ADS)

    Smith, John R.; Vaidya, Uday K.

    2013-12-01

    This research addresses the processing optimization of post-manufactured, plain weave architecture composite panels consisted of four glass layers and thermoplastic polyurethane (TPU) when formed with only localized heating. Often times, during the production of deep drawn composite parts, a fabric preform experiences various defects, including non-isothermal heating and thickness variations. Minimizing these defects is of utmost importance for mass produceability in a practical manufacturing process. The broad objective of this research was to implement a design of experiments approach to minimize through-thickness composite panel variation during manufacturing by varying the heating time, the temperature of heated components and the clamping pressure. It was concluded that the heated tooling with least area contact was most influential, followed by the length of heating time and the amount of clamping pressure.

  2. Deficiency of CRTAP in non-lethal recessive osteogenesis imperfecta reduces collagen deposition into matrix.

    PubMed

    Valli, M; Barnes, A M; Gallanti, A; Cabral, W A; Viglio, S; Weis, M A; Makareeva, E; Eyre, D; Leikin, S; Antoniazzi, F; Marini, J C; Mottes, M

    2012-11-01

    Deficiency of any component of the ER-resident collagen prolyl 3-hydroxylation complex causes recessive osteogenesis imperfecta (OI). The complex modifies the α1(I)Pro986 residue and contains cartilage-associated protein (CRTAP), prolyl 3-hydroxylase 1 (P3H1) and cyclophilin B (CyPB). Fibroblasts normally secrete about 10% of CRTAP. Most CRTAP mutations cause a null allele and lethal type VII OI. We identified a 7-year-old Egyptian boy with non-lethal type VII OI and investigated the effects of his null CRTAP mutation on collagen biochemistry, the prolyl 3-hydroxylation complex, and collagen in extracellular matrix. The proband is homozygous for an insertion/deletion in CRTAP (c.118_133del16insTACCC). His dermal fibroblasts synthesize fully overmodified type I collagen, and 3-hydroxylate only 5% of α1(I)Pro986. CRTAP transcripts are 10% of control. CRTAP protein is absent from proband cells, with residual P3H1 and normal CyPB levels. Dermal collagen fibril diameters are significantly increased. By immunofluorescence of long-term cultures, we identified a severe deficiency (10-15% of control) of collagen deposited in extracellular matrix, with disorganization of the minimal fibrillar network. Quantitative pulse-chase experiments corroborate deficiency of matrix deposition, rather than increased matrix turnover. We conclude that defects of extracellular matrix, as well as intracellular defects in collagen modification, contribute to the pathology of type VII OI. © 2011 John Wiley & Sons A/S.

  3. Influence of growth temperature on bulk and surface defects in hybrid lead halide perovskite films.

    PubMed

    Peng, Weina; Anand, Benoy; Liu, Lihong; Sampat, Siddharth; Bearden, Brandon E; Malko, Anton V; Chabal, Yves J

    2016-01-21

    The rapid development of perovskite solar cells has focused its attention on defects in perovskites, which are gradually realized to strongly control the device performance. A fundamental understanding is therefore needed for further improvement in this field. Recent efforts have mainly focused on minimizing the surface defects and grain boundaries in thin films. Using time-resolved photoluminescence spectroscopy, we show that bulk defects in perovskite samples prepared using vapor assisted solution process (VASP) play a key role in addition to surface and grain boundary defects. The defect state density of samples prepared at 150 °C (∼10(17) cm(-3)) increases by 5 fold at 175 °C even though the average grains size increases slightly, ruling out grain boundary defects as the main mechanism for the observed differences in PL properties upon annealing. Upon surface passivation using water molecules, the PL intensity and lifetime of samples prepared at 200 °C are only partially improved, remaining significantly lower than those prepared at 150 °C. Thus, the present study indicates that the majority of these defect states observed at elevated growth temperatures originates from bulk defects and underscores the importance to control the formation of bulk defects together with grain boundary and surface defects to further improve the optoelectronic properties of perovskites.

  4. Molecular Mechanisms of Insulin Resistance in Chronic Kidney Disease

    PubMed Central

    Thomas, Sandhya S.; Zhang, Liping; Mitch, William E.

    2015-01-01

    Insulin resistance refers to reduced sensitivity of organs to insulin-initiated biologic processes that result in metabolic defects. Insulin resistance is common in patients with end-stage renal disease but also occurs in patients with chronic kidney disease (CKD), even when the serum creatinine is minimally increased. Following insulin binding to its receptor, auto-phosphorylation of the insulin receptor is followed by kinase reactions that phosphorylate insulin receptor substrate-1 (IRS-1), phosphatidylinositol 3-kinase (PI3K) and Akt. In fact, low levels of Akt phosphorylation (p-Akt) identifies the presence of the insulin resistance that leads to metabolic defects in insulin-initiated metabolism of glucose, lipids and muscle proteins. Besides CKD, other complex conditions (e.g., inflammation, oxidative stress, metabolic acidosis, aging and excess angiotensin II) reduce p-Akt resulting in insulin resistance. Insulin resistance in each of these conditions is due to activation of different, E3 ubiquitin ligases which specifically conjugate ubiquitin to IRS-1 marking it for degradation in the ubiquitin-proteasome system (UPS). Consequently, IRS-1 degradation suppresses insulin-induced intracellular signaling, causing insulin resistance. Understanding mechanisms of insulin resistance could lead to therapeutic strategies that improve the metabolism of patients with CKD. PMID:26444029

  5. Reduction of Defects in Jewelry Manufacturing

    NASA Astrophysics Data System (ADS)

    Ayudhya, Phitchaya Phanomwan na; Tangjitsitcharoen, Somkiat

    2017-06-01

    The aim of this research was to reduce the defects of gem bracelet found during manufacturing process at a jewelry company. It was found that gem bracelet product has the highest rejects compared to the rejects found in ring, earring, and pendant products. Types of defect were classified by using Pareto Diagram consisting of gem falling, seam, unclean casting, impinge, and deformation. The causes of defect were analyzed by Cause and Effect Diagram and applied Failure Mode and Effects Analysis (FMEA) was applied during manufacturing processes. This research found that the improvement of manufacturing process could reduce the Risk Priority Number (RPN) and total of all defects by 48.70% and 48.89%, respectively.

  6. Origins of Line Defects in Self-Reacting Friction Stir Welds and Their Impact on Weld Quality

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Nunes, Arthur C., Jr.

    2016-01-01

    Friction stir welding (FSWing) is a solid state joining technique which reduces the occurrence of typical defects formed in fusion welds, especially of highly alloyed metals. Although the process is robust for aluminum alloys, occasional reductions in the strength of FSWs have been observed. Shortly after the NASA-MSFC implemented a variation of FSW called self-reacting (SR), low strength properties were observed. At that time, this reduction in strength was attributed to a line defect. At that time, the limited data suggested that the line defect was related to the accumulation of native oxides that form on the weld lands and faying surfaces. Through a series of improved cleaning methods, tool redesign, and process parameter modifications, the reduction in the strength of the SR-FSWs was eliminated. As more data has been collected, the occasional reduction in the strength of SR-FSW still occurs. These occasional reductions indicate a need to reexamine the underlying causes. This study builds off a series of self reacting (SR)-FSWs that were made in 3 different thickness panels of AA2219 (0.95, 1.27 and 1.56 cm) at 2 different weld pitches. A bead on plate SR-FSW was also made in the 1.56 cm thick panel to understand the contribution of the former faying surfaces. Copper tracer studies were used to understand the flow lines associated with the weld tool used. The quality of the SR-FSWs was evaluated from tensile testing at room temperature. Reductions in the tensile strength were observed in some weldments, primarily at higher weld pitch or tool rotations. This study explores possible correlations between line defects and the reduction of strength in SR-FSWs. Results from this study will assist in a better understand of the mechanisms responsible for reduced tensile strength and provide methodology for minimizing their occurrence.

  7. Total Hip Arthroplasty Using a Polished Tapered Cemented Stem in Hereditary Multiple Exostosis

    PubMed Central

    Kanda, Akio; Kaneko, Kazuo; Obayashi, Osamu; Mogami, Atsuhiko

    2016-01-01

    A 61-year-old Japanese man underwent right total hip arthroplasty for hereditary multiple exostosis. At first presentation, he had suffered from coxalgia for a long time. On radiographic images, there was a gigantic femoral head, increased shaft angle, and large diameter of the femoral neck. He had also developed coxarthrosis and severe pain of the hip joint. The transformation of the proximal femur bone causes difficulty in setting a cementless total hip prosthesis. Therefore, total hip arthroplasty using a cemented polished tapered stem was performed via a direct lateral approach. Using a cemented polished tapered stem allowed us to deal with the femoral bone transformation and bone substance defectiveness due to exostosis and also minimized the invasiveness of the operation. PMID:27127668

  8. Study program to improve the open-circuit voltage of low resistivity single crystal silicon solar cells

    NASA Technical Reports Server (NTRS)

    Minnucci, J. A.; Matthei, K. W.

    1980-01-01

    The results of a 14 month program to improve the open circuit voltage of low resistivity silicon solar cells are described. The approach was based on ion implantation in 0.1- to 10.0-ohm-cm float-zone silicon. As a result of the contract effort, open circuit voltages as high as 645 mV (AMO 25 C) were attained by high dose phosphorus implantation followed by furnace annealing and simultaneous SiO2 growth. One key element was to investigate the effects of bandgap narrowing caused by high doping concentrations in the junction layer. Considerable effort was applied to optimization of implant parameters, selection of furnace annealing techniques, and utilization of pulsed electron beam annealing to minimize thermal process-induced defects in the completed solar cells.

  9. Defect reduction of high-density full-field patterns in jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Singh, Lovejeet; Luo, Kang; Ye, Zhengmao; Xu, Frank; Haase, Gaddi; Curran, David; LaBrake, Dwayne; Resnick, Douglas; Sreenivasan, S. V.

    2011-04-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash Imprint Lithography (J-FIL) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned resist on the substrate. Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the defect specifications of high end memory devices. Typical defectivity targets are on the order of 0.10/cm2. This work summarizes the results of defect inspections focusing on two key defect types; random non-fill defects occurring during the resist filling process and repeater defects caused by interactions with particles on the substrate. Non-fill defectivity must always be considered within the context of process throughput. The key limiting throughput step in an imprint process is resist filling time. As a result, it is critical to characterize the filling process by measuring non-fill defectivity as a function of fill time. Repeater defects typically have two main sources; mask defects and particle related defects. Previous studies have indicated that soft particles tend to cause non-repeating defects. Hard particles, on the other hand, can cause either resist plugging or mask damage. In this work, an Imprio 500 twenty wafer per hour (wph) development tool was used to study both defect types. By carefully controlling the volume of inkjetted resist, optimizing the drop pattern and controlling the resist fluid front during spreading, fill times of 1.5 seconds were achieved with non-fill defect levels of approximately 1.2/cm2. Longevity runs were used to study repeater defects and a nickel contamination was identified as the key source of particle induced repeater defects.

  10. Extensive regeneration of the stomach using bioabsorbable polymer sheets.

    PubMed

    Miyazawa, Mitsuo; Aikawa, Masayasu; Watanabe, Yukihiro; Takase, Ken-ichiro; Okamoto, Kojun; Shrestha, Santosh; Okada, Katsuya; Koyama, Isamu; Ikada, Yoshito

    2015-11-01

    The growing prevalence of endoscopic surgery in recent years has led to the minimization of postoperative scarring. However, this procedure does not allow for the regeneration of the resected digestive tract, which compromises the postoperative maintenance of digestive function. In this preliminary study, we developed an artificial gastric wall (AGW) using bioabsorbable polymer (BAP), and evaluated the ability of this BAP patch to repair and regenerate a widely defective gastric wall in an animal model. Pigs were laparotomized under general anesthesia. An 8 × 8-cm, round portion of the anterior gastric wall was excised and replaced by an AGW. The AGW was composed of a copolymer comprising 50% lactic acid and 50% caprolactone. The animals were relaparotomized 4, 8, or 12 weeks after implantation, after which they underwent resection of the entire stomach for gross and histologic evaluation of the graft sites. All recipient pigs survived until killing. By 4-8 weeks, the graft site revealed progressively fewer mucosal defect after each day. Moreover, the grafted area was indistinguishable from the native stomach 12 weeks after AGW implantation. The structures of the regenerated mucous membrane and muscle layers were identical to those of the native stomach. Furthermore, proton pumps were found in the regenerated tissue. The BAP sheets helped to restore extensive gastric defects without causing any deformation. The use of BAP sheets may become a new therapeutic method that prevents alterations of gastric volume after extensive gastrectomy for stomach cancer and other diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Free anterolateral thigh flap for reconstruction of car tire injuries of children's feet.

    PubMed

    Demirtas, Yener; Neimetzade, Tale; Kelahmetoglu, Osman; Guneren, Ethem

    2010-01-01

    Grade IV and V car tire injuries occurring in children cause extensive soft tissue defects with exposure or loss of tendons and bone on the dorsum of the foot. Free tissue transfer is indicated for reconstruction of these defects because of the limited local tissue available. We describe our management of high-grade car tire foot injuries in children with free anterolateral thigh flap (ALT). Five pre-school children with car tire injuries (one grade IV and four grade V) were treated with free ALT flap in the last 4 years. The mean age was 4.8 years. In four patients, immediate flap coverage after initial debridement was performed and delayed reconstruction was used as a secondary procedure in one patient. One of the flaps was re-explored for hematoma evacuation and salvaged. All of the flaps survived completely and there were no donor site complications. None of the flaps required a debulking procedure and custom shoe wear has not been necessary in any of the patients. Minor gait abnormalities were detected in two of the patients. With minimal donor site morbidity, long vascular pedicle allowing anastomosis outside of the trauma zone, we believe free ALT flap provides the ideal soft tissue reconstruction for high grade car tire injuries of foot in children. ALT flap can be further thinned to adapt to the defect, contracts less than muscle flaps and contains a vascularized fascia which can be used for extensor tendon reconstruction.

  12. Rectifiability of Line Defects in Liquid Crystals with Variable Degree of Orientation

    NASA Astrophysics Data System (ADS)

    Alper, Onur

    2018-04-01

    In [2], H ardt, L in and the author proved that the defect set of minimizers of the modified Ericksen energy for nematic liquid crystals consists locally of a finite union of isolated points and Hölder continuous curves with finitely many crossings. In this article, we show that each Hölder continuous curve in the defect set is of finite length. Hence, locally, the defect set is rectifiable. For the most part, the proof closely follows the work of D e L ellis et al. (Rectifiability and upper minkowski bounds for singularities of harmonic q-valued maps, arXiv:1612.01813, 2016) on harmonic Q-valued maps. The blow-up analysis in A lper et al. (Calc Var Partial Differ Equ 56(5):128, 2017) allows us to simplify the covering arguments in [11] and locally estimate the length of line defects in a geometric fashion.

  13. Stereomicroscopic evaluation of dentinal defects induced by new rotary system: "ProTaper NEXT".

    PubMed

    Shori, Deepa Deepak; Shenoi, Pratima Ramakrishna; Baig, Arshia R; Kubde, Rajesh; Makade, Chetana; Pandey, Swapnil

    2015-01-01

    The objective of this study was to evaluate dentinal defects formed by new rotary system - Protaper next™ (PTN). Sixty single-rooted premolars were selected. All specimens were decoronated and divided into four groups, each group having 15 specimens. Group I specimens were prepared by Hand K-files (Mani), Group II with ProTaper Universal (PT; Dentsply Maillefer), Group III with Hero Shaper (HS; Micro-Mega, Besancon, France), and Group IV with PTN (Dentsply Maillefer). Roots of each specimen were sectioned at 3, 6, and 9mm from the apex and were then viewed under a stereomicroscope to evaluate presence or absence of dentinal defects. In roots prepared with hand files (HFs) showed lowest percentage of dentinal defects (6.7%); whereas in roots prepared with PT, HS, and PTN it was 40, 66.7, and 26.7%, respectively. There was significant difference between the HS group and the PTN group (P < 0.05). All rotary files induced defects in root dentin, whereas the hand instruments induced minimal defects.

  14. Defect formation energy in pyrochlore: the effect of crystal size

    NASA Astrophysics Data System (ADS)

    Wang, Jianwei; Ewing, Rodney C.; Becker, Udo

    2014-09-01

    Defect formation energies of point defects of two pyrochlores Gd2Ti2O7 and Gd2Zr2O7 as a function of crystal size were calculated. Density functional theory with plane-wave basis sets and the projector-augmented wave method were used in the calculations. The results show that the defect formation energies of the two pyrochlores diverge as the size decreases to the nanometer range. For Gd2Ti2O7 pyrochlore, the defect formation energy is higher at nanometers with respect to that of the bulk, while it is lower for Gd2Zr2O7. The lowest defect formation energy for Gd2Zr2O7 is found at 15-20 Å. The different behaviors of the defect formation energies as a function of crystal size are caused by different structural adjustments around the defects as the size decreases. For both pyrochlore compositions at large sizes, the defect structures are similar to those of the bulk. As the size decreases, for Gd2Ti2O7, additional structure distortions appear at the surfaces, which cause the defect formation energy to increase. For Gd2Zr2O7, additional oxygen Frenkel pair defects are introduced, which reduce the defect formation energy. As the size further decreases, increased structure distortions occur at the surfaces, which cause the defect formation energy to increase. Based on a hypothesis that correlates the energetics of defect formation and radiation response for complex oxides, the calculated results suggest that at nanometer range Gd2Ti2O7 pyrochlore is expected to have a lower radiation tolerance, and those of Gd2Zr2O7 pyrochlore to have a higher radiation tolerance. The highest radiation tolerance for Gd2Zr2O7 pyrochlore is expected to be found at ˜2 nanometers.

  15. Perfusion defects in pulmonary perfusion iodine maps: causes and semiology.

    PubMed

    Bustos Fiore, A; González Vázquez, M; Trinidad López, C; Mera Fernández, D; Costas Álvarez, M

    2017-12-14

    to describe the usefulness of dual-energy CT for obtaining pulmonary perfusion maps to provide morphological and functional information in patients with pulmonary embolisms. To review the semiology of perfusion defects due to pulmonary embolism so they can be differentiated from perfusion defects due to other causes: alterations outside the range used in the iodine map caused by other diseases of the lung parenchyma or artifacts. CT angiography of the pulmonary arteries is the technique of choice for the diagnosis of pulmonary embolisms. New dual-energy CT scanners are useful for detecting perfusion defects secondary to complete or partial obstruction of pulmonary arteries and is most useful for detecting pulmonary embolisms in subsegmental branches. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Identification and characterization of Escherichia coli RS218-derived islands in the pathogenesis of E. coli meningitis.

    PubMed

    Xie, Yi; Kolisnychenko, Vitaliy; Paul-Satyaseela, Maneesh; Elliott, Simon; Parthasarathy, Geetha; Yao, Yufeng; Plunkett, Guy; Blattner, Frederick R; Kim, Kwang Sik

    2006-08-01

    Escherichia coli K1 is the most common gram-negative bacterium causing neonatal meningitis, but the mechanisms by which E. coli K1 causes meningitis are not clear. We identified 22 E. coli RS218-derived genomic islands (RDIs), using a comparative genome analysis of meningitis-causing E. coli K1 strain RS218 (O18:K1:H7) and laboratory K-12 strain MG1655. Series of RDI deletion mutants were constructed and examined for phenotypes relevant to E. coli K1 meningitis. We identified 9 RDI deletion mutants (RDI 1, 4, 7, 12, 13, 16, 20, 21, and 22) that exhibited defects in meningitis development. RDI 16 and 21 mutants had profound defects in the induction of a high level of bacteremia in neonatal rats, and RDI 4 mutants exhibited a moderate defect in the induction of bacteremia. RDI 1 and 22 mutants showed defects in the ability to invade human brain microvascular endothelial cells (HBMECs), and RDI 12 mutants were defective in the ability to bind to HBMECs. RDI 13 and 20 mutants were defective in the ability to both bind to and invade HBMECs. RDI 7 mutants were defective in the induction of bacteremia and in the ability to both bind to and invade HBMECs. These results provide a framework for the future discovery and analysis of bacteremia and meningitis caused by E. coli K1 strain RS218.

  17. Late Causes of Death After Pediatric Cardiac Surgery: A 60-Year Population-Based Study.

    PubMed

    Raissadati, Alireza; Nieminen, Heta; Haukka, Jari; Sairanen, Heikki; Jokinen, Eero

    2016-08-02

    Comprehensive information regarding causes of late post-operative death following pediatric congenital cardiac surgery is lacking. The study sought to analyze late causes of death after congenital cardiac surgery by era and defect severity. We obtained data from a nationwide pediatric cardiac surgery database and Finnish population registry regarding patients who underwent cardiac surgery at <15 years of age at 1 of 5 universities or 1 district hospital in Finland from 1953 to 2009. Noncyanotic and cyanotic defects were classified as simple and severe, respectively. Causes of death were determined using International Classification of Diseases diagnostic codes. Deaths among the study population were compared to a matched control population. Overall, 10,964 patients underwent 14,079 operations, with 98% follow-up. Early mortality (<30 days) was 5.6% (n = 613). Late mortality was 10.4% (n = 1,129). Congenital heart defect (CHD)-related death rates correlated with defect severity. Heart failure was the most common mode of CHD-related death, but decreased after surgeries performed between 1990 and 2009. Sudden death after surgery for atrial septal defect, ventricular septal defect, tetralogy of Fallot, and transposition of the great arteries decreased to zero following operations from 1990 to 2009. Deaths from neoplasms, respiratory, neurological, and infectious disease were significantly more common among study patients than controls. Pneumonia caused the majority of non-CHD-related deaths among the study population. CHD-related deaths have decreased markedly but remain a challenge after surgery for severe cardiac defects. Premature deaths are generally more common among patients than the control population, warranting long-term follow-up after congenital cardiac surgery. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  18. Esthetic management of mucogingival defects after excision of epulis using laterally positioned flaps.

    PubMed

    Xie, Yu-feng; Shu, Rong; Qian, Jie-lei; Lin, Zhi-kai; Romanos, Georgios E

    2015-03-01

    Epulis is a benign hyperplasia of the oral soft tissues. Surgical excision always extends to the periosteum and includes scaling of adjacent teeth to remove any possible irritants. The esthetics of the soft tissues may be compromised, however. This article studies three cases in which an immediate laterally positioned flap (LRF) was used to repair mucogingival defects after epulis biopsies. After 24 months, the color and shape of the surgical areas were healthy and stable, nearly complete root coverage was evident, and no lesions reoccurred. For repairing gingival defects after biopsy, LRF appears to be minimally traumatic while promoting esthetic outcomes.

  19. Color masking of developmental enamel defects: a case series.

    PubMed

    Torres, C R G; Borges, A B

    2015-01-01

    Developmental defects involving color alteration of enamel frequently compromise the esthetic appearance of the tooth. The resin infiltration technique represents an alternative treatment for color masking of these lesions and uniformization of tooth color. This technique is considered relatively simple and microinvasive, since only a minimal portion of enamel is removed. This article illustrates the color-masking effect with resin infiltration of fluorosis and traumatic hypomineralization lesions with a case series. The final esthetic outcomes demonstrated the ability of the resin infiltrant to mask the color of white developmental defect lesions, resulting in satisfactory clinical esthetic improvements. However, in more severe cases, the color-masking effect was not complete.

  20. Combined flaps based on the superficial temporal vascular system for reconstruction of facial defects.

    PubMed

    Zhou, Renpeng; Wang, Chen; Qian, Yunliang; Wang, Danru

    2015-09-01

    Facial defects are multicomponent deficiencies rather than simple soft-tissue defects. Based on different branches of the superficial temporal vascular system, various tissue components can be obtained to reconstruct facial defects individually. From January 2004 to December 2013, 31 patients underwent reconstruction of facial defects with composite flaps based on the superficial temporal vascular system. Twenty cases of nasal defects were repaired with skin and cartilage components, six cases of facial defects were treated with double island flaps of the skin and fascia, three patients underwent eyebrow and lower eyelid reconstruction with hairy and hairless flaps simultaneously, and two patients underwent soft-tissue repair with auricular combined flaps and cranial bone grafts. All flaps survived completely. Donor-site morbidity is minimal, closed primarily. Donor areas healed with acceptable cosmetic results. The final outcome was satisfactory. Combined flaps based on the superficial temporal vascular system are a useful and versatile option in facial soft-tissue reconstruction. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  1. Defective Reduction in Frozen Pie Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Nooted, Oranuch; Tangjitsitcharoen, Somkiat

    2017-06-01

    The frozen pie production has a lot of defects resulting in high production cost. Failure mode and effect analysis (FMEA) technique has been applied to improve the frozen pie process. Pareto chart is also used to determine the major defects of frozen pie. There are 3 main processes that cause the defects which are the 1st freezing to glazing process, the forming process, and the folding process. The Risk Priority Number (RPN) obtained from FMEA is analyzed to reduce the defects. If RPN of each cause exceeds 45, the process will be considered to be improved and selected for the corrective and preventive actions. The results showed that RPN values decreased after the correction. Therefore, the implementation of FMEA technique can help to improve the performance of frozen pie process and reduce the defects approximately 51.9%.

  2. Effects of Oleate Starvation in a Fatty Acid Auxotroph of Escherichia coli K-12

    PubMed Central

    Henning, U.; Dennert, G.; Rehn, K.; Deppe, Gisela

    1969-01-01

    The effects of oleate starvation on an oleate auxotroph of Escherichia coli K-12 were investigated. Following removal of oleate from the mutant growing in a minimal glycerol-peptone medium, the cells stopped making deoxyribonucleic acid, ribonucleic acid, protein, and phospholipids; they began to die exponentially and finally lysed. During oleate starvation in minimal medium minus peptone, inhibition of macromolecular syntheses and death occurred; however, lysis did not follow. When growth ceased, no further dying was observed. It is shown that none of the early effects (inhibition of macromolecular syntheses and death) can be due to leakiness of the cells, induction of a prophage or a colicin, or lack of energy sources. The cause of inhibition of macromolecular syntheses remained unknown. Since the rate of death was the same as the generation time under different conditions, it appears that death is due to the defective synthesis of some cellular structure (quite possibly, cytoplasmic membrane) during phospholipid deficiency. Lysis was found to require protein synthesis; electron microscopy revealed a peculiar type of “lysis from within”; i.e., the shape of the cells did not change but fragmentation of the inner layer of the cell envelope occurred. The murein was found to be unaltered. Most likely, lysis was a consequence of the cell's attempt to synthesize cytoplasmic membrane with altered phospholipid composition or during phospholipid deficiency. Several membrane functions (respiration, adenosine triphosphate formation, permeability) existing before oleate removal were not lost during starvation. Therefore, general damage to the membrane did not occur, and it could be that most, if not all, described effects were due to defective de novo membrane synthesis. Images PMID:4891268

  3. Multiwalled carbon nanotubes and dispersed nanodiamond novel hybrids: Microscopic structure evolution, physical properties, and radiation resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, S.; Farmer, J.

    2011-01-01

    We report the structure and physical properties of novel hybrids of multiwalled carbon nanotubes (MWCNTs) and ultradispersed diamond (UDD) forming nanocomposite ensemble that were subjected to 50, 100, and 10{sup 3} kGy gamma ray doses and characterized using various analytical tools to investigate hierarchical defects evolution. This work is prompted by recent work on single-walled CNTs and UDD ensemble [Gupta et al., J. Appl. Phys. 107, 104308 (2010)] where radiation-induced microscopic defects seem to be stabilized by UDD. The present experiments show similar effects where these hybrids display only a minimal structural modification under the maximum dose. Quantitative analyses ofmore » multiwavelength Raman spectra revealed lattice defects induced by irradiation assessed through the variation in prominent D, G, and 2D bands. A minimal change in the position of D, G, and 2D bands and a marginal increase in intensity of the defect-induced double resonant Raman scattered D and 2D bands are some of the implications suggesting the radiation coupling. The in-plane correlation length (L{sub a}) was also determined following Tunistra-Koenig relation from the ratio of D to G band (I{sub D}/I{sub G}) besides microscopic stress. However, we also suggest the following taking into account of intrinsic defects of the constituents: (a) charge transfer arising at the interface due to the difference in electronegativity of MWCNT C sp{sup 2} and UDD core (C sp{sup 3}) leading to phonon and electron energy renormalization; (b) misorientation of C sp{sup 2} at the interface of MWCNT and UDD shell (C sp{sup 2}) resulting in structural disorder; (c) softening or violation of the q{approx}0 selection rule leading to D band broadening and a minimal change in G band intensity; and (d) normalized intensity of D and G bands with 2D band help to distinguish defect-induced double resonance phenomena. The MWCNT when combined with nanodiamond showed a slight decrease in their conductance further affected by irradiation pointing at relatively good interfacial contact. Furthermore, owing to high thermal and electrical conductivity properties, they can facilitate potentially efficient heat-transfer applications and some results deduced using Nielsen's model is provided.« less

  4. [Errors in medical care rendered by military treatment and prevention institutions (according to the data of forensic medical expertise].

    PubMed

    Kolkutin, V V; Fetisov, V A

    2003-12-01

    The authors discuss one of the important aspects of military medicolegal laboratory activities connected with the quality control of medical care rendered in the military treatment-and-prophylactic institutions in the nineties of the XX century. The example of medical care defects (MCD) permitted to reveal their nature, causes and sites of origin at pre-hospital (PHS) and hospital (HS) stages. Despite some decrease in the total number of MCD revealed HS defects prevail (more than 75%); the organizational defects at PHS and diagnostic defects at HS are predominant. The main MCD causes are inadequate qualification of medical workers, defects in organization of treatment-and-diagnostic process and inadequate examination of patients.

  5. Caudal dysgenesis in islet-1 transgenic mice

    PubMed Central

    Muller, Yunhua Li; Yueh, Yir Gloria; Yaworsky, Paul J.; Salbaum, J. Michael; Kappen, Claudia

    2014-01-01

    Maternal diabetes during pregnancy is responsible for the occurrence of diabetic embryopathy, a spectrum of birth defects that includes heart abnormalities, neural tube defects, and caudal dysgenesis syndromes. Here, we report that mice transgenic for the homeodomain transcription factor Isl-1 develop profound caudal growth defects that resemble human sacral/caudal agenesis. Isl-1 is normally expressed in the pancreas and is required for pancreas development and endocrine cell differentiation. Aberrant regulation of this pancreatic transcription factor causes increased mesodermal cell death, and the severity of defects is dependent on transgene dosage. Together with the finding that mutation of the pancreatic transcription factor HLXB9 causes sacral agenesis, our results implicate pancreatic transcription factors in the pathogenesis of birth defects associated with diabetes. PMID:12738808

  6. Effects of Casting Conditions on End Product Defects in Direct Chill Casted Hot Rolling Ingots

    NASA Astrophysics Data System (ADS)

    Yorulmaz, Arda; Yüksel, Çağlar; Erzi, Eraz; Dispinar, Derya

    Direct chill casting is a reliable casting process for almost any wrought aluminum alloy for subsequent deformation via hot rolling to supply vital industries such as aerospace, automotive, construction, packaging and maritime. While some defects occur during casting, like hot tearing, some others like surface defect causing blisters, appear after hot rolling process or annealing after final cold rolling steps. It was found that some of these defects are caused by melt impurities formed from entrained folded aluminum oxides or bifilms. A study in a hot rolling casting facility was carried out with different melt cleaning practices, launder and molten metal transferring designs. Bifilm index and reduced pressure test were used for determining melt cleanliness measurement. It was found that porous plug gas diffusons for degassing are more effective than lance type degassers and a design towards less turbulent molten metal flow from furnace to mould cavity are necessary for reducing defects caused by bifilms.

  7. Separating genetic and hemodynamic defects in neuropilin 1 knockout embryos.

    PubMed

    Jones, Elizabeth A V; Yuan, Li; Breant, Christine; Watts, Ryan J; Eichmann, Anne

    2008-08-01

    Targeted inactivation of genes involved in murine cardiovascular development frequently leads to abnormalities in blood flow. As blood fluid dynamics play a crucial role in shaping vessel morphology, the presence of flow defects generally prohibits the precise assignment of the role of the mutated gene product in the vasculature. In this study, we show how to distinguish between genetic defects caused by targeted inactivation of the neuropilin 1 (Nrp1) receptor and hemodynamic defects occurring in homozygous knockout embryos. Our analysis of a Nrp1 null allele bred onto a C57BL/6 background shows that vessel remodeling defects occur concomitantly with the onset of blood flow and cause death of homozygous mutants at E10.5. Using mouse embryo culture, we establish that hemodynamic defects are already present at E8.5 and continuous circulation is never established in homozygous mutants. The geometry of yolk sac blood vessels is altered and remodeling into yolk sac arteries and veins does not occur. To separate flow-induced deficiencies from those caused by the Nrp1 mutation, we arrested blood flow in cultured wild-type and mutant embryos and followed their vascular development. We find that loss of Nrp1 function rather than flow induces the altered geometry of the capillary plexus. Endothelial cell migration, but not replication, is altered in Nrp1 mutants. Gene expression analysis of endothelial cells isolated from freshly dissected wild-type and mutants and after culture in no-flow conditions showed down-regulation of the arterial marker genes connexin 40 and ephrin B2 related to the loss of Nrp1 function. This method allows genetic defects caused by loss-of-function of a gene important for cardiovascular development to be isolated even in the presence of hemodynamic defects.

  8. Pseudomonas aeruginosa gshA Mutant Is Defective in Biofilm Formation, Swarming, and Pyocyanin Production

    PubMed Central

    Van Laar, Tricia A.; Esani, Saika; Birges, Tyler J.; Hazen, Bethany; Thomas, Jason M.

    2018-01-01

    ABSTRACT Pseudomonas aeruginosa is a ubiquitous Gram-negative bacterium that can cause severe opportunistic infections. The principal redox buffer employed by this organism is glutathione (GSH). To assess the role of GSH in the virulence of P. aeruginosa, a number of analyses were performed using a mutant strain deficient in gshA, which does not produce GSH. The mutant strain exhibited a growth delay in minimal medium compared to the wild-type strain. Furthermore, the gshA mutant was defective in biofilm and persister cell formation and in swimming and swarming motility and produced reduced levels of pyocyanin, a key virulence factor. Finally, the gshA mutant strain demonstrated increased sensitivity to methyl viologen (a redox cycling agent) as well as the thiol-reactive antibiotics fosfomycin and rifampin. Taken together, these data suggest a key role for GSH in the virulence of P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa is a ubiquitous bacterium that can cause severe opportunistic infections, including many hospital-acquired infections. It is also a major cause of infections in patients with cystic fibrosis. P. aeruginosa is intrinsically resistant to a number of drugs and is capable of forming biofilms that are difficult to eradicate with antibiotics. The number of drug-resistant strains is also increasing, making treatment of P. aeruginosa infections very difficult. Thus, there is an urgent need to understand how P. aeruginosa causes disease in order to find novel ways to treat infections. We show that the principal redox buffer, glutathione (GSH), is involved in intrinsic resistance to the fosfomycin and rifampin antibiotics. We further demonstrate that GSH plays a role in P. aeruginosa disease and infection, since a mutant lacking GSH has less biofilm formation, is less able to swarm, and produces less pyocyanin, a pigment associated with infection. PMID:29669887

  9. Band gap modulation in magnetically doped low-defect thin films of (Bi1-xSbx)2 Te3 with minimized bulk carrier concentration

    NASA Astrophysics Data System (ADS)

    Maximenko, Yulia; Scipioni, Kane; Wang, Zhenyu; Katmis, Ferhat; Steiner, Charles; Weis, Adam; van Harlingen, Dale; Madhavan, Vidya

    Topological insulators Bi2Te3 and Sb2Te3 are promising materials for electronics, but both are naturally prone to vacancies and anti-site defects that move the Fermi energy onto the bulk bands. Fabricating (Bi1-xSbx)2 Te3 (BST) with the tuned x minimizes point defects and unmasks topological surface states by reducing bulk carriers. BST thin films have shown topological surface states and quantum anomalous Hall effect. However, different studies reported variable Sb:Bi ratios used to grow an undoped BST film. Here, we develop a reliable way to grow defect-free subnanometer-flat BST thin films having the Fermi energy tuned to the Dirac point. High-resolution scanning tunneling microscopy (STM) and Landau level spectroscopy prove the importance of crystallinity and surface roughness-not only Sb:Bi ratio-for the final bulk carrier concentration. The BST thin films were doped with Cr and studied with STM with atomic resolution. Counterintuitively, Cr density is anticorrelated with the local band gap due to Cr's antiferromagnetic order. We analyze the correlations and report the relevant band gap values. Predictably, high external magnetic field compromises antiferromagnetic order, and the local band gap increases. US DOE DE-SC0014335; Moore Found. GBMF4860; F. Seitz MRL.

  10. Restoration of Motor Defects Caused by Loss of Drosophila TDP-43 by Expression of the Voltage-Gated Calcium Channel, Cacophony, in Central Neurons.

    PubMed

    Lembke, Kayly M; Scudder, Charles; Morton, David B

    2017-09-27

    Defects in the RNA-binding protein, TDP-43, are known to cause a variety of neurodegenerative diseases, including amyotrophic lateral sclerosis and frontotemporal lobar dementia. A variety of experimental systems have shown that neurons are sensitive to TDP-43 expression levels, yet the specific functional defects resulting from TDP-43 dysregulation have not been well described. Using the Drosophila TDP-43 ortholog TBPH, we previously showed that TBPH-null animals display locomotion defects as third instar larvae. Furthermore, loss of TBPH caused a reduction in cacophony , a Type II voltage-gated calcium channel, expression and that genetically restoring cacophony in motor neurons in TBPH mutant animals was sufficient to rescue the locomotion defects. In the present study, we examined the relative contributions of neuromuscular junction physiology and the motor program to the locomotion defects and identified subsets of neurons that require cacophony expression to rescue the defects. At the neuromuscular junction, we showed mEPP amplitudes and frequency require TBPH. Cacophony expression in motor neurons rescued mEPP frequency but not mEPP amplitude. We also showed that TBPH mutants displayed reduced motor neuron bursting and coordination during crawling and restoring cacophony selectively in two pairs of cells located in the brain, the AVM001b/2b neurons, also rescued the locomotion and motor defects, but not the defects in neuromuscular junction physiology. These results suggest that the behavioral defects associated with loss of TBPH throughout the nervous system can be associated with defects in a small number of genes in a limited number of central neurons, rather than peripheral defects. SIGNIFICANCE STATEMENT TDP-43 dysfunction is a common feature in neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal lobar dementia, and Alzheimer's disease. Loss- and gain-of-function models have shown that neurons are sensitive to TDP-43 expression levels, but the specific defects caused by TDP-43 loss of function have not been described in detail. A Drosophila loss-of-function model displays pronounced locomotion defects that can be reversed by restoring the expression levels of a voltage-gated calcium channel, cacophony. We show these defects can be rescued by expression of cacophony in motor neurons and by expression in two pairs of neurons in the brain. These data suggest that loss of TDP-43 can disrupt the central circuitry of the CNS, opening up identification of alternative therapeutic targets for TDP-43 proteinopathies. Copyright © 2017 the authors 0270-6474/17/379486-12$15.00/0.

  11. Etiology and clinical presentation of birth defects: population based study

    PubMed Central

    Carey, John C; Byrne, Janice L B; Krikov, Sergey; Botto, Lorenzo D

    2017-01-01

    Objective To assess causation and clinical presentation of major birth defects. Design Population based case cohort. Setting Cases of birth defects in children born 2005-09 to resident women, ascertained through Utah’s population based surveillance system. All records underwent clinical re-review. Participants 5504 cases among 270 878 births (prevalence 2.03%), excluding mild isolated conditions (such as muscular ventricular septal defects, distal hypospadias). Main outcome measures The primary outcomes were the proportion of birth defects with a known etiology (chromosomal, genetic, human teratogen, twinning) or unknown etiology, by morphology (isolated, multiple, minors only), and by pathogenesis (sequence, developmental field defect, or known pattern of birth defects). Results Definite cause was assigned in 20.2% (n=1114) of cases: chromosomal or genetic conditions accounted for 94.4% (n=1052), teratogens for 4.1% (n=46, mostly poorly controlled pregestational diabetes), and twinning for 1.4% (n=16, conjoined or acardiac). The 79.8% (n=4390) remaining were classified as unknown etiology; of these 88.2% (n=3874) were isolated birth defects. Family history (similarly affected first degree relative) was documented in 4.8% (n=266). In this cohort, 92.1% (5067/5504) were live born infants (isolated and non-isolated birth defects): 75.3% (4147/5504) were classified as having an isolated birth defect (unknown or known etiology). Conclusions These findings underscore the gaps in our knowledge regarding the causes of birth defects. For the causes that are known, such as smoking or diabetes, assigning causation in individual cases remains challenging. Nevertheless, the ongoing impact of these exposures on fetal development highlights the urgency and benefits of population based preventive interventions. For the causes that are still unknown, better strategies are needed. These can include greater integration of the key elements of etiology, morphology, and pathogenesis into epidemiologic studies; greater collaboration between researchers (such as developmental biologists), clinicians (such as medical geneticists), and epidemiologists; and better ways to objectively measure fetal exposures (beyond maternal self reports) and closer (prenatally) to the critical period of organogenesis. PMID:28559234

  12. Zic2-associated holoprosencephaly is caused by a transient defect in the organizer region during gastrulation.

    PubMed

    Warr, Nicholas; Powles-Glover, Nicola; Chappell, Anna; Robson, Joan; Norris, Dominic; Arkell, Ruth M

    2008-10-01

    The putative transcription factor ZIC2 is associated with a defect of forebrain development, known as Holoprosencephaly (HPE), in humans and mouse, yet the mechanism by which aberrant ZIC2 function causes classical HPE is unexplained. The zinc finger domain of all mammalian Zic genes is highly homologous with that of the Gli genes, which are transcriptional mediators of Shh signalling. Mutations in Shh and many other Hh pathway members cause HPE and it has been proposed that Zic2 acts within the Shh pathway to cause HPE. We have investigated the embryological cause of Zic2-associated HPE and the relationship between Zic2 and the Shh pathway using mouse genetics. We show that Zic2 does not interact with Shh to produce HPE. Moreover, molecular defects that are able to account for the HPE phenotype are present in Zic2 mutants before the onset of Shh signalling. Mutation of Zic2 causes HPE via a transient defect in the function of the organizer region at mid-gastrulation which causes an arrest in the development of the prechordal plate (PCP), a structure required for forebrain midline morphogenesis. The analysis provides genetic evidence that Zic2 functions during organizer formation and that the PCP develops via a multi-step process.

  13. Correction of the DNA repair defect in xeroderma pigmentosum group E by injection of a DNA damage-binding protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keeney, S.; Brody, T.; Linn, S.

    1994-04-26

    Cells from a subset of patients with the DNA-repair-defective disease xeroderma pigmentosum complementation group E (XP-E) are known to lack a DNA damage-binding (DDB) activity. Purified human DDB protein was injected into XP-E cells to test whether the DNA-repair defect in these cells is caused by a defect in DDB activity. Injected DDB protein stimulated DNA repair to normal levels in those strains that lack the DDB activity but did not stimulate repair in cells from other xeroderma pigmentosum groups or in XP-E cells that contain the activity. These results provide direct evidence that defective DDB activity causes the repairmore » defect in a subset of XP-E patients, which in turn establishes a role for this activity in nucleotide-excision repair in vivo.« less

  14. Developmental defects in zebrafish for classification of EGF pathway inhibitors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pruvot, Benoist; Curé, Yoann; Djiotsa, Joachim

    2014-01-15

    One of the major challenges when testing drug candidates targeted at a specific pathway in whole animals is the discrimination between specific effects and unwanted, off-target effects. Here we used the zebrafish to define several developmental defects caused by impairment of Egf signaling, a major pathway of interest in tumor biology. We inactivated Egf signaling by genetically blocking Egf expression or using specific inhibitors of the Egf receptor function. We show that the combined occurrence of defects in cartilage formation, disturbance of blood flow in the trunk and a decrease of myelin basic protein expression represent good indicators for impairmentmore » of Egf signaling. Finally, we present a classification of known tyrosine kinase inhibitors according to their specificity for the Egf pathway. In conclusion, we show that developmental indicators can help to discriminate between specific effects on the target pathway from off-target effects in molecularly targeted drug screening experiments in whole animal systems. - Highlights: • We analyze the functions of Egf signaling on zebrafish development. • Genetic blocking of Egf expression causes cartilage, myelin and circulatory defects. • Chemical inhibition of Egf receptor function causes similar defects. • Developmental defects can reveal the specificity of Egf pathway inhibitors.« less

  15. Learning defects in Drosophila growth restricted chico mutants are caused by attenuated adenylyl cyclase activity.

    PubMed

    Naganos, Shintaro; Ueno, Kohei; Horiuchi, Junjiro; Saitoe, Minoru

    2016-04-06

    Reduced insulin/insulin-like growth factor signaling (IIS) is a major cause of symmetrical intrauterine growth retardation (IUGR), an impairment in cell proliferation during prenatal development that results in global growth defects and mental retardation. In Drosophila, chico encodes the only insulin receptor substrate. Similar to other animal models of IUGR, chico mutants have defects in global growth and associative learning. However, the physiological and molecular bases of learning defects caused by chico mutations, and by symmetrical IUGR, are not clear. In this study, we found that chico mutations impair memory-associated synaptic plasticity in the mushroom bodies (MBs), neural centers for olfactory learning. Mutations in chico reduce expression of the rutabaga-type adenylyl cyclase (rut), leading to decreased cAMP synthesis in the MBs. Expressing a rut (+) transgene in the MBs restores memory-associated plasticity and olfactory associative learning in chico mutants, without affecting growth. Thus chico mutations disrupt olfactory learning, at least in part, by reducing cAMP signaling in the MBs. Our results suggest that some cognitive defects associated with reduced IIS may occur, independently of developmental defects, from acute reductions in cAMP signaling.

  16. 7 CFR 51.1564 - External defects.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FRESH FRUITS, VEGETABLES AND OTHER PRODUCTS 1,2 (INSPECTION, CERTIFICATION, AND STANDARDS) United States...) in the aggregate. Artificial Coloring When unsightly or when concealing any defect causing damage or... the surface area of the potato When its severity causes a wrinkling of the skin over more than 50...

  17. Congenital Heart Disease: Causes, Diagnosis, Symptoms, and Treatments.

    PubMed

    Sun, RongRong; Liu, Min; Lu, Lei; Zheng, Yi; Zhang, Peiying

    2015-07-01

    The congenital heart disease includes abnormalities in heart structure that occur before birth. Such defects occur in the fetus while it is developing in the uterus during pregnancy. About 500,000 adults have congenital heart disease in USA (WebMD, Congenital heart defects medications, www.WebMD.com/heart-disease/tc/congenital-heart-defects-medications , 2014). 1 in every 100 children has defects in their heart due to genetic or chromosomal abnormalities, such as Down syndrome. The excessive alcohol consumption during pregnancy and use of medications, maternal viral infection, such as Rubella virus, measles (German), in the first trimester of pregnancy, all these are risk factors for congenital heart disease in children, and the risk increases if parent or sibling has a congenital heart defect. These are heart valves defects, atrial and ventricular septa defects, stenosis, the heart muscle abnormalities, and a hole inside wall of the heart which causes defect in blood circulation, heart failure, and eventual death. There are no particular symptoms of congenital heart disease, but shortness of breath and limited ability to do exercise, fatigue, abnormal sound of heart as heart murmur, which is diagnosed by a physician while listening to the heart beats. The echocardiogram or transesophageal echocardiogram, electrocardiogram, chest X-ray, cardiac catheterization, and MRI methods are used to detect congenital heart disease. Several medications are given depending on the severity of this disease, and catheter method and surgery are required for serious cases to repair heart valves or heart transplantation as in endocarditis. For genetic study, first DNA is extracted from blood followed by DNA sequence analysis and any defect in nucleotide sequence of DNA is determined. For congenital heart disease, genes in chromosome 1 show some defects in nucleotide sequence. In this review the causes, diagnosis, symptoms, and treatments of congenital heart disease are described.

  18. Superoxide Dismutase 1 In Vivo Ameliorates Maternal Diabetes Mellitus-Induced Apoptosis and Heart Defects Through Restoration of Impaired Wnt Signaling.

    PubMed

    Wang, Fang; Fisher, Steven A; Zhong, Jianxiang; Wu, Yanqing; Yang, Peixin

    2015-10-01

    Oxidative stress is manifested in embryos exposed to maternal diabetes mellitus, yet specific mechanisms for diabetes mellitus-induced heart defects are not defined. Gene deletion of intermediates of Wingless-related integration (Wnt) signaling causes heart defects similar to those observed in embryos from diabetic pregnancies. We tested the hypothesis that diabetes mellitus-induced oxidative stress impairs Wnt signaling, thereby causing heart defects, and that these defects can be rescued by transgenic overexpression of the reactive oxygen species scavenger superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-overexpressing embryos from nondiabetic WT control dams and nondiabetic/diabetic WT female mice mated with SOD1 transgenic male mice were analyzed. No heart defects were observed in WT and SOD1 embryos under nondiabetic conditions. WT embryos of diabetic dams had a 26% incidence of cardiac outlet defects that were suppressed by SOD1 overexpression. Insulin treatment reduced blood glucose levels and heart defects. Diabetes mellitus increased superoxide production, canonical Wnt antagonist expression, caspase activation, and apoptosis and suppressed cell proliferation. Diabetes mellitus suppressed Wnt signaling intermediates and Wnt target gene expression in the embryonic heart, each of which were reversed by SOD1 overexpression. Hydrogen peroxide and peroxynitrite mimicked the inhibitory effect of high glucose on Wnt signaling, which was abolished by the SOD1 mimetic, tempol. The oxidative stress of diabetes mellitus impairs Wnt signaling and causes cardiac outlet defects that are rescued by SOD1 overexpression. This suggests that targeting of components of the Wnt5a signaling pathway may be a viable strategy for suppression of congenital heart defects in fetuses of diabetic pregnancies. © 2015 American Heart Association, Inc.

  19. Painful lumbar spondylolysis among pediatric sports players: a pilot MRI study.

    PubMed

    Sairyo, Koichi; Sakai, Toshinori; Mase, Yasuyoshi; Kon, Tamiyo; Shibuya, Isao; Kanamori, Yasuo; Kosugi, Tatsuo; Dezawa, Akira

    2011-11-01

    For children and adolescents who are very active athletes, fresh lumbar spondylolysis is the main pathologic cause of lower back pain (LBP). However, regarding the terminal-stage spondylolysis (pars defect), there have been few studies to clarify the pathomechanism of LBP. The purpose of this study is to clarify the cause of LBP associated with pars defects in athletes. This is the first report showing a possible pathomechanism of LBP in active athletes with painful pars defect. Six pediatric athletes (5 boys and 1 girl) below 18 years old with painful bilateral lumbar spondylolysis were evaluated. In all cases, spondylolysis was identified as terminal stage (pseudoarthrosis) on CT scan. To evaluate the inflammation around the pars defects, short time inversion recovery (STIR) MRI was performed along with the sagittal section. Fluid collection, which is an indicator of inflammatory events, was evaluated in 12 pars defects as well as in 12 cranial and caudal adjoining facet joints. Inflammation (i.e., fluid collection) was observed in all 12 pars defects in six subjects at the pseudoarthrotic pars defects. In terms of facet joints, 7 of 12 (58%) pars defects showed fluid collection at the cranial and/or caudal adjoining joints on STIR MRI. The present study showed that inflammation was always present at the pars defects and in some cases at the adjoining facet joints. Thus, it is not difficult to understand how, during sports activity, inflammation may first occur at the pseudoarthrotic site and then spread to the adjoining facet joints. This mechanism could cause LBP associated with terminal-stage (pseudoarthrotics) spondylolysis in athletes.

  20. A study on the applications of AI in finishing of additive manufacturing parts

    NASA Astrophysics Data System (ADS)

    Fathima Patham, K.

    2017-06-01

    Artificial intelligent and computer simulation are the technological powerful tools for solving complex problems in the manufacturing industries. Additive Manufacturing is one of the powerful manufacturing techniques that provide design flexibilities to the products. The products with complex shapes are directly manufactured without the need of any machining and tooling using Additive Manufacturing. However, the main drawback of the components produced using the Additive Manufacturing processes is the quality of the surfaces. This study aims to minimize the defects caused during Additive Manufacturing with the aid of Artificial Intelligence. The developed AI system has three layers, each layer is trying to eliminate or minimize the production errors. The first layer of the AI system optimizes the digitization of the 3D CAD model of the product and hence reduces the stair case errors. The second layer of the AI system optimizes the 3D printing machine parameters in order to eliminate the warping effect. The third layer of AI system helps to choose the surface finishing technique suitable for the printed component based on the Degree of Complexity of the product and the material. The efficiency of the developed AI system was examined on the functional parts such as gears.

  1. Transcatheter Retrieval of Embolized Atrial Septal Defect Occluder Device by Waist Capture Technique.

    PubMed

    Her, Ae-Young; Lim, Kyung-Hun; Shin, Eun-Seok

    2018-01-27

    This case study describes the successful percutaneous transcatheter retrieval of an embolized Amplatzer occluder device using the "waist capture technique" in a patient with an atrial septal defect. This technique allowed for stability of the Amplatzer device, compression of the atrial discs for easier removal, prevention of further embolization, and minimal injury to vasculature during device retrieval. This novel and effective technique can be used safely for the retrieval of Amplatzer devices in the venous system.

  2. Nonstoichiometric defects in GaAs and the EL2 bandwagon

    NASA Astrophysics Data System (ADS)

    Lagowski, J.; Gatos, H. C.

    1985-09-01

    In the present paper, an attempt is made to formulate a common framework for a discussion of nonstoichiometric defects, especially EL2 and dislocations. An outline is provided of the most important settled and unsettled issues, taking into account not only fundamental interests, but also urgent needs in advancing IC technology. Attention is given to stoichiometry-controlled compensation, the expected role of melt stoichiometry in electrical conductivity for the basic atomic disorders, defect equilibria-dislocations and EL2, and current issues pertaining to the identification of EL2. It is concluded that nonstoichiometric defects play a critical role in the electronic properties of GaAs and its electronic applications. Very significant progress has been recently made in learning how to adjust melt stoichiometry in order to maximize its beneficial effects and minimize its detrimental ones.

  3. Nonstoichiometric defects in GaAs and the EL2 bandwagon

    NASA Technical Reports Server (NTRS)

    Lagowski, J.; Gatos, H. C.

    1985-01-01

    In the present paper, an attempt is made to formulate a common framework for a discussion of nonstoichiometric defects, especially EL2 and dislocations. An outline is provided of the most important settled and unsettled issues, taking into account not only fundamental interests, but also urgent needs in advancing IC technology. Attention is given to stoichiometry-controlled compensation, the expected role of melt stoichiometry in electrical conductivity for the basic atomic disorders, defect equilibria-dislocations and EL2, and current issues pertaining to the identification of EL2. It is concluded that nonstoichiometric defects play a critical role in the electronic properties of GaAs and its electronic applications. Very significant progress has been recently made in learning how to adjust melt stoichiometry in order to maximize its beneficial effects and minimize its detrimental ones.

  4. Topological protection of photonic mid-gap cavity modes

    NASA Astrophysics Data System (ADS)

    Benalcazar, Wladimir A.; Noh, Jiho; Huang, Sheng; Collins, Matthew J.; Chen, Kevin; Hughes, Taylor L.; Rechtsman, Mikael

    Defect modes in two-dimensional periodic photonic structures have found use in a highly diverse set of optical devices. Here, we show in theory and experiment that a photonic topological crystalline insulator structure can be used to generate topological defect-localized modes. These defect modes are protected by chiral and crystalline symmetries, and have resonance frequencies in the middle of the photonic band gap (which minimize the mode volume). This protection of zero-dimensional states (defect modes) embedded in a two-dimensional environment constitutes a novel form of topological protection that has not been previously demonstrated. WAB and TLH are supported by the ONR YIP Award N00014-15-1-2383. M.C.R. and J.N. are supported by NSF, Grant ECCS-1509546; M.C.R. is supported by the Alfred P. Sloan foundation fellowship FG-2016-6418.

  5. Androgen insensitivity syndrome

    MedlinePlus

    ... the person has some or all of the physical traits of a woman, but the genetic makeup of a man. Causes AIS is caused by genetic defects on the X chromosome. These defects make the body unable to respond to the hormones that produce a male appearance. The syndrome is divided into two main categories: ...

  6. 47 CFR 14.46 - Formal complaints not stating a cause of action; defective pleadings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 1 2014-10-01 2014-10-01 false Formal complaints not stating a cause of action; defective pleadings. 14.46 Section 14.46 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT BY PEOPLE WITH DISABILITIES Recordkeeping, Consumer...

  7. 47 CFR 14.46 - Formal complaints not stating a cause of action; defective pleadings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 1 2013-10-01 2013-10-01 false Formal complaints not stating a cause of action; defective pleadings. 14.46 Section 14.46 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT BY PEOPLE WITH DISABILITIES Recordkeeping, Consumer...

  8. 47 CFR 14.46 - Formal complaints not stating a cause of action; defective pleadings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Formal complaints not stating a cause of action; defective pleadings. 14.46 Section 14.46 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL ACCESS TO ADVANCED COMMUNICATIONS SERVICES AND EQUIPMENT BY PEOPLE WITH DISABILITIES Recordkeeping, Consumer...

  9. [Orthotic management for patients with osteogenesis imperfecta].

    PubMed

    Alguacil Diego, I M; Molina Rueda, F; Gómez Conches, M

    2011-02-01

    Osteogenesis imperfecta (OI) is a disease caused by a genetic defect in the qualitative and quantitative synthesis of type I collagen. There is a wide variation in its clinical signs, characterized by bone fragility, resulting in a bone vulnerable to external and internal forces, determining the occurrence of frequent fractures with minimal or no trauma. The therapeutic objective is directed to improve the functional capacity of the child or adult concerned, adopting those compensatory strategies to optimise their independence. In this sense, the use of different orthoses and assistive technology are important for achieving these objectives. We reviewed the main contributions to this orthotic disease and the evolution of the different devices used in different databases over the last 25 years. Copyright © 2010 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  10. Phonons, defects and optical damage in crystalline acetanilide

    NASA Astrophysics Data System (ADS)

    Kosic, Thomas J.; Hill, Jeffrey R.; Dlott, Dana D.

    1986-04-01

    Intense picosecond pulses cause accumulated optical damage in acetanilide crystals at low temperature. Catastrophic damage to the irradiated volume occurs after an incubation period where defects accumulate. The optical damage is monitored with subanosecond time resolution. The generation of defects is studied with damage-detected picosecond spectroscopy. The accumulation of defects is studied by time-resolved coherent Raman scattering, which is used to measure optical phonon scattering from the accumulating defects.

  11. Binasal hemianopia.

    PubMed

    Salinas-Garcia, R F; Smith, J L

    1978-09-01

    The visual fields of 100 patients referred for neuro-ophthalmologic examination were reviewed; eight cases had binasal visual field defects. Most clinicians have suspected an intracranial cause for such field defects since the classic report of Cushing and Walker in 1912. However, in this study, the cause for the binasal hemianopia was found to be ischemic optic neuropathy in two patients, and one case each of optic nerve drusen, glaucoma, congenital optic nerve pits, and retinitis pigmentosa sine pigmento. Thus 75% of the cases had an intraocular cause for the binasal hemianopia. Two patients had congenital hydrocephalus, and an intracranial basis was thus noted in 25% of these cases. The neurosurgeon should realize that the patient with binasal field defects is much more likely to have an ocular cause than an intracranial one for his problem.

  12. Detection of cardiovascular shunts by transesophageal echocardiography in patients with pulmonary hypertension of unexplained cause.

    PubMed

    Chen, W J; Chen, J J; Lin, S C; Hwang, J J; Lien, W P

    1995-01-01

    The purpose of this study was to validate the usefulness of transesophageal echocardiography (TEE) in the assessment of cardiovascular shunts in patients with pulmonary hypertension (PH) of unexplained cause. Twenty-four adult patients, 16 women, 8 men; 15 to 70 years of age, with PH of unexplained cause were studied. All were examined by transthoracic echocardiography (TTE) and TEE. TTE showed the ventricular septal defect in two patients, muscular type in one and perimembranous type in the other. TEE showed the atrial septal defect in eight patients (secundum type in six and primum type in the remaining) and the patient ductus arteriosus in six patients, which were not seen by TTE. The ventricular septal defect shown by TTE was also found by TEE. Patients with a ventricular septal defect were also associated with a patient ductus arteriosus. Among 14 patients with cardiovascular lesions, nine patients displayed a pattern of bidirectional shunt, four a pure left-to-right shunt, and the remaining one a pure right-to-left shunt. All of the cardiovascular defects could be confirmed by passage of the catheter across the defect at cardiac catheterization. In light of PH, transthoracic identification of cardiovascular shunts is difficult because of the low velocity across the defect. In this study, we found that TEE was superior to TTE in detecting and localizing cardiovascular malformations in patient with PH.

  13. Clinical study on minimally invasive liquefaction and drainage of intracerebral hematoma in the treatment of hypertensive putamen hemorrhage.

    PubMed

    Liang, Ke-Shan; Ding, Jian; Yin, Cheng-Bin; Peng, Li-Jing; Liu, Zhen-Chuan; Guo, Xiao; Liang, Shu-Yu; Zhang, Yong; Zhou, Sheng-Nian

    2017-12-04

    This study aims to compare the curative effect of different treatment methods of hypertensive putamen hemorrhage, in order to determine an ideal method of treatment; and to explore the curative effect of the application of soft channel technology-minimally invasive liquefaction and drainage of intracerebral hematoma in the treatment of hypertensive putamen hemorrhage. Patients with hypertensive cerebral hemorrhage, who were treated in our hospital from January 2015 to January 2016, were included into this study. Patients were divided into three groups: minimally invasive drainage group, internal medical treatment group and craniotomy group. In the minimally invasive drainage group, puncture aspiration and drainage were performed according to different hematoma conditions detected in brain CT, the frontal approach was selected for putamen and intracerebral hemorrhage, and drainage was reserved until the hematoma disappeared in CT detection. Drug therapy was dominated in the internal medical treatment group, while surgery under general anesthesia was performed to remove the hematoma in the craniotomy group. Post-treatment neurological function defect scores in minimally invasive drainage group and internal medical group were 16.14 ± 11.27 and 31.43 ± 10.42, respectively; and the difference was remarkably significant (P< 0.01). Post-treatment neurological function defect scores in the minimally invasive drainage group and craniotomy group were 16.14 ± 11.27 and 24.20 ± 12.23, respectively; and the difference was statistically significant (P< 0.05). There was a remarkable significant difference in ADL1-2 level during followed-up in survival patients between the minimally invasive drainage group and internal medical treatment group (P< 0.01), and there was a significant difference in followed-up mortality between these two groups (P< 0.01). Clinical observation and following-up results revealed that minimally invasive drainage treatment was superior to internal medical treatment and craniotomy.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Hal A.; Zhao, Xun; Wang, Chi

    Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator (CFTR), commonly the deletion of residue Phe-508 (DeltaF508) in the first nucleotide-binding domain (NBD1), which results in a severe reduction in the population of functional channels at the epithelial cell surface. Previous studies employing incomplete NBD1 domains have attributed this to aberrant folding of DeltaF508 NBD1. We report structural and biophysical studies on complete human NBD1 domains, which fail to demonstrate significant changes of in vitro stability or folding kinetics in the presence or absence of the DeltaF508 mutation. Crystal structures show minimal changes in protein conformationmore » but substantial changes in local surface topography at the site of the mutation, which is located in the region of NBD1 believed to interact with the first membrane spanning domain of CFTR. These results raise the possibility that the primary effect of DeltaF508 is a disruption of proper interdomain interactions at this site in CFTR rather than interference with the folding of NBD1. Interestingly, increases in the stability of NBD1 constructs are observed upon introduction of second-site mutations that suppress the trafficking defect caused by the DeltaF508 mutation, suggesting that these suppressors might function indirectly by improving the folding efficiency of NBD1 in the context of the full-length protein. The human NBD1 structures also solidify the understanding of CFTR regulation by showing that its two protein segments that can be phosphorylated both adopt multiple conformations that modulate access to the ATPase active site and functional interdomain interfaces.« less

  15. The role of Candida albicans AP-1 protein against host derived ROS in in vivo models of infection.

    PubMed

    Jain, Charu; Pastor, Kelly; Gonzalez, Arely Y; Lorenz, Michael C; Rao, Reeta P

    2013-01-01

    Candida albicans is a major fungal pathogen of humans, causing mucosal infections that are difficult to eliminate and systemic infections that are often lethal primarily due to defects in the host's innate status. Here we demonstrate the utility of Caenorhabditis elegans, a model host to study innate immunity, by exploring the role of reactive oxygen species (ROS) as a critical innate response against C. albicans infections. Much like a human host, the nematode's innate immune response is activated to produce ROS in response to fungal infection. We use the C. albicans cap1 mutant, which is susceptible to ROS, as a tool to dissect this physiological innate immune response and show that cap1 mutants fail to cause disease and death, except in bli-3 mutant worms that are unable to produce ROS because of a defective NADPH oxidase. We further validate the ROS-mediated host defense mechanism in mammalian phagocytes by demonstrating that chemical inhibition of the NADPH oxidase in cultured macrophages enables the otherwise susceptible cap1 mutant to resists ROS-mediated phagolysis. Loss of CAP1 confers minimal attenuation of virulence in a disseminated mouse model, suggesting that CAP1-independent mechanisms contribute to pathogen survival in vivo. Our findings underscore a central theme in the process of infection-the intricate balance between the virulence strategies employed by C. albicans and the host's innate immune system and validates C. elegans as a simple model host to dissect this balance at the molecular level.

  16. Stereomicroscopic evaluation of dentinal defects induced by new rotary system: “ProTaper NEXT”

    PubMed Central

    Shori, Deepa Deepak; Shenoi, Pratima Ramakrishna; Baig, Arshia R; Kubde, Rajesh; Makade, Chetana; Pandey, Swapnil

    2015-01-01

    Introduction: The objective of this study was to evaluate dentinal defects formed by new rotary system — Protaper next™ (PTN). Materials and Methods: Sixty single-rooted premolars were selected. All specimens were decoronated and divided into four groups, each group having 15 specimens. Group I specimens were prepared by Hand K-files (Mani), Group II with ProTaper Universal (PT; Dentsply Maillefer), Group III with Hero Shaper (HS; Micro-Mega, Besancon, France), and Group IV with PTN (Dentsply Maillefer). Roots of each specimen were sectioned at 3, 6, and 9mm from the apex and were then viewed under a stereomicroscope to evaluate presence or absence of dentinal defects. Results: In roots prepared with hand files (HFs) showed lowest percentage of dentinal defects (6.7%); whereas in roots prepared with PT, HS, and PTN it was 40, 66.7, and 26.7%, respectively. There was significant difference between the HS group and the PTN group (P < 0.05). Conclusion: All rotary files induced defects in root dentin, whereas the hand instruments induced minimal defects. PMID:26069406

  17. The figure-of-eight radix nasi flap for medial canthal defects.

    PubMed

    Seyhan, Tamer

    2010-09-01

    Basal cell carcinomas commonly involve the medial canthal region and reconstruction of medial canthal defects is a challenging problem in reconstructive surgery. A new axial pattern flap raised from radix nasi region has been successfully used for the medial canthal defects in eight patients in figure-of-eight manner. One of the ellipses of the figure of eight is the defect, the other is the radix nasi flap. The radix nasi flap with a dimension up to 25 mm is transposed to the defect based either on ipsilateral anastomosis of the dorsal nasal artery with angular artery (AA) or with the connection of its source artery (i.e. ophthalmic artery) if the AA is damaged. All flaps survived and no tumour recurrence was observed. The donor sites were closed primarily and hidden at the radix nasi crease in all cases. The radix nasi flap in figure-of-eight fashion is good alternative for defects of the medial canthal area in terms of attaining a suitable colour and texture and minimal surgical scars. Copyright 2009 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  18. Use of direct washing of chemical dispense nozzle for defect control

    NASA Astrophysics Data System (ADS)

    Linnane, Michael; Mack, George; Longstaff, Christopher; Winter, Thomas

    2006-03-01

    Demands for continued defect reduction in 300mm IC manufacturing are driving process engineers to examine all aspects of the chemical apply process for improvement. Historically, the defect contribution from photoresist apply nozzles has been minimized through a carefully controlled process of "dummy dispenses" to keep the photoresist in the tip "fresh" and remove any solidified material, a preventive maintenance regime involving periodic cleaning or replacing of the nozzles, and reliance on a pool of solvent within the nozzle storage block to keep the photoresist from solidifying at the nozzle tip. The industry standard has worked well for the most part but has limitations in terms of cost effectiveness and absolute defect elimination. In this study, we investigate the direct washing of the chemical apply nozzle to reduce defects seen on the coated wafer. Data is presented on how the direct washing of the chemical dispense nozzle can be used to reduce coating related defects, reduce material costs from the reduction of "dummy dispense", and can reduce equipment downtime related to nozzle cleaning or replacement.

  19. Cloning and Sequencing of Defective Particles Derived from the Autonomous Parvovirus Minute Virus of Mice for the Construction of Vectors with Minimal cis-Acting Sequences

    PubMed Central

    Clément, Nathalie; Avalosse, Bernard; El Bakkouri, Karim; Velu, Thierry; Brandenburger, Annick

    2001-01-01

    The production of wild-type-free stocks of recombinant parvovirus minute virus of mice [MVM(p)] is difficult due to the presence of homologous sequences in vector and helper genomes that cannot easily be eliminated from the overlapping coding sequences. We have therefore cloned and sequenced spontaneously occurring defective particles of MVM(p) with very small genomes to identify the minimal cis-acting sequences required for DNA amplification and virus production. One of them has lost all capsid-coding sequences but is still able to replicate in permissive cells when nonstructural proteins are provided in trans by a helper plasmid. Vectors derived from this particle produce stocks with no detectable wild-type MVM after cotransfection with new, matched, helper plasmids that present no homology downstream from the transgene. PMID:11152501

  20. Shift Happens. How Halide Ion Defects Influence Photoinduced Segregation in Mixed Halide Perovskites

    DOE PAGES

    Yoon, Seog Joon; Kuno, Masaru; Kamat, Prashant V.

    2017-06-01

    Minimizing photoinduced segregation in mixed halide lead perovskites is important for achieving stable photovoltaic performance. The shift in the absorption and the rate of formation of iodide- and bromide-rich regions following visible excitation of mixed halide lead perovskites is found to strongly depend on the halide ion concentration. Slower formation and recovery rates observed in halide-deficient films indicate the involvement of defect sites in influencing halide phase segregation. At higher halide concentrations (in stoichiometric excess), segregation effects become less prominent, as evidenced by faster recovery kinetics. These results suggest that light-induced compositional segregation can be minimized in mixed halide perovskitemore » films by using excess halide ions. In conclusion, the findings from this study further reflect the importance of halide ion post-treatment of perovskite films to improve their solar cell performance.« less

  1. A defect in holographic interpretations of tensor networks

    NASA Astrophysics Data System (ADS)

    Czech, Bartlomiej; Nguyen, Phuc H.; Swaminathan, Sivaramakrishnan

    2017-03-01

    We initiate the study of how tensor networks reproduce properties of static holographic space-times, which are not locally pure anti-de Sitter. We consider geometries that are holographically dual to ground states of defect, interface and boundary CFTs and compare them to the structure of the requisite MERA networks predicted by the theory of minimal updates. When the CFT is deformed, certain tensors require updating. On the other hand, even identical tensors can contribute differently to estimates of entanglement entropies. We interpret these facts holographically by associating tensor updates to turning on non-normalizable modes in the bulk. In passing, we also clarify and complement existing arguments in support of the theory of minimal updates, propose a novel ansatz called rayed MERA that applies to a class of generalized interface CFTs, and analyze the kinematic spaces of the thin wall and AdS3-Janus geometries.

  2. Quality Tools and TRIZ Based Quality Improvement Case Study at PT ‘X’ A Plastic Moulding Manufacturing Industry

    NASA Astrophysics Data System (ADS)

    Wirawan, Christina; Chandra, Fory

    2016-02-01

    Theory of Inventive Problem Solving (TRIZ) is a creative encouraging problem solving method. TRIZ is prepared by Altshuller for product design. Altshuller prepared contradiction matrix and suggestion to solve contradictions usually occur in product design. This paper try to combine TRIZ with quality tools such as Pareto and Fault Tree Analysis (FTA) to solve contradiction in quality improvement problem, neither than product design problem. Pareto used to identify defect priority, FTA used to analysis and identify root cause of defect. When there is contradiction in solving defect causes, TRIZ used to find creative problem solving. As a case study, PT ’X’, a plastic molding manufacturing industry was taken. PT ‘X’ using traditional press machine to produce plastic thread cone. There are 5 defect types that might occur in plastic thread cone production, incomplete form, dirty, mottle, excessive form, rugged. Research about quality improvement effort using DMAIC at PT ‘X’ have been done by Fory Candra. From this research, defect types, priority, root cause from FTA, recommendation from FMEA. In this research, from FTA reviewed, contradictions found among causes troublesome quality improvement efforts. TRIZ used to solve the contradictions and quality improvement effort can be made effectively.

  3. Planarization of Isolated Defects on ICF Target Capsule Surfaces by Pulsed Laser Ablation

    DOE PAGES

    Alfonso, Noel; Carlson, Lane C.; Bunn, Thomas L.

    2016-08-09

    Demanding surface quality requirements for inertial confinement fusion (ICF) capsules motivated the development of a pulsed laser ablation method to reduce or eliminate undesirable surface defects. The pulsed laser ablation technique takes advantage of a full surface (4π) capsule manipulation system working in combination with an optical profiling (confocal) microscope. Based on the defect topography, the material removal rate, the laser pulse energy and its beam profile, a customized laser raster pattern is derived to remove the defect. The pattern is a table of coordinates and number of pulses that dictate how the defect will be vaporized until its heightmore » is level with the capsule surface. This paper explains how the raster patterns are optimized to minimize surface roughness and how surface roughness after laser ablation is simulated. The simulated surfaces are compared with actual ablated surfaces. Large defects are reduced to a size regime where a tumble finishing process produces very high quality surfaces devoid of high mode defects. The combined polishing processes of laser ablation and tumble finishing have become routine fabrication steps for National Ignition Facility capsule production.« less

  4. Defect reduction for semiconductor memory applications using jet and flash imprint lithography

    NASA Astrophysics Data System (ADS)

    Ye, Zhengmao; Luo, Kang; Irving, J. W.; Lu, Xiaoming; Zhang, Wei; Fletcher, Brian; Liu, Weijun; Xu, Frank; LaBrake, Dwayne; Resnick, Douglas; Sreenivasan, S. V.

    2013-03-01

    Imprint lithography has been shown to be an effective technique for replication of nano-scale features. Jet and Flash Imprint Lithography (J-FIL) involves the field-by-field deposition and exposure of a low viscosity resist deposited by jetting technology onto the substrate. The patterned mask is lowered into the fluid which then quickly flows into the relief patterns in the mask by capillary action. Following this filling step, the resist is crosslinked under UV radiation, and then the mask is removed leaving a patterned resist on the substrate. Acceptance of imprint lithography for manufacturing will require demonstration that it can attain defect levels commensurate with the defect specifications of high end memory devices. Typical defectivity targets are on the order of 0.10/cm2. In previous studies, we have focused on defects such as random non-fill defects occurring during the resist filling process and repeater defects caused by interactions with particles on the substrate. In this work, we attempted to identify the critical imprint defect types using a mask with NAND Flash-like patterns at dimensions as small as 26nm. The two key defect types identified were line break defects induced by small particulates and airborne contaminants which result in local adhesion failure. After identification, the root cause of the defect was determined, and corrective measures were taken to either eliminate or reduce the defect source. As a result, we have been able to reduce defectivity levels by more than three orders of magnitude in only 12 months and are now achieving defectivity adders as small as 2 adders per lot of wafers.

  5. Deletion of Ku80 causes early aging independent of chronic inflammation and Rag-1-induced DSBs.

    PubMed

    Holcomb, Valerie B; Vogel, Hannes; Hasty, Paul

    2007-01-01

    Animal models of premature aging are often defective for DNA repair. Ku80-mutant mice are disabled for nonhomologous end joining; a pathway that repairs both spontaneous DNA double-strand breaks (DSBs) and induced DNA DSBs generated by the action of a complex composed of Rag-1 and Rag-2 (Rag). Rag is essential for inducing DSBs important for assembling V(D)J segments of antigen receptor genes that are required for lymphocyte development. Thus, deletion of either Rag-1 or Ku80 causes severe combined immunodeficiency (scid) leading to chronic inflammation. In addition, Rag-1 induces breaks at non-B DNA structures. Previously we reported Ku80-mutant mice undergo premature aging, yet we do not know the root cause of this phenotype. Early aging may be caused by either defective repair of spontaneous DNA damage, defective repair of Rag-1-induced breaks or chronic inflammation caused by scid. To address this issue, we analyzed aging in control and Ku80-mutant mice deleted for Rag-1 such that both cohorts are scid and suffer from chronic inflammation. We make two observations: (1) chronic inflammation does not cause premature aging in these mice and (2) Ku80-mutant mice exhibit early aging independent of Rag-1. Therefore, this study supports defective repair of spontaneous DNA damage as the root cause of early aging in Ku80-mutant mice.

  6. Dual Role of Jun N-Terminal Kinase Activity in Bone Morphogenetic Protein-Mediated Drosophila Ventral Head Development.

    PubMed

    Park, Sung Yeon; Stultz, Brian G; Hursh, Deborah A

    2015-12-01

    The Drosophila bone morphogenetic protein encoded by decapentaplegic (dpp) controls ventral head morphogenesis by expression in the head primordia, eye-antennal imaginal discs. These are epithelial sacs made of two layers: columnar disc proper cells and squamous cells of the peripodial epithelium. dpp expression related to head formation occurs in the peripodial epithelium; cis-regulatory mutations disrupting this expression display defects in sensory vibrissae, rostral membrane, gena, and maxillary palps. Here we document that disruption of this dpp expression causes apoptosis in peripodial cells and underlying disc proper cells. We further show that peripodial Dpp acts directly on the disc proper, indicating that Dpp must cross the disc lumen to act. We demonstrate that palp defects are mechanistically separable from the other mutant phenotypes; both are affected by the c-Jun N-terminal kinase pathway but in opposite ways. Slight reduction of both Jun N-terminal kinase and Dpp activity in peripodial cells causes stronger vibrissae, rostral membrane, and gena defects than Dpp alone; additionally, strong reduction of Jun N-terminal kinase activity alone causes identical defects. A more severe reduction of dpp results in similar vibrissae, rostral membrane, and gena defects, but also causes mutant maxillary palps. This latter defect is correlated with increased peripodial Jun N-terminal kinase activity and can be caused solely by ectopic activation of Jun N-terminal kinase. We conclude that formation of sensory vibrissae, rostral membrane, and gena tissue in head morphogenesis requires the action of Jun N-terminal kinase in peripodial cells, while excessive Jun N-terminal kinase signaling in these same cells inhibits the formation of maxillary palps. Copyright © 2015 by the Genetics Society of America.

  7. Frequency Optimization for Enhancement of Surface Defect Classification Using the Eddy Current Technique

    PubMed Central

    Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun

    2016-01-01

    Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances. PMID:27164112

  8. Frequency Optimization for Enhancement of Surface Defect Classification Using the Eddy Current Technique.

    PubMed

    Fan, Mengbao; Wang, Qi; Cao, Binghua; Ye, Bo; Sunny, Ali Imam; Tian, Guiyun

    2016-05-07

    Eddy current testing is quite a popular non-contact and cost-effective method for nondestructive evaluation of product quality and structural integrity. Excitation frequency is one of the key performance factors for defect characterization. In the literature, there are many interesting papers dealing with wide spectral content and optimal frequency in terms of detection sensitivity. However, research activity on frequency optimization with respect to characterization performances is lacking. In this paper, an investigation into optimum excitation frequency has been conducted to enhance surface defect classification performance. The influences of excitation frequency for a group of defects were revealed in terms of detection sensitivity, contrast between defect features, and classification accuracy using kernel principal component analysis (KPCA) and a support vector machine (SVM). It is observed that probe signals are the most sensitive on the whole for a group of defects when excitation frequency is set near the frequency at which maximum probe signals are retrieved for the largest defect. After the use of KPCA, the margins between the defect features are optimum from the perspective of the SVM, which adopts optimal hyperplanes for structure risk minimization. As a result, the best classification accuracy is obtained. The main contribution is that the influences of excitation frequency on defect characterization are interpreted, and experiment-based procedures are proposed to determine the optimal excitation frequency for a group of defects rather than a single defect with respect to optimal characterization performances.

  9. Deletion of ETS-1, a gene in the Jacobsen syndrome critical region, causes ventricular septal defects and abnormal ventricular morphology in mice

    PubMed Central

    Ye, Maoqing; Coldren, Chris; Liang, Xingqun; Mattina, Teresa; Goldmuntz, Elizabeth; Benson, D. Woodrow; Ivy, Dunbar; Perryman, M.B.; Garrett-Sinha, Lee Ann; Grossfeld, Paul

    2010-01-01

    Congenital heart defects comprise the most common form of major birth defects, affecting 0.7% of all newborn infants. Jacobsen syndrome (11q-) is a rare chromosomal disorder caused by deletions in distal 11q. We have previously determined that a wide spectrum of the most common congenital heart defects occur in 11q-, including an unprecedented high frequency of hypoplastic left heart syndrome (HLHS). We identified an ∼7 Mb ‘cardiac critical region’ in distal 11q that contains a putative causative gene(s) for congenital heart disease. In this study, we utilized chromosomal microarray mapping to characterize three patients with 11q- and congenital heart defects that carry interstitial deletions overlapping the 7 Mb cardiac critical region. We propose that this 1.2 Mb region of overlap harbors a gene(s) that causes at least a subset of the congenital heart defects that occur in 11q-. We demonstrate that one gene in this region, ETS-1 (a member of the ETS family of transcription factors), is expressed in the endocardium and neural crest during early mouse heart development. Gene-targeted deletion of ETS-1 in mice in a C57/B6 background causes, with high penetrance, large membranous ventricular septal defects and a bifid cardiac apex, and less frequently a non-apex-forming left ventricle (one of the hallmarks of HLHS). Our results implicate an important role for the ETS-1 transcription factor in mammalian heart development and should provide important insights into some of the most common forms of congenital heart disease. PMID:19942620

  10. BCOR analysis in patients with OFCD and Lenz microphthalmia syndromes, mental retardation with ocular anomalies, and cardiac laterality defects

    PubMed Central

    Hilton, Emma; Johnston, Jennifer; Whalen, Sandra; Okamoto, Nobuhiko; Hatsukawa, Yoshikazu; Nishio, Juntaro; Kohara, Hiroshi; Hirano, Yoshiko; Mizuno, Seiji; Torii, Chiharu; Kosaki, Kenjiro; Manouvrier, Sylvie; Boute, Odile; Perveen, Rahat; Law, Caroline; Moore, Anthony; Fitzpatrick, David; Lemke, Johannes; Fellmann, Florence; Debray, François-Guillaume; Dastot-Le-Moal, Florence; Gerard, Marion; Martin, Josiane; Bitoun, Pierre; Goossens, Michel; Verloes, Alain; Schinzel, Albert; Bartholdi, Deborah; Bardakjian, Tanya; Hay, Beverly; Jenny, Kim; Johnston, Kathreen; Lyons, Michael; Belmont, John W; Biesecker, Leslie G; Giurgea, Irina; Black, Graeme

    2009-01-01

    Oculofaciocardiodental (OFCD) and Lenz microphthalmia syndromes form part of a spectrum of X-linked microphthalmia disorders characterized by ocular, dental, cardiac and skeletal anomalies and mental retardation. The two syndromes are allelic, caused by mutations in the BCL-6 corepressor gene (BCOR). To extend the series of phenotypes associated with pathogenic mutations in BCOR, we sequenced the BCOR gene in patients with (1) OFCD syndrome, (2) putative X-linked (‘Lenz') microphthalmia syndrome, (3) isolated ocular defects and (4) laterality phenotypes. We present a new cohort of females with OFCD syndrome and null mutations in BCOR, supporting the hypothesis that BCOR is the sole molecular cause of this syndrome. We identify for the first time mosaic BCOR mutations in two females with OFCD syndrome and one apparently asymptomatic female. We present a female diagnosed with isolated ocular defects and identify minor features of OFCD syndrome, suggesting that OFCD syndrome may be mild and underdiagnosed. We have sequenced a cohort of males diagnosed with putative X-linked microphthalmia and found a mutation, p.P85L, in a single case, suggesting that BCOR mutations are not a major cause of X-linked microphthalmia in males. The absence of BCOR mutations in a panel of patients with non-specific laterality defects suggests that mutations in BCOR are not a major cause of isolated heart and laterality defects. Phenotypic analysis of OFCD and Lenz microphthalmia syndromes shows that in addition to the standard diagnostic criteria of congenital cataract, microphthalmia and radiculomegaly, patients should be examined for skeletal defects, particularly radioulnar synostosis, and cardiac/laterality defects. PMID:19367324

  11. Subtelomeric deletions of chromosome 6p: molecular and cytogenetic characterization of three new cases with phenotypic overlap with Ritscher-Schinzel (3C) syndrome.

    PubMed

    Descipio, Cheryl; Schneider, Lori; Young, Terri L; Wasserman, Nora; Yaeger, Dinah; Lu, Fengmin; Wheeler, Patricia G; Williams, Marc S; Bason, Lynn; Jukofsky, Lori; Menon, Ammini; Geschwindt, Ryan; Chudley, Albert E; Saraiva, Jorge; Schinzel, Albert A G L; Guichet, Agnes; Dobyns, William E; Toutain, Annick; Spinner, Nancy B; Krantz, Ian D

    2005-04-01

    We have identified six children in three families with subtelomeric deletions of 6p25 and a recognizable phenotype consisting of ptosis, posterior embryotoxon, optic nerve abnormalities, mild glaucoma, Dandy-Walker malformation, hydrocephalus, atrial septal defect, patent ductus arteriosus, and mild mental retardation. There is considerable clinical overlap between these children and individuals with the Ritscher-Schinzel (or cranio-cerebello-cardiac (3C)) syndrome (OMIM #220210). Clinical features of 3C syndrome include craniofacial anomalies (macrocephaly, prominent forehead and occiput, foramina parietalia, hypertelorism, down-slanting palpebral fissures, ocular colobomas, depressed nasal bridge, narrow or cleft palate, and low-set ears), cerebellar malformations (variable manifestations of a Dandy-Walker malformation with moderate mental retardation), and cardiac defects (primarily septal defects). Since the original report, over 25 patients with 3C syndrome have been reported. Recessive inheritance has been postulated based on recurrence in siblings born to unaffected parents and parental consanguinity in two familial cases. Molecular and cytogenetic mapping of the 6p deletions in these three families with subtelomeric deletions of chromosome 6p have defined a 1.3 Mb minimally deleted critical region. To determine if 6p deletions are common in 3C syndrome, we analyzed seven unrelated individuals with 3C syndrome for deletions of this region. Three forkhead genes (FOXF1 and FOXQ1 from within the critical region, and FOXC1 proximal to this region) were evaluated as potential candidate disease genes for this disorder. No deletions or disease-causing mutations were identified.

  12. Mutations in the Caenorhabditis elegans orthologs of human genes required for mitochondrial tRNA modification cause similar electron transport chain defects but different nuclear responses.

    PubMed

    Navarro-González, Carmen; Moukadiri, Ismaïl; Villarroya, Magda; López-Pascual, Ernesto; Tuck, Simon; Armengod, M-Eugenia

    2017-07-01

    Several oxidative phosphorylation (OXPHOS) diseases are caused by defects in the post-transcriptional modification of mitochondrial tRNAs (mt-tRNAs). Mutations in MTO1 or GTPBP3 impair the modification of the wobble uridine at position 5 of the pyrimidine ring and cause heart failure. Mutations in TRMU affect modification at position 2 and cause liver disease. Presently, the molecular basis of the diseases and why mutations in the different genes lead to such different clinical symptoms is poorly understood. Here we use Caenorhabditis elegans as a model organism to investigate how defects in the TRMU, GTPBP3 and MTO1 orthologues (designated as mttu-1, mtcu-1, and mtcu-2, respectively) exert their effects. We found that whereas the inactivation of each C. elegans gene is associated with a mild OXPHOS dysfunction, mutations in mtcu-1 or mtcu-2 cause changes in the expression of metabolic and mitochondrial stress response genes that are quite different from those caused by mttu-1 mutations. Our data suggest that retrograde signaling promotes defect-specific metabolic reprogramming, which is able to rescue the OXPHOS dysfunction in the single mutants by stimulating the oxidative tricarboxylic acid cycle flux through complex II. This adaptive response, however, appears to be associated with a biological cost since the single mutant worms exhibit thermosensitivity and decreased fertility and, in the case of mttu-1, longer reproductive cycle. Notably, mttu-1 worms also exhibit increased lifespan. We further show that mtcu-1; mttu-1 and mtcu-2; mttu-1 double mutants display severe growth defects and sterility. The animal models presented here support the idea that the pathological states in humans may initially develop not as a direct consequence of a bioenergetic defect, but from the cell's maladaptive response to the hypomodification status of mt-tRNAs. Our work highlights the important association of the defect-specific metabolic rewiring with the pathological phenotype, which must be taken into consideration in exploring specific therapeutic interventions.

  13. A molecular dynamics study of thermal transport in nanoparticle doped Argon like solid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shahadat, Muhammad Rubayat Bin, E-mail: rubayat37@gmail.com; Ahmed, Shafkat; Morshed, A. K. M. M.

    2016-07-12

    Interfacial phenomena such as mass and type of the interstitial atom, nano scale material defect influence heat transfer and the effect become very significant with the reduction of the material size. Non Equilibrium Molecular Dynamics (NEMD) simulation was carried out in this study to investigate the effect of the interfacial phenomena on solid. Argon like solid was considered in this study and LJ potential was used for atomic interaction. Nanoparticles of different masses and different molecular defects were inserted inside the solid. From the molecular simulation, it was observed that a large interfacial mismatch due to change in mass inmore » the homogenous solid causes distortion of the phonon frequency causing increase in thermal resistance. Position of the doped nanoparticles have more profound effect on the thermal conductivity of the solid whereas influence of the mass ratio is not very significant. Interstitial atom positioned perpendicular to the heat flow causes sharp reduction in thermal conductivity. Structural defect caused by the molecular defect (void) also observed to significantly affect the thermal conductivity of the solid.« less

  14. Minimizing complications associated with coronal approach by application of various modifications in surgical technique for treating facial trauma: A prospective study.

    PubMed

    Kumar, V Santosh; Rao, N Koteswara; Mohan, Kodali Rama; Krishna, Leela; Prasad, B Srinivasa; Ranganadh, N; Lakshmi, Vijaya

    2016-01-01

    Coronal incision is a popular and versatile surgical approach to the anterior cranial vault and upper and middle third facial skeleton. The flap itself permits widespread exposure of the fractures in this region. The bicoronal flap was first described by Hartley and Kenyon (neurosurgeons) to gain access to the anterior cranium in 1907. It extension as an access flap to the upper and lateral aspect of the face was pioneered by Tessier (1971). Esthetically, it is pleasing as the surgical scar is hidden within the hair. To evaluate the versatility of coronal incision using various modifications advocated in incision, exposure to fractured site, and closure of flap in treating the upper and middle third facial fractures. A total of ten patients diagnosed with upper and middle third facial fractures requiring open reduction and internal fixation/correction of contour defect were selected after preoperative clinical and radiographic (computed tomography scan) evaluation. All the cases were operated by coronal approach to gain the access to the fracture/defect site for reduction/correction of the defect. Advantages and complication are evaluated. Excellent access and anatomical reduction by this approach with least number of complications; if it is performed with healthy knowledge of anatomy of the scalp and temporal region. Certain minimal complications have also been noted using various modifications used in the procedure. Despite of prolonged surgical time for the exposure, it is very advantages in treating upper and middle third facial fractures due to wide access and discreet scar (minimal).

  15. Reducing Spatial Uncertainty Through Attentional Cueing Improves Contrast Sensitivity in Regions of the Visual Field With Glaucomatous Defects

    PubMed Central

    Phu, Jack; Kalloniatis, Michael; Khuu, Sieu K.

    2018-01-01

    Purpose Current clinical perimetric test paradigms present stimuli randomly to various locations across the visual field (VF), inherently introducing spatial uncertainty, which reduces contrast sensitivity. In the present study, we determined the extent to which spatial uncertainty affects contrast sensitivity in glaucoma patients by minimizing spatial uncertainty through attentional cueing. Methods Six patients with open-angle glaucoma and six healthy subjects underwent laboratory-based psychophysical testing to measure contrast sensitivity at preselected locations at two eccentricities (9.5° and 17.5°) with two stimulus sizes (Goldmann sizes III and V) under different cueing conditions: 1, 2, 4, or 8 points verbally cued. Method of Constant Stimuli and a single-interval forced-choice procedure were used to generate frequency of seeing (FOS) curves at locations with and without VF defects. Results At locations with VF defects, cueing minimizes spatial uncertainty and improves sensitivity under all conditions. The effect of cueing was maximal when one point was cued, and rapidly diminished when more points were cued (no change to baseline with 8 points cued). The slope of the FOS curve steepened with reduced spatial uncertainty. Locations with normal sensitivity in glaucomatous eyes had similar performance to that of healthy subjects. There was a systematic increase in uncertainty with the depth of VF loss. Conclusions Sensitivity measurements across the VF are negatively affected by spatial uncertainty, which increases with greater VF loss. Minimizing uncertainty can improve sensitivity at locations of deficit. Translational Relevance Current perimetric techniques introduce spatial uncertainty and may therefore underestimate sensitivity in regions of VF loss. PMID:29600116

  16. Mutations in the human UBR1 gene and the associated phenotypic spectrum.

    PubMed

    Sukalo, Maja; Fiedler, Ariane; Guzmán, Celina; Spranger, Stephanie; Addor, Marie-Claude; McHeik, Jiad N; Oltra Benavent, Manuel; Cobben, Jan M; Gillis, Lynette A; Shealy, Amy G; Deshpande, Charu; Bozorgmehr, Bita; Everman, David B; Stattin, Eva-Lena; Liebelt, Jan; Keller, Klaus-Michael; Bertola, Débora Romeo; van Karnebeek, Clara D M; Bergmann, Carsten; Liu, Zhifeng; Düker, Gesche; Rezaei, Nima; Alkuraya, Fowzan S; Oğur, Gönül; Alrajoudi, Abdullah; Venegas-Vega, Carlos A; Verbeek, Nienke E; Richmond, Erick J; Kirbiyik, Ozgür; Ranganath, Prajnya; Singh, Ankur; Godbole, Koumudi; Ali, Fouad A M; Alves, Crésio; Mayerle, Julia; Lerch, Markus M; Witt, Heiko; Zenker, Martin

    2014-05-01

    Johanson-Blizzard syndrome (JBS) is a rare, autosomal recessive disorder characterized by exocrine pancreatic insufficiency, typical facial features, dental anomalies, hypothyroidism, sensorineural hearing loss, scalp defects, urogenital and anorectal anomalies, short stature, and cognitive impairment of variable degree. This syndrome is caused by a defect of the E3 ubiquitin ligase UBR1, which is part of the proteolytic N-end rule pathway. Herein, we review previously reported (n = 29) and a total of 31 novel UBR1 mutations in relation to the associated phenotype in patients from 50 unrelated families. Mutation types include nonsense, frameshift, splice site, missense, and small in-frame deletions consistent with the hypothesis that loss of UBR1 protein function is the molecular basis of JBS. There is an association of missense mutations and small in-frame deletions with milder physical abnormalities and a normal intellectual capacity, thus suggesting that at least some of these may represent hypomorphic UBR1 alleles. The review of clinical data of a large number of molecularly confirmed JBS cases allows us to define minimal clinical criteria for the diagnosis of JBS. For all previously reported and novel UBR1 mutations together with their clinical data, a mutation database has been established at LOVD. © 2014 WILEY PERIODICALS, INC.

  17. A simple and effective procedure for treating burn contractures: releasing incision and quadra Z technique.

    PubMed

    Sen, Cenk; Karacalar, Ahmet; Agir, Hakan; Dinar, Serkan; Isil, Eda; Iscen, Deniz

    2007-03-01

    Burn contractures particularly involving the joints are challenging problems which might cause severe functional impairments. Many surgical techniques have been described for use, however, an ideal method yet to be found. Releasing incision is the most common and effective way to release the wide and severe contractures but it has some drawbacks. We propose a releasing incision technique combined with four Z plasty incisions to overcome the disadvantages of traditional releasing incision technique. We successfully used our releasing incision and quadra Z technique on seven consecutive patients with burn contractures between 2003 and 2005. We modified the classical releasing incision technique by adding four Z plasties; two of them with a common base on each corner of the incision line. In this technique, limitation of the webbing following the incision is made possible by the transposed flaps and unnecessary lateral extension of the incision and the defect was avoided, i.e. maximum release gain with minimal defect was provided. Satisfactory results were achieved in seven patients treated with this technique due to significant burn contractures between 2003 and 2005 with no significant complication. We propose this technique is suitable in all patients with severe burn contractures who require releasing incision and grafting.

  18. Preimplantation genetic diagnosis: a systematic review of litigation in the face of new technology.

    PubMed

    Amagwula, Tochi; Chang, Peter L; Hossain, Amjad; Tyner, Joey; Rivers, Aimée L; Phelps, John Y

    2012-11-01

    To study legal cases against IVF facilities pertaining to preimplantation genetic diagnosis (PGD) misdiagnosis. Systematic case law review. University medical center using US legal databases. The IVF recipients using PGD services. Lawsuits pertaining to PGD against IVF facilities. Lawsuits, court rulings, damage awards, and settlements pertaining to PGD after the birth of a child with a genetic defect. Causes of action pertaining to PGD arise from negligence in performing the procedure as well as failure to properly inform patients of key information, such as inherent errors associated with the PGD process, a facility's minimal experience in performing PGD, and the option of obtaining PGD. Courts have sympathized with the financial burden involved in caring for children with disabilities. Monetary damage awards are based on the costs of caring for children with debilitating defects, including lifetime medical and custodial care. Facilities offering PGD services expose themselves to a new realm of liability in which damage awards can easily exceed the limits of a facility's insurance policy. Competent laboratory personnel and proper informed consent--with particular care to inform patients of the inherent inaccuracies of PGD--are crucial in helping deter liability. Copyright © 2012 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  19. Defining defect specifications to optimize photomask production and requalification

    NASA Astrophysics Data System (ADS)

    Fiekowsky, Peter

    2006-10-01

    Reducing defect repairs and accelerating defect analysis is becoming more important as the total cost of defect repairs on advanced masks increases. Photomask defect specs based on printability, as measured on AIMS microscopes has been used for years, but the fundamental defect spec is still the defect size, as measured on the photomask, requiring the repair of many unprintable defects. ADAS, the Automated Defect Analysis System from AVI is now available in most advanced mask shops. It makes the use of pure printability specs, or "Optimal Defect Specs" practical. This software uses advanced algorithms to eliminate false defects caused by approximations in the inspection algorithm, classify each defect, simulate each defect and disposition each defect based on its printability and location. This paper defines "optimal defect specs", explains why they are now practical and economic, gives a method of determining them and provides accuracy data.

  20. Vibration of carbon nanotubes with defects: order reduction methods

    NASA Astrophysics Data System (ADS)

    Hudson, Robert B.; Sinha, Alok

    2018-03-01

    Order reduction methods are widely used to reduce computational effort when calculating the impact of defects on the vibrational properties of nearly periodic structures in engineering applications, such as a gas-turbine bladed disc. However, despite obvious similarities these techniques have not yet been adapted for use in analysing atomic structures with inevitable defects. Two order reduction techniques, modal domain analysis and modified modal domain analysis, are successfully used in this paper to examine the changes in vibrational frequencies, mode shapes and mode localization caused by defects in carbon nanotubes. The defects considered are isotope defects and Stone-Wales defects, though the methods described can be extended to other defects.

  1. Ectopic expression of Cripto-1 in transgenic mouse embryos causes hemorrhages, fatal cardiac defects and embryonic lethality

    PubMed Central

    Lin, Xiaolin; Zhao, Wentao; Jia, Junshuang; Lin, Taoyan; Xiao, Gaofang; Wang, Shengchun; Lin, Xia; Liu, Yu; Chen, Li; Qin, Yujuan; Li, Jing; Zhang, Tingting; Hao, Weichao; Chen, Bangzhu; Xie, Raoying; Cheng, Yushuang; Xu, Kang; Yao, Kaitai; Huang, Wenhua; Xiao, Dong; Sun, Yan

    2016-01-01

    Targeted disruption of Cripto-1 in mice caused embryonic lethality at E7.5, whereas we unexpectedly found that ectopic Cripto-1 expression in mouse embryos also led to embryonic lethality, which prompted us to characterize the causes and mechanisms underlying embryonic death due to ectopic Cripto-1 expression. RCLG/EIIa-Cre embryos displayed complex phenotypes between embryonic day 14.5 (E14.5) and E17.5, including fatal hemorrhages (E14.5-E15.5), embryo resorption (E14.5-E17.5), pale body surface (E14.5-E16.5) and no abnormal appearance (E14.5-E16.5). Macroscopic and histological examination revealed that ectopic expression of Cripto-1 transgene in RCLG/EIIa-Cre embryos resulted in lethal cardiac defects, as evidenced by cardiac malformations, myocardial thinning, failed assembly of striated myofibrils and lack of heartbeat. In addition, Cripto-1 transgene activation beginning after E8.5 also caused the aforementioned lethal cardiac defects in mouse embryos. Furthermore, ectopic Cripto-1 expression in embryonic hearts reduced the expression of cardiac transcription factors, which is at least partially responsible for the aforementioned lethal cardiac defects. Our results suggest that hemorrhages and cardiac abnormalities are two important lethal factors in Cripto-1 transgenic mice. Taken together, these findings are the first to demonstrate that sustained Cripto-1 transgene expression after E11.5 causes fatal hemorrhages and lethal cardiac defects, leading to embryonic death at E14.5-17.5. PMID:27687577

  2. Primary cellular meningeal defects cause neocortical dysplasia and dyslamination

    PubMed Central

    Hecht, Jonathan H.; Siegenthaler, Julie A.; Patterson, Katelin P.; Pleasure, Samuel J.

    2010-01-01

    Objective Cortical malformations are important causes of neurological morbidity, but in many cases their etiology is poorly understood. Mice with Foxc1 mutations have cellular defects in meningeal development. We use hypomorphic and null alleles of Foxc1 to study the effect of meningeal defects on neocortical organization. Methods Embryos with loss of Foxc1 activity were generated using the hypomorphic Foxc1hith allele and the null Foxc1lacZ allele. Immunohistologic analysis was used to assess cerebral basement membrane integrity, marginal zone heterotopia formation, neuronal overmigration, meningeal defects, and changes in basement membrane composition. Dysplasia severity was quantified using two measures. Results Cortical dysplasia resembling cobblestone cortex, with basement membrane breakdown and lamination defects, is seen in Foxc1 mutants. As Foxc1 activity was reduced, abnormalities in basement membrane integrity, heterotopia formation, neuronal overmigration, and meningeal development appeared earlier in gestation and were more severe. Surprisingly, the basement membrane appeared intact at early stages of development in the face of severe deficits in meningeal development. Prominent defects in basement membrane integrity appeared as development proceeded. Molecular analysis of basement membrane laminin subunits demonstrated that loss of the meninges led to changes in basement membrane composition. Interpretation Cortical dysplasia can be caused by cellular defects in the meninges. The meninges are not required for basement membrane establishment but are needed for remodeling as the brain expands. Specific changes in basement membrane composition may contribute to subsequent breakdown. Our study raises the possibility that primary meningeal defects may cortical dysplasia in some cases. PMID:20976766

  3. Field of dreamers and dreamed-up fields: functional and fake perimetry.

    PubMed

    Thompson, J C; Kosmorsky, G S; Ellis, B D

    1996-01-01

    Hysterical and malingering patients can manifest visual field defects on perimetry (visual field testing), including defects suggestive of true visual pathway pathology. It has been shown that control subjects can easily imitate some pathologic defects with automated, computed perimetry. The authors sought to determine whether subjects could imitate the same pathologic defect with manual and automated perimetry. Six subjects posed as patients with neurologic problems. They had manual perimetry with both an experienced and inexperienced technician followed by automated perimetry. They were later interviewed about the methods of the technicians and the difficulty of the exercise. Four of six subjects easily imitated the assigned defects with both technicians on manual perimetry and with automated perimetry. These included quadrantic, altitudinal, hemianopic, and enlarged blind-spot defects. Two subjects who were assigned cecocentral and paracentral scotomas instead produced enlarged blind spots by manual perimetry and defects suggestive of chiasmal pathology by automated perimetry. Paradoxically, some subjects found that experienced technicians were easier to fool than inexperienced technicians because of the systematic way in which experienced technicians defined defects. With minimal coaching, some subjects can imitate visual fields with enlarged blind spots, quadrantic, hemianopic, and altitudinal defects with ease and reproducibility by both automated and manual perimetry. Cecocentral and paracentral scotomas are harder to imitate but may be mistaken as representing chiasmal pathology. Paradoxically, experienced technicians may not be better at detecting hysterical or malingering individuals.

  4. Totally thoracoscopic surgery for the treatment of atrial septal defect without of the robotic Da Vinci surgical system

    PubMed Central

    2013-01-01

    Background More and more surgeons and patients focus on the minimally invasive surgical techniques in the 21st century. Totally thoracoscopic operation provides another minimal invasive surgical option for patients with ASD (atrial septal defect). In this study, we reported our experience of 61 patients with atrial septal defect who underwent totally thoracoscopic operation and discussed the feasibility and safety of the new technique. Methods From January 2010 to October 2012, 61 patients with atrial septal defect underwent totally thoracoscopic closure but not traditional median sternotomy surgery. We divided the 61 patients into two groups based on the operation sequence. The data of group A (the first 30 cases) and group B (the last 31 cases). The mean age of the patients was 35.1 ± 12.8 years (range, 6.3 to 63.5 years), and mean weight was 52.7 ± 11.9 kg (range, 30.5 to 80 kg). Mean size of the atrial septal defect was 16.8 ± 11.3 mm (range, 13 to 39 mm) based on the description of the echocardiography. Results All patients underwent totally thoracoscopy successfully, 36 patients with pericardium patch and 25 patients were sutured directly. 7 patients underwent concomitant tricuspid valvuloplasty with Key technique. No death, reoperation or complete atrioventricular block occurred. The mean time of cardiopulmonary bypass was 68.5 ± 19.1 min (range, 31.0 to 153.0 min), the mean time of aortic cross-clamp was 27.2 ± 11.3 min (range, 0.0 to 80.0 min) and the mean time of operation was 149.8 ± 35.7 min (range, 63.0 to 300.0 min). Postoperative mechanical ventilation averaged 4.9 ± 2.5 hours (range, 3.5 to 12.6 hours), and the duration of intensive care unit stay 20.0 ± 4.8 hours (range, 15.5 to 25 hours). The mean volume of blood drainage was 158 ± 38 ml (range, 51 to 800 ml). No death, residual shunt, lung atelectasis or moderate tricuspid regurgitation was found at 3-month follow-up. Conclusion The totally thoracoscopic operation is feasible and safe for patients with ASD, even with or without tricuspid regurgitation. This technique provides another minimal invasive surgical option for patients with atrial septal defect. PMID:23634811

  5. Influence of Casting Defects on S- N Fatigue Behavior of Ni-Al Bronze

    NASA Astrophysics Data System (ADS)

    Sarkar, Aritra; Chakrabarti, Abhishek; Nagesha, A.; Saravanan, T.; Arunmuthu, K.; Sandhya, R.; Philip, John; Mathew, M. D.; Jayakumar, T.

    2015-02-01

    Nickel-aluminum bronze (NAB) alloys have been used extensively in marine applications such as propellers, couplings, pump casings, and pump impellers due to their good mechanical properties such as tensile strength, creep resistance, and corrosion resistance. However, there have been several instances of in-service failure of the alloy due to high cycle fatigue (HCF). The present paper aims at characterizing the casting defects in this alloy through X-ray radiography and X-ray computed tomography into distinct defect groups having particular defect size and location. HCF tests were carried out on each defect group of as-cast NAB at room temperature by varying the mean stress. A significant decrease in the HCF life was observed with an increase in the tensile mean stress, irrespective of the defect size. Further, a considerable drop in the HCF life was observed with an increase in the size of defects and proximity of the defects to the surface. However, the surface proximity indicated by location of the defect in the sample was seen to override the influence of defect size and maximum cyclic stress. This leads to huge scatter in S- N curve. For a detailed quantitative analysis of defect size and location, an empirical model is developed which was able to minimize the scatter to a significant extent. Further, a concept of critical distance is proposed, beyond which the defect would not have a deleterious consequence on the fatigue behavior. Such an approach was found to be suitable for generating S- N curves for cast NAB.

  6. Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs.

    PubMed

    Nakamura, Tomomasa; Sekiya, Ichiro; Muneta, Takeshi; Hatsushika, Daisuke; Horie, Masafumi; Tsuji, Kunikazu; Kawarasaki, Tatsuo; Watanabe, Atsuya; Hishikawa, Shuji; Fujimoto, Yasuhiro; Tanaka, Hozumi; Kobayashi, Eiji

    2012-03-01

    Transplantation of synovial mesenchymal stromal cells (MSCs) may induce repair of cartilage defects. We transplanted synovial MSCs into cartilage defects using a simple method and investigated its usefulness and repair process in a pig model. The chondrogenic potential of the porcine MSCs was compared in vitro. Cartilage defects were created in both knees of seven pigs, and divided into MSCs treated and non-treated control knees. Synovial MSCs were injected into the defect, and the knee was kept immobilized for 10 min before wound closure. To visualize the actual delivery and adhesion of the cells, fluorescence-labeled synovial MSCs from transgenic green fluorescent protein (GFP) pig were injected into the defect in a subgroup of two pigs. In these two animals, the wounds were closed before MSCs were injected and observed for 10 min under arthroscopic control. The defects were analyzed sequentially arthroscopically, histologically and by magnetic resonance imaging (MRI) for 3 months. Synovial MSCs had a higher chondrogenic potential in vitro than the other MSCs examined. Arthroscopic observations showed adhesion of synovial MSCs and membrane formation on the cartilage defects before cartilage repair. Quantification analyses for arthroscopy, histology and MRI revealed a better outcome in the MSC-treated knees than in the non-treated control knees. Leaving a synovial MSC suspension in cartilage defects for 10 min made it possible for cells to adhere in the defect in a porcine cartilage defect model. The cartilage defect was first covered with membrane, then the cartilage matrix emerged after transplantation of synovial MSCs.

  7. Predicting Defects Using Information Intelligence Process Models in the Software Technology Project

    PubMed Central

    Selvaraj, Manjula Gandhi; Jayabal, Devi Shree; Srinivasan, Thenmozhi; Balasubramanie, Palanisamy

    2015-01-01

    A key differentiator in a competitive market place is customer satisfaction. As per Gartner 2012 report, only 75%–80% of IT projects are successful. Customer satisfaction should be considered as a part of business strategy. The associated project parameters should be proactively managed and the project outcome needs to be predicted by a technical manager. There is lot of focus on the end state and on minimizing defect leakage as much as possible. Focus should be on proactively managing and shifting left in the software life cycle engineering model. Identify the problem upfront in the project cycle and do not wait for lessons to be learnt and take reactive steps. This paper gives the practical applicability of using predictive models and illustrates use of these models in a project to predict system testing defects thus helping to reduce residual defects. PMID:26495427

  8. Limits on passivating defects in semiconductors: the case of Si edge dislocations.

    PubMed

    Chan, Tzu-Liang; West, D; Zhang, S B

    2011-07-15

    By minimizing the free energy while constraining dopant density, we derive a universal curve that relates the formation energy (E(form)) of doping and the efficiency of defect passivation in terms of segregation of dopants at defect sites. The universal curve takes the simple form of a Fermi-Dirac distribution. Our imposed constraint defines a chemical potential that assumes the role of "Fermi energy," which sets the thermodynamic limit on the E(form) required to overcome the effect of entropy such that dopant segregation at defects in semiconductors can occur. Using Si edge dislocation as an example, we show by first-principles calculations how to map the experimentally measurable passivation efficiency to our calculated E(form) by using the universal curve for typical n- and p-type substitutional dopants. We show that n-type dopants are ineffective. Among p-type dopants, B can satisfy the thermodynamic limit while improving electronic properties.

  9. Topological Anisotropy of Stone-Wales Waves in Graphenic Fragments

    PubMed Central

    Ori, Ottorino; Cataldo, Franco; Putz, Mihai V.

    2011-01-01

    Stone-Wales operators interchange four adjacent hexagons with two pentagon-heptagon 5|7 pairs that, graphically, may be iteratively propagated in the graphene layer, originating a new interesting structural defect called here Stone-Wales wave. By minimization, the Wiener index topological invariant evidences a marked anisotropy of the Stone-Wales defects that, topologically, are in fact preferably generated and propagated along the diagonal of the graphenic fragments, including carbon nanotubes and graphene nanoribbons. This peculiar edge-effect is shown in this paper having a predominant topological origin, leaving to future experimental investigations the task of verifying the occurrence in nature of wave-like defects similar to the ones proposed here. Graph-theoretical tools used in this paper for the generation and the propagation of the Stone-Wales defects waves are applicable to investigate isomeric modifications of chemical structures with various dimensionality like fullerenes, nanotubes, graphenic layers, schwarzites, zeolites. PMID:22174641

  10. Predicting Defects Using Information Intelligence Process Models in the Software Technology Project.

    PubMed

    Selvaraj, Manjula Gandhi; Jayabal, Devi Shree; Srinivasan, Thenmozhi; Balasubramanie, Palanisamy

    2015-01-01

    A key differentiator in a competitive market place is customer satisfaction. As per Gartner 2012 report, only 75%-80% of IT projects are successful. Customer satisfaction should be considered as a part of business strategy. The associated project parameters should be proactively managed and the project outcome needs to be predicted by a technical manager. There is lot of focus on the end state and on minimizing defect leakage as much as possible. Focus should be on proactively managing and shifting left in the software life cycle engineering model. Identify the problem upfront in the project cycle and do not wait for lessons to be learnt and take reactive steps. This paper gives the practical applicability of using predictive models and illustrates use of these models in a project to predict system testing defects thus helping to reduce residual defects.

  11. Method and Apparatus for the Portable Identification of Material Thickness and Defects Using Spatially Controlled Heat Application

    NASA Technical Reports Server (NTRS)

    Cramer, K. Elliott (Inventor); Winfree, William P. (Inventor)

    1999-01-01

    A method and a portable apparatus for the nondestructive identification of defects in structures. The apparatus comprises a heat source and a thermal imager that move at a constant speed past a test surface of a structure. The thermal imager is off set at a predetermined distance from the heat source. The heat source induces a constant surface temperature. The imager follows the heat source and produces a video image of the thermal characteristics of the test surface. Material defects produce deviations from the constant surface temperature that move at the inverse of the constant speed. Thermal noise produces deviations that move at random speed. Computer averaging of the digitized thermal image data with respect to the constant speed minimizes noise and improves the signal of valid defects. The motion of thermographic equipment coupled with the high signal to noise ratio render it suitable for portable, on site analysis.

  12. 21 CFR 514.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... chemical contamination. A manufacturing defect is a product defect caused or aggravated by a manufacturing... inherent to the manufacturing process. These defects are generally associated with product contamination... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Definitions. 514.3 Section 514.3 Food and Drugs...

  13. Minimally invasive per-catheter occlusion and dilation procedures for congenital cardiovascular abnormalities in dogs.

    PubMed

    Tobias, Anthony H; Stauthammer, Christopher D

    2010-07-01

    With ever-increasing sophistication of veterinary cardiology, minimally invasive per-catheter occlusion and dilation procedures for the treatment of various congenital cardiovascular abnormalities in dogs have become not only available, but mainstream. Much new information about minimally invasive per-catheter patent ductus arteriosus occlusion has been published and presented during the past few years. Consequently, patent ductus arteriosus occlusion is the primary focus of this article. Occlusion of other less common congenital cardiac defects is also briefly reviewed. Balloon dilation of pulmonic stenosis, as well as other congenital obstructive cardiovascular abnormalities is discussed in the latter part of the article.

  14. Treatment of open tibial fracture with bone defect caused by high velocity missiles: a case report.

    PubMed

    Golubović, Zoran; Vukajinović, Zoran; Stojiljković, Predrag; Golubović, Ivan; Visnjić, Aleksandar; Radovanović, Zoran; Najman, Stevo

    2013-01-01

    Tibia fracture caused by high velocity missiles is mostly comminuted and followed by bone defect which makes their healing process extremely difficult and prone to numerous complications. A 34-year-old male was wounded at close range by a semi-automatic gun missile. He was wounded in the distal area of the left tibia and suffered a massive defect of the bone and soft tissue. After the primary treatment of the wound, the fracture was stabilized with an external fixator type Mitkovic, with convergent orientation of the pins. The wound in the medial region of the tibia was closed with the secondary stitch, whereas the wound in the lateral area was closed with the skin transplant after Thiersch. Due to massive bone defect in the area of the rifle-missile wound six months after injury, a medical team placed a reconstructive external skeletal fixator type Mitkovic and performed corticotomy in the proximal metaphyseal area of the tibia. By the method of bone transport (distractive osteogenesis), the bone defect of the tibia was replaced. After the fracture healing seven months from the secondary surgery, the fixator was removed and the patient was referred to physical therapy. Surgical treatment of wounds, external fixation, performing necessary debridement, adequate antibiotic treatment and soft and bone tissue reconstruction are essential in achieving good results in patients with the open tibial fracture with bone defect caused by high velocity missiles. Reconstruction of bone defect can be successfully treated by reconstructive external fixator Mitkovic.

  15. Strategy for continuous improvement in IC manufacturability, yield, and reliability

    NASA Astrophysics Data System (ADS)

    Dreier, Dean J.; Berry, Mark; Schani, Phil; Phillips, Michael; Steinberg, Joe; DePinto, Gary

    1993-01-01

    Continual improvements in yield, reliability and manufacturability measure a fab and ultimately result in Total Customer Satisfaction. A new organizational and technical methodology for continuous defect reduction has been established in a formal feedback loop, which relies on yield and reliability, failed bit map analysis, analytical tools, inline monitoring, cross functional teams and a defect engineering group. The strategy requires the fastest detection, identification and implementation of possible corrective actions. Feedback cycle time is minimized at all points to improve yield and reliability and reduce costs, essential for competitiveness in the memory business. Payoff was a 9.4X reduction in defectivity and a 6.2X improvement in reliability of 256 K fast SRAMs over 20 months.

  16. Multiple retentive means for prosthetic restoration of a large facial defect - a case report.

    PubMed

    Abdulhadi, Laith Mahmoud

    2010-01-01

    A 70-year-old man who suffered from extensive extra and intraoral defects was rehabilitated with a prosthesis using multiple retaining means. The treatment was performed in two parts: externally involving the construction of an episthesis supported only by the remaining intact boundaries of the defect and retained by mini-dental implants and spectacle frame with a modified ear hook; and intraorally by an acrylic resin obturator to restore the function of the hemi-sectioned hard and soft palate. The episthesis was securely retained with minimal movement and/or dislodgment of the prosthesis during function. Multiple retentive techniques may be used to fix heavy external prostheses as an alternative to conventional implants or biological adhesives.

  17. Tracheal reconstruction with autogenous jejunal microsurgical transfer.

    PubMed

    Jones, R E; Morgan, R F; Marcella, K L; Mills, S E; Kron, I L

    1986-06-01

    Tracheal defects due to stricture formation, tracheomalacia, and neoplasms can present difficult reconstructive problems. Tracheal defects were surgically created in 6 dogs and primarily reconstructed with microsurgical free tissue transfer of autogenous jejunal segments. Primary healing was accomplished in all dogs without severe air leakage or infection. Bronchoscopy demonstrated no substantial secretions or tracheal narrowing. Gross pathological examination of the trachea revealed no evidence of tracheal disruption or infection. Direct measurements revealed no major tracheal narrowing. Microscopic examination demonstrated normal jejunal mucosa with a minimal amount of inflammatory change at the margins of the reconstruction at 6 weeks. Microvascular free tissue transfer of jejunal segments to correct cervical tracheal defects can readily be accomplished with excellent healing and maintenance of the tracheal lumen in dogs.

  18. Technical considerations in harvesting and sawing defective hardwood butts

    Treesearch

    Thomas W., Jr. Church; Thomas W. Church

    1971-01-01

    How important are butt defects in hardwoods? We have no reliable estimate of the volume or value of timber lost through basal injuries. However, butt defects will be almost as important in future timber harvests as they are at present. Why? Because most butt defects are due to two causes: fire and logging. Damage from both these agents may be reduced, but it certainly...

  19. [Forensic medical evaluation of stab-incised wounds caused by knives with point defects].

    PubMed

    Krupin, K N; Leonov, S V

    2011-01-01

    The present experimental study allowed to characterize specific signs of stab-incised wounds caused by knives with operational point defects. Diagnostic coefficients calculated for these macro- and microscopic features facilitate differential diagnostics of the injuries and make it possible to identify a concrete stabbing/cutting weapon with which the wound was inflicted..

  20. Evidence of Early Childhood Defects Due to Prenatal Over-Exposure to Vitamin A: A Case Study

    ERIC Educational Resources Information Center

    Naude, H.; Marx, J.; Pretorius, E.; Hislop-Esterhuyzen, N.

    2007-01-01

    One of the important nutrients during pregnancy is vitamin A or related compounds called retinoids. Although it is well-known that vitamin A deficiency may be detrimental to foetal development, overdosage of retinoids might cause developmental defects, particularly affecting the central nervous system development of the foetus, causing hindbrain…

  1. Gravitational Effects on the Morphology and Kinetics of Photodeposition of Polydiacetylene Thin Films From Monomer Solutions

    NASA Technical Reports Server (NTRS)

    Paley, Mark S.; Antar, Basil; Witherow, William K.; Frazier, Donald O.

    1999-01-01

    The goal of this proposed work is to study gravitational effects on the photodeposition of polydiacetylene thin films from monomer solutions onto transparent substrates. Polydiacetylenes have been an extensively studied class of organic polymers because they exhibit many unusual and interesting properties, including electrical conductivity and optical nonlinearity. Their long polymeric chains render polydiacetylenes readily conducive to thin film formation, which is necessary for many applications. These applications require thin polydiacetylene films possessing uniform thicknesses, high purity, minimal inhomogeneities and defects (such as scattering centers), etc. Also, understanding and controlling the microstructure and morphology of the films is important for optimizing their electronic and optical properties. The lack of techniques for processing polydiacetylenes into such films has been the primary limitation to their commercial use. We have recently discovered a novel method for the formation of polydiacetylene thin films using photo-deposition from monomer solutions onto transparent substrates with UV light. This technique is very simple to carry out, and can yield films with superior quality to those produced by conventional methods. Furthermore, these films exhibit good third-order properties and are capable of waveguiding. We have been actively studying the chemistry of diacetylene polymerization in solution and the photo-deposition of polydiacetylene thin films from solution. It is well-known that gravitational factors such as buoyancy-driven convection and sedimentation can affect chemical and mass transport processes in solution. One important aspect of polydiacetylene thin film photodeposition in solution, relevant to microgravity science, is that heat generated by absorption of UV radiation induces thermal density gradients that under the influence of gravity, can cause fluid flows (buoyancy-driven convection). Additionally, changes in the chemical composition of the solution during polymerization may cause solutal convection. These fluid flows affect transport of material to and from the film surface and thereby affect the kinetics of the growth process. This manifests itself in the morphology of the resulting films; films grown under the influence of convection tend to have less uniform thicknesses, and can possess greater inhomogeneities and defects. Specifically, polydiacetylene films photodeposited from solution, when viewed under a microscope, exhibit very small particles of solid polymer which get transported by convection from the bulk solution to the surface of the growing film and become embedded. Even when carried out under conditions designed to minimize unstable density gradients (i.e., irradiating the solution from the top), some fluid flow still takes place (particles remain present in the films). It is also possible that defect nucleation may be occurring within the films or on the surface of the substrate; this, too, can be affected by convection (as is the case with crystal growth). Hence films grown in 1-g will, at best, still possess some defects. The objective of this proposal is to investigate, both in 1-g and in low-g, the effects of gravitational factors (primarily convection) on the dynamics of these processes, and on the quality, morphology, and properties of the films obtained.

  2. Cervical apron flap reconstruction: a technique for second-stage revision.

    PubMed

    Spiro, R H; Chaglassian, T A

    1979-08-01

    A technique for second-stage revision of a cervical apron flap is described. Food particle retention and pocketing in hair-bearing recesses can be minimized by accurately trimming and contouring the flap to fit smoothly into the oral defect.

  3. Safer construction and maintenance practices to minimize potential liability by counties from accidents.

    DOT National Transportation Integrated Search

    1979-09-01

    Tort claims resulting from alleged highway defects have introduced : an additional element in the planning, design, construction, and maintenance : of highways. A survey of county governments in Iowa was undertaken : in order to quantify the magnitud...

  4. Mitigation of substrate defects in reflective reticles using sequential coating and annealing

    DOEpatents

    Mirkanimi, Paul B.

    2002-01-01

    A buffer-layer to minimize the size of defects on a reticle substrate prior to deposition of a reflective coating on the substrate. The buffer-layer is formed by either a multilayer deposited on the substrate or by a plurality of sequentially deposited and annealed coatings deposited on the substrate. The plurality of sequentially deposited and annealed coating may comprise multilayer and single layer coatings. The multilayer deposited and annealed buffer layer coatings may be of the same or different material than the reflecting coating thereafter deposited on the buffer-layer.

  5. Free radial forearm adiposo-fascial flap for inferior maxillectomy defect reconstruction

    PubMed Central

    Thankappan, Krishnakumar; Trivedi, Nirav P.; Sharma, Mohit; Kuriakose, Moni A.; Iyer, Subramania

    2009-01-01

    A free radial forearm fascial flap has been described for intraoral reconstruction. Adiposo-fascial flap harvesting involves few technical modifications from the conventional radial forearm fascio-cutaneous free flap harvesting. We report a case of inferior maxillectomy defect reconstruction in a 42-year-old male with a free radial forearm adiposo-fascial flap with good aesthetic and functional outcome with minimal primary and donor site morbidity. The technique of raising the flap and closing the donor site needs to be meticulous in order to achieve good cosmetic and functional outcome. PMID:19881028

  6. Solid freeform fabrication using chemically reactive suspensions

    DOEpatents

    Morisette, Sherry L.; Cesarano, III, Joseph; Lewis, Jennifer A.; Dimos, Duane B.

    2002-01-01

    The effects of processing parameters and suspension chemorheology on the deposition behavior of SFF components derived from polymeric-based gelcasting suspensions combines the advantages associated with SFF fabrication, including the ability to spatially tailor composition and structure as well as reduced tooling costs, with the improved handling strength afforded by the use of gel based formulations. As-cast free-formed Al.sub.2 O.sub.3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no discernable micro-defects (e.g., bubbles or cracking).

  7. Updates in biological therapies for knee injuries: full thickness cartilage defect.

    PubMed

    Nicolini, Alexandre Pedro; Carvalho, Rogerio Teixeira; Dragone, Bruno; Lenza, Mario; Cohen, Moises; Ferretti, Mario

    2014-09-01

    Full thickness cartilage defect might occur at different ages, but a focal defect is a major concern in the knee of young athletes. It causes impairment and does not heal by itself. Several techniques were described to treat symptomatic full thickness cartilage defect. Recently, several advances were described on the known techniques of microfracture, osteochondral allograft, cell therapy, and others. This article brings an update of current literature on these well-described techniques for full thickness cartilage defect.

  8. 14 CFR 21.3 - Reporting of failures, malfunctions, and defects.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... crew compartment or passenger cabin. (4) A malfunction, failure, or defect of a propeller control... structural or flight control system malfunction, defect, or failure which causes an interference with normal control of the aircraft for which derogates the flying qualities. (12) A complete loss of more than one...

  9. 14 CFR 21.3 - Reporting of failures, malfunctions, and defects.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... crew compartment or passenger cabin. (4) A malfunction, failure, or defect of a propeller control... structural or flight control system malfunction, defect, or failure which causes an interference with normal control of the aircraft for which derogates the flying qualities. (12) A complete loss of more than one...

  10. 14 CFR 21.3 - Reporting of failures, malfunctions, and defects.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... crew compartment or passenger cabin. (4) A malfunction, failure, or defect of a propeller control... structural or flight control system malfunction, defect, or failure which causes an interference with normal control of the aircraft for which derogates the flying qualities. (12) A complete loss of more than one...

  11. Vacuolar invertase gene silencing in potato decreasing the frequency of sugar-end defects

    USDA-ARS?s Scientific Manuscript database

    Sugar-end defect is a tuber quality disorder and persistent problem for the French fry processing industry that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one e...

  12. 7 CFR 1924.253 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... structural defect. (d) Structural defect. A defect in the dwelling or unit, installation or set-up of a unit... of the dwelling or unit or site such as faulty wiring, or failure of sewage disposal or water supply systems located on the property securing the loan caused by faulty materials or improper installation. (3...

  13. Apollo experience report: Detection and minimization of ignition hazards from water/glycol contamination of silver-clad electrical circuitry

    NASA Technical Reports Server (NTRS)

    Downs, W. R.

    1976-01-01

    The potential flammability hazard when a water/glycol solution contacts defectively insulated silver-clad copper circuitry or electrical components carrying a direct current is described. The chemical reactions and means for detecting them are explained. Methods for detecting and cleaning contaminated areas and the use of inhibitors to arrest chemical reactivity are also explained. Preventive measures to minimize hazards are given. Photomicrographs of the chemical reactions occurring on silver clad wires are also included.

  14. Visualizing Angiogenesis by Multiphoton Microscopy In Vivo in Genetically Modified 3D-PLGA/nHAp Scaffold for Calvarial Critical Bone Defect Repair.

    PubMed

    Li, Jian; Jahr, Holger; Zheng, Wei; Ren, Pei-Gen

    2017-09-07

    The reconstruction of critically sized bone defects remains a serious clinical problem because of poor angiogenesis within tissue-engineered scaffolds during repair, which gives rise to a lack of sufficient blood supply and causes necrosis of the new tissues. Rapid vascularization is a vital prerequisite for new tissue survival and integration with existing host tissue. The de novo generation of vasculature in scaffolds is one of the most important steps in making bone regeneration more efficient, allowing repairing tissue to grow into a scaffold. To tackle this problem, the genetic modification of a biomaterial scaffold is used to accelerate angiogenesis and osteogenesis. However, visualizing and tracking in vivo blood vessel formation in real-time and in three-dimensional (3D) scaffolds or new bone tissue is still an obstacle for bone tissue engineering. Multiphoton microscopy (MPM) is a novel bio-imaging modality that can acquire volumetric data from biological structures in a high-resolution and minimally-invasive manner. The objective of this study was to visualize angiogenesis with multiphoton microscopy in vivo in a genetically modified 3D-PLGA/nHAp scaffold for calvarial critical bone defect repair. PLGA/nHAp scaffolds were functionalized for the sustained delivery of a growth factor pdgf-b gene carrying lentiviral vectors (LV-pdgfb) in order to facilitate angiogenesis and to enhance bone regeneration. In a scaffold-implanted calvarial critical bone defect mouse model, the blood vessel areas (BVAs) in PHp scaffolds were significantly higher than in PH scaffolds. Additionally, the expression of pdgf-b and angiogenesis-related genes, vWF and VEGFR2, increased correspondingly. MicroCT analysis indicated that the new bone formation in the PHp group dramatically improved compared to the other groups. To our knowledge, this is the first time multiphoton microscopy was used in bone tissue-engineering to investigate angiogenesis in a 3D bio-degradable scaffold in vivo and in real-time.

  15. Treatment of open tibial shaft fracture with soft tissue and bone defect caused by aircraft bomb--case report.

    PubMed

    Golubović, Zoran; Vidić, Goran; Trenkić, Srbobran; Vukasinović, Zoran; Lesić, Aleksandar; Stojiljković, Predrag; Stevanović, Goran; Golubović, Ivan; Visnjić, Aleksandar; Najman, Stevo

    2010-01-01

    Aircraft bombs can cause severe orthopaedic injuries. Tibia shaft fractures caused by aircraft bombs are mostly comminuted and followed by bone defects, which makes the healing process extremely difficult and prone to numerous complications. The goal of this paper is to present the method of treatment and the end results of treatment of a serious open tibial fracture with soft and bone tissue defects resulting from aircraft bomb shrapnel wounds. A 26-year-old patient presented with a tibial fracture as the result of a cluster bomb shrapnel wound. He was treated applying the method of external bone fixation done two days after wounding, as well as of early coverage of the lower leg soft tissue defects done on the tenth day after the external fixation of the fracture. The external fixator was removed after five months, whereas the treatment was continued by means of functional plaster cast for another two months. The final functional result was good. Radical wound debridement, external bone fixation of the fracture, and early reconstruction of any soft tissue and bone defects are the main elements of the treatment of serious fractures.

  16. Single closed contact for 0.18-micron photolithography process

    NASA Astrophysics Data System (ADS)

    Cheung, Cristina; Phan, Khoi A.; Chiu, Robert J.

    2000-06-01

    With the rapid advances of deep submicron semiconductor technology, identifying defects is converted into a challenge for different modules in the fabrication of chips. Yield engineers often do bitmap on a memory circuit array (SRAM) to identify the failure bits. This is followed by a wafer stripback to look for visual defects at each deprocessed layer for feedback to the Fab. However, to identify the root cause of a problem, Fab engineers must be able to detect similar defects either on the product wafers in process or some short loop test wafers. In the photolithography process, we recognize that the detection of defects is becoming as important as satisfying the critical dimension (CD) of the device. For a multi-level metallization chemically mechanical polish backend process, it is very difficult to detect missing contacts or via at the masking steps due to metal grain roughness, film color variation and/or previous layer defects. Often, photolithography engineer must depend on Photo Cell Monitor (PCM) and short loop experiments for controlling baseline defects and improvement. In this paper, we discuss the findings on the Poly mask PCM and the Contact mask PCM. We present the comparison between the Poly mask and the Contact mask of the I-line Phase Shifted Via mask and DUV mask process for a 0.18 micron process technology. The correlation and the different type of defects between the Contact PCM and the Poly Mask are discussed. The Contact PCM was found to be more sensitive and correlated to contact failure at sort yield better. We also dedicate to study the root cause of a single closed contact hole in the Contact mask short loop experiment for a 0.18 micron process technology. A single closed contact defect was often caused by the developer process, such as bubbles in the line, resist residue left behind, and the rinse mechanism. We also found surfactant solution helps to improve the surface tension of the wafer for the developer process and this prevents/eliminates a single closed contact hole defects. The applications and effects of using different substrates like SiON, different thicknesses of Oxides, and Poly in the Contact Photo Mask is shown. Finally, some defect troubleshooting techniques and the root cause analysis are also discussed.

  17. Segmental acetabular rim defects, bone loss, oversizing, and press fit cup in total hip arthroplasty evaluated with a probabilistic finite element analysis.

    PubMed

    Amirouche, Farid; Solitro, Giovanni F; Walia, Amit; Gonzalez, Mark; Bobko, Aimee

    2017-08-01

    Management of segmental rim defects and bone mineral density (BMD) loss in the elderly prior to total hip replacement is unclear within classification systems for acetabular bone loss. In this study, our objectives were (1) to understand how a reduction in BMD in the elderly affects the oversizing of a press-fit cup for primary fixation and (2) to evaluate whether the location of the segmental defect affected cup fixation. A finite element (FE) model was used to simulate and evaluate cup insertion and fixation in the context of segmental rim defects. We focused on the distribution of patients over age 70 and used BMD (estimated from CT) as a proxy for aging's implications on THR and used probabilistic FE analysis to understand how BMD loss affects oversizing of a press-fit cup. A cup oversized by 1.10 ± 0.28 mm provides sufficient fixation and lower stresses at the cup-bone interface for elderly patients. Defects in the anterior column and posterior column both required the same mean insertion force for cup seating of 84% (taken as an average of 2 anterior column and 2 posterior column defects) compared to the control configuration, which was 5% greater than the insertion force for a superior rim defect and 12% greater than the insertion force for an inferior rim defect. A defect along the superior or inferior rim had a minimal effect on cup fixation, while a defect in the columns created cup instability and increased stress at the defect location.

  18. Congenital platelet function defects

    MedlinePlus

    Platelet storage pool disorder; Glanzmann's thrombasthenia; Bernard-Soulier syndrome; Platelet function defects - congenital ... This disorder may also cause severe bleeding. Platelet storage pool disorder (also called platelet secretion disorder) occurs ...

  19. Prevalence of an unusual hypoplastic defect of the permanent maxillary lateral incisor in great apes.

    PubMed

    Hannibal, Darcy L

    2017-02-01

    In this article, I describe a previously unreported maxillary lateral incisor defect (MLID) of the enamel in great apes and evaluate potential general causes (genetic, systemic stress, or localized disturbance), as well as examine differences in prevalence among the represented taxa. This defect occurred only on the labial surface of the maxillary lateral incisor and extended from the cervical-mesial quarter of the crown to the mesial edge of the cementoenamel junction (CEJ). The study sample consisted of 136 great ape specimens, including 41 gorillas, 25 chimpanzees, and 70 orangutans from the Smithsonian's National Museum of Natural History great ape collection. I used logistic regression to assess the prevalence of this defect in the sample and a binomial probability test for bilaterality. This defect of the maxillary lateral incisor is the second most common defect I observed in the study sample (30.1% of individuals affected), and was more likely to occur in individuals with linear enamel hypoplasia (LEH) and pit defects than those without these defects. Among specimens with both maxillary lateral incisors present, the defect was mostly bilateral. Pan and Pongo were significantly more likely to exhibit the defect than Gorilla. Between Pongo species, Pongo pygmaeus was significantly more likely to exhibit the defect than Pongo abelii. Between subspecies of Gorilla, although Gorilla gorilla gorilla exhibited the defect and Gorilla gorilla beringei did not, the difference was not significant. No sex differences were evident in this sample. The prevalence of this defect indicates it is not hereditary. The bilateral trend indicates a systemic cause, although the high inter-tooth specificity suggests a local disturbance and a combination of both is possible. © 2016 Wiley Periodicals, Inc.

  20. Coarse-grained molecular dynamics modeling of the kinetics of lamellar block copolymer defect annealing

    NASA Astrophysics Data System (ADS)

    Peters, Andrew J.; Lawson, Richard A.; Nation, Benjamin D.; Ludovice, Peter J.; Henderson, Clifford L.

    2016-01-01

    State-of-the-art block copolymer (BCP)-directed self-assembly (DSA) methods still yield defect densities orders of magnitude higher than is necessary in semiconductor fabrication despite free-energy calculations that suggest equilibrium defect densities are much lower than is necessary for economic fabrication. This disparity suggests that the main problem may lie in the kinetics of defect removal. This work uses a coarse-grained model to study the rates, pathways, and dependencies of healing a common defect to give insight into the fundamental processes that control defect healing and give guidance on optimal process conditions for BCP-DSA. It is found that bulk simulations yield an exponential drop in defect heal rate above χN˜30. Thin films show no change in rate associated with the energy barrier below χN˜50, significantly higher than the χN values found previously for self-consistent field theory studies that neglect fluctuations. Above χN˜50, the simulations show an increase in energy barrier scaling with 1/2 to 1/3 of the bulk systems. This is because thin films always begin healing at the free interface or the BCP-underlayer interface, where the increased A-B contact area associated with the transition state is minimized, while the infinitely thick films cannot begin healing at an interface.

  1. Impaired Mitochondrial Dynamics Underlie Axonal Defects in Hereditary Spastic Paraplegias.

    PubMed

    Denton, Kyle; Mou, Yongchao; Xu, Chong-Chong; Shah, Dhruvi; Chang, Jaerak; Blackstone, Craig; Li, Xue-Jun

    2018-05-02

    Mechanisms by which long corticospinal axons degenerate in hereditary spastic paraplegia (HSP) are largely unknown. Here, we have generated induced pluripotent stem cells (iPSCs) from patients with two autosomal recessive forms of HSP, SPG15 and SPG48, which are caused by mutations in the ZFYVE26 and AP5Z1 genes encoding proteins in the same complex, the spastizin and AP5Z1 proteins, respectively. In patient iPSC-derived telencephalic glutamatergic and midbrain dopaminergic neurons, neurite number, length and branching are significantly reduced, recapitulating disease-specific phenotypes. We analyzed mitochondrial morphology and noted a significant reduction in both mitochondrial length and their densities within axons of these HSP neurons. Mitochondrial membrane potential was also decreased, confirming functional mitochondrial defects. Notably, mdivi-1, an inhibitor of the mitochondrial fission GTPase DRP1, rescues mitochondrial morphology defects and suppresses the impairment in neurite outgrowth and late-onset apoptosis in HSP neurons. Furthermore, knockdown of these HSP genes causes similar axonal defects, also mitigated by treatment with mdivi-1. Finally, neurite outgrowth defects in SPG15 and SPG48 cortical neurons can be rescued by knocking down DRP1 directly. Thus, abnormal mitochondrial morphology caused by an imbalance of mitochondrial fission and fusion underlies specific axonal defects and serves as a potential therapeutic target for SPG15 and SPG48.

  2. Determination of Isthmocele Using a Foley Catheter During Laparoscopic Repair of Cesarean Scar Defect.

    PubMed

    Akdemir, Ali; Sahin, Cagdas; Ari, Sabahattin Anil; Ergenoglu, Mete; Ulukus, Murat; Karadadas, Nedim

    2018-01-01

    To demonstrate a new technique of isthmocele repair via laparoscopic surgery. Case report (Canadian Task Force classification III). The local Ethics Committee waived the requirement for approval. Isthmocele localized at a low uterine segment is a defect of a previous caesarean scar due to poor myometrial healing after surgery [1]. This pouch accumulates menstrual bleeding, which can cause various disturbances and irregularities, including abnormal uterine bleeding, infertility, pelvic pain, and scar pregnancy [2-6]. Given the absence of a clearly defined surgical method in the literature, choosing the proper approach to treating isthmocele can be arduous. Laparoscopy provides a minimally invasive procedure in women with previous caesarean scar defects. A 28-year-old woman, gravida 2 para 2, presented with a complaint of prolonged postmenstrual bleeding for 5 years. She had undergone 2 cesarean deliveries. Transvaginal ultrasonography revealed a hypoechogenic area with menstrual blood in the anterior lower uterine segment. Magnetic resonance imaging showed an isthmocele localized at the anterior left lateral side of the uterus, with an estimated volume of approximately 12 cm 3 . After patient preparation, laparoscopy was performed. To repair the defect, the uterovesical peritoneal fold was incised and the bladder was mobilized from the lower uterine segment. During this surgery, differentiating the isthmocele from the abdomen can be challenging. Here we used a Foley catheter to identify the isthmocele. To do this, after mobilizing the bladder from the lower uterine segment, we inserted a Foley catheter into the uterine cavity through the cervical canal. We then filled the balloon of the catheter at the lower uterine segment under laparoscopic view, which allowed clear identification of the isthmocele pouch. The uterine defect was then incised. The isthmocele cavity was accessed, the margins of the pouch were debrided, and the edges were surgically reapproximated with continuous nonlocking single layer 2-0 polydioxanone sutures. We believed that single-layer suturing could provide for proper healing without necrosis due to suturation. During the procedure, the vesicouterine space was dissected without difficulty. A urine bag was collected with clear urine, and there was no gas leakage; thus, we considered a safety test for the bladder superfluous. Based on concerns about the possible increased risk of adhesions, we did not cover peritoneum over the suture. The patients experienced no associated complications, and she reported complete resolution of prolonged postmenstrual bleeding at a 3-month follow-up. Even though the literature is cloudy in this area, a laparoscopic approach to repairing an isthmocele is a safe and minimally invasive procedure. Our approach described here involves inserting a Foley catheter in the uterine cavity through the cervical canal, then filling the balloon in the lower uterine segment under laparoscopic view to identify the isthmocele. Copyright © 2017 AAGL. Published by Elsevier Inc. All rights reserved.

  3. [Percutaneous intervention in the correction of congenital heart deffects (DCC): experience in as UMAE].

    PubMed

    Campos-García, Vicente; Ordóñez-Toquero, Guillermo; Monjaraz-Rodríguez, Sarain; Gómez-Conde, Eduardo

    Congenital heart defects are common in infants and adults, affecting quality of life if not corrected. Unlike open surgery, percutaneous intervention allows correction with a high success rate and speedy recovery. In Mexico, there are not enough studies to describe their efficacy and safety. A cohort study was conducted in the Hospital "Manuel Avila Camacho", in Puebla, Mexico, including 149 patients with congenital heart defects repaired by percutaneous intervention, recording data from clinical records. The following were documented: post-guided fluoroscopy, hemodynamic changes, cardiac catheterization drilling anatomical changes, and complications six months later such as infection or bleeding at the puncture site, device migration, endocarditis, or death. SPSS was used, using descriptive and inferential statistics. The patients' congenital heart defects treated were ductus arteriosus, atrial septal defect, and aortic coarctation, with ductus arteriosus being recorded as the most frequent congenital heart defect. Primary angioplasties were performed in 75% and stenting in the rest. Anatomical corrections of congenital defects were successful in 96.4% of patients (p < 0.01), with minimal adverse effects (p < 0.01). We conclude that our hospital has good efficacy and safety in percutaneous intervention, comparable to published reports.

  4. Modeling and experimental methods to predict oxygen distribution in bone defects following cell transplantation.

    PubMed

    Heylman, Christopher M; Santoso, Sharon; Krebs, Melissa D; Saidel, Gerald M; Alsberg, Eben; Muschler, George F

    2014-04-01

    We have developed a mathematical model that allows simulation of oxygen distribution in a bone defect as a tool to explore the likely effects of local changes in cell concentration, defect size or geometry, local oxygen delivery with oxygen-generating biomaterials (OGBs), and changes in the rate of oxygen consumption by cells within a defect. Experimental data for the oxygen release rate from an OGB and the oxygen consumption rate of a transplanted cell population are incorporated into the model. With these data, model simulations allow prediction of spatiotemporal oxygen concentration within a given defect and the sensitivity of oxygen tension to changes in critical variables. This information may help to minimize the number of experiments in animal models that determine the optimal combinations of cells, scaffolds, and OGBs in the design of current and future bone regeneration strategies. Bone marrow-derived nucleated cell data suggest that oxygen consumption is dependent on oxygen concentration. OGB oxygen release is shown to be a time-dependent function that must be measured for accurate simulation. Simulations quantify the dependency of oxygen gradients in an avascular defect on cell concentration, cell oxygen consumption rate, OGB oxygen generation rate, and OGB geometry.

  5. High purith low defect FZ silicon

    NASA Technical Reports Server (NTRS)

    Kimura, H.; Robertson, G.

    1985-01-01

    The most common intrinsic defects in dislocation-free float zone (FZ) silicon crystals are the A- and B-type swirl defects. The mechanisms of their formation and annihilation have been extensively studied. Another type of defect in dislocation-free FZ crystals is referred to as a D-type defect. Concentrations of these defects can be minimized by optimizing the growth conditions, and the residual swirls can be reduced by the post-growth extrinsic gettering process. Czochralski (Cz) silicon wafers are known to exhibit higher resistance to slip and warpage due to thermal stress than do FZ wafers. The Cz crystals containing dislocations are more resistant to dislocation movement than dislocated FZ crystals because of the locking of dislocations by oxygen atoms present in the Cz crystals. Recently a transverse magnetic field was applied during the FZ growth of extrinsic silicon. Resultant flow patterns, as revealed by striation etching and spreading resistance in Ga-doped silicon crystals, indicate strong effects of the transverse magnetic field on the circulation within the melt. At fields of 5500 gauss, the fluid flow in the melt volume is so altered as to affect the morphology of the growing crystal.

  6. Self-fitting shape memory polymer foam inducing bone regeneration: A rabbit femoral defect study.

    PubMed

    Xie, Ruiqi; Hu, Jinlian; Hoffmann, Oskar; Zhang, Yuanchi; Ng, Frankie; Qin, Tingwu; Guo, Xia

    2018-04-01

    Although tissue engineering has been attracted greatly for healing of critical-sized bone defects, great efforts for improvement are still being made in scaffold design. In particular, bone regeneration would be enhanced if a scaffold precisely matches the contour of bone defects, especially if it could be implanted into the human body conveniently and safely. In this study, polyurethane/hydroxyapatite-based shape memory polymer (SMP) foam was fabricated as a scaffold substrate to facilitate bone regeneration. The minimally invasive delivery and the self-fitting behavior of the SMP foam were systematically evaluated to demonstrate its feasibility in the treatment of bone defects in vivo. Results showed that the SMP foam could be conveniently implanted into bone defects with a compact shape. Subsequently, it self-matched the boundary of bone defects upon shape-recovery activation in vivo. Micro-computed tomography determined that bone ingrowth initiated at the periphery of the SMP foam with a constant decrease towards the inside. Successful vascularization and bone remodeling were also demonstrated by histological analysis. Thus, our results indicate that the SMP foam demonstrated great potential for bone regeneration. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. 47 CFR 1.746 - Defective applications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., and Reports Involving Common Carriers Applications § 1.746 Defective applications. (a) Applications... will be accepted for filing and consideration if accompanied by petition showing good cause for waiver...

  8. 47 CFR 1.746 - Defective applications.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., and Reports Involving Common Carriers Applications § 1.746 Defective applications. (a) Applications... will be accepted for filing and consideration if accompanied by petition showing good cause for waiver...

  9. Sensory-Neuropathy-Causing Mutations in ATL3 Cause Aberrant ER Membrane Tethering.

    PubMed

    Krols, Michiel; Detry, Sammy; Asselbergh, Bob; Almeida-Souza, Leonardo; Kremer, Anna; Lippens, Saskia; De Rycke, Riet; De Winter, Vicky; Müller, Franz-Josef; Kurth, Ingo; McMahon, Harvey T; Savvides, Savvas N; Timmerman, Vincent; Janssens, Sophie

    2018-05-15

    The endoplasmic reticulum (ER) is a complex network of sheets and tubules that is continuously remodeled. The relevance of this membrane dynamics is underscored by the fact that mutations in atlastins (ATLs), the ER fusion proteins in mammals, cause neurodegeneration. How defects in this process disrupt neuronal homeostasis is unclear. Using electron microscopy (EM) volume reconstruction of transfected cells, neurons, and patient fibroblasts, we show that hereditary sensory and autonomic neuropathy (HSAN)-causing ATL3 mutants promote aberrant ER tethering hallmarked by bundles of laterally attached ER tubules. In vitro, these mutants cause excessive liposome tethering, recapitulating the results in cells. Moreover, ATL3 variants retain their dimerization-dependent GTPase activity but are unable to promote membrane fusion, suggesting a defect in an intermediate step of the ATL3 functional cycle. Our data show that the effects of ATL3 mutations on ER network organization go beyond a loss of fusion and shed light on neuropathies caused by atlastin defects. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  10. Water, Water Everywhere, But is it Safe to Drink?

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) have been associated with adverse human health effects, including bladder cancer, early term miscarriage, and birth defects. While it is vitally important to kill harmful pathogens in water, it is also important to minimize harmful ...

  11. Arthroscopic, histological and MRI analyses of cartilage repair after a minimally invasive method of transplantation of allogeneic synovial mesenchymal stromal cells into cartilage defects in pigs

    PubMed Central

    Nakamura, Tomomasa; Sekiya, Ichiro; Muneta, Takeshi; Hatsushika, Daisuke; Horie, Masafumi; Tsuji, Kunikazu; Kawarasaki, Tatsuo; Watanabe, Atsuya; Hishikawa, Shuji; Fujimoto, Yasuhiro; Tanaka, Hozumi; Kobayashi, Eiji

    2012-01-01

    Background aims Transplantation of synovial mesenchymal stromal cells (MSCs) may induce repair of cartilage defects. We transplanted synovial MSCs into cartilage defects using a simple method and investigated its usefulness and repair process in a pig model. Methods The chondrogenic potential of the porcine MSCs was compared in vitro. Cartilage defects were created in both knees of seven pigs, and divided into MSCs treated and non-treated control knees. Synovial MSCs were injected into the defect, and the knee was kept immobilized for 10 min before wound closure. To visualize the actual delivery and adhesion of the cells, fluorescence-labeled synovial MSCs from transgenic green fluorescent protein (GFP) pig were injected into the defect in a subgroup of two pigs. In these two animals, the wounds were closed before MSCs were injected and observed for 10 min under arthroscopic control. The defects were analyzed sequentially arthroscopically, histologically and by magnetic resonance imaging (MRI) for 3 months. Results Synovial MSCs had a higher chondrogenic potential in vitro than the other MSCs examined. Arthroscopic observations showed adhesion of synovial MSCs and membrane formation on the cartilage defects before cartilage repair. Quantification analyses for arthroscopy, histology and MRI revealed a better outcome in the MSC-treated knees than in the non-treated control knees. Conclusions Leaving a synovial MSC suspension in cartilage defects for 10 min made it possible for cells to adhere in the defect in a porcine cartilage defect model. The cartilage defect was first covered with membrane, then the cartilage matrix emerged after transplantation of synovial MSCs. PMID:22309371

  12. A leucine-to-proline substitution causes a defective [alpha]-antichymotrypsin allele associated with familial obstructive lung disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poller, W.; Scholz, S.; Fischer, M.

    1993-09-01

    Using denaturing gradient gel electrophoresis and direct sequencing of amplified genomic DNA, the authors have identified two defective mutants of the human [alpha][sub 1]-antichymotrypsin (ACT) gene associated with chronic obstructive pulmonary disease (COPD). A leucine 55-to-proline substitution causing a defective ACT allele (Bochum-1) was observed in a family with COPD in three subsequent generations. Another mutation, proline 229-to-alanine (Bonn-1), was associated with ACT serum deficiency in four patients with a positive family history. These mutations were not detected among 100 healthy control subjects, suggesting a possible pathogenetic role of ACT gene defects in a subset of patients with COPD. 14more » refs., 1 fig., 1 tab.« less

  13. Response of Chondrocytes to Local Mechanical Injury in an Ex Vivo Model

    PubMed Central

    Lyman, Jeffrey R.; Chappell, Jonathan D.; Kelley, Scott S.; Lee, Greta M.

    2012-01-01

    Background: Our goal was to set up an ex vivo culture system to assess whether cartilage wounding (partial-thickness defects) can induce morphological changes in neighboring chondrocytes and whether these cells can translocate to the surface of the defect. Methods: Two-millimeter partial-depth defects were created in human osteochondral explants followed by culture for up to 4 weeks. Frozen sections of defects and defect-free regions were labeled using immunofluorescence for a plasma membrane protein, CD44, and actin with TRITC-phalloidin. Viable nuclei were detected with Hoechst 33342. Differential interference contrast (DIC), confocal, and transmission electron microscopy (TEM) were used to examine process extension. Results: Significant changes in cell morphology occurred in response to wounding in the superficial and deep cartilage zones. These included cell flattening, polarization of the actin cytoskeleton, extension of pseudopods projecting towards the edge of the defect, and interactions of these filopodia with collagen fibers. Cell density decreased progressively in the 300-µm zone adjacent to the defect to an average of approximately 25% to 35% after 3 weeks. Concomitant increases in cell density in the defect margin were observed. By contrast, minimal changes were seen in the middle cartilage zone. Conclusions: These novel observations strongly suggest active cartilage cell responses and movements in response to wounding. It is proposed that cartilage cells use contact guidance on fibrillated collagen to move into and populate defect areas in the superficial and deep zones. PMID:26069619

  14. Prevention of congenital defects induced by prenatal alcohol exposure (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sheehan, Megan M.; Karunamuni, Ganga; Pedersen, Cameron J.; Gu, Shi; Doughman, Yong Qiu; Jenkins, Michael W.; Watanabe, Michiko; Rollins, Andrew M.

    2017-02-01

    Nearly 2 million women in the United States alone are at risk for an alcohol-exposed pregnancy, including more than 600,000 who binge drink. Even low levels of prenatal alcohol exposure (PAE) can lead to a variety of birth defects, including craniofacial and neurodevelopmental defects, as well as increased risk of miscarriages and stillbirths. Studies have also shown an interaction between drinking while pregnant and an increase in congenital heart defects (CHD), including atrioventricular septal defects and other malformations. We have previously established a quail model of PAE, modeling a single binge drinking episode in the third week of a woman's pregnancy. Using optical coherence tomography (OCT), we quantified intraventricular septum thickness, great vessel diameters, and atrioventricular valve volumes. Early-stage ethanol-exposed embryos had smaller cardiac cushions (valve precursors) and increased retrograde flow, while late-stage embryos presented with gross head/body defects, and exhibited smaller atrio-ventricular (AV) valves, interventricular septum, and aortic vessels. We previously showed that supplementation with the methyl donor betaine reduced gross defects, improved survival rates, and prevented cardiac defects. Here we show that these preventative effects are also observed with folate (another methyl donor) supplementation. Folate also appears to normalize retrograde flow levels which are elevated by ethanol exposure. Finally, preliminary findings have shown that glutathione, a crucial antioxidant, is noticeably effective at improving survival rates and minimizing gross defects in ethanol-exposed embryos. Current investigations will examine the impact of glutathione supplementation on PAE-related CHDs.

  15. The First Dorsal Metatarsal Artery Perforator Propeller Flap.

    PubMed

    Hallock, Geoffrey G

    2016-06-01

    Distal foot and toe defects requiring a vascularized flap for coverage have very limited options, oftentimes justifying even a free flap. Perforator flaps in general and propeller flaps in particular have opened up an entirely new subset of local tissue transfer alternatives that can potentially avoid the difficulties that accompany microvascular tissue transfers. The first dorsal metatarsal artery (FDMA) perforator propeller flap represents another variation of this theme. A standard FDMA flap from the dorsum of the foot was raised in reversed fashion based on the distal communicating branch or "perforator" from the plantar foot circulation in 2 patients with great toe defects. All distal skin tissue between this perforator and the defect was kept with the FDMA flap as an attached minor blade, to thereby create an FDMA propeller flap. Salvage of the great toe in both patients was achieved. The benefit of the minor blade of the propeller was to fill a portion of the donor site defect of the traditional FDMA major blade, to permit tension-free donor site closure of the dorsal foot without sequela. The distal-based FDMA flap can be useful as a local flap for coverage of distal foot and toe wounds, but direct donor site closure can be problematic as mirrored by its relative the dorsalis pedis flap. The FDMA perforator propeller flap variation can achieve the same reconstructive goals while simultaneously transferring vascularized tissue into the dorsal foot donor site to thereby minimize the tension if direct closure is possible or minimize the need for a skin graft in this notoriously difficult region.

  16. Increased pulmonary artery pressures during exercise are related to persistent tricuspid regurgitation after atrial septal defect closure.

    PubMed

    De Meester, Pieter; Van De Bruaene, Alexander; Herijgers, Paul; Voigt, Jens-Uwe; Vanhees, Luc; Budts, Werner

    2013-08-01

    Although closure of an atrial septal defect type secundum often normalizes right heart dimensions and pressures, mild tricuspid insufficiency might persist. This study aimed at (1) identification of determinants explaining the persistence of tricuspid insufficiency after atrial septal defect closure, and (2) evaluation of functional capacity of patients with persistent mild tricuspid insufficiency. Twenty-five consecutive patients (age 42+17 y) were included from the outpatient clinic of congenital heart disease at the University Hospitals of Leuven. All underwent transthoracic echocardiography, semi-supine bicycle stress echocardiography and cardio-pulmonary exercise testing. Six patients (24%) had mild tricuspid insufficiency (2/4) compared to 19 patients (76%) with no or minimal tricuspid insufficiency ( 1/4) as assessed by semi-quantitative colour Doppler echocardiography. Mann-Whitney U and Fisher's exact tests were performed where applicable. Patients with persistent mild tricuspid insufficiency were significantly older than those with no or minimal tricuspid insufficiency (P = 0.042). At rest, no differences in right heart configuration, mean pulmonary artery pressure or right ventricular function were found. At peak exercise, mean pulmonary artery pressure was significantly higher in patients with mild persistent tricuspid insufficiency (P = 0.026). Peak oxygen uptake was significantly lower in patients with mild persistent tricuspid insufficiency (P = 0.019). Mild tricuspid insufficiency after atrial septal defect repair occurs more frequently in older patients and in patients with higher mean pulmonary artery pressure at peak exercise. In patients with mild tricuspid insufficiency, functional capacity was more reduced. Mild tricuspid insufficiency could be a marker of subclinical persistent pressure load on the right ventricle.

  17. Advances in low-defect multilayers for EUVL mask blanks

    NASA Astrophysics Data System (ADS)

    Folta, James A.; Davidson, J. Courtney; Larson, Cindy C.; Walton, Christopher C.; Kearney, Patrick A.

    2002-07-01

    Low-defect multilayer coatings are required to fabricate mask blanks for Extreme Ultraviolet Lithography (EUVL). The mask blanks consist of high reflectance EUV multilayers on low thermal expansion substrates. A defect density of 0.0025 printable defects/cm2 for both the mask substrate and the multilayer is required to provide a mask blank yield of 60 percent. Current low defect multilayer coating technology allows repeated coating-added defect levels of 0.05/cm2 for defects greater than 90 nm polystyrene latex sphere (PSL) equivalent size for lots of 20 substrates. Extended clean operation of the coating system at levels below 0.08/cm2 for 3 months of operation has also been achieved. Two substrates with zero added defects in the quality area have been fabricated, providing an existence proof that ultra low defect coatings are possible. Increasing the ion source-to-target distance from 410 to 560 mm to reduce undesired coating of the ion source caused the defect density to increase to 0.2/cm2. Deposition and etching diagnostic witness substrates and deposition pinhole cameras showed a much higher level of ion beam spillover (ions missing the sputter target) than expected. Future work will quantify beam spillover, and test designs to reduce spillover, if it is confirmed to be the cause of the increased defect level. The LDD system will also be upgraded to allow clean coating of standard format mask substrates. The upgrade will confirm that the low defect process developed on Si wafers is compatible with the standard mask format 152 mm square substrates, and will provide a clean supply of EUVL mask blanks needed to support development of EUVL mask patterning processes and clean mask handling technologies.

  18. Assessing material properties for fusion applications by ion beams

    NASA Astrophysics Data System (ADS)

    Catarino, N.; Dias, M.; Jepu, I.; Alves, E.

    2017-10-01

    The plasma-facing materials in the ITER divertor area must withstand unusual events, such as the edge-localized modes (ELMS). At the point when an ELM occurs, up to 30% of the energy can be deposited on the plasma-facing boundary in the form of the heat and particle load causing material loss due to sublimation. Tungsten is a promising candidate as a plasma-facing material in the ITER divertor area since it has a high melting point, good thermal conductivity and low sputtering yield, which minimizes the plasma contamination. However their brittleness at low temperatures which is worsened by irradiation is an issue. One strategy to modulate the properties of tungsten is alloying this element with other refractory metals, such as tantalum that shows higher toughness, lower activation and higher radiation resistance. In the present study tungsten-tantalum alloys (W-Ta) were produced by Ta implantation. The fundamental mechanisms which govern the behaviour of defect dynamics in W-Ta materials under reactor conditions, were simulated by the implantation of He and D. The microstructure observations of the W plates that after single Ta implantation revealed crater-like cavities and a more severe effect after D implantation. The effect increase with the increasing of D fluence. However at fluences higher than 1021D/m the effect is reduced. In addition, blistering was observed in W-Ta plates implanted with He. The D retention in the W-Ta alloys increases with the implanted fluence with tendency for saturation for high fluences. Moreover the results show that D retention is higher after sequential He and D implantation than for single D implantation. The diffractogram of W-Ta alloys implanted with He evidenced the presence of broadened W peaks associated with stress induced by irradiation, which may cause internal stress field resulting in a distortion of the crystal lattice. These irradiation defects can be observed in the D release spectra where three peaks are associated with three types of defects in W and W-Ta implanted with He and D.

  19. Recent development of transcatheter closure of atrial septal defect and patent foramen ovale with occluders.

    PubMed

    Tang, Baiyu; Su, Feng; Sun, Xiangke; Wu, Qin; Xing, Quansheng; Li, Suming

    2018-01-01

    Atrial septal defect (ASD) and patent foramen ovale (PFO) are common clinical congenital heart defects. As an effective method for the treatment of ASD and PFO, transcatheter closure with occluders presents many advantages, including safety, ease of operation, minimal invasiveness, and reduced complications. This contribution reviews the various types of occluders currently used in clinical applications and under development, including non degradable occluders, partially degradable occluders, and totally degradable occluders. A number of case studies are described in detail. Comparison is made on the treatment outcomes using different occulders. Future development of transcatheter closure is discussed, in particular the use of totally degradable occluders. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 433-443, 2018. © 2016 Wiley Periodicals, Inc.

  20. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOEpatents

    Cole, E.I. Jr.

    1996-06-04

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs. 5 figs.

  1. Integrated circuit failure analysis by low-energy charge-induced voltage alteration

    DOEpatents

    Cole, Jr., Edward I.

    1996-01-01

    A scanning electron microscope apparatus and method are described for detecting and imaging open-circuit defects in an integrated circuit (IC). The invention uses a low-energy high-current focused electron beam that is scanned over a device surface of the IC to generate a charge-induced voltage alteration (CIVA) signal at the location of any open-circuit defects. The low-energy CIVA signal may be used to generate an image of the IC showing the location of any open-circuit defects. A low electron beam energy is used to prevent electrical breakdown in any passivation layers in the IC and to minimize radiation damage to the IC. The invention has uses for IC failure analysis, for production-line inspection of ICs, and for qualification of ICs.

  2. Immersion lithography defectivity analysis at DUV inspection wavelength

    NASA Astrophysics Data System (ADS)

    Golan, E.; Meshulach, D.; Raccah, N.; Yeo, J. Ho.; Dassa, O.; Brandl, S.; Schwarz, C.; Pierson, B.; Montgomery, W.

    2007-03-01

    Significant effort has been directed in recent years towards the realization of immersion lithography at 193nm wavelength. Immersion lithography is likely a key enabling technology for the production of critical layers for 45nm and 32nm design rule (DR) devices. In spite of the significant progress in immersion lithography technology, there remain several key technology issues, with a critical issue of immersion lithography process induced defects. The benefits of the optical resolution and depth of focus, made possible by immersion lithography, are well understood. Yet, these benefits cannot come at the expense of increased defect counts and decreased production yield. Understanding the impact of the immersion lithography process parameters on wafer defects formation and defect counts, together with the ability to monitor, control and minimize the defect counts down to acceptable levels is imperative for successful introduction of immersion lithography for production of advanced DR's. In this report, we present experimental results of immersion lithography defectivity analysis focused on topcoat layer thickness parameters and resist bake temperatures. Wafers were exposed on the 1150i-α-immersion scanner and 1200B Scanner (ASML), defect inspection was performed using a DUV inspection tool (UVision TM, Applied Materials). Higher sensitivity was demonstrated at DUV through detection of small defects not detected at the visible wavelength, indicating on the potential high sensitivity benefits of DUV inspection for this layer. The analysis indicates that certain types of defects are associated with different immersion process parameters. This type of analysis at DUV wavelengths would enable the optimization of immersion lithography processes, thus enabling the qualification of immersion processes for volume production.

  3. Minimally Invasive Drainage of a Post-Laminectomy Subfascial Seroma with Cervical Spinal Cord Compression.

    PubMed

    Kitshoff, Adriaan Mynhardt; Van Goethem, Bart; Cornelis, Ine; Combes, Anais; Dvm, Ingeborgh Polis; Gielen, Ingrid; Vandekerckhove, Peter; de Rooster, Hilde

    2016-01-01

    A 14 mo old female neutered Doberman pinscher was evaluated for difficulty in rising, a wide based stance, pelvic limb gait abnormalities, and cervical pain of 2 mo duration. Neurologic examination revealed pelvic limb ataxia and cervical spinal hyperesthesia. Spinal reflexes and cranial nerve examination were normal. The pathology was localized to the C1-C5 or C6-T2 spinal cord segments. Computed tomography (CT) findings indicated bony proliferation of the caudal articular processes of C6 and the cranial articular processes of C7, resulting in bilateral dorsolateral spinal cord compression that was more pronounced on the left side. A limited dorsal laminectomy was performed at C6-C7. Due to progressive neurological deterioration, follow-up CT examination was performed 4 days postoperatively. At the level of the laminectomy defect, a subfacial seroma had developed, entering the spinal canal and causing significant spinal cord compression. Under ultrasonographic guidance a closed-suction wound catheter was placed. Drainage of the seroma successfully relieved its compressive effects on the spinal cord and the patient's neurological status improved. CT was a valuable tool in assessing spinal cord compression as a result of a postoperative subfascial seroma. Minimally invasive application of a wound catheter can be successfully used to manage this condition.

  4. Emerging Disinfection By-Products and Other Emerging Environmental Contaminants: What's New

    EPA Science Inventory

    Drinking water disinfection by-products (DBPs) have been associated with adverse human health effects, including bladder cancer, early term miscarriage, and birth defects. While it is vitally important to kill harmful pathogens in water, it is also important to minimize harmful ...

  5. Nerve stepping stone has minimal impact in aiding regeneration across long acellular nerve allografts.

    PubMed

    Yan, Ying; Hunter, Daniel A; Schellhardt, Lauren; Ee, Xueping; Snyder-Warwick, Alison K; Moore, Amy M; Mackinnon, Susan E; Wood, Matthew D

    2018-02-01

    Acellular nerve allografts (ANAs) yield less consistent favorable outcomes compared with autografts for long gap reconstructions. We evaluated whether a hybrid ANA can improve 6-cm gap reconstruction. Rat sciatic nerve was transected and repaired with either 6-cm hybrid or control ANAs. Hybrid ANAs were generated using a 1-cm cellular isograft between 2.5-cm ANAs, whereas control ANAs had no isograft. Outcomes were assessed by graft gene and marker expression (n = 4; at 4 weeks) and motor recovery and nerve histology (n = 10; at 20 weeks). Hybrid ANAs modified graft gene and marker expression and promoted modest axon regeneration across the 6-cm defect compared with control ANA (P < 0.05), but yielded no muscle recovery. Control ANAs had no appreciable axon regeneration across the 6-cm defect. A hybrid ANA confers minimal motor recovery benefits for regeneration across long gaps. Clinically, the authors will continue to reconstruct long nerve gaps with autografts. Muscle Nerve 57: 260-267, 2018. © 2017 Wiley Periodicals, Inc.

  6. Surface inspection system for industrial components based on shape from shading minimization approach

    NASA Astrophysics Data System (ADS)

    Kotan, Muhammed; Öz, Cemil

    2017-12-01

    An inspection system using estimated three-dimensional (3-D) surface characteristics information to detect and classify the faults to increase the quality control on the frequently used industrial components is proposed. Shape from shading (SFS) is one of the basic and classic 3-D shape recovery problems in computer vision. In our application, we developed a system using Frankot and Chellappa SFS method based on the minimization of the selected basis function. First, the specialized image acquisition system captured the images of the component. To eliminate noise, wavelet transform is applied to the taken images. Then, estimated gradients were used to obtain depth and surface profiles. Depth information was used to determine and classify the surface defects. Also, a comparison made with some linearization-based SFS algorithms was discussed. The developed system was applied to real products and the results indicated that using SFS approaches is useful and various types of defects can easily be detected in a short period of time.

  7. Inhibitory activity of reuterin, nisin, lysozyme and nitrite against vegetative cells and spores of dairy-related Clostridium species.

    PubMed

    Avila, Marta; Gómez-Torres, Natalia; Hernández, Marta; Garde, Sonia

    2014-02-17

    The butyric acid fermentation, responsible for late blowing of cheese, is caused by the outgrowth in cheese of some species of Clostridium, resulting in texture and flavor defects and economical losses. The aim of this study was to evaluate the effectiveness of different antimicrobial compounds against vegetative cells and spores of C. tyrobutyricum, C. butyricum, C. beijerinckii and C. sporogenes strains isolated from cheeses with late blowing defect. Minimal inhibitory concentration (MIC) for reuterin, nisin, lysozyme and sodium nitrite were determined against Clostridium strains in milk and modified RCM (mRCM) after 7d exposure. Although the sensitivity of Clostridium to the tested antimicrobials was strain-dependent, C. sporogenes and C. beijerinckii generally had higher MIC values than the rest of Clostridium species. The majority of Clostridium strains were more resistant to antimicrobials in milk than in mRCM, and vegetative cells exhibited higher sensitivity than spores. Reuterin (MIC values 0.51-32.5 mM) and nisin (MIC values 0.05-12.5 μg/ml) were able to inhibit the growth of vegetative cells and spores of all assayed Clostridium strains in milk and mRCM. Strains of C. tyrobutyricum exhibited the highest sensitivity to lysozyme (MIC values<0.20-400 μg/ml) and sodium nitrite (MIC values 18.75-150 μg/ml). These results suggest that reuterin and nisin, with a broad inhibitory activity spectrum against Clostridium spp. spores and vegetative cells, may be the best options to control Clostridium growth in dairy products and to prevent associated spoilage, such as late blowing defect of cheese. However, further studies in cheese would be necessary to validate this hypothesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Interaction of metronidazole with DNA repair mutants of Escherichia coli.

    PubMed

    Yeung, T C; Beaulieu, B B; McLafferty, M A; Goldman, P

    1984-01-01

    It has been proposed that one of metronidazole's partially reduced intermediates interacts either with DNA to exert a bactericidal effect or with water to form acetamide. To test this hypothesis we have examined the effect of metronidazole on several mutants of Escherichia coli that are defective in DNA repair. UV-susceptible RecA- and UvrB- point mutants have an increased susceptibility to metronidazole as manifested by both a decreased minimal inhibitory concentration and a greater bactericidal response to metronidazole in resting cultures. By these criteria, however, we find that UvrB- deletion mutants, which lack the ability to reduce nitrate and chlorate, are no more susceptible to metronidazole than is the wild type. We find, however, that these deletion mutants also lack the ability to reduce metronidazole and thus possibly to form its reactive species. When metronidazole's bactericidal effect is expressed in terms of the concurrent accumulation of acetamide derived from metronidazole, then all RecA- and UvrB- mutants are killed more efficiently than their wild types. The data are consistent, therefore, with metronidazole's lethal effect being mediated by a partially reduced intermediate on the metabolic pathway between metronidazole and acetamide. Defects in other aspects of the DNA repair system do not confer this increased susceptibility to the proposed intermediate. A Tag- mutant, for example, which is defective in 3-methyl-adenine-DNA glycosylase, does not have this increased susceptibility to the presumed precursor of acetamide. Thus, these results provide further support for the hypothesis that the bactericidal effect of metronidazole is mediated by a partially reduced intermediate in the metabolic conversion of metronidazole to acetamide and suggest that this intermediate interacts with DNA to produce a lesion similar to that caused by UV light.

  9. Interaction of metronidazole with DNA repair mutants of Escherichia coli.

    PubMed Central

    Yeung, T C; Beaulieu, B B; McLafferty, M A; Goldman, P

    1984-01-01

    It has been proposed that one of metronidazole's partially reduced intermediates interacts either with DNA to exert a bactericidal effect or with water to form acetamide. To test this hypothesis we have examined the effect of metronidazole on several mutants of Escherichia coli that are defective in DNA repair. UV-susceptible RecA- and UvrB- point mutants have an increased susceptibility to metronidazole as manifested by both a decreased minimal inhibitory concentration and a greater bactericidal response to metronidazole in resting cultures. By these criteria, however, we find that UvrB- deletion mutants, which lack the ability to reduce nitrate and chlorate, are no more susceptible to metronidazole than is the wild type. We find, however, that these deletion mutants also lack the ability to reduce metronidazole and thus possibly to form its reactive species. When metronidazole's bactericidal effect is expressed in terms of the concurrent accumulation of acetamide derived from metronidazole, then all RecA- and UvrB- mutants are killed more efficiently than their wild types. The data are consistent, therefore, with metronidazole's lethal effect being mediated by a partially reduced intermediate on the metabolic pathway between metronidazole and acetamide. Defects in other aspects of the DNA repair system do not confer this increased susceptibility to the proposed intermediate. A Tag- mutant, for example, which is defective in 3-methyl-adenine-DNA glycosylase, does not have this increased susceptibility to the presumed precursor of acetamide. Thus, these results provide further support for the hypothesis that the bactericidal effect of metronidazole is mediated by a partially reduced intermediate in the metabolic conversion of metronidazole to acetamide and suggest that this intermediate interacts with DNA to produce a lesion similar to that caused by UV light. PMID:6367636

  10. The drosophila fragile X protein dFMR1 is required during early embryogenesis for pole cell formation and rapid nuclear division cycles.

    PubMed

    Deshpande, Girish; Calhoun, Gretchen; Schedl, Paul

    2006-11-01

    The FMR family of KH domain RNA-binding proteins is conserved from invertebrates to humans. In humans, inactivation of the X-linked FMR gene fragile X is the most common cause of mental retardation and leads to defects in neuronal architecture. While there are three FMR family members in humans, there is only a single gene, dfmr1, in flies. As in humans, inactivation of dfmr1 causes defects in neuronal architecture and in behavior. dfmr1 has other functions in the fly in addition to neurogenesis. Here we have analyzed its role during early embryonic development. We found that dfmr1 embryos display defects in the rapid nuclear division cycles that precede gastrulation in nuclear migration and in pole cell formation. While the aberrations in nuclear division are correlated with a defect in the assembly of centromeric/centric heterochromatin, the defects in pole cell formation are associated with alterations in the actin-myosin cytoskeleton.

  11. Role of Defects on Regioselectivity of Nano Pristine Graphene.

    PubMed

    Kudur Jayaprakash, Gururaj; Casillas, Norberto; Astudillo-Sánchez, Pablo D; Flores-Moreno, Roberto

    2016-11-17

    Here analytical Fukui functions based on density functional theory are applied to investigate the redox reactivity of pristine and defected graphene lattices. A carbon H-terminated graphene structure (with 96 carbon atoms) and a graphene defected surface with Stone-Wales rearrangement and double vacancy defects are used as models. Pristine sp 2 -hybridized, hexagonal arranged carbon atoms exhibit a symmetric reactivity. In contrast, common carbon atoms at reconstructed polygons in Stone-Wales and double vacancy graphene display large reactivity variations. The improved reactivity and the regioselectivity at defected graphene is correlated to structural changes that caused carbon-carbon bond length variations at defected zones.

  12. The anterior segment disorder autosomal dominant keratitis is linked to the Aniridia/PAX-6 gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirzayans, F.; Pearce, W.G.; Mah, T.S.

    1994-09-01

    Autosomal dominant keratitis (ADK) is an eye disease characterized by anterior stromal corneal opacification and vascularization in the peripheral cornea. Progression into the central cornea may compromise visual acuity. Other anterior segment features include minimal radial defects of the iris stroma. Posterior segment involvement is characterized by foveal hypoplasia with minimal effect on visual acuity. Aniridia is a second autosomal dominantly inherited ocular disorder defined by structural defects of the iris, frequently severe enough to cause an almost complete absence of iris. This may be accompanied by other anterior segment manifestations, including cataract and keratitis. Posterior segment involvement in aniridiamore » is characterized by foveal hypoplasia resulting in a highly variable impairment of visual acuity, often with nystagmus. Aniridia is usually inherited as an autosomal dominant disease and occurs in 1 in 50,000 to 100,000 people. Aniridia has been shown to result from mutations in PAX-6, a gene thought to regulate fetal eye development. The similar clinical findings in ADK and aniridia, with the similar patterns of inheritance, compelled us to investigate if these two ocular disorders are variants of the same genetic disorder. We have tested for linkage between PAX-6 and ADK within an ADK family with 33 members over four generations, including 11 affected individuals. Linkage studies reveal that D11S914 (located within 3 cM of PAX-6) does not recombine with ADK (LOD score 3.61; {theta} = 0.00), consistent with PAX-6 mutations being responsible for ADK. Direct sequencing of PAX-6 RT-PCR products from ADK patients is underway to identify the mutation within the PAX-6 gene that results in ADK. The linkage of PAX-6 with ADK, along with a recent report that mutations in PAX-6 also underlie Peter`s anomaly, implicates PAX-6 widely in anterior segment malformations.« less

  13. Laparoscopic repair of vesicovaginal fistulae with a transperitoneal approach at Universitas Gadjah Mada Urological Institute: a case report.

    PubMed

    Soeroharjo, Indrawarman; Khalilullah, Said Alfin; Danarto, Raden; Yuri, Prahara

    2018-02-25

    A vesicovaginal fistula is an abnormal fistulous tract extending between the bladder and the vagina that allows the continuous involuntary discharge of urine into the vaginal vault. In addition, the sequelae from these fistulae have a profound effect on the patients in view of their physical, psychological, and social dimensions. The treatment of vesicovaginal fistula is surgical in most cases and the choice of the repair technique is controversial. We evaluated the benefits of a laparoscopic approach in a patient with vesicovaginal fistulae. Here, we present our first experience using a simplified laparoscopic approach technique to repair vesicovaginal fistulae in our country. A 46-year-old Javanese woman presented with urinary incontinence following an abdominal hysterectomy 3 months earlier and received laparoscopic repair. A cystoscopy was performed to confirm the fistula orifice and a stent was inserted into the fistula tract from her bladder to her vagina. A tamponade was inserted into her vagina up to the vaginal apex, to be able to identify the vagina. She had adhesions; therefore, adhesiolysis was performed using a combination of sharp and blunt dissection to expose the vaginal stump and the superior aspect of her bladder. A simple cystotomy was performed and extended to include the fistulae site, and then the defect was repaired by using a running stitch. A second layer of closure was performed in an imbricating fashion with the same suture. The vagina defect was not closed separately but covered with an omental flap. This procedure takes approximately 2.5 hours; estimated blood loss was minimal and there were no intraoperative complications. She had no recurrent symptoms 6 months after surgery. Our case report concludes that the simplified laparoscopic approach to vesicovaginal fistulae is a viable option for successful repair and that it reduces the size of bladder opening, causes minimal bleeding, and gives successful relief.

  14. SMAD4 Defect Causes Auditory Neuropathy Via Specialized Disruption of Cochlear Ribbon Synapses in Mice.

    PubMed

    Liu, Ke; Ji, Fei; Yang, Guan; Hou, Zhaohui; Sun, Jianhe; Wang, Xiaoyu; Guo, Weiwei; Sun, Wei; Yang, Weiyan; Yang, Xiao; Yang, Shiming

    2016-10-01

    More than 100 genes have been associated with deafness. However, SMAD4 is rarely considered a contributor to deafness in humans, except for its well-defined role in cell differentiation and regeneration. Here, we report that a SMAD4 defect in mice can cause auditory neuropathy, which was defined as a mysterious hearing and speech perception disorder in human for which the genetic background remains unclear. Our study showed that a SMAD4 defect induces failed formation of cochlear ribbon synapse during the earlier stage of auditory development in mice. Further investigation found that there are nearly normal morphology of outer hair cells (OHCs) and post-synapse spiral ganglion nerves (SGNs) in SMAD4 conditional knockout mice (cKO); however, a preserved distortion product of otoacoustic emission (DPOAE) and cochlear microphonic (CM) still can be evoked in cKO mice. Moreover, a partial restoration of hearing detected by electric auditory brainstem response (eABR) has been obtained in the cKO mice using electrode stimuli toward auditory nerves. Additionally, the ribbon synapses in retina are not affected by this SMAD4 defect. Thus, our findings suggest that this SMAD4 defect causes auditory neuropathy via specialized disruption of cochlear ribbon synapses.

  15. Vacuolar invertase gene silencing in potato (Solanum tuberosum L.) improves processing quality by decreasing the frequency of sugar-end defects

    USDA-ARS?s Scientific Manuscript database

    Sugar-end defect is a tuber quality disorder that causes unacceptable darkening of one end of French fries. This defect appears when environmental stress during tuber growth increases post-harvest vacuolar acid invertase activity at one end of the tuber. Reducing sugars produced by invertase form da...

  16. Use of a magnetic attachment to retain an obturator prosthesis for an osseous defect.

    PubMed

    Kawamoto, Shin-ichiro; Hamamura, Syunichi; Kawahara, Hideki; Nishi, Yasuhiro; Nagaoka, Eiichi

    2009-06-01

    Tooth loss accompanied by a massive defect of the alveolar bone can cause serious problems such as food deposit and esthetic impairment. This report describes procedures for the fabrication of an osseous defect obturator prosthesis connected to a fixed partial denture by a magnetic attachment along with the clinical outcome.

  17. 49 CFR 230.100 - Defects in tender truck axles and journals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Steam Locomotives and Tenders Running Gear § 230.100 Defects in tender truck axles and journals. (a... wheel seats that is more than 1/8 of an inch in depth. (b) Tender truck journal condemning defects... repaired : (1) Cut journals that cannot be made to run cool without turning; (2) Seams in axles causing...

  18. Hypoxia induced DNA damage in children with isolated septal defect and septal defect with great vessel anomaly of heart.

    PubMed

    G, Vidya; H Y, Suma; Bhat B, Vishnu; Chand, Parkash; Rao K, Ramachandra

    2014-04-01

    In Congenital Heart Disease (CHD), shunting of blood occurs through the anatomical defects which lead to mixing of oxygenated and deoxygenated blood. Chronic hypoxia which occurs due to the above said mechanism has the potency to cause DNA damage in children with CHD. In chronic hypoxia, there is a liberation of Reactive Oxygen Species (ROS) due to tissue injury as a result of ischemia and induction of hypoxia inducible factor - 1HIF-1 and p53 which in turn activates pro-apoptotic factors leading to alteration in the regulation of pro-apoptotic gene Blc-2 to be involved in causing the DNA damage. The extent of chronic hypoxia and the DNA damage depends on the nature of the anatomical heart defect. Hence, the present case-control study was conducted to find out the DNA damage in children with isolated septal defect and septal defect with great vessel anomaly of heart and to compare the same. The study group was categorized into those with isolated septal defects and septal defects associated with great vessel anomaly based on echo-cardiogram. Age and sex matched healthy children were taken as controls. Single-cell gel electrophoresis - Comet Assay of Alkaline Version was performed conventionally and the comets were analyzed using comet score software. The comet metrics was found to be statistically significant in children with isolated septal defect and septal defect with great vessel anomaly when compared with that of the controls. In addition, comet metrics also showed significantly increased DNA damage among children with septal defects associated with great vessel anomaly when compared to isolated septal defects. The data strongly suggests a linear correlation of severity of the anomaly involved with the degree of DNA damage as evidenced by lesser extent of DNA damage in isolated septal defect and greater in septal defect with great vessel anomaly.

  19. Amyloid precursor protein-induced axonopathies are independent of amyloid-beta peptides.

    PubMed

    Stokin, Gorazd B; Almenar-Queralt, Angels; Gunawardena, Shermali; Rodrigues, Elizabeth M; Falzone, Tomás; Kim, Jungsu; Lillo, Concepción; Mount, Stephanie L; Roberts, Elizabeth A; McGowan, Eileen; Williams, David S; Goldstein, Lawrence S B

    2008-11-15

    Overexpression of amyloid precursor protein (APP), as well as mutations in the APP and presenilin genes, causes rare forms of Alzheimer's disease (AD). These genetic changes have been proposed to cause AD by elevating levels of amyloid-beta peptides (Abeta), which are thought to be neurotoxic. Since overexpression of APP also causes defects in axonal transport, we tested whether defects in axonal transport were the result of Abeta poisoning of the axonal transport machinery. Because directly varying APP levels also alters APP domains in addition to Abeta, we perturbed Abeta generation selectively by combining APP transgenes in Drosophila and mice with presenilin-1 (PS1) transgenes harboring mutations that cause familial AD (FAD). We found that combining FAD mutant PS1 with FAD mutant APP increased Abeta42/Abeta40 ratios and enhanced amyloid deposition as previously reported. Surprisingly, however, this combination suppressed rather than increased APP-induced axonal transport defects in both Drosophila and mice. In addition, neuronal apoptosis induced by expression of FAD mutant human APP in Drosophila was suppressed by co-expressing FAD mutant PS1. We also observed that directly elevating Abeta with fusions to the Familial British and Danish Dementia-related BRI protein did not enhance axonal transport phenotypes in APP transgenic mice. Finally, we observed that perturbing Abeta ratios in the mouse by combining FAD mutant PS1 with FAD mutant APP did not enhance APP-induced behavioral defects. A potential mechanism to explain these findings was suggested by direct analysis of axonal transport in the mouse, which revealed that axonal transport or entry of APP into axons is reduced by FAD mutant PS1. Thus, we suggest that APP-induced axonal defects are not caused by Abeta.

  20. A case of residual inferior sinus venosus defect after ineffective surgical closure.

    PubMed

    Uga, Sayuri; Hidaka, Takayuki; Takasaki, Taiichi; Kihara, Yasuki

    2014-10-03

    A 38-year-old woman presented with cyanosis and heart failure 34 years after patch closure of an atrial septal defect and partial anomalous pulmonary venous connection. CT and cardiac catheterisation showed a residual defect that caused right-to-left shunting. The patch almost blocked the inferior vena cava from the right atrium, resulting in uncommon drainage of the inferior vena cava into the left atrium. Other anomalies included the coronary-to-pulmonary artery fistula and duplicate inferior vena cava with dilated azygos venous system. A second surgery was performed, and we confirmed an inferior sinus venosus defect, which is rare and can be misdiagnosed. The ineffective patch closure had caused a haemodynamic status that rarely occurs. We describe the diagnostic process and emphasise the importance of correctly understanding the entity. 2014 BMJ Publishing Group Ltd.

  1. Radar analysis of free oscillations of rail for diagnostics defects

    NASA Astrophysics Data System (ADS)

    Shaydurov, G. Y.; Kudinov, D. S.; Kokhonkova, E. A.; Potylitsyn, V. S.

    2018-05-01

    One of the tasks of developing and implementing defectoscopy devices is the minimal influence of the human factor in their exploitation. At present, rail inspection systems do not have sufficient depth of rail research, and ultrasonic diagnostics systems need to contact the sensor with the surface being studied, which leads to low productivity. The article gives a comparative analysis of existing noncontact methods of flaw detection, offers a contactless method of diagnostics by excitation of acoustic waves and extraction of information about defects from the frequency of free rail oscillations using the radar method.

  2. Use of the earlobe in auricular reconstruction post tumour extirpation.

    PubMed

    Chadha, A; Grob, M; Soldin, M

    2009-04-01

    The exact location and topography of defects resulting from surgical excision of cutaneous malignancies of the auricle demand a customized approach based on an awareness of locally redundant tissue. With advancing age, the earlobe becomes ideal for this reconstructive role and we describe an earlobe flap created along the longitudinal axis of lobular tissue. This reliable, simple, one-step procedure provides adequate tissue cover for defects of the antitragus and adjoining concha. Flap vascularity is satisfactory and although the overall size of the ear is reduced, this is accepted for a rejuvenated shape and minimal morbidity.

  3. Defects in middle ear cavitation cause conductive hearing loss in the Tcof1 mutant mouse.

    PubMed

    Richter, Carol A; Amin, Susan; Linden, Jennifer; Dixon, Jill; Dixon, Michael J; Tucker, Abigail S

    2010-04-15

    Conductive hearing loss (CHL) is one of the most common forms of human deafness. Despite this observation, a surprising gap in our understanding of the mechanisms underlying CHL remains, particularly with respect to the molecular mechanisms underlying middle ear development and disease. Treacher Collins syndrome (TCS) is an autosomal dominant disorder of facial development that results from mutations in the gene TCOF1. CHL is a common feature of TCS but the causes of the hearing defect have not been studied. In this study, we have utilized Tcof1 mutant mice to dissect the developmental mechanisms underlying CHL. Our results demonstrate that effective cavitation of the middle ear is intimately linked to growth of the auditory bulla, the neural crest cell-derived structure that encapsulates all middle ear components, and that defects in these processes have a profoundly detrimental effect on hearing. This research provides important insights into a poorly characterized cause of human deafness, and provides the first mouse model for the study of middle ear cavity defects, while also being of direct relevance to a human genetic disorder.

  4. Decreased function of survival motor neuron protein impairs endocytic pathways.

    PubMed

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S; O'Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C Q; Cook, Steven J; Poulogiannis, George; Atwood, Walter J; Hall, David H; Hart, Anne C

    2016-07-26

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death.

  5. Decreased function of survival motor neuron protein impairs endocytic pathways

    PubMed Central

    Dimitriadi, Maria; Derdowski, Aaron; Kalloo, Geetika; Maginnis, Melissa S.; O’Hern, Patrick; Bliska, Bryn; Sorkaç, Altar; Nguyen, Ken C. Q.; Cook, Steven J.; Poulogiannis, George; Atwood, Walter J.; Hall, David H.; Hart, Anne C.

    2016-01-01

    Spinal muscular atrophy (SMA) is caused by depletion of the ubiquitously expressed survival motor neuron (SMN) protein, with 1 in 40 Caucasians being heterozygous for a disease allele. SMN is critical for the assembly of numerous ribonucleoprotein complexes, yet it is still unclear how reduced SMN levels affect motor neuron function. Here, we examined the impact of SMN depletion in Caenorhabditis elegans and found that decreased function of the SMN ortholog SMN-1 perturbed endocytic pathways at motor neuron synapses and in other tissues. Diminished SMN-1 levels caused defects in C. elegans neuromuscular function, and smn-1 genetic interactions were consistent with an endocytic defect. Changes were observed in synaptic endocytic proteins when SMN-1 levels decreased. At the ultrastructural level, defects were observed in endosomal compartments, including significantly fewer docked synaptic vesicles. Finally, endocytosis-dependent infection by JC polyomavirus (JCPyV) was reduced in human cells with decreased SMN levels. Collectively, these results demonstrate for the first time, to our knowledge, that SMN depletion causes defects in endosomal trafficking that impair synaptic function, even in the absence of motor neuron cell death. PMID:27402754

  6. Flagellar motility is critical for Listeria monocytogenes biofilm formation.

    PubMed

    Lemon, Katherine P; Higgins, Darren E; Kolter, Roberto

    2007-06-01

    The food-borne pathogen Listeria monocytogenes attaches to environmental surfaces and forms biofilms that can be a source of food contamination, yet little is known about the molecular mechanisms of its biofilm development. We observed that nonmotile mutants were defective in biofilm formation. To investigate how flagella might function during biofilm formation, we compared the wild type with flagellum-minus and paralyzed-flagellum mutants. Both nonmotile mutants were defective in biofilm development, presumably at an early stage, as they were also defective in attachment to glass during the first few hours of surface exposure. This attachment defect could be significantly overcome by providing exogenous movement toward the surface via centrifugation. However, this centrifugation did not restore mature biofilm formation. Our results indicate that it is flagellum-mediated motility that is critical for both initial surface attachment and subsequent biofilm formation. Also, any role for L. monocytogenes flagella as adhesins on abiotic surfaces appears to be either minimal or motility dependent under the conditions we examined.

  7. MINIMAL ROLE FOR REACTIVE OXYGEN SPECIES IN DICHLOROACETIC ACID-INDUCED DYSMORPHOLOGY IN MOUSE WHOLE EMBRYO CULTURE.

    EPA Science Inventory

    Administration of dichloroacetate (DCA) to pregnant rats produces craniofacial, heart and other defects in their offspring. Exposure of zebrafish to DCA induces malformations and increases superoxide and nitric oxide production suggesting that reactive oxygen species (ROS) are as...

  8. Laterality Defects Other Than Situs Inversus Totalis in Primary Ciliary Dyskinesia

    PubMed Central

    Davis, Stephanie D.; Ferkol, Thomas; Dell, Sharon D.; Rosenfeld, Margaret; Olivier, Kenneth N.; Sagel, Scott D.; Milla, Carlos; Zariwala, Maimoona A.; Wolf, Whitney; Carson, Johnny L.; Hazucha, Milan J.; Burns, Kimberlie; Robinson, Blair; Knowles, Michael R.; Leigh, Margaret W.

    2014-01-01

    BACKGROUND: Motile cilia dysfunction causes primary ciliary dyskinesia (PCD), situs inversus totalis (SI), and a spectrum of laterality defects, yet the prevalence of laterality defects other than SI in PCD has not been prospectively studied. METHODS: In this prospective study, participants with suspected PCD were referred to our multisite consortium. We measured nasal nitric oxide (nNO) level, examined cilia with electron microscopy, and analyzed PCD-causing gene mutations. Situs was classified as (1) situs solitus (SS), (2) SI, or (3) situs ambiguus (SA), including heterotaxy. Participants with hallmark electron microscopic defects, biallelic gene mutations, or both were considered to have classic PCD. RESULTS: Of 767 participants (median age, 8.1 years, range, 0.1-58 years), classic PCD was defined in 305, including 143 (46.9%), 125 (41.0%), and 37 (12.1%) with SS, SI, and SA, respectively. A spectrum of laterality defects was identified with classic PCD, including 2.6% and 2.3% with SA plus complex or simple cardiac defects, respectively; 4.6% with SA but no cardiac defect; and 2.6% with an isolated possible laterality defect. Participants with SA and classic PCD had a higher prevalence of PCD-associated respiratory symptoms vs SA control participants (year-round wet cough, P < .001; year-round nasal congestion, P = .015; neonatal respiratory distress, P = .009; digital clubbing, P = .021) and lower nNO levels (median, 12 nL/min vs 252 nL/min; P < .001). CONCLUSIONS: At least 12.1% of patients with classic PCD have SA and laterality defects ranging from classic heterotaxy to subtle laterality defects. Specific clinical features of PCD and low nNO levels help to identify PCD in patients with laterality defects. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT00323167; URL: www.clinicaltrials.gov PMID:24577564

  9. The emerging role of genomics in the diagnosis and workup of congenital urinary tract defects: a novel deletion syndrome on chromosome 3q13.31-22.1

    PubMed Central

    Materna-Kiryluk, Anna; Kiryluk, Krzysztof; Burgess, Katelyn E; Bieleninik, Arkadiusz; Sanna-Cherchi, Simone; Gharavi, Ali G.; Latos-Bielenska, Anna

    2014-01-01

    Background Copy number variants (CNVs) are increasingly recognized as an important cause of congenital malformations and likely explain over 16% cases of CAKUT. Here, we illustrate how a molecular diagnosis of CNV can inform the clinical management of a pediatric patient presenting with CAKUT and other organ defects. Methods We describe a 14 year-old girl with a large de novo deletion of chromosome 3q13.31-22.1 that disrupts 101 known genes and manifests with CAKUT, neurodevelopmental delay, agenesis of corpus callosum (ACC), cardiac malformations, electrolyte and endocrine disorders, skeletal abnormalities and dysmorphic features. We perform extensive annotation of the deleted region to prioritize genes for specific phenotypes and to predict future disease risk. Results Our case defined new minimal chromosomal candidate regions for both CAKUT and ACC. Moreover, the presence of the CASR gene in the deleted interval predicted a diagnosis of hypocalciuric hypercalcemia, which was confirmed by serum and urine chemistries. Our gene annotation explained clinical hypothyroidism and predicted that the index case is at increased risk of thoracic aortic aneurysm, renal cell carcinoma and myeloproliferative disorder. Conclusions Extended annotation of CNV regions refines diagnosis and uncovers previously unrecognized phenotypic features. This approach enables personalized treatment and prevention strategies in patients harboring genomic deletions. PMID:24292865

  10. Loss of Miro1-directed mitochondrial movement results in a novel murine model for neuron disease

    PubMed Central

    Nguyen, Tammy T.; Oh, Sang S.; Weaver, David; Lewandowska, Agnieszka; Maxfield, Dane; Schuler, Max-Hinderk; Smith, Nathan K.; Macfarlane, Jane; Saunders, Gerald; Palmer, Cheryl A.; Debattisti, Valentina; Koshiba, Takumi; Pulst, Stefan; Feldman, Eva L.; Hajnóczky, György; Shaw, Janet M.

    2014-01-01

    Defective mitochondrial distribution in neurons is proposed to cause ATP depletion and calcium-buffering deficiencies that compromise cell function. However, it is unclear whether aberrant mitochondrial motility and distribution alone are sufficient to cause neurological disease. Calcium-binding mitochondrial Rho (Miro) GTPases attach mitochondria to motor proteins for anterograde and retrograde transport in neurons. Using two new KO mouse models, we demonstrate that Miro1 is essential for development of cranial motor nuclei required for respiratory control and maintenance of upper motor neurons required for ambulation. Neuron-specific loss of Miro1 causes depletion of mitochondria from corticospinal tract axons and progressive neurological deficits mirroring human upper motor neuron disease. Although Miro1-deficient neurons exhibit defects in retrograde axonal mitochondrial transport, mitochondrial respiratory function continues. Moreover, Miro1 is not essential for calcium-mediated inhibition of mitochondrial movement or mitochondrial calcium buffering. Our findings indicate that defects in mitochondrial motility and distribution are sufficient to cause neurological disease. PMID:25136135

  11. Molecular mechanisms of riboflavin responsiveness in patients with ETF-QO variations and multiple acyl-CoA dehydrogenation deficiency.

    PubMed

    Cornelius, Nanna; Frerman, Frank E; Corydon, Thomas J; Palmfeldt, Johan; Bross, Peter; Gregersen, Niels; Olsen, Rikke K J

    2012-08-01

    Riboflavin-responsive forms of multiple acyl-CoA dehydrogenation deficiency (RR-MADD) have been known for years, but with presumed defects in the formation of the flavin adenine dinucleotide (FAD) co-factor rather than genetic defects of electron transfer flavoprotein (ETF) or electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO). It was only recently established that a number of RR-MADD patients carry genetic defects in ETF-QO and that the well-documented clinical efficacy of riboflavin treatment may be based on a chaperone effect that can compensate for inherited folding defects of ETF-QO. In the present study, we investigate the molecular mechanisms and the genotype-phenotype relationships for the riboflavin responsiveness in MADD, using a human HEK-293 cell expression system. We studied the influence of riboflavin and temperature on the steady-state level and the activity of variant ETF-QO proteins identified in patients with RR-MADD, or non- and partially responsive MADD. Our results showed that variant ETF-QO proteins associated with non- and partially responsive MADD caused severe misfolding of ETF-QO variant proteins when cultured in media with supplemented concentrations of riboflavin. In contrast, variant ETF-QO proteins associated with RR-MADD caused milder folding defects when cultured at the same conditions. Decreased thermal stability of the variants showed that FAD does not completely correct the structural defects induced by the variation. This may cause leakage of electrons and increased reactive oxygen species, as reflected by increased amounts of cellular peroxide production in HEK-293 cells expressing the variant ETF-QO proteins. Finally, we found indications of prolonged association of variant ETF-QO protein with the Hsp60 chaperonin in the mitochondrial matrix, supporting indications of folding defects in the variant ETF-QO proteins.

  12. Lithography-based automation in the design of program defect masks

    NASA Astrophysics Data System (ADS)

    Vakanas, George P.; Munir, Saghir; Tejnil, Edita; Bald, Daniel J.; Nagpal, Rajesh

    2004-05-01

    In this work, we are reporting on a lithography-based methodology and automation in the design of Program Defect masks (PDM"s). Leading edge technology masks have ever-shrinking primary features and more pronounced model-based secondary features such as optical proximity corrections (OPC), sub-resolution assist features (SRAF"s) and phase-shifted mask (PSM) structures. In order to define defect disposition specifications for critical layers of a technology node, experience alone in deciding worst-case scenarios for the placement of program defects is necessary but may not be sufficient. MEEF calculations initiated from layout pattern data and their integration in a PDM layout flow provide a natural approach for improvements, relevance and accuracy in the placement of programmed defects. This methodology provides closed-loop feedback between layout and hard defect disposition specifications, thereby minimizing engineering test restarts, improving quality and reducing cost of high-end masks. Apart from SEMI and industry standards, best-known methods (BKM"s) in integrated lithographically-based layout methodologies and automation specific to PDM"s are scarce. The contribution of this paper lies in the implementation of Design-For-Test (DFT) principles to a synergistic interaction of CAD Layout and Aerial Image Simulator to drive layout improvements, highlight layout-to-fracture interactions and output accurate program defect placement coordinates to be used by tools in the mask shop.

  13. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    NASA Astrophysics Data System (ADS)

    Lany, Stephan

    2018-02-01

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  14. Luminescence from defects in GaN

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Morkoç, H.

    2006-04-01

    We briefly review the luminescence properties of defects in GaN and focus on the most interesting defects. In particular, the blue luminescence band peaking at about 3 eV is assigned to different defects and even different types of transitions in undoped, Zn-, C-, and Mg-doped GaN. Another omnipresent luminescence band, the yellow luminescence band may have different origin in nearly dislocation-free freestanding GaN templates, undoped thin layers, and carbon-doped GaN. The Y4 and Y7 lines are caused by recombination at unidentified point defects captured by threading edge dislocations.

  15. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    DOE PAGES

    Lany, Stephan

    2018-02-21

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  16. Communication: The electronic entropy of charged defect formation and its impact on thermochemical redox cycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lany, Stephan

    The ideal material for solar thermochemical water splitting, which has yet to be discovered, must satisfy stringent conditions for the free energy of reduction, including, in particular, a sufficiently large positive contribution from the solid-state entropy. By inverting the commonly used relationship between defect formation energy and defect concentration, it is shown here that charged defect formation causes a large electronic entropy contribution manifesting itself as the temperature dependence of the Fermi level. This result is a general feature of charged defect formation and motivates new materials design principles for solar thermochemical hydrogen production.

  17. Advanced phase change composite by thermally annealed defect-free graphene for thermal energy storage.

    PubMed

    Xin, Guoqing; Sun, Hongtao; Scott, Spencer Michael; Yao, Tiankai; Lu, Fengyuan; Shao, Dali; Hu, Tao; Wang, Gongkai; Ran, Guang; Lian, Jie

    2014-09-10

    Organic phase change materials (PCMs) have been utilized as latent heat energy storage and release media for effective thermal management. A major challenge exists for organic PCMs in which their low thermal conductivity leads to a slow transient temperature response and reduced heat transfer efficiency. In this work, 2D thermally annealed defect-free graphene sheets (GSs) can be obtained upon high temperature annealing in removing defects and oxygen functional groups. As a result of greatly reduced phonon scattering centers for thermal transport, the incorporation of ultralight weight and defect free graphene applied as nanoscale additives into a phase change composite (PCC) drastically improve thermal conductivity and meanwhile minimize the reduction of heat of fusion. A high thermal conductivity of the defect-free graphene-PCC can be achieved up to 3.55 W/(m K) at a 10 wt % graphene loading. This represents an enhancement of over 600% as compared to pristine graphene-PCC without annealing at a comparable loading, and a 16-fold enhancement than the pure PCM (1-octadecanol). The defect-free graphene-PCC displays rapid temperature response and superior heat transfer capability as compared to the pristine graphene-PCC or pure PCM, enabling transformational thermal energy storage and management.

  18. Growth of defect-free GaAsSbN axial nanowires via self-catalyzed molecular beam epitaxy

    NASA Astrophysics Data System (ADS)

    Sharma, Manish; Deshmukh, Prithviraj; Kasanaboina, Pavan; Reynolds, C. Lewis, Jr.; Liu, Yang; Iyer, Shanthi

    2017-12-01

    Bandgap reduction of 10% by incorporation of a dilute amount of N is reported for the first time, in axial GaAsSb nanowires (NWs) grown on Si (111) via Ga-assisted molecular beam epitaxy. Impact of N incorporation on the surface morphology, NW growth kinetics, and their structural and optical properties were examined. Dilute nitride NWs with Sb composition of 7 at% did not exhibit any noticeable planar defects, as revealed by the absence of satellite twin peaks in the selected-area diffraction pattern and high-resolution transmission electron microscopy imaging. Point defects were also minimal in as-grown dilute nitride NWs, as ascertained from the comparison of low-temperature photoluminescence spectra as well as the shape and shift of Raman modes, with in situ annealed NWs in different ambients. Evidence of enhanced incorporation of N was found in the NWs in situ annealed in N ambient, but with deteriorated optical quality due to simultaneous creation of N-induced defects. The lack of any noticeable defects in the as-grown GaAsSbN NWs demonstrates the advantage of the vapor-liquid-solid mechanism responsible for growth of axial configuration over the vapor-solid growth mechanism for core-shell NWs as well as their thin film counterpart, which commonly exhibit N-induced point defects.

  19. [Repairing of soft tissue defect in leg by free vascularized thoracoumbilical flap with reversed flow].

    PubMed

    Xu, Y Q; Li, Z Y; Li, J

    2000-11-01

    To investigate the clinical effect of free vascularized thoracoumbilical flap with reversal flow in repairing the soft tissue defect in leg with tibia exposure. Forty-four casting mould specimens of leg arteries were studied firstly. Then 25 cases with soft tissue defect and tibia exposure in the proximal-middle segment of leg were adopted in this study. Among them, 18 cases had long distance thrombosis of the anterior tibial vessels or posterior tibial vessels due to traumatic lesion. The maximal size of defect was 28 cm x 11 cm and the minimal size of defect was 11 cm x 9 cm. In operation, the thoracoumbilical flap which was based on the inferior epigastric vessels was anastomosed to the distal end of the anterior tibial vessels or posterior tibial vessels. Anterior tibial artery, posterior tibial artery and fibular artery had rich communication branches in foot and ankle. All the flaps survived, the color and cosmetic result of them were good. The free vascularized thoracoumbilical flap with reversed flow is practical in repairing the soft tissue defect of leg with tibia exposure. Either the anterior tibial vessels or the posterior tibial vessels is normal, and the distal end of injured blood vessels is available, this technique can be adopted.

  20. Finite-element design and optimization of a three-dimensional tetrahedral porous titanium scaffold for the reconstruction of mandibular defects.

    PubMed

    Luo, Danmei; Rong, Qiguo; Chen, Quan

    2017-09-01

    Reconstruction of segmental defects in the mandible remains a challenge for maxillofacial surgery. The use of porous scaffolds is a potential method for repairing these defects. Now, additive manufacturing techniques provide a solution for the fabrication of porous scaffolds with specific geometrical shapes and complex structures. The goal of this study was to design and optimize a three-dimensional tetrahedral titanium scaffold for the reconstruction of mandibular defects. With a fixed strut diameter of 0.45mm and a mean cell size of 2.2mm, a tetrahedral structural porous scaffold was designed for a simulated anatomical defect derived from computed tomography (CT) data of a human mandible. An optimization method based on the concept of uniform stress was performed on the initial scaffold to realize a minimal-weight design. Geometric and mechanical comparisons between the initial and optimized scaffold show that the optimized scaffold exhibits a larger porosity, 81.90%, as well as a more homogeneous stress distribution. These results demonstrate that tetrahedral structural titanium scaffolds are feasible structures for repairing mandibular defects, and that the proposed optimization scheme has the ability to produce superior scaffolds for mandibular reconstruction with better stability, higher porosity, and less weight. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  1. Immersion and dry lithography monitoring for flash memories (after develop inspection and photo cell monitor) using a darkfield imaging inspector with advanced binning technology

    NASA Astrophysics Data System (ADS)

    Parisi, P.; Mani, A.; Perry-Sullivan, C.; Kopp, J.; Simpson, G.; Renis, M.; Padovani, M.; Severgnini, C.; Piacentini, P.; Piazza, P.; Beccalli, A.

    2009-12-01

    After-develop inspection (ADI) and photo-cell monitoring (PM) are part of a comprehensive lithography process monitoring strategy. Capturing defects of interest (DOI) in the lithography cell rather than at later process steps shortens the cycle time and allows for wafer re-work, reducing overall cost and improving yield. Low contrast DOI and multiple noise sources make litho inspection challenging. Broadband brightfield inspectors provide the highest sensitivity to litho DOI and are traditionally used for ADI and PM. However, a darkfield imaging inspector has shown sufficient sensitivity to litho DOI, providing a high-throughput option for litho defect monitoring. On the darkfield imaging inspector, a very high sensitivity inspection is used in conjunction with advanced defect binning to detect pattern issues and other DOI and minimize nuisance defects. For ADI, this darkfield inspection methodology enables the separation and tracking of 'color variation' defects that correlate directly to CD variations allowing a high-sampling monitor for focus excursions, thereby reducing scanner re-qualification time. For PM, the darkfield imaging inspector provides sensitivity to critical immersion litho defects at a lower cost-of-ownership. This paper describes litho monitoring methodologies developed and implemented for flash devices for 65nm production and 45nm development using the darkfield imaging inspector.

  2. Effects of local defect growth in direct-drive cryogenic implosions on OMEGA

    NASA Astrophysics Data System (ADS)

    Igumenshchev, I. V.; Goncharov, V. N.; Shmayda, W. T.; Harding, D. R.; Sangster, T. C.; Meyerhofer, D. D.

    2013-08-01

    Spherically symmetric, low-adiabat (adiabat α ≲ 3) cryogenic direct-drive-implosion experiments on the OMEGA laser [T. R. Boehly et al., Opt. Commun. 133, 495 (1995)] yield less than 10% of the neutrons predicted in one-dimensional hydrodynamic simulations. Two-dimensional hydrodynamic simulations suggest that this performance degradation can be explained assuming perturbations from isolated defects of submicron to tens-of-micron scale on the outer surface or inside the shell of implosion targets. These defects develop during the cryogenic filling process and typically number from several tens up to hundreds for each target covering from about 0.2% to 1% of its surface. The simulations predict that such defects can significantly perturb the implosion and result in the injection of about 1 to 2 μg of the hot ablator (carbon-deuterium) and fuel (deuterium-tritium) materials from the ablation surface into the targets. Both the hot mass injection and perturbations of the shell reduce the final shell convergence ratio and implosion performance. The injected carbon ions radiatively cool the hot spot, reducing the fuel temperature, and further reducing the neutron yield. The negative effect of local defects can be minimized by decreasing the number and size of these defects and/or using more hydrodynamically stable implosion designs with higher shell adiabat.

  3. The uses of two-dimensional Doppler echocardiographic techniques preoperatively and postoperatively in a ventricular septal defect caused by penetrating trauma.

    PubMed

    Goldman, A P; Kotler, M N; Goldberg, S E; Parameswaran, R; Parry, W

    1985-12-01

    Doppler echocardiography was used to determine the site and size of a ventricular septal defect in a patient with a penetrating wound of the heart. Additional physiological measurements by Doppler study, including pulmonary artery pressure and degree of left-to-right shunting, were helpful in deciding on surgical closure of the defect as the definitive therapy in this patient. Associated intracardiac defects (e.g., mitral or tricuspid regurgitation) can be excluded by Doppler echocardiography.

  4. Analysis of Defects in Trouser Manufacturing: Development of a Knowledge-Based Framework. Volume 1. Final Technical Report

    DTIC Science & Technology

    1992-02-28

    the primary goal of instituting remedial measures. Many apparel plants, as they function today in the United States, do not maintain an accu- rate...type of usage is the primary functional mode for FDAS. Alternatively, the user could suggest a defect to FDAS and let it find out if the defect is...Endeavor The primary objective of the research effort is to develop a knowledge-based system to an- alyze the causes of defects in apparel

  5. Design and Production of Damage-Resistant Tray Pack Containers

    DTIC Science & Technology

    1985-07-01

    Types and causes of shipping container damage The most important defect of the current shipping con- tainer design is its inability to sustain crushing...loads. This defect makes it impossible to stack unit loads. SThe first defect in the current design is the mismatch in the sizes of the parts of the...were stacked four high, they would topple. A second design defect is the concept of the pads being sized to the inside dimensions of the liner’so that

  6. Velo-Cardio-Facial syndrome and DiGeorge sequence with meningomyelocele and deletions of the 22q11 region

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nickel, R.E.; Pillers, D.M.; Merkens, M.

    Approximately 5% of children with neural tube defects (NTDs) have a congenital heart defect and/or cleft lip and palate. The cause of isolated meningomyelocele, congenital heart defects, or cleft lip and palate has been largely thought to be multifactorial. However, chromosomal, teratogenic, and single gene causes of combinations of NTDs with congenital heart defects and/or cleft lip and palate have been reported. We report on 3 patients with meningomyelocele, congenital heart defects, and 22q11 deletions. Two of the children had the clinical diagnosis of velo-cardio-facial syndrome (VCFS); both have bifid uvula. The third child had DiGeorge sequence (DGS). The associationmore » of NTDs with 22q11 deletion has not been reported previously. An accurate diagnosis of the 22q11 deletion is critical as this micro-deletion and its associated clinical problems is transmitted as an autosomal dominant trait due to the inheritance of the deletion-bearing chromosome. We recommend that all children with NTDs and congenital heart defects, with or without cleft palate, have cytogenetic and molecular studies performed to detect 22q11 deletions. 31 refs., 3 figs.« less

  7. Carrier providers or killers: The case of Cu defects in CdTe

    DOE PAGES

    Yang, Ji -Hui; Metzger, Wyatt K.; Wei, Su -Huai

    2017-07-24

    Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cumore » can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. Lastly, these findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.« less

  8. Carrier providers or killers: The case of Cu defects in CdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ji -Hui; Metzger, Wyatt K.; Wei, Su -Huai

    Defects play important roles in semiconductors for optoelectronic applications. Common intuition is that defects with shallow levels act as carrier providers and defects with deep levels are carrier killers. Here, taking the Cu defects in CdTe as an example, we show that relatively shallow defects can play both roles. Using first-principles calculation methods combined with thermodynamic simulations, we study the dialectic effects of Cu-related defects on hole density and lifetime in bulk CdTe. Because CuCd can form a relatively shallow acceptor, we find that increased Cu incorporation into CdTe indeed can help achieve high hole density; however, too much Cumore » can cause significant non-radiative recombination. We discuss strategies to balance the contradictory effects of Cu defects based on the calculated impact of Cd chemical potential, copper defect concentrations, and annealing temperature on lifetime and hole density. Lastly, these findings advance the understanding of the potential complex defect behaviors of relatively shallow defect states in semiconductors.« less

  9. Status of the internal orbit after reduction of zygomaticomaxillary complex fractures.

    PubMed

    Ellis, Edward; Reddy, Likith

    2004-03-01

    We sought to determine the status of the internal orbit before and after reduction of zygomaticomaxillary complex (ZMC) fractures when treated without internal orbital reconstruction. We conducted a retrospective study of preoperative and postoperative computed tomography (CT) scans in 65 patients with unilateral ZMC fractures who were treated by reduction of the ZMC complex without internal orbital reconstruction. The size and location of the internal orbital defects, orbital soft tissue displacement, and orbital volume were assessed in the preoperative and postoperative CT scans. Reduction in the ZMC fractures was considered ideal in 58 of the 65 patients. Only minor malpositions occurred in the remaining 7 patients. The size of the internal orbital defects increased slightly with ZMC reduction but the internal orbital fractures were realigned, and few had increases in orbital volume or soft tissue sagging into the sinuses. Examination of follow-up CT scans in several patients taken weeks to months later showed that the residual defects became smaller and that none of these patients had an increase in orbital volume or soft tissue sagging. The preoperative CT scan can be used to assess the amount of internal orbital disruption for purposes of developing a treatment plan in patients with ZMC fractures. When there is minimal or no soft tissue herniation and minimal disruption of the internal orbit, ZMC reduction is adequate treatment.

  10. Combination prosthetic design providing a superior retention for mid-facial defect rehabilitation: A Case Report

    PubMed Central

    Nilanonth, Supassra; Shakya, Prana; Srithavaj, Theerathavaj

    2017-01-01

    Large maxillofacial defects from malignant tumor treatment are rarely rehabilitated by surgical reconstruction alone. Ameloblastic carcinoma, a rare aggressive odontogenic malignant tumor, requires wide surgical excision to gain a tumor-free margin. In the post-surgical defect, prosthetic rehabilitation is the treatment of choice to restore function and esthetics. Moreover, an intra-oral prosthesis such as an obturator restores speech, mastication and deglutition. Retention of the obturator is a major problem while rehabilitating large defects. The existing anatomical structures from the defect with the help of magnet attachments are suitable to enhance retention, stability and support of the prostheses. This case report presents a patient with an intraoral and extra-oral combination defect following surgical resection of ameloblastic carcinoma and describes the prosthetic techniques and design considerations for a magnet-retained obturator and mid-facial prosthesis. An implant-retained mid-facial prosthesis was fabricated. The retention of combined prostheses was obtained from the remaining right posterior teeth only. The patient had an unfavorable defect due to the large size and presence of scar contracture that vertically tends to dislodge the obturator. Magnet attachments were used to combine the facial and oral prosthesis, minimize the vertical dislodging forces and enhance retention. In addition, the retention was also gained from the scar band at lower border of mid-facial defect that avoided the need for more implants surgery. Magnet attachment with anatomical structure of the mid-facial defect provides an acceptable means of retention in large extraoral-intraoral combinations defects, improving the function, esthetic and the patients’ quality of life. Key words:Mid-facial prosthesis, obturator, magnet attachment, maxillectomy. PMID:28469829

  11. Dangling bond defects in SiC: An ab initio study

    NASA Astrophysics Data System (ADS)

    Tuttle, Blair R.

    2018-01-01

    We report first-principles microscopic calculations of the properties of defects with dangling bonds in crystalline 3 C -SiC. Specifically, we focus on hydrogenated Si and C vacancies, divacancies, and multivacancies. The latter is a generic model for an isolated dangling bond within a bulk SiC matrix. Hydrogen serves to passivate electrically active defects to allow the isolation of a single dangling-bond defect. We used hybrid density-functional methods to determine energetics and electrical activity. The present results are compared to previous 3 C -SiC calculations and experiments. Finally, we identify homopolar carbon dangling-bond defects as the leakage causing defects in nanoporous SiC alloys.

  12. A study of process-related electrical defects in SOI lateral bipolar transistors fabricated by ion implantation

    NASA Astrophysics Data System (ADS)

    Yau, J.-B.; Cai, J.; Hashemi, P.; Balakrishnan, K.; D'Emic, C.; Ning, T. H.

    2018-04-01

    We report a systematic study of process-related electrical defects in symmetric lateral NPN transistors on silicon-on-insulator (SOI) fabricated using ion implantation for all the doped regions. A primary objective of this study is to see if pipe defects (emitter-collector shorts caused by locally enhanced dopant diffusion) are a show stopper for such bipolar technology. Measurements of IC-VCE and Gummel currents in parallel-connected transistor chains as a function of post-fabrication rapid thermal anneal cycles allow several process-related electrical defects to be identified. They include defective emitter-base and collector-base diodes, pipe defects, and defects associated with a dopant-deficient region in an extrinsic base adjacent its intrinsic base. There is no evidence of pipe defects being a major concern in SOI lateral bipolar transistors.

  13. Anatomy of the ventricular septal defect in outflow tract defects: similarities and differences.

    PubMed

    Mostefa-Kara, Meriem; Bonnet, Damien; Belli, Emre; Fadel, Elie; Houyel, Lucile

    2015-03-01

    The study objective was to analyze the anatomy of the ventricular septal defect found in various phenotypes of outflow tract defects. We reviewed 277 heart specimens with isolated outlet ventricular septal defect without subpulmonary stenosis (isolated outlet ventricular septal defect, 19); tetralogy of Fallot (71); tetralogy of Fallot with pulmonary atresia (51); common arterial trunk (54); double outlet right ventricle (65) with subaortic, doubly committed, or subpulmonary ventricular septal defect; and interrupted aortic arch type B (17). Special attention was paid to the rims of the ventricular septal defect viewed from the right ventricular side and the relationships between the tricuspid and aortic valves. The ventricular septal defect was always located in the outlet of the right ventricle, between the 2 limbs of the septal band. There was a fibrous continuity between the tricuspid and aortic valves in 74% of specimens with isolated outlet ventricular septal defect, 66% of specimens with tetralogy of Fallot, 39% of specimens with tetralogy of Fallot with pulmonary atresia, 4.6% of specimens with double outlet right ventricle, 1.8% of specimens with common arterial trunk, and zero of specimens with interrupted aortic arch type B (P < .005). When present, this continuity always involved the anterior tricuspid leaflet. The ventricular septal defect in outflow tract defects is always an outlet ventricular septal defect, cradled between the 2 limbs of the septal band. However, there are some differences regarding the posteroinferior and superior rims of the ventricular septal defect. These differences suggest an anatomic continuum from the isolated outlet ventricular septal defect to the interrupted aortic arch type B rather than distinct physiologic phenotypes, related to various degrees of abnormal rotation of the outflow tract during heart development: minimal in isolated outlet ventricular septal defect; incomplete in tetralogy of Fallot, tetralogy of Fallot with pulmonary atresia, and double outlet right ventricle; absent in common arterial trunk; and excessive in interrupted aortic arch type B. Copyright © 2015 The American Association for Thoracic Surgery. Published by Elsevier Inc. All rights reserved.

  14. A Detailed Analysis of Visible Defects Formed in Commercial Silicon Thin-Film Modules During Outdoor Exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerber, Andreas; Johnston, Steve; Olivera-Pimentel, Guillermo

    We analyzed defects in silicon thin-film tandem (a-Si:H/..mu..c-Si:H) modules from an outdoor installation in India. The inspection of several affected modules reveals that most of the defects -- which optically appear as bright spots -- were formed primarily nearby the separation and series connection laser lines. Cross-sectional SEM analysis reveals that the bright spots emerge due to electrical isolation, caused by a delamination of the cell from the front TCO in the affected area. In addition, the morphology of the a-Si:H top cell differs in the delaminated area compared to the surrounding unaffected area. We propose that these effects aremore » potentially caused by an explosive and thermally triggered liberation of hydrogen from the a-Si:H layer. Electrical and thermal measurements reveal that these defects can impact the cell performance significantly.« less

  15. Report of a Case and Review of Literature of Internal Hernia through Peritoneal Defect in Pouch of Douglas: A Rare Occurrence.

    PubMed

    Muthukumar, Vamseedharan; Venugopal, Sarveswaran; Subramaniam, Surees Kumar

    2017-01-01

    Intestinal obstruction attributable to internal hernia as a cause is a rare phenomenon with a reported incidence of 0.6%-5.8%. Internal hernias ensuing as a result of defect in the pouch of Douglas is extremely rare with only six such cases reported so far in the literature. We present a case of 74-year-old posthysterectomy status female who presented with features of intestinal obstruction. Intraoperatively, the site of obstruction was found to be a rent in the peritoneum of the pouch of Douglas through which a loop of ileum was found herniating. The viability of the bowel was confirmed, and the defect was closed. The postoperative course was uneventful. This report presents an extremely rare type of internal hernia caused by defect in the pouch of Douglas and review of the literature so far available.

  16. Mitochondrial DNA: impacting central and peripheral nervous systems

    PubMed Central

    Carelli, Valerio

    2014-01-01

    Because of their high-energy metabolism, neurons are highly dependent on mitochondria, which generate cellular ATP through oxidative phosphorylation. The mitochondrial genome encodes for critical components of the oxidative phosphorylation pathway machinery, and therefore mutations in mitochondrial DNA (mtDNA) cause energy production defects that frequently have severe neurological manifestations. Here, we review the principles of mitochondrial genetics and focus on prototypical mitochondrial diseases to illustrate how primary defects in mtDNA or secondary defects in mtDNA due to nuclear genome mutations can cause prominent neurological and multisystem features. In addition, we discuss the pathophysiological mechanisms underlying mitochondrial diseases, the cellular mechanisms that protect mitochondrial integrity, and the prospects for therapy. PMID:25521375

  17. Defective Reduction in Automotive Headlining Manufacturing Process

    NASA Astrophysics Data System (ADS)

    Rittichai, Saranya; Chutima, Parames

    2016-05-01

    In an automobile parts manufacturing company, currently the headlining process has a lot of wastes resulting in a high cost of quality per year. In this paper, the Six Sigma method is used to reduce the defects in the headlining process. Cause-and-effect matrix and failure mode and effect analysis (FMEA) were adopted to screen the factors that affect the quality of headlining. The 2k-1 fractional factorials design was also use to determine the potential preliminary root causes. The full factorial experiments was conducted to identify appropriate settings of the significant factors. The result showed that the process can reduce the defects of headlining from 12.21% to 6.95%

  18. The Eyesight of School Children: Defective Vision as Related to School Environment, and Methods of Prevention and Correction. Bulletin, 1919, No. 65

    ERIC Educational Resources Information Center

    Berkowitz, J. H.

    1920-01-01

    Competent authorities seem to agree as to the causes of eye strain in school children other than congenital defects. Standard works on diseases of the eye are practically unanimous in declaring that myopia results from the protracted and unhygienic use of the eyes in near work. Most of the factors tending to cause eye strain exist in the schools.…

  19. An Infectious Pseudoaneurysm Caused by Ventricular Septal Defect Occluder in Patent Ductus Arteriosus Closure in a Two-Year-Old Child.

    PubMed

    Li, Dingyang; Qiu, Qiu; Jin, Jing; Zhang, Changdong; Wang, Lijun; Zhang, Gangcheng

    2017-12-12

    We present a case of an infectious pseudoaneurysm after patent ductus arteriosus (PDA) closure with a ventricular septal defect (VSD) occluder in a two-year-old child. The aneurysm grew rapidly but was successfully removed in time and the patient survived. To our knowledge, this is the first report of an infectious pseudoaneurysm caused by VSD occluder in PDA closure.

  20. Analysis of defects of overhead facade systems and other light thin-walled structures

    NASA Astrophysics Data System (ADS)

    Endzhievskiy, L.; Frolovskaia, A.; Petrova, Y.

    2017-04-01

    This paper analyzes the defects and the causes of contemporary design solutions with an example of overhead facade systems with ventilated air gaps and light steel thin-walled structures on the basis of field experiments. The analysis is performed at all stages of work: design, manufacture, including quality, construction, and operation. Practical examples are given. The main causes of accidents and the accident rate prediction are looked upon and discussed.

  1. MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta

    PubMed Central

    Lindert, Uschi; Cabral, Wayne A.; Ausavarat, Surasawadee; Tongkobpetch, Siraprapa; Ludin, Katja; Barnes, Aileen M.; Yeetong, Patra; Weis, Maryann; Krabichler, Birgit; Srichomthong, Chalurmpon; Makareeva, Elena N.; Janecke, Andreas R.; Leikin, Sergey; Röthlisberger, Benno; Rohrbach, Marianne; Kennerknecht, Ingo; Eyre, David R.; Suphapeetiporn, Kanya; Giunta, Cecilia; Marini, Joan C.; Shotelersuk, Vorasuk

    2016-01-01

    Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development. PMID:27380894

  2. The critical size of focal articular cartilage defects is associated with strains in the collagen fibers.

    PubMed

    Heuijerjans, A; Wilson, W; Ito, K; van Donkelaar, C C

    2017-12-01

    The size of full-thickness focal cartilage defect is accepted to be predictive of its fate, but at which size threshold treatment is required is unclear. Clarification of the mechanism behind this threshold effect will help determining when treatment is required. The objective was to investigate the effect of defect size on strains in the collagen fibers and the non-fibrillar matrix of surrounding cartilage. These strains may indicate matrix disruption. Tissue deformation into the defect was expected, stretching adjacent superficial collagen fibers, while an osteochondral implant was expected to prevent these deformations. Finite element simulations of cartilage/cartilage contact for intact, 0.5 to 8mm wide defects and 8mm implant cases were performed. Impact, a load increase to 2MPa in 1ms, and creep loading, a constant load of 0.5MPa for 900s, scenarios were simulated. A composition-based material model for articular cartilage was employed. Impact loading caused low strain levels for all models. Creep loading increased deviatoric strains and collagen strains in the surrounding cartilage. Deviatoric strains increased gradually with defect size, but the surface area at which collagen fiber strains exceeded failure thresholds, abruptly increased for small increases of defect size. This was caused by a narrow distribution of collagen fiber strains resulting from the non-linear stiffness of the fibers. We postulate this might be the mechanism behind the existence of a critical defect size. Filling of the defect with an implant reduced deviatoric and collagen fiber strains towards values for intact cartilage. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects

    PubMed Central

    Lu, Haiping; Liu, Yi; Guo, Jing; Wu, Huiling; Wang, Jingxiao; Wu, Gang

    2016-01-01

    The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties. PMID:26950123

  4. Biomaterials with Antibacterial and Osteoinductive Properties to Repair Infected Bone Defects.

    PubMed

    Lu, Haiping; Liu, Yi; Guo, Jing; Wu, Huiling; Wang, Jingxiao; Wu, Gang

    2016-03-03

    The repair of infected bone defects is still challenging in the fields of orthopedics, oral implantology and maxillofacial surgery. In these cases, the self-healing capacity of bone tissue can be significantly compromised by the large size of bone defects and the potential/active bacterial activity. Infected bone defects are conventionally treated by a systemic/local administration of antibiotics to control infection and a subsequent implantation of bone grafts, such as autografts and allografts. However, these treatment options are time-consuming and usually yield less optimal efficacy. To approach these problems, novel biomaterials with both antibacterial and osteoinductive properties have been developed. The antibacterial property can be conferred by antibiotics and other novel antibacterial biomaterials, such as silver nanoparticles. Bone morphogenetic proteins are used to functionalize the biomaterials with a potent osteoinductive property. By manipulating the carrying modes and release kinetics, these biomaterials are optimized to maximize their antibacterial and osteoinductive functions with minimized cytotoxicity. The findings, in the past decade, have shown a very promising application potential of the novel biomaterials with the dual functions in treating infected bone defects. In this review, we will summarize the current knowledge of novel biomaterials with both antibacterial and osteoinductive properties.

  5. The 'double headed slug flap': a simple technique to reconstruct large helical rim defects.

    PubMed

    Masud, D; Tzafetta, K

    2012-10-01

    Reconstructing partial defects of the ear can be challenging, balancing the creation of the details of the ear with scarring, morbidity and number of surgical stages. Common causes of ear defects are human bites, tumour excision and burn injuries. Reconstructing defects of the ear with tube pedicled flaps and other local flaps requires an accurate measurement of size of the defect with little room for error, particularly under estimation. We present a simple method of reconstruction for partial defects of the ear using a two-stage technique with post auricular transposition flaps. This allows for under or over estimation of size defects permitting accurate tissue usage giving good aesthetic outcomes. Copyright © 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  6. Disease severity in a mouse model of ataxia telangiectasia is modulated by the DNA damage checkpoint gene Hus1

    PubMed Central

    Balmus, Gabriel; Zhu, Min; Mukherjee, Sucheta; Lyndaker, Amy M.; Hume, Kelly R.; Lee, Jaesung; Riccio, Mark L.; Reeves, Anthony P.; Sutter, Nathan B.; Noden, Drew M.; Peters, Rachel M.; Weiss, Robert S.

    2012-01-01

    The human genomic instability syndrome ataxia telangiectasia (A-T), caused by mutations in the gene encoding the DNA damage checkpoint kinase ATM, is characterized by multisystem defects including neurodegeneration, immunodeficiency and increased cancer predisposition. ATM is central to a pathway that responds to double-strand DNA breaks, whereas the related kinase ATR leads a parallel signaling cascade that is activated by replication stress. To dissect the physiological relationship between the ATM and ATR pathways, we generated mice defective for both. Because complete ATR pathway inactivation causes embryonic lethality, we weakened the ATR mechanism to different degrees by impairing HUS1, a member of the 911 complex that is required for efficient ATR signaling. Notably, simultaneous ATM and HUS1 defects caused synthetic lethality. Atm/Hus1 double-mutant embryos showed widespread apoptosis and died mid-gestationally. Despite the underlying DNA damage checkpoint defects, increased DNA damage signaling was observed, as evidenced by H2AX phosphorylation and p53 accumulation. A less severe Hus1 defect together with Atm loss resulted in partial embryonic lethality, with the surviving double-mutant mice showing synergistic increases in genomic instability and specific developmental defects, including dwarfism, craniofacial abnormalities and brachymesophalangy, phenotypes that are observed in several human genomic instability disorders. In addition to identifying tissue-specific consequences of checkpoint dysfunction, these data highlight a robust, cooperative configuration for the mammalian DNA damage response network and further suggest HUS1 and related genes in the ATR pathway as candidate modifiers of disease severity in A-T patients. PMID:22575700

  7. Blood flow patterns underlie developmental heart defects

    PubMed Central

    Midgett, Madeline; Thornburg, Kent

    2017-01-01

    Although cardiac malformations at birth are typically associated with genetic anomalies, blood flow dynamics also play a crucial role in heart formation. However, the relationship between blood flow patterns in the early embryo and later cardiovascular malformation has not been determined. We used the chicken embryo model to quantify the extent to which anomalous blood flow patterns predict cardiac defects that resemble those in humans and found that restricting either the inflow to the heart or the outflow led to reproducible abnormalities with a dose-response type relationship between blood flow stimuli and the expression of cardiac phenotypes. Constricting the outflow tract by 10–35% led predominantly to ventricular septal defects, whereas constricting by 35–60% most often led to double outlet right ventricle. Ligation of the vitelline vein caused mostly pharyngeal arch artery malformations. We show that both cardiac inflow reduction and graded outflow constriction strongly influence the development of specific and persistent abnormal cardiac structure and function. Moreover, the hemodynamic-associated cardiac defects recapitulate those caused by genetic disorders. Thus our data demonstrate the importance of investigating embryonic blood flow conditions to understand the root causes of congenital heart disease as a prerequisite to future prevention and treatment. NEW & NOTEWORTHY Congenital heart defects result from genetic anomalies, teratogen exposure, and altered blood flow during embryonic development. We show here a novel “dose-response” type relationship between the level of blood flow alteration and manifestation of specific cardiac phenotypes. We speculate that abnormal blood flow may frequently underlie congenital heart defects. PMID:28062416

  8. Study of amended reports to evaluate and improve surgical pathology processes.

    PubMed

    Meier, Frederick A; Varney, Ruan C; Zarbo, Richard J

    2011-09-01

    : Amended surgical pathology reports record defects in the process of transforming tissue specimens into diagnostic information. : Systematic study of amended reports tests 2 hypotheses: (a) that tracking amendment frequencies and the distribution of amendment types reveals relevant aspects of quality in surgical pathology's daily transformation of specimens into diagnoses and (b) that such tracking measures the effect, or lack of effect, of efforts to improve surgical pathology processes. : We applied a binary definition of altered reports as either amendments or addenda and a taxonomy of defects that caused amendments as misidentifications, specimen defects, misinterpretations, and report defects. During the introduction of a LEAN process improvement approach-the Henry Ford Productions System-we followed trends in amendment rates and defect fractions to (a) evaluate specific interventions, (b) sort case-by-case root causes of misidentifications, specimen defects, and misinterpretations, and (c) audit the ongoing accuracy of the classification of changed reports. LEAN is the management and production system of the Toyota Motor Corporation that promotes continuous improvement; it considers wasted resources expended for purposes other than creating value for end customers and targets such expenditures for elimination. : Introduction of real-time editing of amendments saw annual amendment rates increase from 4.8/1000 to 10.1/1000 and then decrease in an incremental manner to 5.6/1000 as Henry Ford Productions System-specific interventions were introduced. Before introduction of HFPS interventions, about a fifth of the amendments were due to misidentifications, a 10th were due to specimen defects, a quarter due to misinterpretation, and almost half were due to report defects. During the period of the initial application of HFPS, the fraction of amendments due to misidentifications decreased as those due to report defects increased, in a statistically linked manner. As HFPS interventions took hold, misidentifications fell from 16% to 9%, specimen defect rates remained variable, ranging between 2% and 11%, and misinterpretations fell from 18% to 3%. Reciprocally, report defects rose from 64% to 83% of all amendment-causing defects. A case-by-case study of misidentifications, specimen defects, and misinterpretations found that (a) intervention at the specimen collection level had disappointingly little effect on patient misidentifications; (b) standardization of specimen accession and gross examination reduced only specimen defects surrounding ancillary testing; but (c) a double review of breast and prostate cases was associated with drastically reduced misinterpretation defects. Finally, audit of both amendments and addenda demonstrated that 10% of the so-called addenda actually qualified as amendments. : Monitored by the consistent taxonomy, rates of amended reports first rose, then fell. Examining specific defect categories provided information for evaluating specific LEAN interventions. Tracking the downward trend of amendment rates seemed to document the overall success of surgical pathology quality improvement efforts. Process improvements modestly decreased fractions of misidentifications and markedly decreased misinterpretation fractions. Classification integrity requires real time, independent editing of both amendments (changed reports) and addenda (addition to reports).

  9. Chemical Defects and Electronics States in Organic Semiconductors

    DTIC Science & Technology

    2008-05-31

    from interacting with organic semiconductor devices. An expt./theoretical study of 0 2 in pentacene indicated that a positive gate voltage can cause...dissociative interaction of02 with pentacene . 1S. SUBJECT TERMS organic semiconductors, PBTIT, P3HT, PQT, polythiophenes, pentacene , defects...investigations of the interaction of02 molecules with pentacene were performed. Based on calculations of formation energies of charged defects a model was

  10. Study on on-machine defects measuring system on high power laser optical elements

    NASA Astrophysics Data System (ADS)

    Luo, Chi; Shi, Feng; Lin, Zhifan; Zhang, Tong; Wang, Guilin

    2017-10-01

    The influence of surface defects on high power laser optical elements will cause some harm to the performances of imaging system, including the energy consumption and the damage of film layer. To further increase surface defects on high power laser optical element, on-machine defects measuring system was investigated. Firstly, the selection and design are completed by the working condition analysis of the on-machine defects detection system. By designing on processing algorithms to realize the classification recognition and evaluation of surface defects. The calibration experiment of the scratch was done by using the self-made standard alignment plate. Finally, the detection and evaluation of surface defects of large diameter semi-cylindrical silicon mirror are realized. The calibration results show that the size deviation is less than 4% that meet the precision requirement of the detection of the defects. Through the detection of images the on-machine defects detection system can realize the accurate identification of surface defects.

  11. Inherited hypothyroidism.

    PubMed

    Jackson, I M

    1976-03-01

    Familial hypothyroidism results from both thyroidal and extrathyroidal dysfunction. Specific intrathyroidal abnormalities in thyroid hormone synthesis causing goitrous hypothyroidism are iodide trap defect, organification defect, "coupling" defect, iodoprotein defect, and dehalogenase defect. The diagnostic studies for each are outlined utilizing radioiodine(131I) studies. Other causes of cretinism include failure of the thyroid gland to respond to TSH and lack of pituitary TSH (or hypothalamic TRH). The syndrome of peripheral resistance to thyroid hormone is discussed. The diagnosis of inherited hypothyrodism rests on an adequate family history and measurement of both T4 and TSH levels which can be determined in cord blood or peripheral blood from the infant. The importance of early treatment of hypothyroidism in the neonatal period to prevent brain damage is emphasized. The rec:nt discovery of the importance of reverse T3 (RT3) in fetal thyroid metabolism is described, and the possibility of amniocentesis as an aid in prenatal diagnosis is considered. The place of intrauterine administration of thyroid hormone to the fetus at risk from hypothyroidism is uncertain at this time and requires carefully controlled studies and long-term follow-up.

  12. Nanoparticles-Based Systems for Osteochondral Tissue Engineering.

    PubMed

    Oliveira, Isabel; Vieira, Sílvia; Oliveira, J Miguel; Reis, Rui L

    2018-01-01

    Osteochondral lesions represent one of the major causes of disabilities in the world. These defects are due to degenerative or inflammatory arthritis, but both affect the articular cartilage and the underlying subchondral bone. Defects from trauma or degenerative pathology frequently cause severe pain, joint deformity, and loss of joint motion. Osteochondral defects are a significant challenge in orthopedic surgery, due to the cartilage complexity and unique structure, as well as its exposure to high pressure and motion. Although there are treatments routinely performed in the clinical practice, they present several limitations. Tissue engineering can be a suitable alternative for osteochondral defects since bone and cartilage engineering had experienced a notable advance over the years. Allied with nanotechnology, osteochondral tissue engineering (OCTE) can be leveled up, being possible to create advanced structures similar to the OC tissue. In this chapter, the current strategies using nanoparticles-based systems are overviewed. The results of the studies herein considered confirm that advanced nanomaterials will undoubtedly play a crucial role in the design of strategies for treatment of osteochondral defects in the near future.

  13. CFTR Modulators for the Treatment of Cystic Fibrosis.

    PubMed

    Pettit, Rebecca S; Fellner, Chris

    2014-07-01

    Defects in a single gene lead to the defective proteins that cause cystic fibrosis, making the disease an ideal candidate for mutation-targeted therapy. Although ivacaftor is currently the only FDA-approved CFTR modifier, others are in development.

  14. Incontinentia pigmenti

    MedlinePlus

    IP is caused by an X-linked dominant genetic defect that occurs on a gene known as IKBKG. Because the gene defect occurs on the X chromosome, the condition is most often seen in females. When it occurs in males, it is usually lethal.

  15. Noonan syndrome gain-of-function mutations in NRAS cause zebrafish gastrulation defects

    PubMed Central

    Runtuwene, Vincent; van Eekelen, Mark; Overvoorde, John; Rehmann, Holger; Yntema, Helger G.; Nillesen, Willy M.; van Haeringen, Arie; van der Burgt, Ineke; Burgering, Boudewijn; den Hertog, Jeroen

    2011-01-01

    SUMMARY Noonan syndrome is a relatively common developmental disorder that is characterized by reduced growth, wide-set eyes and congenital heart defects. Noonan syndrome is associated with dysregulation of the Ras–mitogen-activated-protein-kinase (MAPK) signaling pathway. Recently, two mutations in NRAS were reported to be associated with Noonan syndrome, T50I and G60E. Here, we report a mutation in NRAS, resulting in an I24N amino acid substitution, that we identified in an individual bearing typical Noonan syndrome features. The I24N mutation activates N-Ras, resulting in enhanced downstream signaling. Expression of N-Ras-I24N, N-Ras-G60E or the strongly activating mutant N-Ras-G12V, which we included as a positive control, results in developmental defects in zebrafish embryos, demonstrating that these activating N-Ras mutants are sufficient to induce developmental disorders. The defects in zebrafish embryos are reminiscent of symptoms in individuals with Noonan syndrome and phenocopy the defects that other Noonan-syndrome-associated genes induce in zebrafish embryos. MEK inhibition completely rescued the activated N-Ras-induced phenotypes, demonstrating that these defects are mediated exclusively by Ras-MAPK signaling. In conclusion, mutations in NRAS from individuals with Noonan syndrome activated N-Ras signaling and induced developmental defects in zebrafish embryos, indicating that activating mutations in NRAS cause Noonan syndrome. PMID:21263000

  16. Loss of syd-1 from R7 Neurons Disrupts Two Distinct Phases of Presynaptic Development

    PubMed Central

    Holbrook, Scott; Finley, Jennifer K.; Lyons, Eric L.

    2012-01-01

    Genetic analyses in both worm and fly have identified the RhoGAP-like protein Syd-1 as a key positive regulator of presynaptic assembly. In worm, loss of syd-1 can be fully rescued by overexpressing wild-type Liprin-α, suggesting that the primary function of Syd-1 in this process is to recruit Liprin-α. We show that loss of syd-1 from Drosophila R7 photoreceptors causes two morphological defects that occur at distinct developmental time points. First, syd-1 mutant R7 axons often fail to form terminal boutons in their normal M6 target layer. Later, those mutant axons that do contact M6 often project thin extensions beyond it. We find that the earlier defect coincides with a failure to localize synaptic vesicles, suggesting that it reflects a failure in presynaptic assembly. We then analyze the relationship between syd-1 and Liprin-α in R7s. We find that loss of Liprin-α causes a stronger early R7 defect and provide a possible explanation for this disparity: we show that Liprin-α promotes Kinesin-3/Unc-104/Imac-mediated axon transport independently of Syd-1 and that Kinesin-3/Unc-104/Imac is required for normal R7 bouton formation. Unlike loss of syd-1, loss of Liprin-α does not cause late R7 extensions. We show that overexpressing Liprin-α partly rescues the early but not the late syd-1 mutant R7 defect. We therefore conclude that the two defects are caused by distinct molecular mechanisms. We find that Trio overexpression rescues both syd-1 defects and that trio and syd-1 have similar loss- and gain-of-function phenotypes, suggesting that the primary function of Syd-1 in R7s may be to promote Trio activity. PMID:23238725

  17. Toxic shock syndrome toxin-1, not α-toxin, mediated Bundaberg fatalities.

    PubMed

    Mueller, Elizabeth A; Merriman, Joseph A; Schlievert, Patrick M

    2015-12-01

    The 1928 Bundaberg disaster is one of the greatest vaccine tragedies in history. Of 21 children immunized with a diphtheria toxin-antitoxin preparation contaminated with Staphylococcus aureus, 18 developed life-threatening disease and 12 died within 48  h. Historically, the deaths have been attributed to α-toxin, a secreted cytotoxin produced by most S. aureus strains, yet the ability of the Bundaberg contaminant microbe to produce the toxin has never been verified. For the first time, the ability of the original strain to produce α-toxin and other virulence factors is investigated. The study investigates the genetic and regulatory loci mediating α-toxin expression by PCR and assesses production of the cytotoxin in vitro using an erythrocyte haemolysis assay. This analysis is extended to other secreted virulence factors produced by the strain, and their sufficiency to cause lethality in New Zealand white rabbits is determined. Although the strain possesses a wild-type allele for α-toxin, it must have a defective regulatory system, which is responsible for the strain's minimal α-toxin production. The strain encodes and produces staphylococcal superantigens, including toxic shock syndrome toxin-1 (TSST-1), which is sufficient to cause lethality in patients. The findings cast doubt on the belief that α-toxin is the major virulence factor responsible for the Bundaberg fatalities and point to the superantigen TSST-1 as the cause of the disaster.

  18. Cardiovascular causes of airway compression.

    PubMed

    Kussman, Barry D; Geva, Tal; McGowan, Francis X

    2004-01-01

    Compression of the paediatric airway is a relatively common and often unrecognized complication of congenital cardiac and aortic arch anomalies. Airway obstruction may be the result of an anomalous relationship between the tracheobronchial tree and vascular structures (producing a vascular ring) or the result of extrinsic compression caused by dilated pulmonary arteries, left atrial enlargement, massive cardiomegaly, or intraluminal bronchial obstruction. A high index of suspicion of mechanical airway compression should be maintained in infants and children with recurrent respiratory difficulties, stridor, wheezing, dysphagia, or apnoea unexplained by other causes. Prompt diagnosis is required to avoid death and minimize airway damage. In addition to plain chest radiography and echocardiography, diagnostic investigations may consist of barium oesophagography, magnetic resonance imaging (MRI), computed tomography, cardiac catheterization and bronchoscopy. The most important recent advance is MRI, which can produce high quality three-dimensional reconstruction of all anatomic elements allowing for precise anatomic delineation and improved surgical planning. Anaesthetic technique will depend on the type of vascular ring and the presence of any congenital heart disease or intrinsic lesions of the tracheobronchial tree. Vascular rings may be repaired through a conventional posterolateral thoracotomy, or utilizing video-assisted thoracoscopic surgery (VATS) or robotic endoscopic surgery. Persistent airway obstruction following surgical repair may be due to residual compression, secondary airway wall instability (malacia), or intrinsic lesions of the airway. Simultaneous repair of cardiac defects and vascular tracheobronchial compression carries a higher risk of morbidity and mortality.

  19. Seed defective reduction in automotive Electro-Deposition Coating Process of truck cabin

    NASA Astrophysics Data System (ADS)

    Sonthilug, Aekkalag; Chutima, Parames

    2018-02-01

    The case study company is one of players in Thailand’s Automotive Industry who manufacturing truck and bus for both domestic and international market. This research focuses on a product quality problem about seed defects occurred in the Electro-Deposition Coating Process of truck cabin. The 5-phase of Six Sigma methodology including D-Define, M-Measure, A-Analyze, I-Improve, and C-Control is applied to this research to identify root causes of problem for setting new parameters of each significant factor. After the improvement, seed defects in this process is reduced from 9,178 defects per unit to 876 defects per unit (90% improvement)

  20. Lower extremity soft tissue reconstruction with free flap based on subscapular artery.

    PubMed

    Karşıdağ, Semra; Akçal, Arzu; Turgut, Gürsel; Uğurlu, Kemal; Baş, Lütfü

    2011-01-01

    The purpose of our study was to evaluate the results of the reconstruction of the lower extremity defects with free flaps based on the subscapular artery. Between January, 1998 and December, 2008, 51 patients (mean age 26 years; 16 female and 35 male) presenting with a lower extremity defect underwent a reconstructive surgery with flaps based on the subscapular vascular system. Thirty-seven percent of the defects were located in the crus, 19% in the sole, 16% in the heel, and 14% in the dorsum of the foot. Eighty and a half percent of the patients had traffic-accident-related and 13.5% had burn-related tissue defects. Fifty-three percent of the patients presenting with lower extremity defects underwent reconstruction with latissimus dorsi muscle flaps, 21% with free serratus muscle and/or fascia flaps, 14% with free parascapular fasciocutaneous flaps, and 12% with free combined latissimus muscle and serratus muscle and/or fascia flaps. Anastomoses of 80% of the patients were performed on their posterior tibial artery and accompanying veins and/or foot dorsal veins. End-to-end anastomosis was performed on 14 patients, while 35 patients received end-to-side anastomosis. Six patients were treated with cross free flaps, of which 4 received cross latissimus, 1 cross serratus, and 1 cross combined serratus and latissimus flaps. End-to-side anastomoses were performed on these patients on the cross-leg tibialis posterior artery. The cross-leg anastomosis was freed 4 weeks later. In the early period, venous occlusion was observed in 4 patients and arterial and venous occlusion was present in 1 patient. New anastomoses were performed in these patients. Partial necrosis was observed in 2 patients. The average follow-up period was 61 months. Pressure-related late ulcerative lesions developed in 4 patients. The lesions of these patients were repaired by debridement and primary suturing or partial thickness skin grafts. The subscapular vascular system based flaps have an optimal vascularity once they are prepared with adequate pedicles, causing minimal donor site morbidity. These flaps are a safe and effective alternative in lower extremity reconstruction. On the other hand, in the absence of appropriate recipient vessels, single or combined cross-leg free flaps may provide successful repair.

  1. Minimizing performance degradation induced by interfacial recombination in perovskite solar cells through tailoring of the transport layer electronic properties

    NASA Astrophysics Data System (ADS)

    Xu, Liang; Molaei Imenabadi, Rouzbeh; Vandenberghe, William G.; Hsu, Julia W. P.

    2018-03-01

    The performance of hybrid organic-inorganic metal halide perovskite solar cells is investigated using one-dimensional drift-diffusion device simulations. We study the effects of interfacial defect density, doping concentration, and electronic level positions of the charge transport layer (CTL). Choosing CTLs with a favorable band alignment, rather than passivating CTL-perovskite interfacial defects, is shown to be beneficial for maintaining high power-conversion efficiency, due to reduced minority carrier density arising from a favorable local electric field profile. Insights from this study provide theoretical guidance on practical selection of CTL materials for achieving high-performance perovskite solar cells.

  2. Characterization of the Performance of Sapphire Optical Fiber in Intense Radiation Fields, when Subjected to Very High Temperatures

    NASA Astrophysics Data System (ADS)

    Petrie, Christian M.

    The U.S. Department of Energy is interested in extending optically-based instrumentation from non-extreme environments to extremely high temperature radiation environments for the purposes of developing in-pile instrumentation. The development of in-pile instrumentation would help support the ultimate goal of understanding the behavior and predicting the performance of nuclear fuel systems at a microstructural level. Single crystal sapphire optical fibers are a promising candidate for in-pile instrumentation due to the high melting temperature and radiation hardness of sapphire. In order to extend sapphire fiber-based optical instrumentation to high temperature radiation environments, the ability of sapphire fibers to adequately transmit light in such an environment must first be demonstrated. Broadband optical transmission measurements of sapphire optical fibers were made in-situ as the sapphire fibers were heated and/or irradiated. The damage processes in sapphire fibers were also modeled from the primary knock-on event from energetic neutrons to the resulting damage cascade in order to predict the formation of stable defects that ultimately determine the resulting change in optical properties. Sapphire optical fibers were shown to withstand temperatures as high as 1300 °C with minimal increases in optical attenuation. A broad absorption band was observed to grow over time without reaching a dynamic equilibrium when the sapphire fiber was heated at temperatures of 1400 °C and above. The growth of this absorption band limits the use of sapphire optical fibers, at least in air, to temperatures of 1300 °C and below. Irradiation of sapphire fibers with gamma rays caused saturation of a defect center located below 500 nm, and extending as far as ~1000 nm, with little effect on the transmission at 1300 and 1550 nm. Increasing temperature during gamma irradiation generally reduced the added attenuation. Reactor irradiation of sapphire fibers caused an initial rapid increase in attenuation, followed by a linear increase with continued irradiation time at constant reactor power. The linear increases were a result of displacement damage, and the rate of increase was proportional to the neutron flux. The transmission of sapphire fibers at 1300 and 1550 nm in a reactor radiation environment would ultimately be limited by the growth of low wavelength defect centers, whose tails extend into the near infrared. A model was proposed for the reactor radiation-induced attenuation that involves three previously reported color centers. The model accounts for gamma radiation-induced ionization of pre-existing defects, generation of new defects via displacement damage, and conversion between defect centers via ionization and charge recombination. Heated reactor irradiation experiments showed that the rate of increase of the added attenuation during constant power reactor irradiation monotonically decreases with increasing temperature up to 1000 °C, with the most significant decrease occurring between 300 and 600 °C. Testing of sapphire fiber-based sensors under irradiation at high temperatures is recommended as future work, along with advanced life irradiation testing, for example in the Advanced Test Reactor or the High Flux Isotope Reactor.

  3. Developmental Defects of Caenorhabditis elegans Lacking Branched-chain α-Ketoacid Dehydrogenase Are Mainly Caused by Monomethyl Branched-chain Fatty Acid Deficiency.

    PubMed

    Jia, Fan; Cui, Mingxue; Than, Minh T; Han, Min

    2016-02-05

    Branched-chain α-ketoacid dehydrogenase (BCKDH) catalyzes the critical step in the branched-chain amino acid (BCAA) catabolic pathway and has been the focus of extensive studies. Mutations in the complex disrupt many fundamental metabolic pathways and cause multiple human diseases including maple syrup urine disease (MSUD), autism, and other related neurological disorders. BCKDH may also be required for the synthesis of monomethyl branched-chain fatty acids (mmBCFAs) from BCAAs. The pathology of MSUD has been attributed mainly to BCAA accumulation, but the role of mmBCFA has not been evaluated. Here we show that disrupting BCKDH in Caenorhabditis elegans causes mmBCFA deficiency, in addition to BCAA accumulation. Worms with deficiency in BCKDH function manifest larval arrest and embryonic lethal phenotypes, and mmBCFA supplementation suppressed both without correcting BCAA levels. The majority of developmental defects caused by BCKDH deficiency may thus be attributed to lacking mmBCFAs in worms. Tissue-specific analysis shows that restoration of BCKDH function in multiple tissues can rescue the defects, but is especially effective in neurons. Taken together, we conclude that mmBCFA deficiency is largely responsible for the developmental defects in the worm and conceivably might also be a critical contributor to the pathology of human MSUD. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Functional Studies and Homology Modeling of Msh2-Msh3 Predict that Mispair Recognition Involves DNA Bending and Strand Separation▿ †

    PubMed Central

    Dowen, Jill M.; Putnam, Christopher D.; Kolodner, Richard D.

    2010-01-01

    The Msh2-Msh3 heterodimer recognizes various DNA mispairs, including loops of DNA ranging from 1 to 14 nucleotides and some base-base mispairs. Homology modeling of the mispair-binding domain (MBD) of Msh3 using the related Msh6 MBD revealed that mismatch recognition must be different, even though the MBD folds must be similar. Model-based point mutation alleles of Saccharomyces cerevisiae msh3 designed to disrupt mispair recognition fell into two classes. One class caused defects in repair of both small and large insertion/deletion mispairs, whereas the second class caused defects only in the repair of small insertion/deletion mispairs; mutations of the first class also caused defects in the removal of nonhomologous tails present at the ends of double-strand breaks (DSBs) during DSB repair, whereas mutations of the second class did not cause defects in the removal of nonhomologous tails during DSB repair. Thus, recognition of small insertion/deletion mispairs by Msh3 appears to require a greater degree of interactions with the DNA conformations induced by small insertion/deletion mispairs than with those induced by large insertion/deletions that are intrinsically bent and strand separated. Mapping of the two classes of mutations onto the Msh3 MBD model appears to distinguish mispair recognition regions from DNA stabilization regions. PMID:20421420

  5. Functional studies and homology modeling of Msh2-Msh3 predict that mispair recognition involves DNA bending and strand separation.

    PubMed

    Dowen, Jill M; Putnam, Christopher D; Kolodner, Richard D

    2010-07-01

    The Msh2-Msh3 heterodimer recognizes various DNA mispairs, including loops of DNA ranging from 1 to 14 nucleotides and some base-base mispairs. Homology modeling of the mispair-binding domain (MBD) of Msh3 using the related Msh6 MBD revealed that mismatch recognition must be different, even though the MBD folds must be similar. Model-based point mutation alleles of Saccharomyces cerevisiae msh3 designed to disrupt mispair recognition fell into two classes. One class caused defects in repair of both small and large insertion/deletion mispairs, whereas the second class caused defects only in the repair of small insertion/deletion mispairs; mutations of the first class also caused defects in the removal of nonhomologous tails present at the ends of double-strand breaks (DSBs) during DSB repair, whereas mutations of the second class did not cause defects in the removal of nonhomologous tails during DSB repair. Thus, recognition of small insertion/deletion mispairs by Msh3 appears to require a greater degree of interactions with the DNA conformations induced by small insertion/deletion mispairs than with those induced by large insertion/deletions that are intrinsically bent and strand separated. Mapping of the two classes of mutations onto the Msh3 MBD model appears to distinguish mispair recognition regions from DNA stabilization regions.

  6. A Context-Driven Model for the Flat Roofs Construction Process through Sensing Systems, Internet-of-Things and Last Planner System

    PubMed Central

    Andújar-Montoya, María Dolores

    2017-01-01

    The main causes of building defects are errors in the design and the construction phases. These causes related to construction are mainly due to the general lack of control of construction work and represent approximately 75% of the anomalies. In particular, one of the main causes of such anomalies, which end in building defects, is the lack of control over the physical variables of the work environment during the execution of tasks. Therefore, the high percentage of defects detected in buildings that have the root cause in the construction phase could be avoidable with a more accurate and efficient control of the process. The present work proposes a novel integration model based on information and communications technologies for the automation of both construction work and its management at the execution phase, specifically focused on the flat roof construction process. Roofs represent the second area where more defects are claimed. The proposed model is based on a Web system, supported by a service oriented architecture, for the integral management of tasks through the Last Planner System methodology, but incorporating the management of task restrictions from the physical environment variables by designing specific sensing systems. Likewise, all workers are integrated into the management process by Internet-of-Things solutions that guide them throughout the execution process in a non-intrusive and transparent way. PMID:28737693

  7. A Context-Driven Model for the Flat Roofs Construction Process through Sensing Systems, Internet-of-Things and Last Planner System.

    PubMed

    Andújar-Montoya, María Dolores; Marcos-Jorquera, Diego; García-Botella, Francisco Manuel; Gilart-Iglesias, Virgilio

    2017-07-22

    The main causes of building defects are errors in the design and the construction phases. These causes related to construction are mainly due to the general lack of control of construction work and represent approximately 75% of the anomalies. In particular, one of the main causes of such anomalies, which end in building defects, is the lack of control over the physical variables of the work environment during the execution of tasks. Therefore, the high percentage of defects detected in buildings that have the root cause in the construction phase could be avoidable with a more accurate and efficient control of the process. The present work proposes a novel integration model based on information and communications technologies for the automation of both construction work and its management at the execution phase, specifically focused on the flat roof construction process. Roofs represent the second area where more defects are claimed. The proposed model is based on a Web system, supported by a service oriented architecture, for the integral management of tasks through the Last Planner System methodology, but incorporating the management of task restrictions from the physical environment variables by designing specific sensing systems. Likewise, all workers are integrated into the management process by Internet-of-Things solutions that guide them throughout the execution process in a non-intrusive and transparent way.

  8. Functional resurfacing of the palm: flap selection based on defect analysis.

    PubMed

    Engelhardt, T O; Rieger, U M; Schwabegger, A H; Pierer, G

    2012-02-01

    Extensive defect coverage of the palm and anatomical reconstruction of its unique functional capacity remains difficult. In manual laborers, reconstruction of sensation, range of motion, grip strength but also mechanical stability is required. Sensate musculo-/fasciocutaneous flaps bear disadvantages of tissue mobility with shifting/bulkiness under stress. Thin muscle and fascial flaps show adherence but preclude sensory nerve coaptation. The purpose of this review is to present our algorithm for reliable selection of the most appropriate procedure based on defect analysis. Defect analysis focusing on units of tactile gnosis provides information to weigh needs for sensation or soft tissue stability. We distinguish radial unit (r)-thenar, ulnar unit (u)-hypothenar and unit (c)-central plus distal palm. Individual parameters need similar consideration to choose adequate treatment. Unit (r) and unit (u) are regions of secondary touch demanding protective sensation. Restoration of sensation using neurovascular, fasciocutaneous flaps is recommended. In unit (c), tactile gnosis is of less, mechanical resistance of greater value. Reconstruction of soft tissue resistance is suggested first in this unit. In laborers, free fascial- or muscle flaps with plantar instep skin grafts may achieve near to anatomical reconstruction with minimal sensation. Combined defects involving unit (c) require correlation with individual parameters for optimal flap selection. Defect coverage of the palm should not consist of merely providing sensate vascularized tissue. The most appropriate procedure should be derived from careful defect analysis to achieve near to anatomical reconstruction. In laborers, defect related demands need close correlation with sensation and mechanical stability to be expected. Copyright © 2011 Wiley Periodicals, Inc.

  9. UCSD/FRA non-contact ultrasonic guided-wave system for rail inspection: an update

    NASA Astrophysics Data System (ADS)

    Coccia, Stefano; Phillips, Robert; Nucera, Claudio; Bartoli, Ivan; Salamone, Salvatore; Lanza di Scalea, Francesco; Fateh, Mahmood; Carr, Gary

    2011-04-01

    The University of California at San Diego (UCSD), under a Federal Railroad Administration (FRA) Office of Research and Development (R&D) grant, is developing a system for high-speed and non-contact rail defect detection. A prototype has been designed and field tested with the support of Volpe National Transportation Systems Center and ENSCO, Inc. The goal of this project is to develop a rail defect detection system that provides (a) better defect detection reliability (including internal transverse head defects under shelling and vertical split head defects), and (b) higher inspection speed than achievable by current rail inspection systems. This effort is also in direct response to Safety Recommendations issued by the National Transportation Safety Board (NTSB) following the disastrous train derailments at Superior, WI in 1992 and Oneida, NY in 2007 among others. The UCSD prototype uses non-contact ultrasonic probing of the rail head (laser and air-coupled), ultrasonic guided waves, and a proprietary real-time statistical analysis algorithm that maximizes the sensitivity to defects while minimizing false positives. The current design allows potential inspection speeds up to 40 mph, although all field tests have been conducted up to 15 mph so far. This paper summarizes (a) the latest technology development test conducted at the rail defect farm of Herzog, Inc. in St Joseph, MO in June 2010, and (b) the completion of the new Rail Defect Farm facility at the UCSD Camp Elliott Field Station with partial in-kind donations from the Burlington Northern Santa Fe (BNSF) Railway.

  10. Relationship between progression of visual field defect and intraocular pressure in primary open-angle glaucoma.

    PubMed

    Naito, Tomoko; Yoshikawa, Keiji; Mizoue, Shiro; Nanno, Mami; Kimura, Tairo; Suzumura, Hirotaka; Shiraga, Fumio

    2015-01-01

    To analyze the relationship between intraocular pressure (IOP) and the progression of visual field defects in Japanese primary open-angle glaucoma (POAG) and normal-tension glaucoma (NTG) patients. The subjects of the study were patients undergoing treatment for POAG or NTG who had performed visual field tests at least ten times with a Humphrey field analyzer (Swedish interactive thresholding algorithm standard, C30-2 program). The progression of visual field defects was defined by a significantly negative value of the mean deviation slope at the final visual field test during the follow-up period. The relationships between the progression of visual field defects and IOP, as well as other clinical factors, were retrospectively analyzed. A total of 156 eyes of 156 patients were included in the analysis. Significant progression of visual field defects was observed in 70 eyes of 70 patients (44.9%), while no significant progression was evident in 86 eyes of 86 patients (55.1%). The eyes with visual field defect progression had significantly lower baseline IOP (P<0.05), as well as significantly lower IOP reduction rate (P<0.01). The standard deviation of IOP values during follow-up was significantly greater in the eyes with visual field defect progression than in eyes without (P<0.05). Reducing IOP is thought to be useful for Japanese POAG or NTG patients to suppress the progression of visual field defects. In NTG, IOP management should take into account not only achieving the target IOP, but also minimizing the fluctuation of IOP during follow-up period.

  11. Congenital Defects.

    ERIC Educational Resources Information Center

    Goldman, Allen S.; And Others

    There are two general categories (not necessarily mutually exclusive) of congenital defects: (1) abnormalities that have an hereditary basis, such as single and multiple genes, or chromosomal abberration; and (2) abnormalities that are caused by nonhereditary factors, such as malnutrition, maternal disease, radiation, infections, drugs, or…

  12. Semiconductor color-center structure and excitation spectra: Equation-of-motion coupled-cluster description of vacancy and transition-metal defect photoluminescence

    NASA Astrophysics Data System (ADS)

    Lutz, Jesse J.; Duan, Xiaofeng F.; Burggraf, Larry W.

    2018-03-01

    Valence excitation spectra are computed for deep-center silicon-vacancy defects in 3C, 4H, and 6H silicon carbide (SiC), and comparisons are made with literature photoluminescence measurements. Optimizations of nuclear geometries surrounding the defect centers are performed within a Gaussian basis-set framework using many-body perturbation theory or density functional theory (DFT) methods, with computational expenses minimized by a QM/MM technique called SIMOMM. Vertical excitation energies are subsequently obtained by applying excitation-energy, electron-attached, and ionized equation-of-motion coupled-cluster (EOMCC) methods, where appropriate, as well as time-dependent (TD) DFT, to small models including only a few atoms adjacent to the defect center. We consider the relative quality of various EOMCC and TD-DFT methods for (i) energy-ordering potential ground states differing incrementally in charge and multiplicity, (ii) accurately reproducing experimentally measured photoluminescence peaks, and (iii) energy-ordering defects of different types occurring within a given polytype. The extensibility of this approach to transition-metal defects is also tested by applying it to silicon-substituted chromium defects in SiC and comparing with measurements. It is demonstrated that, when used in conjunction with SIMOMM-optimized geometries, EOMCC-based methods can provide a reliable prediction of the ground-state charge and multiplicity, while also giving a quantitative description of the photoluminescence spectra, accurate to within 0.1 eV of measurement for all cases considered.

  13. Minimally invasive flap surgery and enamel matrix derivative in the treatment of localized aggressive periodontitis: case report.

    PubMed

    Kaner, Doğan; Bernimoulin, Jean-Pierre; Kleber, Bernd-Michael; Friedmann, Anton

    2009-02-01

    Localized aggressive periodontitis is a distinct entity of periodontal disease and is characterized by deep vertical bony defects that typically affect the first molars and incisors of young patients. Therapy is usually aimed at reducing the pathogenic microflora through scaling and root planing and the administration of systemic antibiotics. However, conservative periodontal therapy may result in reparative wound healing with limited regeneration of the lost tissues. Periodontal surgery combined with enamel matrix derivative has been introduced as a method to promote regeneration of the lost periodontium and has been studied extensively in the treatment of chronic periodontitis. This case report describes the treatment of a 27-year-old patient displaying severe localized aggressive periodontitis with documented disease progression. After initial therapy consisting of scaling and root planing and systemic administration of amoxicillin and metronidazole, the vertical defects were treated by minimally invasive access flaps combined with application of enamel matrix derivative. Clinical, microbiologic, and radiographic findings are reported for up to 1.5 years after initial therapy, indicating good efficacy of the therapeutic strategy and stability of the treatment outcome.

  14. Defects with Deep Levels in GaAs Induced by Plastic Deformation and Electron Irradiation

    NASA Astrophysics Data System (ADS)

    Haga, Toru; Suezawa, Masashi; Sumino, Koji

    1988-10-01

    Defects with deep electronic energy levels induced by plastic deformation at 450°C or electron irradiation at room temperature in boat-grown GaAs crystals are investigated by means of optical absorption. The optical absorption spectra associated with the induced defects are compared with that of grown-in defects EL2. Thermal stabilities of the defects are studied by tracing the changes in the absorption spectra due to isochronal annealing of the specimens. The defects induced by the above two procedures are identified not to be EL2, even though some part of the defects gives rise to absorption similar to that caused by EL2 in the spectral shape. The absorptions in both the deformed and the irradiated samples are mostly photo-unquenchable. Deformation-induced defects responsible for this absorption are found to be AsGa antisite-related defects which are less thermally stable than EL2. Irradiation-induced defects giving rise to this kind of absorption are far more unstable in comparison with the deformation-induced defects, and are mostly eliminated by annealing at temperatures lower than 300°C.

  15. Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trego, Kelly S.; Groesser, Torsten; Davalos, Albert R.

    XPG is a structure-specific endonuclease required for nucleotide excision repair, and incision-defective XPG mutations cause the skin cancer-prone syndrome xeroderma pigmentosum. Truncating mutations instead cause the neurodevelopmental progeroid disorder Cockayne syndrome, but little is known about how XPG loss results in this devastating disease. In this paper, we identify XPG as a partner of BRCA1 and BRCA2 in maintaining genomic stability through homologous recombination (HRR). XPG depletion causes DNA double-strand breaks, chromosomal abnormalities, cell-cycle delays, defective HRR, inability to overcome replication fork stalling, and replication stress. XPG directly interacts with BRCA2, RAD51, and PALB2, and XPG depletion reduces their chromatinmore » binding and subsequent RAD51 foci formation. Upstream in HRR, XPG interacts directly with BRCA1. Its depletion causes BRCA1 hyper-phosphorylation and persistent chromatin binding. Finally, these unexpected findings establish XPG as an HRR protein with important roles in genome stability and suggest how XPG defects produce severe clinical consequences including cancer and accelerated aging.« less

  16. Non-catalytic Roles for XPG with BRCA1 and BRCA2 in Homologous Recombination and Genome Stability

    DOE PAGES

    Trego, Kelly S.; Groesser, Torsten; Davalos, Albert R.; ...

    2016-01-28

    XPG is a structure-specific endonuclease required for nucleotide excision repair, and incision-defective XPG mutations cause the skin cancer-prone syndrome xeroderma pigmentosum. Truncating mutations instead cause the neurodevelopmental progeroid disorder Cockayne syndrome, but little is known about how XPG loss results in this devastating disease. In this paper, we identify XPG as a partner of BRCA1 and BRCA2 in maintaining genomic stability through homologous recombination (HRR). XPG depletion causes DNA double-strand breaks, chromosomal abnormalities, cell-cycle delays, defective HRR, inability to overcome replication fork stalling, and replication stress. XPG directly interacts with BRCA2, RAD51, and PALB2, and XPG depletion reduces their chromatinmore » binding and subsequent RAD51 foci formation. Upstream in HRR, XPG interacts directly with BRCA1. Its depletion causes BRCA1 hyper-phosphorylation and persistent chromatin binding. Finally, these unexpected findings establish XPG as an HRR protein with important roles in genome stability and suggest how XPG defects produce severe clinical consequences including cancer and accelerated aging.« less

  17. Holt-oram syndrome associated with double outlet right ventricle: A rare association

    PubMed Central

    Singh, Bhupinder; Kariyappa, Mallesh; Vijayalakshmi, Ishwarappa Balekundri; Nanjappa, Manjunath C

    2013-01-01

    Holt-Oram syndrome is a rare inherited disorder that causes abnormalities of the hands, arms, and the heart. Most commonly, there are defects in the carpal bones of the wrist and in the bones of the thumb along with cardiac defects such as atrial or ventricular septal defects. We report a case of Holt-Oram syndrome with a rare association of double outlet right ventricle. PMID:23626447

  18. Corrosion Protection for Military Construction in the Middle East

    DTIC Science & Technology

    1985-09-01

    parts being inspected; and (6) reference standards are needed both for calibrating the equipment and characterizing flaws and defects . The need for...reference standard for that flaw or defect , the problem may go totally undetected by even a skilled operator. 3 OD. Knofel, Corrosion of Building...This, in turn, decreases the chance of paint defects caused by too high a surface alkalinity. Epoxy Coating If required by the manufacturer, the

  19. A Study on the Effects of Ball Defects on the Fatigue Life in Hybrid Bearings

    NASA Technical Reports Server (NTRS)

    Tang, Ching-Yao; Foerster, Chad E.; O'Brien, Michael J.; Hardy, Brian S.; Goyal, Vinay K.; Nelson, Benjamin A.; Robinson, Ernest Y.; Ward, Peter C.; Hilton, Michael R.

    2014-01-01

    Hybrid ball bearings using silicon nitride ceramic balls with steel rings are increasingly being used in space mechanism applications due to their high wear resistance and long rolling contact fatigue life. However, qualitative and quantitative reports of the effects of ball defects that cause early fatigue failure are rare. We report on our approach to study these effects. Our strategy includes characterization of defects encountered in use, generation of similar defects in a laboratory setting, execution of full-scale bearing tests to obtain lifetimes, post-test characterization, and related finite-element modeling to understand the stress concentration of these defects. We have confirmed that at least one type of defect of appropriate size can significantly reduce fatigue life. Our method can be used to evaluate other defects as they occur or are encountered.

  20. Conserved Genes Act as Modifiers of Invertebrate SMN Loss of Function Defects

    PubMed Central

    Chang, Howard C.; Sen, Anindya; Kalloo, Geetika; Harris, Jevede; Barsby, Tom; Walsh, Melissa B.; Satterlee, John S.; Li, Chris; Van Vactor, David; Artavanis-Tsakonas, Spyros; Hart, Anne C.

    2010-01-01

    Spinal Muscular Atrophy (SMA) is caused by diminished function of the Survival of Motor Neuron (SMN) protein, but the molecular pathways critical for SMA pathology remain elusive. We have used genetic approaches in invertebrate models to identify conserved SMN loss of function modifier genes. Drosophila melanogaster and Caenorhabditis elegans each have a single gene encoding a protein orthologous to human SMN; diminished function of these invertebrate genes causes lethality and neuromuscular defects. To find genes that modulate SMN function defects across species, two approaches were used. First, a genome-wide RNAi screen for C. elegans SMN modifier genes was undertaken, yielding four genes. Second, we tested the conservation of modifier gene function across species; genes identified in one invertebrate model were tested for function in the other invertebrate model. Drosophila orthologs of two genes, which were identified originally in C. elegans, modified Drosophila SMN loss of function defects. C. elegans orthologs of twelve genes, which were originally identified in a previous Drosophila screen, modified C. elegans SMN loss of function defects. Bioinformatic analysis of the conserved, cross-species, modifier genes suggests that conserved cellular pathways, specifically endocytosis and mRNA regulation, act as critical genetic modifiers of SMN loss of function defects across species. PMID:21124729

  1. An improved method for characterizing photoresist lithographic and defectivity performance for sub-20nm node lithography

    NASA Astrophysics Data System (ADS)

    Amblard, Gilles; Purdy, Sara; Cooper, Ryan; Hockaday, Marjory

    2016-03-01

    The overall quality and processing capability of lithographic materials are critical for ensuring high device yield and performance at sub-20nm technology nodes in a high volume manufacturing environment. Insufficient process margin and high line width roughness (LWR) cause poor manufacturing control, while high defectivity causes product failures. In this paper, we focus on the most critical layer of a sub-20nm technology node LSI device, and present an improved method for characterizing both lithographic and post-patterning defectivity performance of state-of-the-art immersion photoresists. Multiple formulations from different suppliers were used and compared. Photoresists were tested under various process conditions, and multiple lithographic metrics were investigated (depth of focus, exposure dose latitude, line width roughness, etc.). Results were analyzed and combined using an innovative approach based on advanced software, providing clearer results than previously available. This increased detail enables more accurate performance comparisons among the different photoresists. Post-patterning defectivity was also quantified, with defects reviewed and classified using state-of-the-art inspection tools. Correlations were established between the lithographic and post-patterning defectivity performances for each material, and overall ranking was established among the photoresists, enabling the selection of the best performer for implementation in a high volume manufacturing environment.

  2. Application of operational radiographic inspection method for flaw detection of blade straightener from polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Anoshkin, A. N.; Osokin, V. M.; Tretyakov, A. A.; Potrakhov, N. N.; Bessonov, V. B.

    2017-02-01

    In the article on the example of the straightener blade made of polymer composite materials, discusses the advantages of using the method of microfocus X-ray for nondestructive testing of aviation products. Described basic types of defects characteristics occurring in a similar type parts both during their manufacture and during their operation, namely, interlayer delamination, pores and wrinkles. Peculiarities of microfocus X-ray are shown, which is the use of radiation sources with a focal spot size of less than 100 μm. These features make it possible to increase the details and therefore, to minimize the size of detected defects in transmission. On the basis of experimental studies were defined radiographic signs of major types of defects, typical for products made of polymeric composite materials. Calculated time costs of personnel required for high-resolution X-ray recording and evaluation of test results.

  3. Robust binarization of degraded document images using heuristics

    NASA Astrophysics Data System (ADS)

    Parker, Jon; Frieder, Ophir; Frieder, Gideon

    2013-12-01

    Historically significant documents are often discovered with defects that make them difficult to read and analyze. This fact is particularly troublesome if the defects prevent software from performing an automated analysis. Image enhancement methods are used to remove or minimize document defects, improve software performance, and generally make images more legible. We describe an automated, image enhancement method that is input page independent and requires no training data. The approach applies to color or greyscale images with hand written script, typewritten text, images, and mixtures thereof. We evaluated the image enhancement method against the test images provided by the 2011 Document Image Binarization Contest (DIBCO). Our method outperforms all 2011 DIBCO entrants in terms of average F1 measure - doing so with a significantly lower variance than top contest entrants. The capability of the proposed method is also illustrated using select images from a collection of historic documents stored at Yad Vashem Holocaust Memorial in Israel.

  4. The Business Case for Automated Software Engineering

    NASA Technical Reports Server (NTRS)

    Menzies, Tim; Elrawas, Oussama; Hihn, Jairus M.; Feather, Martin S.; Madachy, Ray; Boehm, Barry

    2007-01-01

    Adoption of advanced automated SE (ASE) tools would be more favored if a business case could be made that these tools are more valuable than alternate methods. In theory, software prediction models can be used to make that case. In practice, this is complicated by the 'local tuning' problem. Normally. predictors for software effort and defects and threat use local data to tune their predictions. Such local tuning data is often unavailable. This paper shows that assessing the relative merits of different SE methods need not require precise local tunings. STAR 1 is a simulated annealer plus a Bayesian post-processor that explores the space of possible local tunings within software prediction models. STAR 1 ranks project decisions by their effects on effort and defects and threats. In experiments with NASA systems. STARI found one project where ASE were essential for minimizing effort/ defect/ threats; and another project were ASE tools were merely optional.

  5. 2195 Aluminum-Copper-Lithium Friction Plug Welding Development

    NASA Technical Reports Server (NTRS)

    Takeshita, Rike P.; Hartley, Paula J.; Baker, Kent S.

    1997-01-01

    Technology developments and applications of friction plug welding is presented. This friction repair welding technology is being studied for implementation on the Space Transportation System's Super Light Weight External Tank. Single plug repairs will be used on a vast majority of weld defects, however, linear defects of up to several inches can be repaired by overlapping plug welds. Methods and results of tensile, bend, simulated service, surface crack tension and other tests at room and cryogenic temperatures is discussed. Attempts to implement Friction Plug Welding has led to both tool and process changes in an attempt to minimize expansive tooling and lengthy implementation times. Process control equipment and data storage methods intended for large scale production will also be addressed. Benefits include increased strength and toughness, decreased weld repair time, automated and highly reliable process, and a lower probability of having to re-repair defect locations.

  6. Reconstruction of Nasal Cleft Deformities Using Expanded Forehead Flaps: A Case Series.

    PubMed

    Ramanathan, Manikandhan; Sneha, Pendem; Parameswaran, Ananthnarayanan; Jayakumar, Naveen; Sailer, Hermann F

    2014-12-01

    Reconstruction of the nasal clefts is a challenging task considering the nasal anatomic complexity and their possible association with craniofacial defects. The reconstruction of these defects needs extensive amounts of soft tissue that warrant the use of forehead flaps. Often presence of cranial defects and low hairline compromise the amount of tissue available for reconstruction warrenting tissue expansion. To evaluate the efficacy of tissue expansion in reconstruction of congenital nasal clefts. 9 patients with congenital nasal clefts involving multiple sub units were taken up for nasal reconstruction with expanded forehead flaps. The average amount of expansion needed was 200 ml. The reconstruction was performed in 3 stages. Expanded forehead flaps proved to be best modality for reconstruction providing the skin cover needed for ala, columella and dorsum with minimal scarring at the donor site. Expansion of the forehead flap is a viable option for multiple sub unit reconstruction in congenital nasal cleft deformities.

  7. Thin-Film Module Reverse-Bias Breakdown Sites Identified by Thermal Imaging: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steven; Sulas, Dana; Guthrey, Harvey L

    Thin-film module sections are stressed under reverse bias to simulate partial shading conditions. Such stresses can cause permanent damage in the form of 'wormlike' defects due to thermal runaway. When large reverse biases with limited current are applied to the cells, dark lock-in thermography (DLIT) can detect where spatially-localized breakdown initiates before thermal runaway leads to permanent damage. Predicted breakdown defect sites have been identified in both CIGS and CdTe modules using DLIT. These defects include small pinholes, craters, or voids in the absorber layer of the film that lead to built-in areas of weakness where high current densities maymore » cause thermal damage in a partial-shading event.« less

  8. Thin-Film Module Reverse-Bias Breakdown Sites Identified by Thermal Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, Steven; Sulas, Dana; Guthrey, Harvey L

    Thin-film module sections are stressed under reverse bias to simulate partial shading conditions. Such stresses can cause permanent damage in the form of 'wormlike' defects due to thermal runaway. When large reverse biases with limited current are applied to the cells, dark lock-in thermography (DLIT) can detect where spatially-localized breakdown initiates before thermal runaway leads to permanent damage. Predicted breakdown defect sites have been identified in both CIGS and CdTe modules using DLIT. These defects include small pinholes, craters, or voids in the absorber layer of the film that lead to built-in areas of weakness where high current densities maymore » cause thermal damage in a partial-shading event.« less

  9. Genetic causes of male infertility.

    PubMed

    Stouffs, Katrien; Seneca, Sara; Lissens, Willy

    2014-05-01

    Male infertility, affecting around half of the couples with a problem to get pregnant, is a very heterogeneous condition. Part of patients are having a defect in spermatogenesis of which the underlying causes (including genetic ones) remain largely unknown. The only genetic tests routinely used in the diagnosis of male infertility are the analyses for the presence of Yq microdeletions and/or chromosomal abnormalities. Various other single gene or polygenic defects have been proposed to be involved in male fertility. Yet, their causative effect often remains to be proven. The recent evolution in the development of whole genome-based techniques may help in clarifying the role of genes and other genetic factors involved in spermatogenesis and spermatogenesis defects. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  10. Global loss of Leucine Carboxyl Methyltransferase-1 causes severe defects in fetal liver hematopoiesis.

    PubMed

    Lee, Jocelyn A; Wang, Zhengqi; Sambo, Danielle; Bunting, Kevin D; Pallas, David C

    2018-05-07

    Leucine Carboxyl Methyltransferase-1 (LCMT-1) 3 methylates the carboxy-terminal leucine α-carboxyl group of the catalytic subunits of the protein phosphatase 2A (PP2A) subfamily of protein phosphatases, PP2Ac, PP4c, and PP6c. LCMT-1 differentially regulates the formation and function of a subset of the heterotrimeric complexes that PP2A and PP4 form with their regulatory subunits. Global LCMT-1 knockout causes embryonic lethality in mice, but LCMT-1 function in development is unknown. In the current study, we analyzed the effects of global LCMT-1 loss on embryonic development. LCMT-1 knockout causes loss of PP2Ac methylation, indicating that LCMT-1 is the sole PP2Ac methyltransferase. PP2A heterotrimers containing the Bα and Bδ B-type subunits are dramatically reduced in whole embryos, and the steady-state levels of PP2Ac and the PP2A structural A subunit are also down ~30%. Strikingly, global loss of LCMT-1 causes severe defects in fetal hematopoiesis and death by embryonic day 16.5 (E16.5). Fetal livers of homozygous lcmt-1 knockout embryos display hypocellularity, elevated apoptosis, and greatly reduced numbers of hematopoietic stem and progenitor cell-enriched Kit + Lin - Sca1 + (KLS) cells. The percent cycling cells and mitotic indexes of wild-type and lcmt-1 knockout fetal liver cells are similar, suggesting that hypocellularity may be due to a combination of apoptosis and/or defects in specification, self-renewal, or survival of stem cells. Indicative of a possible intrinsic defect in stem cells, non-competitive and competitive transplantation experiments reveal that lcmt-1 loss causes a severe multi-lineage hematopoietic repopulating defect. Therefore, this study reveals a novel role for LCMT-1 as a key player in fetal liver hematopoiesis. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Development of Geometry Normalized Electromagnetic System (GNES) instrument for metal defect detection

    NASA Astrophysics Data System (ADS)

    Zakaria, Zakaria; Surbakti, Muhammad Syukri; Syahreza, Saumi; Mat Jafri, Mohd. Zubir; Tan, Kok Chooi

    2017-10-01

    It has been already made, calibrated and tested a geometry normalized electromagnetic system (GNES) for metal defect examination. The GNES has an automatic data acquisition system which supporting the efficiency and accuracy of the measurement. The data will be displayed on the computer monitor as a graphic display then saved automatically in the Microsoft Excel format. The transmitter will transmit the frequency pair (FP) signals i.e. 112.5 Hz and 337.5 Hz; 112.5 Hz and 1012.5 Hz; 112.5 Hz and 3037.5 Hz; 337.5 Hz and 1012.5 Hz; 337.5 Hz and 3037.5 Hz. Simultaneous transmissions of two electromagnetic waves without distortions by the transmitter will induce an eddy current in the metal. This current, in turn, will produce secondary electromagnetic fields which are measured by the receiver together with the primary fields. Measurement of percent change of a vertical component of the fields will give the percent response caused by the metal or the defect. The response examinations were performed by the models with various type of defect for the master curves. The materials of samples as a plate were using Aluminum, Brass, and Copper. The more of the defects is the more reduction of the eddy current response. The defect contrasts were tended to decrease when the more depth of the defect position. The magnitude and phase of the eddy currents will affect the loading on the coil thus its impedance. The defect must interrupt the surface eddy current flow to be detected. Defect lying parallel to the current path will not cause any significant interruption and may not be detected. The main factors which affect the eddy current response are metal conductivity, permeability, frequency, and geometry.

  12. Effect of doping ions on the structural defect and the electrical behavior of CaCu{sub 3}Ti{sub 4}O{sub 12} ceramics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xue, Renzhong; Department of Technology and Physics, Zhengzhou University of Light Industry, Zhengzhou 450002; Zhao, Gaoyang, E-mail: zhaogy@xaut.edu.cn

    Graphical abstract: The dielectric constant decreases with Ta doping, increases with Y doping and keeps almost constant with Zr doping compared with that of pure CCTO. - Highlights: • Y and Ta doping cause different defect types and concentration. • Defect influences the grain boundary mobility and results in different grain size. • Y doping increases the dielectric constant and decreases the nonlinear property. • Ta doping decreases the dielectric constant and enhances the nonlinear property. • Zr doped sample has nearly the defect type and dielectric properties as CaCu{sub 3}Ti{sub 4}O{sub 12}. - Abstract: The microstructure, dielectric and electricalmore » properties of CaCu{sub 3}Ti{sub 4−x}R{sub x}O{sub 12} (R = Y, Zr, Ta; x = 0 and 0.005) ceramics were investigated by XRD, Raman spectra, SEM and dielectric spectrum measurements. Positron annihilation measurements have been performed to investigate the influence of doping on the defects. The results show that all samples form a single crystalline phase. Y and Ta doping cause different defect types and increase the defect size and concentration, which influence the mobility of grain boundary and result in the different grain size. Y doping increases the dielectric constant and decreases the nonlinear property while Ta doping lead to an inverse result. Zr-doped sample has nearly the defect type, grain morphology and dielectric properties as pure CaCu{sub 3}Ti{sub 4}O{sub 12}. The effects of microstructure including the grain morphology and the vacancy defects on the mechanism of the dielectric and electric properties by doping are discussed.« less

  13. Maternal occupation and the risk of major birth defects: A follow-up analysis from the National Birth Defects Prevention Study

    PubMed Central

    Lin, Shao; Herdt-Losavio, Michele L.; Chapman, Bonnie R.; Munsie, Jean-Pierre; Olshan, Andrew F.; Druschel, Charlotte M.

    2013-01-01

    This study further examined the association between selected maternal occupations and a variety of birth defects identified from prior analysis and explored the effect of work hours and number of jobs held and potential interaction between folic acid and occupation. Data from a population-based, multi-center case-control study was used. Analyses included 45 major defects and specific sub-occupations under five occupational groups: healthcare workers, cleaners, scientists, teachers and personal service workers. Both logistic regression and Bayesian models (to minimize type-1 errors) were used, adjusted for potential confounders. Effect modification by folic acid was also assessed. More than any other occupation, nine different defects were positively associated with maids or janitors [odds ratio (OR) range: 1.72-3.99]. Positive associations were also seen between the following maternal occupations and defects in their children (OR range: 1.35-3.48): chemists/conotruncal heart and neural tube defects (NTDs), engineers/conotruncal defects, preschool teachers/cataracts and cleft lip with/without cleft palate (CL/P), entertainers/athletes/gastroschisis, and nurses/hydrocephalus and left ventricular outflow tract heart defects. Non-preschool teachers had significantly lower odds of oral clefts and gastroschisis in their offspring (OR range: 0.53-0.76). There was a suggestion that maternal folic acid use modified the effects with occupations including lowering the risk of NTDs and CL/P. No consistent patterns were found between maternal work hours or multiple jobs by occupation and the risk of birth defects. Overall, mothers working as maids, janitors, biologists, chemists, engineers, nurses, entertainers, child care workers and preschool teachers had increased risks of several malformations and non-preschool teachers had a lower risk of some defects. Maternal folic acid use reduced the odds of NTDs and CL/P among those with certain occupations. This hypothesis-generating study will provide clues for future studies with better exposure data. PMID:22695106

  14. Horizontal square buried sutures in a two-layered fashion enable direct primary closure for small circular wounds without dog-ears on the face.

    PubMed

    Matsunaga, Jun; Aiba, Setsuya

    2005-05-01

    Dog-ears often lead to lengthening of an excision, and it is desirable to avoid them. Facial skin, including the subepidermal connective tissue, is flexible and can be used advantageously to minimize dog-ears using a novel buried suture technique. After removing a round lesion, the first horizontal square buried suture (HSBS) was deeply placed parallel to the longitudinal direction of the defect beneath superficial fascia. After the first HSBS was tied, the defect became fusiform but was still largely open. The second HSBS was also placed parallel to the longitudinal direction of the defect but in more superficial fascia and using smaller horizontal buried loops than those of the first deep suture. After the second HSBS in the middle of the dermis was tied, the wound was almost closed without dog-ears. Consequently, few skin sutures were required to finish the operation. Using this technique, a small circular or oval defect on the face up to 1 cm in diameter can be closed without any additional excision of the skin and without creating dog-ears.

  15. Improved First Pass Spiral Myocardial Perfusion Imaging with Variable Density Trajectories

    PubMed Central

    Salerno, Michael; Sica, Christopher; Kramer, Christopher M.; Meyer, Craig H.

    2013-01-01

    Purpose To develop and evaluate variable-density (VD) spiral first-pass perfusion pulse sequences for improved efficiency and off-resonance performance and to demonstrate the utility of an apodizing density compensation function (DCF) to improve SNR and reduce dark-rim artifact caused by cardiac motion and Gibbs Ringing. Methods Three variable density spiral trajectories were designed, simulated, and evaluated in 18 normal subjects, and in 8 patients with cardiac pathology on a 1.5T scanner. Results By utilizing a density compensation function (DCF) which intentionally apodizes the k-space data, the side-lobe amplitude of the theoretical PSF is reduced by 68%, with only a 13% increase in the FWHM of the main-lobe as compared to the same data corrected with a conventional VD DCF, and has an 8% higher resolution than a uniform density spiral with the same number of interleaves and readout duration. Furthermore, this strategy results in a greater than 60% increase in measured SNR as compared to the same VD spiral data corrected with a conventional DCF (p<0.01). Perfusion defects could be clearly visualized with minimal off-resonance and dark-rim artifacts. Conclusion VD spiral pulse sequences using an apodized DCF produce high-quality first-pass perfusion images with minimal dark-rim and off-resonance artifacts, high SNR and CNR and good delineation of resting perfusion abnormalities. PMID:23280884

  16. The Post-Amalgam Era: Norwegian Dentists' Experiences with Composite Resins and Repair of Defective Amalgam Restorations.

    PubMed

    Kopperud, Simen E; Staxrud, Frode; Espelid, Ivar; Tveit, Anne Bjørg

    2016-04-22

    Amalgam was banned as a dental restorative material in Norway in 2008 due to environmental considerations. An electronic questionnaire was sent to all dentists in the member register of the Norwegian Dental Association (NTF) one year later, to evaluate dentists' satisfaction with alternative restorative materials and to explore dentists' treatment choices of fractured amalgam restorations. Replies were obtained from 61.3%. Composite was the preferred restorative material among 99.1% of the dentists. Secondary caries was the most commonly reported cause of failure (72.7%), followed by restoration fractures (25.1%). Longevity of Class II restorations was estimated to be ≥10 years by 45.8% of the dentists, but 71.2% expected even better longevity if the restoration was made with amalgam. Repair using composite was suggested by 24.9% of the dentists in an amalgam restoration with a fractured cusp. Repair was more often proposed among young dentists (p < 0.01), employees in the Public Dental Service (PDS) (p < 0.01) and dentists working in counties with low dentist density (p = 0.03). There was a tendency towards choosing minimally invasive treatment among dentists who also avoided operative treatment of early approximal lesions (p < 0.01). Norwegian dentists showed positive attitudes towards composite as a restorative material. Most dentists chose minimally- or medium invasive approaches when restoring fractured amalgam restorations.

  17. The Post-Amalgam Era: Norwegian Dentists’ Experiences with Composite Resins and Repair of Defective Amalgam Restorations

    PubMed Central

    Kopperud, Simen E.; Staxrud, Frode; Espelid, Ivar; Tveit, Anne Bjørg

    2016-01-01

    Amalgam was banned as a dental restorative material in Norway in 2008 due to environmental considerations. An electronic questionnaire was sent to all dentists in the member register of the Norwegian Dental Association (NTF) one year later, to evaluate dentists’ satisfaction with alternative restorative materials and to explore dentists’ treatment choices of fractured amalgam restorations. Replies were obtained from 61.3%. Composite was the preferred restorative material among 99.1% of the dentists. Secondary caries was the most commonly reported cause of failure (72.7%), followed by restoration fractures (25.1%). Longevity of Class II restorations was estimated to be ≥10 years by 45.8% of the dentists, but 71.2% expected even better longevity if the restoration was made with amalgam. Repair using composite was suggested by 24.9% of the dentists in an amalgam restoration with a fractured cusp. Repair was more often proposed among young dentists (p < 0.01), employees in the Public Dental Service (PDS) (p < 0.01) and dentists working in counties with low dentist density (p = 0.03). There was a tendency towards choosing minimally invasive treatment among dentists who also avoided operative treatment of early approximal lesions (p < 0.01). Norwegian dentists showed positive attitudes towards composite as a restorative material. Most dentists chose minimally- or medium invasive approaches when restoring fractured amalgam restorations. PMID:27110804

  18. Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces

    DOE PAGES

    Acik, Muge; Park, In Kee; Koritala, Rachel E.; ...

    2017-12-21

    Here, graphene oxide or its reduced derivative (GO/RGO) replace metal oxides in perovskite photovoltaics to achieve energy band alignment for minimization of the energy barriers at the film interfaces allowing efficient charge transport, and eliminate stability issues. However, the power conversion efficiencies fall in a wide range (~0.6–18%). Therefore, the perovskite growth and nucleation on GO/RGO require fundamental understanding to improve device function for controlled fabrication, which remain a major challenge. We analyze the surface morphology and crystallization of the lead halide perovskites (MAPbX 3) at 20–300 °C on GO using X-ray diffraction and photoelectron spectroscopy. To determine defect mechanismsmore » and their composition, we perform in situ transmission infrared and micro Raman spectroscopy, and the cross-sectional scanning microscopy that captures interfacial imperfections with the oxygen defects. We demonstrate the oxygen-induced defects at the MAPbX 3/GO interfaces that initiate at room temperature, and occur through the nucleophilic substitution reactions. Unexpectedly, structural defects nucleate in GO forming chemically reduced GO, and modify the surface morphology that yield a poor perovskite growth. Our theoretical studies also reveal that energetically favorable, exothermic reactions between the halides of the perovskite precursors and the oxygen groups of GO generate acidic reaction by-products ( i.e. HX), that confirm the formation of oxygen-induced defects.« less

  19. Triple flap technique for vulvar reconstruction.

    PubMed

    Mercut, R; Sinna, R; Vaucher, R; Giroux, P A; Assaf, N; Lari, A; Dast, S

    2018-04-09

    Perineal defects are encountered ever more frequently, in the treatment of vulvar cancers or abdominoperineal resection. The surgical treatment of vulvar cancer leads to significant skin defect. The aim of the reconstruction is not to provide volume but rather to resurface perineum. We propose a new solution to cover the extensive skin defect remaining after excision. We report 3 patients who underwent large excision for vulvar cancer, with lymph node dissection. For reconstruction, we performed 3 advancement flaps. Two V-Y flaps cantered on the infra-gluteal folds and based on pudendal perforator arteries were used to cover the postero-lateral parts of the defect. The third advancement flap from the superior aspect of the defect was a Y-V Mons pubis flap. The defects were successfully covered by the 3 flap technique. The first patient suffered a non-union that slowly healed by secondary intention. For the other cases, we used the same technique, but applied negative pressure wound therapy on the sutures, with excellent results. The 3 flap technique is a simple and reliable method and the donor site morbidity is minimal. It can be realised without changing the position of the patient after tumour excision, and does not require delicate perforator dissection. This surgical option can be easily applied, allowing better management of these cases. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Oxygen-induced defects at the lead halide perovskite/graphene oxide interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acik, Muge; Park, In Kee; Koritala, Rachel E.

    Here, graphene oxide or its reduced derivative (GO/RGO) replace metal oxides in perovskite photovoltaics to achieve energy band alignment for minimization of the energy barriers at the film interfaces allowing efficient charge transport, and eliminate stability issues. However, the power conversion efficiencies fall in a wide range (~0.6–18%). Therefore, the perovskite growth and nucleation on GO/RGO require fundamental understanding to improve device function for controlled fabrication, which remain a major challenge. We analyze the surface morphology and crystallization of the lead halide perovskites (MAPbX 3) at 20–300 °C on GO using X-ray diffraction and photoelectron spectroscopy. To determine defect mechanismsmore » and their composition, we perform in situ transmission infrared and micro Raman spectroscopy, and the cross-sectional scanning microscopy that captures interfacial imperfections with the oxygen defects. We demonstrate the oxygen-induced defects at the MAPbX 3/GO interfaces that initiate at room temperature, and occur through the nucleophilic substitution reactions. Unexpectedly, structural defects nucleate in GO forming chemically reduced GO, and modify the surface morphology that yield a poor perovskite growth. Our theoretical studies also reveal that energetically favorable, exothermic reactions between the halides of the perovskite precursors and the oxygen groups of GO generate acidic reaction by-products ( i.e. HX), that confirm the formation of oxygen-induced defects.« less

  1. Usefulness of an Osteotomy Template for Skull Tumorectomy and Simultaneous Skull Reconstruction.

    PubMed

    Oji, Tomito; Sakamoto, Yoshiaki; Miwa, Tomoru; Nakagawa, Yu; Yoshida, Kazunari; Kishi, Kazuo

    2016-09-01

    Simultaneous tumor resection and cranioplasty with hydroxyapatite osteosynthesis are sometimes necessary in patients of skull neoplasms or skull-invasive tumors. However, the disadvantage of simultaneous surgery is that mismatches often occur between the skull defect and the hydroxyapatite implant. To solve this problem, the authors developed a customized template for designing the craniotomy line. Before each operation, the craniotomy design was discussed with a neurosurgeon. Based on the discussion, 2 hydroxyapatite implants were customized for each patient on the basis of models prepared using computed tomography data. The first implant was an onlay template for the preoperative cranium, which was customized for designing the osteotomy line. The other implant was used for the skull defect. Using the template, the osteotomy line was drawn along the template edge, osteotomy was performed along this line, and the implant was placed in the skull defect. This technique was performed in 3 patients. No implant or defect trimming was required in any patient, good cosmetic outcomes were noted in all patients, and no complications occurred. Use of predesigned hydroxyapatite templates for craniotomy during simultaneous skull tumor resection and cranioplasty has some clinical advantages: the precise craniotomy line can be designed, the implant and skull defect fit better and show effective osteoconduction, trimming of the implant or defect is minimized, and the operation time is shortened.

  2. Reconstruction of a large calvarial traumatic defect using a custom-made porous hydroxyapatite implant covered by a free latissimus dorsi muscle flap in an 11-year-old patient.

    PubMed

    Morice, Anne; Kolb, Frédéric; Picard, Arnaud; Kadlub, Natacha; Puget, Stéphanie

    2017-01-01

    Reconstruction of complex skull defects requires collaboration between neurosurgeons and plastic surgeons to choose the most appropriate procedure, especially in growing children. The authors describe herein the reconstruction of an extensive traumatic bone and soft tissue defect of the cranial vault in an 11-year-old boy. The size of the defect, quality of the tissues, and patient's initial condition required a 2-stage approach. Ten months after an initial emergency procedure in which lacerated bone and soft tissue were excised, reconstruction was performed. The bone defect, situated on the left frontoparietal region, was 85 cm 2 and was filled by a custom-made porous hydroxyapatite implant. The quality of the overlying soft tissue did not allow the use of classic local and locoregional coverage techniques. A free latissimus dorsi muscle flap branched on the contralateral superficial temporal pedicle was used and left for secondary healing to take advantage of scar retraction and to minimize alopecia. Stable well-vascularized implant coverage as well as an esthetically pleasing skull shape was achieved. Results in this case suggest that concomitant reconstruction of large calvarial defects by cranioplasty with a custom-made hydroxyapatite implant covered by a free latissimus dorsi muscle flap is a safe and efficient procedure in children, provided that there is no underlying infection of the operative site.

  3. Pulmonary hypoplasia-diaphragmatic hernia-anophthalmia-cardiac defect (PDAC) syndrome due to STRA6 mutations--what are the minimal criteria?

    PubMed

    Segel, Reeval; Levy-Lahad, Ephrat; Pasutto, Francesca; Picard, Elie; Rauch, Anita; Alterescu, Gheona; Schimmel, Michael S

    2009-11-01

    Microphthalmic syndrome 9 (OMIM601186) is a genetically and phenotypically variable condition, comprising anophthalmia, pulmonary hypoplasia, diaphragmatic hernia, and cardiac malformations (PDAC syndrome). Reported cases have all been associated with fetal/neonatal death or developmental delay. Recessive stimulated by retinoic acid gene 6 homolog (STRA6) mutations have recently been identified as the cause of cases of PDAC in which distinct, "bushy" eyebrows have been observed. We describe a patient with clinical anophthalmia, bushy eyebrows, patent ductus arteriosus, and normal development at age 30 months, who is a compound heterozygote for two novel STRA6 missense mutations. This patient's phenotype is consistent with the multisystemic malformations of PDAC syndrome, but is somewhat milder. This is the first living patient with compound heterozygous STRA6 mutations, which may explain her milder phenotype. We conclude that STRA6 analysis should be considered in all patients with clinical anophthalmia. Genetic counseling should be cautious with respect to long-term developmental outcomes. Copyright 2009 Wiley-Liss, Inc.

  4. [Perfecting smile esthetics: keep it pink!

    PubMed

    Monnet-Corti, Virginie; Antezack, Angeline; Pignoly, Marion

    2018-03-01

    Smile aesthetics is based on numerical, physical, physiological and psychological data regarding beauty, while taking into account the desires of the patient. It is determined by the shape, colour and position of the lips, teeth and gingival tissues. Periodontal examination in both the facial and labial settings supports analysis of the gingival display during natural and forced smiling, the health of the periodontium, the gingival contours, the aesthetic gingival line, and the presence of the papillae. All these data will help establish a gingival aesthetic score to determine the causes of disharmony and possible treatment. During implementation of the global orthodontic treatment plan, periodontal plastic surgery can change the gingival appearance and morphology in order to restore the harmony of the smile. Subtractive periodontal plastic surgery treats biological space defects and excess tissue during incomplete passive eruption by gingivectomy or apically positioned flap, combined, or not, with osteoplasty or osteoectomy. Finally, injections of hyaluronic acid in the papillae can plump them up and minimize the size of any black holes. © EDP Sciences, SFODF, 2018.

  5. A new approach to the treatment of true-combined endodontic-periodontic lesions by the guided tissue regeneration technique.

    PubMed

    Tseng, C C; Harn, W M; Chen, Y H; Huang, C C; Yuan, K; Huang, P H

    1996-12-01

    Clinicians often have difficulty in the diagnosis and treatment of the combined endodontal and periodontal (endo-perio) lesion. A case of an endo-perio true-combined lesion on a maxillary premolar was first treated with conventional endodontic therapy. Periodontal surgery was then completed, which included scaling and root planing and apical curettage on the tooth. The facial bony defect was then filled with a decalcified freeze-dried bone allograft mixed with tetracycline powder. A non-resorbable Teflon membrane was then used to cover the bone material and the periodontal flap sutured over this. This combined treatment resulted in minimal probing depth (2 mm), maximal clinical attachment gain (8 mm), as well as radiographic evidence of alveolar bone gain. This case report demonstrates that proper diagnosis, followed by removal of etiological factors and utilizing the guided tissue regeneration technique combined with osseous grafting, will restore health and function to a tooth with severe attachment loss caused by an endo-perio lesion.

  6. The role of ultrasonography in the management of lung and pleural diseases.

    PubMed

    Rumende, C Martin

    2012-04-01

    Ultrasonographic examination in pulmonology provides a revolutionary advance because it is very helpful in the diagnosis and management of various pleural and peripheral pulmonary defects. Lung ultrasonography allows the clinicians to diagnose some pulmonary abnormalities more rapidly, including the diagnosis of pleural effusion. Ultrasound examination also provides great assistance for the clinicians to perform invasive techniques in the field of pulmonology, which may increase the success rate and reduce the likelihood of complications. In addition to pleural effusion, other lung disorders can be diagnosed by ultrasound such as peripheral lung tumors and other pleural abnormalities caused by pleural fibrosis and tumor metastasis as well as the primary pleural tumor (mesothelioma). Ultrasound-guided invasive procedures include aspiration of minimal effusion, Transthoracal Needle Aspiration, Transthoracal biopsies and chest tube insertion. Lung ultrasound also offers other advantages, i.e. free from radiation hazards, portable, non-invasive and relatively inexpensive. Ultrasonography in the thorax also has its limitations, especially in detecting mediastinal abnormalities.

  7. Monitoring the WFC3/UVIS Relative Gain with Internal Flatfields

    NASA Astrophysics Data System (ADS)

    Fowler, J.; Baggett, S.

    2017-03-01

    The WFC3/UVIS gain stability has been monitored twice yearly. This project provides a new examination of gain stability, making use of the existing internal flatfield observations taken every three days (for the Bowtie monitor) for a regular look at relative gain stability. Amplifiers are examined for consistency both in comparison to each other and over time, by normalizing the B, C, and D amplifiers to A, and then plotting statistics for each of the three normalized amplifiers with time. We find minimal trends in these statistics, with a 0.02 - 0.2% change in mean amplifier ratio over 7.5 years. The trends in the amplifiers are well-behaved with the exception of the B/A ratio, which shows increased scatter in mean, median, and standard deviation. The cause of the scatter remains unclear though we find it is not dependent upon detector defects, filter features, or shutter effects, and is only observable after pixel flagging (both from the data quality arrays and outlier values) has been applied.

  8. Genes, dreams, and cancer.

    PubMed Central

    Sikora, K.

    1994-01-01

    There have been tremendous advances in our understanding of cancer from the application of molecular biology over the past decade. The disease is caused by a series of defects in the genes that accelerate growth--oncogenes--and those that slow down cellular turnover--tumour suppressor genes. The proteins they encode provide a promising hunting ground in which to design and test new anticancer drugs. Several treatment strategies are now under clinical trial entailing direct gene transfer. These include the use of gene marking to detect minimal residual disease, the production of novel cancer vaccines by the insertion of genes which uncloak cancer cells so making them visible to the host's immune system, the isolation and coupling of cancer specific molecular switches upstream of drug activating genes, and the correction of aberrant oncogenes or tumour suppressor genes. The issues in these approaches are likely to have a profound impact on the management of cancer patients as we enter the next century. Images p1221-a PMID:8180542

  9. An investigation on defect-generation conditions in immersion lithography

    NASA Astrophysics Data System (ADS)

    Tomita, Tadatoshi; Shimoaoki, Takeshi; Enomoto, Masashi; Kyoda, Hideharu; Kitano, Junichi; Suganaga, Toshifumi

    2006-03-01

    As a powerful candidate for a lithography technique that can accommodate the scaling-down of semiconductors, 193-nm immersion lithography-which realizes a high numerical aperture (NA) and uses deionized water as the medium between the lens and wafer in the exposure system-has been developing at a rapid pace and has reached the stage of practical application. In regards to defects that are a cause for concern in the case of 193-nm immersion lithography, however, many components are still unclear and many problems remain to be solved. It has been pointed out, for example, that in the case of 193-nm immersion lithography, immersion of the resist film in deionized water during exposure causes infiltration of moisture into the resist film, internal components of the resist dissolve into the deionized water, and residual water generated during exposure affects post-processing. Moreover, to prevent this influence of directly immersing the resist in de-ionized water, application of a protective film is regarded as effective. However, even if such a film is applied, it is still highly likely that the above-mentioned defects will still occur. Accordingly, to reduce these defects, it is essential to identify the typical defects occurring in 193-nm immersion lithography and to understand the condition for generation of defects by using some kinds of protective films and resist materials. Furthermore, from now onwards, with further scaling down of semiconductors, it is important to maintain a clear understanding of the relation between defect-generation conditions and critical dimensions (CD). Aiming to extract typical defects occurring in 193-nm immersion lithography, the authors carried out a comparative study with dry exposure lithography, thereby confirming several typical defects associated with immersion lithography. We then investigated the conditions for generation of defects in the case of some kinds of protective films. In addition to that, by investigating the defect-generation conditions and comparing the classification data between wet and dry exposure, we were able to determine the origin of each particular defect involved in immersion lithography. Furthermore, the comparison of CD for wet and dry processing could indicate the future defectivity levels to be expected with shrinking immersion process critical dimensions.

  10. Evaluation of Defects inside Beryllium Foils using X-ray Computed Tomography and Shearing Interferometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sakurai, Tatsuyuki; Kohmura, Yoshiki; Takeuchi, Akihisa

    2007-01-19

    When beryllium is used in transmission X-ray optical elements for spatially coherent beams, speckles are usually observed in the transmission images. These speckles seem to be caused by defects either inside or on the surface of beryllium foil. We measured highly polished beryllium foil using two methods, X-ray computed tomography and X-ray shearing interferometry. The results indicate that observed speckle pattern is caused by many voids inside beryllium or inner low-density regions.

  11. Method for reducing energy losses in laser crystals

    DOEpatents

    Atherton, L.J.; DeYoreo, J.J.; Roberts, D.H.

    1992-03-24

    A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light. 12 figs.

  12. Method for reducing energy losses in laser crystals

    DOEpatents

    Atherton, L. Jeffrey; DeYoreo, James J.; Roberts, David H.

    1992-01-01

    A process for reducing energy losses in crystals is disclosed which comprises: a. heating a crystal to a temperature sufficiently high as to cause dissolution of microscopic inclusions into the crystal, thereby converting said inclusions into point-defects, and b. maintaining said crystal at a given temperature for a period of time sufficient to cause said point-defects to diffuse out of said crystal. Also disclosed are crystals treated by the process, and lasers utilizing the crystals as a source of light.

  13. Workshop on Condition Based Maintenance Held in Atlantic Beach, North Carolina on November 15 - 17, 1993

    DTIC Science & Technology

    1993-11-17

    pounds of Torque Over Three Minutes Continuous Operation IYMCO1A 14 DMAE Corporation C-130 Engine Gearbox January 19925 Stress Wave Analysis - I in’. I...FaUi.O The CBM needs associated with surface initiated failure mechanisms can be divided into I singular defects and low (h/a) operation. Singular defec-t...These include nicks, scratches, corrosion pits and dents caused by third’ body particles (hard or soft). These defects cause local stress risers

  14. (Epi)genotype-Phenotype Analysis in 69 Japanese Patients With Pseudohypoparathyroidism Type I

    PubMed Central

    Sano, Shinichiro; Nakamura, Akie; Matsubara, Keiko; Nagasaki, Keisuke; Fukami, Maki; Kagami, Masayo

    2018-01-01

    Context: Pseudohypoparathyroidism type I (PHP-I) is divided into PHP-Ia with Albright hereditary osteodystrophy and PHP-Ib, which usually shows no Albright hereditary osteodystrophy features. Although PHP-Ia and PHP-Ib are typically caused by genetic defects involving α subunit of the stimulatory G protein (Gsα)–coding GNAS exons and methylation defects of the GNAS differentially methylated regions (DMRs) on the maternal allele, respectively, detailed phenotypic characteristics still remains to be examined. Objective: To clarify phenotypic characteristics according to underlying (epi)genetic causes. Patients and Methods: We performed (epi)genotype-phenotype analysis in 69 Japanese patients with PHP-I; that is, 28 patients with genetic defects involving Gsα-coding GNAS exons (group 1) consisting of 12 patients with missense variants (subgroup A) and 16 patients with null variants (subgroup B), as well as 41 patients with methylation defects (group 2) consisting of 21 patients with broad methylation defects of the GNAS-DMRs (subgroup C) and 20 patients with an isolated A/B-DMR methylation defect accompanied by the common STX16 microdeletion (subgroup D). Results: Although (epi)genotype-phenotype findings were grossly similar to those reported previously, several important findings were identified, including younger age at hypocalcemic symptoms and higher frequencies of hyperphosphatemia in subgroup C than in subgroup D, development of brachydactyly in four patients of subgroup C, predominant manifestation of subcutaneous ossification in subgroup B, higher frequency of thyrotropin resistance in group 1 than in group 2, and relatively low thyrotropin values in four patients with low T4 values and relatively low luteinizing hormone/follicle-stimulating hormone values in five adult females with ovarian dysfunction. Conclusion: The results imply the presence of clinical findings characteristic of each underlying cause and provide useful information on the imprinting status of Gsα. PMID:29379892

  15. Probing Conformational Rescue Induced by a Chemical Corrector of F508del-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) Mutant*

    PubMed Central

    Yu, Wilson; Chiaw, Patrick Kim; Bear, Christine E.

    2011-01-01

    Cystic fibrosis (CF) is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that cause loss of function of the CFTR channel on the apical surface of epithelial cells. The major CF-causing mutation, F508del-CFTR, is misfolded, retained in the endoplasmic reticulum, and degraded. Small molecule corrector compounds have been identified using high throughput screens, which partially rescue the trafficking defect of F508del-CFTR, allowing a fraction of the mutant protein to escape endoplasmic reticulum retention and traffic to the plasma membrane, where it exhibits partial function as a cAMP-regulated chloride channel. A subset of such corrector compounds binds directly to the mutant protein, prompting the hypothesis that they rescue the biosynthetic defect by inducing improved protein conformation. We tested this hypothesis directly by evaluating the consequences of a corrector compound on the conformation of each nucleotide binding domain (NBD) in the context of the full-length mutant protein in limited proteolytic digest studies. Interestingly, we found that VRT-325 was capable of partially restoring compactness in NBD1. However, VRT-325 had no detectable effect on the conformation of the second half of the molecule. In comparison, ablation of the di-arginine sequence, R553XR555 (F508del-KXK-CFTR), modified protease susceptibility of NBD1, NBD2, and the full-length protein. Singly, each intervention led to a partial correction of the processing defect. Together, these interventions restored processing of F508del-CFTR to near wild type. Importantly, however, a defect in NBD1 conformation persisted, as did a defect in channel activation after the combined interventions. Importantly, this defect in channel activation can be fully corrected by the addition of the potentiator, VX-770. PMID:21602569

  16. Acute rhabdomyolysis and inflammation.

    PubMed

    Hamel, Yamina; Mamoune, Asmaa; Mauvais, François-Xavier; Habarou, Florence; Lallement, Laetitia; Romero, Norma Beatriz; Ottolenghi, Chris; de Lonlay, Pascale

    2015-07-01

    Rhabdomyolysis results from the rapid breakdown of skeletal muscle fibers, which leads to leakage of potentially toxic cellular content into the systemic circulation. Acquired causes by direct injury to the sarcolemma are most frequent. The inherited causes are: i) metabolic with failure of energy production, including mitochondrial fatty acid ß-oxidation defects, LPIN1 mutations, inborn errors of glycogenolysis and glycolysis, more rarely mitochondrial respiratory chain deficiency, purine defects and peroxysomal α-methyl-acyl-CoA-racemase defect (AMACR), ii) structural causes with muscle dystrophies and myopathies, iii) calcium pump disorder with RYR1 gene mutations, iv) inflammatory causes with myositis. Irrespective of the cause of rhabdomyolysis, the pathology follows a common pathway, either by the direct injury to sarcolemma by increased intracellular calcium concentration (acquired causes) or by the failure of energy production (inherited causes), which leads to fiber necrosis. Rhabdomyolysis are frequently precipitated by febrile illness or exercise. These conditions are associated with two events, elevated temperature and high circulating levels of pro-inflammatory mediators such as cytokines and chemokines. To illustrate these points in the context of energy metabolism, protein thermolability and the potential benefits of arginine therapy, we focus on a rare cause of rhabdomyolysis, aldolase A deficiency. In addition, our studies on lipin-1 (LPIN1) deficiency raise the possibility that several diseases involved in rhabdomyolysis implicate pro-inflammatory cytokines and may even represent primarily pro-inflammatory diseases. Thus, not only thermolability of mutant proteins critical for muscle function, but also pro-inflammatory cytokines per se, may lead to metabolic decompensation and rhabdomyolysis.

  17. A POT1 mutation implicates defective telomere end fill-in and telomere truncations in Coats plus

    PubMed Central

    Takai, Hiroyuki; Jenkinson, Emma; Kabir, Shaheen; Babul-Hirji, Riyana; Najm-Tehrani, Nasrin; Chitayat, David A.; Crow, Yanick J.; de Lange, Titia

    2016-01-01

    Coats plus (CP) can be caused by mutations in the CTC1 component of CST, which promotes polymerase α (polα)/primase-dependent fill-in throughout the genome and at telomeres. The cellular pathology relating to CP has not been established. We identified a homozygous POT1 S322L substitution (POT1CP) in two siblings with CP. POT1CP induced a proliferative arrest that could be bypassed by telomerase. POT1CP was expressed at normal levels, bound TPP1 and telomeres, and blocked ATR signaling. POT1CP was defective in regulating telomerase, leading to telomere elongation rather than the telomere shortening observed in other telomeropathies. POT1CP was also defective in the maintenance of the telomeric C strand, causing extended 3′ overhangs and stochastic telomere truncations that could be healed by telomerase. Consistent with shortening of the telomeric C strand, metaphase chromosomes showed loss of telomeres synthesized by leading strand DNA synthesis. We propose that CP is caused by a defect in POT1/CST-dependent telomere fill-in. We further propose that deficiency in the fill-in step generates truncated telomeres that halt proliferation in cells lacking telomerase, whereas, in tissues expressing telomerase (e.g., bone marrow), the truncations are healed. The proposed etiology can explain why CP presents with features distinct from those associated with telomerase defects (e.g., dyskeratosis congenita). PMID:27013236

  18. Filling defects in the pancreatic duct on endoscopic retrograde pancreatography.

    PubMed

    Taylor, A J; Carmody, T J; Schmalz, M J; Wiedmeyer, D A; Stewart, E T

    1992-12-01

    Filling defects in the pancreatic duct are a frequent finding during endoscopic retrograde pancreatography (ERP) and have a variety of causes. Some filling defects may be artifactual or related to technical factors and, once their origin is recognized, can be disregarded. Others may be due to acute changes of pancreatitis and should prompt more careful injection of contrast material into the duct. Intraluminal masses may represent calculi or a neoplasm, either of which may require surgery or endoscopic intervention. The exact nature of these filling defects may not be apparent on radiographs, and other studies may be needed. This article reviews our approach to the evaluation of filling defects in the pancreatic duct.

  19. Fracture Mechanics Analyses of Subsurface Defects in Reinforced Carbon-Carbon Joggles Subjected to Thermo-Mechanical Loads

    NASA Technical Reports Server (NTRS)

    Knight, Norman F., Jr.; Raju, Ivatury S.; Song, Kyongchan

    2011-01-01

    Coating spallation events have been observed along the slip-side joggle region of the Space Shuttle Orbiter wing-leading-edge panels. One potential contributor to the spallation event is a pressure build up within subsurface voids or defects due to volatiles or water vapor entrapped during fabrication, refurbishment, or normal operational use. The influence of entrapped pressure on the thermo-mechanical fracture-mechanics response of reinforced carbon-carbon with subsurface defects is studied. Plane-strain simulations with embedded subsurface defects are performed to characterize the fracture mechanics response for a given defect length when subjected to combined elevated-temperature and subsurface-defect pressure loadings to simulate the unvented defect condition. Various subsurface defect locations of a fixed-length substrate defect are examined for elevated temperature conditions. Fracture mechanics results suggest that entrapped pressure combined with local elevated temperatures have the potential to cause subsurface defect growth and possibly contribute to further material separation or even spallation. For this anomaly to occur, several unusual circumstances would be required making such an outcome unlikely but plausible.

  20. [Use of free vascularized fibular graft flap in the treatment of large bone defects after limb injury].

    PubMed

    Bumbasirević, Marko Z; Lesić, Aleksandar R; Atkinson, Henry Dushan Edward; Tulić, Goran C

    2013-01-01

    Free vascularized fibular graft is of the greatest importance in the orthopaedics and trauma. Bone, skeletal defects due to the trauma, infections and congenital anomalies could be successfully solved by the free vascularized fibular grafts. In this article the main anatomical data of fibular graft, surgical techniques, indications for the FVFG in the treatment of trauma caused bone defects or its complications -sequels are described.

  1. The effect of simulated altitude on the visual fields of glaucoma patients and the elderly.

    DOT National Transportation Integrated Search

    1991-01-01

    This study tests whether mild hypoxia, that is typically encountered in civilian aircraft, causes temporary visual field defects in elderly persons or temporarily increases pre-existing defects in persons with glaucoma. The central 24-2 program on th...

  2. Quasiparticle Scattering in the Rashba Semiconductor BiTeBr: The Roles of Spin and Defect Lattice Site.

    PubMed

    Butler, Christopher John; Yang, Po-Ya; Sankar, Raman; Lien, Yen-Neng; Lu, Chun-I; Chang, Luo-Yueh; Chen, Chia-Hao; Wei, Ching-Ming; Chou, Fang-Cheng; Lin, Minn-Tsong

    2016-09-28

    Observations of quasiparticle interference have been used in recent years to examine exotic carrier behavior at the surfaces of emergent materials, connecting carrier dispersion and scattering dynamics to real-space features with atomic resolution. We observe quasiparticle interference in the strongly Rashba split 2DEG-like surface band found at the tellurium termination of BiTeBr and examine two mechanisms governing quasiparticle scattering: We confirm the suppression of spin-flip scattering by comparing measured quasiparticle interference with a spin-dependent elastic scattering model applied to the calculated spectral function. We also use atomically resolved STM maps to identify point defect lattice sites and spectro-microscopy imaging to discern their varying scattering strengths, which we understand in terms of the calculated orbital characteristics of the surface band. Defects on the Bi sublattice cause the strongest scattering of the predominantly Bi 6p derived surface band, with other defects causing nearly no scattering near the conduction band minimum.

  3. CD and defect improvement challenges for immersion processes

    NASA Astrophysics Data System (ADS)

    Ehara, Keisuke; Ema, Tatsuhiko; Yamasaki, Toshinari; Nakagawa, Seiji; Ishitani, Seiji; Morita, Akihiko; Kim, Jeonghun; Kanaoka, Masashi; Yasuda, Shuichi; Asai, Masaya

    2009-03-01

    The intention of this study is to develop an immersion lithography process using advanced track solutions to achieve world class critical dimension (CD) and defectivity performance in a state of the art manufacturing facility. This study looks at three important topics for immersion lithography: defectivity, CD control, and wafer backside contamination. The topic of defectivity is addressed through optimization of coat, develop, and rinse processes as well as implementation of soak steps and bevel cleaning as part of a comprehensive defect solution. Develop and rinse processing techniques are especially important in the effort to achieve a zero defect solution. Improved CD control is achieved using a biased hot plate (BHP) equipped with an electrostatic chuck. This electrostatic chuck BHP (eBHP) is not only able to operate at a very uniform temperature, but it also allows the user to bias the post exposure bake (PEB) temperature profile to compensate for systematic within-wafer (WiW) CD non-uniformities. Optimized CD results, pre and post etch, are presented for production wafers. Wafer backside particles can cause focus spots on an individual wafer or migrate to the exposure tool's wafer stage and cause problems for a multitude of wafers. A basic evaluation of the cleaning efficiency of a backside scrubber unit located on the track was performed as a precursor to a future study examining the impact of wafer backside condition on scanner focus errors as well as defectivity in an immersion scanner.

  4. Evaluation of Bending Strength of Carburized Gears Based on Inferential Identification of Principal Surface Layer Defects

    NASA Astrophysics Data System (ADS)

    Masuyama, Tomoya; Inoue, Katsumi; Yamanaka, Masashi; Kitamura, Kenichi; Saito, Tomoyuki

    High load capacity of carburized gears originates mainly from the hardened layer and induced residual stress. On the other hand, surface decarburization, which causes a nonmartensitic layer, and inclusions such as oxides and segregation act as latent defects which considerably reduce fatigue strength. In this connection, the authors have proposed a formula of strength evaluation by separately quantifying defect influence. However, the principal defect which limits strength of gears with several different defects remains unclarified. This study presents a method of inferential identification of principal defects based on test results of carburized gears made of SCM420 clean steel, gears with both an artificial notch and nonmartensitic layer at the tooth fillet, and so forth. It clarifies practical uses of presented methods, and strength of carburized gears can be evaluated by focusing on principal defect size.

  5. Perception of risk from automobile safety defects.

    PubMed

    Slovic, P; MacGregor, D; Kraus, N N

    1987-10-01

    Descriptions of safety engineering defects of the kind that compel automobile manufacturers to initiate a recall campaign were evaluated by individuals on a set of risk characteristic scales that included overall vehicle riskiness, manufacturer's ability to anticipate the defect, importance for vehicle operation, severity of consequences and likelihood of compliance with a recall notice. A factor analysis of the risk characteristics indicated that judgments could be summarized in terms of two composite scales, one representing the uncontrollability of the damage the safety defect might cause and the other representing the foreseeability of the defect by the manufacturer. Motor vehicle defects were found to be highly diverse in terms of the perceived qualities of their risks. Location of individual defects within the factor space was closely associated with perceived riskiness, perceived likelihood of purchasing another car from the same manufacturer, perceived likelihood of compliance with a recall notice, and actual compliance rates.

  6. Assessment of rail long-pitch corrugation

    NASA Astrophysics Data System (ADS)

    Valehrach, Jan; Guziur, Petr; Riha, Tomas; Plasek, Otto

    2017-09-01

    The paper focuses on defects of the running surface of the rail, namely the rail corrugation defect and specifically long-pitch corrugation in curves of small radii. These defects cause a shorter life of the rails, greater maintenance costs and increase the noise and vibration pollution. Therefore, it is very important to understand the formation and development of the imperfection of the rails. In the paper, various sections of railway tracks in the Czech Republic are listed, each of them completed with comparison of defect development, the particular track superstructure, rolling stock, axle load, traffic load etc. Based on performed measurements, defect development has been proved as different on sections with similar (or even same) parameters. The paper assumes that a train velocity is the significant circumstance for defect development rates. Assessment of track section with under sleeper pads, which are expected to be the one of the possible ways to suppress the corrugation defect development, is included in evaluation.

  7. Defect modes in a stacked structure of chiral photonic crystals.

    PubMed

    Chen, Jiun-Yeu; Chen, Lien-Wen

    2005-06-01

    An optical propagation simulation is carried out for the study of photonic defect modes in a stacked structure of cholesteric liquid crystal films with spatially varying pitch. The defects are introduced by a pitch jump and a phase jump in the cholesteric helix. The effect of a finite sample thickness on transmission of the defect mode and on the required polarization of incident light to create the defect mode is discussed. For normal and near-normal incidence of circularly polarized light with the same handedness as structure, the defect caused by a pitch jump results in discrete peaks within a forbidden band in the transmission. The particular spectrum is similar to the feature of a Fabry-Pérot interferometer. By introducing an additional phase jump, linear blueshifts of the defect modes in transmission spectra are correlated with an increase in the twist angle.

  8. Simulation and analysis on ultrasonic testing for the cement grouting defects of the corrugated pipe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qingbang, Han; Ling, Chen; Changping, Zhu

    2014-02-18

    The defects exist in the cement grouting process of prestressed corrugated pipe may directly impair the bridge safety. In this paper, sound fields propagation in concrete structures with corrugated pipes and the influence of various different defects are simulated and analyzed using finite element method. The simulation results demonstrate a much complex propagation characteristic due to multiple reflection, refraction and scattering, where the scattering signals caused by metal are very strong, while the signals scattered by an air bubble are weaker. The influence of defect both in time and frequency domain are found through deconvolution treatment. In the time domain,more » the deconvolution signals correspond to larger defect display a larger head wave amplitude and shorter arrive time than those of smaller defects; in the frequency domain, larger defect also shows a stronger amplitude, lower center frequency and lower cutoff frequency.« less

  9. Mouse models of mitochondrial DNA defects and their relevance for human disease

    PubMed Central

    Tyynismaa, Henna; Suomalainen, Anu

    2009-01-01

    Qualitative and quantitative changes in mitochondrial DNA (mtDNA) have been shown to be common causes of inherited neurodegenerative and muscular diseases, and have also been implicated in ageing. These diseases can be caused by primary mtDNA mutations, or by defects in nuclear-encoded mtDNA maintenance proteins that cause secondary mtDNA mutagenesis or instability. Furthermore, it has been proposed that mtDNA copy number affects cellular tolerance to environmental stress. However, the mechanisms that regulate mtDNA copy number and the tissue-specific consequences of mtDNA mutations are largely unknown. As post-mitotic tissues differ greatly from proliferating cultured cells in their need for mtDNA maintenance, and as most mitochondrial diseases affect post-mitotic cell types, the mouse is an important model in which to study mtDNA defects. Here, we review recently developed mouse models, and their contribution to our knowledge of mtDNA maintenance and its role in disease. PMID:19148224

  10. Defects in Mitochondrial DNA Replication and Human Disease

    PubMed Central

    Copeland, William C.

    2011-01-01

    Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase γ in concert with accessory proteins such as the mitochondrial DNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes (MDS) such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease. PMID:22176657

  11. Mutations in KIAA0586 Cause Lethal Ciliopathies Ranging from a Hydrolethalus Phenotype to Short-Rib Polydactyly Syndrome

    PubMed Central

    Alby, Caroline; Piquand, Kevin; Huber, Céline; Megarbané, André; Ichkou, Amale; Legendre, Marine; Pelluard, Fanny; Encha-Ravazi, Ferechté; Abi-Tayeh, Georges; Bessières, Bettina; El Chehadeh-Djebbar, Salima; Laurent, Nicole; Faivre, Laurence; Sztriha, László; Zombor, Melinda; Szabó, Hajnalka; Failler, Marion; Garfa-Traore, Meriem; Bole, Christine; Nitschké, Patrick; Nizon, Mathilde; Elkhartoufi, Nadia; Clerget-Darpoux, Françoise; Munnich, Arnold; Lyonnet, Stanislas; Vekemans, Michel; Saunier, Sophie; Cormier-Daire, Valérie; Attié-Bitach, Tania; Thomas, Sophie

    2015-01-01

    KIAA0586, the human ortholog of chicken TALPID3, is a centrosomal protein that is essential for primary ciliogenesis. Its disruption in animal models causes defects attributed to abnormal hedgehog signaling; these defects include polydactyly and abnormal dorsoventral patterning of the neural tube. Here, we report homozygous mutations of KIAA0586 in four families affected by lethal ciliopathies ranging from a hydrolethalus phenotype to short-rib polydactyly. We show defective ciliogenesis, as well as abnormal response to SHH-signaling activation in cells derived from affected individuals, consistent with a role of KIAA0586 in primary cilia biogenesis. Whereas centriolar maturation seemed unaffected in mutant cells, we observed an abnormal extended pattern of CEP290, a centriolar satellite protein previously associated with ciliopathies. Our data show the crucial role of KIAA0586 in human primary ciliogenesis and subsequent abnormal hedgehog signaling through abnormal GLI3 processing. Our results thus establish that KIAA0586 mutations cause lethal ciliopathies. PMID:26166481

  12. The Na+ /H+ antiporter Nhx1 controls vacuolar fusion indispensible for life cycles in vitro and in vivo in a fungal insect pathogen.

    PubMed

    Zhu, Jing; Ying, Sheng-Hua; Feng, Ming-Guang

    2016-11-01

    The sole Na + /H + antiporter Nhx1 has been generally unexplored in filamentous fungi. We characterized Nhx1 in the entomopathogenic fungus Beauveria bassiana. An eGFP-tagged Nhx1 fusion accumulated in small punctuate structures, presumably endosomal and trans-Golgi network compartments, between septum and tubular vacuole of each wild-type cell stained with a vacuole-specific dye. Deletion of nhx1 resulted in significant acidification and severe fusion defect in vacuoles, which were fragmented and distinct from large or tubular wild-type vacuoles. The deletion also caused a drastic reduction in aerial conidiation or submerged blastospore production and more severe defect in vegetative growth than in conidial germination. The Δnhx1 mutant became more sensitive to high osmolarity, heat shock and several metal ions during growth but its conidia showed increased UV-B tolerance. Intriguingly, Δnhx1 was unable to infect a model insect through cuticle penetration or intrahaemocoel injection because it produced much less biomass and cuticle-degrading enzymes in a minimal broth and failed to form blastospores in the insect haemolymph. All changes were completely or largely restored by targeted nhx1 complementation. Our results provide novel insight into an indispensability of Nhx1 for not only vacuolar fusion but also life cycles in vitro and in vivo in B. bassiana. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  13. Aesthetic Total Reconstruction of Lower Eyelid Using Scapha Cartilage Graft on a Vascularized Propeller Flap.

    PubMed

    Uemura, Tetsuji; Watanabe, Hidekata; Masumoto, Kazuyuki; Kikuchi, Mamoru; Satake, Yoshiyasu; Yanai, Tetsu; Harada, Yoshimi; Ishihara, Yasuhiro; Yasuta, Masato

    2016-04-01

    The aim of this study was to review the results of a cohort of patients based on our experience with a new technique for total lower eyelid reconstruction after a large defect caused by malignant tumor and trauma. A scapha cartilage graft with small skin on a vascularized propeller flap was used for 16 cases requiring lower eyelid reconstruction. Patients were identified from a database, and a retrospective case note review was conducted. The scapha cartilage graft was sutured to the margin of the defect of the palpebral conjunctiva and tarsus. The propeller flap, rotated by a perforator-based lateral orbital flap or a subcutaneous-based nasolabial flap, was vascularized on the scapha cartilage graft as anterior lining of the lower eyelid. The follow-up, including results of slit-lamp examination, lasted for varying periods, but often it was for 12 months. The scapha cartilage graft with small skin on a vascularized propeller flap was viable in all cases. Slit-lamp examination detected no irritation or injury of the conjunctiva and cornea, and visual acuity was maintained in all cases. A deformity in the donor helix by this technique was also improved by getting a smaller skin harvested from the scapha. Use of the scapha cartilage graft with small skin on a vascularized propeller flap allows for a good fit to the orbit, short operative time under local anesthesia, good graft viability, and a good esthetic result with minimal donor site morbidity.

  14. Metabolic profiles of exercise in patients with McArdle disease or mitochondrial myopathy

    PubMed Central

    Sharma, Rohit; Tadvalkar, Laura; Clish, Clary B.; Haller, Ronald G.; Mootha, Vamsi K.

    2017-01-01

    McArdle disease and mitochondrial myopathy impair muscle oxidative phosphorylation (OXPHOS) by distinct mechanisms: the former by restricting oxidative substrate availability caused by blocked glycogen breakdown, the latter because of intrinsic respiratory chain defects. We applied metabolic profiling to systematically interrogate these disorders at rest, when muscle symptoms are typically minimal, and with exercise, when symptoms of premature fatigue and potential muscle injury are unmasked. At rest, patients with mitochondrial disease exhibit elevated lactate and reduced uridine; in McArdle disease purine nucleotide metabolites, including xanthine, hypoxanthine, and inosine are elevated. During exercise, glycolytic intermediates, TCA cycle intermediates, and pantothenate expand dramatically in both mitochondrial disease and control subjects. In contrast, in McArdle disease, these metabolites remain unchanged from rest; but urea cycle intermediates are increased, likely attributable to increased ammonia production as a result of exaggerated purine degradation. Our results establish skeletal muscle glycogen as the source of TCA cycle expansion that normally accompanies exercise and imply that impaired TCA cycle flux is a central mechanism of restricted oxidative capacity in this disorder. Finally, we report that resting levels of long-chain triacylglycerols in mitochondrial myopathy correlate with the severity of OXPHOS dysfunction, as indicated by the level of impaired O2 extraction from arterial blood during peak exercise. Our integrated analysis of exercise and metabolism provides unique insights into the biochemical basis of these muscle oxidative defects, with potential implications for their clinical management. PMID:28716914

  15. A contracted DNA repeat in LHX3 intron 5 is associated with aberrant splicing and pituitary dwarfism in German shepherd dogs.

    PubMed

    Voorbij, Annemarie M W Y; van Steenbeek, Frank G; Vos-Loohuis, Manon; Martens, Ellen E C P; Hanson-Nilsson, Jeanette M; van Oost, Bernard A; Kooistra, Hans S; Leegwater, Peter A

    2011-01-01

    Dwarfism in German shepherd dogs is due to combined pituitary hormone deficiency of unknown genetic cause. We localized the recessively inherited defect by a genome wide approach to a region on chromosome 9 with a lod score of 9.8. The region contains LHX3, which codes for a transcription factor essential for pituitary development. Dwarfs have a deletion of one of six 7 bp repeats in intron 5 of LHX3, reducing the intron size to 68 bp. One dwarf was compound heterozygous for the deletion and an insertion of an asparagine residue in the DNA-binding homeodomain of LHX3, suggesting involvement of the gene in the disorder. An exon trapping assay indicated that the shortened intron is not spliced efficiently, probably because it is too small. We applied bisulfite conversion of cytosine to uracil in RNA followed by RT-PCR to analyze the splicing products. The aberrantly spliced RNA molecules resulted from either skipping of exon 5 or retention of intron 5. The same splicing defects were observed in cDNA derived from the pituitary of dwarfs. A survey of similarly mutated introns suggests that there is a minimal distance requirement between the splice donor and branch site of 50 nucleotides. In conclusion, a contraction of a DNA repeat in intron 5 of canine LHX3 leads to deficient splicing and is associated with pituitary dwarfism.

  16. A Contracted DNA Repeat in LHX3 Intron 5 Is Associated with Aberrant Splicing and Pituitary Dwarfism in German Shepherd Dogs

    PubMed Central

    Voorbij, Annemarie M. W. Y.; van Steenbeek, Frank G.; Vos-Loohuis, Manon; Martens, Ellen E. C. P.; Hanson-Nilsson, Jeanette M.; van Oost, Bernard A.; Kooistra, Hans S.; Leegwater, Peter A.

    2011-01-01

    Dwarfism in German shepherd dogs is due to combined pituitary hormone deficiency of unknown genetic cause. We localized the recessively inherited defect by a genome wide approach to a region on chromosome 9 with a lod score of 9.8. The region contains LHX3, which codes for a transcription factor essential for pituitary development. Dwarfs have a deletion of one of six 7 bp repeats in intron 5 of LHX3, reducing the intron size to 68 bp. One dwarf was compound heterozygous for the deletion and an insertion of an asparagine residue in the DNA-binding homeodomain of LHX3, suggesting involvement of the gene in the disorder. An exon trapping assay indicated that the shortened intron is not spliced efficiently, probably because it is too small. We applied bisulfite conversion of cytosine to uracil in RNA followed by RT-PCR to analyze the splicing products. The aberrantly spliced RNA molecules resulted from either skipping of exon 5 or retention of intron 5. The same splicing defects were observed in cDNA derived from the pituitary of dwarfs. A survey of similarly mutated introns suggests that there is a minimal distance requirement between the splice donor and branch site of 50 nucleotides. In conclusion, a contraction of a DNA repeat in intron 5 of canine LHX3 leads to deficient splicing and is associated with pituitary dwarfism. PMID:22132174

  17. An essential role for LPA signalling in telencephalon development.

    PubMed

    Geach, Timothy J; Faas, Laura; Devader, Christelle; Gonzalez-Cordero, Anai; Tabler, Jacqueline M; Brunsdon, Hannah; Isaacs, Harry V; Dale, Leslie

    2014-02-01

    Lysophosphatidic acid (LPA) has wide-ranging effects on many different cell types, acting through G-protein-coupled receptors such as LPAR6. We show that Xenopus lpar6 is expressed from late blastulae and is enriched in the mesoderm and dorsal ectoderm of early gastrulae. Expression in gastrulae is an early response to FGF signalling. Transcripts for lpar6 are enriched in the neural plate of Xenopus neurulae and loss of function caused forebrain defects, with reduced expression of telencephalic markers (foxg1, emx1 and nkx2-1). Midbrain (en2) and hindbrain (egr2) markers were unaffected. Foxg1 expression requires LPAR6 within ectoderm and not mesoderm. Head defects caused by LPAR6 loss of function were enhanced by co-inhibiting FGF signalling, with defects extending into the hindbrain (en2 and egr2 expression reduced). This is more severe than expected from simple summation of individual defects, suggesting that LPAR6 and FGF have overlapping or partially redundant functions in the anterior neural plate. We observed similar defects in forebrain development in loss-of-function experiments for ENPP2, an enzyme involved in the synthesis of extracellular LPA. Our study demonstrates a role for LPA in early forebrain development.

  18. Cervical spine anomalies in Menkes disease: a radiologic finding potentially confused with child abuse.

    PubMed

    Hill, Suvimol C; Dwyer, Andrew J; Kaler, Stephen G

    2012-11-01

    Menkes disease is an X-linked recessive disorder of copper transport caused by mutations in ATP7A, a copper-transporting ATPase. Certain radiologic findings reported in this condition overlap with those caused by child abuse. However, cervical spine defects simulating cervical spine fracture, a known result of nonaccidental pediatric trauma, have not been reported previously in this illness. To assess the frequency of cervical spine anomalies in Menkes disease after discovery of an apparent C2 posterior arch defect in a child participating in a clinical trial. We examined cervical spine radiographs obtained in 35 children with Menkes disease enrolled in a clinical trial at the National Institutes of Health Clinical Center. Four of the 35 children with Menkes disease had apparent C2 posterior arch defects consistent with spondylolysis or incomplete/delayed ossification. Defects in C2 were found in 11% of infants and young children with Menkes disease. Discovery of cervical spine defects expands the spectrum of radiologic findings associated with this condition. As with other skeletal abnormalities, this feature simulates nonaccidental trauma. In the context of Menkes disease, suspicions of child abuse should be considered cautiously and tempered by these findings to avoid unwarranted accusations.

  19. An investigation of the role of defect levels on the radiation response of synthetic diamond crystals when used as sensors for the detection of mammography X-rays.

    PubMed

    Ade, Nicholas

    2017-09-01

    This study evaluates the role of defects on the performances of synthetic diamond sensors on exposure to mammography X-rays. Through systematic investigations, the main cause of instability of response of examined sensors necessitating pre-irradiation was isolated and ascribed to the presence of ambient light which has the effect of emptying shallow trapping levels. The changes in response between measurements in light and dark conditions varied from 2.8 ± 1.2% to 63.0 ± 0.3%. Sensitivities between 0.4 and 6.7nCGy -1 mm -3 determined for the sensors varied with defect levels. The study indicates that differences in crystal quality due to the presence and influence of defects would cause a discrepancy in the dosimetric performances of various diamond detectors. Once a sensor plate is selected (based on the influence of defect levels) and coupled to the probe housing with the response of the diamond sensor stabilised and appropriately shielded from ambient light, daily priming is not needed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Decreased microRNA levels lead to deleterious increases in neuronal M2 muscarinic receptors in Spinal Muscular Atrophy models

    PubMed Central

    O'Hern, Patrick J; do Carmo G. Gonçalves, Inês; Brecht, Johanna; López Soto, Eduardo Javier; Simon, Jonah; Chapkis, Natalie; Lipscombe, Diane; Kye, Min Jeong; Hart, Anne C

    2017-01-01

    Spinal Muscular Atrophy (SMA) is caused by diminished Survival of Motor Neuron (SMN) protein, leading to neuromuscular junction (NMJ) dysfunction and spinal motor neuron (MN) loss. Here, we report that reduced SMN function impacts the action of a pertinent microRNA and its mRNA target in MNs. Loss of the C. elegans SMN ortholog, SMN-1, causes NMJ defects. We found that increased levels of the C. elegans Gemin3 ortholog, MEL-46, ameliorates these defects. Increased MEL-46 levels also restored perturbed microRNA (miR-2) function in smn-1(lf) animals. We determined that miR-2 regulates expression of the C. elegans M2 muscarinic receptor (m2R) ortholog, GAR-2. GAR-2 loss ameliorated smn-1(lf) and mel-46(lf) synaptic defects. In an SMA mouse model, m2R levels were increased and pharmacological inhibition of m2R rescued MN process defects. Collectively, these results suggest decreased SMN leads to defective microRNA function via MEL-46 misregulation, followed by increased m2R expression, and neuronal dysfunction in SMA. DOI: http://dx.doi.org/10.7554/eLife.20752.001 PMID:28463115

  1. Detection of internal defects in a liquid natural gas tank by use of infrared thermography

    NASA Technical Reports Server (NTRS)

    Kantsios, A. G.

    1978-01-01

    The use of an infrared scanning technique to detect defects in the secondary barrier of a liquid natural gas tank is described. The method works by detecting leak-caused temperature differences as low as 0.2 K, but can provide only an approximate idea of the extent of the defect. The nondestructive method was tested in a study of a LNG tank already at its location in a ship; the secondary barrier was located inside the tank wall. Defective areas indicated by the infrared radiometric measurements were confirmed by other probe techniques and by physical examination.

  2. Dynamic Control of Topological Defects in Artificial Colloidal Ice

    DOE PAGES

    Libál, A.; Nisoli, C.; Reichhardt, C.; ...

    2017-04-05

    We demonstrate the use of an external field to stabilize and control defect lines connecting topological monopoles in spin ice. For definiteness we perform Brownian dynamics simulations with realistic units mimicking experimentally realized artificial colloidal spin ice systems, and show how defect lines can grow, shrink or move under the action of direct and alternating fields. Asymmetric alternating biasing forces can cause the defect line to ratchet in either direction, making it possible to precisely position the line at a desired location. Such manipulation could be employed to achieve mobile information storage in these metamaterials.

  3. Dynamic Control of Topological Defects in Artificial Colloidal Ice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Libál, A.; Nisoli, C.; Reichhardt, C.

    We demonstrate the use of an external field to stabilize and control defect lines connecting topological monopoles in spin ice. For definiteness we perform Brownian dynamics simulations with realistic units mimicking experimentally realized artificial colloidal spin ice systems, and show how defect lines can grow, shrink or move under the action of direct and alternating fields. Asymmetric alternating biasing forces can cause the defect line to ratchet in either direction, making it possible to precisely position the line at a desired location. Such manipulation could be employed to achieve mobile information storage in these metamaterials.

  4. Reconstruction of a pelvic floor defect using a pedicled tensor fascia lata flap: a new technique to prevent radiation injury for pediatric patients with advanced pelvic tumors.

    PubMed

    Ohno, Yasuharu; Tanaka, Katsumi; Kanematsu, Takashi; Noguchi, Mitsuru; Okada, Masahiko; Kamitamari, Akira; Hayashi, Nobuyuki

    2008-05-01

    In the treatment of pelvic tumors, pelvic floor defects owing to a wide excision tend to increase the occurrence of such morbidities as radiation injury. The reconstruction of these defects would minimize the risk of such morbidities. Authors introduce a new technique for repairing a pelvic floor defect using a tensor fascia lata flap. Two boys, 4 years old and 10 months old, presenting with pelvic rhabdomyosarcoma underwent a tumor extirpation associated with a wide excision of the pelvic organs. After the removal of the tumor, a tensor fascia lata flap was designed on the right thigh. The pedicled rotation flap was subcutaneously elevated, guided to the intraperitoneal cavity, and was fixed to cover the superior aperture of the lesser pelvis. The flaps functioned well, and postoperative radiation therapies consisting of 45 and 41.4 Gy to the lesser pelvic cavity were carried out without any complications. As a result, the necessary postoperative protocol combination therapies could be successfully performed in a timely manner. The pedicled tensor fascia lata flap is considered to be an alternative option for the stable repair of pelvic floor defects to prevent radiation injury.

  5. Exploring the effects of defects on DT burn, the DIME experiment and measuring capsule zero-order hydrodynamics using Polar direct drive

    NASA Astrophysics Data System (ADS)

    Magelssen, G. R.; Bradley, P. A.; Tregillis, I. L.; Schmitt, M. J.; Dodd, E. S.; Wysocki, F. J.; Hsu, S. C.; Cobble, J.; Batha, S. H.; Defriend Obrey, K. A.

    2010-11-01

    Small capsule perturbations may impact our ability to achieve high yields on NIF. Diagnosing the hydrodynamic development and the effect of defects on burn will be difficult. Los Alamos is developing a program to better understand the hydrodynamics of defects and how they influence burn. Our first effort to study the effects of defects was on Omega. Both thin-shelled (exploding pusher) and thick-shelled capsules were shot and the results published [1]. In this work we add experimental shots done recently on Omega. These shots were to complete the study of how the width and depth of the defect affects DT yield. Our AMR code is used to predict the yield. Comparisons between capsule and experimental yields will be given. Experiments are also being designed for Polar direct drive. Our first experiments are being designed to understand the zero-order hydrodynamics with Polar direct drive. Capsules about a millimeter in radius are being designed with one to two dopants in the CH shell for radiograph and MMI usage. Also, to minimize the effect of mix on the radius versus time trajectory, some capsules will replace the DT with Xe.[0pt] [1] Magelssen G. R. et al., to be published in the 2009 IFSA proceedings.

  6. Implantation of Induced Pluripotent Stem Cell-Derived Tracheal Epithelial Cells.

    PubMed

    Ikeda, Masakazu; Imaizumi, Mitsuyoshi; Yoshie, Susumu; Nakamura, Ryosuke; Otsuki, Koshi; Murono, Shigeyuki; Omori, Koichi

    2017-07-01

    Compared with using autologous tissue, the use of artificial materials in the regeneration of tracheal defects is minimally invasive. However, this technique requires early epithelialization on the inner side of the artificial trachea. After differentiation from induced pluripotent stem cells (iPSCs), tracheal epithelial tissues may be used to produce artificial tracheas. Herein, we aimed to demonstrate that after differentiation from fluorescent protein-labeled iPSCs, tracheal epithelial tissues survived in nude rats with tracheal defects. Red fluorescent tdTomato protein was electroporated into mouse iPSCs to produce tdTomato-labeled iPSCs. Embryoid bodies derived from these iPSCs were then cultured in differentiation medium supplemented with growth factors, followed by culture on air-liquid interfaces for further differentiation into tracheal epithelium. The cells were implanted with artificial tracheas into nude rats with tracheal defects on day 26 of cultivation. On day 7 after implantation, the tracheas were exposed and examined histologically. Tracheal epithelial tissue derived from tdTomato-labeled iPSCs survived in the tracheal defects. Moreover, immunochemical analyses showed that differentiated tissues had epithelial structures similar to those of proximal tracheal tissues. After differentiation from iPSCs, tracheal epithelial tissues survived in rat bodies, warranting the use of iPSCs for epithelial regeneration in tracheal defects.

  7. Ad hoc posterior tibial vessels perforator propeller flaps for the reconstruction of lower third leg soft- tissue defects.

    PubMed

    Balakrishnan, Thalaivirithan Margabandu; Ramkumar, Jayagosh; Jaganmohan, Janardhanan

    2017-01-01

    Lower third leg soft tissue defects with anatomical and pathological constraints are posing formidable challenges to reconstructive surgeon. This retrospective study was conducted to assess the effectiveness of ad hoc posterior tibial vessels perforator-propeller flaps for the reconstruction of small and medium sized soft tissue defects in the lower third leg. 22 patients (16 were males and 6 were females) were involved in this study between period of January 2012 and December 2016.We followed the protocol of initial non delineating exploratory incision made to find out single best perforator in all patients. All the defects in leg reconstructed with adhoc posterior tibial vessel propeller flaps. All 22 flaps survived well. All in an average of 13 months follow up period, had pain free walking, with minimal scarring and acceptable aesthesis at the reconstruction sites with no need for any secondary procedure. With inability of preoperatively dopplering the perforators in the lower third leg region, the exploratory posterior nondelineating incision was used in all cases to secure the single best perforator for the propeller flaps. Thus adhoc posterior tibial vessel propeller flaps are dependable, easily adoptable for the reconstruction of soft tissue defects of the lower third leg region.

  8. Ad hoc posterior tibial vessels perforator propeller flaps for the reconstruction of lower third leg soft- tissue defects

    PubMed Central

    Balakrishnan, Thalaivirithan Margabandu; Ramkumar, Jayagosh; Jaganmohan, Janardhanan

    2017-01-01

    Introduction: Lower third leg soft tissue defects with anatomical and pathological constraints are posing formidable challenges to reconstructive surgeon. Aim: This retrospective study was conducted to assess the effectiveness of ad hoc posterior tibial vessels perforator-propeller flaps for the reconstruction of small and medium sized soft tissue defects in the lower third leg. Patients and Methods: 22 patients (16 were males and 6 were females) were involved in this study between period of January 2012 and December 2016.We followed the protocol of initial non delineating exploratory incision made to find out single best perforator in all patients. All the defects in leg reconstructed with adhoc posterior tibial vessel propeller flaps. Results: All 22 flaps survived well. All in an average of 13 months follow up period, had pain free walking, with minimal scarring and acceptable aesthesis at the reconstruction sites with no need for any secondary procedure. Conclusion: With inability of preoperatively dopplering the perforators in the lower third leg region, the exploratory posterior nondelineating incision was used in all cases to secure the single best perforator for the propeller flaps. Thus adhoc posterior tibial vessel propeller flaps are dependable, easily adoptable for the reconstruction of soft tissue defects of the lower third leg region. PMID:29618863

  9. In-line inspection of unpiggable buried live gas pipes using circumferential EMAT guided waves

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang; Xin, Junjun

    2018-04-01

    Unpiggable buried gas pipes need to be inspected to ensure their structural integrity and safe operation. The CIRRIS XITM robot, developed and operated by ULC Robotics, conducts in-line nondestructive inspection of live gas pipes. With the no-blow launching system, the inspection operation has reduced disruption to the public and by eliminating the need to dig trenches, has minimized the site footprint. This provides a highly time and cost effective solution for gas pipe maintenance. However, the current sensor on the robot performs a point-by-point measurement of the pipe wall thickness which cannot cover the whole volume of the pipe in a reasonable timeframe. The study of ultrasonic guided wave technique is discussed to improve the volume coverage as well as the scanning speed. Circumferential guided wave is employed to perform axial scanning. Mode selection is discussed in terms of sensitivity to different defects and defect characterization capability. To assist with the mode selection, finite element analysis is performed to evaluate the wave-defect interaction and to identify potential defect features. Pulse-echo and through-transmission mode are evaluated and compared for their pros and cons in axial scanning. Experiments are also conducted to verify the mode selection and detect and characterize artificial defects introduced into pipe samples.

  10. GaAs on Si epitaxy by aspect ratio trapping: Analysis and reduction of defects propagating along the trench direction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Orzali, Tommaso, E-mail: tommaso.orzali@sematech.org; Vert, Alexey; O'Brien, Brendan

    2015-09-14

    The Aspect Ratio Trapping technique has been extensively evaluated for improving the quality of III-V heteroepitaxial films grown on Si, due to the potential for terminating defects at the sidewalls of SiO{sub 2} patterned trenches that enclose the growth region. However, defects propagating along the trench direction cannot be effectively confined with this technique. We studied the effect of the trench bottom geometry on the density of defects of GaAs fins, grown by metal-organic chemical vapor deposition on 300 mm Si (001) wafers inside narrow (<90 nm wide) trenches. Plan view and cross sectional Scanning Electron Microscopy and Transmission Electron Microscopy, togethermore » with High Resolution X-Ray Diffraction, were used to evaluate the crystal quality of GaAs. The prevalent defects that reach the top surface of GaAs fins are (111) twin planes propagating along the trench direction. The lowest density of twin planes, ∼8 × 10{sup 8 }cm{sup −2}, was achieved on “V” shaped bottom trenches, where GaAs nucleation occurs only on (111) Si planes, minimizing the interfacial energy and preventing the formation of antiphase boundaries.« less

  11. Revisiting the relevance of using a constant voltage step to improve electrochemical performances of Li-rich lamellar oxides

    NASA Astrophysics Data System (ADS)

    Pradon, A.; Caldes, M. T.; Petit, P.-E.; La Fontaine, C.; Elkaim, E.; Tessier, C.; Ouvrard, G.; Dumont, E.

    2018-03-01

    A Li-rich lamellar oxide was cycled at high potential and the relevance of using a constant voltage step (CVS) at the end of the charge, needed for industrial application, was investigated by electrochemical performance, X-ray diffraction (XRD) and high resolution transmission electron microscopy (HRTEM). Electrochemical studies at 4.7 and 4.5 V with and without CVS showed that capacity and voltage fading occurred mostly when cells operated at high potential. After cycling, 3D-type defects involving transition metals trapped in lithium layer were observed by HRTEM into the electrode bulk. These defects are responsible for the voltage fading. XRD microstrain parameter was used to evaluate defects rate in aged materials subjected to a CVS, showing more 3D-type defects when cycled at 4.7 V than at 4.5 V. The time spent at high potential at the end of the charge as well as the value of the upper potential limit, are both relevant parameters to voltage decay. The use of a CVS at the end of the charge needs at the same time, a reduced upper potential window in order to minimize 3D-type defects occurrence. Unfortunately, this approach is still not sufficient to prevent voltage fading.

  12. The Application of Infrared Thermographic Inspection Techniques to the Space Shuttle Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Cramer, K. E.; Winfree, W. P.

    2005-01-01

    The Nondestructive Evaluation Sciences Branch at NASA s Langley Research Center has been actively involved in the development of thermographic inspection techniques for more than 15 years. Since the Space Shuttle Columbia accident, NASA has focused on the improvement of advanced NDE techniques for the Reinforced Carbon-Carbon (RCC) panels that comprise the orbiter s wing leading edge. Various nondestructive inspection techniques have been used in the examination of the RCC, but thermography has emerged as an effective inspection alternative to more traditional methods. Thermography is a non-contact inspection method as compared to ultrasonic techniques which typically require the use of a coupling medium between the transducer and material. Like radiographic techniques, thermography can be used to inspect large areas, but has the advantage of minimal safety concerns and the ability for single-sided measurements. Principal Component Analysis (PCA) has been shown effective for reducing thermographic NDE data. A typical implementation of PCA is when the eigenvectors are generated from the data set being analyzed. Although it is a powerful tool for enhancing the visibility of defects in thermal data, PCA can be computationally intense and time consuming when applied to the large data sets typical in thermography. Additionally, PCA can experience problems when very large defects are present (defects that dominate the field-of-view), since the calculation of the eigenvectors is now governed by the presence of the defect, not the "good" material. To increase the processing speed and to minimize the negative effects of large defects, an alternative method of PCA is being pursued where a fixed set of eigenvectors, generated from an analytic model of the thermal response of the material under examination, is used to process the thermal data from the RCC materials. Details of a one-dimensional analytic model and a two-dimensional finite-element model will be presented. An overview of the PCA process as well as a quantitative signal-to-noise comparison of the results of performing both embodiments of PCA on thermographic data from various RCC specimens will be shown. Finally, a number of different applications of this technology to various RCC components will be presented.

  13. [Statement on Recent Research on LSD, Marihuana, and Other Dangerous Drugs.

    ERIC Educational Resources Information Center

    Yolles, Stanley F.

    The National Institute of Mental Health is continuing support of several studies designed to measure trends in the use of hallucinogens. Indications are that the evidence for persisting psychological and birth defect damage from chronic LSD use is minimal. Though they are a continuing problem, admissions to psychiatric units of persons with "bad…

  14. Advanced repair solution of clear defects on HTPSM by using nanomachining tool

    NASA Astrophysics Data System (ADS)

    Lee, Hyemi; Kim, Munsik; Jung, Hoyong; Kim, Sangpyo; Yim, Donggyu

    2015-10-01

    As the mask specifications become tighter for low k1 lithography, more aggressive repair accuracy is required below sub 20nm tech. node. To meet tight defect specifications, many maskshops select effective repair tools according to defect types. Normally, pattern defects are repaired by the e-beam repair tool and soft defects such as particles are repaired by the nanomachining tool. It is difficult for an e-beam repair tool to remove particle defects because it uses chemical reaction between gas and electron, and a nanomachining tool, which uses physical reaction between a nano-tip and defects, cannot be applied for repairing clear defects. Generally, film deposition process is widely used for repairing clear defects. However, the deposited film has weak cleaning durability, so it is easily removed by accumulated cleaning process. Although the deposited film is strongly attached on MoSiN(or Qz) film, the adhesive strength between deposited Cr film and MoSiN(or Qz) film becomes weaker and weaker by the accumulated energy when masks are exposed in a scanner tool due to the different coefficient of thermal expansion of each materials. Therefore, whenever a re-pellicle process is needed to a mask, all deposited repair points have to be confirmed whether those deposition film are damaged or not. And if a deposition point is damaged, repair process is needed again. This process causes longer and more complex process. In this paper, the basic theory and the principle are introduced to recover clear defects by using nanomachining tool, and the evaluated results are reviewed at dense line (L/S) patterns and contact hole (C/H) patterns. Also, the results using a nanomachining were compared with those using an e-beam repair tool, including the cleaning durability evaluated by the accumulated cleaning process. Besides, we discuss the phase shift issue and the solution about the image placement error caused by phase error.

  15. Pre-slaughter, slaughter and post-slaughter defects of skins and hides at the Sheba Tannery and Leather Industry, Tigray region, northern Ethiopia.

    PubMed

    Kahsay, Tesfay; Negash, Guesh; Hagos, Yohannes; Hadush, Birhanu

    2015-08-21

    Skins and hides are perishable resources that can be damaged by parasitic diseases and human error, which result in downgrading or rejection. This study was conducted to identify defect types and to determine their prevalence in pickled sheep and wet blue goat skins and wet blue hides. Each selected skin or hide was examined for defects in natural light and the defects were graded according to established quality criteria in Ethiopian standard manuals. Major defects were captured by digital photography. The major pre-slaughter defects included scratches (64.2%), cockle (ekek) (32.8%), wounds or scars (12.6%), lesions from pox or lumpy skin disease (6.1%), poor substance (5%), branding marks (2.3%) and tick bites (1.5%). The presence of grain scratches in wet blue hides (76.3%) was significantly higher than in pickled sheep (67.2%) and wet blue goat (59.1%) skins. The major slaughter defects included flay cuts or scores, holes, poor pattern and vein marks, with a higher occurrence in wet blue goat skins (28.7%; P < 0.001) than in wet blue hides (22.8%) and pickled sheep skins (11.1%). The most prevalent postslaughter defects were grain cracks (14.9%), hide beetle damage (8%), damage caused by heat or putrefaction (3.7%) and machine-induced defects (0.5%). Grain cracks (27.04%) and hide beetle damage (13.9%) in wet blue goat skins were significantly more common than in wet blue hides and pickled sheep skins. These defects cause depreciation in the value of the hides and skins. Statistically significant (P < 0.001) higher rejection rates were recorded for wet blue hides (82.9%) than for pickled sheep skins (18.3%) and wet blue goat skins (8.5%). Improved animal health service delivery, effective disease control strategies and strong collaboration between stakeholders are suggested to enhance the quality of skins and hides.

  16. Combining the 3D model generated from point clouds and thermography to identify the defects presented on the facades of a building

    NASA Astrophysics Data System (ADS)

    Huang, Yishuo; Chiang, Chih-Hung; Hsu, Keng-Tsang

    2018-03-01

    Defects presented on the facades of a building do have profound impacts on extending the life cycle of the building. How to identify the defects is a crucial issue; destructive and non-destructive methods are usually employed to identify the defects presented on a building. Destructive methods always cause the permanent damages for the examined objects; on the other hand, non-destructive testing (NDT) methods have been widely applied to detect those defects presented on exterior layers of a building. However, NDT methods cannot provide efficient and reliable information for identifying the defects because of the huge examination areas. Infrared thermography is often applied to quantitative energy performance measurements for building envelopes. Defects on the exterior layer of buildings may be caused by several factors: ventilation losses, conduction losses, thermal bridging, defective services, moisture condensation, moisture ingress, and structure defects. Analyzing the collected thermal images can be quite difficult when the spatial variations of surface temperature are small. In this paper the authors employ image segmentation to cluster those pixels with similar surface temperatures such that the processed thermal images can be composed of limited groups. The surface temperature distribution in each segmented group is homogenous. In doing so, the regional boundaries of the segmented regions can be identified and extracted. A terrestrial laser scanner (TLS) is widely used to collect the point clouds of a building, and those point clouds are applied to reconstruct the 3D model of the building. A mapping model is constructed such that the segmented thermal images can be projected onto the 2D image of the specified 3D building. In this paper, the administrative building in Chaoyang University campus is used as an example. The experimental results not only provide the defect information but also offer their corresponding spatial locations in the 3D model.

  17. Hypoxia and the Edema Syndrome: Elucidation of a Mechanism of Teratogenesis

    EPA Science Inventory

    The elucidation of mechanisms and pathogenesis of birth defects is exceedingly complex. Consequently, there are few examples where the etiology of birth defects caused by a specific agent has been well described. One such example is the "Edema Syndrome" first described by Casimer...

  18. 3D lattice distortions and defect structures in ion-implanted nano-crystals

    PubMed Central

    Hofmann, Felix; Tarleton, Edmund; Harder, Ross J.; Phillips, Nicholas W.; Ma, Pui-Wai; Clark, Jesse N.; Robinson, Ian K.; Abbey, Brian; Liu, Wenjun; Beck, Christian E.

    2017-01-01

    Focussed Ion Beam (FIB) milling is a mainstay of nano-scale machining. By manipulating a tightly focussed beam of energetic ions, often gallium (Ga+), FIB can sculpt nanostructures via localised sputtering. This ability to cut solid matter on the nano-scale revolutionised sample preparation across the life, earth and materials sciences. Despite its widespread usage, detailed understanding of the FIB-induced structural damage, intrinsic to the technique, remains elusive. Here we examine the defects caused by FIB in initially pristine objects. Using Bragg Coherent X-ray Diffraction Imaging (BCDI), we are able to spatially-resolve the full lattice strain tensor in FIB-milled gold nano-crystals. We find that every use of FIB causes large lattice distortions. Even very low ion doses, typical of FIB imaging and previously thought negligible, have a dramatic effect. Our results are consistent with a damage microstructure dominated by vacancies, highlighting the importance of free-surfaces in determining which defects are retained. At larger ion fluences, used during FIB-milling, we observe an extended dislocation network that causes stresses far beyond the bulk tensile strength of gold. These observations provide new fundamental insight into the nature of the damage created and the defects that lead to a surprisingly inhomogeneous morphology. PMID:28383028

  19. 3D lattice distortions and defect structures in ion-implanted nano-crystals.

    PubMed

    Hofmann, Felix; Tarleton, Edmund; Harder, Ross J; Phillips, Nicholas W; Ma, Pui-Wai; Clark, Jesse N; Robinson, Ian K; Abbey, Brian; Liu, Wenjun; Beck, Christian E

    2017-04-06

    Focussed Ion Beam (FIB) milling is a mainstay of nano-scale machining. By manipulating a tightly focussed beam of energetic ions, often gallium (Ga + ), FIB can sculpt nanostructures via localised sputtering. This ability to cut solid matter on the nano-scale revolutionised sample preparation across the life, earth and materials sciences. Despite its widespread usage, detailed understanding of the FIB-induced structural damage, intrinsic to the technique, remains elusive. Here we examine the defects caused by FIB in initially pristine objects. Using Bragg Coherent X-ray Diffraction Imaging (BCDI), we are able to spatially-resolve the full lattice strain tensor in FIB-milled gold nano-crystals. We find that every use of FIB causes large lattice distortions. Even very low ion doses, typical of FIB imaging and previously thought negligible, have a dramatic effect. Our results are consistent with a damage microstructure dominated by vacancies, highlighting the importance of free-surfaces in determining which defects are retained. At larger ion fluences, used during FIB-milling, we observe an extended dislocation network that causes stresses far beyond the bulk tensile strength of gold. These observations provide new fundamental insight into the nature of the damage created and the defects that lead to a surprisingly inhomogeneous morphology.

  20. Maternal residential proximity to waste sites and industrial facilities and conotruncal heart defects in offspring.

    PubMed

    Langlois, Peter H; Brender, Jean D; Suarez, Lucina; Zhan, F Benjamin; Mistry, Jatin H; Scheuerle, Angela; Moody, Karen

    2009-07-01

    Most studies of the relationship between maternal residential proximity to sources of environmental pollution and congenital cardiovascular malformations have combined heart defects into one group or broad subgroups. The current case-control study examined whether risk of conotruncal heart defects, including subsets of specific defects, was associated with maternal residential proximity to hazardous waste sites and industrial facilities with recorded air emissions. Texas Birth Defects Registry cases were linked to their birth or fetal death certificate. Controls without birth defects were randomly selected from birth certificates. Distances from maternal addresses at delivery to National Priority List (NPL) waste sites, state superfund waste sites, and Toxic Release Inventory (TRI) facilities were determined for 1244 cases (89.5% of those eligible) and 4368 controls (88.0%). Living within 1 mile of a hazardous waste site was not associated with risk of conotruncal heart defects [adjusted odds ratio (aOR) = 0.83, 95% confidence interval (CI) = 0.54, 1.27]. This was true whether looking at most types of defects or waste sites. Only truncus arteriosus showed statistically elevated ORs with any waste site (crude OR: 2.80, 95% CI 1.19, 6.54) and with NPL sites (crude OR: 4.63, 95% CI 1.18, 13.15; aOR 4.99, 95% CI 1.26, 14.51), but the latter was based on only four exposed cases. There was minimal association between conotruncal heart defects and proximity to TRI facilities (aOR = 1.10, 95% CI = 0.91, 1.33). Stratification by maternal age or race/ethnic group made little difference in effect estimates for waste sites or industrial facilities. In this study population, maternal residential proximity to waste sites or industries with reported air emissions was not associated with conotruncal heart defects or its subtypes in offspring, with the exception of truncus arteriosus.

  1. Increasing reticle inspection efficiency and reducing wafer print-checks using automated defect classification and simulation

    NASA Astrophysics Data System (ADS)

    Ryu, Sung Jae; Lim, Sung Taek; Vacca, Anthony; Fiekowsky, Peter; Fiekowsky, Dan

    2013-09-01

    IC fabs inspect critical masks on a regular basis to ensure high wafer yields. These requalification inspections are costly for many reasons including the capital equipment, system maintenance, and labor costs. In addition, masks typically remain in the "requal" phase for extended, non-productive periods of time. The overall "requal" cycle time in which reticles remain non-productive is challenging to control. Shipping schedules can slip when wafer lots are put on hold until the master critical layer reticle is returned to production. Unfortunately, substituting backup critical layer reticles can significantly reduce an otherwise tightly controlled process window adversely affecting wafer yields. One major requal cycle time component is the disposition process of mask inspections containing hundreds of defects. Not only is precious non-productive time extended by reviewing hundreds of potentially yield-limiting detections, each additional classification increases the risk of manual review techniques accidentally passing real yield limiting defects. Even assuming all defects of interest are flagged by operators, how can any person's judgment be confident regarding lithographic impact of such defects? The time reticles spend away from scanners combined with potential yield loss due to lithographic uncertainty presents significant cycle time loss and increased production costs. Fortunately, a software program has been developed which automates defect classification with simulated printability measurement greatly reducing requal cycle time and improving overall disposition accuracy. This product, called ADAS (Auto Defect Analysis System), has been tested in both engineering and high-volume production environments with very successful results. In this paper, data is presented supporting significant reduction for costly wafer print checks, improved inspection area productivity, and minimized risk of misclassified yield limiting defects.

  2. Coarse-grained molecular dynamics modeling of the kinetics of lamellar BCP defect annealing

    NASA Astrophysics Data System (ADS)

    Peters, Andrew J.; Lawson, Richard A.; Nation, Benjamin D.; Ludovice, Peter J.; Henderson, Clifford L.

    2015-03-01

    Directed self-assembly of block copolymers (BCPs) is a process that has received great interest in the field of nanomanufacturing in the past decade, and great strides towards forming high quality aligned patterns have been made. But state of the art methods still yield defectivities orders of magnitude higher than is necessary in semi-conductor fabrication even though free energy calculations suggest that equilibrium defectivities are much lower than is necessary for economic semi-conductor fabrication. This disparity suggests that the main problem may lie in the kinetics of defect removal. This work uses a coarse-grained model to study the rates, pathways, and dependencies of healing a common defect to give insight into the fundamental processes that control defect healing and give guidance on optimal process conditions for BCP-DSA. It is found that infinitely thick films yield an exponential drop in defect heal rate above χN ~ 30. Below χN ~ 30, the rate of transport was similar to the rate at which the transition state was reached so that the overall rate changed only slightly. The energy barrier in periodic simulations increased with 0.31 χN on average. Thin film simulations show no change in rate associated with the energy barrier below χN ~ 50, and then show an increase in energy barrier scaling with 0.16χN. Thin film simulations always begin to heal at either the free interface or the BCP-underlayer interface where the increased A-B contact area associated with the transition state will be minimized, while the infinitely thick films must start healing in the bulk where the A-B contact area is increased. It is also found that cooperative chain movement is required for the defect to start healing.

  3. Evaluation of Soft Tissue Coverage over Porous Polymethylmethacrylate Space Maintainers Within Nonhealing Alveolar Bone Defects

    PubMed Central

    Kretlow, James D.; Shi, Meng; Young, Simon; Spicer, Patrick P.; Demian, Nagi; Jansen, John A.; Wong, Mark E.; Kasper, F. Kurtis

    2010-01-01

    Current treatment of traumatic craniofacial injuries often involves early free tissue transfer, even if the recipient site is contaminated or lacks soft tissue coverage. There are no current tissue engineering strategies to definitively regenerate tissues in such an environment at an early time point. For a tissue engineering approach to be employed in the treatment of such injuries, a two-stage approach could potentially be used. The present study describes methods for fabrication, characterization, and processing of porous polymethylmethacrylate (PMMA) space maintainers for temporary retention of space in bony craniofacial defects. Carboxymethylcellulose hydrogels were used as a porogen. Implants with controlled porosity and pore interconnectivity were fabricated by varying the ratio of hydrogel:polymer and the amount of carboxymethylcellulose within the hydrogel. The in vivo tissue response to the implants was observed by implanting solid, low-porosity, and high-porosity implants (n = 6) within a nonhealing rabbit mandibular defect that included an oral mucosal defect to allow open communication between the oral cavity and the mandibular defect. Oral mucosal wound healing was observed after 12 weeks and was complete in 3/6 defects filled with solid PMMA implants and 5/6 defects filled with either a low- or high-porosity PMMA implant. The tissue response around and within the pores of the two formulations of porous implants tested in vivo was characterized, with the low-porosity implants surrounded by a minimal but well-formed fibrous capsule in contrast to the high-porosity implants, which were surrounded and invaded by almost exclusively inflammatory tissue. On the basis of these results, PMMA implants with limited porosity hold promise for temporary implantation and space maintenance within clean/contaminated bone defects. PMID:20524844

  4. Kinesin Mutations Cause Motor Neuron Disease Phenotypes by Disrupting Fast Axonal Transport in Drosophila

    PubMed Central

    Hurd, D. D.; Saxton, W. M.

    1996-01-01

    Previous work has shown that mutation of the gene that encodes the microtubule motor subunit kinesin heavy chain (Khc) in Drosophila inhibits neuronal sodium channel activity, action potentials and neurotransmitter secretion. These physiological defects cause progressive distal paralysis in larvae. To identify the cellular defects that cause these phenotypes, larval nerves were studied by light and electron microscopy. The axons of Khc mutants develop dramatic focal swellings along their lengths. The swellings are packed with fast axonal transport cargoes including vesicles, synaptic membrane proteins, mitochondria and prelysosomal organelles, but not with slow axonal transport cargoes such as cytoskeletal elements. Khc mutations also impair the development of larval motor axon terminals, causing dystrophic morphology and marked reductions in synaptic bouton numbers. These observations suggest that as the concentration of maternally provided wild-type KHC decreases, axonal organelles transported by kinesin periodically stall. This causes organelle jams that disrupt retrograde as well as anterograde fast axonal transport, leading to defective action potentials, dystrophic terminals, reduced transmitter secretion and progressive distal paralysis. These phenotypes parallel the pathologies of some vertebrate motor neuron diseases, including some forms of amyotrophic lateral sclerosis (ALS), and suggest that impaired fast axonal transport is a key element in those diseases. PMID:8913751

  5. High-efficiency cell concepts on low-cost silicon sheets

    NASA Technical Reports Server (NTRS)

    Bell, R. O.; Ravi, K. V.

    1985-01-01

    The limitations on sheet growth material in terms of the defect structure and minority carrier lifetime are discussed. The effect of various defects on performance are estimated. Given these limitations designs for a sheet growth cell that will make the best of the material characteristics are proposed. Achievement of optimum synergy between base material quality and device processing variables is proposed. A strong coupling exists between material quality and the variables during crystal growth, and device processing variables. Two objectives are outlined: (1) optimization of the coupling for maximum performance at minimal cost; and (2) decoupling of materials from processing by improvement in base material quality to make it less sensitive to processing variables.

  6. The minimally invasive approach to the symptomatic isthmocele - what does the literature say? A step-by-step primer on laparoscopic isthmocele - excision and repair.

    PubMed

    Sipahi, Sevgi; Sasaki, Kirsten; Miller, Charles E

    2017-08-01

    The purpose of this review is to understand the minimally invasive approach to the excision and repair of an isthmocele. Previous small trials and case reports have shown that the minimally invasive approach by hysteroscopy and/or laparoscopy can cure symptoms of a uterine isthmocele, including abnormal bleeding, pelvic pain and secondary infertility. A recent larger prospective study has been published that evaluates outcomes of minimally invasive isthmocele repair. Smaller studies and individual case reports echo the positive results of this larger trial. The cesarean section scar defect, also known as an isthmocele, has become an important diagnosis for women who present with abnormal uterine bleeding, pelvic pain and secondary infertility. It is important for providers to be aware of the effective surgical treatment options for the symptomatic isthmocele. A minimally invasive approach, whether it be laparoscopic or hysteroscopic, has proven to be a safe and effective option in reducing symptoms and improving fertility. VIDEO ABSTRACT: http://links.lww.com/COOG/A37.

  7. Automatic OPC repair flow: optimized implementation of the repair recipe

    NASA Astrophysics Data System (ADS)

    Bahnas, Mohamed; Al-Imam, Mohamed; Word, James

    2007-10-01

    Virtual manufacturing that is enabled by rapid, accurate, full-chip simulation is a main pillar in achieving successful mask tape-out in the cutting-edge low-k1 lithography. It facilitates detecting printing failures before a costly and time-consuming mask tape-out and wafer print occur. The OPC verification step role is critical at the early production phases of a new process development, since various layout patterns will be suspected that they might to fail or cause performance degradation, and in turn need to be accurately flagged to be fed back to the OPC Engineer for further learning and enhancing in the OPC recipe. At the advanced phases of the process development, there is much less probability of detecting failures but still the OPC Verification step act as the last-line-of-defense for the whole RET implemented work. In recent publication the optimum approach of responding to these detected failures was addressed, and a solution was proposed to repair these defects in an automated methodology and fully integrated and compatible with the main RET/OPC flow. In this paper the authors will present further work and optimizations of this Repair flow. An automated analysis methodology for root causes of the defects and classification of them to cover all possible causes will be discussed. This automated analysis approach will include all the learning experience of the previously highlighted causes and include any new discoveries. Next, according to the automated pre-classification of the defects, application of the appropriate approach of OPC repair (i.e. OPC knob) on each classified defect location can be easily selected, instead of applying all approaches on all locations. This will help in cutting down the runtime of the OPC repair processing and reduce the needed number of iterations to reach the status of zero defects. An output report for existing causes of defects and how the tool handled them will be generated. The report will with help further learning and facilitate the enhancement of the main OPC recipe. Accordingly, the main OPC recipe can be more robust, converging faster and probably in a fewer number of iterations. This knowledge feedback loop is one of the fruitful benefits of the Automatic OPC Repair flow.

  8. Transabdominal midline reconstruction by minimally invasive surgery: technique and results.

    PubMed

    Costa, T N; Abdalla, R Z; Santo, M A; Tavares, R R F M; Abdalla, B M Z; Cecconello, I

    2016-04-01

    The introduction of the minimally invasive approach changed the way abdominal surgery was carried out. Open suture and mesh reinforcement in ventral hernia repair used to be the surgeon's choice of procedure. Although the laparoscopic approach, with defect bridging and mesh fixation, has been described since 1993, the procedure remains largely unchanged. Evidence shows that defect closure and retro-muscular mesh positioning have the best outcomes and are the best surgical practice. We therefore aimed to develop and demonstrate a procedure which combined the good results of open surgery using the Rives-Stoppa principles, particularly in terms of recurrence, with all the benefits of minimally invasive surgery. Between October 2012 and February 2014, 15 post-bariatric surgery patients underwent laparoscopic midline incisional hernia repair. The peritoneal cavity was accessed through a 5-mm optical view cannula at the superior left quadrant. A suprapubic and two right and left lower quadrant cannulas were inserted for inferior access and dissection. The defect adhesions were released. The whole midline was closed with an endoscopic linear stapler, including the defect, from the lower abdomen, 4 cm below the umbilicus, until the epigastric region, including posterior sheath mechanical suturing and cutting in the same movement. A retrorectus space was created in which a retro-muscular mesh was deployed. Fixation was done using a hernia stapler against the posterior sheath from the peritoneal cavity to the abdominal wall muscles. Selection was based on xifo-umbilical incisional midline hernias post open bariatric surgery. Pregnant women, cancer patients, or patients with clinical contraindications were excluded. The patients mean age was 51.2 years (range 39-67). Four patients were men and eleven women. Two had well-compensated fibromyalgia, four had diabetes, and five had hypertension. The mean BMI was 29.5 kg/m2 (range 23-31.6). Surgery was performed successfully in all cases through four ports; the number of incisional hernias was 3 ± 2, with a mean maximum width of 3.75 cm (range 2.1-9) and maximum length of 14 cm (7.5-20.5). The mean surgical time was 114.3 min (range 85-170), and the median hospital stay was 1.4 days. No intra-operative or immediate post-operative complication or death occurred. One patient had a seroma treated conservatively 1 week after surgery and another had a retro-muscular infection treated with percutaneous drainage. CT-Scans made before and after the procedure, showed total closure of the defect. QOL questionnaire showed satisfaction, acceptance, and no complaints. Although the study involved a small number of patients, it has proved the technique to be feasible, easy to perform, and have the combined benefits of laparoscopic and open surgery. The results, shown by CT-scan, peri-operative, and QOL findings, were good.

  9. Nonlinear air-coupled emission: The signature to reveal and image microdamage in solid materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solodov, Igor; Busse, Gerd

    2007-12-17

    It is shown that low-frequency elastic vibrations of near-surface planar defects cause high-frequency ultrasonic radiation in surrounding air. The frequency conversion mechanism is concerned with contact nonlinearity of the defect vibrations and provides efficient generation of air-coupled higher-order ultraharmonics, ultrasubharmonics, and combination frequencies. The nonlinear air-coupled ultrasonic emission is applied for location and high-resolution imaging of damage-induced defects in a variety of solid materials.

  10. Rescue of sarcoglycan mutations by inhibition of endoplasmic reticulum quality control is associated with minimal structural modifications.

    PubMed

    Soheili, Tayebeh; Gicquel, Evelyne; Poupiot, Jérôme; N'Guyen, Luu; Le Roy, Florence; Bartoli, Marc; Richard, Isabelle

    2012-02-01

    Sarcoglycanopathies (SGP) are a group of autosomal recessive muscle disorders caused by primary mutations in one of the four sarcoglycan genes. The sarcoglycans (α-, β-, γ-, and δ-sarcoglycan) form a tetrameric complex at the muscle membrane that is part of the dystrophin-glycoprotein complex and plays an essential role for membrane integrity during muscle contractions. We previously showed that the most frequent missense mutation in α-sarcoglycan (p.R77C) leads to the absence of the protein at the cell membrane due to its blockade by the endoplasmic reticulum (ER) quality control. Moreover, we demonstrated that inhibition of the ER α-mannosidase I activity using kifunensine could rescue the mutant protein localization at the cell membrane. Here, we investigate 25 additional disease-causing missense mutations in the sarcoglycan genes with respect to intracellular fate and localization rescue of the mutated proteins by kifunensine. Our studies demonstrate that, similarly to p.R77C, 22 of 25 of the selected mutations lead to defective intracellular trafficking of the SGs proteins. Six of these were saved from ER retention upon kifunensine treatment. The trafficking of SGs mutants rescued by kifunensine was associated with mutations that have moderate structural impact on the protein. © 2011 Wiley Periodicals, Inc.

  11. [Personal experience with treatment of posttraumatic urethral distraction defects].

    PubMed

    Fiala, R; Zátura, F; Vrtal, R

    2001-01-01

    Authors present their experience in the treatment of posttraumatic distraction urethral defect resulting from traumatic rupture of posterior urethra. The group comprised 19 patients with posttraumatic urethral distraction defect (average age 41 year, range 27-65 years). In 16 of them (84%) resection urehtroplasty was performed and in three (16%) endoscopic internal urethrotomy was applied. The patients were evaluated of 19 to 48 months after surgery. Urethroplasty was performed at least three months after the trauma, always under general anesthaesia in lithotomic position, using perinal approach. Dissection of bulbar urethra was followed by dissection and resection of fibrous posttraumatic distraction defect (the original membranous urethra). Prostatic apex and proximal end of lumbar urethra were spatulated and bulboprostatic anastomosis was performed restoring urethral continuity. A catheter was left in urethra for three weeks. In 12 patients it was necessary to separe corpora cavernosa addition and 5 patients required a wedge resection of the lower arch of public bones to allow urethral bridge the defect. Endoscopic internal urehtrotomy was also performed minimally three months after trauma, always on position 12 of the clock face opposite to symphysis with a discision of the whole stenotic part. Subsequently, catheter was inserted in urethra and left in place for four days. Resection urethroplasty as primary surgery was successful in 15 (94%) patients and only 1 patients (6%) required another reconstruction surgery. Endoscopic management was not successful in any patients (100%). Two of them (66%) had to undergo repeatedly a reconstruction surgery, the third one (33%) is regularly dilated. All patients after urethroplasty are under regular circumstances continent, only in two of them (13%) there occurs of urine in case of an extreme increase of abdominal pressure. Erectile function already impaired by the trauma did not worsen by the surgery in 4 patients (25%), in 2 patients (13%) with preoperatively normal erections there developed erectile dysfunction after urethroplasty of which in 1 patient a permanent disorder. The quality of life was in general evaluated by patients as excellent. Epicystotomy is a simple procedure ensuring urinary diversion in patients with posterior urethral rupture. However, such management of urethral rupture almost always results in the development posttraumatic distraction defect. Incontinence occurs in our group only in 2 (12%) patients, mainly in non-standard situations (gym, urgency). Night incontinence does not occur in our patients at all. Continence is in our patients ensured by lissosfincter which is fully sufficient. Erectile dysfunction may result from a trauma or a treatment. In our group all patients have a preserved erection prior to trauma and trauma was evident cause of the loss of erection only in 2 (12%) patients who were primarily treated by epicystotomy. In another 2 patients (12%) who were primarily treated after trauma for coincidental urinary bladder rupture it is impossible to state what caused the erectile dysfunction whether a fracture or surgery. In the acute phase during the revision of the rupture of posterior urethra the peroperative risk of the impairment of neurovascular bundles responsible for erection is much higher than in planned surgery. Satisfaction of patients with the treatment is reflected in the evaluation of the postoperative results and the quality of life in general. None of our patients managed by delayed internal urethrotomy was cured. One is regularly dilated, another two underwent urethroplasty. The technique of resection of urethral distraction defects with bulboprostatic anastomosis is a suitable way of the treatment of the preceding rupture of posterior urethra without impairement of continence or erection. A prerequisite of good results is a simple urine diversion by epicystostomy during the primary management of the posterior urethral rupture. Delayed endoscopic therapy of the distraction defect will not probably cure the patients but will result in regular dilatations. It may be an alternative treatment in polymorbid or biologically older patients.

  12. EMBRYOLOGY OF THE LITTLE AND BAGG X-RAYED MOUSE STOCK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, T.C.

    1959-12-01

    The morphology and development of the many defects in mice of the Little and Bagg x-rayed stock have been reinvestigated in an attempt to resolve the conflicts in the findings of earlier investigators. The observation that blebs occur on pseudencephalic embryos is incompatible with Bonnevie's hypothesis that they originate as cerebrospinal fluid in the myelencephalon; other observations support Plagens' hypothesis that the blebs originate as mesenchymal intercellular fluid. No unitary gene action was found. Four pedigrees of causes were constructed covering, respectively, defects of the central nervous system, bleb- induced lesions and defects of the body wall, morphological defects ofmore » the hind limbs, and defects of the urogenital system; there were cross-correlations between defects in the first three pedigrees, but the underlying mechanisms were not identified. (auth)« less

  13. Vertical Root Fracture initiation in curved roots after root canal preparation: A dentinal micro-crack analysis with LED transillumination

    PubMed Central

    Martín-Biedma, Benjamín; Varela-Patiño, Purificación; Ruíz-Piñón, Manuel; Castelo-Baz, Pablo

    2017-01-01

    Background One of the causative factors of root defects is the increased friction produced by rotary instrumentation. A high canal curvature may increase stress, making the tooth more susceptible to dentinal cracks. The purpose of this study was to evaluate dentinal micro-crack formation with the ProTaper NEXT and ProTaper Universal systems using LED transillumination, and to analyze the micro-crack generated at the point of maximum canal curvature. Material and Methods 60 human mandibular premolars with curvatures between 30–49° and radii between 2–4 mm were used. The root canals were instrumented using the Protaper Universal® and Protaper NEXT® systems, with the aid of the Proglider® system. The obtained samples were sectioned transversely before subsequent analysis with LED transillumination at 2 mm and 8 mm from the apex and at the point of maximum canal curvature. Defects were scored: 0 for no defects; and 1 for micro-cracks. Results Root defects were not observed in the control group. The ProTaper NEXT system caused fewer defects (16.7%) than the ProTaper Universal system (40%) (P<0.05). The ProTaper Universal system caused significantly more micro-cracks at the point of maximum canal curvature than the ProTaper NEXT system (P<0.05). Conclusions Rotary instrumentation systems often generate root defects, but the ProTaper NEXT system generated fewer dentinal defects than the ProTaper Universal system. A higher prevalence of defects was found at the point of maximum curvature in the ProTaper Universal group. Key words:Curved root, Micro-crack, point of maximum canal curvature, ProTaper NEXT, ProTaper Universal, Vertical root fracture. PMID:29167712

  14. Overexpression of a truncated CTF7 construct leads to pleiotropic defects in reproduction and vegetative growth in Arabidopsis.

    PubMed

    Liu, Desheng; Makaroff, Christopher A

    2015-03-05

    Eco1/Ctf7 is essential for the establishment of sister chromatid cohesion during S phase of the cell cycle. Inactivation of Ctf7/Eco1 leads to a lethal phenotype in most organisms. Altering Eco1/Ctf7 levels or point mutations in the gene can lead to alterations in nuclear division as well as a wide range of developmental defects. Inactivation of Arabidopsis CTF7 (AtCTF7) results in severe defects in reproduction and vegetative growth. To further investigate the function(s) of AtCTF7, a tagged version of AtCTF7 and several AtCTF7 deletion constructs were created and transformed into wild type or ctf7 +/- plants. Transgenic plants expressing 35S:NTAP:AtCTF7∆299-345 (AtCTF7∆B) displayed a wide range of phenotypic alterations in reproduction and vegetative growth. Male meiocytes exhibited chromosome fragmentation and uneven chromosome segregation. Mutant ovules contained abnormal megasporocyte-like cells during pre-meiosis, megaspores experienced elongated meiosis and megagametogenesis, and defective megaspores/embryo sacs were produced at various stages. The transgenic plants also exhibited a broad range of vegetative defects, including meristem disruption and dwarfism that were inherited in a non-Mendelian fashion. Transcripts for epigenetically regulated transposable elements (TEs) were elevated in transgenic plants. Transgenic plants expressing 35S:AtCTF7∆B displayed similar vegetative defects, suggesting the defects in 35S:NTAP:AtCTF7∆B plants are caused by high-level expression of AtCTF7∆B. High level expression of AtCTF7∆B disrupts megasporogenesis, megagametogenesis and male meiosis, as well as causing a broad range of vegetative defects, including dwarfism that are inherited in a non-Mendelian fashion.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, B. W.; Williamson, R. L.; Stafford, D. S.

    One of the important roles of cladding in light water reactor fuel rods is to prevent the release of fission products. To that end, it is essential that the cladding maintain its integrity under a variety of thermal and mechanical loading conditions. Local geometric irregularities in fuel pellets caused by manufacturing defects known as missing pellet surfaces (MPS) can in some circumstances lead to elevated cladding stresses that are sufficiently high to cause cladding failure. Accurate modeling of these defects can help prevent these types of failures. The BISON nuclear fuel performance code developed at Idaho National Laboratory can bemore » used to simulate the global thermo-mechanical fuel rod behavior, as well as the local response of regions of interest, in either 2D or 3D. In either case, a full set of models to represent the thermal and mechanical properties of the fuel, cladding and plenum gas is employed. A procedure for coupling 2D full-length fuel rod models to detailed 3D models of the region of the rod containing a MPS defect is detailed in this paper. The global and local model each contain appropriate physics and behavior models for nuclear fuel. This procedure is demonstrated on a simulation of a boiling water reactor (BWR) fuel rod containing a pellet with an MPS defect, subjected to a variety of transient events, including a control blade withdrawal and a ramp to high power. The importance of modeling the local defect using a 3D model is highlighted by comparing 3D and 2D representations of the defective pellet region. Finally, parametric studies demonstrate the effects of the choice of gaseous swelling model and of the depth and geometry of the MPS defect on the response of the cladding adjacent to the defect.« less

  16. Research on Forming Mechanisms and Controlling Measurements for Surface Light Spot Defects of Galvanizing Steel Coils for Automobile Use

    NASA Astrophysics Data System (ADS)

    Guangmin, Wei; Haiyan, Sun; Jianqiang, Shi; Lianxuan, Wang; Haihong, Wu

    When producing high surface quality galvanizing steel coils for automobile use, there are always many light spots on the surface since Hansteel CGL No.1 has been put into operation. The defect samples were analyzed by SEM and EDS. The result shows that cause for light spot is not only one. There are more Mn and P in high strength auto sheet, which can result in difficulty to be cleaned off the oxide on the hot rolled coils, so the defects coming. This is why the defects come with high strength auto sheet. When coils galvanized, the defects can't be covered up. To the contrary, the defects will be more obvious when zinc growing on the surface. And sometimes zinc or residue can adhere to work rolls when strips passing through SPM. The deposits then press normal coating. So the light spots come more. When the defect comes from pressing, there is no defect on steel base. The causation is found and measures were taken including high pressure cleaning equipments adopted. Result shows that the defects disappeared.

  17. Mechanism of Na accumulation at extended defects in Si from first-principles

    NASA Astrophysics Data System (ADS)

    Park, Ji-Sang; Chan, Maria K. Y.

    2018-04-01

    Sodium (Na) impurities in silicon solar cells are considered to play an important role in potential-induced degradation (PID), a significant cause of solar cell degradation and failure. Shorting due to Na accumulation at extended defects has been suggested as a culprit for PID. However, it is not clear how the extended defects are decorated by Na impurities. Using first-principles density functional theory calculations, we find that Na impurities segregate from the bulk into extended defects such as intrinsic stacking faults and Σ3 (111) grain boundaries. The energy barrier required for Na to escape from the extended defects is substantial and similar to the sum of the barrier energy in bulk Si (1.1-1.2 eV) and the segregation energy to the stacking fault (˜0.7 eV). Surprisingly, the migration barrier for Na diffusion within the extended defects is even higher than the energy barrier for escaping. The results suggest that the extended defects likely accumulate Na as the impurities segregate to the defects from the bulk, rather than because of migration through the extended defects.

  18. The fire blight pathogen Erwinia amylovora requires the rpoN gene for pathogenicity in apple.

    PubMed

    Ramos, Laura S; Lehman, Brian L; Sinn, Judith P; Pfeufer, Emily E; Halbrendt, Noemi O; McNellis, Timothy W

    2013-10-01

    RpoN is a σ(54) factor regulating essential virulence gene expression in several plant pathogenic bacteria, including Pseudomonas syringae and Pectobacterium carotovorum. In this study, we found that mutation of rpoN in the fire blight pathogen Erwinia amylovora caused a nonpathogenic phenotype. The E. amylovora rpoN Tn5 transposon mutant rpoN1250::Tn5 did not cause fire blight disease symptoms on shoots of mature apple trees. In detached immature apple fruits, the rpoN1250::Tn5 mutant failed to cause fire blight disease symptoms and grew to population levels 12 orders of magnitude lower than the wild-type. In addition, the rpoN1250::Tn5 mutant failed to elicit a hypersensitive response when infiltrated into nonhost tobacco plant leaves, and rpoN1250::Tn5 cells failed to express HrpN protein when grown in hrp (hypersensitive response and pathogenicity)-inducing liquid medium. A plasmid-borne copy of the wild-type rpoN gene complemented all the rpoN1250::Tn5 mutant phenotypes tested. The rpoN1250::Tn5 mutant was prototrophic on minimal solid and liquid media, indicating that the rpoN1250::Tn5 nonpathogenic phenotype was not caused by a defect in basic metabolism or growth. This study provides clear genetic evidence that rpoN is an essential virulence gene of E. amylovora, suggesting that rpoN has the same function in E. amylovora as in P. syringae and Pe. carotovorum. 2013 BSPP and JOHN WILEY & SONS LTD

  19. Celiac Disease

    MedlinePlus

    ... Causes Diagnosis Treatment Eating, Diet, & Nutrition Clinical Trials Hemorrhoids Definition & Facts Symptoms & Causes Diagnosis Treatment Eating, Diet, & ... Defects Dermatitis Herpetiformis Reproductive Problems Osteoporosis Related Diagnostic Tests Upper GI Endoscopy For Health Care Professionals Dermatitis ...

  20. Parkinson disease-associated mutations in LRRK2 cause centrosomal defects via Rab8a phosphorylation.

    PubMed

    Madero-Pérez, Jesús; Fdez, Elena; Fernández, Belén; Lara Ordóñez, Antonio J; Blanca Ramírez, Marian; Gómez-Suaga, Patricia; Waschbüsch, Dieter; Lobbestael, Evy; Baekelandt, Veerle; Nairn, Angus C; Ruiz-Martínez, Javier; Aiastui, Ana; López de Munain, Adolfo; Lis, Pawel; Comptdaer, Thomas; Taymans, Jean-Marc; Chartier-Harlin, Marie-Christine; Beilina, Alexandria; Gonnelli, Adriano; Cookson, Mark R; Greggio, Elisa; Hilfiker, Sabine

    2018-01-23

    Mutations in LRRK2 are a common genetic cause of Parkinson's disease (PD). LRRK2 interacts with and phosphorylates a subset of Rab proteins including Rab8a, a protein which has been implicated in various centrosome-related events. However, the cellular consequences of such phosphorylation remain elusive. Human neuroblastoma SH-SY5Y cells stably expressing wildtype or pathogenic LRRK2 were used to test for polarity defects in the context of centrosomal positioning. Centrosomal cohesion deficits were analyzed from transiently transfected HEK293T cells, as well as from two distinct peripheral cell types derived from LRRK2-PD patients. Kinase assays, coimmunoprecipitation and GTP binding/retention assays were used to address Rab8a phosphorylation by LRRK2 and its effects in vitro. Transient transfections and siRNA experiments were performed to probe for the implication of Rab8a and its phosphorylated form in the centrosomal deficits caused by pathogenic LRRK2. Here, we show that pathogenic LRRK2 causes deficits in centrosomal positioning with effects on neurite outgrowth, cell polarization and directed migration. Pathogenic LRRK2 also causes deficits in centrosome cohesion which can be detected in peripheral cells derived from LRRK2-PD patients as compared to healthy controls, and which are reversed upon LRRK2 kinase inhibition. The centrosomal cohesion and polarity deficits can be mimicked when co-expressing wildtype LRRK2 with wildtype but not phospho-deficient Rab8a. The centrosomal defects induced by pathogenic LRRK2 are associated with a kinase activity-dependent increase in the centrosomal localization of phosphorylated Rab8a, and are prominently reduced upon RNAi of Rab8a. Our findings reveal a new function of LRRK2 mediated by Rab8a phosphorylation and related to various centrosomal defects.

Top