Addai, Emmanuel Kwasi; Gabel, Dieter; Krause, Ulrich
2016-04-15
The risks associated with dust explosions still exist in industries that either process or handle combustible dust. This explosion risk could be prevented or mitigated by applying the principle of inherent safety (moderation). This is achieved by adding an inert material to a highly combustible material in order to decrease the ignition sensitivity of the combustible dust. The presented paper deals with the experimental investigation of the influence of adding an inert dust on the minimum ignition energy and the minimum ignition temperature of the combustible/inert dust mixtures. The experimental investigation was done in two laboratory scale equipment: the Hartmann apparatus and the Godbert-Greenwald furnace for the minimum ignition energy and the minimum ignition temperature test respectively. This was achieved by mixing various amounts of three inert materials (magnesium oxide, ammonium sulphate and sand) and six combustible dusts (brown coal, lycopodium, toner, niacin, corn starch and high density polyethylene). Generally, increasing the inert materials concentration increases the minimum ignition energy as well as the minimum ignition temperatures until a threshold is reached where no ignition was obtained. The permissible range for the inert mixture to minimize the ignition risk lies between 60 to 80%. Copyright © 2016 Elsevier B.V. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-17
... these hybrid models is cable of achieving temperatures at or below 38 [deg]F, the wine storage compartment of these single-cabinet units can only achieve a minimum temperature of 45 [deg]F. As a result, it... energy consumption be measured when each compartment temperature is set at 38 [deg]F. In order to...
High Power Orbit Transfer Vehicle
2003-07-01
multijunction device is a stack of individual single-junction cells in descending order of band gap. The top cell captures the high-energy photons and passes...the rest of the photons on to be absorbed by lower-band-gap cells. Multijunction devices achieve a higher total conversion efficiency because they...minimum temperatures on the thruster modules and main bus. In the MATLAB code for these calculations, maximum and minimum temperatures are plotted
Yaslioglu, Erkan; Simsek, Ercan; Kilic, Ilker
2007-04-15
In the study, 10 different dairy cattle barns with natural ventilation system were investigated in terms of structural aspects. VENTGRAPH software package was used to estimate minimum ventilation requirements for three different outdoor design temperatures (-3, 0 and 1.7 degrees C). Variation in indoor temperatures was also determined according to the above-mentioned conditions. In the investigated dairy cattle barns, on condition that minimum ventilation requirement to be achieved for -3, 0 and 1.7 degrees C outdoor design temperature and 70, 80% Indoor Relative Humidity (IRH), estimated indoor temperature were ranged from 2.2 to 12.2 degrees C for 70% IRH, 4.3 to 15.0 degrees C for 80% IRH. Barn type, outdoor design temperature and indoor relative humidity significantly (p < 0.01) affect the indoor temperature. The highest ventilation requirement was calculated for straw yard (13879 m3 h(-1)) while the lowest was estimated for tie-stall (6169.20 m3 h(-1)). Estimated minimum ventilation requirements per animal were significantly (p < 0.01) different according to the barn types. Effect of outdoor esign temperatures on minimum ventilation requirements and minimum ventilation requirements per animal was found to be significant (p < 0.05, p < 0.01). Estimated indoor temperatures were in thermoneutral zone (-2 to 20 degrees C). Therefore, one can be said that use of naturally ventilated cold dairy barns in the region will not lead to problems associated with animal comfort in winter.
Exponential bound in the quest for absolute zero
NASA Astrophysics Data System (ADS)
Stefanatos, Dionisis
2017-10-01
In most studies for the quantification of the third law of thermodynamics, the minimum temperature which can be achieved with a long but finite-time process scales as a negative power of the process duration. In this article, we use our recent complete solution for the optimal control problem of the quantum parametric oscillator to show that the minimum temperature which can be obtained in this system scales exponentially with the available time. The present work is expected to motivate further research in the active quest for absolute zero.
Exponential bound in the quest for absolute zero.
Stefanatos, Dionisis
2017-10-01
In most studies for the quantification of the third law of thermodynamics, the minimum temperature which can be achieved with a long but finite-time process scales as a negative power of the process duration. In this article, we use our recent complete solution for the optimal control problem of the quantum parametric oscillator to show that the minimum temperature which can be obtained in this system scales exponentially with the available time. The present work is expected to motivate further research in the active quest for absolute zero.
Effects of whole body cryotherapy and cold water immersion on knee skin temperature.
Costello, J T; Donnelly, A E; Karki, A; Selfe, J
2014-01-01
This study sought to (a) compare and contrast the effect of 2 commonly used cryotherapy treatments, 4 min of -110 °C whole body cryotherapy and 8 °C cold water immersion, on knee skin temperature and (b) establish whether either protocol was capable of achieving a skin temperature (<13 °C) believed to be required for analgesic purposes. After ethics committee approval and written informed consent was obtained, 10 healthy males (26.5±4.9 yr, 183.5±6.0 cm, 90.7±19.9 kg, 26.8±5.0 kg/m2, 23.0±9.3% body fat; mean±SD) participated in this randomised controlled crossover study. Skin temperature around the patellar region was assessed in both knees via non-contact, infrared thermal imaging and recorded pre-, immediately post-treatment and every 10 min thereafter for 60 min. Compared to baseline, average, minimum and maximum skin temperatures were significantly reduced (p<0.001) immediately post-treatment and at 10, 20, 30, 40, 50 and 60 min after both cooling modalities. Average and minimum skin temperatures were lower (p<0.05) immediately after whole body cryotherapy (19.0±0.9 °C) compared to cold water immersion (20.5±0.6 °C). However, from 10 to 60 min post, the average, minimum and maximum skin temperatures were lower (p<0.05) following the cold water treatment. Finally, neither protocol achieved a skin temperature believed to be required to elicit an analgesic effect. © Georg Thieme Verlag KG Stuttgart · New York.
Einstein-Podolsky-Rosen paradox implies a minimum achievable temperature
NASA Astrophysics Data System (ADS)
Rogers, David M.
2017-01-01
This work examines the thermodynamic consequences of the repeated partial projection model for coupling a quantum system to an arbitrary series of environments under feedback control. This paper provides observational definitions of heat and work that can be realized in current laboratory setups. In contrast to other definitions, it uses only properties of the environment and the measurement outcomes, avoiding references to the "measurement" of the central system's state in any basis. These definitions are consistent with the usual laws of thermodynamics at all temperatures, while never requiring complete projective measurement of the entire system. It is shown that the back action of measurement must be counted as work rather than heat to satisfy the second law. Comparisons are made to quantum jump (unravelling) and transition-probability based definitions, many of which appear as particular limits of the present model. These limits show that our total entropy production is a lower bound on traditional definitions of heat that trace out the measurement device. Examining the master equation approximation to the process at finite measurement rates, we show that most interactions with the environment make the system unable to reach absolute zero. We give an explicit formula for the minimum temperature achievable in repeatedly measured quantum systems. The phenomenon of minimum temperature offers an explanation of recent experiments aimed at testing fluctuation theorems in the quantum realm and places a fundamental purity limit on quantum computers.
Phonon wave interference in graphene and boron nitride superlattice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Xue-Kun; Zhou, Wu-Xing; Tang, Li-Ming
2016-07-11
The thermal transport properties of the graphene and boron nitride superlattice (CBNSL) are investigated via nonequilibrium molecular dynamics simulations. The simulation results show that a minimum lattice thermal conductivity can be achieved by changing the period length of the superlattice. Additionally, it is found that the period length at the minimum shifts to lower values at higher temperatures, and that the depth of the minimum increases with decreasing temperature. In particular, at 200 K, the thermal conductivities of CBNSLs with certain specific period lengths are nearly equal to the corresponding values at 300 K. A detailed analysis of the phonon spectra showsmore » that this anomalous thermal conductivity behavior is a result of strong phonon wave interference. These observations indicate a promising strategy for manipulation of thermal transport in superlattices.« less
Feasibility study of full-reactor gas core demonstration test
NASA Technical Reports Server (NTRS)
Kunze, J. F.; Lofthouse, J. H.; Shaffer, C. J.; Macbeth, P. J.
1973-01-01
Separate studies of nuclear criticality, flow patterns, and thermodynamics for the gas core reactor concept have all given positive indications of its feasibility. However, before serious design for a full scale gas core application can be made, feasibility must be shown for operation with full interaction of the nuclear, thermal, and hydraulic effects. A minimum sized, and hence minimum expense, test arrangement is considered for a full gas core configuration. It is shown that the hydrogen coolant scattering effects dominate the nuclear considerations at elevated temperatures. A cavity diameter of somewhat larger than 4 ft (122 cm) will be needed if temperatures high enough to vaporize uranium are to be achieved.
Limitations in cooling electrons using normal-metal-superconductor tunnel junctions.
Pekola, J P; Heikkilä, T T; Savin, A M; Flyktman, J T; Giazotto, F; Hekking, F W J
2004-02-06
We demonstrate both theoretically and experimentally two limiting factors in cooling electrons using biased tunnel junctions to extract heat from a normal metal into a superconductor. First, when the injection rate of electrons exceeds the internal relaxation rate in the metal to be cooled, the electrons do not obey the Fermi-Dirac distribution, and the concept of temperature cannot be applied as such. Second, at low bath temperatures, states within the gap induce anomalous heating and yield a theoretical limit of the achievable minimum temperature.
Planting data and wheat yield models. [Kansas, South Dakota, and U.S.S.R.
NASA Technical Reports Server (NTRS)
Feyerherm, A. M. (Principal Investigator)
1977-01-01
The author has identified the following significant results. A variable date starter model for spring wheat depending on temperature was more precise than a fixed date model. The same conclusions for fall-planted wheat were not reached. If the largest and smallest of eight temperatures were used to estimate daily maximum and minimum temperatures; respectively, a 1-4 F bias would be introduced into these extremes. For Kansas, a reduction of 0.5 bushels/acre in the root-mean-square-error between model and SRS yields was achieved by a six fold increase (7 to 42) in the density of weather stations. An additional reduction of 0.3 b/A was achieved by incorporating losses due to rusts in the model.
High-precision temperature control and stabilization using a cryocooler.
Hasegawa, Yasuhiro; Nakamura, Daiki; Murata, Masayuki; Yamamoto, Hiroya; Komine, Takashi
2010-09-01
We describe a method for precisely controlling temperature using a Gifford-McMahon (GM) cryocooler that involves inserting fiber-reinforced-plastic dampers into a conventional cryosystem. Temperature fluctuations in a GM cryocooler without a large heat bath or a stainless-steel damper at 4.2 K are typically of the order of 200 mK. It is particularly difficult to control the temperature of a GM cryocooler at low temperatures. The fiber-reinforced-plastic dampers enabled us to dramatically reduce temperature fluctuations at low temperatures. A standard deviation of the temperature fluctuations of 0.21 mK could be achieved when the temperature was controlled at 4.200 0 K using a feedback temperature control system with two heaters. Adding the dampers increased the minimum achievable temperature from 3.2 to 3.3 K. Precise temperature control between 4.200 0 and 300.000 K was attained using the GM cryocooler, and the standard deviation of the temperature fluctuations was less than 1.2 mK even at 300 K. This technique makes it possible to control and stabilize the temperature using a GM cryocooler.
Performance evaluation of a lossy transmission lines based diode detector at cryogenic temperature.
Villa, E; Aja, B; de la Fuente, L; Artal, E
2016-01-01
This work is focused on the design, fabrication, and performance analysis of a square-law Schottky diode detector based on lossy transmission lines working under cryogenic temperature (15 K). The design analysis of a microwave detector, based on a planar gallium-arsenide low effective Schottky barrier height diode, is reported, which is aimed for achieving large input return loss as well as flat sensitivity versus frequency. The designed circuit demonstrates good sensitivity, as well as a good return loss in a wide bandwidth at Ka-band, at both room (300 K) and cryogenic (15 K) temperatures. A good sensitivity of 1000 mV/mW and input return loss better than 12 dB have been achieved when it works as a zero-bias Schottky diode detector at room temperature, increasing the sensitivity up to a minimum of 2200 mV/mW, with the need of a DC bias current, at cryogenic temperature.
Plasma Thruster Development: Magnetoplasmadynamic Propulsion, Status and Basic Problems.
1986-02-01
34 9 Sublimation Rates vs. Temperature for Typical Electrode Materials 65 10 Time to Reach Melting vs. Surface Heat Load (One-Dimensional, Large Area...Approx.) for Different Electrode Materials and Initial Temperatures 75 V LIST OF TABLES TABLE PAGE I Models of Thruster Types (with approximation (1...much higher specific impulse values than the minimum must be achieved in order to obtain acceptable effi- Sciencies , e.g. for 30% efficiency with argon
Internal combustion engine controls for reduced exhausts contaminants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, D.R. Jr.
1974-06-04
An electrochemical control system for achieving optimum efficiency in the catalytic conversion of hydrocarbon and carbon monoxide emissions from internal combustion engines is described. The system automatically maintains catalyst temperature at a point for maximum pollutant conversion by adjusting ignition timing and fuel/air ratio during warm-up and subsequent operation. Ignition timing is retarded during engine warm-up to bring the catalytic converter to an efficient operating temperature within a minimum period of time. After the converter reaches a predetermined minimum temperature, the spark is advanced to within its normal operating range. A needle-valve adjustment during warm-up is employed to enrich themore » fuel/air mixture by approximately 10 percent. Following warm-up and attainment of a predetermined catalyst temperature, the needle valve is moved automatically to its normal position (e.g., a fuel/air ratio of 16:1). Although the normal lean mixture causes increased amounts of nitrogen oxide emissions, present NO/sub x/ converters appear capable of handling the increased emissions under normal operating conditions.« less
Variable pressure power cycle and control system
Goldsberry, Fred L.
1984-11-27
A variable pressure power cycle and control system that is adjustable to a variable heat source is disclosed. The power cycle adjusts itself to the heat source so that a minimal temperature difference is maintained between the heat source fluid and the power cycle working fluid, thereby substantially matching the thermodynamic envelope of the power cycle to the thermodynamic envelope of the heat source. Adjustments are made by sensing the inlet temperature of the heat source fluid and then setting a superheated vapor temperature and pressure to achieve a minimum temperature difference between the heat source fluid and the working fluid.
NASA Astrophysics Data System (ADS)
Cao, Q.; Qiu, L. M.; Zhi, X. Q.; Han, L.; Gan, Z. H.; Zhang, X. B.; Zhang, X. J.; Sun, D. M.
2013-12-01
The impedance magnitude is important for the design and operation of a Stirling pulse tube cryocooler (SPTC). However, the influence of the impedance magnitude on the SPTC working at liquid-helium temperatures is still not clear due to the complexity of refrigeration mechanism at this temperature range. In this study, the influence of the impedance magnitude on the viscous and thermal losses has been investigated, which contributes to the overall refrigeration efficiency. Different from the previous study at liquid nitrogen temperatures, it has been found and verified experimentally that a higher impedance magnitude may result in a larger mass flow rate accompanied with larger losses in the warmer region, hence the refrigeration efficiency is lowered. Numerical simulation is carried out in SPTCs of different geometry dimensions and working parameters, and the experimental study is carried out in a three-stage SPTC. A minimum no-load refrigeration temperature is achieved with an appropriate impedance magnitude that is determined by the combination of frequency and precooling temperature. A lowest temperature of 4.76 K is achieved at 28 Hz and a precooling temperature of 22.6 K, which is the lowest temperature ever achieved with He-4 for SPTCs. Impedance magnitude optimization is clearly an important consideration for the design of a 4 K SPTC.
Identification of parasitic losses in Yb:YLF and prospects for optical refrigeration down to 80K.
Melgaard, Seth; Seletskiy, Denis; Polyak, Victor; Asmerom, Yemane; Sheik-Bahae, Mansoor
2014-04-07
Systematic study of Yb doping concentration in the Yb:YLF cryocoolers by means of optical and mass spectroscopies has identified iron ions as the main source of the background absorption. Parasitic absorption was observed to decrease with Yb doping, resulting in optical cooling of a 10% Yb:YLF sample to 114K ± 1K, with room temperature cooling power of 750 mW and calculated minimum achievable temperature of 93 K.
Novel inorganic nanomaterials generated with highly concentrated sunlight
NASA Astrophysics Data System (ADS)
Gordon, Jeffrey M.; Katz, Eugene A.; Feuermann, Daniel; Albu-Yaron, Ana; Levy, Moshe; Tenne, Reshef
2008-08-01
Reactors driven by highly concentrated sunlight can create conditions well suited to the synthesis of inorganic nanomaterials. We report the experimental realization of a broad range of closed-cage (fullerene-like) nanostructures, nanotubes and/or nanowires for MoS2, SiO2 and Si, achieved via solar ablation. The solar technique generates the strong temperature and radiative gradients - in addition to the extensive high-temperature annealing environment - conducive to producing such nanostructures. The identity of the nanostructures was established with TEM, HRTEM and EDS. The fullerene-like and nanotube MoS2 configurations achieved fundamentally minimum sizes predicted by molecular structural theory. Furthermore, our experiments represent the first time SiO2 nanofibers and nanospheres have been produced purely from quartz. The solar route is far less energy intensive than laser ablation and other high-temperature chemical reactors, simpler and less costly.
Tobías, Aurelio; Armstrong, Ben; Gasparrini, Antonio
2017-01-01
The minimum mortality temperature from J- or U-shaped curves varies across cities with different climates. This variation conveys information on adaptation, but ability to characterize is limited by the absence of a method to describe uncertainty in estimated minimum mortality temperatures. We propose an approximate parametric bootstrap estimator of confidence interval (CI) and standard error (SE) for the minimum mortality temperature from a temperature-mortality shape estimated by splines. The coverage of the estimated CIs was close to nominal value (95%) in the datasets simulated, although SEs were slightly high. Applying the method to 52 Spanish provincial capital cities showed larger minimum mortality temperatures in hotter cities, rising almost exactly at the same rate as annual mean temperature. The method proposed for computing CIs and SEs for minimums from spline curves allows comparing minimum mortality temperatures in different cities and investigating their associations with climate properly, allowing for estimation uncertainty.
Novel dry cryotherapy system for cooling the equine digit
Stefanovski, Darko; Lenfest, Margret; Chatterjee, Sraboni; Orsini, James
2018-01-01
Objectives Digital cryotherapy is commonly used for laminitis prophylaxis and treatment. Currently validated methods for distal limb cryotherapy involve wet application or compression technology. There is a need for a practical, affordable, dry cryotherapy method that effectively cools the digit. The objective of this study was to evaluate the hoof wall surface temperatures (HWSTs) achieved with a novel dry cryotherapy technology. Design Repeated-measures in vivo experimental study. Setting Experimental intervention at a single site. Participants 6 systemically healthy horses (3 mares, 3 geldings). Interventions Cryotherapy was applied to six horses for eight hours with a commercially available rubber and rubber and welded fabricice boot, which extended proximally to include the foot and pastern. Reusable malleable cold therapy packs were secured against the foot and pastern with the three built-in hook-and-loop fastener panels. Primary and secondary outcome measures HWST and pastern surface temperature of the cryotherapy-treated limb, HWST of the control limb and ambient temperature were recorded every five minutes throughout the study period. Results Results were analysed with mixed-effects multivariable regression analysis. The HWST (median 11.1°C, interquartile range 8.6°C–14.7°C) in the cryotherapy-treated limb was significantly decreased compared with the control limb (median 29.7°C, interquartile range 28.9°C–30.4°C) (P≤0.001). Cryotherapy limb HWST reached a minimum of 6.75°C (median) with an interquartile range of 4.1°C–9.3°C. Minimum HWST was achieved 68 minutes after cryotherapy pack application. Conclusions Dry application of cryotherapy significantly reduced HWST and reached minimums below the therapeutic target of 10°C. This cryotherapy method might offer an effective alternative for digital cooling. PMID:29344364
Process for heating coal-oil slurries
Braunlin, W.A.; Gorski, A.; Jaehnig, L.J.; Moskal, C.J.; Naylor, J.D.; Parimi, K.; Ward, J.V.
1984-01-03
Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec[sup [minus]1]. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72. 29 figs.
Process for heating coal-oil slurries
Braunlin, Walter A.; Gorski, Alan; Jaehnig, Leo J.; Moskal, Clifford J.; Naylor, Joseph D.; Parimi, Krishnia; Ward, John V.
1984-01-03
Controlling gas to slurry volume ratio to achieve a gas holdup of about 0.4 when heating a flowing coal-oil slurry and a hydrogen containing gas stream allows operation with virtually any coal to solvent ratio and permits operation with efficient heat transfer and satisfactory pressure drops. The critical minimum gas flow rate for any given coal-oil slurry will depend on numerous factors such as coal concentration, coal particle size distribution, composition of the solvent (including recycle slurries), and type of coal. Further system efficiency can be achieved by operating with multiple heating zones to provide a high heat flux when the apparent viscosity of the gas saturated slurry is highest. Operation with gas flow rates below the critical minimum results in system instability indicated by temperature excursions in the fluid and at the tube wall, by a rapid increase and then decrease in overall pressure drop with decreasing gas flow rate, and by increased temperature differences between the temperature of the bulk fluid and the tube wall. At the temperatures and pressures used in coal liquefaction preheaters the coal-oil slurry and hydrogen containing gas stream behaves essentially as a Newtonian fluid at shear rates in excess of 150 sec.sup. -1. The gas to slurry volume ratio should also be controlled to assure that the flow regime does not shift from homogeneous flow to non-homogeneous flow. Stable operations have been observed with a maximum gas holdup as high as 0.72.
Extreme Brightness Temperatures and Refractive Substructure in 3C273 with RadioAstron
NASA Astrophysics Data System (ADS)
Johnson, Michael D.; Kovalev, Yuri Y.; Gwinn, Carl R.; Gurvits, Leonid I.; Narayan, Ramesh; Macquart, Jean-Pierre; Jauncey, David L.; Voitsik, Peter A.; Anderson, James M.; Sokolovsky, Kirill V.; Lisakov, Mikhail M.
2016-03-01
Earth-space interferometry with RadioAstron provides the highest direct angular resolution ever achieved in astronomy at any wavelength. RadioAstron detections of the classic quasar 3C 273 on interferometric baselines up to 171,000 km suggest brightness temperatures exceeding expected limits from the “inverse-Compton catastrophe” by two orders of magnitude. We show that at 18 cm, these estimates most likely arise from refractive substructure introduced by scattering in the interstellar medium. We use the scattering properties to estimate an intrinsic brightness temperature of 7× {10}12 {{K}}, which is consistent with expected theoretical limits, but which is ˜15 times lower than estimates that neglect substructure. At 6.2 cm, the substructure influences the measured values appreciably but gives an estimated brightness temperature that is comparable to models that do not account for the substructure. At 1.35 {{cm}}, the substructure does not affect the extremely high inferred brightness temperatures, in excess of {10}13 {{K}}. We also demonstrate that for a source having a Gaussian surface brightness profile, a single long-baseline estimate of refractive substructure determines an absolute minimum brightness temperature, if the scattering properties along a given line of sight are known, and that this minimum accurately approximates the apparent brightness temperature over a wide range of total flux densities.
Physical requirements and milestones for the HIT-PoP Experiment
NASA Astrophysics Data System (ADS)
Jarboe, Thomas
2011-10-01
Recent success with HIT-SI demonstrates the viability of steady inductive helicity injection (SIHI) as a spheromak formation and sustainment method. Results include the sustainment of toroidal current of over 50 kA, up to 40 kA of plasma current that is separate from the injectors, toroidal flux up to 6 times the peak injected flux, and j/n > 1014Am. All were achieved with 10MW or less applied power. This paper explores the requirements for a confinement test of the concept using a larger proof of principle experiment. The confinement experiment must not exceed the beta limit, the drift parameter limit, or the wall loading limit, where the drift parameter is (drift of electrons relative to ions to produce current)/(ion thermal speed). It must also exceed a minimum j/n, a minimum n a, and a minimum electron temperature, where a is the minor radius. The drift parameter limit and beta limit appear to play defining roles in spheromak performance leading to a very favorable scaling of wall loading with size. The milestones sequence suggested is the following: 1. Startup at drift parameter and beta limit minimum density. 2. Raise current until j/n exceeds 10-14Am. 3. Raise the current and temperature until T ~ 50 eV for good ionization. 4. Raise the current and density until n a > 2x1019 m-2 for neutral screening. 5. Raise current and temperature until T > 200eV so magnetic confinement can be studied.
Statistical physics when the minimum temperature is not absolute zero
NASA Astrophysics Data System (ADS)
Chung, Won Sang; Hassanabadi, Hassan
2018-04-01
In this paper, the nonzero minimum temperature is considered based on the third law of thermodynamics and existence of the minimal momentum. From the assumption of nonzero positive minimum temperature in nature, we deform the definitions of some thermodynamical quantities and investigate nonzero minimum temperature correction to the well-known thermodynamical problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nogueira, C. P. S. M.; Guimarães, J. G.
In this paper, an auto-associative neural network using single-electron tunneling (SET) devices is proposed and simulated at low temperature. The nanoelectronic auto-associative network is able to converge to a stable state, previously stored during training. The recognition of the pattern involves decreasing the energy of the input state until it achieves a point of local minimum energy, which corresponds to one of the stored patterns.
Composite-cavity-based Fabry-Perot interferometric strain sensors.
Zhang, Jianzhong; Peng, G D; Yuan, Libo; Sun, Weimin
2007-07-01
A composite-cavity-based Fabry-Perot interferometric strain sensor system is proposed to gain the minimum cross sensitivity to temperature and a high multiplexing capability at the same time. The interrogation of the sensor system is based on a white-light interferometric technology, and the demodulation is achieved by analyzing the coherence spectra. A demonstration system with two sensors is presented and tested.
Inflight fuel tank temperature survey data
NASA Technical Reports Server (NTRS)
Pasion, A. J.
1979-01-01
Statistical summaries of the fuel and air temperature data for twelve different routes and for different aircraft models (B747, B707, DC-10 and DC-8), are given. The minimum fuel, total air and static air temperature expected for a 0.3% probability were summarized in table form. Minimum fuel temperature extremes agreed with calculated predictions and the minimum fuel temperature did not necessarily equal the minimum total air temperature even for extreme weather, long range flights.
An evaluation of 2 new devices for nasal high-flow gas therapy.
Waugh, Jonathan B; Granger, Wesley M
2004-08-01
The traditional nasal cannula with bubble humidifier is limited to a maximum flow of 6 L/min to minimize the risk of complications. We conducted a bench study of 2 new Food and Drug Administration-approved nasal cannula/humidifier products designed to deliver at flows> 6 L/min. Using a digital psychrometer we measured the relative humidity and temperature of delivered gas from each device, at 5 L/min increments over the specified functional high-flow range. The Salter Labs unit achieved 72.5-78.7% relative humidity (5-15 L/min range) at ambient temperature (21-23 degrees C). The Vapotherm device achieved 99.9% relative humidity at a temperature setting of 37 degrees C (5-40 L/min). Both devices meet minimum humidification standards and offer practical new treatment options. The patient-selection criteria are primarily the severity of the patient's condition and cost.
Modified DHTT Equipment for Crystallization Studies of Mold Slags
NASA Astrophysics Data System (ADS)
Kölbl, Nathalie; Harmuth, Harald; Marschall, Irmtraud
2018-04-01
The double hot thermocouple technique (DHTT) enables simulations of the temperature gradient at near-service conditions during continuous casting of steel. With the equipment applied so far, a rectangular slag film of even thickness often cannot be achieved. Further, the minimum temperature frequently lies within the slag film. Modified equipment can avoid these disadvantages via the following design features. The entire furnace chamber is heated to the selected temperature of the cold wire, and the minimum temperature is not located within the slag film. Furthermore, the shape of the heating wire is improved, which enables mounting of a thin, rectangular slag film between four platinum wires. This modification allows for investigations on transparent and translucent slags. So far, the results from DHTT investigations were represented via snapshots of the samples at certain experimental times. Therefore, appropriate methods for the graphical representation of the results were suggested: the maximum crystallinity, the time related to certain crystallinities with a dependence on the position within the slag film, and the crystal growth rate. The CaO-MgO-Al2O3-SiO2 slag investigated with this equipment was mineralogically examined additionally, and based on thermodynamic calculations, the allocation of temperatures to certain positions within the crystallized slag film was possible.
Advanced technology for space shuttle auxiliary propellant valves
NASA Technical Reports Server (NTRS)
Wichmann, H.
1973-01-01
Valves for the gaseous hydrogen/gaseous oxygen shuttle auxiliary propulsion system are required to feature low leakage over a wide temperature range coupled with high cycle life, long term compatibility and minimum maintenance. In addition, those valves used as thruster shutoff valves must feature fast response characteristics to achieve small, repeatable minimum impulse bits. These valve technology problems are solved by developing unique valve components such as sealing closures, guidance devices, and actuation means and by demonstrating two prototype valve concepts. One of the prototype valves is cycled over one million cycles without exceeding a leakage rate of 27 scc's per hour at 450 psia helium inlet pressure throughout the cycling program.
Simulation of a double-effect LiBr/H{sub 2}O absorption cooling system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wardono, B.; Nelson, R.
1996-10-01
Since commercially-available, double-effect, absorption cooling systems give relatively high performance for using solar energy or other medium-temperature sources, their performance was simulated and studied. To evaluate the cooling system performance, two objective functions were established: the system performance (COP) and the system cost. The system cost was used as the objective function to determine the optimum design of the system, while the COP was used to evaluate the effects of each variable on the system performance. The system optimization shows that there is an economic optimum heat-transfer area for each heat exchanger. Further study shows that this is a globalmore » minimum cost of the system. The best COPs that could be achieved by changing the heat-transfer areas and the inlet hot water temperature vary between 1.4 and 1.5. Higher COPs of approximately 1.6 were achieved if higher chilled water inlet temperatures or lower cooling water temperatures are used. These conditions are not desirable since higher chilled water inlet temperatures are not useful for cooling, and lower cooling water inlet temperatures are not usually available.« less
Experimental and Theoretical Study on Minimum Achievable Foil Thickness during Asymmetric Rolling
Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang
2014-01-01
Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the ‘cross-shear’ zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling. PMID:25203265
Three-dimensional laser cooling at the Doppler limit
NASA Astrophysics Data System (ADS)
Chang, R.; Hoendervanger, A. L.; Bouton, Q.; Fang, Y.; Klafka, T.; Audo, K.; Aspect, A.; Westbrook, C. I.; Clément, D.
2014-12-01
Many predictions of Doppler-cooling theory of two-level atoms have never been verified in a three-dimensional geometry, including the celebrated minimum achievable temperature ℏ Γ /2 kB , where Γ is the transition linewidth. Here we show that, despite their degenerate level structure, we can use helium-4 atoms to achieve a situation in which these predictions can be verified. We make measurements of atomic temperatures, magneto-optical trap sizes, and the sensitivity of optical molasses to a power imbalance in the laser beams, finding excellent agreement with Doppler theory. We show that the special properties of helium, particularly its small mass and narrow transition linewidth, prevent effective sub-Doppler cooling with red-detuned optical molasses. This discussion can be generalized to identify when a given species is likely to be subject to the same limitation.
NASA Astrophysics Data System (ADS)
Yan, Tiezhu; Shen, Zhenyao; Heng, Lee; Dercon, Gerd
2016-04-01
Future climate change information is important to formulate adaptation and mitigation strategies for climate change. In this study, a statistical downscaling model (SDSM) was established using both NCEP reanalysis data and ground observations (daily maximum and minimum temperature) during the period 1971-2010, and then calibrated model was applied to generate the future maximum and minimum temperature projections using predictors from the two CMIP5 models (MPI-ESM-LR and CNRM-CM5) under two Representative Concentration Pathway (RCP2.6 and RCP8.5) during the period 2011-2100 for the Haihe River Basin, China. Compared to the baseline period, future change in annual and seasonal maximum and minimum temperature was computed after bias correction. The spatial distribution and trend change of annual maximum and minimum temperature were also analyzed using ensemble projections. The results shows that: (1)The downscaling model had a good applicability on reproducing daily and monthly mean maximum and minimum temperature over the whole basin. (2) Bias was observed when using historical predictors from CMIP5 models and the performance of CNRM-CM5 was a little worse than that of MPI-ESM-LR. (3) The change in annual mean maximum and minimum temperature under the two scenarios in 2020s, 2050s and 2070s will increase and magnitude of maximum temperature will be higher than minimum temperature. (4) The increase in temperature in the mountains and along the coastline is remarkably high than the other parts of the studies basin. (5) For annual maximum and minimum temperature, the significant upward trend will be obtained under RCP 8.5 scenario and the magnitude will be 0.37 and 0.39 ℃ per decade, respectively; the increase in magnitude under RCP 2.6 scenario will be upward in 2020s and then decrease in 2050s and 2070s, and the magnitude will be 0.01 and 0.01℃ per decade, respectively.
Hanssler, L; Tennhoff, W; Roll, C
1992-01-01
A humidifier system for neonatology that functions according to the 'membrane humidification' principle was subjected to a performance test in our laboratory. Humidification and heating of the respiratory gases took place in a module consisting of a net of hollow fibres placed inside the incubator. In 18 measurement combinations flow, respiratory gas temperature, and incubator temperature were varied. At respiratory gas temperatures within the range of 33-37 degrees C the minimum international standard for the absolute air humidity in the respiratory gas was achieved or exceeded in all measurements. No controlled clinical tests regarding the importance and long term effects of different temperatures and different humidity levels in the inspiratory air are yet available for the ventilation treatment of neonates. PMID:1444554
40 CFR 60.37e - Compliance, performance testing, and monitoring guidelines.
Code of Federal Regulations, 2010 CFR
2010-07-01
... requirements: (1) Establish maximum charge rate and minimum secondary chamber temperature as site-specific... above the maximum charge rate or below the minimum secondary chamber temperature measured as 3-hour... below the minimum secondary chamber temperature shall constitute a violation of the established...
Temperature fine-tunes Mediterranean Arabidopsis thaliana life-cycle phenology geographically.
Marcer, A; Vidigal, D S; James, P M A; Fortin, M-J; Méndez-Vigo, B; Hilhorst, H W M; Bentsink, L; Alonso-Blanco, C; Picó, F X
2018-01-01
To understand how adaptive evolution in life-cycle phenology operates in plants, we need to unravel the effects of geographic variation in putative agents of natural selection on life-cycle phenology by considering all key developmental transitions and their co-variation patterns. We address this goal by quantifying the temperature-driven and geographically varying relationship between seed dormancy and flowering time in the annual Arabidopsis thaliana across the Iberian Peninsula. We used data on genetic variation in two major life-cycle traits, seed dormancy (DSDS50) and flowering time (FT), in a collection of 300 A. thaliana accessions from the Iberian Peninsula. The geographically varying relationship between life-cycle traits and minimum temperature, a major driver of variation in DSDS50 and FT, was explored with geographically weighted regressions (GWR). The environmentally varying correlation between DSDS50 and FT was analysed by means of sliding window analysis across a minimum temperature gradient. Maximum local adjustments between minimum temperature and life-cycle traits were obtained in the southwest Iberian Peninsula, an area with the highest minimum temperatures. In contrast, in off-southwest locations, the effects of minimum temperature on DSDS50 were rather constant across the region, whereas those of minimum temperature on FT were more variable, with peaks of strong local adjustments of GWR models in central and northwest Spain. Sliding window analysis identified a minimum temperature turning point in the relationship between DSDS50 and FT around a minimum temperature of 7.2 °C. Above this minimum temperature turning point, the variation in the FT/DSDS50 ratio became rapidly constrained and the negative correlation between FT and DSDS50 did not increase any further with increasing minimum temperatures. The southwest Iberian Peninsula emerges as an area where variation in life-cycle phenology appears to be restricted by the duration and severity of the hot summer drought. The temperature-driven varying relationship between DSDS50 and FT detected environmental boundaries for the co-evolution between FT and DSDS50 in A. thaliana. In the context of global warming, we conclude that A. thaliana phenology from the southwest Iberian Peninsula, determined by early flowering and deep seed dormancy, might become the most common life-cycle phenotype for this annual plant in the region. © 2017 German Botanical Society and The Royal Botanical Society of the Netherlands.
Simulation of hydrodynamics, temperature, and dissolved oxygen in Beaver Lake, Arkansas, 1994-1995
Haggard, Brian; Green, W. Reed
2002-01-01
The tailwaters of Beaver Lake and other White River reservoirs support a cold-water trout fishery of significant economic yield in northwestern Arkansas. The Arkansas Game and Fish Commission has requested an increase in existing minimum flows through the Beaver Lake dam to increase the amount of fishable waters downstream. Information is needed to assess the impact of additional minimum flows on temperature and dissolved-oxygen qualities of reservoir water above the dam and the release water. A two-dimensional, laterally averaged hydrodynamic, thermal and dissolved-oxygen model was developed and calibrated for Beaver Lake, Arkansas. The model simulates surface-water elevation, currents, heat transport and dissolved-oxygen dynamics. The model was developed to assess the impacts of proposed increases in minimum flows from 1.76 cubic meters per second (the existing minimum flow) to 3.85 cubic meters per second (the additional minimum flow). Simulations included assessing (1) the impact of additional minimum flows on tailwater temperature and dissolved-oxygen quality and (2) increasing initial water-surface elevation 0.5 meter and assessing the impact of additional minimum flow on tailwater temperatures and dissolved-oxygen concentrations. The additional minimum flow simulation (without increasing initial pool elevation) appeared to increase the water temperature (<0.9 degrees Celsius) and decrease dissolved oxygen concentration (<2.2 milligrams per liter) in the outflow discharge. Conversely, the additional minimum flow plus initial increase in pool elevation (0.5 meter) simulation appeared to decrease outflow water temperature (0.5 degrees Celsius) and increase dissolved oxygen concentration (<1.2 milligrams per liter) through time. However, results from both minimum flow scenarios for both water temperature and dissolved oxygen concentration were within the boundaries or similar to the error between measured and simulated water column profile values.
NASA Astrophysics Data System (ADS)
Narasimha Murthy, K. V.; Saravana, R.; Vijaya Kumar, K.
2018-04-01
The paper investigates the stochastic modelling and forecasting of monthly average maximum and minimum temperature patterns through suitable seasonal auto regressive integrated moving average (SARIMA) model for the period 1981-2015 in India. The variations and distributions of monthly maximum and minimum temperatures are analyzed through Box plots and cumulative distribution functions. The time series plot indicates that the maximum temperature series contain sharp peaks in almost all the years, while it is not true for the minimum temperature series, so both the series are modelled separately. The possible SARIMA model has been chosen based on observing autocorrelation function (ACF), partial autocorrelation function (PACF), and inverse autocorrelation function (IACF) of the logarithmic transformed temperature series. The SARIMA (1, 0, 0) × (0, 1, 1)12 model is selected for monthly average maximum and minimum temperature series based on minimum Bayesian information criteria. The model parameters are obtained using maximum-likelihood method with the help of standard error of residuals. The adequacy of the selected model is determined using correlation diagnostic checking through ACF, PACF, IACF, and p values of Ljung-Box test statistic of residuals and using normal diagnostic checking through the kernel and normal density curves of histogram and Q-Q plot. Finally, the forecasting of monthly maximum and minimum temperature patterns of India for the next 3 years has been noticed with the help of selected model.
640x480 PtSi Stirling-cooled camera system
NASA Astrophysics Data System (ADS)
Villani, Thomas S.; Esposito, Benjamin J.; Davis, Timothy J.; Coyle, Peter J.; Feder, Howard L.; Gilmartin, Harvey R.; Levine, Peter A.; Sauer, Donald J.; Shallcross, Frank V.; Demers, P. L.; Smalser, P. J.; Tower, John R.
1992-09-01
A Stirling cooled 3 - 5 micron camera system has been developed. The camera employs a monolithic 640 X 480 PtSi-MOS focal plane array. The camera system achieves an NEDT equals 0.10 K at 30 Hz frame rate with f/1.5 optics (300 K background). At a spatial frequency of 0.02 cycles/mRAD the vertical and horizontal Minimum Resolvable Temperature are in the range of MRT equals 0.03 K (f/1.5 optics, 300 K background). The MOS focal plane array achieves a resolution of 480 TV lines per picture height independent of background level and position within the frame.
Harvey, Sophie; Callaby, Jo; Roberts, Lesley
2017-08-01
Inappropriate infant and young child feeding practices contribute to malnutrition, infection and long-term development limitation. To explore complementary feeding and food safety in Muhoroni District, Nyanza Province in rural Kenya. To compare practices with the Infant and Young Child Feeding (IYCF) guidelines, and identify associations with inappropriate practices. Between January and April 2014, a questionnaire completed by primary caregivers of children aged 6-23 months asked about foods the child had received in the previous 24 hours, the introduction of complementary foods, and the food hygiene practices undertaken by the caregiver. The most recent World Health Organization IYCF core indicators (continued breastfeeding at 1 year; minimum dietary diversity; minimum meal frequency; minimum acceptable diet) were determined for 400 children. These indicators were compared with demographic indicators in multivariate analyses to identify associations with appropriate complementary feeding practices. A total of 55.2% of children aged 12-15 months continued to be breastfed at the time of questioning. Of the study population, 61.5% achieved minimum dietary diversity, 70.8% achieved minimum meal frequency and 43.0% achieved minimum acceptable diet. Older children were more likely to achieve minimum dietary diversity and minimum acceptable diet; however, they were also less likely to achieve minimum meal frequency. High levels of hygiene practices were reported in all areas of food safety. Complementary feeding indicators were higher than nationally, although less than half of children (43.0%) were receiving a minimum acceptable diet. Further work should explore the potential relationship between age and adequate infant feeding.
Stagnation Temperature Recording
NASA Technical Reports Server (NTRS)
Wimmer, W
1941-01-01
The present report deals with the development of a thermometer for recording stagnation temperature in compressible mediums in turbulent flow within 1 to 2 percent error of the adiabatic temperature in the stagnation point, depending upon the speed. This was achieved by placing the junction of a thermocouple near the stagnation point of an aerodynamically beneficial body, special care being taken to assure an uninterrupted supply of fresh compressed air on the junction together with the use of metals of low thermal conductivity, thus keeping heat-transfer and heat-dissipation losses to a minimum. In other experiments the use of the plate thermometer was proved unsuitable for practical measurements by reason of its profound influence in the reading by the Reynolds number and by the direction of flow.
Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning
2015-01-01
The electronic structure of low temperature, solution-processed indium–zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm2 V−1 s−1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels. PMID:26190964
Socratous, Josephine; Banger, Kulbinder K; Vaynzof, Yana; Sadhanala, Aditya; Brown, Adam D; Sepe, Alessandro; Steiner, Ullrich; Sirringhaus, Henning
2015-03-25
The electronic structure of low temperature, solution-processed indium-zinc oxide thin-film transistors is complex and remains insufficiently understood. As commonly observed, high device performance with mobility >1 cm 2 V -1 s -1 is achievable after annealing in air above typically 250 °C but performance decreases rapidly when annealing temperatures ≤200 °C are used. Here, the electronic structure of low temperature, solution-processed oxide thin films as a function of annealing temperature and environment using a combination of X-ray photoelectron spectroscopy, ultraviolet photoelectron spectroscopy, and photothermal deflection spectroscopy is investigated. The drop-off in performance at temperatures ≤200 °C to incomplete conversion of metal hydroxide species into the fully coordinated oxide is attributed. The effect of an additional vacuum annealing step, which is beneficial if performed for short times at low temperatures, but leads to catastrophic device failure if performed at too high temperatures or for too long is also investigated. Evidence is found that during vacuum annealing, the workfunction increases and a large concentration of sub-bandgap defect states (re)appears. These results demonstrate that good devices can only be achieved in low temperature, solution-processed oxides if a significant concentration of acceptor states below the conduction band minimum is compensated or passivated by shallow hydrogen and oxygen vacancy-induced donor levels.
Estimating missing daily temperature extremes in Jaffna, Sri Lanka
NASA Astrophysics Data System (ADS)
Thevakaran, A.; Sonnadara, D. U. J.
2018-04-01
The accuracy of reconstructing missing daily temperature extremes in the Jaffna climatological station, situated in the northern part of the dry zone of Sri Lanka, is presented. The adopted method utilizes standard departures of daily maximum and minimum temperature values at four neighbouring stations, Mannar, Anuradhapura, Puttalam and Trincomalee to estimate the standard departures of daily maximum and minimum temperatures at the target station, Jaffna. The daily maximum and minimum temperatures from 1966 to 1980 (15 years) were used to test the validity of the method. The accuracy of the estimation is higher for daily maximum temperature compared to daily minimum temperature. About 95% of the estimated daily maximum temperatures are within ±1.5 °C of the observed values. For daily minimum temperature, the percentage is about 92. By calculating the standard deviation of the difference in estimated and observed values, we have shown that the error in estimating the daily maximum and minimum temperatures is ±0.7 and ±0.9 °C, respectively. To obtain the best accuracy when estimating the missing daily temperature extremes, it is important to include Mannar which is the nearest station to the target station, Jaffna. We conclude from the analysis that the method can be applied successfully to reconstruct the missing daily temperature extremes in Jaffna where no data is available due to frequent disruptions caused by civil unrests and hostilities in the region during the period, 1984 to 2000.
NASA Astrophysics Data System (ADS)
Melgaard, Seth D.; Seletskiy, Denis V.; Di Lieto, Alberto; Tonelli, Mauro; Sheik-Bahae, Mansoor
2012-03-01
Since recent demonstration of cryogenic optical refrigeration, a need for reliable characterization tools of cooling performance of different materials is in high demand. We present our experimental apparatus that allows for temperature and wavelength dependent characterization of the materials' cooling efficiency and is based on highly sensitive spectral differencing technique or two-band differential spectral metrology (2B-DSM). First characterization of a 5% w.t. ytterbium-doped YLF crystal showed quantitative agreement with the current laser cooling model, as well as measured a minimum achievable temperature (MAT) at 110 K. Other materials and ion concentrations are also investigated and reported here.
Densmore, A; Xu, D-X; Janz, S; Waldron, P; Mischki, T; Lopinski, G; Delâge, A; Lapointe, J; Cheben, P; Lamontagne, B; Schmid, J H
2008-03-15
We demonstrate a new silicon photonic wire waveguide evanescent field (PWEF) sensor that exploits the strong evanescent field of the transverse magnetic mode of this high-index-contrast, submicrometer-dimension waveguide. High sensitivity is achieved by using a 2 mm long double-spiral waveguide structure that fits within a compact circular area of 150 microm diameter, facilitating compatibility with commercial spotting apparatus and the fabrication of densely spaced sensor arrays. By incorporating the PWEF sensor element into a balanced waveguide Mach-Zehnder interferometer circuit, a minimum detectable mass of approximately 10 fg of streptavidin protein is demonstrated with near temperature-independent response.
Daily Temperature and Precipitation Data for 223 Former-USSR Stations (NDP-040)
Razuvaev, V. N. [Russian Research Institute of Hydrometeorological Information-World Data Centre; Apasova, E. B. [Russian Research Institute of Hydrometeorological Information-World Data Centre; Martuganov, R. A. [Russian Research Institute of Hydrometeorological Information-World Data Centre
1990-01-01
The stations in this dataset are considered by RIHMI to comprise one of the best networks suitable for temperature and precipitation monitoring over the the former-USSR. Factors involved in choosing these 223 stations included length or record, amount of missing data, and achieving reasonably good geographic coverage. There are indeed many more stations with daily data over this part of the world, and hundreds more station records are available through NOAA's Global Historical Climatology Network - Daily (GHCND) database. The 223 stations comprising this database are included in GHCND, but different data processing, updating, and quality assurance methods/checks mean that the agreement between records will vary depending on the station. The relative quality and accuracy of the common station records in the two databases also cannot be easily assessed. As of this writing, most of the common stations contained in the GHCND have more recent records, but not necessarily records starting as early as the records available here. This database contains four variables: daily mean, minimum, and maximum temperature, and daily total precipitation (liquid equivalent). Temperature were taken three times a day from 1881-1935, four times a day from 1936-65, and eight times a day since 1966. Daily mean temperature is defined as the average of all observations for each calendar day. Daily maximum/minimum temperatures are derived from maximum/minimum thermometer measurements. See the measurement description file for further details. Daily precipitation totals are also available (to the nearest tenth of a millimeter) for each station. Throughout the record, daily precipitation is defined as the total amount of precipitation recorded during a 24-h period, snowfall being converted to a liquid total by melting the snow in the gauge. From 1936 on, rain gauges were checked several times each day; the cumulative total of all observations during a calendar day was presumably used as the daily total. Again, see the measurement description file for further details.
Identification of weather variables sensitive to dysentery in disease-affected county of China.
Liu, Jianing; Wu, Xiaoxu; Li, Chenlu; Xu, Bing; Hu, Luojia; Chen, Jin; Dai, Shuang
2017-01-01
Climate change mainly refers to long-term change in weather variables, and it has significant impact on sustainability and spread of infectious diseases. Among three leading infectious diseases in China, dysentery is exclusively sensitive to climate change. Previous researches on weather variables and dysentery mainly focus on determining correlation between dysentery incidence and weather variables. However, the contribution of each variable to dysentery incidence has been rarely clarified. Therefore, we chose a typical county in epidemic of dysentery as the study area. Based on data of dysentery incidence, weather variables (monthly mean temperature, precipitation, wind speed, relative humidity, absolute humidity, maximum temperature, and minimum temperature) and lagged analysis, we used principal component analysis (PCA) and classification and regression trees (CART) to examine the relationships between the incidence of dysentery and weather variables. Principal component analysis showed that temperature, precipitation, and humidity played a key role in determining transmission of dysentery. We further selected weather variables including minimum temperature, precipitation, and relative humidity based on results of PCA, and used CART to clarify contributions of these three weather variables to dysentery incidence. We found when minimum temperature was at a high level, the high incidence of dysentery occurred if relative humidity or precipitation was at a high level. We compared our results with other studies on dysentery incidence and meteorological factors in areas both in China and abroad, and good agreement has been achieved. Yet, some differences remain for three reasons: not identifying all key weather variables, climate condition difference caused by local factors, and human factors that also affect dysentery incidence. This study hopes to shed light on potential early warnings for dysentery transmission as climate change occurs, and provide a theoretical basis for the control and prevention of dysentery. Copyright © 2016 Elsevier B.V. All rights reserved.
Climate Prediction Center - Monitoring and Data - Regional Climate Maps:
; Precipitation & Temperature > Regional Climate Maps: USA Menu Weekly 1-Month 3-Month 12-Month Weekly Total Precipitation Average Temperature Extreme Maximum Temperature Extreme Minimum Temperature Departure of Average Temperature from Normal Extreme Apparent Temperature Minimum Wind Chill Temperature
NASA Technical Reports Server (NTRS)
Wilson, Robert M.
2013-01-01
Examined are the annual averages, 10-year moving averages, decadal averages, and sunspot cycle (SC) length averages of the mean, maximum, and minimum surface air temperatures and the diurnal temperature range (DTR) for the Armagh Observatory, Northern Ireland, during the interval 1844-2012. Strong upward trends are apparent in the Armagh surface-air temperatures (ASAT), while a strong downward trend is apparent in the DTR, especially when the ASAT data are averaged by decade or over individual SC lengths. The long-term decrease in the decadaland SC-averaged annual DTR occurs because the annual minimum temperatures have risen more quickly than the annual maximum temperatures. Estimates are given for the Armagh annual mean, maximum, and minimum temperatures and the DTR for the current decade (2010-2019) and SC24.
40 CFR 63.1257 - Test methods and compliance procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
...)(2), or 63.1256(h)(2)(i)(C) with a minimum residence time of 0.5 seconds and a minimum temperature of... temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B) For a...
40 CFR 63.1257 - Test methods and compliance procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
...)(2), or 63.1256(h)(2)(i)(C) with a minimum residence time of 0.5 seconds and a minimum temperature of... temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B) For a...
40 CFR 63.1257 - Test methods and compliance procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
...)(2), or 63.1256(h)(2)(i)(C) with a minimum residence time of 0.5 seconds and a minimum temperature of... temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B) For a...
Schenning, Katie J.; Casson, Henry; Click, Sarah V.; Brambrink, Lucas; Chatkupt, Thomas T.; Alkayed, Nabil J.; Hutchens, Michael P.
2016-01-01
At room temperature, the vapor pressures of desflurane, isoflurane, and sevoflurane are well above the clinically useful range. We hypothesized that therapeutic concentrations of these agents could be achieved at temperatures below zero, but the vapor pressure-temperature relationship is unknown below zero. Secondarily, we hypothesized that this relationship could be exploited to deliver therapeutic-range concentrations of anesthetic vapor. We therefore set out to determine the low temperature-vapor pressure relationships of each anesthetic agent thereby identifying the saturated vapor concentration of each agent at any temperature below zero. To test our hypothesis, we measured the saturated vapor concentration at 1 atmosphere of pressure for temperatures between -60°C and 0°C thus developing an empiric relationship for each agent. There was consistency in repeated experiments for all three agents. To test the empiric data we constructed a digitally-controlled thermoelectric anesthetic vaporizer, characterized the device, and used it to deliver anesthetic vapor to laboratory mice. We report, for the first time, the temperature-vapor pressure relationship at temperatures below 0°C for desflurane, isoflurane, and sevoflurane as well as the TMAC of these agents: the temperature at which the vapor pressure is equal to the minimum alveolar concentration. We describe the construction and limited validation of an anesthetic vaporizer prototype based on this principle. We conclude that clinically relevant concentrations of volatile anesthetics may be achieved at low temperatures. PMID:27632346
Schenning, Katie J; Casson, Henry; Click, Sarah V; Brambrink, Lucas; Chatkupt, Thomas T; Alkayed, Nabil J; Hutchens, Michael P
2017-02-01
At room temperature, the vapor pressures of desflurane, isoflurane, and sevoflurane are well above the clinically useful range. We hypothesized that therapeutic concentrations of these agents could be achieved at temperatures below 0°C, but the vapor pressure-temperature relationship is unknown below 0. Second, we hypothesized that this relationship could be exploited to deliver therapeutic-range concentrations of anesthetic vapor. We therefore set out to determine the low temperature-vapor pressure relationships of each anesthetic agent, thereby identifying the saturated vapor concentration of each agent at any temperature below 0°C. To test our hypothesis, we measured the saturated vapor concentration at 1 atm of pressure for temperatures between -60 and 0°C, thus developing an empiric relationship for each agent. There was consistency in repeated experiments for all 3 agents. To test the empiric data, we constructed a digitally controlled thermoelectric anesthetic vaporizer, characterized the device, and used it to deliver anesthetic vapor to laboratory mice. We report, for the first time, the temperature-vapor pressure relationship at temperatures below 0°C for desflurane, isoflurane, and sevoflurane as well as the TMAC of these agents: the temperature at which the vapor pressure is equal to the minimum alveolar concentration. We describe the construction and limited validation of an anesthetic vaporizer prototype on the basis of this principle. We conclude that clinically relevant concentrations of volatile anesthetics may be achieved at low temperatures.
24/7 Solar Minimum Polar Cap and Auroral Ion Temperature Observations
NASA Technical Reports Server (NTRS)
Sojka, Jan J.; Nicolls, Michael; van Eyken, Anthony; Heinselman, Craig; Bilitza, Dieter
2011-01-01
During the International Polar Year (IPY) two Incoherent Scatter Radars (ISRs) achieved close to 24/7 continuous observations. This presentation describes their data sets and specifically how they can provide the International Reference Ionosphere (IRI) a fiduciary E- and F-region ionosphere description for solar minimum conditions in both the auroral and polar cap regions. The ionospheric description being electron density, ion temperature and electron temperature profiles from as low as 90 km extending to several scale heights above the F-layer peak. The auroral location is Poker Flat in Alaska at 65.1 N latitude, 212.5 E longitude where the NSF s new Poker Flat Incoherent Scatter Radar (PFISR) is located. This location during solar minimum conditions is in the auroral region for most of the day but is at midlatitudes, equator ward of the cusp, for about 4-8 h per day dependent upon geomagnetic activity. In contrast the polar location is Svalbard, at 78.2 N latitude, 16.0 E longitude where the EISCAT Svalbard Radar (ESR) is located. For most of the day the ESR is in the Northern Polar Cap with a noon sector passage often through the dayside cusp. Of unique relevance to IRI is that these extended observations have enabled the ionospheric morphology to be distinguished between quiet and disturbed geomagnetic conditions. During the IPY year, 1 March 2007 - 29 February 2008, about 50 solar wind Corotating Interaction Regions (CIRs) impacted geospace. Each CIR has a two to five day geomagnetic disturbance that is observed in the ESR and PFISR observations. Hence, this data set also enables the quiet-background ionospheric climatology to be established as a function of season and local time. These two separate climatologies for the ion temperature at an altitude of 300 km are presented and compared with IRI ion temperatures. The IRI ion temperatures are about 200-300 K hotter than the observed values. However, the MSIS neutral temperature at 300 km compares favorably with the quiet-background in temperature, both in magnitude and climatology.
Frost damage in citric and olive production as the result of climate degradation
NASA Astrophysics Data System (ADS)
Saa Requejo, A.; Díaz Alvarez, M. C.; Tarquis, A. M.; Burgaz Moreno, F.; Garcia Moreno, R.
2009-04-01
Low temperature is one of the chief limiting factors in plant distribution. Freezing temperature shortens the growing season and may lower the yield and quality of any number of fruit crops. Minimum temperatures records for the Spanish region of Murcia were studied as limiting factor in fruit production. An analysis of temperature series since 1935 showed that the range of the absolute minimum temperatures (Tmin) on frost days in the target year, namely -0.5 °C to -4.0°C, was statistically similar to the range recorded in 1993, while the mean minimum temperatures (tmin) were found to have risen. The historical series also showed the mean minimum temperatures (tmin) to have increased, however. Through 1985, tmin ranged from 4.0 to -2.0 °C, depending on the area, while these limits shifted in more recent years to 7.0 - 0.5 °C. This increase in mean temperature produced that the frost episodes in March 2004 was considered by lemon, mandarin and olive producers as the worst in many years for frost damage since the minimum temperature was reached in a more sensitive phenological stage, despite the statistical evidence that similar freezing temperatures had been reached on similar dates in other years.
Zhu, Songming; Naim, Fadia; Marcotte, Michèle; Ramaswamy, Hosahalli; Shao, Yanwen
2008-08-15
High pressure (HP) is an alternative technique for thermal sterilization of foods with minimum quality loss. HP destruction kinetics of bacterial spores is essential to establishing sterilization process, but knowledge in this field is still very limited. In this study, destruction kinetics was investigated using Clostridium sporogenes PA 3679 (ATCC7955) spores in extra-lean ground beef (5 g each sealed in a sterile plastic bag). Duplicated samples were subjected to HP treatments at 700, 800 and 900 MPa in a HP system equipped with a Polyoxymethylene insulator to maintain constant temperatures at 80, 90 and 100 degrees C during pressure-holding time. The kinetic parameters of the spores (D- and Z-values) were evaluated at these pressures and temperatures. For the pressure from 700 to 900 MPa, D-values ranged from 15.8 to 7.0 and 1.5 to 0.63 min at 80 and 100 degrees C, respectively. The pressure resistance of Z(T)(P) value was 520-563 MPa at 80-100 degrees C. The temperature resistance of Z(P)(T) value was 19.1-19.7 degrees C at 700-900 MPa, much higher than that at atmospheric condition (12.4 degrees C). A regression model was generated which can be used to predict D-value or the death time of a minimum process under given pressure and temperature conditions. HP treatment with elevated temperatures can destroy bacterial spores with a shorter time or lower temperature than conventional thermal processing. This study provides useful information for the achievement of a safe HP sterilization process.
A GC-system for the analysis of residual geothermal gases
Sheppard, D.S.; Truesdell, A.H.
1985-01-01
The gases evolved from geothermal fields, after condensation of H2O, CO2, H2S and NH3 in caustic solution, contain He, H2, Ar, O2, N2, CH4 and higher hydrocarbons. The analysis for the major components in these residual gas mixtures can be achieved by use of two simple gas chromatographs in parallel, and using 5A?? molecular sieve. The separation of He and H2 to baseline is achieved by using low temperatures (30??C) coupled with a relatively long column; and the difficult separation of Ar and O2 is achieved by use of a cryogenically cooled column. The use of switching valves to backflush and bypass columns ensures that a minimum time for analysis can be achieved whilst retaining baseline separations of the He/H2 and Ar/O2 pairs. ?? 1985 Friedr. Vieweg & Sohn Verlagsgesellschaft mbH.
Soil and air temperatures for different habitats in Mount Rainier National Park.
Sarah E. Greene; Mark Klopsch
1985-01-01
This paper reports air and soil temperature data from 10 sites in Mount Rainier National Park in Washington State for 2- to 5-year periods. Data provided are monthly summaries for day and night mean air temperatures, mean minimum and maximum air temperatures, absolute minimum and maximum air temperatures, range of air temperatures, mean soil temperature, and absolute...
An inherent curvature-compensated voltage reference using non-linearity of gate coupling coefficient
NASA Astrophysics Data System (ADS)
Hande, Vinayak; Shojaei Baghini, Maryam
2015-08-01
A novel current-mode voltage reference circuit which is capable of generating sub-1 V output voltage is presented. The proposed architecture exhibits the inherent curvature compensation ability. The curvature compensation is achieved by utilizing the non-linear behavior of gate coupling coefficient to compensate non-linear temperature dependence of base-emitter voltage. We have also utilized the developments in CMOS process to reduce power and area consumption. The proposed voltage reference is analyzed theoretically and compared with other existing methods. The circuit is designed and simulated in 180 nm mixed-mode CMOS UMC technology which gives a reference level of 246 mV. The minimum required supply voltage is 1 V with maximum current drawn of 9.24 μA. A temperature coefficient of 9 ppm/°C is achieved over -25 to 125 °C temperature range. The reference voltage varies by ±11 mV across process corners. The reference circuit shows the line sensitivity of 0.9 mV/V with area consumption of 100 × 110 μm2
Green, W. Reed; Galloway, Joel M.; Richards, Joseph M.; Wesolowski, Edwin A.
2003-01-01
Outflow from Table Rock Lake and other White River reservoirs support a cold-water trout fishery of substantial economic yield in south-central Missouri and north-central Arkansas. The Missouri Department of Conservation has requested an increase in existing minimum flows through the Table Rock Lake Dam from the U.S. Army Corps of Engineers to increase the quality of fishable waters downstream in Lake Taneycomo. Information is needed to assess the effect of increased minimum flows on temperature and dissolved- oxygen concentrations of reservoir water and the outflow. A two-dimensional, laterally averaged, hydrodynamic, temperature, and dissolved-oxygen model, CE-QUAL-W2, was developed and calibrated for Table Rock Lake, located in Missouri, north of the Arkansas-Missouri State line. The model simulates water-surface elevation, heat transport, and dissolved-oxygen dynamics. The model was developed to assess the effects of proposed increases in minimum flow from about 4.4 cubic meters per second (the existing minimum flow) to 11.3 cubic meters per second (the increased minimum flow). Simulations included assessing the effect of (1) increased minimum flows and (2) increased minimum flows with increased water-surface elevations in Table Rock Lake, on outflow temperatures and dissolved-oxygen concentrations. In both minimum flow scenarios, water temperature appeared to stay the same or increase slightly (less than 0.37 ?C) and dissolved oxygen appeared to decrease slightly (less than 0.78 mg/L) in the outflow during the thermal stratification season. However, differences between the minimum flow scenarios for water temperature and dissolved- oxygen concentration and the calibrated model were similar to the differences between measured and simulated water-column profile values.
Materials for Optical Cryocoolers
2013-12-07
Melgaard, R. I . Epstein, A. Di Lieto, M. Tonelli, and M. Sheik- Bahae , “Precise determination of minimum achievable temperature for solid-state optical...M. G. Brik and K. W. Krämer, J. Lumin., 2013, 136, 221–239. 13 D. V. Seletskiy, M. P. Hehlen, R. I . Epstein and M. Sheik- Bahae , Adv. Opt... I . Epstein, Phys. Rev. Lett., 2004, 92, 24740. 16 M. Sheik- Bahae and R. I . Epstein, Nat. Photonics, 2007, 1, 693–699. 17 G. Rupper, N. H. Kwong and R
12 mJ Yb:YAG/Cr:YAG microchip laser
NASA Astrophysics Data System (ADS)
Guo, Xiaoyang; Tokita, Shigeki; Kawanaka, Junji
2018-02-01
By cryogenically cooling the Yb:YAG/Cr:YAG medium, one can break through the damage limit of Yb:YAG/Cr:YAG passively Q-switched microchip lasers at room temperature and thus achieve a shorter minimum pulse duration. In the proof of principle experiment we carried out, a 160.6 ps pulse duration was obtained. To the best of our knowledge, this is the first realization of sub-200 ps pulse operation for an Yb:YAG/Cr:YAG microchip laser
Paris and its long-term temperature goal: First steps on a long road
NASA Astrophysics Data System (ADS)
Rogelj, J.
2017-12-01
As a means to achieve its long-term temperature goal, the Paris Agreement put in place a system of regularly updated country pledges alternating with global stocktaking exercises that assess progress towards achieving the Paris goals. By now, the vast majority of countries have submitted their intended actions (also known as Nationally Determined Contributions - NDCs). This begs the question what these amount to and whether they are in line with the agreement`s long-term temperature goal. A structured sensitivity analysis of the emissions implications of the Paris pledges has been carried out, showing that the ambiguity and imprecision of the NDCs leaves open a wide range of possible outcomes by 2030. This range has important implications for the feasibility and cost of pathways that attempt to limit warming to the temperature goals of the Agreement. We identify salient steps to reduce the overall uncertainty, and explore the minimum requirements that have to be met for integrated energy-economy-land models to still find options to stay within the temperature limits of the Paris Agreement. These requirements come under the form of near-term emissions reductions, and assumptions about the deployment of carbon-dioxide removal technologies in the second half of the century.
Adverse Climatic Conditions and Impact on Construction Scheduling and Cost
1988-01-01
ABBREVIATIONS ABS MAX MAX TEMP ...... Absolute maximum maximum temperature ABS MIN MIN TEMP ...... Absolute minimum minimum temperature BTU...o Degrees Farenheit MEAN MAX TEMP o.................... Mean maximum temperature MEAN MIN TEMP...temperatures available, a determination had to be made as to whether forecasts were based on absolute , mean, or statistically derived temperatures
NASA Astrophysics Data System (ADS)
Rezaei, M.; Kermanpur, A.; Sadeghi, F.
2018-03-01
Fabrication of single crystal (SC) Ni-based gas turbine blades with a minimum crystal misorientation has always been a challenge in gas turbine industry, due to its significant influence on high temperature mechanical properties. This paper reports an experimental investigation and numerical simulation of the SC solidification process of a Ni-based superalloy to study effects of withdrawal rate and starter block size on crystal orientation. The results show that the crystal misorientation of the sample with 40 mm starter block height is decreased with increasing withdrawal rate up to about 9 mm/min, beyond which the amount of misorientation is increased. It was found that the withdrawal rate, height of the starter block and temperature gradient are completely inter-dependent and indeed achieving a SC specimen with a minimum misorientation needs careful optimization of these process parameters. The height of starter block was found to have higher impact on crystal orientation compared to the withdrawal rate. A suitable withdrawal rate regime along with a sufficient starter block height was proposed to produce SC parts with the lowest misorientation.
NASA Technical Reports Server (NTRS)
Shen, Suhung; Leptoukh, Gregory G.; Gerasimov, Irina
2010-01-01
Surface air temperature is a critical variable to describe the energy and water cycle of the Earth-atmosphere system and is a key input element for hydrology and land surface models. It is a very important variable in agricultural applications and climate change studies. This is a preliminary study to examine statistical relationships between ground meteorological station measured surface daily maximum/minimum air temperature and satellite remotely sensed land surface temperature from MODIS over the dry and semiarid regions of northern China. Studies were conducted for both MODIS-Terra and MODIS-Aqua by using year 2009 data. Results indicate that the relationships between surface air temperature and remotely sensed land surface temperature are statistically significant. The relationships between the maximum air temperature and daytime land surface temperature depends significantly on land surface types and vegetation index, but the minimum air temperature and nighttime land surface temperature has little dependence on the surface conditions. Based on linear regression relationship between surface air temperature and MODIS land surface temperature, surface maximum and minimum air temperatures are estimated from 1km MODIS land surface temperature under clear sky conditions. The statistical errors (sigma) of the estimated daily maximum (minimum) air temperature is about 3.8 C(3.7 C).
NASA Astrophysics Data System (ADS)
Barman, Bidyut; Dhasmana, Hrishikesh; Verma, Abhishek; Kumar, Amit; Pratap Chaudhary, Shiv; Jain, V. K.
2017-09-01
This work presents studies of plasmonic silver nanoparticles (AgNPs) formation at low temperatures (200 °C-300 °C) onto Si surface by sputtering followed with rapid thermal processing (RTP) for different time durations(5-30 min). The study reveals that 20 min RTP at all temperatures show minimum average size of AgNPs (60.42 nm) with corresponding reduction in reflectance of Si surface from 40.12% to mere 1.15% only in wavelength region 300-800 nm for RTP at 200 °C. A detailed supporting growth mechanism is also discussed. This low temperature technique can be helpful in achieving efficiency improvement in solar cells via reflectance reduction with additional features such as reproducibility, minimal time and very good adhesion without damaging underlying layers device parameters.
Large forging manufacturing process
Thamboo, Samuel V.; Yang, Ling
2002-01-01
A process for forging large components of Alloy 718 material so that the components do not exhibit abnormal grain growth includes the steps of: a) providing a billet with an average grain size between ASTM 0 and ASTM 3; b) heating the billet to a temperature of between 1750.degree. F. and 1800.degree. F.; c) upsetting the billet to obtain a component part with a minimum strain of 0.125 in at least selected areas of the part; d) reheating the component part to a temperature between 1750.degree. F. and 1800.degree. F.; e) upsetting the component part to a final configuration such that said selected areas receive no strains between 0.01 and 0.125; f) solution treating the component part at a temperature of between 1725.degree. F. and 1750.degree. F.; and g) aging the component part over predetermined times at different temperatures. A modified process achieves abnormal grain growth in selected areas of a component where desirable.
Santos, M V; Zaritzky, N; Califano, A
2008-07-01
The presence of Escherichia coli is linked with sanitary deficiencies and undercooking of meat products. Recent studies have detected E. coli O157:H7 in black blood sausages. Minimum time-temperature specifications to kill the bacteria were obtained by numerical simulations of the microscopic heat conduction equation using the finite element method, and calculating the temperature profile of the sausage and the population of E. coli at the coldest point during heating. The model was validated by heating sausages in a water-bath. The effects of heat transfer coefficients and water temperatures on the required time to achieve an inactivation value (IV) of 12(log) are reported. Macroscopic heat balances were simultaneously solved to consider the temperature drop in the water batch as a function of the ratio between the mass of thermally treated sausage and the heat capacity of the system.
Disclination mediated dynamic recrystallization in metals at low temperature.
Aramfard, Mohammad; Deng, Chuang
2015-09-16
Recrystallization is one of the most important physical phenomena in condensed matter that has been utilized for materials processing for thousands of years in human history. It is generally believed that recrystallization is thermally activated and a minimum temperature must be achieved for the necessary atomic mechanisms to occur. Here, using atomistic simulations, we report a new mechanism of dynamic recrystallization that can operate at temperature as low as T = 10 K in metals during deformation. In contrast to previously proposed dislocation-based models, this mechanism relies on the generation of disclination quadrupoles, which are special defects that form during deformation when the grain boundary migration is restricted by structural defects such as triple junctions, cracks or obstacles. This mechanism offers an alternative explanation for the grain refinement in metals during severe plastic deformation at cryogenic temperature and may suggest a new method to tailor the microstructure in general crystalline materials.
Disclination mediated dynamic recrystallization in metals at low temperature
Aramfard, Mohammad; Deng, Chuang
2015-01-01
Recrystallization is one of the most important physical phenomena in condensed matter that has been utilized for materials processing for thousands of years in human history. It is generally believed that recrystallization is thermally activated and a minimum temperature must be achieved for the necessary atomic mechanisms to occur. Here, using atomistic simulations, we report a new mechanism of dynamic recrystallization that can operate at temperature as low as T = 10 K in metals during deformation. In contrast to previously proposed dislocation-based models, this mechanism relies on the generation of disclination quadrupoles, which are special defects that form during deformation when the grain boundary migration is restricted by structural defects such as triple junctions, cracks or obstacles. This mechanism offers an alternative explanation for the grain refinement in metals during severe plastic deformation at cryogenic temperature and may suggest a new method to tailor the microstructure in general crystalline materials. PMID:26374603
Analysis of temperature trends in Northern Serbia
NASA Astrophysics Data System (ADS)
Tosic, Ivana; Gavrilov, Milivoj; Unkašević, Miroslava; Marković, Slobodan; Petrović, Predrag
2017-04-01
An analysis of air temperature trends in Northern Serbia for the annual and seasonal time series is performed for two periods: 1949-2013 and 1979-2013. Three data sets of surface air temperatures: monthly mean temperatures, monthly maximum temperatures, and monthly minimum temperatures are analyzed at 9 stations that have altitudes varying between 75 m and 102 m. Monthly mean temperatures are obtained as the average of the daily mean temperatures, while monthly maximum (minimum) temperatures are the maximum (minimum) values of daily temperatures in corresponding month. Positive trends were found in 29 out of 30 time series, and the negative trend was found only in winter during the period 1979-2013. Applying the Mann-Kendall test, significant positive trends were found in 15 series; 7 in the period 1949-2013 and 8 in the period 1979-2013; and no significant trend was found in 15 series. Significant positive trends are dominated during the year, spring, and summer, where it was found in 14 out of 18 cases. Significant positive trends were found 7, 5, and 3 times in mean, maximum and minimum temperatures, respectively. It was found that the positive temperature trends are dominant in Northern Serbia.
Texturing by cooling a metallic melt in a magnetic field.
Tournier, Robert F; Beaugnon, Eric
2009-02-01
Processing in a magnetic field leads to the texturing of materials along an easy-magnetization axis when a minimum anisotropy energy exists at the processing temperature; the magnetic field can be applied to a particle assembly embedded into a liquid, or to a solid at a high diffusion temperature close to the melting temperature or between the liquidus and the solidus temperatures in a region of partial melting. It has been shown in many experiments that texturing is easy to achieve in congruent and noncongruent compounds by applying the field above the melting temperature T m or above the liquidus temperature of alloys. Texturing from a melt is successful when the overheating temperature is just a few degrees above T m and fails when the processing time above T m is too long or when the overheating temperature is too high; these observations indicate the presence of unmelted crystals above T m with a size depending on these two variables that act as growth nuclei. A recent model that predicts the existence of unmelted crystals above the melting temperature is used to calculate their radius in a bismuth melt.
Empirical downscaling of daily minimum air temperature at very fine resolutions in complex terrain
Zachary A. Holden; John T. Abatzoglou; Charles H. Luce; L. Scott Baggett
2011-01-01
Available air temperature models do not adequately account for the influence of terrain on nocturnal air temperatures. An empirical model for night time air temperatures was developed using a network of one hundred and forty inexpensive temperature sensors deployed across the Bitterroot National Forest, Montana. A principle component analysis (PCA) on minimum...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moisseytsev, A.; Sienicki, J. J.
2009-07-01
Analyses of supercritical carbon dioxide (S-CO{sub 2}) Brayton cycle performance have largely settled on the recompression supercritical cycle (or Feher cycle) incorporating a flow split between the main compressor downstream of heat rejection, a recompressing compressor providing direct compression without heat rejection, and high and low temperature recuperators to raise the effectiveness of recuperation and the cycle efficiency. Alternative cycle layouts have been previously examined by Angelino (Politecnico, Milan), by MIT (Dostal, Hejzlar, and Driscoll), and possibly others but not for sodium-cooled fast reactors (SFRs) operating at relatively low core outlet temperature. Thus, the present authors could not be suremore » that the recompression cycle is an optimal arrangement for application to the SFR. To ensure that an advantageous alternative layout has not been overlooked, several alternative cycle layouts have been investigated for a S-CO{sub 2} Brayton cycle coupled to the Advanced Burner Test Reactor (ABTR) SFR preconceptual design having a 510 C core outlet temperature and a 470 C turbine inlet temperature to determine if they provide any benefit in cycle performance (e.g., enhanced cycle efficiency). No such benefits were identified, consistent with the previous examinations, such that attention was devoted to optimizing the recompression supercritical cycle. The effects of optimizing the cycle minimum temperature and pressure are investigated including minimum temperatures and/or pressures below the critical values. It is found that improvements in the cycle efficiency of 1% or greater relative to previous analyses which arbitrarily fixed the minimum temperature and pressure can be realized through an optimal choice of the combination of the minimum cycle temperature and pressure (e.g., for a fixed minimum temperature there is an optimal minimum pressure). However, this leads to a requirement for a larger cooler for heat rejection which may impact the tradeoff between efficiency and capital cost. In addition, for minimum temperatures below the critical temperature, a lower heat sink temperature is required the availability of which is dependent upon the climate at the specific plant site.« less
Annual minimum temperature variations in early 21st century in Punjab, Pakistan
NASA Astrophysics Data System (ADS)
Jahangir, Misbah; Maria Ali, Syeda; Khalid, Bushra
2016-01-01
Climate change is a key emerging threat to the global environment. It imposes long lasting impacts both at regional and national level. In the recent era, global warming and extreme temperatures have drawn great interest to the scientific community. As in a past century considerable increase in global surface temperatures have been observed and predictions revealed that it will continue in the future. In this regard, current study mainly focused on analysis of regional climatic change (annual minimum temperature trends and its correlation with land surface temperatures in the early 21st century in Punjab) for a period of 1979-2013. The projected model data European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-Interim) has been used for eight Tehsils of Punjab i.e., annual minimum temperatures and annual seasonal temperatures. Trend analysis of annual minimum and annual seasonal temperature in (Khushab, Noorpur, Sargodha, Bhalwal, Sahiwal, Shahpur, Sillanwali and Chinoit) tehsils of Punjab was carried out by Regression analysis and Mann-Kendall test. Landsat 5 Thematic Mapper (TM) data was used in comparison with Model data for the month of May from the years 2000, 2009 and 2010. Results showed that no significant trends were observed in annual minimum temperature. A significant change was observed in Noorpur, Bhalwal, Shahpur, Sillanwali, Sahiwal, Chinoit and Sargodha tehsils during spring season, which indicated that this particular season was a transient period of time.
NASA Technical Reports Server (NTRS)
Yost, J. H.
1976-01-01
The research and technology demonstration requirements to achieve emergency-power capability for a civil helicopter are documented. The goal for emergency power is the ability to hover with one engine inoperative, transition to minimum-power forward flight, and continue to a safe landing where emergency power may or may not be required. The best method to obtain emergency power is to augment the basic engine power by increasing the engine's speed and turbine-inlet temperature, combined with water-alcohol injection at the engine inlet. Other methods, including turbine boost power and flywheel energy, offer potential for obtaining emergency power for minimum time durations. Costs and schedules are estimated for a research and development program to bring emergency power through a hardware-demonstration test. Interaction of engine emergency-power capability with other helicopter systems is examined.
NASA Astrophysics Data System (ADS)
Sasnouski, I.; Kurylionak, A.
2018-03-01
For solving the problem of improving the powder coatings modified by nanostructure components obtained by induction surfacing method tribological characteristics it is necessary to study the kinetics of the powdered layer melting and define the minimum time of melting. For powdered layer predetermined temperature maintenance at sintering mode stage it is required to determine the temperature difference through blank thickness of the for one hundred-day of the define the warm-up swing on of the stocking up by solving the thermal conductivity stationary problem for quill (hollow) cylinder with internal heat source. Herewith, since in practice thickness of the cylinder wall is much less then its diameter and the temperature difference is comparatively small, the thermal conductivity dependence upon the temperature can be treated as negligible. As it was shown by our previous studies, in the induction heating process under powdered material centrifugal surfacing (i.e. before achieving the melting temperature) the temperature distribution in powdered layer thickness may be considered even. Hereinafter, considering the blank part induction heating process quasi-stationarity under Fo big values, it is possible to consider its internal surface heating as developing with constant velocity. As a result of development the melting front movement mathematical model in a powdered material with nanostructure modifiers the minimum surfacing time is defined. It allows to minimize negative impact of thermal influence on formation of applied coating structure, to raise productivity of the process, to lower power inputs and to ensure saving of nonferrous and high alloys by reducing the allowance for machining. The difference of developed mathematical model of melting front movement from previously known is that the surface temperature from which the heat transfer occures is a variable and varies with a time after the linear law.
NASA Astrophysics Data System (ADS)
He, Di; Wang, Jing; Dai, Tong; Feng, Liping; Zhang, Jianping; Pan, Xuebiao; Pan, Zhihua
2014-12-01
The impact of climate change on maize potential productivity and the potential productivity gap in Southwest China (SWC) are investigated in this paper. We analyze the impact of climate change on the photosynthetic, light-temperature, and climatic potential productivity of maize and their gaps in SWC, by using a crop growth dynamics statistical method. During the maize growing season from 1961 to 2010, minimum temperature increased by 0.20°C per decade ( p < 0.01) across SWC. The largest increases in average and minimum temperatures were observed mostly in areas of Yunnan Province. Growing season average sunshine hours decreased by 0.2 h day-1 per decade ( p < 0.01) and total precipitation showed an insignificant decreasing trend across SWC. Photosynthetic potential productivity decreased by 298 kg ha-1 per decade ( p < 0.05). Both light-temperature and climatic potential productivity decreased ( p < 0.05) in the northeast of SWC, whereas they increased ( p < 0.05) in the southwest of SWC. The gap between light-temperature and climatic potential productivity varied from 12 to 2729 kg ha-1, with the high value areas centered in northern and southwestern SWC. Climatic productivity of these areas reached only 10%-24% of the light-temperature potential productivity, suggesting that there is great potential to increase the maize potential yield by improving water management in these areas. In particular, the gap has become larger in the most recent 10 years. Sensitivity analysis shows that the climatic potential productivity of maize is most sensitive to changes in temperature in SWC. The findings of this study are helpful for quantification of irrigation water requirements so as to achieve maximum yield potentials in SWC.
Electrical resistivity of fluid methane multiply shock compressed to 147 GPa
NASA Astrophysics Data System (ADS)
Wang, Yi-Gao; Liu, Fu-Sheng; Liu, Qi-Jun; Wang, Wen-Peng
2018-01-01
Shock wave experiments were carried out to measure the electrical resistivity of fluid methane. The pressure range of 89-147 GPa and the temperature range from 1800 to 2600 K were achieved with a two-stage light-gas gun. We obtained a minimum electrical resistivity value of 4.5 × 10-2 Ω cm at pressure and temperature of 147 GPa and 2600 K, which is two orders of magnitude higher than that of hydrogen under similar conditions. The data are interpreted in terms of a continuous transition from insulator to semiconductor state. One possibility reason is chemical decomposition of methane in the shock compression process. Along density and temperature increase with Hugoniot pressure, dissociation of fluid methane increases continuously to form a H2-rich fluid.
NASA Astrophysics Data System (ADS)
Crimp, Steven; Jin, Huidong; Kokic, Philip; Bakar, Shuvo; Nicholls, Neville
2018-04-01
Anthropogenic climate change has already been shown to effect the frequency, intensity, spatial extent, duration and seasonality of extreme climate events. Understanding these changes is an important step in determining exposure, vulnerability and focus for adaptation. In an attempt to support adaptation decision-making we have examined statistical modelling techniques to improve the representation of global climate model (GCM) derived projections of minimum temperature extremes (frosts) in Australia. We examine the spatial changes in minimum temperature extreme metrics (e.g. monthly and seasonal frost frequency etc.), for a region exhibiting the strongest station trends in Australia, and compare these changes with minimum temperature extreme metrics derived from 10 GCMs, from the Coupled Model Inter-comparison Project Phase 5 (CMIP 5) datasets, and via statistical downscaling. We compare the observed trends with those derived from the "raw" GCM minimum temperature data as well as examine whether quantile matching (QM) or spatio-temporal (spTimerQM) modelling with Quantile Matching can be used to improve the correlation between observed and simulated extreme minimum temperatures. We demonstrate, that the spTimerQM modelling approach provides correlations with observed daily minimum temperatures for the period August to November of 0.22. This represents an almost fourfold improvement over either the "raw" GCM or QM results. The spTimerQM modelling approach also improves correlations with observed monthly frost frequency statistics to 0.84 as opposed to 0.37 and 0.81 for the "raw" GCM and QM results respectively. We apply the spatio-temporal model to examine future extreme minimum temperature projections for the period 2016 to 2048. The spTimerQM modelling results suggest the persistence of current levels of frost risk out to 2030, with the evidence of continuing decadal variation.
Fluid helium at conditions of giant planetary interiors
Stixrude, Lars; Jeanloz, Raymond
2008-01-01
As the second most-abundant chemical element in the universe, helium makes up a large fraction of giant gaseous planets, including Jupiter, Saturn, and most extrasolar planets discovered to date. Using first-principles molecular dynamics simulations, we find that fluid helium undergoes temperature-induced metallization at high pressures. The electronic energy gap (band gap) closes at 20,000 K at a density half that of zero-temperature metallization, resulting in electrical conductivities greater than the minimum metallic value. Gap closure is achieved by a broadening of the valence band via increased s–p hydridization with increasing temperature, and this influences the equation of state: The Grüneisen parameter, which determines the adiabatic temperature–depth gradient inside a planet, changes only modestly, decreasing with compression up to the high-temperature metallization and then increasing upon further compression. The change in electronic structure of He at elevated pressures and temperatures has important implications for the miscibility of helium in hydrogen and for understanding the thermal histories of giant planets.
NASA Astrophysics Data System (ADS)
Yakunin, A. G.
2018-01-01
The article deals with issues related to increasing the efficiency of the system of automatic maintenance of the temperature of liquid media entering the pipes to the place of consumption. For this purpose, a flowing water heater model is proposed, made in the SolidWorks environment, the construction parameters of which can be changed using the appropriate macro and screen form. It is shown that the choice of the location of the temperature sensor has a significant effect on such parameters of the device as the accuracy of maintaining a given temperature regime and the duration of the transient process caused by a change in the temperature of the liquid entering the heater. On a concrete example, it is shown that by changing the distance between the sensor and the heating module, it is possible to achieve minimum temperature fluctuations of the heat-transfer-agent at the heater outlet.
NASA Astrophysics Data System (ADS)
Villarini, Gabriele; Khouakhi, Abdou; Cunningham, Evan
2017-12-01
Daily temperature values are generally computed as the average of the daily minimum and maximum observations, which can lead to biases in the estimation of daily averaged values. This study examines the impacts of these biases on the calculation of climatology and trends in temperature extremes at 409 sites in North America with at least 25 years of complete hourly records. Our results show that the calculation of daily temperature based on the average of minimum and maximum daily readings leads to an overestimation of the daily values of 10+ % when focusing on extremes and values above (below) high (low) thresholds. Moreover, the effects of the data processing method on trend estimation are generally small, even though the use of the daily minimum and maximum readings reduces the power of trend detection ( 5-10% fewer trends detected in comparison with the reference data).
Zhang, Ming; Zhang, Ren-Zhi; Cai, Li-Qun
2008-07-01
Based on a long-term experiment, the leaf water potential of spring wheat and field pea, its relationships with environmental factors, and the diurnal variations of leaf relative water content and water saturation deficient under different tillage patterns were studied. The results showed that during whole growth period, field pea had an obviously higher leaf water potential than spring wheat, but the two crops had similar diurnal variation trend of their leaf water potential, i.e., the highest in early morning, followed by a descent, and a gradual ascent after the descent. For spring wheat, the maximum leaf water potential appeared at its jointing and heading stages, followed by at booting and flowering stages, and the minimum appeared at filling stage. For field pea, the maximum leaf water potential achieved at squaring stage, followed by at branching and flowering stages, and the minimum was at podding stage. The leaf relative water content of spring wheat was the highest at heading stage, followed by at jointing and flowering stages, and achieved the minimum at filling stage; while the water saturation deficient was just in adverse. With the growth of field pea, its leaf relative water content decreased, but leaf water saturation deficient increased. The leaf water potential of both spring wheat and field pea had significant correlations with environmental factors, including soil water content, air temperature, solar radiation, relative air humidity, and air water potential. Path analysis showed that the meteorological factor which had the strongest effect on the diurnal variation of spring wheat' s and field pea' s leaf water potential was air water potential and air temperature, respectively. Compared with conventional tillage, the protective tillage patterns no-till, no-till plus straw mulching, and conventional tillage plus straw returning increased the leaf water potential and relative water content of test crops, and the effect of no-till plus straw mulching was most significant.
Implications of Liebig’s law of the minimum for tree-ring reconstructions of climate
NASA Astrophysics Data System (ADS)
Stine, A. R.; Huybers, P.
2017-11-01
A basic principle of ecology, known as Liebig’s Law of the Minimum, is that plant growth reflects the strongest limiting environmental factor. This principle implies that a limiting environmental factor can be inferred from historical growth and, in dendrochronology, such reconstruction is generally achieved by averaging collections of standardized tree-ring records. Averaging is optimal if growth reflects a single limiting factor and noise but not if growth also reflects locally variable stresses that intermittently limit growth. In this study a collection of Arctic tree ring records is shown to follow scaling relationships that are inconsistent with the signal-plus-noise model of tree growth but consistent with Liebig’s Law acting at the local level. Also consistent with law-of-the-minimum behavior is that reconstructions based on the least-stressed trees in a given year better-follow variations in temperature than typical approaches where all tree-ring records are averaged. Improvements in reconstruction skill occur across all frequencies, with the greatest increase at the lowest frequencies. More comprehensive statistical-ecological models of tree growth may offer further improvement in reconstruction skill.
Morphology, surface temperatures, and northern limits of columnar cacti in the Sonoran Desert
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobel, P.S.
1980-02-01
Interspecific morphological differences and intraspecific morphological changes with latitude were evaluated to help examine the distributional ranges of Carnegiea gigantea, Lemaireocereus thurberi, Lophocereus schottii, Pachycereus pecten-aboriginum, and P. pringlei in the Sonoran Desert (US and Mexico). A computer model, which predicted the average surface temperature of the stem within 1/sup 0/C of that measured hourly throughout a 24-h period, was particularly useful in studying the thermal relations of the stem apex, where the lowest surface temperature occurred. Simulated increases in stem diameter raised the minimum apical temperature for C. gigantea and may help account for the extension of its rangemore » to higher latitudes than the other species studied. However, diameter increases led to a slight decrease in minimum apical temperatures for Lophocereus schottii. The immature stems of L. schottii are morphologically distinct from the mature stems, which caused minimum apical temperatures to be 1.6/sup 0/C lower for the immature stems under given environmental conditions; thus, freezing damage to the immature stems could limit the northward extension of the range of this species. As the apical pubescence in the simulations was increased up to the normal amount (10 mm), the minimum apical temperature for the stem of C. gigantea increased 2.4/sup 0/C. Simulated increases in spine shading of the apexalso raised the minimum apical temperatures, again indicating the influence of morphological features on the temperature of the meristematic region.« less
Development of a sapphire optical pressure sensor for high-temperature applications
NASA Astrophysics Data System (ADS)
Mills, David A.; Alexander, Dylan; Subhash, Ghatu; Sheplak, Mark
2014-06-01
This paper presents the fabrication, packaging, and characterization of a sapphire optical pressure sensor for hightemperature applications. Currently available instrumentation poses significant limitations on the ability to achieve realtime, continuous measurements in high-temperature environments such as those encountered in industrial gas turbines and high-speed aircraft. The fiber-optic lever design utilizes the deflection of a circular platinum-coated sapphire diaphragm to modulate the light reflected back to a single send/receive sapphire optical fiber. The 7 mm diameter, 50 μm thick diaphragm is attached using a novel thermocompression bonding process based on spark plasma sintering technology. Bonds using platinum as an intermediate layer are achieved at a temperature of 1200°C with a hold time of 5 min. Initial characterization of the bond interface using a simple tensile test indicates a bond strength in excess of 12 MPa. Analysis of the buckled diaphragm after bonding is also presented. The packaged sensor enables continuous operation up to 900°C. Room-temperature characterization reveals a first resonance of 18.2 kHz, a flat-band sensitivity of -130 dB re 1 V/Pa (0.32 μV/Pa) from 4-20 kHz, a minimum detectable pressure of 3.8 Pa, and a linear response up to 169 dB at 1.9 kHz.
40 CFR 63.1365 - Test methods and initial compliance procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... design minimum and average temperature in the combustion zone and the combustion zone residence time. (B... establish the design minimum and average flame zone temperatures and combustion zone residence time, and... carbon bed temperature after regeneration, design carbon bed regeneration time, and design service life...
640 x 480 MWIR and LWIR camera system developments
NASA Astrophysics Data System (ADS)
Tower, John R.; Villani, Thomas S.; Esposito, Benjamin J.; Gilmartin, Harvey R.; Levine, Peter A.; Coyle, Peter J.; Davis, Timothy J.; Shallcross, Frank V.; Sauer, Donald J.; Meyerhofer, Dietrich
1993-01-01
The performance of a 640 x 480 PtSi, 3,5 microns (MWIR), Stirling cooled camera system with a minimum resolvable temperature of 0.03 is considered. A preliminary specification of a full-TV resolution PtSi radiometer was developed using the measured performance characteristics of the Stirling cooled camera. The radiometer is capable of imaging rapid thermal transients from 25 to 250 C with better than 1 percent temperature resolution. This performance is achieved using the electronic exposure control capability of the MOS focal plane array (FPA). A liquid nitrogen cooled camera with an eight-position filter wheel has been developed using the 640 x 480 PtSi FPA. Low thermal mass packaging for the FPA was developed for Joule-Thomson applications.
640 x 480 MWIR and LWIR camera system developments
NASA Astrophysics Data System (ADS)
Tower, J. R.; Villani, T. S.; Esposito, B. J.; Gilmartin, H. R.; Levine, P. A.; Coyle, P. J.; Davis, T. J.; Shallcross, F. V.; Sauer, D. J.; Meyerhofer, D.
The performance of a 640 x 480 PtSi, 3,5 microns (MWIR), Stirling cooled camera system with a minimum resolvable temperature of 0.03 is considered. A preliminary specification of a full-TV resolution PtSi radiometer was developed using the measured performance characteristics of the Stirling cooled camera. The radiometer is capable of imaging rapid thermal transients from 25 to 250 C with better than 1 percent temperature resolution. This performance is achieved using the electronic exposure control capability of the MOS focal plane array (FPA). A liquid nitrogen cooled camera with an eight-position filter wheel has been developed using the 640 x 480 PtSi FPA. Low thermal mass packaging for the FPA was developed for Joule-Thomson applications.
Spinon confinement in a quasi-one-dimensional XXZ Heisenberg antiferromagnet
NASA Astrophysics Data System (ADS)
Lake, Bella; Bera, Anup K.; Essler, Fabian H. L.; Vanderstraeten, Laurens; Hubig, Claudius; Schollwock, Ulrich; Islam, A. T. M. Nazmul; Schneidewind, Astrid; Quintero-Castro, Diana L.
Half-integer spin Heisenberg chains constitute a key paradigm for quantum number fractionalization: flipping a spin creates a minimum of two elementary spinon excitations. These have been observed in numerous experiments. We report on inelastic neutron scattering experiments on the quasi-one-dimensional anisotropic spin-1/2 Heisenberg antiferromagnet SrCo2V2O8. These reveal a mechanism for temperature-induced spinon confinement, manifesting itself in the formation of sequences of spinon bound states. A theoretical description of this effect is achieved by a combination of analytical and numerical methods.
In-situ formation of solidified hydrogen thin-membrane targets using a pulse tube cryocooler
NASA Astrophysics Data System (ADS)
Astbury, S.; Bedacht, S.; Brummitt, P.; Carroll, D.; Clarke, R.; Crisp, S.; Hernandez-Gomez, C.; Holligan, P.; Hook, S.; Merchan, J. S.; Neely, D.; Ortner, A.; Rathbone, D.; Rice, P.; Schaumann, G.; Scott, G.; Spindloe, C.; Spurdle, S.; Tebartz, A.; Tomlinson, S.; Wagner, F.; Borghesi, M.; Roth, M.; Tolley, M. K.
2016-04-01
An account is given of the Central Laser Facility's work to produce a cryogenic hydrogen targetry system using a pulse tube cryocooler. Due to the increasing demand for low Z thin laser targets, CLF (in collaboration with TUD) have been developing a system which allows the production of solid hydrogen membranes by engineering a design which can achieve this remotely; enabling the gas injection, condensation and solidification of hydrogen without compromising the vacuum of the target chamber. A dynamic sealing mechanism was integrated which allows targets to be grown and then remotely exposed to open vacuum for laser interaction. Further research was conducted on the survivability of the cryogenic targets which concluded that a warm gas effect causes temperature spiking when exposing the solidified hydrogen to the outer vacuum. This effect was shown to be mitigated by improving the pumping capacity of the environment and reducing the minimum temperature obtainable on the target mount. This was achieved by developing a two-stage radiation shield encased with superinsulating blanketing; reducing the base temperature from 14 ± 0.5 K to 7.2 ± 0.2 K about the coldhead as well as improving temperature control stability following the installation of a high-performance temperature controller and sensor apparatus. The system was delivered experimentally and in July 2014 the first laser shots were taken upon hydrogen targets in the Vulcan TAP facility.
The use of NOAA AVHRR data for assessment of the urban heat sland effect
Gallo, K.P.; McNab, A. L.; Karl, Thomas R.; Brown, Jesslyn F.; Hood, J. J.; Tarpley, J.D.
1993-01-01
A vegetation index and a radiative surface temperature were derived from satellite data acquired at approximately 1330 LST for each of 37 cities and for their respective nearby rural regions from 28 June through 8 August 1991. Urbanrural differences for the vegetation index and the surface temperatures were computed and then compared to observed urbanrural differences in minimum air temperatures. The purpose of these comparisons was to evaluate the use of satellite data to assess the influence of the urban environment on observed minimum air temperatures (the urban heat island effect). The temporal consistency of the data, from daily data to weekly, biweekly, and monthly intervals, was also evaluated. The satellite-derived normalized difference (ND) vegetation-index data, sampled over urban and rural regions composed of a variety of land surface environments, were linearly related to the difference in observed urban and rural minimum temperatures. The relationship between the ND index and observed differences in minimum temperature was improved when analyses were restricted by elevation differences between the sample locations and when biweekly or monthly intervals were utilized. The difference in the ND index between urban and rural regions appears to be an indicator of the difference in surface properties (evaporation and heat storage capacity) between the two environments that are responsible for differences in urban and rural minimum temperatures. The urban and rural differences in the ND index explain a greater amount of the variation observed in minimum temperature differences than past analyses that utilized urban population data. The use of satellite data may contribute to a globally consistent method for analysis of urban heat island bias.
Potential of solar-simulator-pumped alexandrite lasers
NASA Technical Reports Server (NTRS)
Deyoung, Russell J.
1990-01-01
An attempt was made to pump an alexandrite laser rod using a Tamarak solar simulator and also a tungsten-halogen lamp. A very low optical laser cavity was used to achieve the threshold minimum pumping-power requirement. Lasing was not achieved. The laser threshold optical-power requirement was calculated to be approximately 626 W/sq cm for a gain length of 7.6 cm, whereas the Tamarak simulator produces 1150 W/sq cm over a gain length of 3.3 cm, which is less than the 1442 W/sq cm required to reach laser threshold. The rod was optically pulsed with 200 msec pulses, which allowed the alexandrite rod to operate at near room temperature. The optical intensity-gain-length product to achieve laser threshold should be approximately 35,244 solar constants-cm. In the present setup, this product was 28,111 solar constants-cm.
Ruys, Andrew J.
2018-01-01
Electrospun fibres have gained broad interest in biomedical applications, including tissue engineering scaffolds, due to their potential in mimicking extracellular matrix and producing structures favourable for cell and tissue growth. The development of scaffolds often involves multivariate production parameters and multiple output characteristics to define product quality. In this study on electrospinning of polycaprolactone (PCL), response surface methodology (RSM) was applied to investigate the determining parameters and find optimal settings to achieve the desired properties of fibrous scaffold for acetabular labrum implant. The results showed that solution concentration influenced fibre diameter, while elastic modulus was determined by solution concentration, flow rate, temperature, collector rotation speed, and interaction between concentration and temperature. Relationships between these variables and outputs were modelled, followed by an optimization procedure. Using the optimized setting (solution concentration of 10% w/v, flow rate of 4.5 mL/h, temperature of 45 °C, and collector rotation speed of 1500 RPM), a target elastic modulus of 25 MPa could be achieved at a minimum possible fibre diameter (1.39 ± 0.20 µm). This work demonstrated that multivariate factors of production parameters and multiple responses can be investigated, modelled, and optimized using RSM. PMID:29562614
46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...
46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...
46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...
46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 5 2010-10-01 2010-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...
46 CFR 153.370 - Minimum relief valve setting for ambient temperature cargo tanks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Minimum relief valve setting for ambient temperature... temperature cargo tanks. The relief valve setting for a containment system that carries a cargo at ambient temperature must at least equal the cargo's vapor pressure at 46 °C (approx. 115 °F). [CGD 81-078, 50 FR 21173...
OSO 8 observations of wave propagation in the solar chromosphere and transition region
NASA Technical Reports Server (NTRS)
Chipman, E. G.
1978-01-01
The University of Colorado instrument on OSO 8 has been used to observe relative phases of the 300-s intensity variation between the temperature-minimum region and several emission lines formed in the solar chromosphere and chromosphere-corona transition region. The lines used are due to Fe II, Si II, C II, Si IV, and C IV. The scattered light in the spectrograph, which originates almost entirely in the spectral region between 1700 and 1900 A, was used as a probe of the temperature-minimum region. The lines of Fe II, Si II, and C II show almost identical delays of approximately 30 s relative to the temperature minimum, while the intensity oscillations of the lines of Si IV and C IV appear to lead the temperature-minimum intensity oscillations by about 10 s.
Chao, Lu-men; Sun, Jian-xin
2009-12-01
Temporal changes in air temperature and urban heat island (UHI) effects during 1956-1998 were compared between a coastal city, Ji' nan, and an inland city, Xi' an, which were similar in latitude, size and development. During 1956-1978, except that the annual mean minimum temperature in Ji' nan increased by 0.37 degrees C x 10 a(-1), the temperature variables in the two cities did not display any apparent trend. During 1979-1998, all temperature variables of the two cities showed an increasing trend. Comparing with that in Ji' nan, the increasing rate of annual mean maximum temperature and annual mean temperature in Xi' an was greater, but that of annual mean minimum temperature was smaller. In the two cities, heat island effect occurred during 1956-1978 but without any apparent trend, whereas during 1979-1998, this effect increased with time, especially in Xi' an where the annual mean minimum temperature and annual mean temperature increased by 0.22 degrees C x 10 a(-1) and 0.32 degrees C x 10 a(-1), respectively. Both the level and the inter-annual variation of the heat island effect were much greater in Ji' nan than in Xi' an, but the increasing rate of this effect was greater in Xi' an than in Ji' nan. Obvious differences were observed in the increasing rate of annual mean maximum air temperature, annual mean air temperature, and annual mean minimum temperature as well as the heat island effect in Ji' nan, whereas negligible differences were found in Xi' an. Among the three temperature variables, annual mean minimum temperature displayed the most obvious increasing trend and was most affected by heat island effect, while annual mean maximum temperature was most variable inter-annually. Geographical location not only affected the magnitude of urban warming, but also affected the mode of urban warming and the strength of heat island effect.
Sizing procedures for sun-tracking PV system with batteries
NASA Astrophysics Data System (ADS)
Nezih Gerek, Ömer; Başaran Filik, Ümmühan; Filik, Tansu
2017-11-01
Deciding optimum number of PV panels, wind turbines and batteries (i.e. a complete renewable energy system) for minimum cost and complete energy balance is a challenging and interesting problem. In the literature, some rough data models or limited recorded data together with low resolution hourly averaged meteorological values are used to test the sizing strategies. In this study, active sun tracking and fixed PV solar power generation values of ready-to-serve commercial products are recorded throughout 2015-2016. Simultaneously several outdoor parameters (solar radiation, temperature, humidity, wind speed/direction, pressure) are recorded with high resolution. The hourly energy consumption values of a standard 4-person household, which is constructed in our campus in Eskisehir, Turkey, are also recorded for the same period. During sizing, novel parametric random process models for wind speed, temperature, solar radiation, energy demand and electricity generation curves are achieved and it is observed that these models provide sizing results with lower LLP through Monte Carlo experiments that consider average and minimum performance cases. Furthermore, another novel cost optimization strategy is adopted to show that solar tracking PV panels provide lower costs by enabling reduced number of installed batteries. Results are verified over real recorded data.
NASA Astrophysics Data System (ADS)
Semerjyan, Vardan; Yuan, Tao
2011-04-01
Sodium (Na) Faraday filters based spectrometer is a relatively new instrument to study sodium nightglow as well as sodium and oxygen chemistry in the mesopause region. Successful spectrometer measurement demands highly accurate control of filter temperature. The ideal, long-term operation site for the Na spectrometer is an isolated location with minimum nocturnal sky background. Thus, the remote control of the filter temperature is a requirement for such operation, whereas current temperature controllers can only be operated manually. The proposed approach is aimed to not only enhance the temperature control, but also achieve spectrometer's remote and autonomous operation. In the meantime, the redesign should relief the burden of the cost for multi temperature controllers. The program will give to the operator flexibility in setting the operation temperatures of the Faraday filters, monitoring the temperature variations, and logging the data during the operation. Research will make diligent efforts to attach preliminary data analysis subroutine to the main control program. The real-time observation results will be posted online after the observation is completed. This approach also can be a good substitute for the temperature control system currently used to run the Lidar system at Utah State University (USU).
NASA Technical Reports Server (NTRS)
Schefer, R. W.; Sawyer, R. F.
1976-01-01
An opposed reacting jet combustor (ORJ) was tested at a pressure of 1 atmosphere. A premixed propane/air stream was stabilized by a counterflowing jet of the same reactants. The resulting intensely mixed zone of partially reacted combustion products produced stable combustion at equivalence ratios as low as 0.45. Measurements are presented for main stream velocities of 7.74 and 13.6 m/sec with an opposed jet velocity of 96 m/sec, inlet air temperatures from 300 to 600 K, and equivalence ratios from 0.45 to 0.625. Fuel lean premixed combustion was an effective method of achieving low NOx emissions and high combustion efficiencies simultaneously. Under conditions promoting lower flame temperature, NO2 constituted up to 100 percent of the total NOx. At higher temperatures this percentage decreased to a minimum of 50 percent.
Iterative simulated quenching for designing irregular-spot-array generators.
Gillet, J N; Sheng, Y
2000-07-10
We propose a novel, to our knowledge, algorithm of iterative simulated quenching with temperature rescaling for designing diffractive optical elements, based on an analogy between simulated annealing and statistical thermodynamics. The temperature is iteratively rescaled at the end of each quenching process according to ensemble statistics to bring the system back from a frozen imperfect state with a local minimum of energy to a dynamic state in a Boltzmann heat bath in thermal equilibrium at the rescaled temperature. The new algorithm achieves much lower cost function and reconstruction error and higher diffraction efficiency than conventional simulated annealing with a fast exponential cooling schedule and is easy to program. The algorithm is used to design binary-phase generators of large irregular spot arrays. The diffractive phase elements have trapezoidal apertures of varying heights, which fit ideal arbitrary-shaped apertures better than do trapezoidal apertures of fixed heights.
50 CFR 622.48 - Adjustment of management measures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... biomass achieved by fishing at MSY (BMSY) (or proxy), maximum fishing mortality threshold (MFMT), minimum... biomass achieved by fishing at MSY (BMSY), minimum stock size threshold (MSST), and maximum fishing.... MSY, OY, and TAC. (f) South Atlantic snapper-grouper and wreckfish. Biomass levels, age-structured...
Chong, Su Sin; Aziz, A.R. Abdul; Harun, Sulaiman W.; Arof, Hamzah
2014-01-01
In this study, the construction and test of tapered plastic optical fiber (POF) sensors, based on an intensity modulation approach are described. Tapered fiber sensors with different diameters of 0.65 mm, 0.45 mm, and 0.35 mm, were used to measure various concentrations of Remazol black B (RBB) dye aqueous solutions at room temperature. The concentrations of the RBB solutions were varied from 0 ppm to 70 ppm. In addition, the effect of varying the temperature of the RBB solution was also investigated. In this case, the output of the sensor was measured at four different temperatures of 27 °C, 30 °C, 35 °C, and 40 °C, while its concentration was fixed at 50 ppm and 100 ppm. The experimental results show that the tapered POF with d = 0.45 mm achieves the best performance with a reasonably good sensitivity of 61 × 10−4 and a linearity of more than 99%. It also maintains a sufficient and stable signal when heat was applied to the solution with a linearity of more than 97%. Since the transmitted intensity is dependent on both the concentration and temperature of the analyte, multiple linear regression analysis was performed to combine the two independent variables into a single equation. The resulting equation was then validated experimentally and the best agreement between the calculated and experimental results was achieved by the sensor with d = 0.45 mm, where the minimum discrepancy is less than 5%. The authors conclude that POF-based sensors are suitable for RBB dye concentration sensing and, with refinement in fabrication, better results could be achieved. Their low fabrication cost, simple configuration, accuracy, and high sensitivity would attract many potential applications in chemical and biological sensing. PMID:25166498
Chong, Su Sin; Aziz, A R Abdul; Harun, Sulaiman W; Arof, Hamzah
2014-08-27
In this study, the construction and test of tapered plastic optical fiber (POF) sensors, based on an intensity modulation approach are described. Tapered fiber sensors with different diameters of 0.65 mm, 0.45 mm, and 0.35 mm, were used to measure various concentrations of Remazol black B (RBB) dye aqueous solutions at room temperature. The concentrations of the RBB solutions were varied from 0 ppm to 70 ppm. In addition, the effect of varying the temperature of the RBB solution was also investigated. In this case, the output of the sensor was measured at four different temperatures of 27 °C, 30 °C, 35 °C, and 40 °C, while its concentration was fixed at 50 ppm and 100 ppm. The experimental results show that the tapered POF with d = 0.45 mm achieves the best performance with a reasonably good sensitivity of 61 × 10(-4) and a linearity of more than 99%. It also maintains a sufficient and stable signal when heat was applied to the solution with a linearity of more than 97%. Since the transmitted intensity is dependent on both the concentration and temperature of the analyte, multiple linear regression analysis was performed to combine the two independent variables into a single equation. The resulting equation was then validated experimentally and the best agreement between the calculated and experimental results was achieved by the sensor with d = 0.45 mm, where the minimum discrepancy is less than 5%. The authors conclude that POF-based sensors are suitable for RBB dye concentration sensing and, with refinement in fabrication, better results could be achieved. Their low fabrication cost, simple configuration, accuracy, and high sensitivity would attract many potential applications in chemical and biological sensing.
Luostarinen, S; Rintala, J
2006-01-01
Anaerobic on-site treatment of black water (BW) and a mixture of black water and kitchen waste (BWKW) was studied in a two-phased upflow anaerobic sludge blanket septic tank (UASBst) at 10-20 degrees C. The processes were fed either continuously or discontinuously (twice per weekday). Moreover, BWKW was post-treated for nitrogen removal in an intermittently aerated moving bed biofilm reactor (MBBR) at 20 degrees C. Removal of total chemical oxygen demand (COD1) was efficient at minimum 90% with all three UASBst at all temperatures. Removal of dissolved COD (CODdis) was also high at approx. 70% with continuously fed BW and discontinuously fed BWKW, while with discontinuous BW feeding it was 20%. Temperature decrease had little effect on COD removals, though the need for phase 2 increased with decreasing temperature, especially with BWKW. Post-treatment of BWKW in MBBR resulted in approx. 50% nitrogen removal, but suffered from lack of carbon for denitrification. With carbon addition, removal of ca. 83% was achieved.
Analysis of agro-climatic parameters and their influence on maize production in South Africa
NASA Astrophysics Data System (ADS)
Adisa, Omolola M.; Botai, Christina M.; Botai, Joel O.; Hassen, Abubeker; Darkey, Daniel; Tesfamariam, Eyob; Adisa, Alex F.; Adeola, Abiodun M.; Ncongwane, Katlego P.
2017-11-01
This study analyzed the variability of the agro-climatic parameters that impact maize production across different seasons in South Africa. To achieve this, four agro-climatic variables (precipitation, potential evapotranspiration, minimum, and maximum temperatures) were considered for the period spanning 1986-2015, covering the North West, Free State, Mpumalanga, and KwaZulu-Natal (KZN) provinces. Results illustrate that there is a negative trend in precipitation for North West and Free State provinces and positive trend in maximum temperature for all the provinces over the study period. Furthermore, the results showed that among other agro-climatic parameters, minimum temperature had the most influence on maize production in North West, potential evapotranspiration (combination of the agro-climatic parameters), minimum and maximum temperature influenced maize production in KZN while maximum temperature influenced maize production in Mpumalanga and Free State. In general, the agro-climatic parameters were found to contribute 7.79, 21.85, 32.52, and 44.39% to variation in maize production during the study period in North West, Free State, Mpumalanga, and KZN, respectively. The variation in maize production among the provinces under investigation could most likely attribute to the variation in the size of the cultivated land among other factors including soil type and land tenure system. There were also difference in yield per hectare between the provinces; KZN and Mpumalanga being located in the humid subtropical areas of South Africa had the highest yield per hectare 5.61 and 4.99 tons, respectively, while Free State and North West which are in the semi-arid region had the lowest yield per hectare 3.86 and 3.03 tons, respectively. Understanding the nature and interaction of the dominant agro-climatic parameters discussed in the present study as well as their impact on maize production will help farmers and agricultural policy makers to understand how climate change exerts its influence on maize production within the study area so as to better adapt to the major climate element that either increases or decreases maize production in their respective provinces.
Cross-scale modeling of surface temperature and tree seedling establishment inmountain landscapes
Dingman, John; Sweet, Lynn C.; McCullough, Ian M.; Davis, Frank W.; Flint, Alan L.; Franklin, Janet; Flint, Lorraine E.
2013-01-01
Abstract: Introduction: Estimating surface temperature from above-ground field measurements is important for understanding the complex landscape patterns of plant seedling survival and establishment, processes which occur at heights of only several centimeters. Currently, future climate models predict temperature at 2 m above ground, leaving ground-surface microclimate not well characterized. Methods: Using a network of field temperature sensors and climate models, a ground-surface temperature method was used to estimate microclimate variability of minimum and maximum temperature. Temperature lapse rates were derived from field temperature sensors and distributed across the landscape capturing differences in solar radiation and cold air drainages modeled at a 30-m spatial resolution. Results: The surface temperature estimation method used for this analysis successfully estimated minimum surface temperatures on north-facing, south-facing, valley, and ridgeline topographic settings, and when compared to measured temperatures yielded an R2 of 0.88, 0.80, 0.88, and 0.80, respectively. Maximum surface temperatures generally had slightly more spatial variability than minimum surface temperatures, resulting in R2 values of 0.86, 0.77, 0.72, and 0.79 for north-facing, south-facing, valley, and ridgeline topographic settings. Quasi-Poisson regressions predicting recruitment of Quercus kelloggii (black oak) seedlings from temperature variables were significantly improved using these estimates of surface temperature compared to air temperature modeled at 2 m. Conclusion: Predicting minimum and maximum ground-surface temperatures using a downscaled climate model coupled with temperature lapse rates estimated from field measurements provides a method for modeling temperature effects on plant recruitment. Such methods could be applied to improve projections of species’ range shifts under climate change. Areas of complex topography can provide intricate microclimates that may allow species to redistribute locally as climate changes.
Change in mean temperature as a predictor of extreme temperature change in the Asia-Pacific region
NASA Astrophysics Data System (ADS)
Griffiths, G. M.; Chambers, L. E.; Haylock, M. R.; Manton, M. J.; Nicholls, N.; Baek, H.-J.; Choi, Y.; della-Marta, P. M.; Gosai, A.; Iga, N.; Lata, R.; Laurent, V.; Maitrepierre, L.; Nakamigawa, H.; Ouprasitwong, N.; Solofa, D.; Tahani, L.; Thuy, D. T.; Tibig, L.; Trewin, B.; Vediapan, K.; Zhai, P.
2005-08-01
Trends (1961-2003) in daily maximum and minimum temperatures, extremes and variance were found to be spatially coherent across the Asia-Pacific region. The majority of stations exhibited significant trends: increases in mean maximum and mean minimum temperature, decreases in cold nights and cool days, and increases in warm nights. No station showed a significant increase in cold days or cold nights, but a few sites showed significant decreases in hot days and warm nights. Significant decreases were observed in both maximum and minimum temperature standard deviation in China, Korea and some stations in Japan (probably reflecting urbanization effects), but also for some Thailand and coastal Australian sites. The South Pacific convergence zone (SPCZ) region between Fiji and the Solomon Islands showed a significant increase in maximum temperature variability.Correlations between mean temperature and the frequency of extreme temperatures were strongest in the tropical Pacific Ocean from French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and southern Japan. Correlations were weaker at continental or higher latitude locations, which may partly reflect urbanization.For non-urban stations, the dominant distribution change for both maximum and minimum temperature involved a change in the mean, impacting on one or both extremes, with no change in standard deviation. This occurred from French Polynesia to Papua New Guinea (except for maximum temperature changes near the SPCZ), in Malaysia, the Philippines, and several outlying Japanese islands. For urbanized stations the dominant change was a change in the mean and variance, impacting on one or both extremes. This result was particularly evident for minimum temperature.The results presented here, for non-urban tropical and maritime locations in the Asia-Pacific region, support the hypothesis that changes in mean temperature may be used to predict changes in extreme temperatures. At urbanized or higher latitude locations, changes in variance should be incorporated.
NASA Astrophysics Data System (ADS)
Li, Yongkang; Yang, Yang; He, Changyan
2018-04-01
Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.
NASA Astrophysics Data System (ADS)
Li, Yongkang; Yang, Yang; He, Changyan
2018-06-01
Planar flow casting (PFC) is a primary method for preparing an amorphous ribbon. The qualities of the amorphous ribbon are significantly influenced by the temperature and thermal expansion of the cooling roller. This study proposes a new approach to analyze the three-dimensional temperature and thermal expansion of the cooling roller using variable heat flux that acted on the cooling roller as a boundary condition. First, a simplified two-dimensional model of the PFC is developed to simulate the distribution of the heat flux in the circumferential direction with the software FLUENT. The resulting heat flux is extended to be three-dimensional in the ribbon's width direction. Then, the extended heat flux is imported as the boundary condition by the CFX Expression Language, and the transient temperature of the cooling roller is analyzed in the CFX software. Next, the transient thermal expansion of the cooling roller is simulated through the thermal-structural coupling method. Simulation results show that the roller's temperature and expansion are unevenly distributed, reach the peak value in the middle width direction, and the quasi-steady state of the maximum temperature and thermal expansion are achieved after approximately 50 s and 150 s of casting, respectively. The minimum values of the temperature and expansion are achieved when the roller has a thickness of 45 mm. Finally, the reliability of the approach proposed is verified by measuring the roller's thermal expansion on the spot. This study provides theoretical guidance for the roller's thermal expansion prediction and the gap adjustment in the PFC.
NASA Technical Reports Server (NTRS)
Ko, William L.
1995-01-01
Thermal buckling characteristics of hypersonic aircraft sandwich panels of various aspect ratios were investigated. The panel is fastened at its four edges to the substructures under four different edge conditions and is subjected to uniform temperature loading. Minimum potential energy theory and finite element methods were used to calculate the panel buckling temperatures. The two methods gave fairly close buckling temperatures. However, the finite element method gave slightly lower buckling temperatures than those given by the minimum potential energy theory. The reasons for this slight discrepancy in eigensolutions are discussed in detail. In addition, the effect of eigenshifting on the eigenvalue convergence rate is discussed.
Equatorial temperature anomaly during solar minimum
NASA Astrophysics Data System (ADS)
Suhasini, R.; Raghavarao, R.; Mayr, H. G.; Hoegy, W. R.; Wharton, L. E.
2001-11-01
We show evidence for the occurrence of the equatorial temperature anomaly (ETA) during solar minimum by analyzing the temperature and total ion density data from the Neutral Atmosphere Temperature Experiment (NATE) and the Cylindrical Electrostatic Probe (CEP), respectively, on board the Atmospheric Explorer-E satellite. The chosen data refer to a height of ~254 km in the African and Asian longitude sector (340.1°E-200°E) during a summer season in the Southern Hemisphere. As during the solar maximum period, the spatial characteristics of the ETA are similar to those of the equatorial ionization anomaly (EIA). A minimum in the gas temperature is collocated with the minimum in the ion density at the dip equator, and a temperature maximum on the south side of the equator is collocated with the density maximum of the EIA. The daytime behavior of ETA formation is about the same as that of EIA as both of them are clearly present at around 1300 and 1400 local solar time (LST) only. At 1400 LST the difference between the temperatures at the crest and the trough (ETA strength) reaches a maximum value of about 100°K which is ~14% of the temperature at the trough. Like the EIA, the ETA also suddenly disappears after 1400 LST. Thus the EIA appears to be a prerequisite for the ETA formation. During the premidnight time (2200 LST), however, while the EIA is nonexistent, the temperature distribution forms a pattern opposite to that at 1400 LST in the daytime. It shows a maximum around the dip equator and a broad minimum at the daytime crest region where the postsunset cooling also is faster and occurs earlier than at the dip equator. This nighttime maximum appears to be related to the signature of the midnight temperature maximum (MTM). Mass Spectrometer Incoherent Scatter (MSIS) model temperatures, in general, are higher than the observed average temperatures for the summer season and in particular for the region around the dip equator around noon hours.
Low noise 874 GHz receivers for the International Submillimetre Airborne Radiometer (ISMAR)
NASA Astrophysics Data System (ADS)
Hammar, A.; Sobis, P.; Drakinskiy, V.; Emrich, A.; Wadefalk, N.; Schleeh, J.; Stake, J.
2018-05-01
We report on the development of two 874 GHz receiver channels with orthogonal polarizations for the International Submillimetre Airborne Radiometer. A spline horn antenna and dielectric lens, a Schottky diode mixer circuit, and an intermediate frequency (IF) low noise amplifier circuit were integrated in the same metallic split block housing. This resulted in a receiver mean double sideband (DSB) noise temperature of 3300 K (minimum 2770 K, maximum 3400 K), achieved at an operation temperature of 40 °C and across a 10 GHz wide IF band. A minimum DSB noise temperature of 2260 K at 20 °C was measured without the lens. Three different dielectric lens materials were tested and compared with respect to the radiation pattern and noise temperature. All three lenses were compliant in terms of radiation pattern, but one of the materials led to a reduction in noise temperature of approximately 200 K compared to the others. The loss in this lens was estimated to be 0.42 dB. The local oscillator chains have a power consumption of 24 W and consist of custom-designed Schottky diode quadruplers (5% power efficiency in operation, 8%-9% peak), commercial heterostructure barrier varactor (HBV) triplers, and power amplifiers that are pumped by using a common dielectric resonator oscillator at 36.43 GHz. Measurements of the radiation pattern showed a symmetric main beam lobe with full width half maximum <5° and side lobe levels below -20 dB. Return loss of a prototype of the spline horn and lens was measured using a network analyzer and frequency extenders to 750-1100 GHz. Time-domain analysis of the reflection coefficients shows that the reflections are below -25 dB and are dominated by the external waveguide interface.
Johnson, Joseph S; Lacki, Michael J
2014-01-01
A growing number of mammal species are recognized as heterothermic, capable of maintaining a high-core body temperature or entering a state of metabolic suppression known as torpor. Small mammals can achieve large energetic savings when torpid, but they are also subject to ecological costs. Studying torpor use in an ecological and physiological context can help elucidate relative costs and benefits of torpor to different groups within a population. We measured skin temperatures of 46 adult Rafinesque's big-eared bats (Corynorhinus rafinesquii) to evaluate thermoregulatory strategies of a heterothermic small mammal during the reproductive season. We compared daily average and minimum skin temperatures as well as the frequency, duration, and depth of torpor bouts of sex and reproductive classes of bats inhabiting day-roosts with different thermal characteristics. We evaluated roosts with microclimates colder (caves) and warmer (buildings) than ambient air temperatures, as well as roosts with intermediate conditions (trees and rock crevices). Using Akaike's information criterion (AIC), we found that different statistical models best predicted various characteristics of torpor bouts. While the type of day-roost best predicted the average number of torpor bouts that bats used each day, current weather variables best predicted daily average and minimum skin temperatures of bats, and reproductive condition best predicted average torpor bout depth and the average amount of time spent torpid each day by bats. Finding that different models best explain varying aspects of heterothermy illustrates the importance of torpor to both reproductive and nonreproductive small mammals and emphasizes the multifaceted nature of heterothermy and the need to collect data on numerous heterothermic response variables within an ecophysiological context. PMID:24558571
Calibration of Relative Humidity Devices in Low-pressure, Low-temperature CO2 Environment
NASA Astrophysics Data System (ADS)
Genzer, Maria; Polkko, Jouni; Nikkanen, Timo; Hieta, Maria; Harri, Ari-Matti
2017-04-01
Calibration of relative humidity devices requires in minimum two humidity points - dry (0%RH) and (near)saturation (95-100%RH) - over the expected operational temperature and pressure range of the device. In terrestrial applications these are relatively easy to achieve using for example N2 gas as dry medium, and water vapor saturation chambers for producing saturation and intermediate humidity points. But for example in applications intended for meteorological measurements on Mars there is a need to achieve at least dry and saturation points in low-temperature, low-pressure CO2 environment. We have developed a custom-made, small, relatively low-cost calibration chamber able to produce both dry points and saturation points in Martian range pressure CO2, in temperatures down to -70°C. The system utilizes a commercially available temperature chamber for temperature control, vacuum vessels and pumps. The main pressure vessel with the devices under test inside is placed inside the temperature chamber, and the pressure inside is controlled by pumps and manual valves and monitored with a commercial pressure reference with calibration traceable to national standards. Air, CO2, or if needed another gas like N2, is used for filling the vessel until the desired pressure is achieved. Another pressure vessel with a dedicated pressure pump is used as the saturation chamber. This vessel is placed in the room outside the temperature chamber, partly filled with water and used for achieving saturated water vapor in room-temperature low-pressure environment. The saturation chamber is connected to the main pressure vessel via valves. In this system dry point, low-pressure CO2 environment is achieved by filling the main pressure vessel with dry CO2 gas until the desired pressure is achieved. A constant flow of gas is maintained with the pump and valves and monitored with the pressure reference. The saturation point is then achieved by adding some water vapor from the saturation chamber to the main pressure vessel. The amount of water vapor added is also monitored with the pressure reference. For example in -70°C, very small absolute amount of water vapor corresponding to 1 Pa [1][2] pressure rise in the main chamber results in humidity saturation. As the flow of both CO2 and water vapor is kept constant, the main chamber is served with water vapor all the time, keeping the uniform saturation conditions inside the vessel even if some of the water freezes on the vessel and pipe walls. [1] Goff, J. A., and S. Gratch (1946) Low-pressure properties of water from -160 to 212 °F, Transactions of the American Society of Heating and Ventilating Engineers [2] Goff, J. A. (1957) Saturation pressure of water on the new Kelvin temperature scale, Transactions of the American Society of Heating and Ventilating Engineers
NASA Astrophysics Data System (ADS)
Gomes, André D.; Silveira, Beatriz; Warren-Smith, Stephen C.; Becker, Martin; Rothhardt, Manfred; Frazão, Orlando
2018-05-01
A fiber Bragg grating was inscribed in an abrupt fiber taper using a femtosecond laser and phase-mask interferometer. The abrupt taper transition allows to excite a broad range of guided modes with different effective refractive indices that are reflected at different wavelengths according to Bragg's law. The multimode-Bragg reflection expands over 30 nm in the telecom-C-band. This corresponds to a mode-field overlap of up to 30% outside of the fiber, making the device suitable for evanescent field sensing. Refractive index and temperature measurements are performed for different reflection peaks. Temperature independent refractive index measurements are achieved by considering the difference between the wavelength shifts of two measured reflection peaks. A minimum refractive index sensitivity of 16 ± 1 nm/RIU was obtained in a low refractive index regime (1.3475-1.3720) with low influence of temperature (-0.32 ± 0.06 pm/°C). The cross sensitivity for this structure is 2.0 × 10-5 RIU/°C. The potential for simultaneous measurement of refractive index and temperature is also studied.
Farag, Yassin; Leopold, Claudia Sabine
2011-03-01
Since the introduction of aqueous ammoniacal solutions, shellac regained importance for pharmaceutical applications. However, as shellac is a material obtained from natural resources, its quality and thus its physicochemical properties may vary depending on its origin and the type of refining. In this study theophylline pellets were coated with aqueous solutions of three different commercially available shellac types. The inlet air temperature of the coating process was varied, and its influence on drug release from the coated pellet formulations was investigated. Film formation was correlated to the physicochemical and mechanical properties of the investigated shellac types. Pellets coated at lower temperatures showed distinct cracks in the coating film resulting in a loss of the barrier function during dissolution testing. These cracks were nonreversible by additional curing. The physicochemical and mechanical properties of the investigated shellac types varied significantly and could hardly be related to the drug release performance of the investigated formulations. Obviously, with shellac a minimum inlet air temperature must be exceeded to achieve a coherent coating film. This temperature was dependent on the investigated shellac type.
Canadian crop calendars in support of the early warning project
NASA Technical Reports Server (NTRS)
Trenchard, M. H.; Hodges, T. (Principal Investigator)
1980-01-01
The Canadian crop calendars for LACIE are presented. Long term monthly averages of daily maximum and daily minimum temperatures for subregions of provinces were used to simulate normal daily maximum and minimum temperatures. The Robertson (1968) spring wheat and Williams (1974) spring barley phenology models were run using the simulated daily temperatures and daylengths for appropriate latitudes. Simulated daily temperatures and phenology model outputs for spring wheat and spring barley are given.
Comparing exposure metrics for classifying ‘dangerous heat’ in heat wave and health warning systems
Zhang, Kai; Rood, Richard B.; Michailidis, George; Oswald, Evan M.; Schwartz, Joel D.; Zanobetti, Antonella; Ebi, Kristie L.; O’Neill, Marie S.
2012-01-01
Heat waves have been linked to excess mortality and morbidity, and are projected to increase in frequency and intensity with a warming climate. This study compares exposure metrics to trigger heat wave and health warning systems (HHWS), and introduces a novel multi-level hybrid clustering method to identify potential dangerously hot days. Two-level and three-level hybrid clustering analysis as well as common indices used to trigger HHWS, including spatial synoptic classification (SSC); and 90th, 95th, and 99th percentiles of minimum and relative minimum temperature (using a 10 day reference period), were calculated using a summertime weather dataset in Detroit from 1976 to 2006. The days classified as ‘hot’ with hybrid clustering analysis, SSC, minimum and relative minimum temperature methods differed by method type. SSC tended to include the days with, on average, 2.6 °C lower daily minimum temperature and 5.3 °C lower dew point than days identified by other methods. These metrics were evaluated by comparing their performance in predicting excess daily mortality. The 99th percentile of minimum temperature was generally the most predictive, followed by the three-level hybrid clustering method, the 95th percentile of minimum temperature, SSC and others. Our proposed clustering framework has more flexibility and requires less substantial meteorological prior information than the synoptic classification methods. Comparison of these metrics in predicting excess daily mortality suggests that metrics thought to better characterize physiological heat stress by considering several weather conditions simultaneously may not be the same metrics that are better at predicting heat-related mortality, which has significant implications in HHWSs. PMID:22673187
NASA Astrophysics Data System (ADS)
Mavlonov, Abdurashid; Richter, Steffen; von Wenckstern, Holger; Schmidt-Grund, Rüdiger; Lorenz, Michael; Grundmann, Marius
2016-11-01
We studied the doping efficiency of Al and Ga dopants in (Mg,Zn)O alloys as a function of the growth temperature and post growth annealing times. High-temperature growth results in the highest structural quality and highest electron mobility; the doping efficiency is limited by the dopant's solubility. It was investigated in detail that a low growth temperature is needed to achieve free carrier densities above the solubility limit of the dopants. Samples grown at temperatures of 300 °C and below have a free carrier density significantly above the solubility limit yielding the minimum resistivity of ρmin=4.8 ×10-4 Ω cm for Mg0.05 Zn0.95 O:Al thin films grown on glass at 300 °C . Annealing of these samples reduces the free carrier density and the absorption edge to values similar to those of samples grown at high temperatures. The saturation of the free carrier density and the optical bandgap at their high temperature growth/annealing values is explained by the thermal creation of acceptor-like compensating defects in thermodynamic equilibrium.
NASA Technical Reports Server (NTRS)
Blumenthal, Rob; Kim, Dongmoon; Bache, George
1992-01-01
The hydrogen mixer for the Space Transportation Main Engine is used to mix cold hydrogen bypass flow with warm hydrogen coolant chamber gas, which is then fed to the injectors. It is very important to have a uniform fuel temperature at the injectors in order to minimize mixture ratio problems due to the fuel density variations. In addition, the fuel at the injector has certain total pressure requirements. In order to achieve these objectives, the hydrogen mixer must provide a thoroughly mixed fluid with a minimum pressure loss. The AEROVISC computational fluid dynamics (CFD) code was used to analyze the STME hydrogen mixer, and proved to be an effective tool in optimizing the mixer design. AEROVISC, which solves the Reynolds Stress-Averaged Navier-Stokes equations in primitive variable form, was used to assess the effectiveness of different mixer designs. Through a parametric study of mixer design variables, an optimal design was selected which minimized mixed fuel temperature variation and fuel mixer pressure loss. The use of CFD in the design process of the STME hydrogen mixer was effective in achieving an optimal mixer design while reducing the amount of hardware testing.
Experiments on 1,000 km/s flyer acceleration and collisions
NASA Astrophysics Data System (ADS)
Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Serlin, V.; Obenschain, S. P.
2012-10-01
We will present results from follow-on experiments to the record-high velocities achieved using the ultra-uniform deep-uv drive of the Nike KrF laser [Karasik et al, Phys. Plasmas 17, 056317 (2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ˜1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Such velocities may indicate a path to lower minimum energy required for central ignition. Still higher velocities and higher target densities are required for impact fast ignition. New results give velocity of >1,100 km/s achieved through improvements in pulseshaping. Variation of second foil parameters results in significant change in fusion neutron production on impact. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Availability of pressures generated by collisions of such highly accelerated flyers may provide an experimental platform for study of matter at extreme conditions. Work is supported by US DOE (NNSA).
NASA Technical Reports Server (NTRS)
Sakata, I. F.; Davis, G. W.
1975-01-01
The design of an economically viable supersonic cruise aircraft requires the lowest attainable structural-mass fraction commensurate with the selected near-term structural material technology. To achieve this goal of minimum structural-mass fraction, various combinations of promising wing and fuselage primary structure were analyzed for the load-temperature environment applicable to the arrow wing configuration. This analysis was conducted in accordance with the design criteria specified and included extensive use of computer-aided analytical methods to screen the candidate concepts and select the most promising concepts for the in-depth structural analysis.
Chlorination of alumina in kaolinitic clay
NASA Astrophysics Data System (ADS)
Grob, B.; Richarz, W.
1984-09-01
The chlorination of alumina in kaolinitic clay with Cl2 and CO gas mixtures was studied gravimetrically. The effects of the calcination method and of NaCl addition on the reactivity of the clay were examined. Fast reaction rates were achieved only with samples previously exposed to a sulfating treatment. Optimum conditions, with maximum yield and selectivity to A1C13 and minimum SiO2 conversion, were found between 770 and 970 K. At higher temperatures the SiCl4 formed poisons the reactive alumina surface by selective chemisorption with a marked decrease of the reaction rate.
The technological raw material heating furnaces operation efficiency improving issue
NASA Astrophysics Data System (ADS)
Paramonov, A. M.
2017-08-01
The issue of fuel oil applying efficiency improving in the technological raw material heating furnaces by means of its combustion intensification is considered in the paper. The technical and economic optimization problem of the fuel oil heating before combustion is solved. The fuel oil heating optimal temperature defining method and algorithm analytically considering the correlation of thermal, operating parameters and discounted costs for the heating furnace were developed. The obtained optimization functionality provides the heating furnace appropriate thermal indices achievement at minimum discounted costs. The carried out research results prove the expediency of the proposed solutions using.
NASA Astrophysics Data System (ADS)
Nath, Nayani Kishore
2017-08-01
The throat back up liners is used to protect the nozzle structural members from the severe thermal environment in solid rocket nozzles. The throat back up liners is made with E-glass phenolic prepregs by tape winding process. The objective of this work is to demonstrate the optimization of process parameters of tape winding process to achieve better insulative resistance using Taguchi's robust design methodology. In this method four control factors machine speed, roller pressure, tape tension, tape temperature that were investigated for the tape winding process. The presented work was to study the cogency and acceptability of Taguchi's methodology in manufacturing of throat back up liners. The quality characteristic identified was Back wall temperature. Experiments carried out using L 9 ' (34) orthogonal array with three levels of four different control factors. The test results were analyzed using smaller the better criteria for Signal to Noise ratio in order to optimize the process. The experimental results were analyzed conformed and successfully used to achieve the minimum back wall temperature of the throat back up liners. The enhancement in performance of the throat back up liners was observed by carrying out the oxy-acetylene tests. The influence of back wall temperature on the performance of throat back up liners was verified by ground firing test.
Elevated temperature ductility of types 304 and 316 stainless steel. [640/sup 0/ to 750/sup 0/C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sikka, V. K.
1978-01-01
Austenitic stainless steel types 304 and 316 are known for their high ductility and toughness. However, the present study shows that certain combinations of strain rate and test temperature can result in a significant loss in elevated-temperature ductility. Such a phenomenon is referred to as ductility minimum. The strain rate, below which ductility loss is initiated, decreases with decrease in test temperature. Besides strain rate and temperature, the ductility minimum was also affected by nitrogen content and thermal aging conditions. Thermal aging at 649/sup 0/C was observed to eliminate the ductility minimum at 649/sup 0/C in both types 304 andmore » 316 stainless steel. Such an aging treatment resulted in a higher ductility than the unaged value. Aging at 593/sup 0/C still resulted in some loss in ductility. Current results suggest that ductility-minimum conditions for stainless steel should be considered in design, thermal aging data analysis, and while studying the effects of chemical composition.« less
Size, weight, and power reduction of mercury cadmium telluride infrared detection modules
NASA Astrophysics Data System (ADS)
Breiter, Rainer; Ihle, Tobias; Wendler, Joachim C.; Lutz, Holger; Rutzinger, Stefan; Schallenberg, Timo; Hofmann, Karl C.; Ziegler, Johann
2011-06-01
Application requirements driving present IR technology development activities are improved capability to detect and identify a threat as well as the need to reduce size weight and power consumption (SWaP) of thermal sights. In addition to the development of 3rd Gen IR modules providing dual-band or dual-color capability, AIM is focused on IR FPAs with reduced pitch and high operating temperature for SWaP reduction. State-of-the-art MCT technology allows AIM the production of mid-wave infrared (MWIR) detectors operating at temperatures exceeding 120 K without any need to sacrifice the 5-μm cut-off wavelength. These FPAs allow manufacturing of low cost IR modules with minimum size, weight, and power for state-of-the-art high performance IR systems. AIM has realized full TV format MCT 640×512 mid-wave and long-wave IR detection modules with a 15-μm pitch to meet the requirements of critical military applications like thermal weapon sights or thermal imagers in unmanned aerial vehicles applications. In typical configurations like an F/4.6 cold shield for the 640×512 MWIR module an noise equivalent temperature difference (NETD) <25 mK @ 5 ms integration time is achieved, while the long-wavelength infrared (LWIR) modules achieve an NETD <38 mK @ F/2 and 180 μs integration time. For the LWIR modules, FPAs with a cut-off up to 10 μm have been realized. The modules are available either with different integral rotary cooler configurations for portable applications that require minimum cooling power or a new split linear cooler providing long lifetime with a mean time to failure (MTTF) > 20000, e.g., for warning sensors in 24/7 operation. The modules are available with optional image processing electronics providing nonuniformity correction and further image processing for a complete IR imaging solution. The latest results and performance of those modules and their applications are presented.
NASA Astrophysics Data System (ADS)
Shekhar, M. S.; Devi, Usha; Dash, S. K.; Singh, G. P.; Singh, Amreek
2018-04-01
The current trends in diurnal temperature range, maximum temperature, minimum temperature, mean temperature, and sun shine hours over different ranges and altitudes of Western Himalaya during winter have been studied. Analysis of 25 years of data shows an increasing trend in diurnal temperature range over all the ranges and altitudes of Western Himalaya during winter, thereby confirming regional warming of the region due to present climate change and global warming. Statistical studies show significant increasing trend in maximum temperature over all the ranges and altitudes of Western Himalaya. Minimum temperature shows significant decreasing trend over Pir Panjal and Shamshawari range and significant increasing trend over higher altitude of Western Himalaya. Similarly, sunshine hours show significant decreasing trend over Karakoram range. There exists strong positive correlation between diurnal temperature range and maximum temperature for all the ranges and altitudes of Western Himalaya. Strong negative correlation exists between diurnal temperature range and minimum temperature over Shamshawari and Great Himalaya range and lower altitude of Western Himalaya. Sunshine hours show strong positive correlation with diurnal temperature range over Pir Panjal and Great Himalaya range and lower and higher altitudes.
Chylek, Petr; Augustine, John A.; Klett, James D.; ...
2017-09-30
At thousands of stations worldwide, the mean daily surface air temperature is estimated as a mean of the daily maximum (T max) and minimum (T min) temperatures. In this paper, we use the NOAA Surface Radiation Budget Network (SURFRAD) of seven US stations with surface air temperature recorded each minute to assess the accuracy of the mean daily temperature estimate as an average of the daily maximum and minimum temperatures and to investigate how the accuracy of the estimate increases with an increasing number of daily temperature observations. We find the average difference between the estimate based on an averagemore » of the maximum and minimum temperatures and the average of 1440 1-min daily observations to be - 0.05 ± 1.56 °C, based on analyses of a sample of 238 days of temperature observations. Considering determination of the daily mean temperature based on 3, 4, 6, 12, or 24 daily temperature observations, we find that 2, 4, or 6 daily observations do not reduce significantly the uncertainty of the daily mean temperature. The bias reduction in a statistically significant manner (95% confidence level) occurs only with 12 or 24 daily observations. The daily mean temperature determination based on 24 hourly observations reduces the sample daily temperature uncertainty to - 0.01 ± 0.20 °C. Finally, estimating the parameters of population of all SURFRAD observations, the 95% confidence intervals based on 24 hourly measurements is from - 0.025 to 0.004 °C, compared to a confidence interval from - 0.15 to 0.05 °C based on the mean of T max and T min.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chylek, Petr; Augustine, John A.; Klett, James D.
At thousands of stations worldwide, the mean daily surface air temperature is estimated as a mean of the daily maximum (T max) and minimum (T min) temperatures. In this paper, we use the NOAA Surface Radiation Budget Network (SURFRAD) of seven US stations with surface air temperature recorded each minute to assess the accuracy of the mean daily temperature estimate as an average of the daily maximum and minimum temperatures and to investigate how the accuracy of the estimate increases with an increasing number of daily temperature observations. We find the average difference between the estimate based on an averagemore » of the maximum and minimum temperatures and the average of 1440 1-min daily observations to be - 0.05 ± 1.56 °C, based on analyses of a sample of 238 days of temperature observations. Considering determination of the daily mean temperature based on 3, 4, 6, 12, or 24 daily temperature observations, we find that 2, 4, or 6 daily observations do not reduce significantly the uncertainty of the daily mean temperature. The bias reduction in a statistically significant manner (95% confidence level) occurs only with 12 or 24 daily observations. The daily mean temperature determination based on 24 hourly observations reduces the sample daily temperature uncertainty to - 0.01 ± 0.20 °C. Finally, estimating the parameters of population of all SURFRAD observations, the 95% confidence intervals based on 24 hourly measurements is from - 0.025 to 0.004 °C, compared to a confidence interval from - 0.15 to 0.05 °C based on the mean of T max and T min.« less
Investigating Low Temperature Properties of Rubber Seals - 13020
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jaunich, M.; Wolff, D.; Stark, W.
To achieve the required tightness levels of containers for low and intermediate level radioactive wastes rubbers are widely applied as main sealing materials. The save encapsulation of the radioactive container contents has to be guaranteed according to legislation and appropriate guidelines for long storage periods as well as down to temperatures of -40 deg. C during transportation. Therefore the understanding of failure mechanisms that lead to leakage at low temperatures is of high importance. It is known that the material properties of rubbers are strongly influenced by temperature. At low temperatures this is caused by the rubber-glass transition (abbr. glassmore » transition). During continuous cooling the material changes from rubber-like entropy-elastic to stiff energy-elastic behaviour, that allows nearly no strain or retraction. Therefore, rubbers are normally used above their glass transition but the minimum working temperature limit is not defined precisely, what can cause problems during application. The temperature range where full functionality is possible is strongly dependent on the application conditions and the material. For this investigation mainly ethylene propylene diene (EPDM) and fluorocarbon rubbers (FKM) were selected as they are often used for radioactive waste containers. Differential Scanning Calorimetry (DSC) and Dynamic Mechanical Analysis (DMA) are typically used for the determination of the temperature range of the glass transition process. The standardized compression set measurement according to ISO 815 is common for investigation of rubber sealing materials as the test simulates the seal behaviour after release. To reduce the test time of the standard tests a faster technique giving the same information was developed. Additionally, the breakdown temperature of the sealing function of complete O-ring seals is measured in a component test setup to compare it with the results of the other tests. The experimental setup is capable of measuring the leakage rate at low temperatures by the pressure rise method. A model was developed that allows calculating the minimum working temperature limit of a seal by combining the results of the applied methods. (authors)« less
Development of miniature moving magnet cryocooler SX040
NASA Astrophysics Data System (ADS)
Rühlich, I.; Mai, M.; Rosenhagen, C.; Schreiter, A.; Möhl, C.
2011-06-01
State of the art high performance cooled IR systems need to have more than just excellent E/O performance. Minimum size weight and power (SWaP) are the design goals to meet our forces' mission requirements. Key enabler for minimum SWaP of IR imagers is the operation temperature of the focal plane array (FPA) employed. State of the art MCT or InAsSb nBn technology has the potential to rise the FPA temperature from 77 K to 130-150 K (high operation temperature HOT) depending on the specific cut-off wavelength. Using a HOT FPA will significantly lower SWaP and keep those parameters finally dominated by the employed cryocooler. Therefore compact high performance cryocoolers are mandatory. For highest MTTF life AIM developed its Flexure Bearing Moving Magnet product family "SF". Such coolers achieve more than 20000 h MTTF with Stirling type expander and more than 5 years MTTF life with Pulse Tube coldfinger (like for Space applications). To keep the high lifetime potential but to significantly improve SWaP AIM is developing its "SX" type cooler family. The new SX040 cooler incorporates a highly efficient dual piston Moving Magnet driving mechanism resulting in very compact compressor of less than 100mm length. The cooler's high lifetime is also achieved by placing the coils outside the helium vessel as usual for moving magnet motors. The mating ¼" expander is extremely compact with less than 63 mm length. This allows a total dewar length from optical window to expander warm end of less than 100 mm even for large cold shields. The cooler is optimized for HOT detectors with operating temperatures exceeding 95 K. While this kind of cooler is the perfect match for many applications, handheld sights or targeting devices for the dismounted soldier are even more challenging with respect to SWaP. AIM therefore started to develop an even smaller cooler type with single piston and balancer. This paper gives an overview on the development of this new compact cryocooler. Technical details and performance data will be shown.
Simulation of hydrogen adsorption systems adopting the flow through cooling concept
Corgnale, Claudio; Hardy, Bruce; Chahine, Richard; ...
2014-10-13
Hydrogen storage systems based on adsorbent materials have the potential of achieving the U.S. Department of Energy (DOE) targets, especially in terms of gravimetric capacity. This paper deals with analysis of adsorption storage systems adopting the flow through cooling concept. By this approach the feeding hydrogen provides the needed cold to maintain the tank at low temperatures. Two adsorption systems have been examined and modeled adopting the Dubinin-Astakhov model, to see their performance under selected operating conditions. A first case has been analyzed, modeling a storage tank filled with carbon based material (namely MaxSorb®) and comparing the numerical outcomes withmore » the available experimental results for a 2.5 L tank. Under selected operating conditions (minimum inlet hydrogen temperature of approximately 100 K and maximum pressure on the order of 8.5 MPa) and adopting the flow through cooling concept the material shows a gravimetric capacity of about 5.7 %. A second case has been modeled, examining the same tank filled with metal organic framework material (MOF5®) under approximately the same conditions. The model shows that the latter material can achieve a (material) gravimetric capacity on the order of 11%, making the system potentially able to achieve the DOE 2017 target.« less
40 CFR 61.356 - Recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... test protocol and the means by which sampling variability and analytical variability were accounted for... also establish the design minimum and average temperature in the combustion zone and the combustion... the design minimum and average temperatures across the catalyst bed inlet and outlet. (C) For a boiler...
NASA Astrophysics Data System (ADS)
Stooksbury, David E.; Idso, Craig D.; Hubbard, Kenneth G.
1999-05-01
Gaps in otherwise regularly scheduled observations are often referred to as missing data. This paper explores the spatial and temporal impacts that data gaps in the recorded daily maximum and minimum temperatures have on the calculated monthly mean maximum and minimum temperatures. For this analysis 138 climate stations from the United States Historical Climatology Network Daily Temperature and Precipitation Data set were selected. The selected stations had no missing maximum or minimum temperature values during the period 1951-80. The monthly mean maximum and minimum temperatures were calculated for each station for each month. For each month 1-10 consecutive days of data from each station were randomly removed. This was performed 30 times for each simulated gap period. The spatial and temporal impact of the 1-10-day data gaps were compared. The influence of data gaps is most pronounced in the continental regions during the winter and least pronounced in the southeast during the summer. In the north central plains, 10-day data gaps during January produce a standard deviation value greater than 2°C about the `true' mean. In the southeast, 10-day data gaps in July produce a standard deviation value less than 0.5°C about the mean. The results of this study will be of value in climate variability and climate trend research as well as climate assessment and impact studies.
Enhanced cooling of Yb:YLF using astigmatic Herriott cell (Conference Presentation)
NASA Astrophysics Data System (ADS)
Gragossian, Aram; Meng, Junwei; Ghasemkhani, Mohammadreza; Albrecht, Alexander R.; Tonelli, Mauro; Sheik-Bahae, Mansoor
2017-02-01
Optical refrigeration of solids requires crystals with exceptional qualities. Crystals with external quantum efficiencies (EQE) larger than 99% and background absorptions of 4×10-4cm-1 have been cooled to cryogenic temperatures using non resonant cavities. Estimating the cooling efficiency requires accurate measurements of the above mentioned quantities. Here we discuss measurements of EQE and background absorption for two high quality Yb:YLF samples. For any given sample, to reach minimum achievable temperatures heat generated by fluorescence must be removed from the surrounding clamshell and more importantly, absorption of the laser light must be maximized. Since the absorption coefficient drops at lower temperatures the only option is to confine laser light in a cavity until almost 100% of the light is absorbed. This can be achieved by placing the crystal between a cylindrical and spherical mirror to form an astigmatic Herriott cell. In this geometry light enters through a hole in the middle of the spherical mirror and if the entrance angle is correct, it can make as many round trips as required to absorb all the light. At 120 K 60 passes and 150 passes at 100K ensures more than 95% absorption of the laser light. 5 and 10% Yb:YLF crystals placed in such a cell cool to sub 90K temperatures. Non-contact temperature measurements are more challenging for such a geometry. Reabsorption of fluorescence for each pass must be taken into account for accurate temperature measurements by differential luminescence thermometry (DLT). Alternatively, we used part of the spectrum that is not affected by reabsorption.
ERIC Educational Resources Information Center
Ottersten, Eugenia Kazamaki; Steedman, Hilary; Schneeberger, Arthur; Carneiro, Roberto
2000-01-01
Three articles debate the findings of a study: "Low-Skilled People on the European Labor Market: Towards a Minimum Learning Platform?" (Ottersen, Steedman); "The Concept of a Minimum Learning Platform Educational Contents and Methods for Improving the Low-Skilled" (Schneeberger); and "Achieving a Minimum Learning Platform…
The global surface temperatures of the Moon as measured by the Diviner Lunar Radiometer Experiment
NASA Astrophysics Data System (ADS)
Williams, J.-P.; Paige, D. A.; Greenhagen, B. T.; Sefton-Nash, E.
2017-02-01
The Diviner Lunar Radiometer Experiment onboard the Lunar Reconnaissance Orbiter (LRO) has been acquiring solar reflectance and mid-infrared radiance measurements nearly continuously since July of 2009. Diviner is providing the most comprehensive view of how regoliths on airless bodies store and exchange thermal energy with the space environment. Approximately a quarter trillion calibrated radiance measurements of the Moon, acquired over 5.5 years by Diviner, have been compiled into a 0.5° resolution global dataset with a 0.25 h local time resolution. Maps generated with this dataset provide a global perspective of the surface energy balance of the Moon and reveal the complex and extreme nature of the lunar surface thermal environment. Our achievable map resolution, both spatially and temporally, will continue to improve with further data acquisition. Daytime maximum temperatures are sensitive to the albedo of the surface and are ∼387-397 K at the equator, dropping to ∼95 K just before sunrise, though anomalously warm areas characterized by high rock abundances can be > 50 K warmer than the zonal average nighttime temperatures. An asymmetry is observed between the morning and afternoon temperatures due to the thermal inertia of the lunar regolith with the dusk terminator ∼30 K warmer than the dawn terminator at the equator. An increase in albedo with incidence angle is required to explain the observed decrease in temperatures with latitude. At incidence angles exceeding ∼40°, topography and surface roughness influence temperatures resulting in increasing scatter in temperatures and anisothermality between Diviner channels. Nighttime temperatures are sensitive to the thermophysical properties of the regolith. High thermal inertia (TI) materials such as large rocks, remain warmer during the long lunar night and result in anomalously warm nighttime temperatures and anisothermality in the Diviner channels. Anomalous maximum and minimum temperatures are highlighted by subtracting the zonal mean temperatures from maps. Terrains can be characterized as low or high reflectance and low or high TI. Low maximum temperatures result from high reflectance surfaces while low minimum temperatures from low-TI material. Conversely, high maximum temperatures result from dark surface, and high minimum temperatures from high-TI materials. Impact craters are found to modify regolith properties over large distances. The thermal signature of Tycho is asymmetric, consistent with an oblique impact coming from the west. Some prominent crater rays are visible in the thermal data and require material with a higher thermal inertial than nominal regolith. The influence of the formation of the Orientale basin on the regolith properties is observable over a substantial portion of the western hemisphere despite its age (∼3.8 Gyr), and may have contributed to mixing of highland and mare material on the southwest margin of Oceanus Procellarum where the gradient in radiative properties at the mare-highland contact is broad (∼200 km).
NASA Astrophysics Data System (ADS)
Au, Peter
A process for fabricating advanced aerospace titanium aluminide alloys starting from metal powders (the hot isostatically consolidated P/M process) is presented in this thesis. This process does not suffer the difficulties of chemical inhomogeneities and coarse grain structure of castings. In addition heat treatments which take advantage of the refined structure of HIP processed materials are developed to achieve microstructure control and subsequent mechanical property control. It is shown that a better "property balance" is possible after the heat treatment of HIP consolidated materials than it is with alternative processing. It is well understood that the standard microstructures (near-gamma, duplex, nearly lamellar, and fully lamellar) do not have the balanced mechanical properties (tensile, yield, creep and fatigue strength, ductility and fracture toughness) necessary for optimal performance in aero engine and automotive applications. In this work a fine-grained fully lamellar (FGFL) microstructure is developed for property control and in particular for achieving a much improved property balance. A heat treatment procedure for this purpose which consists of cyclic processing in the alpha transus temperature region to achieve an FGFL structure with grain sizes in the range of 50 mum to 150 mum is presented. Compared with conventional duplex structured materials, the minimum creep rate is an order of magnitude lower with only a 10% loss in tensile yield strength. Moreover, a three-fold increase in tensile elongation is possible by converting to an FGFL structure with only a 30% loss in minimum creep rate. These are attractive trade-offs when considering the use of these alloys for aerospace purposes. A thorough literature review of the mechanisms of formation of standard microstructures and their deformation under mechanical loading is contained in the thesis. In addition, conventional techniques to produce FGFL microstructures in wrought and cast materials are discussed in detail. Beyond the review, the results of experiments are described for determining the alpha transus temperature, the phase transformation kinetics in this region and the effects of heat treatment time and cooling rate on microstructure. Based on this preliminary work, a heat treatment to achieve a FGFL microstructure with grain sizes in the range of 50 mum to 150 mum is proposed and confirmed. The room temperature and high temperature mechanical properties of these materials are compared with those of conventional duplex and fully lamellar structures. The results of this experimentation are discussed in terms of the fundamental mechanisms for controlling microstructure and mechanical properties in these materials. The potential for applying cyclic heat treatments to cast and wrought materials to improve the mechanical property balance in engineering practice is discussed.
Schenker, Gabriela; Lenz, Armando; Körner, Christian; Hoch, Günter
2014-03-01
Temperature is the most important factor driving the cold edge distribution limit of temperate trees. Here, we identified the minimum temperatures for root growth in seven broad-leaved tree species, compared them with the species' natural elevational limits and identified morphological changes in roots produced near their physiological cold limit. Seedlings were exposed to a vertical soil-temperature gradient from 20 to 2 °C along the rooting zone for 18 weeks. In all species, the bulk of roots was produced at temperatures above 5 °C. However, the absolute minimum temperatures for root growth differed among species between 2.3 and 4.2 °C, with those species that reach their natural distribution limits at higher elevations also tending to have lower thermal limits for root tissue formation. In all investigated species, the roots produced at temperatures close to the thermal limit were pale, thick, unbranched and of reduced mechanical strength. Across species, the specific root length (m g(-1) root) was reduced by, on average, 60% at temperatures below 7 °C. A significant correlation of minimum temperatures for root growth with the natural high elevation limits of the investigated species indicates species-specific thermal requirements for basic physiological processes. Although these limits are not necessarily directly causative for the upper distribution limit of a species, they seem to belong to a syndrome of adaptive processes for life at low temperatures. The anatomical changes at the cold limit likely hint at the mechanisms impeding meristematic activity at low temperatures.
Application of genetic algorithms in nonlinear heat conduction problems.
Kadri, Muhammad Bilal; Khan, Waqar A
2014-01-01
Genetic algorithms are employed to optimize dimensionless temperature in nonlinear heat conduction problems. Three common geometries are selected for the analysis and the concept of minimum entropy generation is used to determine the optimum temperatures under the same constraints. The thermal conductivity is assumed to vary linearly with temperature while internal heat generation is assumed to be uniform. The dimensionless governing equations are obtained for each selected geometry and the dimensionless temperature distributions are obtained using MATLAB. It is observed that GA gives the minimum dimensionless temperature in each selected geometry.
NASA Astrophysics Data System (ADS)
Gómez, I.; Estrela, M.
2009-09-01
Extreme temperature events have a great impact on human society. Knowledge of minimum temperatures during winter is very useful for both the general public and organisations whose workers have to operate in the open, e.g. railways, roadways, tourism, etc. Moreover, winter minimum temperatures are considered a parameter of interest and concern since persistent cold-waves can affect areas as diverse as public health, energy consumption, etc. Thus, an accurate forecasting of these temperatures could help to predict cold-wave conditions and permit the implementation of strategies aimed at minimizing the negative effects that low temperatures have on human health. The aim of this work is to evaluate the skill of the RAMS model in determining daily minimum temperatures during winter over the Valencia Region. For this, we have used the real-time configuration of this model currently running at the CEAM Foundation. To carry out the model verification process, we have analysed not only the global behaviour of the model for the whole Valencia Region, but also its behaviour for the individual stations distributed within this area. The study has been performed for the winter forecast period from 1 December 2007 - 31 March 2008. The results obtained are encouraging and indicate a good agreement between the observed and simulated minimum temperatures. Moreover, the model captures quite well the temperatures in the extreme cold episodes. Acknowledgement. This work was supported by "GRACCIE" (CSD2007-00067, Programa Consolider-Ingenio 2010), by the Spanish Ministerio de Educación y Ciencia, contract number CGL2005-03386/CLI, and by the Regional Government of Valencia Conselleria de Sanitat, contract "Simulación de las olas de calor e invasiones de frío y su regionalización en la Comunidad Valenciana" ("Heat wave and cold invasion simulation and their regionalization at Valencia Region"). The CEAM Foundation is supported by the Generalitat Valenciana and BANCAIXA (Valencia, Spain).
Time trends in minimum mortality temperatures in Castile-La Mancha (Central Spain): 1975-2003
NASA Astrophysics Data System (ADS)
Miron, Isidro J.; Criado-Alvarez, Juan José; Diaz, Julio; Linares, Cristina; Mayoral, Sheila; Montero, Juan Carlos
2008-03-01
The relationship between air temperature and human mortality is described as non-linear, with mortality tending to rise in response to increasingly hot or cold ambient temperatures from a given minimum mortality or optimal comfort temperature, which varies from some areas to others according to their climatic and socio-demographic characteristics. Changes in these characteristics within any specific region could modify this relationship. This study sought to examine the time trend in the maximum temperature of minimum organic-cause mortality in Castile-La Mancha, from 1975 to 2003. The analysis was performed by using daily series of maximum temperatures and organic-cause mortality rates grouped into three decades (1975-1984, 1985-1994, 1995-2003) to compare confidence intervals ( p < 0.05) obtained by estimating the 10-yearly mortality rates corresponding to the maximum temperatures of minimum mortality calculated for each decade. Temporal variations in the effects of cold and heat on mortality were ascertained by means of ARIMA models (Box-Jenkins) and cross-correlation functions (CCF) at seven lags. We observed a significant decrease in comfort temperature (from 34.2°C to 27.8°C) between the first two decades in the Province of Toledo, along with a growing number of significant lags in the summer CFF (1, 3 and 5, respectively). The fall in comfort temperature is attributable to the increase in the effects of heat on mortality, due, in all likelihood, to the percentage increase in the elderly population.
Wu, Dejian; Norman, Frederik; Verplaetsen, Filip; Van den Bulck, Eric
2016-04-15
BAM furnace apparatus tests were conducted to investigate the minimum ignition temperature of coal dusts (MITC) in O2/CO2 atmospheres with an O2 mole fraction from 20 to 50%. Three coal dusts: Indonesian Sebuku coal, Pittsburgh No.8 coal and South African coal were tested. Experimental results showed that the dust explosion risk increases significantly with increasing O2 mole fraction by reducing the minimum ignition temperature for the three tested coal dust clouds dramatically (even by 100°C). Compared with conventional combustion, the inhibiting effect of CO2 was found to be comparatively large in dust clouds, particularly for the coal dusts with high volatile content. The retardation effect of the moisture content on the ignition of dust clouds was also found to be pronounced. In addition, a modified steady-state mathematical model based on heterogeneous reaction was proposed to interpret the observed experimental phenomena and to estimate the ignition mechanism of coal dust clouds under minimum ignition temperature conditions. The analysis revealed that heterogeneous ignition dominates the ignition mechanism for sub-/bituminous coal dusts under minimum ignition temperature conditions, but the decrease of coal maturity facilitates homogeneous ignition. These results improve our understanding of the ignition behaviour and the explosion risk of coal dust clouds in oxy-fuel combustion atmospheres. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhang, Qiang; Li, Jianfeng; David Chen, Yongqin; Chen, Xiaohong
2011-12-01
The purpose of this study was to statistically examine changes of surface air temperature in time and space and to analyze two factors potentially influencing air temperature changes in China, i.e., urbanization and net solar radiation. Trends within the temperature series were detected by using Mann-Kendall trend test technique. The scientific problem this study expected to address was that what could be the role of human activities in the changes of temperature extremes. Other influencing factors such as net solar radiation were also discussed. The results of this study indicated that: (1) increasing temperature was observed mainly in the northeast and northwest China; (2) different behaviors were identified in the changes of maximum and minimum temperature respectively. Maximum temperature seemed to be more influenced by urbanization, which could be due to increasing urban albedo, aerosol, and air pollutions in the urbanized areas. Minimum temperature was subject to influences of variations of net solar radiation; (3) not significant increasing and even decreasing temperature extremes in the Yangtze River basin and the regions south to the Yangtze River basin could be the consequences of higher relative humidity as a result of increasing precipitation; (4) the entire China was dominated by increasing minimum temperature. Thus, we can say that the warming process of China was reflected mainly by increasing minimum temperature. In addition, consistently increasing temperature was found in the upper reaches of the Yellow River basin, the Yangtze River basin, which have the potential to enhance the melting of permafrost in these areas. This may trigger new ecological problems and raise new challenges for the river basin scale water resource management.
Cheng, Steven K; Dietrich, Mary S; Dilts, David M
2010-11-15
Postactivation barriers to oncology clinical trial accruals are well documented; however, potential barriers prior to trial opening are not. We investigate one such barrier: trial development time. National Cancer Institute Cancer Therapy Evaluation Program (CTEP)-sponsored trials for all therapeutic, nonpediatric phase I, I/II, II, and III studies activated between 2000 and 2004 were investigated for an 8-year period (n = 419). Successful trials were those achieving 100% of minimum accrual goal. Time to open a study was the calendar time from initial CTEP submission to trial activation. Multivariate logistic regression analysis was used to calculate unadjusted and adjusted odds ratios (OR), controlling for study phase and size of expected accruals. Among the CTEP-approved oncology trials, 37.9% (n = 221) failed to attain the minimum accrual goals, with 70.8% (n = 14) of phase III trials resulting in poor accrual. A total of 16,474 patients (42.5% of accruals) accrued to those studies were unable to achieve the projected minimum accrual goal. Trials requiring less than 12 months of development were significantly more likely to achieve accrual goals (OR, 2.15; 95% confidence interval, 1.29-3.57, P = 0.003) than trials with the median development times of 12 to 18 months. Trials requiring a development time of greater than 24 months were significantly less likely to achieve accrual goals (OR, 0.40; 95% confidence interval, 0.20-0.78; P = 0.011) than trials with the median development time. A large percentage of oncology clinical trials do not achieve minimum projected accruals. Trial development time appears to be one important predictor of the likelihood of successfully achieving the minimum accrual goals. ©2010 AACR.
Velmurugan, Palanivel; Iydroose, Mahudunan; Mohideen, Mohmed Hanifa Abdul Kader; Mohan, Thankiah Selva; Cho, Min; Oh, Byung-Taek
2014-08-01
This study highlights the ability of nitrate-reducing Bacillus subtilis EWP-46 cell-free extract used for preparation of silver nanoparticles (AgNPs) by reduction of silver ions into nano silver. The production of AgNPs was optimized with several parameters such as hydrogen ion concentration, temperature, silver ion (Ag(+) ion) and time. The maximum AgNPs production was achieved at pH 10.0, temperature 60 °C, 1.0 mM Ag(+) ion and 720 min. The UV-Vis spectrum showed surface plasmon resonance peak at 420 nm, energy-dispersive X-ray spectroscopy (SEM-EDX) spectra showed the presence of element silver in pure form. Atomic force microscopy (AFM) and transmission electron microscopy images illustrated the nanoparticle size, shape, and average particle size ranging from 10 to 20 nm. Fourier transform infrared spectroscopy provided the evidence for the presence of biomolecules responsible for the reduction of silver ion, and X-ray diffraction analysis confirmed that the obtained nanoparticles were in crystalline form. SDS-PAGE was performed to identify the proteins and its molecular mass in the purified nitrate reductase from the cell-free extract. In addition, the minimum inhibitory concentration and minimum bactericidal concentration of AgNPs were investigated against gram-negative (Pseudomonas fluorescens) and gram-positive (Staphylococcus aureus) bacteria.
NASA Astrophysics Data System (ADS)
Miura, S.; Tsuchiya, Y.; Yoshida, Y.; Ichino, Y.; Awaji, S.; Matsumoto, K.; Ibi, A.; Izumi, T.
2017-08-01
In order to apply REBa2Cu3O y (REBCO, RE = rare earth elements or Y) coated conductors in high magnetic field, coil-based applications, the isotropic improvement of their critical current performance with respect to the directions of the magnetic field under these operating conditions is required. Most applications operate at temperatures lower than 50 K and magnetic fields over 2 T. In this study, the improvement of critical current density (J c) performance for various applied magnetic field directions was achieved by controlling the nanostructure of the BaHfO3 (BHO)-doped SmBa2Cu3O y (SmBCO) films on metallic substrates. The corresponding minimum J c value of the films at 40 K under an applied 3 T field was 5.2 MA cm-2, which is over ten times higher than that of a fully optimized Nb-Ti wire at 4.2 K. At 4.2 K, under a 17.5 T field, a flux pinning force density of 1.4 TN m-3 for B//c was realized; this value is among the highest values reported for REBCO films to date. More importantly, the F p for B//c corresponds to the minimum value for various applied magnetic field directions. We investigated the dominant flux pinning centers of films at 4.2 K using the anisotropic scaling approach based on the effective mass model. The dominant flux pinning centers are random pinning centers at 4.2 K, i.e., a high pinning performance was achieved by the high number density of random pins in the matrix of the BHO-doped SmBCO films.
Relation between inflammables and ignition sources in aircraft environments
NASA Technical Reports Server (NTRS)
Scull, Wilfred E
1951-01-01
A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and discussed. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings through which flame will not propagate are presented and discussed. Ignition temperatures and limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressures and minimum size of opening for flame propagation in gasoline-air mixtures are included; inerting of gasoline-air mixtures is discussed.
Global-scale high-resolution ( 1 km) modelling of mean, maximum and minimum annual streamflow
NASA Astrophysics Data System (ADS)
Barbarossa, Valerio; Huijbregts, Mark; Hendriks, Jan; Beusen, Arthur; Clavreul, Julie; King, Henry; Schipper, Aafke
2017-04-01
Quantifying mean, maximum and minimum annual flow (AF) of rivers at ungauged sites is essential for a number of applications, including assessments of global water supply, ecosystem integrity and water footprints. AF metrics can be quantified with spatially explicit process-based models, which might be overly time-consuming and data-intensive for this purpose, or with empirical regression models that predict AF metrics based on climate and catchment characteristics. Yet, so far, regression models have mostly been developed at a regional scale and the extent to which they can be extrapolated to other regions is not known. We developed global-scale regression models that quantify mean, maximum and minimum AF as function of catchment area and catchment-averaged slope, elevation, and mean, maximum and minimum annual precipitation and air temperature. We then used these models to obtain global 30 arc-seconds (˜ 1 km) maps of mean, maximum and minimum AF for each year from 1960 through 2015, based on a newly developed hydrologically conditioned digital elevation model. We calibrated our regression models based on observations of discharge and catchment characteristics from about 4,000 catchments worldwide, ranging from 100 to 106 km2 in size, and validated them against independent measurements as well as the output of a number of process-based global hydrological models (GHMs). The variance explained by our regression models ranged up to 90% and the performance of the models compared well with the performance of existing GHMs. Yet, our AF maps provide a level of spatial detail that cannot yet be achieved by current GHMs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Moor, Emmanuel
The present project investigated Quenching and Partitioning (Q&P) to process cold rolled steels to develop high strength sheet steels that exhibit superior ductility compared to available grades with the intent to allow forming of high strength parts at room temperature to provide an alternative to hot stamping of parts. Hot stamping of boron alloyed steel is the current technology to manufacture thinner gauge sections in automotive structures to guarantee anti-intrusion during collisions whilst improving fuel efficiency by decreasing vehicle weight. Hot stamping involves reheating steel to 900 °C or higher followed by deformation and quenching in the die to producemore » ultra-high strength materials. Hot stamping requires significant energy to reheat the steel and is less productive than traditional room temperature stamping operations. Stamping at elevated temperature was developed due to the lack of available steels with strength levels of interest possessing sufficient ductility enabling traditional room temperature forming. This process is seeing growing demand within the automotive industry and, given the reheating step in this operation, increased energy consumption during part manufacturing results. The present research program focused on the development of steel grades via Q&P processing that exhibit high strength and formability enabling room temperature forming to replace hot stamping. The main project objective consisted of developing sheet steels exhibiting minimum ultimate tensile strength levels of 1200 MPa in combination with minimum tensile elongation levels of 15 pct using Q&P processing through judicious alloy design and heat treating parameter definition. In addition, detailed microstructural characterization and study of properties, processing and microstructure interrelationships were pursued to develop strategies to further enhance tensile properties. In order to accomplish these objectives, alloy design was conducted towards achieving the target properties. Twelve alloys were designed and laboratory produced involving melting, alloying, casting, hot rolling, and cold rolling to obtain sheet steels of approximately 1 mm thickness. Q&P processing of the samples was then conducted. Target properties were achieved and substantially exceeded demonstrating success in the developed and employed alloy design approaches. The best combinations of tensile properties were found at approximately 1550 MPa with a total elongation in excess of 20 pct clearly showing the potential for replacement of hot stamping to produce advanced high strength steels.« less
NASA Astrophysics Data System (ADS)
He, Jianbin; Zhang, Zhiyong; Shi, Yunyu; Liu, Haiyan
2003-08-01
We describe a method for efficient sampling of the energy landscape of a protein in atomic molecular dynamics simulations. A simulation is divided into alternatively occurring relaxation phases and excitation phases. In the relaxation phase (conventional simulation), we use a frequently updated reference structure and deviations from this reference structure to mark whether the system has been trapped in a local minimum. In that case, the simulation enters the excitation phase, during which a few slow collective modes of the system are coupled to a higher temperature bath. After the system has escaped from the minimum (also judged by deviations from the reference structure) the simulation reenters the relaxation phase. The collective modes are obtained from a coarse-grained Gaussian elastic network model. The scheme, which we call ACM-AME (amplified collective motion-assisted minimum escaping), is compared with conventional simulations as well as an alternative scheme that elevates the temperature of all degrees of freedom during the excitation phase (amplified overall motion-assisted minimum escaping, or AOM-AME). Comparison is made using simulations on four peptides starting from non-native extended or all helical structures. In terms of sampling low energy conformations and continuously sampling new conformations throughout a simulation, the ACM-AME scheme demonstrates very good performance while the AOM-AME scheme shows little improvement upon conventional simulations. Limited success is achieved in producing structures close to the native structures of the peptides: for an S-peptide analog, the ACM-AME approach is able to reproduce its native helical structure, and starting from an all-helical structure of the villin headpiece subdomain (HP-36) in implicit solvent, two out of three 150 ns ACM-AME runs are able to sample structures with 3-4 Å backbone root-mean-square deviations from the nuclear magnetic resonance structure of the protein.
Forecast of Frost Days Based on Monthly Temperatures
NASA Astrophysics Data System (ADS)
Castellanos, M. T.; Tarquis, A. M.; Morató, M. C.; Saa-Requejo, A.
2009-04-01
Although frost can cause considerable crop damage and mitigation practices against forecasted frost exist, frost forecasting technologies have not changed for many years. The paper reports a new method to forecast the monthly number of frost days (FD) for several meteorological stations at Community of Madrid (Spain) based on successive application of two models. The first one is a stochastic model, autoregressive integrated moving average (ARIMA), that forecasts monthly minimum absolute temperature (tmin) and monthly average of minimum temperature (tminav) following Box-Jenkins methodology. The second model relates these monthly temperatures to minimum daily temperature distribution during one month. Three ARIMA models were identified for the time series analyzed with a stational period correspondent to one year. They present the same stational behavior (moving average differenced model) and different non-stational part: autoregressive model (Model 1), moving average differenced model (Model 2) and autoregressive and moving average model (Model 3). At the same time, the results point out that minimum daily temperature (tdmin), for the meteorological stations studied, followed a normal distribution each month with a very similar standard deviation through years. This standard deviation obtained for each station and each month could be used as a risk index for cold months. The application of Model 1 to predict minimum monthly temperatures showed the best FD forecast. This procedure provides a tool for crop managers and crop insurance companies to asses the risk of frost frequency and intensity, so that they can take steps to mitigate against frost damage and estimated the damage that frost would cost. This research was supported by Comunidad de Madrid Research Project 076/92. The cooperation of the Spanish National Meteorological Institute and the Spanish Ministerio de Agricultura, Pesca y Alimentation (MAPA) is gratefully acknowledged.
NASA Technical Reports Server (NTRS)
Cardoso, Humberto Pontes
1990-01-01
The Satelite de Coleta de Dados (SCD) 02 (Data Collection Satellite) has the following characteristics: 115 kg weight, octagonal prism shape, 1 m diameter, and 0.67 m height. Its specified orbit is nearly circular, 700 km altitude, is inclined 25 deg with respect to the equator line, and has 100 min period. The electric power is supplied by eight solar panels installed on the lateral sides of the satellite. The equipment is located on the central (both faces) and lower (internal face) panels. The satellite is spin stabilized and its attitude control is such that during its lifetime, the solar aspect angle will vary between 80 and 100 deg with respect to its spin axis. Two critical cases were selected for thermal control design purposes: Hot case (maximum solar constant, solar aspect angle equal to 100 deg, minimum eclipse time and maximum internal heat dissipation); and a passive thermal design concept was achieved and the maximum and minimum equipment operating temperatures were obtained through a 109 node finite difference mathematical model.
Optimization of Selective Laser Melting by Evaluation Method of Multiple Quality Characteristics
NASA Astrophysics Data System (ADS)
Khaimovich, A. I.; Stepanenko, I. S.; Smelov, V. G.
2018-01-01
Article describes the adoption of the Taguchi method in selective laser melting process of sector of combustion chamber by numerical and natural experiments for achieving minimum temperature deformation. The aim was to produce a quality part with minimum amount of numeric experiments. For the study, the following optimization parameters (independent factors) were chosen: the laser beam power and velocity; two factors for compensating the effect of the residual thermal stresses: the scale factor of the preliminary correction of the part geometry and the number of additional reinforcing elements. We used an orthogonal plan of 9 experiments with a factor variation at three levels (L9). As quality criterias, the values of distortions for 9 zones of the combustion chamber and the maximum strength of the material of the chamber were chosen. Since the quality parameters are multidirectional, a grey relational analysis was used to solve the optimization problem for multiple quality parameters. As a result, according to the parameters obtained, the combustion chamber segments of the gas turbine engine were manufactured.
Formulation design for optimal high-shear wet granulation using on-line torque measurements.
Cavinato, Mauro; Bresciani, Massimo; Machin, Marianna; Bellazzi, Guido; Canu, Paolo; Santomaso, Andrea C
2010-03-15
An alternative procedure for achieving formulation design in a high-shear wet granulation process has been developed. Particularly, a new formulation map has been proposed which describes the onset of a significant granule growth as a function of the formulation variables (diluent, dry and liquid binder). Granule growth has been monitored using on-line impeller torque and evaluated as changes in granule particle size distribution with respect to the dry formulation. It is shown how the onset of granule growth is denoted by an abrupt increase in the torque value requires the amount of binder liquid added to be greater than a certain threshold that is identified here as 'minimum liquid volume'. This minimum liquid volume is determined as a function of dry binder type, amount, hygroscopicity and particle size distribution of diluent. It is also demonstrated how this formulation map can be constructed from independent measurements of binder glass transition temperatures using a static humidity conditioning system. 2009 Elsevier B.V. All rights reserved.
Optimization of Shea (Vitellaria paradoxa) butter quality using screw expeller extraction.
Gezahegn, Yonas A; Emire, Shimelis A; Asfaw, Sisay F
2016-11-01
The quality of Shea butter is highly affected by processing factors. Hence, the aim of this work was to evaluate the effects of conditioning duration (CD), moisture content (MC), and die temperature (DT) of screw expeller on Shea butter quality. A combination of 3 3 full factorial design and response surface methodology was used for this investigation. Response variables were refractive index, acid value, and peroxide value. The model enabled to identify the optimum operating settings (CD = 28-30 min, MC = 3-5 g/100 g, and DT = 65-70°C) for maximize refractive index and minimum acid value. For minimum peroxide value 0 min CD, 10 g/100 g MC, and 30°C were discovered. In all-over optimization, optimal values of 30 min CD, 9.7 g/100 g MC, and 70°C DT were found. Hence, the processing factors must be at their optimal values to achieve high butter quality and consistence.
The influence of climate variables on dengue in Singapore.
Pinto, Edna; Coelho, Micheline; Oliver, Leuda; Massad, Eduardo
2011-12-01
In this work we correlated dengue cases with climatic variables for the city of Singapore. This was done through a Poisson Regression Model (PRM) that considers dengue cases as the dependent variable and the climatic variables (rainfall, maximum and minimum temperature and relative humidity) as independent variables. We also used Principal Components Analysis (PCA) to choose the variables that influence in the increase of the number of dengue cases in Singapore, where PC₁ (Principal component 1) is represented by temperature and rainfall and PC₂ (Principal component 2) is represented by relative humidity. We calculated the probability of occurrence of new cases of dengue and the relative risk of occurrence of dengue cases influenced by climatic variable. The months from July to September showed the highest probabilities of the occurrence of new cases of the disease throughout the year. This was based on an analysis of time series of maximum and minimum temperature. An interesting result was that for every 2-10°C of variation of the maximum temperature, there was an average increase of 22.2-184.6% in the number of dengue cases. For the minimum temperature, we observed that for the same variation, there was an average increase of 26.1-230.3% in the number of the dengue cases from April to August. The precipitation and the relative humidity, after analysis of correlation, were discarded in the use of Poisson Regression Model because they did not present good correlation with the dengue cases. Additionally, the relative risk of the occurrence of the cases of the disease under the influence of the variation of temperature was from 1.2-2.8 for maximum temperature and increased from 1.3-3.3 for minimum temperature. Therefore, the variable temperature (maximum and minimum) was the best predictor for the increased number of dengue cases in Singapore.
Omumbo, Judith A; Lyon, Bradfield; Waweru, Samuel M; Connor, Stephen J; Thomson, Madeleine C
2011-01-17
Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region. Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed. An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations. This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaetsu, I.; Ito, A.; Hayashi, K.
1973-06-01
The effect of homogeneity of polymerization phase and monomer concentration on the temperature dependence of initial polymerization rate was studied in the radiation-induced radical polymerization of binary systems consisting of glass-forming monomer and solvent. In the polymerization of a completely homogeneous system such as HEMA-propylene glycol, a maximum and a minimum in polymerization rates as a function of temperature, characteristic of the polymerization in glass-forming systems, were observed for all monomer concentrations. However, in the heterogeneous polymerization systems such as HEMA-triacetin and HEMAisoamyl acetate, maximum and minimum rates were observed in monomer-rich compositions but not at low monomer concentrations. Furthermore,more » in the HEMA-dioctyl phthalate polymerization system, which is extremely heterogeneous, no maximum and minimum rates were observed at any monomer concentration. The effect of conversion on the temperature dependence of polymerization rate in homogeneous bulk polymerization of HEMA and GMA was investigated. Maximum and minimum rates were observed clearly in conversions less than 10% in the case of HEMA and less than 50% in the case of GMA, but the maximum and minimum changed to a mere inflection in the curve at higher conversions. A similar effect of polymer concentration on the temperature dependence of polymerization rate in the GMA-poly(methyl methacrylate) system was also observed. It is deduced that the change in temperature dependence of polymerization rate is attributed to the decrease in contribution of mutual termination reaction of growing chain radicals to the polymerization rate. (auth)« less
Observation of non-Fermi liquid behavior in hole-doped Eu2Ir2O7
NASA Astrophysics Data System (ADS)
Banerjee, A.; Sannigrahi, J.; Giri, S.; Majumdar, S.
2017-12-01
The Weyl semimetallic compound Eu2Ir2O7 and its hole-doped derivatives (which are achieved by substituting trivalent Eu by divalent Sr) are investigated through transport, magnetic, and calorimetric studies. The metal-insulator transition (MIT) temperature is found to get substantially reduced with hole doping, and for 10% Sr doping the composition is metallic down to temperature as low as 5 K. These doped compositions are found to violate the Mott-Ioffe-Regel condition for minimum electrical conductivity and show a distinct signature of non-Fermi liquid behavior at low temperature. The MIT in the doped compounds does not correlate with the magnetic transition point, and Anderson-Mott-type disorder-induced localization may be attributed to the ground-state insulating phase. The observed non-Fermi liquid behavior can be understood on the basis of disorder-induced distribution of the spin-orbit-coupling parameter, which is markedly different in the case of Ir4 + and Ir5 + ions.
Piezoelectric Flexible LCP-PZT Composites for Sensor Applications at Elevated Temperatures
NASA Astrophysics Data System (ADS)
Tolvanen, Jarkko; Hannu, Jari; Juuti, Jari; Jantunen, Heli
2018-03-01
In this paper fabrication of piezoelectric ceramic-polymer composites is demonstrated via filament extrusion enabling cost-efficient large-scale production of highly bendable pressure sensors feasible for elevated temperatures. These composites are fabricated by utilizing environmentally resistant and stable liquid crystal polymer matrix with addition of lead zirconate titanate at loading levels of 30 vol%. These composites, of approximately 0.99 mm thick and length of > 50 cm, achieved excellent bendability with minimum bending radius of 6.6 cm. The maximum piezoelectric coefficients d33 and g33 of the composites were > 14 pC/N and > 108 mVm/N at pressure < 10 kPa. In all cases, the piezoelectric charge coefficient (d33) of the composites decreased as a function of pressure. Also, piezoelectric coefficient (d33) further decreased in the case of increased frequency press-release cycle sand pre-stress levels by approximately 37-50%. However, the obtained results provide tools for fabricating novel piezoelectric sensors in highly efficient way for environments with elevated temperatures.
NASA Astrophysics Data System (ADS)
Maruyama, Keisuke; Hanafusa, Hiroaki; Ashihara, Ryuhei; Hayashi, Shohei; Murakami, Hideki; Higashi, Seiichiro
2015-06-01
We have investigated high-temperature and rapid annealing of a silicon carbide (SiC) wafer by atmospheric pressure thermal plasma jet (TPJ) irradiation for impurity activation. To reduce the temperature gradient in the SiC wafer, a DC current preheating system and the lateral back-and-forth motion of the wafer were introduced. A maximum surface temperature of 1835 °C within 2.4 s without sample breakage was achieved, and aluminum (Al), phosphorus (P), and arsenic (As) activations in SiC were demonstrated. We have investigated precise control of heating rate (Rh) and cooling rate (Rc) during rapid annealing of P+-implanted 4H-SiC and its impact on impurity activation. No dependence of resistivity on Rh was observed, while increasing Rc significantly decreased resistivity. A minimum resistivity of 0.0025 Ω·cm and a maximum carrier concentration of 2.9 × 1020 cm-3 were obtained at Rc = 568 °C/s.
Estimation of Monthly Near Surface Air Temperature Using Geographically Weighted Regression in China
NASA Astrophysics Data System (ADS)
Wang, M. M.; He, G. J.; Zhang, Z. M.; Zhang, Z. J.; Liu, X. G.
2018-04-01
Near surface air temperature (NSAT) is a primary descriptor of terrestrial environment conditions. The availability of NSAT with high spatial resolution is deemed necessary for several applications such as hydrology, meteorology and ecology. In this study, a regression-based NSAT mapping method is proposed. This method is combined remote sensing variables with geographical variables, and uses geographically weighted regression to estimate NSAT. The altitude was selected as geographical variable; and the remote sensing variables include land surface temperature (LST) and Normalized Difference vegetation index (NDVI). The performance of the proposed method was assessed by predict monthly minimum, mean, and maximum NSAT from point station measurements in China, a domain with a large area, complex topography, and highly variable station density, and the NSAT maps were validated against the meteorology observations. Validation results with meteorological data show the proposed method achieved an accuracy of 1.58 °C. It is concluded that the proposed method for mapping NSAT is very operational and has good precision.
ERIC Educational Resources Information Center
Rutkowski, David; Rutkowski, Leslie; Plucker, Jonathan A.
2012-01-01
A recent study in the USA documented the existence and growth of "excellence gaps" among students. These gaps are similar to the minimum competency achievement gaps that proliferate in policy discussions in many Western countries, but excellence gaps focus on the highest level of achievement rather than minimum competency. We extend this…
Etching Rate of Silicon Dioxide Using Chlorine Trifluoride Gas
NASA Astrophysics Data System (ADS)
Miura, Yutaka; Kasahara, Yu; Habuka, Hitoshi; Takechi, Naoto; Fukae, Katsuya
2009-02-01
The etching rate behavior of silicon dioxide (SiO2, fused silica) using chlorine trifluoride (ClF3) gas is studied at substrate temperatures between 573 and 1273 K at atmospheric pressure in a horizontal cold-wall reactor. The etching rate increases with the ClF3 gas concentration, and the overall reaction is recognized to be of the first order. The change of the etching rate with increasing substrate temperature is nonlinear, and the etching rate tends to approach a constant value at temperatures exceeding 1173 K. The overall rate constant is estimated by numerical calculation, taking into account the transport phenomena in the reactor, including the chemical reaction at the substrate surface. The activation energy obtained in this study is 45.8 kJ mol-1, and the rate constant is consistent with the measured etching rate behavior. A reactor system in which there is minimum etching of the fused silica chamber by ClF3 gas can be achieved using an IR lamp heating unit and a chamber cooling unit to maintain a sufficiently low temperature of the chamber wall.
Spatial and temporal variability in minimum temperature trends in the western U.S. sagebrush steppe
USDA-ARS?s Scientific Manuscript database
Climate is a major driver of ecosystem dynamics. In recent years there has been considerable interest in future climate change and potential impacts on ecosystems and management options. In this paper, we analyzed minimum monthly temperature (T min) for ten rural locations in the western sagebrush...
Jacobsen, S; Stauffer, P R; Neuman, D G
2000-11-01
Hyperthermia therapy of superficial skin disease has proven clinically useful, but current heating equipment is somewhat clumsy and technically inadequate for many patients. The present effort describes a dual-purpose, conformal microwave applicator that is fabricated from thin, flexible, multilayer printed circuit board (PCB) material to facilitate heating of surface areas overlaying contoured anatomy. Preliminary studies document the feasibility of combining Archimedean spiral microstrip antennas, located concentrically within the central region of square dual concentric conductor (DCC) annular slot antennas. The motivation is to achieve homogeneous tissue heating simultaneously with noninvasive thermometry by radiometric sensing of blackbody radiation from the target tissue under the applicator. Results demonstrate that the two antennas have complimentary regions of influence. The DCC ring antenna structure produces a peripherally enhanced power deposition pattern with peaks in the outer corners of the aperture and a broad minimum around 50% of maximum centrally. In contrast, the Archimedean spiral radiates (or receives) energy predominantly along the boresight axis of the spiral, thus confining the region of influence to tissue located within the central broad minimum of the DCC pattern. Analysis of the temperature-dependent radiometer signal (brightness temperature) showed linear correlation of radiometer output with test load temperature using either the spiral or DCC structure as the receive antenna. The radiometric performance of the broadband Archimedean antenna was superior compared to the DCC, providing improved temperature resolution (0.1 degree C-0.2 degree C) and signal sensitivity (0.3 degree C-0.8 degree C/degree C) at all four 500 MHz integration bandwidths tested within the frequency range from 1.2 to 3.0 GHz.
Relation Between Inflammables and Ignition Sources in Aircraft Environments
NASA Technical Reports Server (NTRS)
Scull, Wilfred E
1950-01-01
A literature survey was conducted to determine the relation between aircraft ignition sources and inflammables. Available literature applicable to the problem of aircraft fire hazards is analyzed and, discussed herein. Data pertaining to the effect of many variables on ignition temperatures, minimum ignition pressures, and minimum spark-ignition energies of inflammables, quenching distances of electrode configurations, and size of openings incapable of flame propagation are presented and discussed. The ignition temperatures and the limits of inflammability of gasoline in air in different test environments, and the minimum ignition pressure and the minimum size of openings for flame propagation of gasoline - air mixtures are included. Inerting of gasoline - air mixtures is discussed.
CW and femtosecond operation of a diode-pumped Yb:BaY(2)F(8) laser.
Galzerano, G; Coluccelli, N; Gatti, D; Di Lieto, A; Tonelli, M; Laporta, P
2010-03-15
We report for the first time on laser action of a diode-pumped Yb:BaY(2)F(8) crystal. Both CW and femtosecond operations have been demonstrated at room-temperature conditions. A maximum output power of 0.56 W, a slope efficiency of 34%, and a tunability range from 1013 to 1067 nm have been obtained in CW regime. Transform-limited pulse trains with a minimum duration of 275 fs, an average power of 40 mW, and a repetition rate of 83 MHz have been achieved in a passive mode-locked regime using a semiconductor saturable absorber mirror.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, In Soo; Martinson, Alex B. F.
2015-09-14
We utilized a novel non-hydrolytic (nh) surface chemistry to allow the direct synthesis of pinhole-fee oxide overlayers directly on conventional hybrid perovskite halide absorbers without damage. By utilizing water- free ALD Al 2O 3 passivation, a minimum of ten-fold increase in stability against relative humidity (RH) 85% was achieved along with a dramatically improved thermal resistance (up to 250 °C). We extend this approach to synthesize nh-TiO 2 directly on hybrid perovskites to establish its potential in inverted photovoltaic devices as a dual stabilizing and electron accepting layer, as evidenced by photoluminescence (PL) quenching.
A study of power cycles using supercritical carbon dioxide as the working fluid
NASA Astrophysics Data System (ADS)
Schroder, Andrew Urban
A real fluid heat engine power cycle analysis code has been developed for analyzing the zero dimensional performance of a general recuperated, recompression, precompression supercritical carbon dioxide power cycle with reheat and a unique shaft configuration. With the proposed shaft configuration, several smaller compressor-turbine pairs could be placed inside of a pressure vessel in order to avoid high speed, high pressure rotating seals. The small compressor-turbine pairs would share some resemblance with a turbocharger assembly. Variation in fluid properties within the heat exchangers is taken into account by discretizing zero dimensional heat exchangers. The cycle analysis code allows for multiple reheat stages, as well as an option for the main compressor to be powered by a dedicated turbine or an electrical motor. Variation in performance with respect to design heat exchanger pressure drops and minimum temperature differences, precompressor pressure ratio, main compressor pressure ratio, recompression mass fraction, main compressor inlet pressure, and low temperature recuperator mass fraction have been explored throughout a range of each design parameter. Turbomachinery isentropic efficiencies are implemented and the sensitivity of the cycle performance and the optimal design parameters is explored. Sensitivity of the cycle performance and optimal design parameters is studied with respect to the minimum heat rejection temperature and the maximum heat addition temperature. A hybrid stochastic and gradient based optimization technique has been used to optimize critical design parameters for maximum engine thermal efficiency. A parallel design exploration mode was also developed in order to rapidly conduct the parameter sweeps in this design space exploration. A cycle thermal efficiency of 49.6% is predicted with a 320K [47°C] minimum temperature and 923K [650°C] maximum temperature. The real fluid heat engine power cycle analysis code was expanded to study a theoretical recuperated Lenoir cycle using supercritical carbon dioxide as the working fluid. The real fluid cycle analysis code was also enhanced to study a combined cycle engine cascade. Two engine cascade configurations were studied. The first consisted of a traditional open loop gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 65.0% using a peak temperature of 1,890K [1,617°C]. The second configuration consisted of a hybrid natural gas powered solid oxide fuel cell and gas turbine, coupled with a series of recuperated, recompression, precompression supercritical carbon dioxide power cycles, with a predicted combined cycle thermal efficiency of 73.1%. Both configurations had a minimum temperature of 306K [33°C]. The hybrid stochastic and gradient based optimization technique was used to optimize all engine design parameters for each engine in the cascade such that the entire engine cascade achieved the maximum thermal efficiency. The parallel design exploration mode was also utilized in order to understand the impact of different design parameters on the overall engine cascade thermal efficiency. Two dimensional conjugate heat transfer (CHT) numerical simulations of a straight, equal height channel heat exchanger using supercritical carbon dioxide were conducted at various Reynolds numbers and channel lengths.
Li, Ji; Hu, Guoqing; Zhou, Yonghong; Zou, Chong; Peng, Wei; Alam Sm, Jahangir
2016-10-14
A piezo-resistive pressure sensor is made of silicon, the nature of which is considerably influenced by ambient temperature. The effect of temperature should be eliminated during the working period in expectation of linear output. To deal with this issue, an approach consists of a hybrid kernel Least Squares Support Vector Machine (LSSVM) optimized by a chaotic ions motion algorithm presented. To achieve the learning and generalization for excellent performance, a hybrid kernel function, constructed by a local kernel as Radial Basis Function (RBF) kernel, and a global kernel as polynomial kernel is incorporated into the Least Squares Support Vector Machine. The chaotic ions motion algorithm is introduced to find the best hyper-parameters of the Least Squares Support Vector Machine. The temperature data from a calibration experiment is conducted to validate the proposed method. With attention on algorithm robustness and engineering applications, the compensation result shows the proposed scheme outperforms other compared methods on several performance measures as maximum absolute relative error, minimum absolute relative error mean and variance of the averaged value on fifty runs. Furthermore, the proposed temperature compensation approach lays a foundation for more extensive research.
THE CHROMOSPHERIC SOLAR MILLIMETER-WAVE CAVITY ORIGINATES IN THE TEMPERATURE MINIMUM REGION
DOE Office of Scientific and Technical Information (OSTI.GOV)
De la Luz, Victor; Raulin, Jean-Pierre; Lara, Alejandro
2013-01-10
We present a detailed theoretical analysis of the local radio emission at the lower part of the solar atmosphere. To accomplish this, we have used a numerical code to simulate the emission and transport of high-frequency electromagnetic waves from 2 GHz up to 10 THz. As initial conditions, we used VALC, SEL05, and C7 solar chromospheric models. In this way, the generated synthetic spectra allow us to study the local emission and absorption processes with high resolution in both altitude and frequency. Associated with the temperature minimum predicted by these models, we found that the local optical depth at millimetermore » wavelengths remains constant, producing an optically thin layer that is surrounded by two layers of high local emission. We call this structure the Chromospheric Solar Millimeter-wave Cavity (CSMC). The temperature profile, which features temperature minimum layers and a subsequent temperature rise, produces the CSMC phenomenon. The CSMC shows the complexity of the relation between the theoretical temperature profile and the observed brightness temperature and may help us to understand the dispersion of the observed brightness temperature in the millimeter wavelength range.« less
NASA Astrophysics Data System (ADS)
Dessens, J.; Bücher, A.
In an attempt to contribute to the investigation on a global climate change, a historical series of minimum and maximum temperature data at the Pic du Midi, a mountain observatory at 2862 m a.s.l. in the French Pyrenees, is updated after correction of a systematic deviation due to a relocation of the station in 1971. These data, which now cover the 1882-1984 period, are examined in parallel with humidity and cloud cover data for the same period. From the beginning to the end of this period, observations show that the mean night-time temperature has increased by 2.39° C/100 yr while the mean daytime temperature has decreased by 0.50° C/100 yr. In consequence, the mean annual diurnal temperature range has dropped by 36%/100 yr. The maximum seasonal decrease is 46%/100 yr in spring. Season-to-season and year-to-year inter-relationships between minimum temperature, maximum temperature, relative humidity and cloud cover suggest that the decrease in maximum temperature is related to a concomitant increase of 15%/100 yr in both relative humidity and cloud cover.
The Effects of Global Warming on Temperature and Precipitation Trends in Northeast America
NASA Astrophysics Data System (ADS)
Francis, F.
2013-12-01
The objective of this paper is to discuss the analysis of results in temperature and precipitation (rainfall) data and how they are affected by the theory of global warming in Northeast America. The topic was chosen because it will show the trends in temperature and precipitation and their relations to global warming. Data was collected from The Global Historical Climatology Network (GHCN). The data range from years of 1973 to 2012. We were able to calculate the yearly and monthly regress to estimate the relationship of variables found in the individual sources. With the use of specially designed software, analysis and manual calculations we are able to give a visualization of these trends in precipitation and temperature and to question if these trends are due to the theory of global warming. With the Calculation of the trends in slope we were able to interpret the changes in minimum and maximum temperature and precipitation. Precipitation had a 9.5 % increase over the past forty years, while maximum temperature increased 1.9 %, a greater increase is seen in minimum temperature of 3.3 % was calculated over the years. The trends in precipitation, maximum and minimum temperature is statistically significant at a 95% level.
Plant Distribution Data Show Broader Climatic Limits than Expert-Based Climatic Tolerance Estimates
Curtis, Caroline A.; Bradley, Bethany A.
2016-01-01
Background Although increasingly sophisticated environmental measures are being applied to species distributions models, the focus remains on using climatic data to provide estimates of habitat suitability. Climatic tolerance estimates based on expert knowledge are available for a wide range of plants via the USDA PLANTS database. We aim to test how climatic tolerance inferred from plant distribution records relates to tolerance estimated by experts. Further, we use this information to identify circumstances when species distributions are more likely to approximate climatic tolerance. Methods We compiled expert knowledge estimates of minimum and maximum precipitation and minimum temperature tolerance for over 1800 conservation plant species from the ‘plant characteristics’ information in the USDA PLANTS database. We derived climatic tolerance from distribution data downloaded from the Global Biodiversity and Information Facility (GBIF) and corresponding climate from WorldClim. We compared expert-derived climatic tolerance to empirical estimates to find the difference between their inferred climate niches (ΔCN), and tested whether ΔCN was influenced by growth form or range size. Results Climate niches calculated from distribution data were significantly broader than expert-based tolerance estimates (Mann-Whitney p values << 0.001). The average plant could tolerate 24 mm lower minimum precipitation, 14 mm higher maximum precipitation, and 7° C lower minimum temperatures based on distribution data relative to expert-based tolerance estimates. Species with larger ranges had greater ΔCN for minimum precipitation and minimum temperature. For maximum precipitation and minimum temperature, forbs and grasses tended to have larger ΔCN while grasses and trees had larger ΔCN for minimum precipitation. Conclusion Our results show that distribution data are consistently broader than USDA PLANTS experts’ knowledge and likely provide more robust estimates of climatic tolerance, especially for widespread forbs and grasses. These findings suggest that widely available expert-based climatic tolerance estimates underrepresent species’ fundamental niche and likely fail to capture the realized niche. PMID:27870859
Hydrologic and climatic changes in three small watersheds after timber harvest.
W.B. Fowler; J.D. Helvey; E.N. Felix
1987-01-01
No significant increases in annual water yield were shown for three small watersheds in northeastern Oregon after shelterwood cutting (30-percent canopy removal, 50-percent basal area removal) and clearcutting. Average maximum air temperature increased after harvest and average minimum air temperature decreased by up to 2.6 °C. Both maximum and minimum water...
NASA Astrophysics Data System (ADS)
Panagoulia, Dionysia; Vlahogianni, Eleni I.
2018-06-01
A methodological framework based on nonlinear recurrence analysis is proposed to examine the historical data evolution of extremes of maximum and minimum daily mean areal temperature patterns over time under different climate scenarios. The methodology is based on both historical data and atmospheric General Circulation Model (GCM) produced climate scenarios for the periods 1961-2000 and 2061-2100 which correspond to 1 × CO2 and 2 × CO2 scenarios. Historical data were derived from the actual daily observations coupled with atmospheric circulation patterns (CPs). The dynamics of the temperature was reconstructed in the phase-space from the time series of temperatures. The statistically comparing different temperature patterns were based on some discriminating statistics obtained by the Recurrence Quantification Analysis (RQA). Moreover, the bootstrap method of Schinkel et al. (2009) was adopted to calculate the confidence bounds of RQA parameters based on a structural preserving resampling. The overall methodology was implemented to the mountainous Mesochora catchment in Central-Western Greece. The results reveal substantial similarities between the historical maximum and minimum daily mean areal temperature statistical patterns and their confidence bounds, as well as the maximum and minimum temperature patterns in evolution under the 2 × CO2 scenario. A significant variability and non-stationary behaviour characterizes all climate series analyzed. Fundamental differences are produced from the historical and maximum 1 × CO2 scenarios, the maximum 1 × CO2 and minimum 1 × CO2 scenarios, as well as the confidence bounds for the two CO2 scenarios. The 2 × CO2 scenario reflects the strongest shifts in intensity, duration and frequency in temperature patterns. Such transitions can help the scientists and policy makers to understand the effects of extreme temperature changes on water resources, economic development, and health of ecosystems and hence to proceed to effective proactive management of extreme phenomena. The impacts of the findings on the predictability of the extreme daily mean areal temperature patterns are also commented.
NASA Technical Reports Server (NTRS)
Bertagne, Christopher L.; Chong, Jorge B.; Whitcomb, John D.; Hartl, Darren J.; Erickson, Lisa R.
2017-01-01
For future long duration space missions, crewed vehicles will require advanced thermal control systems to maintain a desired internal environment temperature in spite of a large range of internal and external heat loads. Current radiators are only able to achieve turndown ratios (i.e. the ratio between the radiator's maximum and minimum heat rejection rates) of approximately 3:1. Upcoming missions will require radiators capable of 12:1 turndown ratios. A radiator with the ability to alter shape could significantly increase turndown capacity. Shape memory alloys (SMAs) offer promising qualities for this endeavor, namely their temperature-dependent phase change and capacity for work. In 2015, the first ever morphing radiator prototype was constructed in which SMA actuators passively altered the radiator shape in response to a thermal load. This work describes a follow-on endeavor to demonstrate a similar concept using highly thermally conductive composite materials. Numerous versions of this new concept were tested in a thermal vacuum environment and successfully demonstrated morphing behavior and variable heat rejection, achieving a turndown ratio of 4.84:1. A summary of these thermal experiments and their results are provided herein.
Measurement of damping and temperature: Precision bounds in Gaussian dissipative channels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monras, Alex; Illuminati, Fabrizio
2011-01-15
We present a comprehensive analysis of the performance of different classes of Gaussian states in the estimation of Gaussian phase-insensitive dissipative channels. In particular, we investigate the optimal estimation of the damping constant and reservoir temperature. We show that, for two-mode squeezed vacuum probe states, the quantum-limited accuracy of both parameters can be achieved simultaneously. Moreover, we show that for both parameters two-mode squeezed vacuum states are more efficient than coherent, thermal, or single-mode squeezed states. This suggests that at high-energy regimes, two-mode squeezed vacuum states are optimal within the Gaussian setup. This optimality result indicates a stronger form ofmore » compatibility for the estimation of the two parameters. Indeed, not only the minimum variance can be achieved at fixed probe states, but also the optimal state is common to both parameters. Additionally, we explore numerically the performance of non-Gaussian states for particular parameter values to find that maximally entangled states within d-dimensional cutoff subspaces (d{<=}6) perform better than any randomly sampled states with similar energy. However, we also find that states with very similar performance and energy exist with much less entanglement than the maximally entangled ones.« less
Universal inverse power-law distribution for temperature and rainfall in the UK region
NASA Astrophysics Data System (ADS)
Selvam, A. M.
2014-06-01
Meteorological parameters, such as temperature, rainfall, pressure, etc., exhibit selfsimilar space-time fractal fluctuations generic to dynamical systems in nature such as fluid flows, spread of forest fires, earthquakes, etc. The power spectra of fractal fluctuations display inverse power-law form signifying long-range correlations. A general systems theory model predicts universal inverse power-law form incorporating the golden mean for the fractal fluctuations. The model predicted distribution was compared with observed distribution of fractal fluctuations of all size scales (small, large and extreme values) in the historic month-wise temperature (maximum and minimum) and total rainfall for the four stations Oxford, Armagh, Durham and Stornoway in the UK region, for data periods ranging from 92 years to 160 years. For each parameter, the two cumulative probability distributions, namely cmax and cmin starting from respectively maximum and minimum data value were used. The results of the study show that (i) temperature distributions (maximum and minimum) follow model predicted distribution except for Stornowy, minimum temperature cmin. (ii) Rainfall distribution for cmin follow model predicted distribution for all the four stations. (iii) Rainfall distribution for cmax follows model predicted distribution for the two stations Armagh and Stornoway. The present study suggests that fractal fluctuations result from the superimposition of eddy continuum fluctuations.
NASA Astrophysics Data System (ADS)
García-Cueto, O. Rafael; Cavazos, M. Tereza; de Grau, Pamela; Santillán-Soto, Néstor
2014-04-01
The generalized extreme value distribution is applied in this article to model the statistical behavior of the maximum and minimum temperature distribution tails in four cities of Baja California in northwestern Mexico, using data from 1950-2010. The approach used of the maximum of annual time blocks. Temporal trends were included as covariates in the location parameter (μ), which resulted in significant improvements to the proposed models, particularly for the extreme maximum temperature values in the cities of Mexicali, Tijuana, and Tecate, and the extreme minimum temperature values in Mexicali and Ensenada. These models were used to estimate future probabilities over the next 100 years (2015-2110) for different time periods, and they were compared with changes in the extreme (P90th and P10th) percentiles of maximum and minimum temperature scenarios for a set of six general circulation models under low (RCP4.5) and high (RCP8.5) radiative forcings. By the end of the twenty-first century, the scenarios of the changes in extreme maximum summer temperature are of the same order in both the statistical model and the high radiative scenario (increases of 4-5 °C). The low radiative scenario is more conservative (increases of 2-3 °C). The winter scenario shows that minimum temperatures could be less severe; the temperature increases suggested by the probabilistic model are greater than those projected for the end of the century by the set of global models under RCP4.5 and RCP8.5 scenarios. The likely impacts on the region are discussed.
NASA Astrophysics Data System (ADS)
Žaknić-Ćatović, Ana; Gough, William A.
2018-04-01
Climatological observing window (COW) is defined as a time frame over which continuous or extreme air temperature measurements are collected. A 24-h time interval, ending at 00UTC or shifted to end at 06UTC, has been associated with difficulties in characterizing daily temperature extrema. A fixed 24-h COW used to obtain the temperature minima leads to potential misidentification due to fragmentation of "nighttime" into two subsequent nighttime periods due to the time discretization interval. The correct identification of air temperature extrema is achievable using a COW that identifies daily minimum over a single nighttime period and maximum over a single daytime period, as determined by sunrise and sunset. Due to a common absence of hourly air temperature observations, the accuracy of the mean temperature estimation is dependent on the accuracy of determination of diurnal air temperature extrema. Qualitative and quantitative criteria were used to examine the impact of the COW on detecting daily air temperature extrema. The timing of the 24-h observing window occasionally affects the determination of daily extrema through a mischaracterization of the diurnal minima and by extension can lead to errors in determining daily mean temperature. Hourly air temperature data for the time period from year 1987 to 2014, obtained from Toronto Buttonville Municipal Airport weather station, were used in analysis of COW impacts on detection of daily temperature extrema and calculation of annual temperature averages based on such extrema.
Nitrogen removal from wastewater by a catalytic oxidation method.
Huang, T L; Macinnes, J M; Cliffe, K R
2001-06-01
The ammonia-containing waste produced in industries is usually characterized by high concentration and high temperature, and is not treatable by biological methods directly. In this study, a hydrophobic Pt/SDB catalyst was first used in a trickle-bed reactor to remove ammonia from wastewater. In the reactor, both stripping and catalytic oxidation occur simultaneously. It was found that higher temperature and higher oxygen partial pressure enhanced the ammonia removal. A reaction pathway, which involves oxidizing ammonia to nitric oxide, which then further reacts with ammonia to produce nitrogen and water, was confirmed. Small amounts of by-products, nitrites and nitrates were also detected in the resultant reaction solution. These compounds came from the absorption of nitrogen oxides. Both the minimum NO2- selectivity and maximum ammonia removal were achieved when the resultant pH of treated water was near 7.5 for a feed of unbuffered ammonia solution.
Sonnenfroh, D M; Allen, M G
1997-10-20
We describe the development of a room-temperature diode sensor for in situ monitoring of combustion-generated NO. The sensor is based on a near-IR diode laser operating near 1.8 mum, which probes isolated transitions in the second overtone (3, 0) absorption band of NO. Based on absorption cell data, the sensitivity for ambient atmospheric pressure conditions is of the order of 30 parts in 10(6) by volume for a meter path (ppmv-m), assuming a minimum measurable absorbance of 10(-5). Initial H(2) -air flame measurements are complicated by strong water vapor absorption features that constrain the available gain and dynamic range of the present detection system. Preliminary results suggest that detection limits in this environment of the order of 140 ppmv-m could be achieved with optimum baseline correction.
NASA Astrophysics Data System (ADS)
Sonnenfroh, David M.; Allen, Mark G.
1997-10-01
We describe the development of a room-temperature diode sensor for in situ monitoring of combustion-generated NO. The sensor is based on a near-IR diode laser operating near 1.8 m, which probes isolated transitions in the second overtone (3,0) absorption band of NO. Based on absorption cell data, the sensitivity for ambient atmospheric pressure conditions is of the order of 30 parts in 10 6 by volume for a meter path (ppmv m), assuming a minimum measurable absorbance of 10 5 . Initial H 2 air flame measurements are complicated by strong water vapor absorption features that constrain the available gain and dynamic range of the present detection system. Preliminary results suggest that detection limits in this environment of the order of 140 ppmv m could be achieved with optimum baseline correction.
Evaluation of gridding procedures for air temperature over Southern Africa
NASA Astrophysics Data System (ADS)
Eiselt, Kai-Uwe; Kaspar, Frank; Mölg, Thomas; Krähenmann, Stefan; Posada, Rafael; Riede, Jens O.
2017-06-01
Africa is considered to be highly vulnerable to climate change, yet the availability of observational data and derived products is limited. As one element of the SASSCAL initiative (Southern African Science Service Centre for Climate Change and Adaptive Land Management), a cooperation of Angola, Botswana, Namibia, Zambia, South Africa and Germany, networks of automatic weather stations have been installed or improved (http://www.sasscalweathernet.org). The increased availability of meteorological observations improves the quality of gridded products for the region. Here we compare interpolation methods for monthly minimum and maximum temperatures which were calculated from hourly measurements. Due to a lack of longterm records we focused on data ranging from September 2014 to August 2016. The best interpolation results have been achieved combining multiple linear regression (elevation, a continentality index and latitude as predictors) with three dimensional inverse distance weighted interpolation.
Reduction of shunt current in buffer-free IrMn based spin-valve structures
NASA Astrophysics Data System (ADS)
Kocaman, B.; Akdoğan, N.
2018-06-01
The presence of thick buffer layers in magnetic sensor devices decreases sensor sensitivity due to shunt currents. With this motivation, we produced IrMn-based spin-valve multilayers without using buffer layer. We also studied the effects of post-annealing and IrMn thickness on exchange bias field (HEB) and blocking temperature (TB) of the system. Magnetization measurements indicate that both HEB and TB values are significantly enhanced with post-annealing of IrMn layer. In addition, we report that IrMn thickness of the system strongly influences the magnetization and transport characteristics of the spin-valve structures. We found that the minimum thickness of IrMn layer is 6 nm in order to achieve the lowest shunt current and high blocking temperature (>300 K). We also investigated the training of exchange bias to check the long-term durability of IrMn-based spin-valve structures for device applications.
Adepoju, Mary A; Omitoyin, Bamidele O; Mohan, Chitradurga O; Zynudheen, Aliyam A
2017-05-01
The difference in the heating penetration characteristics of product processed in retort by steam-air application and water immersion was studied. Fresh milkfish ( Chanos chanos ) packed in dry pack and in oil medium, both in flexible pouches, was thermal processed to minimum F 0 value of 7.77 at 121.1°C. Heat penetration values were recorded for each minute of processing with the aid Ellab (TM 9608, Denmark) temperature recorder. Retort come up time to achieve 121.1°C was observed to be less in steam-air which invariably led to a lower Ball's process time (B) and the total process time (T) observed in steam-air as compared to water immersion. Obtained data were plotted on a semi-logarithmic paper with temperature deficit on x -axis against time on the y -axis.
Measurement of agricultural parameters using wireless sensor network (WSN)
NASA Astrophysics Data System (ADS)
Guaña-Moya, Javier; Sánchez-Almeida, Tarquino; Salgado-Reyes, Nelson
2018-04-01
The technological advances have allowed to create new applications in telecommunications, applying low power and reduced costs in their equipment, thus achieving the evolution of new wireless networks or also denominated Wireless Sensor Network. These technologies allow the generation of measurements and analysis of environmental parameter data and soil. Precision agriculture requires parameters for the improvement of production, obtained through WSN technologies. This research analyzes the climatic requirements and soil parameters in a rose plantation in a greenhouse at an altitude of 3,100 meters above sea level. In the present investigation, maximum parameters were obtained in the production of roses, which are in the optimum range of production, whereas the minimum parameters of temperature, humidity and luminosity, evidenced that these parameters can damage the plants, since temperatures less than 10 °C slow down the growth of the plant and allow the proliferation of diseases and fungi.
Correlations of catalytic combustor performance parameters
NASA Technical Reports Server (NTRS)
Bulzan, D. L.
1978-01-01
Correlations for combustion efficiency percentage drop and the minimum required adiabatic reaction temperature necessary to meet emissions goals of 13.6 g CO/kg fuel and 1.64 g HC/kg fuel are presented. Combustion efficiency was found to be a function of the cell density, cell circumference, reactor length, reference velocity, and adiabatic reaction temperature. The percentage pressure drop at an adiabatic reaction temperature of 1450 K was found to be proportional to the reference velocity to the 1.5 power and to the reactor length. It is inversely proportional to the pressure, cell hydraulic diameter, and fractional open area. The minimum required adiabatic reaction temperature was found to increase with reference velocity and decrease with cell circumference, cell density and reactor length. A catalyst factor was introduced into the correlations to account for differences between catalysts. Combustion efficiency, the percentage pressure drop, and the minimum required adiabatic reaction temperature were found to be a function of the catalyst factor. The data was from a 12 cm-diameter test rig with noble metal reactors using propane fuel at an inlet temperature of 800 K.
ERIC Educational Resources Information Center
Haryati, Sri
2014-01-01
The study aims at analyzing the achievement of Minimum Service Standards (MSS) in Basic Education through a case study at Magelang Municipality. The findings shall be used as a starting point to predict the needs to meet MMS by 2015 and to provide strategies for achievement. Both primary and secondary data were used in the study investigating the…
Development of a 32-channel ASIC for an X-ray APD detector onboard the ISS
NASA Astrophysics Data System (ADS)
Arimoto, Makoto; Harita, Shohei; Sugita, Satoshi; Yatsu, Yoichi; Kawai, Nobuyuki; Ikeda, Hirokazu; Tomida, Hiroshi; Isobe, Naoki; Ueno, Shiro; Mihara, Tatehiro; Serino, Motoko; Kohmura, Takayoshi; Sakamoto, Takanori; Yoshida, Atsumasa; Tsunemi, Hiroshi; Hatori, Satoshi; Kume, Kyo; Hasegawa, Takashi
2018-02-01
We report on the design and performance of a mixed-signal application specific integrated circuit (ASIC) dedicated to avalanche photodiodes (APDs) in order to detect hard X-ray emissions in a wide energy band onboard the International Space Station. To realize wide-band detection from 20 keV to 1 MeV, we use Ce:GAGG scintillators, each coupled to an APD, with low-noise front-end electronics capable of achieving a minimum energy detection threshold of 20 keV. The developed ASIC has the ability to read out 32-channel APD signals using 0.35 μm CMOS technology, and an analog amplifier at the input stage is designed to suppress the capacitive noise primarily arising from the large detector capacitance of the APDs. The ASIC achieves a performance of 2099 e- + 1.5 e-/pF at root mean square (RMS) with a wide 300 fC dynamic range. Coupling a reverse-type APD with a Ce:GAGG scintillator, we obtain an energy resolution of 6.7% (FWHM) at 662 keV and a minimum detectable energy of 20 keV at room temperature (20 °C). Furthermore, we examine the radiation tolerance for space applications by using a 90 MeV proton beam, confirming that the ASIC is free of single-event effects and can operate properly without serious degradation in analog and digital processing.
High Tensile Strength Amalgams for In-Space Fabrication and Repair
NASA Technical Reports Server (NTRS)
Grugel, Richard N.
2006-01-01
Amalgams are well known for their use in dental practice as a tooth filling material. They have a number of useful attributes that include room temperature fabrication, corrosion resistance, dimensional stability, and very good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits other potential applications. Improved material properties (strength and temperature) of amalgams may have application to the freeform fabrication of repairs or parts that might be necessary during an extended space mission. Advantages would include, but are not limited to: the ability to produce complex parts, a minimum number of processing steps, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption. The work presented here shows how the properties of amalgams can be improved by changing particle geometries in conjunction with novel engineering metals.
NASA Astrophysics Data System (ADS)
Idder-Ighili, Hakima; Idder, Mohamed Azzedine; Doumandji-Mitiche, Bahia; Chenchouni, Haroun
2015-10-01
The date palm scale (DPS) Parlatoria blanchardi is a serious pest due to the damage it inflicts on its host tree ( Phoenix dactylifera). To develop an effective control against DPS in arid regions, it is essential to know its bio-ecology including population dynamics and climatic factors influencing the duration and timing of life history and also the densities of different phenological stages (crawlers, first and second instars nymphs, adult males, and adult females). Monitoring of biological cycle and population dynamics of the pest were achieved through weekly counts of DPS densities on leaflets sampled at different position of date palm trees in an oasis of Ouargla region (Algerian Sahara Desert). Within this hyper-arid region, DPS established four generations per year, the most important was the spring generation. Two overlapping generations occurred in spring-early summer and two in autumn-early winter; these two pairs of generations were interspersed by two phases of high-mortality rates, the first corresponds to winter cold and the second refers to the extreme heat of summer. Statistical analysis of the effects of the studied climatic conditions (minimum, maximum and mean temperatures, precipitation, humidity, wind, rain days, and climatic indices) on the DPS densities at different phenological stages showed great variability from one stage to another. Among these, adult females were the most affected by climate factors. For the total DPS population, high values of minimum temperatures negatively affected population density, while high maximum temperatures, hygrometry, and De Martonne aridity index showed a positive influence.
Idder-Ighili, Hakima; Idder, Mohamed Azzedine; Doumandji-Mitiche, Bahia; Chenchouni, Haroun
2015-10-01
The date palm scale (DPS) Parlatoria blanchardi is a serious pest due to the damage it inflicts on its host tree (Phoenix dactylifera). To develop an effective control against DPS in arid regions, it is essential to know its bio-ecology including population dynamics and climatic factors influencing the duration and timing of life history and also the densities of different phenological stages (crawlers, first and second instars nymphs, adult males, and adult females). Monitoring of biological cycle and population dynamics of the pest were achieved through weekly counts of DPS densities on leaflets sampled at different position of date palm trees in an oasis of Ouargla region (Algerian Sahara Desert). Within this hyper-arid region, DPS established four generations per year, the most important was the spring generation. Two overlapping generations occurred in spring-early summer and two in autumn-early winter; these two pairs of generations were interspersed by two phases of high-mortality rates, the first corresponds to winter cold and the second refers to the extreme heat of summer. Statistical analysis of the effects of the studied climatic conditions (minimum, maximum and mean temperatures, precipitation, humidity, wind, rain days, and climatic indices) on the DPS densities at different phenological stages showed great variability from one stage to another. Among these, adult females were the most affected by climate factors. For the total DPS population, high values of minimum temperatures negatively affected population density, while high maximum temperatures, hygrometry, and De Martonne aridity index showed a positive influence.
Ecological covariates based predictive model of malaria risk in the state of Chhattisgarh, India.
Kumar, Rajesh; Dash, Chinmaya; Rani, Khushbu
2017-09-01
Malaria being an endemic disease in the state of Chhattisgarh and ecologically dependent mosquito-borne disease, the study is intended to identify the ecological covariates of malaria risk in districts of the state and to build a suitable predictive model based on those predictors which could assist developing a weather based early warning system. This secondary data based analysis used one month lagged district level malaria positive cases as response variable and ecological covariates as independent variables which were tested with fixed effect panelled negative binomial regression models. Interactions among the covariates were explored using two way factorial interaction in the model. Although malaria risk in the state possesses perennial characteristics, higher parasitic incidence was observed during the rainy and winter seasons. The univariate analysis indicated that the malaria incidence risk was statistically significant associated with rainfall, maximum humidity, minimum temperature, wind speed, and forest cover ( p < 0.05). The efficient predictive model include the forest cover [IRR-1.033 (1.024-1.042)], maximum humidity [IRR-1.016 (1.013-1.018)], and two-way factorial interactions between district specific averaged monthly minimum temperature and monthly minimum temperature, monthly minimum temperature was statistically significant [IRR-1.44 (1.231-1.695)] whereas the interaction term has a protective effect [IRR-0.982 (0.974-0.990)] against malaria infections. Forest cover, maximum humidity, minimum temperature and wind speed emerged as potential covariates to be used in predictive models for modelling the malaria risk in the state which could be efficiently used for early warning systems in the state.
NASA Astrophysics Data System (ADS)
Wu, Feifei; Yang, XiaoHua; Shen, Zhenyao
2018-06-01
Temperature anomalies have received increasing attention due to their potentially severe impacts on ecosystems, economy and human health. To facilitate objective regionalization and examine regional temperature anomalies, a three-stage hybrid model with stages of regionalization, trends and sensitivity analyses was developed. Annual mean and extreme temperatures were analyzed using the daily data collected from 537 stations in China from 1966 to 2015, including the annual mean, minimum and maximum temperatures (Tm, TNm and TXm) as well as the extreme minimum and maximum temperatures (TNe and TXe). The results showed the following: (1) subregions with coherent temperature changes were identified using the rotated empirical orthogonal function analysis and K-means clustering algorithm. The numbers of subregions were 6, 7, 8, 9 and 8 for Tm, TNm, TXm, TNe and TXe, respectively. (2) Significant increases in temperature were observed in most regions of China from 1966 to 2015, although warming slowed down over the last decade. This warming primarily featured a remarkable increase in its minimum temperature. For Tm and TNm, 95% of the stations showed a significant upward trend at the 99% confidence level. TNe increased the fastest, at a rate of 0.56 °C/decade, whereas 21% of the stations in TXe showed a downward trend. (3) The mean temperatures (Tm, TNm and TXm) in the high-latitude regions increased more quickly than those in the low-latitude regions. The maximum temperature increased significantly at high elevations, whereas the minimum temperature increased greatly at middle-low elevations. The most pronounced warming occurred in eastern China in TNe and northwestern China in TXe, with mean elevations of 51 m and 2098 m, respectively. A cooling trend in TXe was observed at the northwestern end of China. The warming rate in TNe varied the most among the subregions (0.63 °C/decade).
Solar Forcing of Regional Climate Change During the Maunder Minimum
NASA Technical Reports Server (NTRS)
Shindell, Drew T.; Schmidt, Gavin A.; Mann, Michael E.; Rind, David; Waple, Anne; Hansen, James E. (Technical Monitor)
2002-01-01
We examine the climate response to solar irradiance changes between the late 17th century Maunder Minimum and the late 18th century. Global average temperature changes are small (about 0.3 to 0.4 C) in both a climate model and empirical reconstructions. However, regional temperature changes are quite large. In the model, these occur primarily through a forced shift toward the low index state of the Arctic Oscillation/North Atlantic Oscillation. This leads to colder temperatures over the Northern Hemisphere continents, especially in winter (1 to 2 C), in agreement with historical records and proxy data for surface temperatures.
Analysis of Biaxial Stress Fields in Plates Cracking at Elevated Temperatures
1989-10-19
used . Based on the enhanced theory, it is predicted that the minimum resolvable stress amplitude using thermographic stress analysis will be...because of limitations in the commercial thermographic equipment used . Based on the enhanced theory, it is predicted that the minimum resolvable stress...amplitude using thermographic stress analysis will be approximately independent of temperature, provided relevant thermal and mechanical material
Safe Minimum Internal Temperature Chart
... Administrative Forms Standard Forms Skip Navigation Z7_0Q0619C0JGR010IFST1G5B10H1 Web Content Viewer (JSR 286) Actions ${title} Loading... / Topics / ... Chart / Safe Minimum Internal Temperature Chart Z7_0Q0619C0JGR010IFST1G5B10H3 Web Content Viewer (JSR 286) Actions ${title} Loading... Z7_ ...
Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B.; Orme, John S.
1992-01-01
The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.
2011-01-01
Background Whether or not observed increases in malaria incidence in the Kenyan Highlands during the last thirty years are associated with co-varying changes in local temperature, possibly connected to global changes in climate, has been debated for over a decade. Studies, using differing data sets and methodologies, produced conflicting results regarding the occurrence of temperature trends and their likelihood of being responsible, at least in part, for the increases in malaria incidence in the highlands of western Kenya. A time series of quality controlled daily temperature and rainfall data from Kericho, in the Kenyan Highlands, may help resolve the controversy. If significant temperature trends over the last three decades have occurred then climate should be included (along with other factors such as land use change and drug resistance) as a potential driver of the observed increases in malaria in the region. Methods Over 30 years (1 January 1979 to 31 December 2009) of quality controlled daily observations ( > 97% complete) of maximum, minimum and mean temperature were used in the analysis of trends at Kericho meteorological station, sited in a tea growing area of Kenya's western highlands. Inhomogeneities in all the time series were identified and corrected. Linear trends were identified via a least-squares regression analysis with statistical significance assessed using a two-tailed t-test. These 'gold standard' meteorological observations were compared with spatially interpolated temperature datasets that have been developed for regional or global applications. The relationship of local climate processes with larger climate variations, including tropical sea surface temperatures (SST), and El Niño-Southern Oscillation (ENSO) was also assessed. Results An upward trend of ≈0.2°C/decade was observed in all three temperature variables (P < 0.01). Mean temperature variations in Kericho were associated with large-scale climate variations including tropical SST (r = 0.50; p < 0.01). Local rainfall was found to have inverse effects on minimum and maximum temperature. Three versions of a spatially interpolated temperature data set showed markedly different trends when compared with each other and with the Kericho station observations. Conclusion This study presents evidence of a warming trend in observed maximum, minimum and mean temperatures at Kericho during the period 1979 to 2009 using gold standard meteorological observations. Although local factors may be contributing to these trends, the findings are consistent with variability and trends that have occurred in correlated global climate processes. Climate should therefore not be dismissed as a potential driver of observed increases in malaria seen in the region during recent decades, however its relative importance compared to other factors needs further elaboration. Climate services, pertinent to the achievement of development targets such as the Millennium Development Goals and the analysis of infectious disease in the context of climate variability and change are being developed and should increase the availability of relevant quality controlled climate data for improving development decisions. The malaria community should seize this opportunity to make their needs heard. PMID:21241505
NASA Technical Reports Server (NTRS)
Hirsch, Annette L.; Kala, Jatin; Pitman, Andy J.; Carouge, Claire; Evans, Jason P.; Haverd, Vanessa; Mocko, David
2014-01-01
The authors use a sophisticated coupled land-atmosphere modeling system for a Southern Hemisphere subdomain centered over southeastern Australia to evaluate differences in simulation skill from two different land surface initialization approaches. The first approach uses equilibrated land surface states obtained from offline simulations of the land surface model, and the second uses land surface states obtained from reanalyses. The authors find that land surface initialization using prior offline simulations contribute to relative gains in subseasonal forecast skill. In particular, relative gains in forecast skill for temperature of 10%-20% within the first 30 days of the forecast can be attributed to the land surface initialization method using offline states. For precipitation there is no distinct preference for the land surface initialization method, with limited gains in forecast skill irrespective of the lead time. The authors evaluated the asymmetry between maximum and minimum temperatures and found that maximum temperatures had the largest gains in relative forecast skill, exceeding 20% in some regions. These results were statistically significant at the 98% confidence level at up to 60 days into the forecast period. For minimum temperature, using reanalyses to initialize the land surface contributed to relative gains in forecast skill, reaching 40% in parts of the domain that were statistically significant at the 98% confidence level. The contrasting impact of the land surface initialization method between maximum and minimum temperature was associated with different soil moisture coupling mechanisms. Therefore, land surface initialization from prior offline simulations does improve predictability for temperature, particularly maximum temperature, but with less obvious improvements for precipitation and minimum temperature over southeastern Australia.
Wu, Xiaocheng; Lang, Lingling; Ma, Wenjun; Song, Tie; Kang, Min; He, Jianfeng; Zhang, Yonghui; Lu, Liang; Lin, Hualiang; Ling, Li
2018-07-01
Dengue fever is an important infectious disease in Guangzhou, China; previous studies on the effects of weather factors on the incidence of dengue fever did not consider the linearity of the associations. This study evaluated the effects of daily mean temperature, relative humidity and rainfall on the incidence of dengue fever. A generalized additive model with splines smoothing function was performed to examine the effects of daily mean, minimum and maximum temperatures, relative humidity and rainfall on incidence of dengue fever during 2006-2014. Our analysis detected a non-linear effect of mean, minimum and maximum temperatures and relative humidity on dengue fever with the thresholds at 28°C, 23°C and 32°C for daily mean, minimum and maximum temperatures, 76% for relative humidity, respectively. Below the thresholds, there was a significant positive effect, the excess risk in dengue fever for each 1°C in the mean temperature at lag7-14days was 10.21%, (95% CI: 6.62% to 13.92%), 7.10% (95% CI: 4.99%, 9.26%) for 1°C increase in daily minimum temperature in lag 11days, and 2.27% (95% CI: 0.84%, 3.72%) for 1°C increase in daily maximum temperature in lag 10days; and each 1% increase in relative humidity of lag7-14days was associated with 1.95% (95% CI: 1.21% to 2.69%) in risk of dengue fever. Future prevention and control measures and epidemiology studies on dengue fever should consider these weather factors based on their exposure-response relationship. Copyright © 2018. Published by Elsevier B.V.
Changes in heat waves indices in Romania over the period 1961-2015
NASA Astrophysics Data System (ADS)
Croitoru, Adina-Eliza; Piticar, Adrian; Ciupertea, Antoniu-Flavius; Roşca, Cristina Florina
2016-11-01
In the last two decades many climate change studies have focused on extreme temperatures as they have a significant impact on environment and society. Among the weather events generated by extreme temperatures, heat waves are some of the most harmful. The main objective of this study was to detect and analyze changes in heat waves in Romania based on daily observation data (maximum and minimum temperature) over the extended summer period (May-Sept) using a set of 10 indices and to explore the spatial patterns of changes. Heat wave data series were derived from daily maximum and minimum temperature data sets recorded in 29 weather stations across Romania over a 55-year period (1961-2015). In this study, the threshold chosen was the 90th percentile calculated based on a 15-day window centered on each calendar day, and for three baseline periods (1961-1990, 1971-2000, and 1981-2010). Two heat wave definitions were considered: at least three consecutive days when maximum temperature exceeds 90th percentile, and at least three consecutive days when minimum temperature exceeds 90th percentile. For each of them, five variables were calculated: amplitude, magnitude, number of events, duration, and frequency. Finally, 10 indices resulted for further analysis. The main results are: most of the indices have statistically significant increasing trends; only one index for one weather station indicated statistically significant decreasing trend; the changes are more intense in case of heat waves detected based on maximum temperature compared to those obtained for heat waves identified based on minimum temperature; western and central regions of Romania are the most exposed to increasing heat waves.
Risk of hospitalization for fire-related burns during extreme cold weather.
Ayoub, Aimina; Kosatsky, Tom; Smargiassi, Audrey; Bilodeau-Bertrand, Marianne; Auger, Nathalie
2017-10-01
Environmental factors are important predictors of fires, but no study has examined the association between outdoor temperature and fire-related burn injuries. We sought to investigate the relationship between extremely cold outdoor temperatures and the risk of hospitalization for fire-related burns. We carried out a time-stratified case-crossover study of 2470 patients hospitalized for fire-related burn injuries during cold months between 1989 and 2014 in Quebec, Canada. The main exposure was the minimum outdoor temperature on the day of and the day before the burn. We computed odds ratios (OR) and 95% confidence intervals (CI) to evaluate the relationship between minimum temperature and fire-related burns, and assessed how associations varied across sex and age. Exposure to extreme cold temperature was associated with a significantly higher risk of hospitalization for fire-related burns. Compared with 0°C, exposure to a minimum temperature of -30°C was associated with an OR of 1.51 (95% CI 1.22-1.87) for hospitalization for fire-related burns. The associations were somewhat stronger for women, youth, and the elderly. Compared with 0°C, a minimum temperature of -30°C was associated with an OR for fire-related burn hospitalization of 1.65 for women (95% CI 1.13-2.40), 1.60 for age < 25 years (95% CI 1.02-2.52), and 1.73 for age ≥ 65 years (95% CI 1.08-2.77). Extremely cold outdoor temperature is a risk factor for fire-related burns. Measures to prevent fires should be implemented prior to the winter season, and enhanced during extreme cold. Copyright © 2017 Elsevier Inc. All rights reserved.
Gating of high-mobility InAs metamorphic heterostructures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shabani, J.; McFadden, A. P.; Shojaei, B.
We investigate the performance of gate-defined devices fabricated on high mobility InAs metamorphic heterostructures. We find that heterostructures capped with In{sub 0.75}Ga{sub 0.25}As often show signs of parallel conduction due to proximity of their surface Fermi level to the conduction band minimum. Here, we introduce a technique that can be used to estimate the density of this surface charge that involves cool-downs from room temperature under gate bias. We have been able to remove the parallel conduction under high positive bias, but achieving full depletion has proven difficult. We find that by using In{sub 0.75}Al{sub 0.25}As as the barrier withoutmore » an In{sub 0.75}Ga{sub 0.25}As capping, a drastic reduction in parallel conduction can be achieved. Our studies show that this does not change the transport properties of the quantum well significantly. We achieved full depletion in InAlAs capped heterostructures with non-hysteretic gating response suitable for fabrication of gate-defined mesoscopic devices.« less
Xiao, Hong; Lin, Xiao-ling; Dai, Xiang-yu; Gao, Li-dong; Chen, Bi-yun; Zhang, Xi-xing; Zhu, Pei-juan; Tian, Huai-yu
2012-05-01
To analyze the periodicity of pandemic influenza A (H1N1) in Changsha in year 2009 and its correlation with sensitive climatic factors. The information of 5439 cases of influenza A (H1N1) and synchronous meteorological data during the period between May 22th and December 31st in year 2009 (223 days in total) in Changsha city were collected. The classification and regression tree (CART) was employed to screen the sensitive climatic factors on influenza A (H1N1); meanwhile, cross wavelet transform and wavelet coherence analysis were applied to assess and compare the periodicity of the pandemic disease and its association with the time-lag phase features of the sensitive climatic factors. The results of CART indicated that the daily minimum temperature and daily absolute humidity were the sensitive climatic factors for the popularity of influenza A (H1N1) in Changsha. The peak of the incidence of influenza A (H1N1) was in the period between October and December (Median (M) = 44.00 cases per day), simultaneously the daily minimum temperature (M = 13°C) and daily absolute humidity (M = 6.69 g/m(3)) were relatively low. The results of wavelet analysis demonstrated that a period of 16 days was found in the epidemic threshold in Changsha, while the daily minimum temperature and daily absolute humidity were the relatively sensitive climatic factors. The number of daily reported patients was statistically relevant to the daily minimum temperature and daily absolute humidity. The frequency domain was mostly in the period of (16 ± 2) days. In the initial stage of the disease (from August 9th and September 8th), a 6-day lag was found between the incidence and the daily minimum temperature. In the peak period of the disease, the daily minimum temperature and daily absolute humidity were negatively relevant to the incidence of the disease. In the pandemic period, the incidence of influenza A (H1N1) showed periodic features; and the sensitive climatic factors did have a "driving effect" on the incidence of influenza A (H1N1).
Thomas, Bex George; Elasser, Ahmed; Bollapragada, Srinivas; Galbraith, Anthony William; Agamy, Mohammed; Garifullin, Maxim Valeryevich
2016-03-29
A system and method of using one or more DC-DC/DC-AC converters and/or alternative devices allows strings of multiple module technologies to coexist within the same PV power plant. A computing (optimization) framework estimates the percentage allocation of PV power plant capacity to selected PV module technologies. The framework and its supporting components considers irradiation, temperature, spectral profiles, cost and other practical constraints to achieve the lowest levelized cost of electricity, maximum output and minimum system cost. The system and method can function using any device enabling distributed maximum power point tracking at the module, string or combiner level.
West, J W; Mullinix, B G; Bernard, J K
2003-01-01
Lactating cows were exposed to moderate and hot, humid weather to determine the effect of increasing ambient temperature, relative humidity, or temperature-humidity index (THI) on intake, milk yield, and milk temperature. Minimum and maximum temperatures averaged 17.9 and 29.5 degrees C (cool period) and 22.5 and 34.4 degrees C (hot period), and minimum and maximum THI averaged 63.8 and 76.6 (cool period) and 72.1 and 83.6 (hot period). Environmental conditions had minor effects on intake and milk yield during the cool period. During the hot period, the THI 2 d earlier and mean air temperature 2 d earlier had the greatest impact on milk yield and DMI, respectively. Both breeds maintained milk temperature within normal ranges during the cool period, but Holstein and Jersey p.m. milk temperatures averaged 39.6 and 39.2 degrees C during the hot period. Current day mean air temperature during the hot period had the greatest impact on cow p.m. milk temperature, and minimum air temperature had the greatest influence on a.m. milk temperature. Dry matter intake and milk yield declined linearly with respective increases in air temperature or THI during the hot period and milk temperature increased linearly with increasing air temperature. Dry matter intake and milk yield both exhibited a curvilinear relationship with milk temperature. Environmental modifications should target the effects of high temperatures on cow body temperature and should modify the environment at critical times during the day when cows are stressed, including morning hours when ambient temperatures are typically cooler and cows are not assumed to be stressed.
Morphology, nurse plants, and minimum apical temperatures for young Carnegiea gigantea
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nobel, P.S.
1980-06-01
The northern limit of Carnegiea gigantea (Engelm.) Britton and Rose apparently depends on minimum apical temperatures. Diameters, apical spine coverage, and effects of nurse plants on incoming long-wave (infrared (ir)) radiation, all of which affect apical temperatures, were therefore determined for stems of C. gigantea up to 4 m tall at four sites along a north-south transect in Arizona. A simulation model indicated that the increase in diameter accompanying stem growth raised the minimum apical temperature more than 3 C. Thus, plants with the shortest stems would be expected to be the most vulnerable to freezing damage; indeed, freezing damagemore » on stems <0.5 m tall without nurse plants was fairly common at the colder sites. Nurse plants obstructed a greater portion of the sky for C. gigantea at the colder sites; e.g., the effective environmental temperature for ir radiation at such locations was raised more than 10 C for stems under 1 m tall. If the northern limit of C. gigantea reflects wintertime survival of juveniles, nurse plants could extend the range by offering some protection against freezing.« less
Adaptation of existing infrared technologies to unanticipated applications
NASA Astrophysics Data System (ADS)
Peng, Philip
2005-01-01
Radiation thermometry is just but one of many applications, both potential and realized, of infrared technology. During the SARS (Severe Acute Respiratory Syndromes) global crisis in 2003, the technology was utilized as a preliminary screening method for infected persons as a defense against a major outbreak, as the primary symptom of this disease is elevated body temperature. ATC timely developed a product designed specifically for mass volume crowd screening of febrile individuals. For this application, the machine must register temperature of subjects rapidly and efficiently, with a certain degree of accuracy, and function for extended periods of time. The equipment must be safe to use, easily deployed, and function with minimum maintenance needed. The ATIR-303 model satisfies all of the above and other pre-requisite conditions amicably. Studies on the correlation between the maximum temperature registered among individual's facial features, as measured under the conditions of usage, and the core temperature of individuals were performed. The results demonstrated that ATIR-303 is very suitable for this application. Other applications of the infrared technology in various areas, like medical diagnosis, non-destructive testing, security, search and rescue, and others, are also interest areas of ATC. The progress ATC has achieved in these areas is presented also.
Flint, L.E.; Flint, A.L.
2008-01-01
Stream temperature is an important component of salmonid habitat and is often above levels suitable for fish survival in the Lower Klamath River in northern California. The objective of this study was to provide boundary conditions for models that are assessing stream temperature on the main stem for the purpose of developing strategies to manage stream conditions using Total Maximum Daily Loads. For model input, hourly stream temperatures for 36 tributaries were estimated for 1 Jan. 2001 through 31 Oct. 2004. A basin-scale approach incorporating spatially distributed energy balance data was used to estimate the stream temperatures with measured air temperature and relative humidity data and simulated solar radiation, including topographic shading and corrections for cloudiness. Regression models were developed on the basis of available stream temperature data to predict temperatures for unmeasured periods of time and for unmeasured streams. The most significant factor in matching measured minimum and maximum stream temperatures was the seasonality of the estimate. Adding minimum and maximum air temperature to the regression model improved the estimate, and air temperature data over the region are available and easily distributed spatially. The addition of simulated solar radiation and vapor saturation deficit to the regression model significantly improved predictions of maximum stream temperature but was not required to predict minimum stream temperature. The average SE in estimated maximum daily stream temperature for the individual basins was 0.9 ?? 0.6??C at the 95% confidence interval. Copyright ?? 2008 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.
Temperature effects on metabolic rate of juvenile Pacific bluefin tuna Thunnus orientalis.
Blank, Jason M; Morrissette, Jeffery M; Farwell, Charles J; Price, Matthew; Schallert, Robert J; Block, Barbara A
2007-12-01
Pacific bluefin tuna inhabit a wide range of thermal environments across the Pacific ocean. To examine how metabolism varies across this thermal range, we studied the effect of ambient water temperature on metabolic rate of juvenile Pacific bluefin tuna, Thunnus thynnus, swimming in a swim tunnel. Rate of oxygen consumption (MO2) was measured at ambient temperatures of 8-25 degrees C and swimming speeds of 0.75-1.75 body lengths (BL) s(-1). Pacific bluefin swimming at 1 BL s(-1) per second exhibited a U-shaped curve of metabolic rate vs ambient temperature, with a thermal minimum zone between 15 degrees C to 20 degrees C. Minimum MO2 of 175+/-29 mg kg(-1) h(-1) was recorded at 15 degrees C, while both cold and warm temperatures resulted in increased metabolic rates of 331+/-62 mg kg(-1) h(-1) at 8 degrees C and 256+/-19 mg kg(-1) h(-1) at 25 degrees C. Tailbeat frequencies were negatively correlated with ambient temperature. Additional experiments indicated that the increase in MO2 at low temperature occurred only at low swimming speeds. Ambient water temperature data from electronic tags implanted in wild fish indicate that Pacific bluefin of similar size to the experimental fish used in the swim tunnel spend most of their time in ambient temperatures in the metabolic thermal minimum zone.
Secular Trend of Surface Temperature at an Elevated Observatory in the Pyrenees.
NASA Astrophysics Data System (ADS)
Bücher, A.; Dessens, J.
1991-08-01
Surface temperature was measured at the Pic du Midi de Bigorre, 2862 m MSL, from the foundation of the Observatory in 1878 until the closing of the meteorological station in 1984. After testing the homogeneity of the series with the annual mean temperatures in western Europe and in southwestern France, the period 1882-1970 was retained for trend analysis.The mean annual temperature increased 0.83°C during the 89-yr period. This increase is the sum of a very significant increase in the daily minimum temperature (+ 2.11°C) and a decrease in the maximum temperature ( 0.45°C). In consequence, the most dramatic change in the temperature regime was the difference between maximum and minimum; this decreased from 8.05°C in 1882 to 5.49°C in 1970. A mean increase is observed in all seasons, but, as for western Europe, it is stronger in spring and fall than in winter and summer.Analysis of cloudiness data for the same period shows a 15% increase in annual mean cloudiness and also significant year-to-year correlations between cloudiness and the maximum and minimum temperature. In consequence, the change in the temperature regime observed at the Pic du Midi since the end of last century is most probably the result of a climatic change involving an increase in cloud cover and, maybe, an increasing greenhouse effect.
Thermodynamical transcription of density functional theory with minimum Fisher information
NASA Astrophysics Data System (ADS)
Nagy, Á.
2018-03-01
Ghosh, Berkowitz and Parr designed a thermodynamical transcription of the ground-state density functional theory and introduced a local temperature that varies from point to point. The theory, however, is not unique because the kinetic energy density is not uniquely defined. Here we derive the expression of the phase-space Fisher information in the GBP theory taking the inverse temperature as the Fisher parameter. It is proved that this Fisher information takes its minimum for the case of constant temperature. This result is consistent with the recently proven theorem that the phase-space Shannon information entropy attains its maximum at constant temperature.
NASA Astrophysics Data System (ADS)
Guo, An; Zhao, Junwen; Xu, Chao; Li, Hu; Han, Jing; Zhang, Xu
2018-05-01
Semisolid slurry of A357 aluminum alloy was prepared using a temperature-controllable electromagnetic stirrer and rheo-diecast at different temperatures. The effects of pouring temperature and electromagnetic stirring (EMS) on the porosity in rheo-diecast samples, as well as the relation between porosity and mechanical properties, were investigated. The results show that pouring temperature and EMS had minor influences on rheo-diecast microstructure but marked influence on the porosity. With decreasing slurry pouring temperature, the porosity decreased first and then increased, whereas the maximum pore ratio (ratio of shape factor to diameter of the largest pore) increased first and then decreased. The maximum pore ratio determines the level of tensile strength and elongation, and higher mechanical properties can be obtained with smaller and rounder pores in samples. The mechanical properties of the rheo-diecast samples increased linearly with increasing maximum pore ratio. The maximum pore ratio was 1.43 µm-1, and the minimum porosity level was 0.37% under EMS condition for the rheo-diecast samples obtained at a pouring temperature of 608 °C. With this porosity condition, the maximum tensile strength and elongation were achieved at 274 MPa and 4.9%, respectively. It was also revealed that EMS improves mechanical properties by reduction in porosity and an increase in maximum pore ratio.
NASA Astrophysics Data System (ADS)
Puc, Małgorzata
2012-03-01
Birch pollen is one of the main causes of allergy during spring and early summer in northern and central Europe. The aim of this study was to create a forecast model that can accurately predict daily average concentrations of Betula sp. pollen grains in the atmosphere of Szczecin, Poland. In order to achieve this, a novel data analysis technique—artificial neural networks (ANN)—was used. Sampling was carried out using a volumetric spore trap of the Hirst design in Szczecin during 2003-2009. Spearman's rank correlation analysis revealed that humidity had a strong negative correlation with Betula pollen concentrations. Significant positive correlations were observed for maximum temperature, average temperature, minimum temperature and precipitation. The ANN resulted in multilayer perceptrons 366 8: 2928-7-1:1, time series prediction was of quite high accuracy (SD Ratio between 0.3 and 0.5, R > 0.85). Direct comparison of the observed and calculated values confirmed good performance of the model and its ability to recreate most of the variation.
Rosotti, Giovanni P; Juhasz, Attila; Booth, Richard A; Clarke, Cathie J
2016-07-01
We investigate the minimum planet mass that produces observable signatures in infrared scattered light and submillimetre (submm) continuum images and demonstrate how these images can be used to measure planet masses to within a factor of about 2. To this end, we perform multi-fluid gas and dust simulations of discs containing low-mass planets, generating simulated observations at 1.65, 10 and 850 μm. We show that the minimum planet mass that produces a detectable signature is ∼15 M ⊕ : this value is strongly dependent on disc temperature and changes slightly with wavelength (favouring the submm). We also confirm previous results that there is a minimum planet mass of ∼20 M ⊕ that produces a pressure maximum in the disc: only planets above this threshold mass generate a dust trap that can eventually create a hole in the submm dust. Below this mass, planets produce annular enhancements in dust outwards of the planet and a reduction in the vicinity of the planet. These features are in steady state and can be understood in terms of variations in the dust radial velocity, imposed by the perturbed gas pressure radial profile, analogous to a traffic jam. We also show how planet masses can be derived from structure in scattered light and submm images. We emphasize that simulations with dust need to be run over thousands of planetary orbits so as to allow the gas profile to achieve a steady state and caution against the estimation of planet masses using gas-only simulations.
Multiple neutral density measurements in the lower thermosphere with cold-cathode ionization gauges
NASA Astrophysics Data System (ADS)
Lehmacher, G. A.; Gaulden, T. M.; Larsen, M. F.; Craven, J. D.
2013-01-01
Cold-cathode ionization gauges were used for rocket-borne measurements of total neutral density and temperature in the aurorally forced lower thermosphere between 90 and 200 km. A commercial gauge was adapted as a low-cost instrument with a spherical antechamber for measurements in molecular flow conditions. Three roll-stabilized payloads on different trajectories each carried two instruments for measurements near the ram flow direction along the respective upleg and downleg segments of a flight path, and six density profiles were obtained within a period of 22 min covering spatial separations up to 200 km. The density profiles were integrated below 125 km to yield temperatures. The mean temperature structure was similar for all six profiles with two mesopause minima near 110 and 101 km, however, for the downleg profiles, the upper minimum was warmer and the lower minimum was colder by 20-30 K indicating significant variability over horizontal scales of 100-200 km. The upper temperature minimum coincided with maximum horizontal winds speeds, exceeding 170 m/s.
Mainstem Clearwater River Study: Assessment for Salmonid Spawning, Incubation, and Rearing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Conner, William P.
1989-01-01
Chinook salmon reproduced naturally in the Clearwater River until damming of the lower mainstem in 1927 impeded upstream spawning migrations and decimated the populations. Removal of the Washington Water Power Dam in 1973 reopened upriver passage. This study was initiated to determine the feasibility of re-introducing chinook salmon into the lower mainstem Clearwater River based on the temperature and flow regimes, water quality, substrate, and invertebrate production since the completion of Dworshak Dam in 1972. Temperature data obtained from the United States Geological Survey gaging stations at Peck and Spalding, Idaho, were used to calculate average minimum and maximum watermore » temperature on a daily, monthly and yearly basis. The coldest and warmest (absolute minimum and maximum) temperatures that have occurred in the past 15 years were also identified. Our analysis indicates that average lower mainstem Clearwater River water temperatures are suitable for all life stages of chinook salmon, and also for steelhead trout rearing. In some years absolute maximum water temperatures in late summer may postpone adult staging and spawning. Absolute minimum temperatures have been recorded that could decrease overwinter survival of summer chinook juveniles and fall chinook eggs depending on the quality of winter hiding cover and the prevalence of intra-gravel freezing in the lower mainstem Clearwater River.« less
Minimum fan turbine inlet temperature mode evaluation
NASA Technical Reports Server (NTRS)
Orme, John S.; Nobbs, Steven G.
1995-01-01
Measured reductions in turbine temperature which resulted from the application of the F-15 performance seeking control (PSC) minimum fan turbine inlet temperature (FTIT) mode during the dual-engine test phase is presented as a function of net propulsive force and flight condition. Data were collected at altitudes of 30,000 and 45,000 feet at military and partial afterburning power settings. The FTIT reductions for the supersonic tests are less than at subsonic Mach numbers because of the increased modeling and control complexity. In addition, the propulsion system was designed to be optimized at the mid supersonic Mach number range. Subsonically at military power, FTIT reductions were above 70 R for either the left or right engines, and repeatable for the right engine. At partial afterburner and supersonic conditions, the level of FTIT reductions were at least 25 R and as much as 55 R. Considering that the turbine operates at or very near its temperature limit at these high power settings, these seemingly small temperature reductions may significantly lengthen the life of the turbine. In general, the minimum FTIT mode has performed well, demonstrating significant temperature reductions at military and partial afterburner power. Decreases of over 100 R at cruise flight conditions were identified. Temperature reductions of this magnitude could significantly extend turbine life and reduce replacement costs.
NASA Technical Reports Server (NTRS)
Reginato, R.; Idso, S.; Vedder, J.; Jackson, R.; Blanchard, M.; Goettelman, R.
1975-01-01
A procedure is presented for calculating 24-hour totals of evaporation from wet and drying soils. Its application requires a knowledge of the daily solar radiation, the maximum and minimum, air temperatures, moist surface albedo, and maximum and minimum surface temperatures. Tests of the technique on a bare field of Avondale loam at Phoenix, Arizona showed it to be independent of season.
Finite temperature grand canonical ensemble study of the minimum electrophilicity principle.
Miranda-Quintana, Ramón Alain; Chattaraj, Pratim K; Ayers, Paul W
2017-09-28
We analyze the minimum electrophilicity principle of conceptual density functional theory using the framework of the finite temperature grand canonical ensemble. We provide support for this principle, both for the cases of systems evolving from a non-equilibrium to an equilibrium state and for the change from one equilibrium state to another. In doing so, we clearly delineate the cases where this principle can, or cannot, be used.
NASA Astrophysics Data System (ADS)
Singh, Priya; Sarkar, Subir K.; Bandyopadhyay, Pradipta
2014-07-01
We present the results of a high-statistics equilibrium study of the folding/unfolding transition for the 20-residue mini-protein Trp-cage (TC5b) in water. The ECEPP/3 force field is used and the interaction with water is treated by a solvent-accessible surface area method. A Wang-Landau type simulation is used to calculate the density of states and the conditional probabilities for the various values of the radius of gyration and the number of native contacts at fixed values of energy—along with a systematic check on their convergence. All thermodynamic quantities of interest are calculated from this information. The folding-unfolding transition corresponds to a peak in the temperature dependence of the computed specific heat. This is corroborated further by the structural signatures of folding in the distributions for radius of gyration and the number of native contacts as a function of temperature. The potentials of mean force are also calculated for these variables, both separately and jointly. A local free energy minimum, in addition to the global minimum, is found in a temperature range substantially below the folding temperature. The free energy at this second minimum is approximately 5 kBT higher than the value at the global minimum.
NASA Astrophysics Data System (ADS)
DArrigo, R.; Davi, N.; Jacoby, G.; Wiles, G.
2002-05-01
The Maunder Minimum interval (from the mid-1600s-early 1700s) is believed to have been one of the coldest periods of the past thousand years in the Northern Hemisphere. A maximum latewood density temperature reconstruction for the Wrangell Mountains, southern Alaska (1593-1992) provides information on regional temperature change during the Maunder Minimum and other periods of severe cold over the past four centuries. The Wrangell density record, which reflects warm season (July-September) temperatures, shows an overall cooling over the Maunder Minimum period with annual values reaching as low as -1.8oC below the long-term mean. Ring widths, which can integrate annual as well as summer conditions, also show pronounced cooling at the Wrangell site during this time, as do Arctic and hemispheric-scale temperature reconstructions based on tree rings and other proxy data. Maximum ages of glacial advance based on kill dates from overrun logs (which reflect cooler temperatures) coincide temporally with the cooling seen in the density and ring width records. In contrast, a recent modeling study indicates that during this period there was cold season (November-April) warming over much of Alaska, but cooling over other northern continental regions, as a result of decreased solar irradiance initiating low Arctic Oscillation index conditions. The influence of other forcings on Alaskan climate, the absence of ocean dynamical feedbacks in the model, and the different seasonality represented by the model and the trees may be some of the possible explanations for the different model and proxy results.
NASA Technical Reports Server (NTRS)
Hall, R. M.
1976-01-01
The minimum operating temperature which avoids adverse low temperature effects, such as condensation, has been determined at a free stream Mach number of 0.85 for flow over a 0.137 meter airfoil mounted at zero incidence in the Langley 1/3 meter transonic cryogenic tunnel. The onset of low temperature effects is established by comparing the pressure coefficient measured at a given orifice for a particular temperature with those measured at temperatures sufficiently above where low temperature effects might be expected to occur. The pressure distributions over the airfoil are presented in tabular form. In addition, the comparisons of the pressure coefficient as a function of total temperature are presented graphically for chord locations of 0, 25, 50, and 75 percent. Over the 1.2 to 4.5 atmosphere total pressure range investigated, low temperature effects are not detected until total temperatures are 2 K, or more, below free stream saturation temperatures.
Achieving spectrum conservation for the minimum-span and minimum-order frequency assignment problems
NASA Technical Reports Server (NTRS)
Heyward, Ann O.
1992-01-01
Effective and efficient solutions of frequency assignment problems assumes increasing importance as the radiofrequency spectrum experiences ever increasing utilization by diverse communications services, requiring that the most efficient use of this resource be achieved. The research presented explores a general approach to the frequency assignment problem, in which such problems are categorized by the appropriate spectrum conserving objective function, and are each treated as an N-job, M-machine scheduling problem appropriate for the objective. Results obtained and presented illustrate that such an approach presents an effective means of achieving spectrum conserving frequency assignments for communications systems in a variety of environments.
NASA Astrophysics Data System (ADS)
He, Minhui; Yang, Bao; Datsenko, Nina M.
2014-08-01
The recent unprecedented warming found in different regions has aroused much attention in the past years. How temperature has really changed on the Tibetan Plateau (TP) remains unknown since very limited high-resolution temperature series can be found over this region, where large areas of snow and ice exist. Herein, we develop two Juniperus tibetica Kom. tree-ring width chronologies from different elevations. We found that the two tree-ring series only share high-frequency variability. Correlation, response function and partial correlation analysis indicate that prior year annual (January-December) minimum temperature is most responsible for the higher belt juniper radial growth, while more or less precipitation signal is contained by the tree-ring width chronology at the lower belt and is thus excluded from further analysis. The tree growth-climate model accounted for 40 % of the total variance in actual temperature during the common period 1957-2010. The detected temperature signal is further robustly verified by other results. Consequently, a six century long annual minimum temperature history was firstly recovered for the Yushu region, central TP. Interestingly, the rapid warming trend during the past five decades is identified as a significant cold phase in the context of the past 600 years. The recovered temperature series reflects low-frequency variability consistent with other temperature reconstructions over the whole TP region. Furthermore, the present recovered temperature series is associated with the Asian monsoon strength on decadal to multidecadal scales over the past 600 years.
Trends in Middle East climate extreme indices from 1950 to 2003
NASA Astrophysics Data System (ADS)
Zhang, Xuebin; Aguilar, Enric; Sensoy, Serhat; Melkonyan, Hamlet; Tagiyeva, Umayra; Ahmed, Nader; Kutaladze, Nato; Rahimzadeh, Fatemeh; Taghipour, Afsaneh; Hantosh, T. H.; Albert, Pinhas; Semawi, Mohammed; Karam Ali, Mohammad; Said Al-Shabibi, Mansoor Halal; Al-Oulan, Zaid; Zatari, Taha; Al Dean Khelet, Imad; Hamoud, Saleh; Sagir, Ramazan; Demircan, Mesut; Eken, Mehmet; Adiguzel, Mustafa; Alexander, Lisa; Peterson, Thomas C.; Wallis, Trevor
2005-11-01
A climate change workshop for the Middle East brought together scientists and data for the region to produce the first area-wide analysis of climate extremes for the region. This paper reports trends in extreme precipitation and temperature indices that were computed during the workshop and additional indices data that became available after the workshop. Trends in these indices were examined for 1950-2003 at 52 stations covering 15 countries, including Armenia, Azerbaijan, Bahrain, Cyprus, Georgia, Iran, Iraq, Israel, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, Syria, and Turkey. Results indicate that there have been statistically significant, spatially coherent trends in temperature indices that are related to temperature increases in the region. Significant, increasing trends have been found in the annual maximum of daily maximum and minimum temperature, the annual minimum of daily maximum and minimum temperature, the number of summer nights, and the number of days where daily temperature has exceeded its 90th percentile. Significant negative trends have been found in the number of days when daily temperature is below its 10th percentile and daily temperature range. Trends in precipitation indices, including the number of days with precipitation, the average precipitation intensity, and maximum daily precipitation events, are weak in general and do not show spatial coherence. The workshop attendees have generously made the indices data available for the international research community.
Long-term trends in daily temperature extremes in Iraq
NASA Astrophysics Data System (ADS)
Salman, Saleem A.; Shahid, Shamsuddin; Ismail, Tarmizi; Chung, Eun-Sung; Al-Abadi, Alaa M.
2017-12-01
The existence of long-term persistence (LTP) in hydro-climatic time series can lead to considerable change in significance of trends. Therefore, past findings of climatic trend studies that did not consider LTP became a disputable issue. A study has been conducted to assess the trends in temperature and temperature extremes in Iraq in recent years (1965-2015) using both ordinary Mann-Kendal (MK) test; and the modified Mann-Kendall (m-MK) test, which can differentiate the multi-decadal oscillatory variations from secular trends. Trends in annual and seasonal minimum and maximum temperatures, diurnal temperature range (DTR), and 14 temperature-related extremes were assessed. MK test detected the significant increases in minimum and maximum temperature at all stations, where m-MK test detected at 86% and 80% of all stations, respectively. The temperature in Iraq is increasing 2 to 7 times faster than global temperature rise. The minimum temperature is increasing more (0.48-1.17 °C/decade) than maximum temperature (0.25-1.01 °C/decade). Temperature rise is higher in northern Iraq and in summer. The hot extremes particularly warm nights are increasing all over Iraq at a rate of 2.92-10.69 days/decade, respectively. On the other hand, numbers of cold days are decreasing at some stations at a rate of - 2.65 to - 8.40 days/decade. The use of m-MK test along with MK test confirms the significant increase in temperature and some of the temperature extremes in Iraq. This study suggests that trends in many temperature extremes in the region estimated in previous studies using MK test may be due to natural variability of climate, which empathizes the need for validation of the trends by considering LTP in time series.
Temperature Measurements Taken by Phoenix Spacecraft
2008-09-30
This chart plots the minimum daily atmospheric temperature measured by NASA Phoenix Mars Lander spacecraft since landing on Mars. As the temperature increased through the summer season, the atmospheric humidity also increased.
Comprehensive Ionospheric Polar and Auroral Observations for Solar Minimum of Cycle 23/24
NASA Astrophysics Data System (ADS)
Sojka, Jan J.; Nicolls, Michael; van Eyken, Anthony; Heinselman, Craig
Only the incoherent scatter radar (ISR) is able to simultaneously measure full profiles of elec-tron density, ion temperature, and electron temperatures through the E-and F-layers of the terrestrial ionosphere. Historically ISR's have been operated for periods much less than a month. Hence, their measurements do not constitute a continuous sequence from which quiet, disturbed, and storm periods can reliably be discerned. This is particularly true in the auroral and polar regions. During the International Polar Year (IPY) two ISRs achieved close to 24/7 continuous observations. This presentation describes their data sets and specifically how they can provide the IRI with a fiduciary E-and F-region ionosphere descriptions for solar minimum conditions at auroral and polar cap locations. The ionospheric description being electron den-sity, ion temperature, electron temperature, and even molecular ion composition profiles from as low as 90 km extending several scale heights above the F-layer peak. The auroral location is Poker Flat in Alaska at 65.4° N, 147.5° W where the NSF's new Poker Flat Incoherent Scatter Radar (PFISR) is located. During solar minimum conditions this location is in the auroral region for most of the day and is at mid-latitudes, equatorward of the cusp, for about 4 to 8 hours per day dependent upon geomagnetic activity. In contrast the polar location is Svalbard, at 78° N, 16° E where the EISCAT Svalbard Radar (ESR) is located. For most of the day the ESR is in the Northern Polar Cap often with a noon sector passage through the dayside cusp. Of unique relevance to IRI is that these extended observations have enabled the ionospheric morphology to be demarked between quiet and disturbed. During the IPY year, 1 March 2007 to 29 February 2008, a total of 50 solar wind corotating interaction regions (CIRs) impacted geospace. Each CIR has a one-to-three day geomagnetic disturbance that is observed in the ISR auroral and polar observations. Hence, this data set enables the quiet-background ionosphere to be established as a function of season and local time. This quiet-background ionosphere has the unique attribute that it has self-consistent altitude profiles of the density and the temper-ature. This we believe is a true fiduciary reference for the IRI in a high latitude region, that is otherwise particularly difficult to quantify.
Electrochemical model based charge optimization for lithium-ion batteries
NASA Astrophysics Data System (ADS)
Pramanik, Sourav; Anwar, Sohel
2016-05-01
In this paper, we propose the design of a novel optimal strategy for charging the lithium-ion battery based on electrochemical battery model that is aimed at improved performance. A performance index that aims at minimizing the charging effort along with a minimum deviation from the rated maximum thresholds for cell temperature and charging current has been defined. The method proposed in this paper aims at achieving a faster charging rate while maintaining safe limits for various battery parameters. Safe operation of the battery is achieved by including the battery bulk temperature as a control component in the performance index which is of critical importance for electric vehicles. Another important aspect of the performance objective proposed here is the efficiency of the algorithm that would allow higher charging rates without compromising the internal electrochemical kinetics of the battery which would prevent abusive conditions, thereby improving the long term durability. A more realistic model, based on battery electro-chemistry has been used for the design of the optimal algorithm as opposed to the conventional equivalent circuit models. To solve the optimization problem, Pontryagins principle has been used which is very effective for constrained optimization problems with both state and input constraints. Simulation results show that the proposed optimal charging algorithm is capable of shortening the charging time of a lithium ion cell while maintaining the temperature constraint when compared with the standard constant current charging. The designed method also maintains the internal states within limits that can avoid abusive operating conditions.
NASA Astrophysics Data System (ADS)
Gentilucci, Matteo
2017-04-01
The end of flowering date (BBCH 69) is an important phenological stage for grapevine (Vitis Vinifera L.), in fact up to this date the growth is focused on the plant and gradually passes on the berries through fruit set. The aim of this study is to perform a model to predict the date of the end of flowering (BBCH69) for some grapevine varieties. This research carried out using three cultivars of grapevine (Maceratino, Montepulciano, Sangiovese) in three different locations (Macerata, Morrovalle and Potenza Picena), places of an equal number of wine farms for the time interval between 2006 and 2013. In order to have reliable temperatures for each location, the data of 6 weather stations near these farms have been interpolated using cokriging methods with elevation as independent variable. The procedure to predict the end of flowering date starts with an investigation of cardinal temperatures typical of each grapevine cultivar. In fact the analysis is characterized by four temperature thresholds (cardinals): minimum activity temperature (TCmin = below this temperature there is no growth for the plant), lower optimal temperature (TLopt = above this temperature there is maximum growth), upper optimal temperature (TUopt = below this temperature there is maximum growth) and maximum activity temperature (TC max = above this temperature there is no growth). Thus this model take into consideration maximum, mean and minimum daily temperatures of each location, relating them with the four above mentioned cultivar temperature thresholds. In this way it has been obtained some possible cases (32) corresponding to as many equations, depending on the position of temperatures compared with the thresholds, in order to calculate the amount of growing degree units (GDU) for each day. Several iterative tests (about 1000 for each cultivar) have been performed, changing the values of temperature thresholds and GDU in order to find the best possible combination which minimizes error between observed and predicted days from budburst to end of flowering. It has been assessed the minimization of error for the predicted dates compared with real ones, calculating some statistical indexes as root mean square error, mean absolute error and coefficient of variation. The procedure led to the identification of four cardinal temperatures and the amount of GDU for each cultivar between BBCH01 (budburst) and BBCH69 (end of flowering). In conclusion, this research has achieved some goals such as the plant response to temperature (same cardinal temperatures for Maceratino and Sangiovese but higher ones for Montepulciano), the interval ranging of growing degree units (from 35 to 38) and the differences between observed and predicted days (ranged from 2 to 3.5), for each grape varieties.
Wax encapsulation of water-soluble compounds for application in foods.
Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A
2006-11-01
Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.
Lindgren, E; Tälleklint, L; Polfeldt, T
2000-01-01
We examined whether a reported northward expansion of the geographic distribution limit of the disease-transmitting tick Ixodes ricinus and an increased tick density between the early 1980s and mid-1990s in Sweden was related to climatic changes. The annual number of days with minimum temperatures above vital bioclimatic thresholds for the tick's life-cycle dynamics were related to tick density in both the early 1980s and the mid-1990s in 20 districts in central and northern Sweden. The winters were markedly milder in all of the study areas in the 1990s as compared to the 1980s. Our results indicate that the reported northern shift in the distribution limit of ticks is related to fewer days during the winter seasons with low minimum temperatures, i.e., below -12 degrees C. At high latitudes, low winter temperatures had the clearest impact on tick distribution. Further south, a combination of mild winters (fewer days with minimum temperatures below -7 degrees C) and extended spring and autumn seasons (more days with minimum temperatures from 5 to 8 degrees C) was related to increases in tick density. We conclude that the relatively mild climate of the 1990s in Sweden is probably one of the primary reasons for the observed increase of density and geographic range of I. ricinus ticks. Images Figure 1 Figure 2 Figure 3 PMID:10656851
NASA Technical Reports Server (NTRS)
Knepper, Bryan; Hwang, Soon Muk; DeWitt, Kenneth J.
2004-01-01
Minimum ignition energies of various methanol/air mixtures were measured in a temperature controlled constant volume combustion vessel using a spark ignition method with a spark gap distance of 2 mm. The minimum ignition energies decrease rapidly as the mixture composition (equivalence ratio, Phi) changes from lean to stoichiometric, reach a minimum value, and then increase rather slowly with Phi. The minimum of the minimum ignition energy (MIE) and the corresponding mixture composition were determined to be 0.137 mJ and Phi = 1.16, a slightly rich mixture. The variation of minimum ignition energy with respect to the mixture composition is explained in terms of changes in reaction chemistry.
Solar activity as driver for the Dark Age Grand Solar Minimum
NASA Astrophysics Data System (ADS)
Neuhäuser, Ralph; Neuhäuser, Dagmar
2017-04-01
We will discuss the role of solar activity for the temperature variability from AD 550 to 840, roughly the last three centuries of the Dark Ages. This time range includes the so-called Dark Age Grand Solar Minimum, whose deep part is dated to about AD 650 to 700, which is seen in increased radiocarbon, but decreased aurora observations (and a lack of naked-eye sunspot sightings). We present historical reports on aurorae from all human cultures with written reports including East Asia, Near East (Arabia), and Europe. To classify such reports correctly, clear criteria are needed, which are also discussed. We compare our catalog of historical aurorae (and sunspots) as well as C-14 data, i.e. solar activity proxies, with temperature reconstructions (PAGES). After increased solar activity until around AD 600, we see a dearth of aurorae and increased radiocarbon production in particular in the second half of the 7th century, i.e. a typical Grand Solar Minimum. Then, after about AD 690 (the maximum in radiocarbon, the end of the Dark Age Grand Minimum), we see increased auroral activity, decreasing radiocarbon, and increasing temperature until about AD 775. At around AD 775, we see the well-known strong C-14 variability (solar activity drop), then immediately another dearth of aurorae plus high C-14, indicating another solar activity minimum. This is consistent with a temperature depression from about AD 775 on into the beginning of the 9th century. Very high solar activity is then seen in the first four decades with four aurora clusters and three simultaneous sunspot clusters, and low C-14, again also increasing temperature. The period of increasing solar activity marks the end of the so-called Dark Ages: While auroral activity increases since about AD 793, temperature starts to increase quite exactly at AD 800. We can reconstruct the Schwabe cycles with aurorae and C-14 data. In summary, we can see a clear correspondence of the variability of solar activity proxies and surface temperature reconstructions. This indicates that solar activity is an important climate driver.
Development of an accelerated reliability test schedule for terrestrial solar cells
NASA Technical Reports Server (NTRS)
Lathrop, J. W.; Prince, J. L.
1981-01-01
An accelerated test schedule using a minimum amount of tests and a minimum number of cells has been developed on the basis of stress test results obtained from more than 1500 cells of seven different cell types. The proposed tests, which include bias-temperature, bias-temperature-humidity, power cycle, thermal cycle, and thermal shock tests, use as little as 10 and up to 25 cells, depending on the test type.
NASA Astrophysics Data System (ADS)
Schnick, M.; Füssel, U.; Hertel, M.; Spille-Kohoff, A.; Murphy, A. B.
2010-01-01
A computational model of the argon arc plasma in gas-metal arc welding (GMAW) that includes the influence of metal vapour from the electrode is presented. The occurrence of a central minimum in the radial distributions of temperature and current density is demonstrated. This is in agreement with some recent measurements of arc temperatures in GMAW, but contradicts other measurements and also the predictions of previous models, which do not take metal vapour into account. It is shown that the central minimum is a consequence of the strong radiative emission from the metal vapour. Other effects of the metal vapour, such as the flux of relatively cold vapour from the electrode and the increased electrical conductivity, are found to be less significant. The different effects of metal vapour in gas-tungsten arc welding and GMAW are explained.
Pyrophoric sulfides influence over the minimum ignition temperature of dust cloud
NASA Astrophysics Data System (ADS)
Prodan, Maria; Lupu, Leonard Andrei; Ghicioi, Emilian; Nalboc, Irina; Szollosi-Mota, Andrei
2017-12-01
The dust cloud is the main form of existence of combustible dust in the production area and together with the existence of effective ignition sources are the main causes of dust explosions in production processes. The minimum ignition temperature has an important role in the process of selecting the explosion-protected electrical equipment when performing the explosion risk assessment of combustible dusts. The heated surfaces are able to ignite the dust clouds that can form in process industry. The oil products usually contain hydrogen sulfide and thus on the pipe walls iron sulfides can form, which can be very dangerous from health and safety point of view. In order to study the influence of the pyrophoric sulfide over the minimum ignition temperature of combustible dusts for this work were performed several experiments on a residue collected from the oil pipes contaminated with commercially iron sulfide.
MRI monitoring of focused ultrasound sonications near metallic hardware.
Weber, Hans; Ghanouni, Pejman; Pascal-Tenorio, Aurea; Pauly, Kim Butts; Hargreaves, Brian A
2018-07-01
To explore the temperature-induced signal change in two-dimensional multi-spectral imaging (2DMSI) for fast thermometry near metallic hardware to enable MR-guided focused ultrasound surgery (MRgFUS) in patients with implanted metallic hardware. 2DMSI was optimized for temperature sensitivity and applied to monitor focus ultrasound surgery (FUS) sonications near metallic hardware in phantoms and ex vivo porcine muscle tissue. Further, we evaluated its temperature sensitivity for in vivo muscle in patients without metallic hardware. In addition, we performed a comparison of temperature sensitivity between 2DMSI and conventional proton-resonance-frequency-shift (PRFS) thermometry at different distances from metal devices and different signal-to-noise ratios (SNR). 2DMSI thermometry enabled visualization of short ultrasound sonications near metallic hardware. Calibration using in vivo muscle yielded a constant temperature sensitivity for temperatures below 43 °C. For an off-resonance coverage of ± 6 kHz, we achieved a temperature sensitivity of 1.45%/K, resulting in a minimum detectable temperature change of ∼2.5 K for an SNR of 100 with a temporal resolution of 6 s per frame. The proposed 2DMSI thermometry has the potential to allow MR-guided FUS treatments of patients with metallic hardware and therefore expand its reach to a larger patient population. Magn Reson Med 80:259-271, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Analysis of the relationship between the monthly temperatures and weather types in Iberian Peninsula
NASA Astrophysics Data System (ADS)
Peña Angulo, Dhais; Trigo, Ricardo; Nicola, Cortesi; José Carlos, González-Hidalgo
2016-04-01
In this study, the relationship between the atmospheric circulation and weather types and the monthly average maximum and minimum temperatures in the Iberian Peninsula is modeled (period 1950-2010). The temperature data used were obtained from a high spatial resolution (10km x 10km) dataset (MOTEDAS dataset, Gonzalez-Hidalgo et al., 2015a). In addition, a dataset of Portuguese temperatures was used (obtained from the Portuguese Institute of Sea and Atmosphere). The weather type classification used was the one developed by Jenkinson and Collison, which was adapted for the Iberian Peninsula by Trigo and DaCamara (2000), using Sea Level Pressure data from NCAR/NCEP Reanalysis dataset (period 1951-2010). The analysis of the behaviour of monthly temperatures based on the weather types was carried out using a stepwise regression procedure of type forward to estimate temperatures in each cell of the considered grid, for each month, and for both maximum and minimum monthly average temperatures. The model selects the weather types that best estimate the temperatures. From the validation model it was obtained the error distribution in the time (months) and space (Iberian Peninsula). The results show that best estimations are obtained for minimum temperatures, during the winter months and in coastal areas. González-Hidalgo J.C., Peña-Angulo D., Brunetti M., Cortesi, C. (2015a): MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). International Journal of Climatology 31, 715-731. DOI: 10.1002/joc.4298
Size dependent compressibility of nano-ceria: Minimum near 33 nm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodenbough, Philip P.; Chemistry Department, Columbia University, New York, New York 10027; Song, Junhua
2015-04-20
We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite sizemore » decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.« less
Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi
2011-01-01
This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume. PMID:22203886
Chen, Chieh-Fan; Ho, Wen-Hsien; Chou, Huei-Yin; Yang, Shu-Mei; Chen, I-Te; Shi, Hon-Yi
2011-01-01
This study analyzed meteorological, clinical and economic factors in terms of their effects on monthly ED revenue and visitor volume. Monthly data from January 1, 2005 to September 30, 2009 were analyzed. Spearman correlation and cross-correlation analyses were performed to identify the correlation between each independent variable, ED revenue, and visitor volume. Autoregressive integrated moving average (ARIMA) model was used to quantify the relationship between each independent variable, ED revenue, and visitor volume. The accuracies were evaluated by comparing model forecasts to actual values with mean absolute percentage of error. Sensitivity of prediction errors to model training time was also evaluated. The ARIMA models indicated that mean maximum temperature, relative humidity, rainfall, non-trauma, and trauma visits may correlate positively with ED revenue, but mean minimum temperature may correlate negatively with ED revenue. Moreover, mean minimum temperature and stock market index fluctuation may correlate positively with trauma visitor volume. Mean maximum temperature, relative humidity and stock market index fluctuation may correlate positively with non-trauma visitor volume. Mean maximum temperature and relative humidity may correlate positively with pediatric visitor volume, but mean minimum temperature may correlate negatively with pediatric visitor volume. The model also performed well in forecasting revenue and visitor volume.
NASA Astrophysics Data System (ADS)
Guo, Long; Zhang, Xingzhong
2018-03-01
Mechanical and creep properties of Q345c continuous casting slab subjected to uniaxial tensile tests at high temperature were considered in this paper. The minimum creep strain rate and creep rupture life equations whose parameters are calculated by inverse-estimation using the regression analysis were derived based on experimental data. The minimum creep strain rate under constant stress increases with the increase of the temperature from 1000 °C to 1200 °C. A new casting machine curve with the aim of fully using high-temperature creep behaviour is proposed in this paper. The basic arc segment is cancelled in the new curve so that length of the straightening area can be extended and time of creep behaviour can be increased significantly. For the new casting machine curve, the maximum straightening strain rate at the slab surface is less than the minimum creep strain rate. So slab straightening deformation based on the steel creep behaviour at high temperature can be carried out in the process of Q345c steel continuous casting. The effect of creep property at high temperature on slab straightening deformation is positive. It is helpful for the design of new casting machine and improvement of old casting machine.
NASA Astrophysics Data System (ADS)
Wang, Zhe; Lorenz, T.; Gorbunov, D. I.; Cong, P. T.; Kohama, Y.; Niesen, S.; Breunig, O.; Engelmayer, J.; Herman, A.; Wu, Jianda; Kindo, K.; Wosnitza, J.; Zherlitsyn, S.; Loidl, A.
2018-05-01
We report on magnetization, sound-velocity, and magnetocaloric-effect measurements of the Ising-like spin-1 /2 antiferromagnetic chain system BaCo2V2O8 as a function of temperature down to 1.3 K and an applied transverse magnetic field up to 60 T. While across the Néel temperature of TN˜5 K anomalies in magnetization and sound velocity confirm the antiferromagnetic ordering transition, at the lowest temperature the field-dependent measurements reveal a sharp softening of sound velocity v (B ) and a clear minimum of temperature T (B ) at B⊥c,3 D=21.4 T , indicating the suppression of the antiferromagnetic order. At higher fields, the T (B ) curve shows a broad minimum at B⊥c=40 T , accompanied by a broad minimum in the sound velocity and a saturationlike magnetization. These features signal a quantum phase transition, which is further characterized by the divergent behavior of the Grüneisen parameter ΓB∝(B -B⊥c)-1. By contrast, around the critical field, the Grüneisen parameter converges as temperature decreases, pointing to a quantum critical point of the one-dimensional transverse-field Ising model.
Protograph LDPC Codes with Node Degrees at Least 3
NASA Technical Reports Server (NTRS)
Divsalar, Dariush; Jones, Christopher
2006-01-01
In this paper we present protograph codes with a small number of degree-3 nodes and one high degree node. The iterative decoding threshold for proposed rate 1/2 codes are lower, by about 0.2 dB, than the best known irregular LDPC codes with degree at least 3. The main motivation is to gain linear minimum distance to achieve low error floor. Also to construct rate-compatible protograph-based LDPC codes for fixed block length that simultaneously achieves low iterative decoding threshold and linear minimum distance. We start with a rate 1/2 protograph LDPC code with degree-3 nodes and one high degree node. Higher rate codes are obtained by connecting check nodes with degree-2 non-transmitted nodes. This is equivalent to constraint combining in the protograph. The condition where all constraints are combined corresponds to the highest rate code. This constraint must be connected to nodes of degree at least three for the graph to have linear minimum distance. Thus having node degree at least 3 for rate 1/2 guarantees linear minimum distance property to be preserved for higher rates. Through examples we show that the iterative decoding threshold as low as 0.544 dB can be achieved for small protographs with node degrees at least three. A family of low- to high-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
Minimum emittance in TBA and MBA lattices
NASA Astrophysics Data System (ADS)
Xu, Gang; Peng, Yue-Mei
2015-03-01
For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.
Electro-mechanical characterization of MgB2 wires for the Superconducting Link Project at CERN
NASA Astrophysics Data System (ADS)
Konstantopoulou, K.; Ballarino, A.; Gharib, A.; Stimac, A.; Garcia Gonzalez, M.; Perez Fontenla, A. T.; Sugano, M.
2016-08-01
In previous years, the R & D program between CERN and Columbus Superconductors SpA led to the development of several configurations of MgB2 wires. The aim was to achieve excellent superconducting properties in high-current MgB2 cables for the HL-LHC upgrade. In addition to good electrical performance, the superconductor shall have good mechanical strength in view of the stresses during operation (Lorenz forces and thermal contraction) and handling (tension and bending) during cabling and installation at room temperature. Thus, the study of the mechanical properties of MgB2 wires is crucial for the cable design and its functional use. In the present work we report on the electro-mechanical characterization of ex situ processed composite MgB2 wires. Tensile tests (critical current versus strain) were carried out at 4.2 K and in a 3 T external field by means of a purpose-built bespoke device to determine the irreversible strain limit of the wire. The minimum bending radius of the wire was calculated taking into account the dependence of the critical current with the strain and it was then used to obtain the minimum twist pitch of MgB2 wires in the cable. Strands extracted from cables having different configurations were tested to quantify the critical current degradation. The Young’s modulus of the composite wire was measured at room temperature. Finally, all measured mechanical parameters will be used to optimize an 18-strand MgB2 cable configuration.
NASA Astrophysics Data System (ADS)
Dhorde, Amit G.; Korade, Mahendra S.; Dhorde, Anargha A.
2017-10-01
Earth surface temperatures are changing worldwide together with the changes in the extreme temperatures. The present study investigates trends and variations of monthly maximum and minimum temperatures and their effects on seasonal fluctuations at different climatological stations of Maharashtra and Karnataka states of India. Trend analysis was performed on annual and seasonal mean maximum temperature (TMAX) and mean minimum temperature (TMIN) for the period 1969 to 2006. During the last 38 years, an increase in annual TMAX and TMIN has occurred. At most of the locations, the increase in TMAX was faster than the TMIN, resulting in an increase in diurnal temperature range. At the same time, annual mean temperature (TM) showed a significant increase over the study area. Percentiles were used to identify extreme temperature indices. An increase in occurrence of warm extremes was observed at southern locations, and cold extremes increased over the central and northeastern part of the study area. Occurrences of cold wave conditions have decreased rapidly compared to heat wave conditions.
Minimum airflow reset of single-duct VAV terminal boxes
NASA Astrophysics Data System (ADS)
Cho, Young-Hum
Single duct Variable Air Volume (VAV) systems are currently the most widely used type of HVAC system in the United States. When installing such a system, it is critical to determine the minimum airflow set point of the terminal box, as an optimally selected set point will improve the level of thermal comfort and indoor air quality (IAQ) while at the same time lower overall energy costs. In principle, this minimum rate should be calculated according to the minimum ventilation requirement based on ASHRAE standard 62.1 and maximum heating load of the zone. Several factors must be carefully considered when calculating this minimum rate. Terminal boxes with conventional control sequences may result in occupant discomfort and energy waste. If the minimum rate of airflow is set too high, the AHUs will consume excess fan power, and the terminal boxes may cause significant simultaneous room heating and cooling. At the same time, a rate that is too low will result in poor air circulation and indoor air quality in the air-conditioned space. Currently, many scholars are investigating how to change the algorithm of the advanced VAV terminal box controller without retrofitting. Some of these controllers have been found to effectively improve thermal comfort, indoor air quality, and energy efficiency. However, minimum airflow set points have not yet been identified, nor has controller performance been verified in confirmed studies. In this study, control algorithms were developed that automatically identify and reset terminal box minimum airflow set points, thereby improving indoor air quality and thermal comfort levels, and reducing the overall rate of energy consumption. A theoretical analysis of the optimal minimum airflow and discharge air temperature was performed to identify the potential energy benefits of resetting the terminal box minimum airflow set points. Applicable control algorithms for calculating the ideal values for the minimum airflow reset were developed and applied to actual systems for performance validation. The results of the theoretical analysis, numeric simulations, and experiments show that the optimal control algorithms can automatically identify the minimum rate of heating airflow under actual working conditions. Improved control helps to stabilize room air temperatures. The vertical difference in the room air temperature was lower than the comfort value. Measurements of room CO2 levels indicate that when the minimum airflow set point was reduced it did not adversely affect the indoor air quality. According to the measured energy results, optimal control algorithms give a lower rate of reheating energy consumption than conventional controls.
Mapping Topoclimate and Microclimate in the Monarch Butterfly Biosphere Reserve, Mexico
NASA Astrophysics Data System (ADS)
Weiss, S. B.
2006-12-01
Overwintering monarch butterflies in Mexico select areas of the high elevation Oyamel fir -pine forest providing a canopy that protects them from extremes of cold, heat, sun, and wind. These exacting microclimatic conditions are found in relatively small areas of forest with appropriate topography and canopy cover. The major goal of this investigation is to map topoclimatic and microclimatic conditions within the Monarch Butterfly Biosphere Reserve by combining temperature monitoring (iButton Thermochrons), hemispherical canopy photography, multiple regression, and GIS modeling. Temperature measurements included base weather stations and arrays of Thermochrons (on the north-side of trees at 2m height) across local topographic and canopy cover gradients. Topoclimatic models of minimum temperatures included topographic position, slope, and elevation, and predicted that thermal belts on slopes and cold air drainage into canyons create local minimum temperature gradients of 2°C. Topoclimatic models of maximum temperatures models included elevation, topographic position, and relative solar exposure, with local gradients of 3°C. These models, which are independent of forest canopy structure, were then projected across the entire region. Forest canopy structure, including direct and diffuse solar radiation, was assessed with hemispherical photography at each Thermochron site. Canopy cover affected minimum temperatures primarily on the calmest, coldest nights. Maximum temperatures were predicted by direct radiation below the canopy. Fine- scale grids (25 m spacing) at three overwintering sites characterized effects of canopy gaps and edges on temperature and wind exposure. The effects of temperature variation were considered for lipid loss rates, ability to take flight, and freezing mortality. Lipid loss rates were estimated by measured hourly temperatures. Many of the closed canopy sites allowed for substantial lipid reserves at the end of the season (March 15), but increases in average temperature could effectively deplete lipids by that time. The large influence of canopy cover on daytime maximum temperatures demonstrates that forest thinning directly reduces habitat suitability. Monarchs' flight behavior under warmer conditions suggests that daytime temperatures drive the dynamics of monarch distribution within colonies. Thinning also decreases nighttime minimum temperatures, and increases wind exposure. These results create a basis for quantitative understanding of the combinations of topography and forest structure that provide high quality overwintering habitat.
NASA Astrophysics Data System (ADS)
Olson, L.; Pogue, K. R.; Bader, N.
2012-12-01
The Columbia Basin of Washington and Oregon is one of the most productive grape-growing areas in the United States. Wines produced in this region are influenced by their terroir - the amalgamation of physical and cultural elements that influence grapes grown at a particular vineyard site. Of the physical factors, climate, and in particular air temperature, has been recognized as a primary influence on viticulture. Air temperature directly affects ripening in the grapes. Proper fruit ripening, which requires precise and balanced levels of acid and sugar, and the accumulation of pigment in the grape skin, directly correlates with the quality of wine produced. Many features control air temperature within a particular vineyard. Elevation, latitude, slope, and aspect all converge to form complex relationships with air temperatures; however, the relative degree to which these attributes affect temperatures varies between regions and is not well understood. This study examines the influence of geography and geomorphology on air temperatures within the American Viticultural Areas (AVAs) of the Columbia Basin in eastern Washington and Oregon. The premier vineyards within each AVA, which have been recognized for producing high-quality wine, were equipped with air temperature monitoring stations that collected hourly temperature measurements. A variety of temperature statistics were calculated, including daily average, maximum, and minimum temperatures. From these values, average diurnal variation and growing degree-days (10°C) were calculated. A variety of other statistics were computed, including date of first and last frost and time spent below a minimum temperature threshold. These parameters were compared to the vineyard's elevation, latitude, slope, aspect, and local topography using GPS, ArcCatalog, and GIS in an attempt to determine their relative influences on air temperatures. From these statistics, it was possible to delineate two trends of temperature variation controlled by elevation. In some AVAs, such as Walla Walla Valley and Red Mountain, average air temperatures increased with elevation because of the effect of cold air pooling on valley floors. In other AVAs, such as Horse Heaven Hills, Lake Chelan and Columbia Gorge, average temperatures decreased with elevation due to the moderating influences of the Columbia River and Lake Chelan. Other temperature statistics, including average diurnal range and maximum and minimum temperature, were influenced by relative topography, including local topography and slope. Vineyards with flat slopes that had low elevations relative to their surroundings had larger diurnal variations and lower maximum and minimum temperatures than vineyards with steeper slopes that were high relative to their surroundings.
Filament cooling and condensation in a sheared magnetic field
NASA Technical Reports Server (NTRS)
Van Hoven, Gerard
1990-01-01
Thermal instability driven by optically thin radiation in the corona is believed to initiate the formation of solar filaments. The fact that filaments are observed generally to separate regions of opposite, line-of-sight, magnetic polarity in the differentially rotating photosphere suggests that filament formation requires the presence of a highly sheared magnetic field. The coupled energetics and dynamics of the most important condensation modes, those due to perpendicular thermal conduction at short wavelengths are discussed. Linear structure in the sheared field and their growth rates is described, and 2D, nonlinear, MHD simulations of the evolution of these modes in a force-free field are conducted. The simulations achieve the fine thermal structures, minimum temperatures and maximum densities characteristic of observed solar filaments.
40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...
40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?
Code of Federal Regulations, 2010 CFR
2010-07-01
... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...
40 CFR 63.5725 - What are the requirements for monitoring and demonstrating continuous compliance?
Code of Federal Regulations, 2011 CFR
2011-07-01
... temperature monitoring device. (i) Locate the temperature sensor in a position that provides a representative temperature. (ii) Use a temperature sensor with a minimum tolerance of 2.2 °C or 0.75 percent of the temperature value, whichever is larger. (iii) Shield the temperature sensor system from electromagnetic...
Space shuttle main engine: Interactive design challenges
NASA Technical Reports Server (NTRS)
Mccarty, J. P.; Wood, B. K.
1985-01-01
The operating requirements established by NASA for the SSME were considerably more demanding than those for earlier rocket engines used in the military launch vehicles or Apollo program. The SSME, in order to achieve the high performance, low weight, long life, reusable objectives, embodied technical demands far in excess of its predecessor rocket engines. The requirements dictated the use of high combustion pressure and the staged combustion cycle which maximizes performance through total use of all propellants in the main combustion process. This approach presented a myriad of technical challenges for maximization of performance within attainable state of the art capabilities for operating pressures, operating temperatures and rotating machinery efficiencies. Controlling uniformity of the high pressure turbomachinery turbine temperature environment was a key challenge for thrust level and life capability demanding innovative engineering. New approaches in the design of the components were necessary to accommodate the multiple use, minimum maintenance objectives. Included were the use of line replaceable units to facilitate field maintenance automatic checkout and internal inspection capabilities.
Microstructural analysis of Ti/Al/Ti/Au ohmic contacts to n-AlGaN/GaN
NASA Astrophysics Data System (ADS)
Chen, J.; Ivey, D. G.; Bardwell, J.; Liu, Y.; Tang, H.; Webb, J. B.
2002-05-01
To develop high quality AlGaN/GaN heterostructure field effect transistors for use in high power, high frequency, and high temperature applications, low resistance, thermal stable ohmic contacts with good surface morphology are essential. Low specific contact resistances have been achieved using an Au/Ti/Al/Ti contact: a minimum value of 6.33×10-6 Ω cm2 was attained after annealing at 700 °C for 30 s. Microstructural analysis using transmission electron microscopy indicated that there is significant interaction between the metallization components and the semiconductor during annealing. The optimum electrical properties correspond to a microstructure that consists of Au2Ti and TiAl layers as well as of a thin Ti-rich layer (~10 nm thick) at the metallization/AlGaN interface. Degradation of the contact occurred for annealing temperatures in excess of 750 °C, and was accompanied by decomposition of the AlGaN layer and formation of a Au-Ti-Al-Ga quaternary phase.
Process optimization of an auger pyrolyzer with heat carrier using response surface methodology.
Brown, J N; Brown, R C
2012-01-01
A 1 kg/h auger reactor utilizing mechanical mixing of steel shot heat carrier was used to pyrolyze red oak wood biomass. Response surface methodology was employed using a circumscribed central composite design of experiments to optimize the system. Factors investigated were: heat carrier inlet temperature and mass flow rate, rotational speed of screws in the reactor, and volumetric flow rate of sweep gas. Conditions for maximum bio-oil and minimum char yields were high flow rate of sweep gas (3.5 standard L/min), high heat carrier temperature (∼600 °C), high auger speeds (63 RPM) and high heat carrier mass flow rates (18 kg/h). Regression models for bio-oil and char yields are described including identification of a novel interaction effect between heat carrier mass flow rate and auger speed. Results suggest that auger reactors, which are rarely described in literature, are well suited for bio-oil production. The reactor achieved liquid yields greater than 73 wt.%. Copyright © 2011 Elsevier Ltd. All rights reserved.
Visible-light vertical-cavity surface-emitting lasers grown by solid-source molecular beam epitaxy
NASA Astrophysics Data System (ADS)
Saarinen, Mika J.; Xiang, Ning; Dumitrescu, Mihail M.; Vilokkinen, Ville; Melanen, Petri; Orsila, Seppo; Uusimaa, Petteri; Savolainen, Pekka; Pessa, Markus
2001-05-01
Visible vertical-cavity surface-emitting lasers (VCSELs) are potential light sources for polymer optical fibre (POF) data transmission systems. Minimum attenuation of light in standard PMMA-POFs occurs at about 650 nm. For POFs of a few tens of meters in length VCSELs at slightly longer wavelengths (670 - 690 nm) are also acceptable. So far, the visible VCSELs have been grown by metal organic chemical vapour deposition (MOCVD). They may also be grown by a novel variant of molecular beam epitaxy (MBE), a so-called all-solid-source MBE or SSMBE. In this paper, we describe growth of the first visible-light VCSELs by SSMBE and present the main results obtained. In particular, we have achieved lasing action at a sub-milliamp cw drive current for a VCSEL having the emission window of 8um in diameter, while a 10um device exhibited an external quantum efficiency of 6.65% in CW operation at room temperature. The lasing action up to temperature of 45°C has been demonstrated.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Applications—Minimum Requirements for Reclamation and Operation Plan, shall apply to any person who makes... for an underground mining permit shall also indicate how compliance will be achieved with the Washington Water Pollution Control Act, RCW 90.48. ...
Excellence through Minimum Essentials and Individual Development.
ERIC Educational Resources Information Center
Alexander, William M.
1986-01-01
The author states that throughout the past century or more, especially during the twentieth century, the continuing conflict between proponents of the minimum essentials approach to curriculum excellence and those of the individual development approach has been an obstacle to the achievement of excellence. (CT)
Minimum weight passive insulation requirements for hypersonic cruise vehicles.
NASA Technical Reports Server (NTRS)
Ardema, M. D.
1972-01-01
Analytical solutions are derived for two representative cases of the transient heat conduction equation to determine the minimum weight requirements for passive insulation systems of hypersonic cruise vehicles. The cases discussed are the wet wall case with the interior wall temperature held to that of the boiling point of the fuel throughout the flight, and the dry wall case where the heat transferred through the insulation is absorbed by the interior structure whose temperature is allowed to rise.
NASA Astrophysics Data System (ADS)
Bian, Tao; Ren, Guoyu
2017-11-01
Based on a homogenized data set of monthly mean temperature, minimum temperature, and maximum temperature at Shijiazhuang City Meteorological Station (Shijiazhuang station) and four rural meteorological stations selected applying a more sophisticated methodology, we reanalyzed the urbanization effects on annual, seasonal, and monthly mean surface air temperature (SAT) trends for updated time period 1960-2012 at the typical urban station in North China. The results showed that (1) urbanization effects on the long-term trends of annual mean SAT, minimum SAT, and diurnal temperature range (DTR) in the last 53 years reached 0.25, 0.47, and - 0.50 °C/decade, respectively, all statistically significant at the 0.001 confidence level, with the contributions from urbanization effects to the overall long-term trends reaching 67.8, 78.6, and 100%, respectively; (2) the urbanization effects on the trends of seasonal mean SAT, minimum SAT, and DTR were also large and statistically highly significant. Except for November and December, the urbanization effects on monthly mean SAT, minimum SAT, and DTR were also all statistically significant at the 0.05 confidence level; and (3) the annual, seasonal, and monthly mean maximum SAT series at the urban station registered a generally weaker and non-significant urbanization effect. The updated analysis evidenced that our previous work for this same urban station had underestimated the urbanization effect and its contribution to the overall changes in the SAT series. Many similar urban stations were being included in the current national and regional SAT data sets, and the results of this paper further indicated the importance and urgency for paying more attention to the urbanization bias in the monitoring and detection of global and regional SAT change based on the data sets.
Temperature Trends in the White Mountains of New Hampshire
NASA Astrophysics Data System (ADS)
Murray, G.; Kelsey, E. P.; Raudzens Bailey, A.
2014-12-01
Located at the summit of Mount Washington (1917 m asl; ~800 hPa), the highest peak in the northeastern United States, the Mount Washington Observatory has meticulously recorded hourly temperature, humidity, cloud-cover, and other atmospheric variables for over 80 years using the same standard procedures to ensure high-quality, homogeneous data. Nearby Hubbard Brook Experimental Forest (253 m asl; ~980 hPa), a Long-Term Ecological Research site, has recorded atmospheric and environmental data since 1956. Together, these two sites provide a unique opportunity to evaluate elevation-dependent climate changes. Using Sen's slope and the Mann Kendall non-parameteric test we examine annual and seasonal trends in minimum, maximum, and mean temperatures. Both Mount Washington and Hubbard Brook exhibit 56-yr warming trends for most seasons, however, the magnitudes and statistical significances are variable, suggesting the processes controlling these trends likely differ with elevation. Since 1957, for instance, spring maximum temperatures at Hubbard Brook have warmed 0.32 °C dec-1 and winter minimums have increased 0.54 °C dec-1, both well within the range reported for six neighboring low elevation stations from 1970-2012 (Wake et al, 2014a,b). In comparison, Mount Washington summit seasonal minimum temperature trends are typically weaker, with changes in winter minimums (the largest of the seasons) reaching only 0.33 °C dec-1. In this presentation, we highlight differences between these two long-term records and discuss possible role of moist processes and boundary layer/free troposphere exposure in causing their divergence. Authors are planning to study the effects of humidity and cloud-cover on summit temperatures and to investigate how changes in the frequency with which the summit is exposed to boundary layer and free tropospheric air masses influences these relationships.
40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...
40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...
40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...
40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...
40 CFR 63.8688 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... following: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum measurement sensitivity... output; or (iii) By comparing the sensor output to the output from a calibrated temperature measurement...
NASA Astrophysics Data System (ADS)
Chakraborty, Abhishek; Seshasai, M. V. R.; Rao, S. V. C. Kameswara; Dadhwal, V. K.
2017-10-01
Daily gridded (1°×1°) temperature data (1969-2005) were used to detect spatial patterns of temporal trends of maximum and minimum temperature (monthly and seasonal), growing degree days (GDDs) over the crop-growing season ( kharif, rabi, and zaid) and annual frequencies of temperature extremes over India. The direction and magnitude of trends, at each grid level, were estimated using the Mann-Kendall statistics ( α = 0.05) and further assessed at the homogeneous temperature regions using a field significance test ( α=0.05). General warming trends were observed over India with considerable variations in direction and magnitude over space and time. The spatial extent and the magnitude of the increasing trends of minimum temperature (0.02-0.04 °C year-1) were found to be higher than that of maximum temperature (0.01-0.02 °C year-1) during winter and pre-monsoon seasons. Significant negative trends of minimum temperature were found over eastern India during the monsoon months. Such trends were also observed for the maximum temperature over northern and eastern parts, particularly in the winter month of January. The general warming patterns also changed the thermal environment of the crop-growing season causing significant increase in GDDs during kharif and rabi seasons across India. The warming climate has also caused significant increase in occurrences of hot extremes such as hot days and hot nights, and significant decrease in cold extremes such as cold days and cold nights.
Stream-temperature patterns of the Muddy Creek basin, Anne Arundel County, Maryland
Pluhowski, E.J.
1981-01-01
Using a water-balance equation based on a 4.25-year gaging-station record on North Fork Muddy Creek, the following mean annual values were obtained for the Muddy Creek basin: precipitation, 49.0 inches; evapotranspiration, 28.0 inches; runoff, 18.5 inches; and underflow, 2.5 inches. Average freshwater outflow from the Muddy Creek basin to the Rhode River estuary was 12.2 cfs during the period October 1, 1971, to December 31, 1975. Harmonic equations were used to describe seasonal maximum and minimum stream-temperature patterns at 12 sites in the basin. These equations were fitted to continuous water-temperature data obtained periodically at each site between November 1970 and June 1978. The harmonic equations explain at least 78 percent of the variance in maximum stream temperatures and 81 percent of the variance in minimum temperatures. Standard errors of estimate averaged 2.3C (Celsius) for daily maximum water temperatures and 2.1C for daily minimum temperatures. Mean annual water temperatures developed for a 5.4-year base period ranged from 11.9C at Muddy Creek to 13.1C at Many Fork Branch. The largest variations in stream temperatures were detected at thermograph sites below ponded reaches and where forest coverage was sparse or missing. At most sites the largest variations in daily water temperatures were recorded in April whereas the smallest were in September and October. The low thermal inertia of streams in the Muddy Creek basin tends to amplify the impact of surface energy-exchange processes on short-period stream-temperature patterns. Thus, in response to meteorologic events, wide ranging stream-temperature perturbations of as much as 6C have been documented in the basin. (USGS)
NASA Astrophysics Data System (ADS)
Lobit, P.; Gómez Tagle, A.; Bautista, F.; Lhomme, J. P.
2017-07-01
We evaluated two methods to estimate evapotranspiration (ETo) from minimal weather records (daily maximum and minimum temperatures) in Mexico: a modified reduced set FAO-Penman-Monteith method (Allen et al. 1998, Rome, Italy) and the Hargreaves and Samani (Appl Eng Agric 1(2): 96-99, 1985) method. In the reduced set method, the FAO-Penman-Monteith equation was applied with vapor pressure and radiation estimated from temperature data using two new models (see first and second articles in this series): mean temperature as the average of maximum and minimum temperature corrected for a constant bias and constant wind speed. The Hargreaves-Samani method combines two empirical relationships: one between diurnal temperature range ΔT and shortwave radiation Rs, and another one between average temperature and the ratio ETo/Rs: both relationships were evaluated and calibrated for Mexico. After performing a sensitivity analysis to evaluate the impact of different approximations on the estimation of Rs and ETo, several model combinations were tested to predict ETo from daily maximum and minimum temperature alone. The quality of fit of these models was evaluated on 786 weather stations covering most of the territory of Mexico. The best method was found to be a combination of the FAO-Penman-Monteith reduced set equation with the new radiation estimation and vapor pressure model. As an alternative, a recalibration of the Hargreaves-Samani equation is proposed.
Zhang, Xu; Jin, Weiqi; Li, Jiakun; Wang, Xia; Li, Shuo
2017-04-01
Thermal imaging technology is an effective means of detecting hazardous gas leaks. Much attention has been paid to evaluation of the performance of gas leak infrared imaging detection systems due to several potential applications. The minimum resolvable temperature difference (MRTD) and the minimum detectable temperature difference (MDTD) are commonly used as the main indicators of thermal imaging system performance. This paper establishes a minimum detectable gas concentration (MDGC) performance evaluation model based on the definition and derivation of MDTD. We proposed the direct calculation and equivalent calculation method of MDGC based on the MDTD measurement system. We build an experimental MDGC measurement system, which indicates the MDGC model can describe the detection performance of a thermal imaging system to typical gases. The direct calculation, equivalent calculation, and direct measurement results are consistent. The MDGC and the minimum resolvable gas concentration (MRGC) model can effectively describe the performance of "detection" and "spatial detail resolution" of thermal imaging systems to gas leak, respectively, and constitute the main performance indicators of gas leak detection systems.
Zhu, Hongjun; Feng, Guang; Wang, Qijun
2014-01-01
Accurate prediction of erosion thickness is essential for pipe engineering. The objective of the present paper is to study the temperature distribution in an eroded bend pipe and find a new method to predict the erosion reduced thickness. Computational fluid dynamic (CFD) simulations with FLUENT software are carried out to investigate the temperature field. And effects of oil inlet rate, oil inlet temperature, and erosion reduced thickness are examined. The presence of erosion pit brings about the obvious fluctuation of temperature drop along the extrados of bend. And the minimum temperature drop presents at the most severe erosion point. Small inlet temperature or large inlet velocity can lead to small temperature drop, while shallow erosion pit causes great temperature drop. The dimensionless minimum temperature drop is analyzed and the fitting formula is obtained. Using the formula we can calculate the erosion reduced thickness, which is only needed to monitor the outer surface temperature of bend pipe. This new method can provide useful guidance for pipeline monitoring and replacement. PMID:24719576
Meteorological variables and bacillary dysentery cases in Changsha City, China.
Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Zhou, Maigeng; Li, Xiujun; Jiang, Baofa
2014-04-01
This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature.
Meteorological Variables and Bacillary Dysentery Cases in Changsha City, China
Gao, Lu; Zhang, Ying; Ding, Guoyong; Liu, Qiyong; Zhou, Maigeng; Li, Xiujun; Jiang, Baofa
2014-01-01
This study aimed to investigate the association between meteorological-related risk factors and bacillary dysentery in a subtropical inland Chinese area: Changsha City. The cross-correlation analysis and the Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX) model were used to quantify the relationship between meteorological factors and the incidence of bacillary dysentery. Monthly mean temperature, mean relative humidity, mean air pressure, mean maximum temperature, and mean minimum temperature were significantly correlated with the number of bacillary dysentery cases with a 1-month lagged effect. The ARIMAX models suggested that a 1°C rise in mean temperature, mean maximum temperature, and mean minimum temperature might lead to 14.8%, 12.9%, and 15.5% increases in the incidence of bacillary dysentery disease, respectively. Temperature could be used as a forecast factor for the increase of bacillary dysentery in Changsha. More public health actions should be taken to prevent the increase of bacillary dysentery disease with consideration of local climate conditions, especially temperature. PMID:24591435
3D thermal model of laser surface glazing for H13 tool steel
NASA Astrophysics Data System (ADS)
Kabir, I. R.; Yin, D.; Naher, S.
2017-10-01
In this work a three dimensional (3D) finite element model of laser surface glazing (LSG) process has been developed. The purpose of the 3D thermal model of LSG was to achieve maximum accuracy towards the predicted outcome for optimizing the process. A cylindrical geometry of 10mm diameter and 1mm length was used in ANSYS 15 software. Temperature distribution, depth of modified zone and cooling rates were analysed from the thermal model. Parametric study was carried out varying the laser power from 200W-300W with constant beam diameter and residence time which were 0.2mm and 0.15ms respectively. The maximum surface temperature 2554°K was obtained for power 300W and minimum surface temperature 1668°K for power 200W. Heating and cooling rates increased with increasing laser power. The depth of the laser modified zone attained for 300W power was 37.5µm and for 200W power was 30µm. No molten zone was observed at 200W power. Maximum surface temperatures obtained from 3D model increased 4% than 2D model presented in author's previous work. In order to verify simulation results an analytical solution of temperature distribution for laser surface modification was used. The surface temperature after heating was calculated for similar laser parameters which is 1689°K. The difference in maximum surface temperature is around 20.7°K between analytical and numerical analysis of LSG for power 200W.
NASA Astrophysics Data System (ADS)
Kuzera, Kristopher
The scientific community has widely accepted that climate plays a key role in the sustainability and transmission of many infectious diseases. Global climate change can potentially trigger the spread of disease into new regions and increase the intensity of disease in regions where it is endemic. This study explores the association between monthly conditions of climate change to changes in disease risk, emphasizing the potential spread of dengue fever due to climate change in Thailand. This study also develops techniques new to GIS and remote sensing that generate surfaces of daily minimum temperature toward identifying areas at greater transmission risk. Dengue fever expansion due to global warming is a serious concern for Thailand where warming temperatures may increase the size of the habitat of the disease-spreading vector, Aedes aegypti, particularly during cooler months when transmission is limited by environmental conditions. In this study, first, the association between past dengue hemorrhagic fever (DHF) and climate in Thailand is determined. Second, evidence of recent climate change is related to changes in DHF rates. Third, daily minimum temperature is derived from remote sensing toward identifying the spatial and temporal limitations of potential transmission risk. The results indicate that minimum temperature has recently experienced a rapid increase, particularly in the winter months when transmission is low. This is associated with a recent rise in winter DHF cases. As increasing minimum temperatures in these regions are anticipated to continue, we can expect dengue transmission rates to also increase throughout the year.
Uncertainties in observations and climate projections for the North East India
NASA Astrophysics Data System (ADS)
Soraisam, Bidyabati; Karumuri, Ashok; D. S., Pai
2018-01-01
The Northeast-India has undergone many changes in climatic-vegetation related issues in the last few decades due to increased human activities. However, lack of observations makes it difficult to ascertain the climate change. The study involves the mean, seasonal cycle, trend and extreme-month analysis for summer-monsoon and winter seasons of observed climate data from Indian Meteorological Department (1° × 1°) and Aphrodite & CRU-reanalysis (both 0.5° × 0.5°), and five regional-climate-model simulations (LMDZ, MPI, GFDL, CNRM and ACCESS) data from AR5/CORDEX-South-Asia (0.5° × 0.5°). Long-term (1970-2005) observed, minimum and maximum monthly temperature and precipitation, and the corresponding CORDEX-South-Asia data for historical (1970-2005) and future-projections of RCP4.5 (2011-2060) have been analyzed for long-term trends. A large spread is found across the models in spatial distributions of various mean maximum/minimum climate statistics, though models capture a similar trend in the corresponding area-averaged seasonal cycles qualitatively. Our observational analysis broadly suggests that there is no significant trend in rainfall. Significant trends are observed in the area-averaged minimum temperature during winter. All the CORDEX-South-Asia simulations for the future project either a decreasing insignificant trend in seasonal precipitation, but increasing trend for both seasonal maximum and minimum temperature over the northeast India. The frequency of extreme monthly maximum and minimum temperature are projected to increase. It is not clear from future projections how the extreme rainfall months during JJAS may change. The results show the uncertainty exists in the CORDEX-South-Asia model projections over the region in spite of the relatively high resolution.
Than, Leslie Thian Lung; Chong, Pei Pei; Ng, Kee Peng; Seow, Heng Fong
2015-01-01
The number of invasive candidiasis cases has risen especially with an increase in the number of immunosuppressed and immunocom promised patients. The early detection of Candida species which is specific and sensitive is important in determining the correct administration of antifungal drugs to patients. This study aims to develop a method for the detection, identification and quantitation of medically important Candida species through quantitative polymerase chain reaction (qPCR). The isocitrate lyase (ICL) gene which is not found in mammals was chosen as the target gene of real-time PCR. Absolute quantitation of the gene copy number was achieved by constructing the plasmid containing the ICL gene which is used to generate standard curve. Twenty fungal species, two bacterial species and human DNA were tested to check the specificity of the detection method. All eight Candida species were successfully detected, identified and quantitated based on the ICL gene. A seven-log range of the gene copy number and a minimum detection limit of 10(3) copies were achieved. A one-tube absolute quantification real-time PCR that differentiates medically important Candida species via individual unique melting temperature was achieved. Analytical sensitivity and specificity were not compromised.
Zhang, Qi; Li, Wei; Lin, Da-Chao; He, Ning; Duan, Yun
2011-01-30
The aim of this paper is to provide new experimental data of the minimum ignition energy (MIE) of gaseous nitromethane/air mixtures to discuss the explosion pressure and the flame temperature as a function of nitromethane concentration. Observations on the influence of nitromethane concentration on combustion pressure and temperature through the pressure and temperature measure system show that peak temperature (the peak of combustion temperature wave) is always behind peak pressure (the peak of the combustion pressure wave) in arrival time, the peak combustion pressure of nitromethane increases in the range of its volume fraction 10-40% as the concentration of nitromethane increases, and it slightly decreases in the range of 40-50%. The maximum peak pressure is equal to 0.94 MPa and the minimum peak pressure 0.58 MPa. Somewhat similar to the peak pressure, the peak combustion temperature increases with the volume fraction of nitromethane in the range of 10-40%, and slightly decreases in 40-50%. The maximum peak temperature is 1340 °C and the minimum 860 °C. The combustion temperature rise rate increases with the concentration of nitromethane in 10-30%, while decreases in 30-50% and its maximum value of combustion temperature rise rate in 10-50% is 4200 °C/s at the volume fraction of 30%. Influence of the concentration of nitromethane on the combustion pressure rise rate is relatively complicated, and the maximum value of rise rate of combustion pressure wave in 10-50% is 11 MPa/s at the concentration 20%. Copyright © 2010 Elsevier B.V. All rights reserved.
Welch, Jarrod R.; Vincent, Jeffrey R.; Auffhammer, Maximilian; Moya, Piedad F.; Dobermann, Achim; Dawe, David
2010-01-01
Data from farmer-managed fields have not been used previously to disentangle the impacts of daily minimum and maximum temperatures and solar radiation on rice yields in tropical/subtropical Asia. We used a multiple regression model to analyze data from 227 intensively managed irrigated rice farms in six important rice-producing countries. The farm-level detail, observed over multiple growing seasons, enabled us to construct farm-specific weather variables, control for unobserved factors that either were unique to each farm but did not vary over time or were common to all farms at a given site but varied by season and year, and obtain more precise estimates by including farm- and site-specific economic variables. Temperature and radiation had statistically significant impacts during both the vegetative and ripening phases of the rice plant. Higher minimum temperature reduced yield, whereas higher maximum temperature raised it; radiation impact varied by growth phase. Combined, these effects imply that yield at most sites would have grown more rapidly during the high-yielding season but less rapidly during the low-yielding season if observed temperature and radiation trends at the end of the 20th century had not occurred, with temperature trends being more influential. Looking ahead, they imply a net negative impact on yield from moderate warming in coming decades. Beyond that, the impact would likely become more negative, because prior research indicates that the impact of maximum temperature becomes negative at higher levels. Diurnal temperature variation must be considered when investigating the impacts of climate change on irrigated rice in Asia. PMID:20696908
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1978-10-03
This report is a six-part statistical summary of surface weather observations for Torrejon AB, Madrid Spain. It contains the following parts: (A) Weather Conditions; Atmospheric Phenomena; (B) Precipitation, Snowfall and Snow Depth (daily amounts and extreme values); (C) Surface winds; (D) Ceiling Versus Visibility; Sky Cover; (E) Psychrometric Summaries (daily maximum and minimum temperatures, extreme maximum and minimum temperatures, psychrometric summary of wet-bulb temperature depression versus dry-bulb temperature, means and standard deviations of dry-bulb, wet-bulb and dew-point temperatures and relative humidity); and (F) Pressure Summary (means, standard, deviations, and observation counts of station pressure and sea-level pressure). Data in thismore » report are presented in tabular form, in most cases in percentage frequency of occurrence or cumulative percentage frequency of occurrence tables.« less
NASA Astrophysics Data System (ADS)
Chang, Ho-Myung; Lim, Hye Su; Choe, Kun Hyung
2012-12-01
A thermodynamic study is carried out to investigate the effect of multi-stream heat exchanger on the performance of natural gas (NG) liquefaction with mixed refrigerant (MR). A cold stream (low-pressure MR) is in thermal contact with opposite flow of two hot streams (high-pressure MR and NG feed) at the same time. In typical process simulation with commercial software (such as Aspen HYSYS®), the liquefaction performance is estimated with a method of minimum temperature approach, simply assuming that two hot streams have the same temperature. In this study, local energy balance equations are rigorously solved with temperature-dependent properties of MR and NG feed, and are linked to the thermodynamic cycle analysis. The figure of merit (FOM) is quantitatively examined in terms of UA (the product of overall heat transfer coefficient and heat exchange area) between respective streams. In a single-stage MR process, it is concluded that the temperature profile from HYSYS is difficult to realize in practice, and the FOM value from HYSYS is an over-estimate, but can be closely achieved with a proper heat-exchanger design. It is also demonstrated that there exists a unique optimal ratio in three UA's, and no direct heat exchanger between hot streams is recommended.
Selective removal of heavy metals from metal-bearing wastewater in a cascade line reactor.
Pavlović, Jelena; Stopić, Srećko; Friedrich, Bernd; Kamberović, Zeljko
2007-11-01
This paper is a part of the research work on 'Integrated treatment of industrial wastes towards prevention of regional water resources contamination - INTREAT' the project. It addresses the environmental pollution problems associated with solid and liquid waste/effluents produced by sulfide ore mining and metallurgical activities in the Copper Mining and Smelting Complex Bor (RTB-BOR), Serbia. However, since the minimum solubility for the different metals usually found in the polluted water occurs at different pH values and the hydroxide precipitates are amphoteric in nature, selective removal of mixed metals could be achieved as the multiple stage precipitation. For this reason, acid mine water had to be treated in multiple stages in a continuous precipitation system-cascade line reactor. All experiments were performed using synthetic metal-bearing effluent with chemical a composition similar to the effluent from open pit, Copper Mining and Smelting Complex Bor (RTB-BOR). That effluent is characterized by low pH (1.78) due to the content of sulfuric acid and heavy metals, such as Cu, Fe, Ni, Mn, Zn with concentrations of 76.680, 26.130, 0.113, 11.490, 1.020 mg/dm3, respectively. The cascade line reactor is equipped with the following components: for feeding of effluents, for injection of the precipitation agent, for pH measurements and control, and for removal of the process gases. The precipitation agent was 1M NaOH. In each of the three reactors, a changing of pH and temperature was observed. In order to verify. efficiency of heavy metals removal, chemical analyses of samples taken at different pH was done using AES-ICP. Consumption of NaOH in reactors was 370 cm3, 40 cm3 and 80 cm3, respectively. Total time of the experiment was 4 h including feeding of the first reactor. The time necessary to achieve the defined pH value was 25 min for the first reactor and 13 min for both second and third reactors. Taking into account the complete process in the cascade line reactor, the difference between maximum and minimum temperature was as low as 6 degrees C. The quantity of solid residue in reactors respectively was 0.62 g, 2.05 g and 3.91 g. In the case of copper, minimum achieved concentration was 0.62 mg/dm3 at pH = 10.4. At pH = 4.50 content of iron has rapidly decreased to < 0.1 mg/dm3 and maintained constant at all higher pH values. That means that precipitation has already ended at pH=4.5 and maximum efficiency of iron removal was 99.53%. The concentration of manganese was minimum at pH value of 11.0. Minimum obtained concentration of Zn was 2.18 mg/dm3 at a pH value of 11. If pH value is higher than 11, Zn can be re-dissolved. The maximum efficiency of Ni removal reached 76.30% at a pH value of 10.4. Obtained results show that efficiency of copper, iron and manganese removal is very satisfactory (higher than 90%). The obtained efficiency of Zn and Ni removal is lower (72.30% and 76.31%, respectively). The treated effluent met discharge water standard according to The Council Directive 76/464/EEC on pollution caused by certain dangerous substances into the aquatic environment of the Community. Maximum changing of temperature during the whole process was 6 degrees C. This technology, which was based on inducing chemical precipitation of heavy metals is viable for selective removal of heavy metals from metal-bearing effluents in three reactor systems in a cascade line. The worldwide increasing concern for the environment and guidelines regarding effluent discharge make their treatment necessary for safe discharge in water receivers. In the case where the effluents contain valuable metals, there is also an additional economic interest to recover these metals and to recycle them as secondary raw materials in different production routes.
40 CFR 63.11563 - What are my monitoring requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... and the following requirements: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum... procedures in the manufacturer's documentation; or (ii) By comparing the sensor output to redundant sensor...
40 CFR 63.11563 - What are my monitoring requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... and the following requirements: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum... procedures in the manufacturer's documentation; or (ii) By comparing the sensor output to redundant sensor...
40 CFR 63.11563 - What are my monitoring requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
... and the following requirements: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum... procedures in the manufacturer's documentation; or (ii) By comparing the sensor output to redundant sensor...
40 CFR 63.11563 - What are my monitoring requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
... and the following requirements: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum... procedures in the manufacturer's documentation; or (ii) By comparing the sensor output to redundant sensor...
40 CFR 63.11563 - What are my monitoring requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... and the following requirements: (1) Locate the temperature sensor in a position that provides a representative temperature. (2) For a noncryogenic temperature range, use a temperature sensor with a minimum... procedures in the manufacturer's documentation; or (ii) By comparing the sensor output to redundant sensor...
46 CFR 148.51 - Temperature readings.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 5 2014-10-01 2014-10-01 false Temperature readings. 148.51 Section 148.51 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.51 Temperature readings. When Subpart D of this part sets a temperature limit for loading or transporting a material, apply the...
46 CFR 148.51 - Temperature readings.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 5 2011-10-01 2011-10-01 false Temperature readings. 148.51 Section 148.51 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.51 Temperature readings. When Subpart D of this part sets a temperature limit for loading or transporting a material, apply the...
46 CFR 148.51 - Temperature readings.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 5 2013-10-01 2013-10-01 false Temperature readings. 148.51 Section 148.51 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.51 Temperature readings. When Subpart D of this part sets a temperature limit for loading or transporting a material, apply the...
46 CFR 148.51 - Temperature readings.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 46 Shipping 5 2012-10-01 2012-10-01 false Temperature readings. 148.51 Section 148.51 Shipping... MATERIALS THAT REQUIRE SPECIAL HANDLING Minimum Transportation Requirements § 148.51 Temperature readings. When Subpart D of this part sets a temperature limit for loading or transporting a material, apply the...
40 CFR 63.2269 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Locate the temperature sensor in a position that provides a representative temperature. (2) Use a temperature sensor with a minimum accuracy of 4 °F or 0.75 percent of the temperature value, whichever is... manufacturer's owners manual. Following the electronic calibration, you must conduct a temperature sensor...
40 CFR 63.2269 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Locate the temperature sensor in a position that provides a representative temperature. (2) Use a temperature sensor with a minimum accuracy of 4 °F or 0.75 percent of the temperature value, whichever is... manufacturer's owners manual. Following the electronic calibration, you must conduct a temperature sensor...
40 CFR 63.2269 - What are my monitoring installation, operation, and maintenance requirements?
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Locate the temperature sensor in a position that provides a representative temperature. (2) Use a temperature sensor with a minimum accuracy of 4 °F or 0.75 percent of the temperature value, whichever is... manufacturer's owners manual. Following the electronic calibration, you must conduct a temperature sensor...
Elevated temperature creep and fracture properties of the 62Cu-35Au-3Ni braze alloy
NASA Astrophysics Data System (ADS)
Stephens, J. J.; Greulich, F. A.
1995-06-01
The Cu-Au-Ni braze alloys are used for metal/ceramic brazes in electronic assemblies because of their good wetting characteristics and low vapor pressure. We have studied the tensile creep properties of annealed 62Cu-35Au-3Ni alloy over the temperature range 250 °C to 750 °C. Two power-law equations have been developed for the minimum creep rate as a function of true stress and temperature. At the highest temperatures studied (650 °C and 750 °C), the minimum creep rate is well described with a stress exponent of 3.0, which can be rationalized in the context of Class I solid solution strengthening. The inverted shape of the creep curves observed at these temperatures is also consistent with Class I alloy behavior. At lower temperatures, power-law creep is well described with a stress exponent of 7.5, and normal three-stage creep curves are observed. Intergranular creep damage, along with minimum values of strain to fracture, is most apparent at 450 °C and 550 °C. The lower stress exponent in the Class I alloy regime helps to increase the strain to fracture at higher temperatures (650 °C and 750 °C). The minimum creep rate behavior of the 62Cu-35Au-3Ni alloy is also compared with those of the 74.2Cu-25. 8Au alloy and pure Cu. This comparison indicates that the 62Cu-35Au-3Ni has considerably higher creep strength than pure Cu. This fact suggests that the 62Cu-35Au-3Ni braze alloy can be used in low mismatch metal-to-ceramic braze joints such as Mo to metallized alumina ceramic with few problems. However, careful joint design may be essential for the use of this alloy in high thermal mismatch metal-to-ceramic braze joints.
Temperature-based estimation of global solar radiation using soft computing methodologies
NASA Astrophysics Data System (ADS)
Mohammadi, Kasra; Shamshirband, Shahaboddin; Danesh, Amir Seyed; Abdullah, Mohd Shahidan; Zamani, Mazdak
2016-07-01
Precise knowledge of solar radiation is indeed essential in different technological and scientific applications of solar energy. Temperature-based estimation of global solar radiation would be appealing owing to broad availability of measured air temperatures. In this study, the potentials of soft computing techniques are evaluated to estimate daily horizontal global solar radiation (DHGSR) from measured maximum, minimum, and average air temperatures ( T max, T min, and T avg) in an Iranian city. For this purpose, a comparative evaluation between three methodologies of adaptive neuro-fuzzy inference system (ANFIS), radial basis function support vector regression (SVR-rbf), and polynomial basis function support vector regression (SVR-poly) is performed. Five combinations of T max, T min, and T avg are served as inputs to develop ANFIS, SVR-rbf, and SVR-poly models. The attained results show that all ANFIS, SVR-rbf, and SVR-poly models provide favorable accuracy. Based upon all techniques, the higher accuracies are achieved by models (5) using T max- T min and T max as inputs. According to the statistical results, SVR-rbf outperforms SVR-poly and ANFIS. For SVR-rbf (5), the mean absolute bias error, root mean square error, and correlation coefficient are 1.1931 MJ/m2, 2.0716 MJ/m2, and 0.9380, respectively. The survey results approve that SVR-rbf can be used efficiently to estimate DHGSR from air temperatures.
NASA Astrophysics Data System (ADS)
Kim, Yongha; Kim, Jeong-Han; Lee, Changsup; Jee, Gun-Hwa
A VHF meteor radar, installed at King Sejong Station in March, 2007, has been detecting echoes from more than 20,000 meteors per day. Meteor echoes are decayed typically within seconds as meteors spread away by atmospheric diffusion. The diffusion coefficients can thus be obtained from decay times of meteor echo signals, providing with information on the atmospheric temperatures and pressures at meteor altitudes from 70 to 100 km. In this study, we present altitude profiles of 15-min averaged diffusion coefficients in each month, which clearly show a minimum at 80 - 85 km. The minimum appears at higher altitude during austral summer than winter, and seems to be near the lower level of two temperature minimum structure around the mesopause seen by TIMED/SABER data at high latitudes. The higher mesopause level (95-100 km) of the SABER data does not appear in our diffusion profiles probably because it is too close the limit of meaningful diffusion coefficients that can be derived from meteor decay detection. In order to understand temperature variation around the mesopause more directly, we will discuss various methods to extract temperature profiles from the diffusion profiles. We will also present monthly averaged OH and O2 airglow temperatures observed at the same site, and compare them with those derived from the meteor radar observation.
Schiffmann, Robert F
2013-01-01
The introduction of several Not-Ready-to-Eat (NRTE) products, beginning in 2007, has resulted in several recalls and has caused serious concerns about their safe-cooking in microwave ovens. These products are not fully-thermally processed prior to sale but depend upon the consumer to finish cooking them to the safe minimum temperatures, defined by the USDA, in order to destroy any sources of foodborne illnesses. While microwave ovens are a primary means of this finish-cooking step, they are known to cook foods unevenly in terms of temperature distribution, especially from a frozen state, and this may cause parts of the food to be below the required safe-temperature. Hence there are concerns regarding how reliably microwave ovens can provide the minimum required safe temperatures in order to avoid the possibility of foodborne illnesses. To determine this, temperature profiling tests were preformed upon three frozen NRTE entrées, heating them in eight new brand-name 1100-watt and 1200-watt microwave ovens in order to evaluate how well the minimum temperatures were reached throughout the products. By comparison, these same tests were repeated using three "smart" microwave ovens in which internal computer-control makes them user-independent. In addition, a comparison was also made of the microwave output power claimed by the manufacturers of these ovens to that determined using the IEC procedures.
Rene 95 brazed joint metallurgical program
NASA Technical Reports Server (NTRS)
Gay, C.; Givens, J.; Mastrorroco, S.; Sterman, A.
1972-01-01
This metallurgical program was specifically conducted for the establishment of material properties required for the design of the LF460 fan. The LF460 lift fan is an advanced 18:1 high thrust to weight single stage design. It has a turbine attached to the outer flowpath of the fan blade tip which minimizes the axial depth of the fan. Advanced lightweight attachment designs are employed in this concept to achieve minimum mass polar moments of inertia which are required for good aircraft flight response control. The design features which are unique to this advanced LF460 lift fan are the 0.010 inch thin Udimet 700 alloy integral tip turbine design, minimum weight braze attachment of the turbine to the fan blade, and the high strength and elevated temperature capability of the Rene'95 alloy for the fan blade. The data presented in this report show that the LF460 fan rotor design is feasible and that the design stresses and margins of safety were more than adequate. Prior to any production application, however, additional stress rupture/shear lap joints should be run in order to establish a firm 1200 F stress rupture curve for the CM50 braze metal.
2D tilting MEMS micro mirror integrating a piezoresistive sensor position feedback
NASA Astrophysics Data System (ADS)
Lani, S.; Bayat, D.; Despont, M.
2015-02-01
An integrated position sensor for a dual-axis electromagnetic tilting mirror is presented. This tilting mirror is composed of a silicon based mirror directly assembled on a silicon membrane supported by flexible beams. The position sensors are constituted by 4 Wheatstone bridges of piezoresistors which are fabricated by doping locally the flexible beams. A permanent magnet is attached to the membrane and the scanner is mounted above planar coils deposited on a ceramic substrate to achieve electromagnetic actuation. The performances of the piezoresistive sensors are evaluated by measuring the output signal of the piezoresistors as a function of the tilt of the mirror and the temperature. White light interferometry was performed for all measurement to measure the exact tilt angle. The minimum detectable angle with such sensors was 30µrad (around 13bits) in the range of the minimum resolution of the interferometer. The tilt reproducibility was 0.0186%, obtained by measuring the tilt after repeated actuations with a coil current of 50mA during 30 min and the stability over time was 0.05% in 1h without actuation. The maximum measured tilt angle was 6° (mechanical) limited by nonlinearity of the MEMS system.
Achievement Testing--A Look at Trends.
ERIC Educational Resources Information Center
Bligh, Harold F.
The strengths and weakness of standardized tests, and trends in achievement testing in the last 15 years are examined. The discussion of achievement tests includes survey, instructional, diagnostic, and basic skills tests, as well as tests used for formative and summative evaluation. Minimum competency tests are not examined in detail. Advantages…
Upward Bound. Program Objectives, Summer 1971.
ERIC Educational Resources Information Center
Wesleyan Univ., Middletown, CT.
The primary program objectives were as follows: (1) The students will achieve passing grade in the college preparation program; (2) The students will achieve one year academic growth each year as measured by the SCAT and other standardized measurements; (3) The students will achieve the minimum PSAT percentile rank as anticipated for college…
Developments on GM-Type Pulse Tube Cryorefrigerators with Large Cooling Power
NASA Astrophysics Data System (ADS)
Köttig, T.; Waldauf, A.; Thürk, M.; Seidel, P.
2004-06-01
Over the past several years the authors have participated in basic and prototype developments of four valve pulse tube refrigerators (FVPTR). Systematic studies have been carried out to characterize the basics of energy transport mechanisms, the flow distribution and loss mechanisms of this type of pulse tube refrigerator (PTR) with its active type of phase shifting. Based on the comprehension of these phenomena, several prototypes have been built and optimized for various applications. Recently a single-stage PTR in coaxial arrangement has been designed for maximum refrigeration power in the temperature range between 20 and 80 K limited by an available electrical input power of 7 kW. To reach this goal we used lead screens in the coldest part of the regenerator instead of spheres in order to decrease the pressure drop. The improvement of the regenerator prevents the reported fact that at higher temperatures the performance of a pulse tube with a regenerator partially filled with lead spheres can even be worse than a regenerator totally made of stainless steel. At the moment the cooler provides a cooling power of 120 W@74 K and 40 W@34 K. The minimum no-load temperature achieved is 18.6 K.
Bolzoni, L; Weissgaerber, T; Kieback, B; Ruiz-Navas, E M; Gordo, E
2013-04-01
The Ti-6Al-7Nb alloy was obtained using the blending elemental approach with a master alloy and elemental titanium powders. Both the elemental titanium and the Ti-6Al-7Nb powders were characterised using X-ray diffraction, differential thermal analysis and dilatometry. The powders were processed using the conventional powder metallurgy route that includes uniaxial pressing and sintering. The trend of the relative density with the sintering temperature and the microstructural evolution of the materials sintered at different temperatures were analysed using scanning electron microscopy and X-ray diffraction. A minimum sintering temperature of 1200°C has to be used to ensure the homogenisation of the alloying elements and to obtain a pore structure composed of spherical pores. The sintered samples achieve relative density values that are typical for powder metallurgy titanium and no intermetallic phases were detected. Mechanical properties comparable to those specified for wrought Ti-6Al-7Nb medical devices are normally obtained. Therefore, the produced materials are promising candidates for load bearing applications as implant materials. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Samuelsen, G. S.; Brouwer, J.; Vardakas, M. A.; Holderman, J. D.
2012-01-01
The Rich-burn/Quick-mix/Lean-burn (RQL) combustor concept has been proposed to minimize the formation of oxides of nitrogen (NOx) in gas turbine systems. The success of this low-NOx combustor strategy is dependent upon the links between the formation of NOx, inlet air preheat temperature, and the mixing of the jet air and fuel-rich streams. Chemical equilibrium and kinetics modeling calculations and experiments were performed to further understand NOx emissions in an RQL combustor. The results indicate that as the temperature at the inlet to the mixing zone increases (due to preheating and/or operating conditions) the fuel-rich zone equivalence ratio must be increased to achieve minimum NOx formation in the primary zone of the combustor. The chemical kinetics model illustrates that there is sufficient residence time to produce NOx at concentrations that agree well with the NOx measurements. Air preheat was found to have very little effect on mixing, but preheating the air did increase NOx emissions significantly. By understanding the mechanisms governing NOx formation and the temperature dependence of key reactions in the RQL combustor, a strategy can be devised to further reduce NOx emissions using the RQL concept.
Optimal fault-tolerant control strategy of a solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Wu, Xiaojuan; Gao, Danhui
2017-10-01
For solid oxide fuel cell (SOFC) development, load tracking, heat management, air excess ratio constraint, high efficiency, low cost and fault diagnosis are six key issues. However, no literature studies the control techniques combining optimization and fault diagnosis for the SOFC system. An optimal fault-tolerant control strategy is presented in this paper, which involves four parts: a fault diagnosis module, a switching module, two backup optimizers and a controller loop. The fault diagnosis part is presented to identify the SOFC current fault type, and the switching module is used to select the appropriate backup optimizer based on the diagnosis result. NSGA-II and TOPSIS are employed to design the two backup optimizers under normal and air compressor fault states. PID algorithm is proposed to design the control loop, which includes a power tracking controller, an anode inlet temperature controller, a cathode inlet temperature controller and an air excess ratio controller. The simulation results show the proposed optimal fault-tolerant control method can track the power, temperature and air excess ratio at the desired values, simultaneously achieving the maximum efficiency and the minimum unit cost in the case of SOFC normal and even in the air compressor fault.
Optimization of HTST process parameters for production of ready-to-eat potato-soy snack.
Nath, A; Chattopadhyay, P K; Majumdar, G C
2012-08-01
Ready-to-eat (RTE) potato-soy snacks were developed using high temperature short time (HTST) air puffing process and the process was found to be very useful for production of highly porous and light texture snack. The process parameters considered viz. puffing temperature (185-255 °C) and puffing time (20-60 s) with constant initial moisture content of 36.74% and air velocity of 3.99 m.s(-1) for potato-soy blend with varying soy flour content from 5% to 25% were investigated using response surface methodology following central composite rotatable design (CCRD). The optimum product in terms of minimum moisture content (11.03% db), maximum expansion ratio (3.71), minimum hardness (2,749.4 g), minimum ascorbic acid loss (9.24% db) and maximum overall acceptability (7.35) were obtained with 10.0% soy flour blend in potato flour at the process conditions of puffing temperature (231.0 °C) and puffing time (25.0 s).
Investigation of high density two-dimensional electron gas in Zn-polar BeMgZnO/ZnO heterostructures
NASA Astrophysics Data System (ADS)
Ding, K.; Ullah, M. B.; Avrutin, V.; Özgür, Ü.; Morkoç, H.
2017-10-01
Zn-polar BeMgZnO/ZnO heterostructures grown by molecular beam epitaxy on high resistivity GaN templates producing high-density two-dimensional electron gas (2DEG) are investigated. This is motivated by the need to reach plasmon-longitudinal optical (LO) phonon resonance for attaining minimum LO phonon lifetime. Achievement of high 2DEG concentration in MgZnO/ZnO heterostructures requires growth of the MgZnO barrier at relatively low temperatures, which compromises the ternary quality that in turn hinders potential field effect transistor performance. When this ternary is alloyed further with BeO, the sign of strain in the BeMgZnO barrier on ZnO switches from compressive to tensile, making the piezoelectric and spontaneous polarizations to be additive in the BeMgZnO/ZnO heterostructures much like the Ga-polar AlGaN/GaN heterostructures. As a result, a 2DEG concentration of 1.2 × 1013 cm-2 is achieved in the Be0.03Mg0.41Zn0.56O/ZnO heterostructure. For comparison, a 2DEG concentration of 7.7 × 1012 cm-2 requires 2% Be and 26% Mg in the barrier, whereas the same in the MgZnO/ZnO system would require incorporation of more than 40% Mg into the barrier, which necessitates very low growth temperatures. Our results are consistent with the demands on achieving short LO phonon lifetimes through plasmon-LO phonon resonance for high carrier velocity.
Stellar model chromospheres. III - Arcturus /K2 III/
NASA Technical Reports Server (NTRS)
Ayres, T. R.; Linsky, J. L.
1975-01-01
Models are constructed for the upper photosphere and chromosphere of Arcturus based on the H, K, and IR triplet lines of Ca II and the h and k lines of Mg II. The chromosphere model is derived from complete redistribution solutions for a five-level Ca II ion and a two-level Mg II ion. A photospheric model is derived from the Ca II wings using first the 'traditional' complete-redistribution limit and then the more realistic partial-redistribution approximation. The temperature and mass column densities for the temperature-minimum region and the chromosphere-transition region boundary are computed, and the pressure in the transition region and corona are estimated. It is found that the ratio of minimum temperature to effective temperature is approximately 0.77 for Arcturus, Procyon, and the sun, and that mass tends to increase at the temperature minimum with decreasing gravity. The pressure is found to be about 1 percent of the solar value, and the surface brightness of the Arcturus transition region and coronal spectrum is estimated to be much less than for the sun. The partial-redistribution calculation for the Ca II K line indicates that the emission width is at least partially determined by damping rather than Doppler broadening, suggesting a reexamination of previous explanations for the Wilson-Bappu effect.
Non-polarizable force field of water based on the dielectric constant: TIP4P/ε.
Fuentes-Azcatl, Raúl; Alejandre, José
2014-02-06
The static dielectric constant at room temperature and the temperature of maximum density are used as target properties to develop, by molecular dynamics simulations, the TIP4P/ε force field of water. The TIP4P parameters are used as a starting point. The key step, to determine simultaneously both properties, is to perform simulations at 240 K where a molecular dipole moment of minimum density is found. The minimum is shifted to larger values of μ as the distance between the oxygen atom and site M, lOM, decreases. First, the parameters that define the dipole moment are adjusted to reproduce the experimental dielectric constant and then the Lennard-Jones parameters are varied to match the temperature of maximum density. The minimum on density at 240 K allows understanding why reported TIP4P models fail to reproduce the temperature of maximum density, the dielectric constant, or both properties. The new model reproduces some of the thermodynamic and transport anomalies of water. Additionally, the dielectric constant, thermodynamics, and dynamical and structural properties at different temperatures and pressures are in excellent agreement with experimental data. The computational cost of the new model is the same as that of the TIP4P.
Vegetation greenness impacts on maximum and minimum temperatures in northeast Colorado
Hanamean, J. R.; Pielke, R.A.; Castro, C. L.; Ojima, D.S.; Reed, Bradley C.; Gao, Z.
2003-01-01
The impact of vegetation on the microclimate has not been adequately considered in the analysis of temperature forecasting and modelling. To fill part of this gap, the following study was undertaken.A daily 850–700 mb layer mean temperature, computed from the National Center for Environmental Prediction-National Center for Atmospheric Research (NCEP-NCAR) reanalysis, and satellite-derived greenness values, as defined by NDVI (Normalised Difference Vegetation Index), were correlated with surface maximum and minimum temperatures at six sites in northeast Colorado for the years 1989–98. The NDVI values, representing landscape greenness, act as a proxy for latent heat partitioning via transpiration. These sites encompass a wide array of environments, from irrigated-urban to short-grass prairie. The explained variance (r2 value) of surface maximum and minimum temperature by only the 850–700 mb layer mean temperature was subtracted from the corresponding explained variance by the 850–700 mb layer mean temperature and NDVI values. The subtraction shows that by including NDVI values in the analysis, the r2 values, and thus the degree of explanation of the surface temperatures, increase by a mean of 6% for the maxima and 8% for the minima over the period March–October. At most sites, there is a seasonal dependence in the explained variance of the maximum temperatures because of the seasonal cycle of plant growth and senescence. Between individual sites, the highest increase in explained variance occurred at the site with the least amount of anthropogenic influence. This work suggests the vegetation state needs to be included as a factor in surface temperature forecasting, numerical modeling, and climate change assessments.
Ebrahimi, Shelir; Nguyen, Thi Hau; Roberts, Deborah J
2015-10-15
The sustainability of nitrate-contaminated water treatment using ion-exchange processes can be achieved by regenerating the exhausted resin several times. Our previous study shows that the use of multi-cycle bioregeneration of resin enclosed in membrane is an effective and innovative regeneration method. In this research, the effects of two independent factors (temperature and salt concentration) on the biological denitrification rate were studied. The results of this research along with the experimental results of the previous study on the effect of the same factors on nitrate desorption rate from the resin allow the optimization of the bioregeneration process. The results of nitrate denitrification rate study show that the biodegradation rate at different temperature and salt concentration is independent of the initial nitrate concentration. At each specific salt concentration, the nitrate removal rate increased with increasing temperature with the average value of 0.001110 ± 0.0000647 mg-nitrate/mg-VSS.h.°C. However, the effect of different salt concentrations was dependent on the temperature; there is a significant interaction between salt concentration and temperature; within each group of temperatures, the nitrate degradation rate decreased with increasing the salt concentration. The temperature affected the tolerance to salinity and culture was less tolerant to high concentration of salt at low temperature. Evidenced by the difference between the minimum and maximum nitrate degradation rate being greater at lower temperature. At 35 °C, a 32% reduction in the nitrate degradation rate was observed while at 12 °C this reduction was 69%. This is the first published study to examine the interaction of salt concentration and temperature during biological denitrification. Copyright © 2015 Elsevier Ltd. All rights reserved.
Seasonal patterns in body temperature of free-living rock hyrax (Procavia capensis).
Brown, Kelly J; Downs, Colleen T
2006-01-01
Rock hyrax (Procavia capensis) are faced with large daily fluctuations in ambient temperature during summer and winter. In this study, peritoneal body temperature of free-living rock hyrax was investigated. During winter, when low ambient temperatures and food supply prevail, rock hyrax maintained a lower core body temperature relative to summer. In winter body temperatures during the day were more variable than at night. This daytime variability is likely a result of body temperatures being raised from basking in the sun. Body temperatures recorded during winter never fell to low levels recorded in previous laboratory studies. During summer ambient temperatures exceeded the thermoneutral zone of the rock hyrax throughout most of the day, while crevice temperatures remained within the thermoneutral zone of rock hyrax. However, in summer variation in core body temperature was small. Minimum and maximum body temperatures did not coincide with minimum and maximum ambient temperatures. Constant body temperatures were also recorded when ambient temperatures reached lethal limits. During summer it is likely that rock hyrax select cooler refugia to escape lethal temperatures and to prevent excessive water loss. Body temperature of rock hyrax recorded in this study reflects the adaptability of this animal to the wide range of ambient temperatures experienced in its natural environment.
NASA Astrophysics Data System (ADS)
Vujović, Dragana; Todorović, Nedeljko; Paskota, Mira
2018-04-01
With the goal of finding summer climate patterns in the region of Belgrade (Serbia) over the period 1888-2013, different techniques of multivariate statistical analysis were used in order to analyze the simultaneous changes of a number of climatologic parameters. An increasing trend of the mean daily minimum temperature was detected. In the recent decades (1960-2013), this increase was much more pronounced. The number of days with the daily minimum temperature greater or equal to 20 °C also increased significantly. Precipitation had no statistically significant trend. Spectral analysis showed a repetitive nature of the climatologic parameters which had periods that roughly can be classified into three groups, with the durations of the following: (1) 6 to 7 years, (2) 10 to 18 years, and (3) 21, 31, and 41 years. The temperature variables mainly had one period of repetitiveness of 5 to 7 years. Among other variables, the correlations of regional fluctuations of the temperature and precipitation and atmospheric circulation indices were analyzed. The North Atlantic oscillation index had the same periodicity as that of the precipitation, and it was not correlated to the temperature variables. Atlantic multidecadal oscillation index correlated well to the summer mean daily minimum and summer mean temperatures. The underlying structure of the data was analyzed by principal component analysis, which detected the following four easily interpreted dimensions: More sunshine-Higher temperature, Precipitation, Extreme heats, and Changeable summer.
Solar wind velocity and temperature in the outer heliosphere
NASA Technical Reports Server (NTRS)
Gazis, P. R.; Barnes, A.; Mihalov, J. D.; Lazarus, A. J.
1994-01-01
At the end of 1992, the Pioneer 10, Pioneer 11, and Voyager 2 spacecraft were at heliocentric distances of 56.0, 37.3, and 39.0 AU and heliographic latitudes of 3.3 deg N, 17.4 deg N, and 8.6 deg S, respectively. Pioneer 11 and Voyager 2 are at similar celestial longitudes, while Pioneer 10 is on the opposite side of the Sun. All three spacecraft have working plasma analyzers, so intercomparison of data from these spacecraft provides important information about the global character of the solar wind in the outer heliosphere. The averaged solar wind speed continued to exhibit its well-known variation with solar cycle: Even at heliocentric distances greater than 50 AU, the average speed is highest during the declining phase of the solar cycle and lowest near solar minimum. There was a strong latitudinal gradient in solar wind speed between 3 deg and 17 deg N during the last solar minimum, but this gradient has since disappeared. The solar wind temperature declined with increasing heliocentric distance out to a heliocentric distance of at least 20 AU; this decline appeared to continue at larger heliocentric distances, but temperatures in the outer heliosphere were suprisingly high. While Pioneer 10 and Voyager 2 observed comparable solar wind temperatures, the temperature at Pioneer 11 was significantly higher, which suggests the existence of a large-scale variation of temperature with heliographic longitude. There was also some suggestion that solar wind temperatures were higher near solar minimum.
Cole, K.L.; Arundel, S.T.
2005-01-01
Carbon isotopes in rodent fecal pellets were measured on packrat (Neotoma spp.) middens from the Grand Canyon, Arizona. The pellet samples reflect the abundance of cold-intolerant C4 and Crassulacean acid metabolism (CAM) plant species relative to the predominant C3 vegetation in the packrat diet. The temporal sequence of isotopic results suggests a temperature decline followed by a sharp increase corresponding to the B??lling/Aller??d-Younger Dryas - early Holocene sequence. This pattern was then tested using the past distribution of Utah agave (Agave utahensis). Spatial analyses of the range of this temperature-sensitive CAM species demonstrate that its upper elevational limit is controlled by winter minimum temperature. Applying this paleotemperature proxy to the past elevational limits of Utah agave suggests that minimum winter temperatures were ???8??C below modern values during the Last Glacial Maximum, 4.5-6.5 ??C below modern during the B??lling/Aller??d, and 7.5-8.7 ??C below modern during the early Younger Dryas. As the Younger Dryas terminated, temperatures warmed ???4 ??C between ca. 11.8 ka and 11.5 ka. These extreme fluctuations in winter minimum temperature have not been generally accepted for terrestrial paleoecological records from the arid southwestern United States, likely because of large statistical uncertainties of older radiocarbon results and reliance on proxies for summer temperatures, which were less affected. ?? 2005 Geological Society of America.
Trends in extreme daily temperatures and humidex index in the United Arab Emirates over 1948-2014.
NASA Astrophysics Data System (ADS)
Yang, H. W.; Ouarda, T.
2015-12-01
This study deals with the analysis of the characteristics of extreme temperature events in the Middle East, using NCEP reanalysis gridded data, for the summer (May-October) and winter (November-April) seasons. Trends in the occurrences of three types of heat spells during 1948-2014 are studied by both Linear Regression (LR) and Mann-Kendall (MK) test. Changes in the diurnal temperature range (DTR) are also investigated. To better understand the effects of heat spells on public health, the Humidex, a combination index of ambient temperature and relative humidity, is also used. Using percentile threshold, temperature (Humidex) Type-A and Type-B heat spells are defined respectively by daily maximum and minimum temperature (Humidex). Type-C heat spells are defined as the joint occurrence of Type-A and Type-B heat spells at the same time. In the Middle East, it is found that no coherent trend in temperature Type-A heat spells is observed. However, the occurrences of temperature Type-B and C heat spells have consistently increased since 1948. For Humidex heat spells, coherently increased activities of all three types of heat spells are observed in the area. During the summer, the magnitude of the positive trends in Humidex heat spells are generally stronger than temperature heat spells. More than half of the locations in the area show significantly negative DTR trends in the summer, but the trends vary according to the region in the winter. Annual mean temperature has increased an average by 0.5°C, but it is mainly associated with the daily minimum temperature which has warmed up by 0.84°C.Daily maximum temperature showed no significant trends. The warming is hence stronger in minimum temperatures than in maximum temperatures resulting in a decrease in DTR by 0.16 °C per decade. This study indicates hence that the UAE has not become hotter, but it has become less cold during 1948 to 2014.
Code of Federal Regulations, 2012 CFR
2012-07-01
... vibration or changing temperature. The canister must have a minimum working capacity as follows: (i) You may... whole carbon bed. The carbon must have a minimum carbon working capacity of 90 grams per liter. (f) We...
Code of Federal Regulations, 2014 CFR
2014-07-01
... vibration or changing temperature. The canister must have a minimum working capacity as follows: (i) You may... whole carbon bed. The carbon must have a minimum carbon working capacity of 90 grams per liter. (f) We...
Code of Federal Regulations, 2011 CFR
2011-07-01
... vibration or changing temperature. The canister must have a minimum working capacity as follows: (i) You may... whole carbon bed. The carbon must have a minimum carbon working capacity of 90 grams per liter. (f) We...
Code of Federal Regulations, 2013 CFR
2013-07-01
... vibration or changing temperature. The canister must have a minimum working capacity as follows: (i) You may... whole carbon bed. The carbon must have a minimum carbon working capacity of 90 grams per liter. (f) We...
High Tensile Strength Amalgams for In-Space Repair and Fabrication
NASA Technical Reports Server (NTRS)
Grugel, R. N.
2005-01-01
Amalgams are defined as an alloy of mercury with one or more other metals. These, along with those based on gallium (also liquid at near room temperature), are widely used in dental practice as a tooth filling material. Amalgams have a number of useful attributes that indude room temperature compounding. corrosion resistance, dimensional stability, and good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits their applications. The work presented here demonstrates how, by modifying particle geometry, the tensile strength of amalgams can be increased and thus extending the range of potential applications. This is relevant to, for example, the freeform fabrication of replacement parts that might be necessary during an extended space mission. Advantages, i.e. Figures-of-Merit. include the ability to produce complex parts, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption.
2011-01-01
Background Evidence is mounting regarding the clinically significant effect of temperature on blood pressure. Methods In this cross-sectional study the authors obtained minimum and maximum temperatures and their respective previous week variances at the geographic locations of the self-reported residences of 26,018 participants from a national cohort of blacks and whites, aged 45+. Linear regression of data from 20,623 participants was used in final multivariable models to determine if these temperature measures were associated with levels of systolic or diastolic blood pressure, and whether these relations were modified by stroke-risk region, race, education, income, sex hypertensive medication status, or age. Results After adjustment for confounders, same-day maximum temperatures 20°F lower had significant associations with 1.4 mmHg (95% CI: 1.0, 1.9) higher systolic and 0.5 mmHg (95% CI: 0.3, 0.8) higher diastolic blood pressures. Same-day minimum temperatures 20°F lower had a significant association with 0.7 mmHg (95% CI: 0.3, 1.0) higher systolic blood pressures but no significant association with diastolic blood pressure differences. Maximum and minimum previous-week temperature variabilities showed significant but weak relationships with blood pressures. Parameter estimates showed effect modification of negligible magnitude. Conclusions This study found significant associations between outdoor temperature and blood pressure levels, which remained after adjustment for various confounders including season. This relationship showed negligible effect modification. PMID:21247466
46 CFR 54.05-6 - Toughness test temperatures.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 46 Shipping 2 2013-10-01 2013-10-01 false Toughness test temperatures. 54.05-6 Section 54.05-6... Toughness Tests § 54.05-6 Toughness test temperatures. Each toughness test must be conducted at temperatures not warmer than −20 °F or 10 °F below the minimum service temperature, whichever is lower, except that...
46 CFR 54.05-6 - Toughness test temperatures.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 46 Shipping 2 2014-10-01 2014-10-01 false Toughness test temperatures. 54.05-6 Section 54.05-6... Toughness Tests § 54.05-6 Toughness test temperatures. Each toughness test must be conducted at temperatures not warmer than −20 °F or 10 °F below the minimum service temperature, whichever is lower, except that...
46 CFR 54.05-6 - Toughness test temperatures.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 46 Shipping 2 2011-10-01 2011-10-01 false Toughness test temperatures. 54.05-6 Section 54.05-6... Toughness Tests § 54.05-6 Toughness test temperatures. Each toughness test must be conducted at temperatures not warmer than −20 °F or 10 °F below the minimum service temperature, whichever is lower, except that...
46 CFR 54.05-6 - Toughness test temperatures.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 46 Shipping 2 2010-10-01 2010-10-01 false Toughness test temperatures. 54.05-6 Section 54.05-6... Toughness Tests § 54.05-6 Toughness test temperatures. Each toughness test must be conducted at temperatures not warmer than −20 °F or 10 °F below the minimum service temperature, whichever is lower, except that...
Kwiek, Bartłomiej; Ambroziak, Marcin; Osipowicz, Katarzyna; Kowalewski, Cezary; Rożalski, Michał
2018-06-01
Current treatment of facial capillary malformations (CM) has limited efficacy. To assess the efficacy of large spot 532 nm lasers for the treatment of previously treated facial CM with the use of 3-dimensional (3D) image analysis. Forty-three white patients aged 6 to 59 were included in this study. Patients had 3D photography performed before and after treatment with a 532 nm Nd:YAG laser with large spot and contact cooling. Objective analysis of percentage improvement based on 3D digital assessment of combined color and area improvement (global clearance effect [GCE]) were performed. The median maximal improvement achieved during the treatment (GCE) was 59.1%. The mean number of laser procedures required to achieve this improvement was 6.2 (range 1-16). Improvement of minimum 25% (GCE25) was achieved by 88.4% of patients, a minimum of 50% (GCE50) by 61.1%, a minimum of 75% (GCE75) by 25.6%, and a minimum of 90% (GCE90) by 4.6%. Patients previously treated with pulsed dye lasers had a significantly less response than those treated with other modalities (GCE 37.3% vs 61.8%, respectively). A large spot 532 nm laser is effective in previously treated patients with facial CM.
Chadsuthi, Sudarat; Iamsirithaworn, Sopon; Triampo, Wannapong; Modchang, Charin
2015-01-01
Influenza is a worldwide respiratory infectious disease that easily spreads from one person to another. Previous research has found that the influenza transmission process is often associated with climate variables. In this study, we used autocorrelation and partial autocorrelation plots to determine the appropriate autoregressive integrated moving average (ARIMA) model for influenza transmission in the central and southern regions of Thailand. The relationships between reported influenza cases and the climate data, such as the amount of rainfall, average temperature, average maximum relative humidity, average minimum relative humidity, and average relative humidity, were evaluated using cross-correlation function. Based on the available data of suspected influenza cases and climate variables, the most appropriate ARIMA(X) model for each region was obtained. We found that the average temperature correlated with influenza cases in both central and southern regions, but average minimum relative humidity played an important role only in the southern region. The ARIMAX model that includes the average temperature with a 4-month lag and the minimum relative humidity with a 2-month lag is the appropriate model for the central region, whereas including the minimum relative humidity with a 4-month lag results in the best model for the southern region.
Performance seeking control: Program overview and future directions
NASA Technical Reports Server (NTRS)
Gilyard, Glenn B.; Orme, John S.
1993-01-01
A flight test evaluation of the performance-seeking control (PSC) algorithm on the NASA F-15 highly integrated digital electronic control research aircraft was conducted for single-engine operation at subsonic and supersonic speeds. The model-based PSC system was developed with three optimization modes: minimum fuel flow at constant thrust, minimum turbine temperature at constant thrust, and maximum thrust at maximum dry and full afterburner throttle settings. Subsonic and supersonic flight testing were conducted at the NASA Dryden Flight Research Facility covering the three PSC optimization modes and over the full throttle range. Flight results show substantial benefits. In the maximum thrust mode, thrust increased up to 15 percent at subsonic and 10 percent at supersonic flight conditions. The minimum fan turbine inlet temperature mode reduced temperatures by more than 100 F at high altitudes. The minimum fuel flow mode results decreased fuel consumption up to 2 percent in the subsonic regime and almost 10 percent supersonically. These results demonstrate that PSC technology can benefit the next generation of fighter or transport aircraft. NASA Dryden is developing an adaptive aircraft performance technology system that is measurement based and uses feedback to ensure optimality. This program will address the technical weaknesses identified in the PSC program and will increase performance gains.
Polar Chromospheric Signatures of the Subdued Cycle 23/24 Solar Minimum
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Yashiro, S.; Makela, P.; Shibasaki, K.; Hathaway, D.
2010-01-01
Coronal holes appear brighter than the quiet Sun in microwave images, with a brightness enhancement of 500 to 2000 K. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is about 10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approximately 250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes.
Land use/land cover change effects on temperature trends at U.S. Climate Normals stations
Hale, R.C.; Gallo, K.P.; Owen, T.W.; Loveland, Thomas R.
2006-01-01
Alterations in land use/land cover (LULC) in areas near meteorological observation stations can influence the measurement of climatological variables such as temperature. Urbanization near climate stations has been the focus of considerable research attention, however conversions between non-urban LULC classes may also have an impact. In this study, trends of minimum, maximum, and average temperature at 366 U.S. Climate Normals stations are analyzed based on changes in LULC defined by the U.S. Land Cover Trends Project. Results indicate relatively few significant temperature trends before periods of greatest LULC change, and these are generally evenly divided between warming and cooling trends. In contrast, after the period of greatest LULC change was observed, 95% of the stations that exhibited significant trends (minimum, maximum, or mean temperature) displayed warming trends. Copyriht 2006 by the American Geophysical Union.
High exhaust temperature, zoned, electrically-heated particulate matter filter
Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima
2015-09-22
A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.
NASA Astrophysics Data System (ADS)
Lobit, P.; López Pérez, L.; Lhomme, J. P.; Gómez Tagle, A.
2017-07-01
This study evaluates the dew point method (Allen et al. 1998) to estimate atmospheric vapor pressure from minimum temperature, and proposes an improved model to estimate it from maximum and minimum temperature. Both methods were evaluated on 786 weather stations in Mexico. The dew point method induced positive bias in dry areas but also negative bias in coastal areas, and its average root mean square error for all evaluated stations was 0.38 kPa. The improved model assumed a bi-linear relation between estimated vapor pressure deficit (difference between saturated vapor pressure at minimum and average temperature) and measured vapor pressure deficit. The parameters of these relations were estimated from historical annual median values of relative humidity. This model removed bias and allowed for a root mean square error of 0.31 kPa. When no historical measurements of relative humidity were available, empirical relations were proposed to estimate it from latitude and altitude, with only a slight degradation on the model accuracy (RMSE = 0.33 kPa, bias = -0.07 kPa). The applicability of the method to other environments is discussed.
Fang, Yi-Chin; Wu, Bo-Wen
2008-12-01
Thermal imaging is an important technology in both national defense and the private sector. An advantage of thermal imaging is its ability to be deployed while fully engaged in duties, not limited by weather or the brightness of indoor or outdoor conditions. However, in an outdoor environment, many factors, including atmospheric decay, target shape, great distance, fog, temperature out of range and diffraction limits can lead to bad image formation, which directly affects the accuracy of object recognition. The visual characteristics of the human eye mean that it has a much better capacity for picture recognition under normal conditions than artificial intelligence does. However, conditions of interference significantly reduce this capacity for picture recognition for instance, fatigue impairs human eyesight. Hence, psychological and physiological factors can affect the result when the human eye is adopted to measure MRTD (minimum resolvable temperature difference) and MRCTD (minimum resolvable circle temperature difference). This study explores thermal imaging recognition, and presents a method for effectively choosing the characteristic values and processing the images fully. Neural network technology is successfully applied to recognize thermal imaging and predict MRTD and MRCTD (Appendix A), exceeding thermal imaging recognition under fatigue and the limits of the human eye.
Amphibole and Phlogopite Formation on the R Chondrite Parent Body: An Experimental Investigation
NASA Astrophysics Data System (ADS)
Lunning, N. G.; Waters, L. E.; McCoy, T. J.
2017-07-01
High-temperature hydrated minerals can form at the pressures and the temperatures expected for the interiors of planetesimals. Under water-saturated conditions, minimum silicate melting can initiate at temperatures as low as 870°C at 40 MPa.
Enabling Smart Air Conditioning by Sensor Development: A Review
Cheng, Chin-Chi; Lee, Dasheng
2016-01-01
The study investigates the development of sensors, in particular the use of thermo-fluidic sensors and occupancy detectors, to achieve smart operation of air conditioning systems. Smart operation refers to the operation of air conditioners by the reinforcement of interaction to achieve both thermal comfort and energy efficiency. Sensors related to thermal comfort include those of temperature, humidity, and pressure and wind velocity anemometers. Improvements in their performance in the past years have been studied by a literature survey. Traditional occupancy detection using passive infra-red (PIR) sensors and novel methodologies using smartphones and wearable sensors are both discussed. Referring to the case studies summarized in this study, air conditioning energy savings are evaluated quantitatively. Results show that energy savings of air conditioners before 2000 was 11%, and 30% after 2000 by the integration of thermo-fluidic sensors and occupancy detectors. By utilizing wearable sensing to detect the human motions, metabolic rates and related information, the energy savings can reach up to 46.3% and keep the minimum change of predicted mean vote (∆PMV→0), which means there is no compromise in thermal comfort. This enables smart air conditioning to compensate for the large variations from person to person in terms of physiological and psychological satisfaction, and find an optimal temperature for everyone in a given space. However, this tendency should be evidenced by more experimental results in the future. PMID:27916906
Minimum Requirement Program: A Potential Device for Promoting Equality.
ERIC Educational Resources Information Center
Lewy, Arieh
1985-01-01
The Minimum Requirement Program (MRP) was introduced in Israel in the 1960s but was discontinued. The Parenthesis Program, a 1962 revision of the original program, restricted objectives in the syllabus which were deemed too difficult. Achievement gaps between population subgroups existed in the 1980s when a new MRP was developed. (GDC)
Variability of AVHRR-Derived Clear-Sky Surface Temperature over the Greenland Ice Sheet.
NASA Astrophysics Data System (ADS)
Stroeve, Julienne; Steffen, Konrad
1998-01-01
The Advanced Very High Resolution Radiometer is used to derive surface temperatures for one satellite pass under clear skies over the Greenland ice sheet from 1989 through 1993. The results of these temperatures are presented as monthly means, and their spatial and temporal variability are discussed. Accuracy of the dry snow surface temperatures is estimated to be better than 1 K during summer. This error is expected to increase during polar night due to problems in cloud identification. Results indicate the surface temperature of the Greenland ice sheet is strongly dominated by topography, with minimum surface temperatures associated with the high elevation regions. In the summer, maximum surface temperatures occur during July along the western coast and southern tip of the ice sheet. Minimum temperatures are found at the summit during summer and move farther north during polar night. Large interannual variability in surface temperatures occurs during winter associated with katabatic storm events. Summer temperatures show little variation, although 1992 stands out as being colder than the other years. The reason for the lower temperatures during 1992 is believed to be a result of the 1991 eruption of Mount Pinatubo.
Photo-Luminescent Targets in Space
NASA Technical Reports Server (NTRS)
Maida, James; Kolomenski, Andrei
2017-01-01
Photo-luminescent ("glow in the dark") products have seen a dramatic increase in performance is the last 15 years with the use of a strontium aluminate formulation. Because of this, ISS uses photo-luminescent markers for interior emergency egress guidance. The marker is COTS material composed of strontium aluminate doped with europium, imbedded in PVC and achieves a light emission performance rated at 600/90 (600 mcd at 10 minutes and 90 mcd at 1 hour, 2 mcd is minimum required for human visibility). The ICA goal is to determine this material's effectiveness for use externally on ISS and/or on visiting vehicles, when packaged in Lexan for UV protection. A thermal test was conducted by EC to characterize the luminance emission profile of the material at extreme cold and hot temperatures, such as experienced on ISS.
Evaluation of surface integrity of WEDM processed inconel 718 for jet engine application
NASA Astrophysics Data System (ADS)
Sharma, Priyaranjan; Tripathy, Ashis; Sahoo, Narayan
2018-03-01
A unique superalloy, Inconel 718 has been serving for aerospace industries since last two decades. Due to its attractive properties such as high strength at elevated temperature, improved corrosion and oxidation resistance, it is widely employed in the manufacturing of jet engine components. These components require complex shape without affecting the parent material properties. Traditional machining methods seem to be ineffective to fulfil the demand of aircraft industries. Therefore, an advanced feature of wire electrical discharge machining (WEDM) has been utilized to improve the surface features of the jet engine components. With the help of trim-offset technology, it became possible to achieve considerable amount of residual stresses, lower peak to valley height, reduced density of craters and micro globules, minimum hardness alteration and negligible recast layer formation.
Spatiotemporal Evaluation of Reanalysis and In-situ Surface Air Temperature over Ethiopia
NASA Astrophysics Data System (ADS)
Tesfaye, T.
2017-12-01
Tewodros Woldemariam Tesfaye*1, C.T. Dhanya 2,and A.K. Gosain3 1Research Scholar, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India 2Assistant Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India 3 Professor, Department of Civil Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India, *e-mail: tewodros2002@gmail.com Abstract: Water resources management and modelling studies are often constrained by the scarcity of observed data, especially of the two major variables i.e., precipitation and temperature. Modellers, hence, rely on reanalysis datasets as a substitute; though its performance heavily vary depending on the data availability and regional characteristics. The present study aims at examining the ability of frequently used reanalysis datasets in capturing the spatiotemporal characteristics of maximum and minimum surface temperatures over Ethiopia and to highlight the biases, if any, in these over Ethiopian region. We considered ERA-Interim, NCEP 2, MERRA and CFSR reanalysis datasets and compared these with temperature observations from 15 synoptic stations spread over Ethiopia. In addition to the long term averages and annual cycle, a critical comparison of various extreme indices such as diurnal temperature range, warm days, warm nights, cool days, cool nights, summer days and tropical nights are also undertaken. Our results indicate that, the performance of CFSR followed by NCEP 2 is better in capturing majority of the aspects. ERA-Interim suffers a huge additive bias in the simulation of various aspects of minimum temperature in all the stations considered; while its performance is better for maximum temperature. The inferior performance of ERA-Interim is noted to be only because of the difficulty in simulating minimum temperature. Key words: ERA Interim; NCEP Reanalysis; MERRA; CFSR; Diurnal temperature range; reanalysis performance.
Oxidation Resistance and Critical Sulfur Content of Single-Crystal Superalloys
NASA Technical Reports Server (NTRS)
Smialek, James L.
1997-01-01
The high-temperature components of a jet turbine engine are made from nickel-base superalloys. These components must be able to withstand high stresses, fatigue, and corrosive reactions with high-temperature gases. Such oxidation resistance is associated with slow-growing Al2O3 scales that remain adherent to superalloy components after many thermal cycles. Historically, good oxidation resistance has been obtained by coating these components with Ni-Cr-Al-Y coatings, where small additions of yttrium (Y) were necessary for scale adhesion. Subsequently, it was found that the Y aids scale adhesion by preventing sulfur from segregating to the scale metal interface and thus preventing the sulfur from weakening the oxide-metal bonds. Y is a difficult element to incorporate in single-crystal superalloy castings, but it was shown in early work at the NASA Lewis Research Center that good adhesion could be obtained for low-sulfur, uncoated, singlecrystal superalloys, without Y additions. Low sulfur contents for these uncoated superalloys were achieved in the laboratory by a high-temperature hydrogen annealing process. This process allows segregation and surface cleaning of sulfur monolayers in a reducing environment. Another approach is to remove sulfur from the alloy in the melting process. The present study was designed to establish a guideline for the minimum level of desulfurization needed to achieve maximum performance. Coupons of various thicknesses of the superalloy PWA 1480 were hydrogen annealed at various times (8 to 100 hr) and temperatures (1000 to 1300 C), resulting in coupons with sulfur contents ranging from about 0.05 to 5 ppm. Cyclic oxidation tests at 1100 C were then used to assess adhesion and spalling. The weight change of one set of 20-mil (0.5-mm) samples, annealed for 20 hr at 1000, 1100, 1200, and 1300 C, is shown in the following figure. Clearly, the effect of the annealing temperature is quite dramatic in that the higher temperatures produced scales that spalled very little, whereas the lower temperatures resulted in severe weight losses comparable to those for the as-received, unannealed sample.
14 CFR 29.49 - Performance at minimum operating speed.
Code of Federal Regulations, 2014 CFR
2014-01-01
... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...
14 CFR 29.49 - Performance at minimum operating speed.
Code of Federal Regulations, 2013 CFR
2013-01-01
... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...
14 CFR 29.49 - Performance at minimum operating speed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... minimum operating speed. (a) For each Category A helicopter, the hovering performance must be determined... helicopter, the hovering performance must be determined over the ranges of weight, altitude, and temperature...) The helicopter in ground effect at a height consistent with normal takeoff procedures. (c) For each...
Behavioral and physiological significance of minimum resting metabolic rate in king penguins.
Halsey, L G; Butler, P J; Fahlman, A; Woakes, A J; Handrich, Y
2008-01-01
Because fasting king penguins (Aptenodytes patagonicus) need to conserve energy, it is possible that they exhibit particularly low metabolic rates during periods of rest. We investigated the behavioral and physiological aspects of periods of minimum metabolic rate in king penguins under different circumstances. Heart rate (f(H)) measurements were recorded to estimate rate of oxygen consumption during periods of rest. Furthermore, apparent respiratory sinus arrhythmia (RSA) was calculated from the f(H) data to determine probable breathing frequency in resting penguins. The most pertinent results were that minimum f(H) achieved (over 5 min) was higher during respirometry experiments in air than during periods ashore in the field; that minimum f(H) during respirometry experiments on water was similar to that while at sea; and that RSA was apparent in many of the f(H) traces during periods of minimum f(H) and provides accurate estimates of breathing rates of king penguins resting in specific situations in the field. Inferences made from the results include that king penguins do not have the capacity to reduce their metabolism to a particularly low level on land; that they can, however, achieve surprisingly low metabolic rates at sea while resting in cold water; and that during respirometry experiments king penguins are stressed to some degree, exhibiting an elevated metabolism even when resting.
Ambient air pollution, temperature and out-of-hospital coronary deaths in Shanghai, China.
Dai, Jinping; Chen, Renjie; Meng, Xia; Yang, Changyuan; Zhao, Zhuohui; Kan, Haidong
2015-08-01
Few studies have evaluated the effects of ambient air pollution and temperature in triggering out-of-hospital coronary deaths (OHCDs) in China. We evaluated the associations of air pollution and temperature with daily OHCDs in Shanghai, China from 2006 to 2011. We applied an over-dispersed generalized additive model and a distributed lag nonlinear model to analyze the effects of air pollution and temperature, respectively. A 10 μg/m(3) increase in the present-day PM10, PM2.5, SO2, NO2 and CO were associated with increases in OHCD mortality of 0.49%, 0.68%, 0.88%, 1.60% and 0.08%, respectively. A 1 °C decrease below the minimum-mortality temperature corresponded to a 3.81% increase in OHCD mortality on lags days 0-21, and a 1 °C increase above minimum-mortality temperature corresponded to a 4.61% increase over lag days 0-3. No effects were found for in-hospital coronary deaths. This analysis suggests that air pollution, low temperature and high temperature may increase the risk of OHCDs. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Selvarajan, Reena Sri; Hamzah, Azrul Azlan; Majlis, Burhanuddin Yeop
2017-08-01
First pristine graphene was successfully produced by mechanical exfoliation and electrically characterized in 2004 by Andre Geim and Konstantin Novoselov at University of Manchester. Since its discovery in 2004, graphene also known as `super' material that has enticed many researchers and engineers to explore its potential in ultrasensitive detection of analytes in biosensing applications. Among myriad reported sensors, biosensors based on field effect transistors (FETs) have attracted much attention. Thus, implementing graphene as conducting channel material hastens the opportunities for production of ultrasensitive biosensors for future device applications. Herein, we have reported electrical characteristics of graphene based field effect transistor (GFET) for ADH detection. GFET was modelled and simulated using Lumerical DEVICE charge transport solver (DEVICE CT). Electrical characteristics comprising of transfer and output characteristics curves are reported in this study. The device shows ambipolar curve and achieved a minimum conductivity of 0.23912 e5A at Dirac point. However, the curve shifts to the left and introduces significant changes in the minimum conductivity as drain voltage is increased. Output characteristics of GFET exhibits linear Id - Vd dependence characteristics for gate voltage ranging from 0 to 1.5 V. In addition, behavior of electrical transport through GFET was analyzed for various simulation temperatures. It clearly proves that the electrical transport in GFET is dependent on the simulation temperature as it may vary the maximum resistance in channel of the device. Therefore, this unique electrical characteristics of GFET makes it as a promising candidate for ultrasensitive detection of small biomolecules such as ADH in biosensing applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirkpatrick, R. C.
Nuclear fusion was discovered experimentally in 1933-34 and other charged particle nuclear reactions were documented shortly thereafter. Work in earnest on the fusion ignition problem began with Edward Teller's group at Los Alamos during the war years. His group quantified all the important basic atomic and nuclear processes and summarized their interactions. A few years later, the success of the early theory developed at Los Alamos led to very successful thermonuclear weapons, but also to decades of unsuccessful attempts to harness fusion as an energy source of the future. The reasons for this history are many, but it seems appropriatemore » to review some of the basics with the objective of identifying what is essential for success and what is not. This tutorial discusses only the conditions required for ignition in small fusion targets and how the target design impacts driver requirements. Generally speaking, the driver must meet the energy, power and power density requirements needed by the fusion target. The most relevant parameters for ignition of the fusion fuel are the minimum temperature and areal density (rhoR), but these parameters set secondary conditions that must be achieved, namely an implosion velocity, target size and pressure, which are interrelated. Despite the apparent simplicity of inertial fusion targets, there is not a single mode of fusion ignition, and the necessary combination of minimum temperature and areal density depends on the mode of ignition. However, by providing a magnetic field of sufficient strength, the conditions needed for fusion ignition can be drastically altered. Magnetized target fusion potentially opens up a vast parameter space between the extremes of magnetic and inertial fusion.« less
Effects of temperature and salinity on light scattering by water
NASA Astrophysics Data System (ADS)
Zhang, Xiaodong; Hu, Lianbo
2010-04-01
A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.
Steps towards understanding deep atmospheric heating in flares
NASA Technical Reports Server (NTRS)
Mauas, Pablo J. D.; Machado, Marcos E.
1986-01-01
Different aspects of the heating of the deep solar atmosphere during flares, including temperature minimum enhancements and white light emission, are discussed. The proper treatment of H(-) radiative losses is discussed, and compared with previous studies, as well as a quantitative analysis of the ionizing effect of nonthermal particles and ultraviolet radiation. It is concluded that temperature minimum heating may be a natural consequence of the global radiation transport in flares. The implications of these results are discussed within the context of homogeneous and inhomogeneous models of the solar atmosphere.
1981-08-19
versus Visibility; Sky Cover; ( E ) Psychrometric Summaries (daily maximum and minimum temperatures, extreme maximum and minimum temperatures, psychrometric...frequency of occurance or cumulative percentage frequency of occuring tables. UNCLASSIFIED SCUPU)?y CLASaIFICATION OF THIS PAGE(Waht Dat E moli A - I...i,. -t’ r .corvi or QL.;V.A I-)tic ai t r’& iolL; recUl’d Et. Lxki-dGiuI ii.Trly ii~tervais. DAILY OBSERVATIONS S- t tr’ o. re .;,:cLt e , !’ru: at
Yilmaz, Sevgi; Toy, Süleyman; Demircioglu Yildiz, Nalan; Yilmaz, Hasan
2009-01-01
In the study, main purpose was to determine the effect of population growth along with the increase in urbanisation, motor vehicle use and green area amount on the temperature values using a 55-year data set in Erzurum, which is hardly industrialised, and one of the coldest cities with highest elevation in Turkey. Although the semi-decadal increases, means of which are 0.1 degrees C for mean, minimum and maximum temperatures, are not clear enough to make a strong comment even in the lights of figures or tables, it was found as the result of the statistical analysis that population growth and increases in the number of vehicles, the number of buildings and the green area amount in the city have no significant effect on mean temperatures. However, the relationships between population growth and maximum temperature; and the number of vehicles and minimum temperature were found to be statistically significant.
NASA Astrophysics Data System (ADS)
Spangehl, Thomas; Cubasch, Ulrich; Schimanke, Semjon
A fully coupled AO-GCM including representation of the middle atmosphere is used for tran-sient simulation of climate from 1630 to 2000 AD. For better representation of changes in the UV/visible part of the solar spectrum an improved short-wave radiation scheme is implemented. The model is driven by changes in GHG concentrations, solar activity and volcanic eruptions. Solar variability is introduced via changes in total/spectral solar irradiance (TSI/SSI) and pre-scribed changes in stratospheric ozone. The secular trend in TSI is in the range of 0.1 percent increase from Maunder Minimum to present-day. Volcanic eruptions are represented via abrupt reduction in TSI. With the applied forcings the model does not simulate a clear reduction of the annual Northern Hemisphere (NH) mean near surface temperature during Maunder Minimum. By contrast the Dalton Minimum is characterized by distinct cooling and there is a significant raise of NH mean near surface temperature until the end of the 20th century. Focusing on the North Atlantic/European region the winter mean near surface temperature change pat-tern from Late Maunder Minimum (1675-1715) to present-day (1960-1990) reveals maximum warming over north-eastern Europe and cooling over the western North Atlantic with maxi-mum cooling west of Greenland. These changes can partly be explained by a shift of the NAO towards a more positive phase. The simulated changes in tropospheric circulation are discussed with special emphasize on the role of the solar forcing. Besides the stratospheric solar forcing which may affect NAO variability via downward propagation of the solar signal from the strato-sphere to the troposphere the magnitude of the secular trend in TSI might play a role. For the period from Maunder Minimum to present-day the simulation shows less near surface temper-ature increase especially over arctic regions when compared to simulations performed with the same model including the standard radiation scheme but applying larger TSI variations. The associated changes in lower tropospheric baroclinicity are more favourable for synoptic scale wave activity over the North Atlantic and might thereby contribute to strengthening of the NAO.
How to obtain a shortest mode converter based on periodic waveguide with limited index contrast?
NASA Astrophysics Data System (ADS)
Zhang, Lingxuan; Zhang, Wenfu; Wang, Guoxi; Hu, Yaowei; Ge, Zhiqiang; Wang, Leiran; Sun, Qibing; Wang, Weiqiang; Gong, Yongkang; Zhao, Wei
2017-05-01
Mode converter is one of most significant elements in photonic integrated circuits. It relies on increasing index contrast to shorten its length. However, index contrast is limited for technology. In addition, an overlarge index contrast leads to some disadvantages, such as large scattering loss, reflection loss, and small tolerance for manufacturing. Thus, an approximate scheme to design a mode converter is manipulating the transverse distribution of index to achieve the minimum length when the index contrast is given. We have analytically deduced the theoretical maximum coupled efficiency in periodic waveguide, which determines the minimum coupling length of mode converter. What is more, we have demonstrated how to construct a distribution function of indices in a cross section of waveguide to achieve the minimum length and a case is also given to illustrate the process. Proofs, based on both mathematic derivation and numerical simulation, have been exhibited in the paper.
NASA Astrophysics Data System (ADS)
Tian, D.; Cammarano, D.
2017-12-01
Modeling changes of crop production at regional scale is important to make adaptation measures for sustainably food supply under global change. In this study, we explore how changing climate extremes in the 20th and 21st century affect maize (summer crop) and wheat (winter crop) yields in an agriculturally important region: the southeast United States. We analyze historical (1950-1999) and projected (2006-2055) precipitation and temperature extremes by calculating the changes of 18 climate extreme indices using the statistically downscaled CMIP5 data from 10 general circulation models (GCMs). To evaluate how these climate extremes affect maize and wheat yields, historical baseline and projected maize and wheat yields under RCP4.5 and RCP8.5 scenarios are simulated using the DSSAT-CERES maize and wheat models driven by the same downscaled GCMs data. All of the changes are examined at 110 locations over the study region. The results show that most of the precipitation extreme indices do not have notable change; mean precipitation, precipitation intensity, and maximum 1-day precipitation are generally increased; the number of rainy days is decreased. The temperature extreme indices mostly showed increased values on mean temperature, number of high temperature days, diurnal temperature range, consecutive high temperature days, maximum daily maximum temperature, and minimum daily minimum temperature; the number of low temperature days and number of consecutive low temperature days are decreased. The conditional probabilistic relationships between changes in crop yields and changes in extreme indices suggested different responses of crop yields to climate extremes during sowing to anthesis and anthesis to maturity periods. Wheat yields and crop water productivity for wheat are increased due to an increased CO2 concentration and minimum temperature; evapotranspiration, maize yields, and crop water productivity for wheat are decreased owing to the increased temperature extremes. We found the effects of precipitation changes on both yields are relatively uncertain.
Modeling fish community dynamics in Florida Everglades: Role of temperature variation
Al-Rabai'ah, H. A.; Koh, H. L.; DeAngelis, Donald L.; Lee, Hooi-Ling
2002-01-01
The model shows that the temperature dependent starvation mortality is an important factor that influences fish population densities. It also shows high fish population densities at some temperature ranges when this consumption need is minimum. Several sensitivity analyses involving variations in temperature terms, food resources and water levels are conducted to ascertain the relative importance of temperature dependence terms.
Contribution of urban expansion and a changing climate to decline of a butterfly fauna.
Casner, Kayce L; Forister, Matthew L; O'Brien, Joshua M; Thorne, James; Waetjen, David; Shapiro, Arthur M
2014-06-01
Butterfly populations are naturally patchy and undergo extinctions and recolonizations. Analyses based on more than 2 decades of data on California's Central Valley butterfly fauna show a net loss in species richness through time. We analyzed 22 years of phenological and faunistic data for butterflies to investigate patterns of species richness over time. We then used 18-22 years of data on changes in regional land use and 37 years of seasonal climate data to develop an explanatory model. The model related the effects of changes in land-use patterns, from working landscapes (farm and ranchland) to urban and suburban landscapes, and of a changing climate on butterfly species richness. Additionally, we investigated local trends in land use and climate. A decline in the area of farmland and ranchland, an increase in minimum temperatures during the summer and maximum temperatures in the fall negatively affected net species richness, whereas increased minimum temperatures in the spring and greater precipitation in the previous summer positively affected species richness. According to the model, there was a threshold between 30% and 40% working-landscape area below which further loss of working-landscape area had a proportionally greater effect on butterfly richness. Some of the isolated effects of a warming climate acted in opposition to affect butterfly richness. Three of the 4 climate variables that most affected richness showed systematic trends (spring and summer mean minimum and fall mean maximum temperatures). Higher spring minimum temperatures were associated with greater species richness, whereas higher summer temperatures in the previous year and lower rainfall were linked to lower richness. Patterns of land use contributed to declines in species richness (although the pattern was not linear), but the net effect of a changing climate on butterfly richness was more difficult to discern. © 2014 Society for Conservation Biology.
NASA Astrophysics Data System (ADS)
Ukhvatkina, Olga N.; Omelko, Alexander M.; Zhmerenetsky, Alexander A.; Petrenko, Tatyana Y.
2018-01-01
The aim of our research was to reconstruct climatic parameters (for the first time for the Sikhote-Alin mountain range) and to compare them with global climate fluctuations. As a result, we have found that one of the most important limiting factors for the study area is the minimum temperatures of the previous autumn-winter season (August-December), and this finding perfectly conforms to that in other territories. We reconstructed the previous August-December minimum temperature for 485 years, from 1529 to 2014. We found 12 cold periods (1535-1540, 1550-1555, 1643-1649, 1659-1667, 1675-1689, 1722-1735, 1791-1803, 1807-1818, 1822-1827, 1836-1852, 1868-1887, 1911-1925) and seven warm periods (1560-1585, 1600-1610, 1614-1618, 1738-1743, 1756-1759, 1776-1781, 1944-2014). These periods correlate well with reconstructed data for the Northern Hemisphere and the neighboring territories of China and Japan. Our reconstruction has 3-, 9-, 20-, and 200-year periods, which may be in line with high-frequency fluctuations in El Niño-Southern Oscillation (ENSO), the short-term solar cycle, Pacific Decadal Oscillation (PDO) fluctuations, and the 200-year solar activity cycle, respectively. We suppose that the temperature of the North Pacific, expressed by the PDO may make a major contribution to regional climate variations. We also assume that the regional climatic response to solar activity becomes apparent in the temperature changes in the northern part of Pacific Ocean and corresponds to cold periods during the solar minimum. These comparisons show that our climatic reconstruction based on tree ring chronology for this area may potentially provide a proxy record for long-term, large-scale past temperature patterns for northeastern Asia. The reconstruction reflects the global traits and local variations in the climatic processes of the southern territory of the Russian Far East for more than the past 450 years.
40 CFR 600.010-08 - Vehicle test requirements and minimum data requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., US06, SC03 and Cold temperature FTP data from each subconfiguration included within the model type. (2... data requirements. 600.010-08 Section 600.010-08 Protection of Environment ENVIRONMENTAL PROTECTION... Provisions § 600.010-08 Vehicle test requirements and minimum data requirements. (a) Unless otherwise...
No minimum threshold for ozone-induced changes in soybean canopy fluxes
USDA-ARS?s Scientific Manuscript database
Tropospheric ozone concentrations [O3] are increasing at rates that exceed any other pollutant. This highly reactive gas drives reductions in plant productivity and canopy water use while also increasing canopy temperature and sensible heat flux. It is not clear whether a minimum threshold of ozone ...
Current Pulses Momentarily Enhance Thermoelectric Cooling
NASA Technical Reports Server (NTRS)
Snyder, G. Jeffrey; Fleurial, Jean-Pierre; Caillat, Thierry; Chen, Gang; Yang, Rong Gui
2004-01-01
The rates of cooling afforded by thermoelectric (Peltier) devices can be increased for short times by applying pulses of electric current greater than the currents that yield maximum steady-state cooling. It has been proposed to utilize such momentary enhancements of cooling in applications in which diode lasers and other semiconductor devices are required to operate for times of the order of milliseconds at temperatures too low to be easily obtainable in the steady state. In a typical contemplated application, a semiconductor device would be in contact with the final (coldest) somewhat taller stage of a multistage thermoelectric cooler. Steady current would be applied to the stages to produce steady cooling. Pulsed current would then be applied, enhancing the cooling of the top stage momentarily. The principles of operation are straightforward: In a thermoelectric device, the cooling occurs only at a junction at one end of the thermoelectric legs, at a rate proportional to the applied current. However, Joule heating occurs throughout the device at a rate proportional to the current squared. Hence, in the steady state, the steady temperature difference that the device can sustain increases with current only to the point beyond which the Joule heating dominates. If a pulse of current greater than the optimum current (the current for maximum steady cooling) is applied, then the junction becomes momentarily cooled below its lowest steady temperature until thermal conduction brings the resulting pulse of Joule heat to the junction and thereby heats the junction above its lowest steady temperature. A theoretical and experimental study of such transient thermoelectric cooling followed by transient Joule heating in response to current pulses has been performed. The figure presents results from one of the experiments. The study established the essential parameters that characterize the pulse cooling effect, including the minimum temperature achieved, the maximum temperature overshoot, the time to reach minimum temperature, the time while cooled, and the time between pulses. It was found that at large pulse amplitude, the amount of pulse supercooling is about a fourth of the maximum steady-state temperature difference. For the particular thermoelectric device used in one set of the experiments, the practical optimum pulse amplitude was found to be about 3 times the optimum steady-state current. In a further experiment, a pulse cooler was integrated into a small commercial thermoelectric threestage cooler and found to provide several degrees of additional cooling for a time long enough to operate a semiconductor laser in a gas sensor.
NASA Technical Reports Server (NTRS)
Friedell, M. V.; Anderson, A. J.
1974-01-01
Thermal switch maintains temperature of planetary lander, within definite range, by transferring heat. Switch produces relatively large stroke and force, uses minimum electrical power, is lightweight, is vapor pressure actuated, and withstands sterilization temperatures without damage.
Nonlinear distortion analysis for single heterojunction GaAs HEMT with frequency and temperature
NASA Astrophysics Data System (ADS)
Alim, Mohammad A.; Ali, Mayahsa M.; Rezazadeh, Ali A.
2018-07-01
Nonlinearity analysis using two-tone intermodulation distortion (IMD) technique for 0.5 μm gate-length AlGaAs/GaAs based high electron mobility transistor have been investigated based on biasing conditions, input power, frequency and temperature. The outcomes indicate a significant modification on the output IMD power and as well as the minimum distortion level. The input IMD power effects the output current and subsequently the threshold voltage reduces, resulting to an increment in the output IMD power. Both frequency and temperature reduces the magnitude of the output IMDs. In addition, the threshold voltage response with temperature alters the notch point of the nonlinear output IMD’s accordingly. The aforementioned investigation will help the circuit designers to evaluate the best biasing option in terms of minimum distortion, maximum gain for future design optimizations.
Performance of a catalytic reactor at simulated gas turbine combustor operating conditions
NASA Technical Reports Server (NTRS)
Anderson, D. N.; Tacina, R. R.; Mroz, T. S.
1975-01-01
The performance of a catalytic reactor 12 cm in diameter and 17 cm long was evaluated at simulated gas turbine combustor operating conditions using premixed propane and air. Inlet temperatures of 600 and 800 K, pressures of 3 and 6 atm, and reference velocities of 9 to 30 m/s were tested. Data were taken for equivalence ratios as high as 0.43. The operating range was limited on the low-temperature side by very poor efficiency; the minimum exit temperature for good performance ranged from 1400 to 1600 K depending on inlet conditions. As exit temperatures were raised above this minimum, emissions of unburned hydrocarbons decreased, carbon monoxide emissions became generally less than 1 g CO/kg fuel, and nitrogen oxides were less than about 0.1 g NO2/kg fuel.
NASA Astrophysics Data System (ADS)
Abecia, J. A.; Arrébola, F.; Macías, A.; Laviña, A.; González-Casquet, O.; Benítez, F.; Palacios, C.
2016-10-01
A total number of 1092 artificial inseminations (AIs) performed from March to May were documented over four consecutive years on 10 Payoya goat farms (36° N) and 19,392 AIs on 102 Rasa Aragonesa sheep farms (41° N) over 10 years. Mean, maximum, and minimum ambient temperatures, mean relative humidity, mean solar radiation, and total rainfall on each insemination day were recorded. Overall, fertility rates were 58 % in goats and 45 % in sheep. The fertility rates of the highest and lowest deciles of each of the meteorological variables indicated that temperature and rainfall had a significant effect on fertility in goats. Specifically, inseminations that were performed when mean (68 %), maximum (68 %), and minimum (66 %) temperatures were in the highest decile, and rainfall was in the lowest decile (59 %), had a significantly ( P < 0.0001) higher proportion of does that became pregnant than did the ewes in the lowest decile (56, 54, 58, and 49 %, respectively). In sheep, the fertility rates of the highest decile of mean (62 %), maximum (62 %), and minimum (52 %) temperature, RH (52 %), THI (53 %), and rainfall (45 %) were significantly higher ( P < 0.0001) than were the fertility rates among ewes in the lowest decile (46, 45, 45, 45, 46, and 43 %, respectively). In conclusion, weather was related to fertility in small ruminants after AI in spring. It remains to be determined whether scheduling the dates of insemination based on forecasted temperatures can improve the success of AI in goats and sheep.
Panchen, Zoe A; Primack, Richard B; Anisko, Tomasz; Lyons, Robert E
2012-04-01
The global climate is changing rapidly and is expected to continue changing in coming decades. Studying changes in plant flowering times during a historical period of warming temperatures gives us a way to examine the impacts of climate change and allows us to predict further changes in coming decades. The Greater Philadelphia region has a long and rich history of botanical study and documentation, with abundant herbarium specimens, field observations, and botanical photographs from the mid-1800s onward. These extensive records also provide an opportunity to validate methodologies employed by other climate change researchers at a different biogeographical area and with a different group of species. Data for 2539 flowering records from 1840 to 2010 were assessed to examine changes in flowering response over time and in relation to monthly minimum temperatures of 28 Piedmont species native to the Greater Philadelphia region. Regression analysis of the date of flowering with year or with temperature showed that, on average, the Greater Philadelphia species studied are flowering 16 d earlier over the 170-yr period and 2.7 d earlier per 1°C rise in monthly minimum temperature. Of the species studied, woody plants with short flowering duration are the best indicators of a warming climate. For monthly minimum temperatures, temperatures 1 or 2 mo prior to flowering are most significantly correlated with flowering time. Studies combining herbarium specimens, photographs, and field observations are an effective method for detecting the effects of climate change on flowering times.
Thermal tolerance of the invasive Belonesox belizanus, pike killifish, throughout ontogeny.
Kerfoot, James Roy
2012-06-01
The goal of this study was to characterize the variability of thermal tolerances between life-history stages of the invasive Belonesox belizanus and attempt to describe the most likely stage of dispersal across south Florida. In the laboratory, individuals were acclimated to three temperatures (20, 25, or 30°C). Upper and lower lethal thermal limits and temperatures at which feeding ceased were measured for neonates, juveniles, and adults. Thermal tolerance polygons were developed to represent the thermal tolerance range of each life-history stage. Results indicated that across acclimation temperatures upper lethal thermal limits were similar for all three stages (38°C). However, minimum lethal thermal limits were significantly different at the 30°C acclimation temperature, where juveniles (9°C) had an approximately 2.0°C and 4.0°C lower minimum lethal thermal limit compared with adults and neonates, respectively. According to thermal tolerance polygons, juveniles had an average tolerance polygonal area almost 20°C(2) larger than adults, indicating the greatest thermal tolerance of the three life-history stages. Variation in cessation of feeding temperatures indicated no significant difference between juveniles and adults. Overall, results of this study imply that juvenile B. belizanus may be equipped with the physiological flexibility to exercise habitat choice and reduce potential intraspecific competition with adults for limited food resources. Given its continued dispersal, the minimum thermal limit of juveniles may aid in continued dispersal of this species, especially during average winter temperatures throughout Florida where juveniles could act to preserve remnant populations until seasonal temperatures increase. © 2012 WILEY PERIODICALS, INC.
The Peculiar Solar Minimum 23/24 Revealed by the Microwave Butterfly Diagram
NASA Technical Reports Server (NTRS)
Gopalswamy, Natchimuthuk; Yashiro, Seiji; Makela, Pertti; Shibasaki, Kiyoto; Hathaway, David
2010-01-01
The diminished polar magnetic field strength during the minimum between cycles 23 and 24 is also reflected in the thermal radio emission originating from the polar chromosphere. During solar minima, the polar corona has extended coronal holes containing intense unipolar flux. In microwave images, the coronal holes appear bright, with a brightness enhancement of 500 to 2000 K with respect to the quiet Sun. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is approx.10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radioheliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes..
9 CFR 381.304 - Operations in the thermal processing area.
Code of Federal Regulations, 2011 CFR
2011-01-01
... establishment at the time the processing cycle begins to assure that the temperature of the contents of every... processing operation times. Temperature/time recording devices shall correspond within 15 minutes to the time... (or operating process schedules) for daily production, including minimum initial temperatures and...
9 CFR 381.304 - Operations in the thermal processing area.
Code of Federal Regulations, 2013 CFR
2013-01-01
... establishment at the time the processing cycle begins to assure that the temperature of the contents of every... processing operation times. Temperature/time recording devices shall correspond within 15 minutes to the time... (or operating process schedules) for daily production, including minimum initial temperatures and...
9 CFR 381.304 - Operations in the thermal processing area.
Code of Federal Regulations, 2014 CFR
2014-01-01
... establishment at the time the processing cycle begins to assure that the temperature of the contents of every... processing operation times. Temperature/time recording devices shall correspond within 15 minutes to the time... (or operating process schedules) for daily production, including minimum initial temperatures and...
9 CFR 381.304 - Operations in the thermal processing area.
Code of Federal Regulations, 2012 CFR
2012-01-01
... establishment at the time the processing cycle begins to assure that the temperature of the contents of every... processing operation times. Temperature/time recording devices shall correspond within 15 minutes to the time... (or operating process schedules) for daily production, including minimum initial temperatures and...
An Axial-Torsional, Thermomechanical Fatigue Testing Technique
NASA Technical Reports Server (NTRS)
Kalluri, Sreeramesh; Bonacuse, Peter J.
1995-01-01
A technique for conducting strain-controlled, thermomechanical, axial-torsional fatigue tests on thin-walled tubular specimens was developed. Three waveforms of loading, namely, the axial strain waveform, the engineering shear strain waveform, and the temperature waveform were required in these tests. The phasing relationships between the mechanical strain waveforms and the temperature and axial strain waveforms were used to define a set of four axial-torsional, thermomechanical fatigue (AT-TMF) tests. Real-time test control (3 channels) and data acquisition (a minimum of 7 channels) were performed with a software program written in C language and executed on a personal computer. The AT-TMF testing technique was used to investigate the axial-torsional thermomechanical fatigue behavior of a cobalt-base superalloy, Haynes 188. The maximum and minimum temperatures selected for the AT-TMF tests were 760 and 316 C, respectively. Details of the testing system, calibration of the dynamic temperature profile of the thin-walled tubular specimen, thermal strain compensation technique, and test control and data acquisition schemes, are reported. The isothermal, axial, torsional, and in- and out-of-phase axial-torsional fatigue behaviors of Haynes 188 at 316 and 760 C were characterized in previous investigations. The cyclic deformation and fatigue behaviors of Haynes 188 in AT-TMF tests are compared to the previously reported isothermal axial-torsional behavior of this superalloy at the maximum and minimum temperatures.
The Managerial Grid; Key Orientations for Achieving Production through People.
ERIC Educational Resources Information Center
Blake, Robert R; Mouton, Jane S.
The Managerial Grid arranges a concern for production on the horizontal axis and a concern for people on the vertical axis of a coordinate system: 1,1 shows minimum concern for production and people; 9,1 shows major production emphasis and minimum human considerations; 1,9 shows maximum concern for friendly working conditions and minimum…
NASA Astrophysics Data System (ADS)
Vignesh, S.; Dinesh Babu, P.; Surya, G.; Dinesh, S.; Marimuthu, P.
2018-02-01
The ultimate goal of all production entities is to select the process parameters that would be of maximum strength, minimum wear and friction. The friction and wear are serious problems in most of the industries which are influenced by the working set of parameters, oxidation characteristics and mechanism involved in formation of wear. The experimental input parameters such as sliding distance, applied load, and temperature are utilized in finding out the optimized solution for achieving the desired output responses such as coefficient of friction, wear rate, and volume loss. The optimization is performed with the help of a novel method, Elitist Non-dominated Sorting Genetic Algorithm (NSGA-II) based on an evolutionary algorithm. The regression equations obtained using Response Surface Methodology (RSM) are used in determining the optimum process parameters. Further, the results achieved through desirability approach in RSM are compared with that of the optimized solution obtained through NSGA-II. The results conclude that proposed evolutionary technique is much effective and faster than the desirability approach.
DOE Office of Scientific and Technical Information (OSTI.GOV)
González, R. I.; Rogan, J.; Valdivia, J. A.
2015-12-31
Imogolite is an inorganic nanotube, that forms naturally in weathered volcanic ashes, and it can be synthesized in nearly monodisperse diameters. However, long after its successful synthesis, the details of the way it is achieved are not fully understood. Here we elaborate on a model of its synthesis, which starts with a planar aluminosilicate sheet that is allowed to evolve freely, by means of classical molecular dynamics, until it achieves its minimum energy configuration. The minimal structures that the system thus adopts are tubular, scrolled, and more complex conformations, depending mainly on temperature as a driving force. Here we focusmore » on the effect that the arrangement of the hydroxyl groups in the inner wall of the nanotube have on the minimal nanotubular configurations that we obtain are monodispersed in diameter, and quite similar to both from the those of weathered natural volcanic ashes, and to the ones that are synthesized in the laboratory. In this contribution we expand on the atomic mechanisms behind those behaviors.« less
Performance of the helium dewar and the cryocoolers of the Hitomi soft x-ray spectrometer
NASA Astrophysics Data System (ADS)
Fujimoto, Ryuichi; Takei, Yoh; Mitsuda, Kazuhisa; Yamasaki, Noriko Y.; Tsujimoto, Masahiro; Koyama, Shu; Ishikawa, Kumi; Sugita, Hiroyuki; Sato, Yoichi; Shinozaki, Keisuke; Okamoto, Atsushi; Kitamoto, Shunji; Hoshino, Akio; Sato, Kosuke; Ezoe, Yuichiro; Ishisaki, Yoshitaka; Yamada, Shinya; Seta, Hiromi; Ohashi, Takaya; Tamagawa, Toru; Noda, Hirofumi; Sawada, Makoto; Tashiro, Makoto; Yatsu, Yoichi; Mitsuishi, Ikuyuki; Kanao, Kenichi; Yoshida, Seiji; Miyaoka, Mikio; Tsunematsu, Shoji; Otsuka, Kiyomi; Narasaki, Katsuhiro; DiPirro, Michael J.; Shirron, Peter J.; Sneiderman, Gary A.; Kilbourne, Caroline A.; Porter, Frederick Scott; Chiao, Meng P.; Eckart, Megan E.
2018-01-01
The soft x-ray spectrometer (SXS) was a cryogenic high-resolution x-ray spectrometer onboard the Hitomi (ASTRO-H) satellite that achieved energy resolution of 5 eV at 6 keV, by operating the detector array at 50 mK using an adiabatic demagnetization refrigerator (ADR). The cooling chain from room temperature to the ADR heat sink was composed of two-stage Stirling cryocoolers, a He4 Joule-Thomson cryocooler, and superfluid liquid helium and was installed in a dewar. It was designed to achieve a helium lifetime of more than 3 years with a minimum of 30 L. The satellite was launched on February 17, 2016, and the SXS worked perfectly in orbit, until March 26 when the satellite lost its function. It was demonstrated that the heat load on the helium tank was about 0.7 mW, which would have satisfied the lifetime requirement. This paper describes the design, results of ground performance tests, prelaunch operations, and initial operation and performance in orbit of the flight dewar and the cryocoolers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Fu-Ting; Fu, Congbin; Qian, Yun
Two measures of intra-seasonal variability, indicated respectively by standard deviations (SD) and day-to-day (DTD) fluctuations denoted by absolute differences between adjacent 2-day periods, as well as their relationships with large-scale circulation patterns were investigated in China during 1962–2008 on the basis of homogenized daily temperature records from 549 local stations and reanalysis data. Our results show that both the SD and DTD of daily minimum temperatures (Tmin) in summer as well as the minimum and maximum temperatures in winter have been decreasing, while the daily maximum temperature (Tmax) variability in summer is fluctuating more, especially over southern China. In summer,more » an attribution analysis indicates that the intensity of the Western Pacific Subtropical High (WPSH) and high-level East Asian Subtropical Jet stream (EASJ) are positively correlated with both SD and DTD, but the correlation coefficients are generally greater with the SD than with the DTD of the daily maximum temperature, Tmax. In contrast, the location of the EASJ shows the opposite correlation pattern, with intensity regarding the correlation with both SD and DTD. In winter, the Arctic Oscillation (AO) is negatively correlated with both the SD and DTD of the daily minimum temperature, but its intra-seasonal variability exhibits good agreement with the SD of the Tmin. The Siberian High acts differently with respect to the SD and DTD of the Tmin, demonstrating a regionally consistent positive correlation with the SD. Overall, the large-scale circulation can well explain the intra-seasonal SD, but DTD fluctuations may be more local and impacted by local conditions, such as changes in the temperature itself, the land surface, and so on.« less
Trend analysis of air temperature and precipitation time series over Greece: 1955-2010
NASA Astrophysics Data System (ADS)
Marougianni, G.; Melas, D.; Kioutsioukis, I.; Feidas, H.; Zanis, P.; Anandranistakis, E.
2012-04-01
In this study, a database of air temperature and precipitation time series from the network of Hellenic National Meteorological Service has been developed in the framework of the project GEOCLIMA, co-financed by the European Union and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the Research Funding Program COOPERATION 2009. Initially, a quality test was applied to the raw data and then missing observations have been imputed with a regularized, spatial-temporal expectation - maximization algorithm to complete the climatic record. Next, a quantile - matching algorithm was applied in order to verify the homogeneity of the data. The processed time series were used for the calculation of temporal annual and seasonal trends of air temperature and precipitation. Monthly maximum and minimum surface air temperature and precipitation means at all available stations in Greece were analyzed for temporal trends and spatial variation patterns for the longest common time period of homogenous data (1955 - 2010), applying the Mann-Kendall test. The majority of the examined stations showed a significant increase in the summer maximum and minimum temperatures; this could be possibly physically linked to the Etesian winds, because of the less frequent expansion of the low over the southeastern Mediterranean. Summer minimum temperatures have been increasing at a faster rate than that of summer maximum temperatures, reflecting an asymmetric change of extreme temperature distributions. Total annual precipitation has been significantly decreased at the stations located in western Greece, as well as in the southeast, while the remaining areas exhibit a non-significant negative trend. This reduction is very likely linked to the positive phase of the NAO that resulted in an increase in the frequency and persistence of anticyclones over the Mediterranean.
Christy, J.R.; Norris, W.B.; Redmond, K.; Gallo, K.P.
2006-01-01
A procedure is described to construct time series of regional surface temperatures and is then applied to interior central California stations to test the hypothesis that century-scale trend differences between irrigated and nonirrigated regions may be identified. The procedure requires documentation of every point in time at which a discontinuity in a station record may have occurred through (a) the examination of metadata forms (e.g., station moves) and (b) simple statistical tests. From this "homogeneous segments" of temperature records for each station are defined. Biases are determined for each segment relative to all others through a method employing mathematical graph theory. The debiased segments are then merged, forming a complete regional time series. Time series of daily maximum and minimum temperatures for stations in the irrigated San Joaquin Valley (Valley) and nearby nonirrigated Sierra Nevada (Sierra) were generated for 1910-2003. Results show that twentieth-century Valley minimum temperatures are warming at a highly significant rate in all seasons, being greatest in summer and fall (> +0.25??C decade-1). The Valley trend of annual mean temperatures is +0.07?? ?? 0.07??C decade-1. Sierra summer and fall minimum temperatures appear to be cooling, but at a less significant rate, while the trend of annual mean Sierra temperatures is an unremarkable -0.02?? ?? 0.10??C decade-1. A working hypothesis is that the relative positive trends in Valley minus Sierra minima (>0.4??C decade-1 for summer and fall) are related to the altered surface environment brought about by the growth of irrigated agriculture, essentially changing a high-albedo desert into a darker, moister, vegetated plain. ?? 2006 American Meteorological Society.
NASA Astrophysics Data System (ADS)
Liseau, R.; Montesinos, B.; Olofsson, G.; Bryden, G.; Marshall, J. P.; Ardila, D.; Bayo Aran, A.; Danchi, W. C.; del Burgo, C.; Eiroa, C.; Ertel, S.; Fridlund, M. C. W.; Krivov, A. V.; Pilbratt, G. L.; Roberge, A.; Thébault, P.; Wiegert, J.; White, G. J.
2013-01-01
Context. Chromospheres and coronae are common phenomena on solar-type stars. Understanding the energy transfer to these heated atmospheric layers requires direct access to the relevant empirical data. Study of these structures has, by and large, been limited to the Sun thus far. Aims: The region of the temperature reversal can be directly observed only in the far infrared and submillimetre spectral regime. We aim at determining the characteristics of the atmosphere in the region of the temperature minimum of the solar sister star α Cen A. As a bonus this will also provide a detailed mapping of the spectral energy distribution, i.e. knowledge that is crucial when searching for faint, Kuiper belt-like dust emission around other stars. Methods: For the nearby binary system α Cen, stellar parameters are known with high accuracy from measurements. For the basic model parameters Teff, log g and [Fe/H], we interpolate stellar model atmospheres in the grid of Gaia/PHOENIX and compute the corresponding model for the G2 V star α Cen A. Comparison with photometric measurements shows excellent agreement between observed photospheric data in the optical and infrared. For longer wavelengths, the modelled spectral energy distribution is compared to Spitzer-MIPS, Herschel-PACS, Herschel-SPIRE, and APEX-LABOCA photometry. A specifically tailored Uppsala model based on the MARCS code and extending further in wavelength is used to gauge the emission characteristics of α Cen A in the far infared. Results: Similar to the Sun, the far infrared (FIR) emission of α Cen A originates in the minimum temperature region above the stellar photosphere in the visible. However, in comparison with the solar case, the FIR photosphere of α Cen A appears marginally cooler, Tmin ~ T160 μm = 3920 ± 375 K. Beyond the minimum near 160 μm, the brightness temperatures increase, and this radiation very likely originates in warmer regions of the chromosphere of α Cen A. Conclusions: To the best of our knowledge, this is the first time a temperature minimum has been directly measured on a main-sequence star other than the Sun. Based on observations with Herschel, which is an ESA space observatory with science instruments provided by the European-led Principal Investigator consortia and with important participation from NASA.
46 CFR 38.05-2 - Design and construction of cargo tanks-general-TB/ALL.
Code of Federal Regulations, 2010 CFR
2010-10-01
... a pressure equal to the setting of the relief valve. (b) The service temperature is the minimum...=Service temperature. t w=Boiling temperature of gas at normal working pressure of tank but not higher than +32 °F. t b=Boiling temperature of gas at atmospheric pressure. (c) Heat transmission studies, where...
46 CFR 38.05-2 - Design and construction of cargo tanks-general-TB/ALL.
Code of Federal Regulations, 2011 CFR
2011-10-01
... a pressure equal to the setting of the relief valve. (b) The service temperature is the minimum...=Service temperature. t w=Boiling temperature of gas at normal working pressure of tank but not higher than +32 °F. t b=Boiling temperature of gas at atmospheric pressure. (c) Heat transmission studies, where...
Temperature thresholds related to flight of Dendroctonus frontalis Zimm. (Col.: Scolytidae)
John C. Moser; William A. Thompson
1986-01-01
We have plotted the complete range of flight temperatures for the southern pine beele, the first such figures for any bark beetle.The optimum flight temperature was about 27oC.Observed minimum and maximum flight temperatures for southern pine beetle were 6.7oC and 36.7oC, respectively. Projected...
Smith, M. G.
1985-01-01
The growth of coliform organisms on meat tissue from sheep carcasses processed in a commercial abattoir was investigated. The results indicated that for practical purposes the minimum temperature of growth of these organisms on meat may be taken as 8 degrees C. Equations were derived relating the generation time and the lag time of coliform organisms in raw blended mutton to the temperature at which the meat is held. Estimates of growth obtained with these equations were found to agree closely with the experimental results, especially at temperatures above 10 degrees C, and allowed the generation times and the lag times for all temperatures up to 40 degrees C to be calculated. These times were also found to agree closely with the times determined using a strain of Escherichia coli inoculated into blended mutton tissue. A strain of Salmonella typhimurium inoculated in the same way into blended mutton tissue gave longer generation and lag times at temperatures below 15 degrees C. Therefore, it is believed that the calculated tables of lag and generation times included in this paper can be used to determine the length of time raw chilled meat may be held afterwards at temperatures above the minimum temperature of growth without an increase in the number of any salmonella organisms present, and these times include a safety margin at each temperature. The study indicates that the mandatory codes of practice presently applied in commercial abattoirs are too stringent. Maintaining the temperature of boning rooms at 10 degrees C or less does not appear to be necessary providing the meat is processed within the calculated time limits. A relaxation of the restrictions on boning room temperatures would decrease costs, increase worker comfort and safety and would not compromise the bacteriological safety of the meat produced. PMID:3891847
2012-01-01
Background Historically, acid pretreatment technology for the production of bio-ethanol from corn stover has required severe conditions to overcome biomass recalcitrance. However, the high usage of acid and steam at severe pretreatment conditions hinders the economic feasibility of the ethanol production from biomass. In addition, the amount of acetate and furfural produced during harsh pretreatment is in the range that strongly inhibits cell growth and impedes ethanol fermentation. The current work addresses these issues through pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. Results The results showed that deacetylation with 0.1 M NaOH before acid pretreatment improved the monomeric xylose yield in pretreatment by up to 20% while keeping the furfural yield under 2%. Deacetylation also improved the glucose yield by 10% and the xylose yield by 20% during low solids enzymatic hydrolysis. Mechanical refining using a PFI mill further improved sugar yields during both low- and high-solids enzymatic hydrolysis. Mechanical refining also allowed enzyme loadings to be reduced while maintaining high yields. Deacetylation and mechanical refining are shown to assist in achieving 90% cellulose yield in high-solids (20%) enzymatic hydrolysis. When fermentations were performed under pH control to evaluate the effect of deacetylation and mechanical refining on the ethanol yields, glucose and xylose utilizations over 90% and ethanol yields over 90% were achieved. Overall ethanol yields were calculated based on experimental results for the base case and modified cases. One modified case that integrated deacetylation, mechanical refining, and washing was estimated to produce 88 gallons of ethanol per ton of biomass. Conclusion The current work developed a novel bio-ethanol process that features pretreatment with lower acid concentrations and temperatures incorporated with deacetylation and mechanical refining. The new process shows improved overall ethanol yields compared to traditional dilute acid pretreatment. The experimental results from this work support the techno-economic analysis and calculation of Minimum Ethanol Selling Price (MESP) detailed in our companion paper. PMID:22888758
Shape transition with temperature of the pear-shaped nuclei in covariant density functional theory
Zhang, Wei; Niu, Yi-Fei
2017-11-10
The shape evolutions of the pear-shaped nucleimore » $$^{224}$$Ra and even-even $$^{144-154}$$Ba with temperature are investigated by the finite-temperature relativistic mean field theory with the treatment of pairing correlations by the BCS approach. We study the free energy surfaces as well as the bulk properties including deformations, pairing gaps, excitation energy, and specific heat for the global minimum. For $$^{224}$$Ra, three discontinuities found in the specific heat curve indicate the pairing transition at temperature 0.4 MeV, and two shape transitions at temperatures 0.9 and 1.0 MeV, namely one from quadrupole-octupole deformed to quadrupole deformed, and the other from quadrupole deformed to spherical. Furthermore, the gaps at $N$=136 and $Z$=88 are responsible for stabilizing the octupole-deformed global minimum at low temperatures. Similar pairing transition at $$T\\sim$$0.5 MeV and shape transitions at $T$=0.5-2.2 MeV are found for even-even $$^{144-154}$$Ba. Finally, the transition temperatures are roughly proportional to the corresponding deformations at the ground states.« less
Performance Charts for a Turbojet System
NASA Technical Reports Server (NTRS)
Karp, Irving M.
1947-01-01
Convenient charts are presented for computing the thrust, fuel consumption, and other performance values of a turbojet system. These charts take into account the effects of ram pressure, compressor pressure ratio, ratio of combustion-chamber-outlet temperature to atmospheric temperature, compressor efficiency, turbine efficiency, combustion efficiency, discharge-nozzle coefficient, losses in total pressure in the inlet to the jet-propulsion unit and in the combustion chamber, and variation in specific heats with temperature. The principal performance charts show clearly the effects of the primary variables and correction charts provide the effects of the secondary variables. The performance of illustrative cases of turbojet systems is given. It is shown that maximum thrust per unit mass rate of air flow occurs at a lower compressor pressure ratio than minimum specific fuel consumption. The thrust per unit mass rate of air flow increases as the combustion-chamber discharge temperature increases. For minimum specific fuel consumption, however, an optimum combustion-chamber discharge temperature exists, which in some cases may be less than the limiting temperature imposed by the strength temperature characteristics of present materials.
Preliminary supersonic flight test evaluation of performance seeking control
NASA Technical Reports Server (NTRS)
Orme, John S.; Gilyard, Glenn B.
1993-01-01
Digital flight and engine control, powerful onboard computers, and sophisticated controls techniques may improve aircraft performance by maximizing fuel efficiency, maximizing thrust, and extending engine life. An adaptive performance seeking control system for optimizing the quasi-steady state performance of an F-15 aircraft was developed and flight tested. This system has three optimization modes: minimum fuel, maximum thrust, and minimum fan turbine inlet temperature. Tests of the minimum fuel and fan turbine inlet temperature modes were performed at a constant thrust. Supersonic single-engine flight tests of the three modes were conducted using varied after burning power settings. At supersonic conditions, the performance seeking control law optimizes the integrated airframe, inlet, and engine. At subsonic conditions, only the engine is optimized. Supersonic flight tests showed improvements in thrust of 9 percent, increases in fuel savings of 8 percent, and reductions of up to 85 deg R in turbine temperatures for all three modes. The supersonic performance seeking control structure is described and preliminary results of supersonic performance seeking control tests are given. These findings have implications for improving performance of civilian and military aircraft.
Climate-host mapping of Phytophthora ramorum, causal agent of sudden oak death
Glenn Fowler; Roger Magarey; Manuel Colunga
2006-01-01
Phytophthora ramorum infection was modeled using the NAPPFAST system for the conterminous United States. Parameters used to model P. ramorum infection were: leaf wetness, minimum temperature, optimum temperature and maximum temperature over a specified number of accumulated days. The model was used to create maps showing the...
1992-10-01
MSFC Test Engineer performing a functional test on the TES. The TES can be operated as a refrigerator, with a minimum set point temperature of 4.0 degrees C, or as an incubator, with a maximum set point temperature 40.0 degrees C of the set point. The TES can be set to maintain a constant temperature or programmed to change temperature settings over time, internal temperature recorded by a date logger.
Paul V. Bolstad; Lloyd Swift; Fred Collins; Jacques Regniere
1998-01-01
Landscape and temporal patterns of temperature were observed for local (13 station) and regional (35 station) networks in the Southern Appalachian mountains of North America. Temperatures decreased with altitude at mean rates of 7EC/km (maximum temperature) and 3EC/km (minimum temperature). Daily lapse rates depended on the method and stations used in the calculations...
Optimisation of warpage on plastic injection moulding part using response surface methodology (RSM)
NASA Astrophysics Data System (ADS)
Miza, A. T. N. A.; Shayfull, Z.; Nasir, S. M.; Fathullah, M.; Rashidi, M. M.
2017-09-01
The warpage is often encountered which occur during injection moulding process of thin shell part depending the process condition. The statistical design of experiment method which are Integrating Finite Element (FE) Analysis, moldflow analysis and response surface methodology (RSM) are the stage of few ways in minimize the warpage values of x,y and z on thin shell plastic parts that were investigated. A battery cover of a remote controller is one of the thin shell plastic part that produced by using injection moulding process. The optimum process condition parameter were determined as to achieve the minimum warpage from being occur. Packing pressure, Cooling time, Melt temperature and Mould temperature are 4 parameters that considered in this study. A two full factorial experimental design was conducted in Design Expert of RSM analysis as to combine all these parameters study. FE analysis result gain from analysis of variance (ANOVA) method was the one of the important process parameters influenced warpage. By using RSM, a predictive response surface model for warpage data will be shown.
NASA Technical Reports Server (NTRS)
Lee, Hsing-Chung; Kost, A.; Kawase, M.; Hariz, A.; Dapkus, P. Daniel
1988-01-01
The nonlinear absorption properties of the excitonic resonances associated with multiple quantum wells (MQWs) in AlGaAs/GaAs grown by metalorganic chemical vapor deposition are reported. The dependence of the saturation properties on growth parameters, especially growth temperature, and the well width are described. The minimum measured saturation intensity for these materials is 250 W/sq cm, the lowest reported value to date. The low saturation intensities are the result of excellent minority carrier properties. A systematic study of minority carrier lifetimes in quantum wells are reported. Lifetimes range from 50-350 ns depending on growth temperature and well width. When corrected for lateral diffusion effects and the measured minority carrier lifetime, the saturation data suggest that saturation intensities as low as 2.3 W/sq cm can be achieved in this system. The first measurements of the dependence of the exciton area and the magnitude of the excitonic absorption on well width are prsented. The growth of MQW structures on transparent GaP substrates is demonstrated and the electroabsorption properties of these structures are reviewed.
Cryogenic Fracture Toughness Improvement for the Super Lightweight Tank's Main Structural Alloy
NASA Technical Reports Server (NTRS)
Chen, P. S.; Stanton, W. P.
2002-01-01
Marshall Space Flight Center has developed a two-step (TS) artificial aging technique that can significantly enhance cryogenic fracture toughness and resistance to stress corrosion cracking (SCC) in aluminum-copper-lithium alloy 2195. The new TS aging treatment consists of exposures at 132 C (270 F)/20 hr + 138 C (280 F)/42 hr, which can be readily applied to flight hardware production. TS aging achieves the same yield strength levels as conventional aging, while providing much improved ductility in the short transverse direction. After TS aging, five previously rejected lots of alloy 2195 (lots 950M029B, 960M030F, 960M030J, 960M030K, and 960M030L) passed simulated service testing for use in the super lightweight tank program. Each lot exhibited higher fracture toughness at cryogenic temperature than at ambient temperature. Their SCC resistance was also enhanced. All SCC specimens passed the minimum 10-day requirement in 3.5-percent sodium chloride alternate immersion at a stress of 45 ksi. The SCC lives ranged from 57 to 83 days, with an average of 70 days.
Bohn, Mark S.; Anselmo, Mark
2001-01-01
Computer simulation was used in the development of an inward-burning, radial matrix gas burner and heat pipe heat exchanger. The burner and exchanger can be used to heat a Stirling engine on cloudy days when a solar dish, the normal source of heat, cannot be used. Geometrical requirements of the application forced the use of the inward burning approach, which presents difficulty in achieving a good flow distribution and air/fuel mixing. The present invention solved the problem by providing a plenum with just the right properties, which include good flow distribution and good air/fuel mixing with minimum residence time. CFD simulations were also used to help design the primary heat exchanger needed for this application which includes a plurality of pins emanating from the heat pipe. The system uses multiple inlet ports, an extended distance from the fuel inlet to the burner matrix, flow divider vanes, and a ring-shaped, porous grid to obtain a high-temperature uniform-heat radial burner. Ideal applications include dish/Stirling engines, steam reforming of hydrocarbons, glass working, and any process requiring high temperature heating of the outside surface of a cylindrical surface.
Amarello, Melissa; Nowak, Erica M.; Taylor, Emily N.; Schuett, Gordon W.; Repp, Roger A.; Rosen, Philip C.; Hardy, David L.
2010-01-01
Differences in resource availability and quality along environmental gradients are important influences contributing to intraspecific variation in body size, which influences numerous life-history traits. Here, we examined variation in body size and sexual size dimorphism (SSD) in relation to temperature, seasonality, and precipitation among 10 populations located throughout Arizona of the western diamond-backed rattlesnake (Crotalus atrox). Specifically, in our analyses we addressed the following questions: (i) Are adult males larger in cooler, wetter areas? (ii) Does female body size respond differently to environmental variation? (iii) Is seasonality a better predictor of body size variation? (iv) Is SSD positively correlated with increased resources? We demonstrate that male and female C. atrox are larger in body size in cooler (i.e., lower average annual maximum, minimum, and mean temperature) and wetter areas (i.e., higher average annual precipitation, more variable precipitation, and available surface water). Although SSD in C. atrox appeared to be more pronounced in cooler, wetter areas, this relationship did not achieve statistical significance.
Thermoelectric properties of fully hydrogenated graphene: Semi-classical Boltzmann theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reshak, A. H., E-mail: maalidph@yahoo.co.uk; Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis
2015-06-14
Based on the calculated band structure, the electronic transport coefficients of chair-/boat-like graphane were evaluated by using the semi-classical Boltzmann theory and rigid band model. The maximum value of electrical conductivity for chair (boat)-like graphane of about 1.4 (0.6) × 10{sup 19} (Ωms){sup −1} is achieved at 600 K. The charge carrier concentration and the electrical conductivity linearly increase with increasing the temperature in agreement with the experimental work for graphene. The investigated materials exhibit the highest value of Seebeck coefficient at 300 K. We should emphasize that in the chemical potential between ∓0.125 μ(eV) the investigated materials exhibit minimum value of electronic thermalmore » conductivity, therefore, maximum efficiency. As the temperature increases, the electronic thermal conductivity increases exponentially, in agreement with the experimental data of graphene. We also calculated the power factor of chair-/boat-like graphane at 300 and 600 K as a function of chemical potential between ∓0.25 μ(eV)« less
Disparities in Aesthetic Procedures Performed by Plastic Surgery Residents.
Silvestre, Jason; Serletti, Joseph M; Chang, Benjamin
2017-05-01
Operative experience in aesthetic surgery is an important issue affecting plastic surgery residents. This study addresses the variability of aesthetic surgery experience during plastic surgery residency. National operative case logs of chief residents in independent/combined and integrated plastic surgery residency programs were analyzed (2011-2015). Fold differences between the bottom and top 10th percentiles of residents were calculated for each aesthetic procedure category and training model. The number of residents not achieving case minimums was also calculated. Case logs of 818 plastic surgery residents were analyzed. There was marked variability in craniofacial (range, 6.0-15.0), breast (range, 2.4-5.9), trunk/extremity (range, 3.0-16.0), and miscellaneous (range, 2.7-22.0) procedure categories. In 2015, the bottom 10th percentile of integrated and independent/combined residents did not achieve case minimums for botulinum toxin and dermal fillers. Case minimums were achieved for the other aesthetic procedure categories for all graduating years. Significant variability persists for many aesthetic procedure categories during plastic surgery residency training. Greater efforts may be needed to improve the aesthetic surgery experience of plastic surgery residents. © 2016 The American Society for Aesthetic Plastic Surgery, Inc. Reprints and permission: journals.permissions@oup.com
34 CFR 200.2 - State responsibilities for assessment.
Code of Federal Regulations, 2010 CFR
2010-07-01
... SECONDARY EDUCATION, DEPARTMENT OF EDUCATION TITLE I-IMPROVING THE ACADEMIC ACHIEVEMENT OF THE DISADVANTAGED...-quality, yearly student academic assessments that includes, at a minimum, academic assessments in... also measure the achievement of students in other academic subjects in which the State has adopted...
Assessment of New Approaches in Geothermal Exploration Decision Making: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akar, S.; Young, K. R.
Geothermal exploration projects have significant amount of risk associated with uncertainties encountered in the discovery of the geothermal resource. Understanding when and how to proceed in an exploration program, and when to walk away from a site, are two of the largest challenges for increased geothermal deployment. Current methodologies for exploration decision making is left to subjective by subjective expert opinion which can be incorrectly biased by expertise (e.g. geochemistry, geophysics), geographic location of focus, and the assumed conceptual model. The aim of this project is to develop a methodology for more objective geothermal exploration decision making at a givenmore » location, including go-no-go decision points to help developers and investors decide when to give up on a location. In this scope, two different approaches are investigated: 1) value of information analysis (VOIA) which is used for evaluating and quantifying the value of a data before they are purchased, and 2) enthalpy-based exploration targeting based on reservoir size, temperature gradient estimates, and internal rate of return (IRR). The first approach, VOIA, aims to identify the value of a particular data when making decisions with an uncertain outcome. This approach targets the pre-drilling phase of exploration. These estimated VOIs are highly affected by the size of the project and still have a high degree of subjectivity in assignment of probabilities. The second approach, exploration targeting, is focused on decision making during the drilling phase. It starts with a basic geothermal project definition that includes target and minimum required production capacity and initial budgeting for exploration phases. Then, it uses average temperature gradient, reservoir temperature estimates, and production capacity to define targets and go/no-go limits. The decision analysis in this approach is based on achieving a minimum IRR at each phase of the project. This second approach was determined to be less subjective, since it requires less subjectivity in the input values.« less
Determining the minimum ripening time of artisanal Minas cheese, a traditional Brazilian cheese
Martins, José M.; Galinari, Éder; Pimentel-Filho, Natan J.; Ribeiro, José I.; Furtado, Mauro M.; Ferreira, Célia L.L.F.
2015-01-01
Physical, physicochemical, and microbiological changes were monitored in 256 samples of artisanal Minas cheese from eight producers from Serro region (Minas Gerais, Brazil) for 64 days of ripening to determine the minimum ripening time for the cheese to reach the safe microbiological limits established by Brazilian legislation. The cheeses were produced between dry season (April–September) and rainy season (October–March); 128 cheeses were ripened at room temperature (25 ± 4 °C), and 128 were ripened under refrigeration (8 ± 1 °C), as a control. No Listeria monocytogenes was found, but one cheese under refrigeration had Salmonella at first 15 days of ripening. However, after 22 days, the pathogen was not detected. Seventeen days was the minimum ripening time at room temperature to reduce at safe limits of total coliforms > 1000 cfu.g −1 ), Escherichia coli and Staphylococcus aureus (> 100 cfu.g −1 ) in both periods of manufacture. Otherwise under refrigeration, as expected, the minimum ripening time was longer, 33 days in the dry season and 63 days in the rainy season. To sum up, we suggest that the ripening of artisanal Minas cheese be done at room temperature, since this condition shortens the time needed to reach the microbiological quality that falls within the safety parameters required by Brazilian law, and at the same time maintain the appearance and flavor characteristics of this traditional cheese. PMID:26221111
Chromospheric Signatures of the Subdued Cycle 23/24 Solar Minimum in Microwaves
NASA Technical Reports Server (NTRS)
Yashiro, S.; Makela, P.; Shibasaki, K.; Hathaway, D.
2011-01-01
Coronal holes appear brighter than the quiet Sun in microwave images, with a brightness enhancement of 500 to 2000 K. The brightness enhancement corresponds to the upper chromosphere, where the plasma temperature is about 10000 K. We constructed a microwave butterfly diagram using the synoptic images obtained by the Nobeyama radio-heliograph (NoRH) showing the evolution of the polar and low latitude brightness temperature. While the polar brightness reveals the chromospheric conditions, the low latitude brightness is attributed to active regions in the corona. When we compared the microwave butterfly diagram with the magnetic butterfly diagram, we found a good correlation between the microwave brightness enhancement and the polar field strength. The microwave butterfly diagram covers part of solar cycle 22, whole of cycle 23, and part of cycle 24, thus enabling comparison between the cycle 23/24 and cycle 22/23 minima. The microwave brightness during the cycle 23/24 minimum was found to be lower than that during the cycle 22/23 minimum by approx.250 K. The reduced brightness temperature is consistent with the reduced polar field strength during the cycle 23/24 minimum seen in the magnetic butterfly diagram. We suggest that the microwave brightness at the solar poles is a good indicator of the speed of the solar wind sampled by Ulysses at high latitudes.
NASA Astrophysics Data System (ADS)
Setiawan, Ikhsan; Nohtomi, Makoto; Katsuta, Masafumi
2015-06-01
Thermoacoustic prime movers are energy conversion devices which convert thermal energy into acoustic work. The devices are environmentally friendly because they do not produce any exhaust gases. In addition, they can utilize clean energy such as solar-thermal energy or waste heat from internal combustion engines as the heat sources. The output mechanical work of thermoacoustic prime movers are usually used to drive a thermoacoustic refrigerator or to generate electricity. A thermoacoustic prime mover with low critical temperature difference is desired when we intend to utilize low quality of heat sources such as waste heat and sun light. The critical temperature difference can be significantly influenced by the kinds of working gases inside the resonator and stack's channels of the device. Generally, helium gas is preferred as the working gas due to its high sound speed which together with high mean pressure will yield high acoustic power per unit volume of the device. Moreover, adding a small amount of a heavy gas to helium gas may improve the efficiency of thermoacoustic devices. This paper presents numerical study and estimation of the critical temperature differences of a standing wave thermoacoustic prime mover with various helium-based binary-mixture working gases. It is found that mixing helium (He) gas with other common gases, namely argon (Ar), nitrogen (N2), oxygen (O2), and carbon dioxide (CO2), at appropriate pressures and molar compositions, reduce the critical temperature differences to lower than those of the individual components of the gas mixtures. In addition, the optimum mole fractions of Hegas which give the minimum critical temperature differences are shifted to larger values as the pressure increases, and tends to be constant at around 0.7 when the pressure increases more than 2 MPa. However, the minimum critical temperature differences slightly increase as the pressure increases to higher than 1.5 MPa. Furthermore, we found that the lowest critical temperature difference for He-Armixture gas is around 66 °C which is achieved in pressure range of 1.5 MPa - 2.0 MPa and mole fractions of helium of 0.55 - 0.65. The He-N2 and He-O2 mixture gases demonstrate almost the same performances, both have the lowest critical temperature difference around 59 °C atpressures of 1.0 MPa - 1.5 MPa and helium's mole fractions of 0.35 - 0.55. For all tested gases, the lowest critical temperature difference of around 51 °C is provided by He-CO2 mixture gas at pressures of 0.5 MPa - 1.0 MPa with helium's mole fractions of 0.15 - 0.40.
Zhou, Jiang-Tao; Lü, De-Guo; Qin, Si-Jun
2014-09-01
The effects of different organic matter covers on soil physical-chemical properties were investigated in a 'Hanfu' apple orchard located in a cold region. Four treatments were applied (weed mulching, rice straw mulching, corn straw mulching, and crushed branches mulching), and physical-chemical properties, including orchard soil moisture and nutrient contents, were compared among treatment groups and between organic matter-treated and untreated plots. The results showed that soil water content increased in the plots treated with organic matter mulching, especially in the arid season. Cover with organic matter mulch slowed the rate of soil temperature increase in spring, which was harmful to the early growth of fruit trees. Organic matter mulching treatments decreased the peak temperature of orchard soil in the summer and increased the minimum soil temperature in the fall. pH was increased in soils treated with organic matter mulching, especially in the corn straw mulching treatment, which occurred as a response to alleviating soil acidification to achieve near-neutral soil conditions. The soil organic matter increased to varying extents among treatment groups, with the highest increase observed in the weed mulching treatment. Overall, mulching increased alkali-hydrolyzable nitrogen, available phosphorus, and available potassium in the soil, but the alkali-hydrolyzable nitrogen content in the rice straw mulching treatment was lower than that of the control.
Temperature controlled formation of lead/acid batteries
NASA Astrophysics Data System (ADS)
Bungardt, M.
At present, standard formation programs have to accommodate the worst case. This is important, especially in respect of variations in climatic conditions. The standard must be set so that during the hottest weather periods the maximum electrolyte temperature is not exceeded. As this value is defined not only by the desired properties and the recipe of the active mass, but also by type and size of the separators and by the dimensions of the plates, general rules cannot be formulated. It is considered to be advantageous to introduce limiting data for the maximum temperature into a general formation program. The latter is defined so that under normal to good ambient conditions the shortest formation time is achieved. If required, the temperature control will reduce the currents employed in the different steps, according to need, and will extend the formation time accordingly. With computer-controlled formation, these parameters can be readily adjusted to suit each type of battery and can also be reset according to modifications in the preceding processing steps. Such a procedure ensures that: (i) the formation time is minimum under the given ambient conditions; (ii) in the event of malpractice ( e.g. actual program not fitting to size) the batteries will not be destroyed; (iii) the energy consumption is minimized (note, high electrolyte temperature leads to excess gassing). These features are incorporated in the BA/FOS-500 battery formation system developed by Digatron. The operational characteristics of this system are listed in Table 1.
Behavior of Solar Cycles 23 and 24 Revealed by Microwave Observations
NASA Technical Reports Server (NTRS)
Gopalswamy, N.; Yashiro, S.; Maekelae, P.; Michalek, G.; Shibasaki, K.; Hathaway, D. H.
2012-01-01
Using magnetic and microwave butterfly diagrams, we compare the behavior of solar polar regions to show that (1) the polar magnetic field and the microwave brightness temperature during solar minimum substantially diminished during the cycle 23/24 minimum compared to the 22/23 minimum. (2) The polar microwave brightness temperature (Tb) seems to be a good proxy for the underlying magnetic field strength (B). The analysis indicates a relationship, B = 0.0067Tb - 70, where B is in G and Tb in K. (3) Both the brightness temperature and the magnetic field strength show north-south asymmetry most of the time except for a short period during the maximum phase. (4) The rush-to-the-pole phenomenon observed in the prominence eruption (PE) activity seems to be complete in the northern hemisphere as of 2012 March. (5) The decline of the microwave brightness temperature in the north polar region to the quiet-Sun levels and the sustained PE activity poleward of 60degN suggest that solar maximum conditions have arrived at the northern hemisphere. The southern hemisphere continues to exhibit conditions corresponding to the rise phase of solar cycle 24. Key words: Sun: chromosphere Sun: coronal mass ejections (CMEs) Sun: filaments, prominences Sun: photosphere Sun: radio radiation Sun: surface magnetism
Modelling and performance of Nb SIS mixers in the 1.3 mm and 0.8 mm bands
NASA Technical Reports Server (NTRS)
Karpov, A.; Carter, M.; Lazareff, B.; Billon-Pierron, D.; Gundlach, K. H.
1992-01-01
We describe the modeling and subsequent improvements of SIS waveguide mixers for the 200-270 and 330-370 GHz bands (Blundell, Carter, and Gundlach 1988, Carter et al 1991). These mixers are constructed for use in receivers on IRAM radiotelescopes on Pico Veleta (Spain, Sierra Nevada) and Plateau de Bure (French Alps), and must meet specific requirements. The standard reduced height waveguide structure with suspended stripline is first analyzed and a model is validated through comparison with scale model and working scale measurements. In the first step, the intrinsic limitations of the standard mixer structure are identified, and the parameters are optimized bearing in mind the radioastronomical applications. In the second step, inductive tuning of the junctions is introduced and optimized for minimum noise and maximum bandwidth. In the 1.3 mm band, a DSB receiver temperature of less than 110 K (minimum 80 K) is measured from 180 through 260 GHz. In the 0.8 mm band, a DSB receiver temperature of less than 250 K (minimum 175 K) is obtained between 325 and 355 GHz. All these results are obtained with room-temperature optics and a 4 GHz IF chain having a 500 MHz bandwidth and a noise temperature of 14 K.
Huang, Hsiao-Wen; Chen, Bang-Yuan; Wang, Chung-Yi
2018-05-01
This study validated high hydrostatic pressure processing (HPP) for achieving greater than 5-log reductions of Escherichia coli O157:H7 in carambola juice and determined shelf life of processed juice stored at 4 °C. Carambola juice processed at 600 MPa for 150 s was identified capable of achieving greater than 5.15-log reductions of E. coli O157:H7, and the quality was compared with that of high temperature short time (HTST)-pasteurized juice at 110 °C for 8.6 s. Aerobic, psychrotrophic, E. coli /coliform, and yeasts and moulds in the juice were reduced by HPP or HTST to levels below the minimum detection limit (< 1.0 log CFU/mL), and showed no outgrowth after refrigerated storage of 40 days. There were no significant differences in pH and titratable acidity between the untreated, HPP, and HTST juices. However, HTST treatment significantly changed the color of juice, while no significant difference was observed between the control and HPP samples. HPP and HTST treatments reduced the total soluble solids in the juice, but maintained higher sucrose, glucose, fructose, and total sugar contents than untreated juice. The total phenolic and ascorbic acid contents were higher in juice treated with HPP than untreated and HTST juice, but there was no significant difference in the flavonoid content. Aroma score analysis showed that HPP had no effect on aroma, maintaining the highest score during cold storage. The results of this study suggest that appropriate HPP conditions can achieve the same microbial safety as HTST, while maintaining the quality and extending the shelf life of carambola juice.
Buccola, Norman L.
2017-05-31
Green Peter and Foster Dams on the Middle and South Santiam Rivers, Oregon, have altered the annual downstream water temperature profile (cycle). Operation of the dams has resulted in cooler summer releases and warmer autumn releases relative to pre-dam conditions, and that alteration can hinder recovery of various life stages of threatened spring-run Chinook salmon (Oncorhyncus tshawytscha) and winter steelhead (O. mykiss). Lake level management and the use of multiple outlets from varying depths at the dams can enable the maintenance of a temperature regime more closely resembling that in which the fish evolved by releasing warm surface water during summer and cooler, deeper water in the autumn. At Green Peter and Foster Dams, the outlet configuration is such that temperature control is often limited by hydropower production at the dams. Previously calibrated CE-QUAL-W2 water temperature models of Green Peter and Foster Lakes were used to simulate the downstream thermal effects from hypothetical structures and modified operations at the dams. Scenarios with no minimum power production requirements allowed some releases through shallower and deeper outlets (summer and autumn) to achieve better temperature control throughout the year and less year-to-year variability in autumn release temperatures. Scenarios including a hypothetical outlet floating 1 meter below the lake surface resulted in greater ability to release warm water during summer compared to existing structures. Later in Autumn (October 15–December 31), a limited amount of temperature control was realized downstream from Foster Dam by scenarios limited to operational changes with existing structures, resulting in 15-day averages within 1.0 degree Celsius of current operations.
Heat transfer assembly for a fluorescent lamp and fixture
Siminovitch, Michael J.; Rubenstein, Francis M.; Whitman, Richard E.
1992-01-01
In a lighting fixture including a lamp and a housing, a heat transfer structure is disclosed for reducing the minimum lamp wall temperature of a fluorescent light bulb. The heat transfer structure, constructed of thermally conductive material, extends from inside the housing to outside the housing, transferring heat energy generated from a fluorescent light bulb to outside the housing where the heat energy is dissipated to the ambient air outside the housing. Also disclosed is a method for reducing minimum lamp wall temperatures. Further disclosed is an improved lighting fixture including a lamp, a housing and the aforementioned heat transfer structure.
BOREAS AES READAC Surface Meteorological Data
NASA Technical Reports Server (NTRS)
Atkinson, G. Barrie; Funk, Barry; Hall, Forrest G. (Editor); Knapp, David E. (Editor)
2000-01-01
Canadian AES personnel collected and processed data related to surface atmospheric meteorological conditions over the BOREAS region. This data set contains 15-minute meteorological data from one READAC meteorology station in Hudson Bay, Saskatchewan. Parameters include day, time, type of report, sky condition, visibility, mean sea level pressure, temperature, dewpoint, wind, altimeter, opacity, minimum and maximum visibility, station pressure, minimum and maximum air temperature, a wind group, precipitation, and precipitation in the last hour. The data were collected non-continuously from 24-May-1994 to 20-Sep-1994. The data are provided in tabular ASCII files, and are classified as AFM-Staff data.
Perry, Gad
2002-07-01
Desperate people sometimes risk journeys as stowaways in aircraft wheel-wells. Some of them survive, despite the risks of being crushed by retracting landing gear, falling when the gear deploys for landing, or experiencing severe hypoxia and hypobaria in-flight. This study evaluates the level of hypothermia to which stowaways in aircraft may be exposed. Miniature dataloggers were used to record in-flight temperatures in aircraft wheel-wells and cargo compartments. Temperatures were measured for front and side wheel-wells (FW and SW, respectively) on 36 flights by C-130 aircraft (mean duration 3.3 h, mean cruise altitude 5588 m (18,333 ft)) and 11 flights by C-141 aircraft (6.7 h and 10,744 m (35,250 ft)). Mean minimum temperatures for the C-130 remained above freezing and averaged 5.1 degrees C for FW and 11.9 degrees C for SW. The higher, longer C-141 flights produced temperatures below freezing with mean minimum temperatures of -18.0 degrees C for FW and -12.4 degrees C for SW. In general, temperatures in wheel-wells remained about 20 degrees C above outside air temperature (OAT) at all altitudes. This increase reflects the fact that wheel-wells are closed spaces within the aircraft body, in addition to which they contain sources of heat such as hydraulic lines and electrical equipment. Cargo compartment minimum temperature was relatively high (mean = 18.6 degrees C for commercial airline). A search of the medical literature and lay press produced information on 46 incidents of people found in wheel-wells after landing where there was no evidence of trauma. The 15 survivors had stowed away on relatively short flights (mean = 4.8 h, maximum = 10 h) compared with fatalities (mean = 7.5 h, range = 3-12 h). Temperatures in wheel-wells during short flights may sustain life. Long flights add severe hypothermia to acute hypoxia and hypobaria as potentially fatal environmental factors faced by wheel-well stowaways.
Thompson, Cynthia L; Powell, Brianna L; Williams, Susan H; Hanya, Goro; Glander, Kenneth E; Vinyard, Christopher J
2017-11-01
Thyroid hormones boost animals' basal metabolic rate and represent an important thermoregulatory pathway for mammals that face cold temperatures. Whereas the cold thermal pressures experienced by primates in seasonal habitats at high latitudes and elevations are often apparent, tropical habitats also display distinct wet and dry seasons with modest changes in thermal environment. We assessed seasonal and temperature-related changes in thyroid hormone levels for two primate species in disparate thermal environments, tropical mantled howlers (Alouatta palliata), and seasonally cold-habitat Japanese macaques (Macaca fuscata). We collected urine and feces from animals and used ELISA to quantify levels of the thyroid hormone triiodothyronine (fT 3 ). For both species, fT 3 levels were significantly higher during the cooler season (wet/winter), consistent with a thermoregulatory role. Likewise, both species displayed greater temperature deficits (i.e., the degree to which animals warm their body temperature relative to ambient) during the cooler season, indicating greater thermoregulatory pressures during this time. Independently of season, Japanese macaques displayed increasing fT 3 levels with decreasing recently experienced maximum temperatures, but no relationship between fT 3 and recently experienced minimum temperatures. Howlers increased fT 3 levels as recently experienced minimum temperatures decreased, although demonstrated the opposite relationship with maximum temperatures. This may reflect natural thermal variation in howlers' habitat: wet seasons had cooler minimum and mean temperatures than the dry season, but similar maximum temperatures. Overall, our findings support the hypothesis that both tropical howlers and seasonally cold-habitat Japanese macaques utilize thyroid hormones as a mechanism to boost metabolism in response to thermoregulatory pressures. This implies that cool thermal pressures faced by tropical primates are sufficient to invoke an energetically costly and relatively longer-term thermoregulatory pathway. The well-established relationship between thyroid hormones and energetics suggests that the seasonal hormonal changes we observed could influence many commonly studied behaviors including food choice, range use, and activity patterns. © 2017 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Björnbom, Pehr
2016-03-01
In the first part of this work equilibrium temperature profiles in fluid columns with ideal gas or ideal liquid were obtained by numerically minimizing the column energy at constant entropy, equivalent to maximizing column entropy at constant energy. A minimum in internal plus potential energy for an isothermal temperature profile was obtained in line with Gibbs' classical equilibrium criterion. However, a minimum in internal energy alone for adiabatic temperature profiles was also obtained. This led to a hypothesis that the adiabatic lapse rate corresponds to a restricted equilibrium state, a type of state in fact discussed already by Gibbs. In this paper similar numerical results for a fluid column with saturated air suggest that also the saturated adiabatic lapse rate corresponds to a restricted equilibrium state. The proposed hypothesis is further discussed and amended based on the previous and the present numerical results and a theoretical analysis based on Gibbs' equilibrium theory.
Climate Change and Its Impact on the Yield of Major Food Crops: Evidence from Pakistan
Ali, Sajjad; Liu, Ying; Ishaq, Muhammad; Shah, Tariq; Abdullah; Ilyas, Aasir; Din, Izhar Ud
2017-01-01
Pakistan is vulnerable to climate change, and extreme climatic conditions are threatening food security. This study examines the effects of climate change (e.g., maximum temperature, minimum temperature, rainfall, relative humidity, and the sunshine) on the major crops of Pakistan (e.g., wheat, rice, maize, and sugarcane). The methods of feasible generalized least square (FGLS) and heteroscedasticity and autocorrelation (HAC) consistent standard error were employed using time series data for the period 1989 to 2015. The results of the study reveal that maximum temperature adversely affects wheat production, while the effect of minimum temperature is positive and significant for all crops. Rainfall effect towards the yield of a selected crop is negative, except for wheat. To cope with and mitigate the adverse effects of climate change, there is a need for the development of heat- and drought-resistant high-yielding varieties to ensure food security in the country. PMID:28538704
NASA Astrophysics Data System (ADS)
Fukuda, Yukio; Okamoto, Hiroshi; Iwasaki, Takuro; Izumi, Kohei; Otani, Yohei; Ishizaki, Hiroki; Ono, Toshiro
2012-09-01
This paper reports on the thermal improvement of Si3N4/GeNx/Ge structures. After the Si3N4 (5 nm)/GeNx (2 nm) stacks were prepared on Ge substrates by electron-cyclotron-resonance plasma nitridation and sputtering at room temperature, they were thermally annealed in atmospheric N2 + 10% H2 ambient at temperatures from 400 to 600 °C. It was demonstrated that the electronic properties of the GeNx/Ge interfaces were thermally improved at temperatures of up to 500 °C with a minimum interface trap density (Dit) of ˜1×1011 cm-2 eV-1 near the Ge midgap, whereas the interface properties were slightly degraded after annealing at 600 °C with a minimum Dit value of ˜4×1011 cm-2 eV-1.
NASA Technical Reports Server (NTRS)
Rohrbaugh, J. L.
1972-01-01
A correlation study was made of the variations of the exospheric temperature extrema with various combinations of the monthly mean and daily values of the 2800 MHz and Ca:2 solar indices. The phase and amplitude of the semi-annual component and the term dependent on Kp were found to remain almost the same for the maximum and minimum temperature. The term dependent on the 27 day component of the solar activity was found to be about four times as large for the diurnal maximum as for the minimum. Measurements at Arecibo have shown that temperature gradient changes at 125 km are consistent with the phase difference between the neutral temperature and density maxima. This is used to develop an empirical model which is compatible with both the satellite measurements and the available incoherent scatter measurements. A main feature of this model is that day length is included as a major model parameter.
Climate Change and Its Impact on the Yield of Major Food Crops: Evidence from Pakistan.
Ali, Sajjad; Liu, Ying; Ishaq, Muhammad; Shah, Tariq; Abdullah; Ilyas, Aasir; Din, Izhar Ud
2017-05-24
Pakistan is vulnerable to climate change, and extreme climatic conditions are threatening food security. This study examines the effects of climate change (e.g., maximum temperature, minimum temperature, rainfall, relative humidity, and the sunshine) on the major crops of Pakistan (e.g., wheat, rice, maize, and sugarcane). The methods of feasible generalized least square (FGLS) and heteroscedasticity and autocorrelation (HAC) consistent standard error were employed using time series data for the period 1989 to 2015. The results of the study reveal that maximum temperature adversely affects wheat production, while the effect of minimum temperature is positive and significant for all crops. Rainfall effect towards the yield of a selected crop is negative, except for wheat. To cope with and mitigate the adverse effects of climate change, there is a need for the development of heat- and drought-resistant high-yielding varieties to ensure food security in the country.
Viking-1 meteorological measurements - First impressions
NASA Technical Reports Server (NTRS)
Hess, S. L.; Henry, R. M.; Leovy, C. B.; Tillman, J. E.; Ryan, J. A.
1976-01-01
A preliminary evaluation is given of in situ meteorological measurements made by Viking 1 on Mars. The data reported show that: (1) the atmosphere has approximate volume mixing ratios of 1.5% argon, 3% nitrogen, and 95% carbon dioxide; (2) the diurnal temperature range is large and regular, with a sunrise minimum of about 188 K and a midafternoon maximum near 244 K; (3) air and ground temperatures coincide quite closely during the night, but ground temperature exceeds air temperature near midday by as much as 25 C; (4) the winds exhibit a marked diurnal cycle; and (5) a large diurnal pressure variation with an afternoon minimum and an early-morning maximum parallels the wind pattern. The variations are explained in terms of familiar meteorological processes. It is suggested that latent heat is unlikely to play an important role on Mars because no evidence has been observed for traveling synoptic-scale disturbances such as those that occur in the terrestrial tropics.
47 CFR 68.317 - Hearing aid compatibility volume control: technical standards.
Code of Federal Regulations, 2011 CFR
2011-10-01
... headset of the telephone, 12 dB of gain minimum and up to 18 dB of gain maximum, when measured in terms of... Instruments With Loop Signaling) . The 12 dB of gain minimum must be achieved without significant clipping of... change in ROLR as a function of the volume control setting that are relevant to the specification of...
47 CFR 68.317 - Hearing aid compatibility volume control: technical standards.
Code of Federal Regulations, 2014 CFR
2014-10-01
... headset of the telephone, 12 dB of gain minimum and up to 18 dB of gain maximum, when measured in terms of... Instruments With Loop Signaling) . The 12 dB of gain minimum must be achieved without significant clipping of... change in ROLR as a function of the volume control setting that are relevant to the specification of...
47 CFR 68.317 - Hearing aid compatibility volume control: technical standards.
Code of Federal Regulations, 2013 CFR
2013-10-01
... headset of the telephone, 12 dB of gain minimum and up to 18 dB of gain maximum, when measured in terms of... Instruments With Loop Signaling) . The 12 dB of gain minimum must be achieved without significant clipping of... change in ROLR as a function of the volume control setting that are relevant to the specification of...
47 CFR 68.317 - Hearing aid compatibility volume control: technical standards.
Code of Federal Regulations, 2012 CFR
2012-10-01
... headset of the telephone, 12 dB of gain minimum and up to 18 dB of gain maximum, when measured in terms of... Instruments With Loop Signaling) . The 12 dB of gain minimum must be achieved without significant clipping of... change in ROLR as a function of the volume control setting that are relevant to the specification of...
47 CFR 68.317 - Hearing aid compatibility volume control: technical standards.
Code of Federal Regulations, 2010 CFR
2010-10-01
... headset of the telephone, 12 dB of gain minimum and up to 18 dB of gain maximum, when measured in terms of... Instruments With Loop Signaling) . The 12 dB of gain minimum must be achieved without significant clipping of... change in ROLR as a function of the volume control setting that are relevant to the specification of...
Trends in record-breaking temperatures for the conterminous United States
NASA Astrophysics Data System (ADS)
Rowe, Clinton M.; Derry, Logan E.
2012-08-01
In an unchanging climate, record-breaking temperatures are expected to decrease in frequency over time, as established records become increasingly more difficult to surpass. This inherent trend in the number of record-breaking events confounds the interpretation of actual trends in the presence of any underlying climate change. Here, a simple technique to remove the inherent trend is introduced so that any remaining trend can be examined separately for evidence of a climate change. As this technique does not use the standard definition of a broken record, our records* are differentiated by an asterisk. Results for the period 1961-2010 indicate that the number of record* low daily minimum temperatures has been significantly and steadily decreasing nearly everywhere across the United States while the number of record* high daily minimum temperatures has been predominantly increasing. Trends in record* low and record* high daily maximum temperatures are generally weaker and more spatially mixed in sign. These results are consistent with other studies examining changes expected in a warming climate.
Soil temperatures under urban trees and asphalt
Howard G. Halverson; Gordon M. Heisler
1981-01-01
Summer temperatures under trees planted in holes cut through an asphalt cover in a parking lot and in soil beneath the surrounding asphalt were higher than soil temperatures under trees at a control site. Winter minimums were not different, but maximum summer temperature exceeded the control by 3ºC beneath the parking lot trees and up to 10ºC beneath...
The effect of birthplace on heat tolerance and mortality in Milan, Italy, 1980 1989
NASA Astrophysics Data System (ADS)
Vigotti, Maria Angela; Muggeo, Vito M. R.; Cusimano, Rosanna
2006-07-01
The temperature mortality relationship follows a well-known J-V shaped pattern with mortality excesses recorded at cold and hot temperatures, and minimum at some optimal value, referred as Minimum Mortality Temperature (MMT). As the MMT, which is used to measure the population heat-tolerance, is higher for people living in warmer places, it has been argued that populations will adapt to temperature changes. We tested this notion by taking advantage of a huge migratory flow that occurred in Italy during the 1950s, when a large number of unemployed people moved from the southern to the industrializing north-western regions. We have analyzed mortality temperature relationships in Milan residents, split by groups identified by area of birth. In order to obtain estimates of the temperature-related risks, log-linear models have been used to fit daily death count data as a function of different explanatory variables. Results suggest that mortality risks differ by birthplace, regardless of the place of residence, namely heat tolerance in adult life could be modulated by outdoor temperature experienced early in life. This indicates that no complete adaptation might occur with rising external environmental temperatures.
Evaluation of temperature differences for paired stations of the U.S. Climate Reference Network
Gallo, K.P.
2005-01-01
Adjustments to data observed at pairs of climate stations have been recommended to remove the biases introduced by differences between the stations in time of observation, temperature instrumentatios, latitude, and elevation. A new network of climate stations, located in rural settings, permits comparisons of temperatures for several pairs of stations without two of the biases (time of observation and instrurtientation). The daily, monthly, and annual minimum, maximum, and mean temperatures were compared for five pairs of stations included in the U.S. Climate Reference Network. Significant differences were found between the paired stations in the annual minimum, maximum, and mean temperatures for all five pairs of stations. Adjustments for latitude and elevation differences contributed to greater differences in mean annual temperature for four of the five stations. Lapse rates computed from the mean annual temperature differences between station pairs differed from a constant value, whether or not latitude adjustments were made to the data. The results suggest that microclimate influences on temperatures observed at nearby (horizontally and vertically) stations are potentially much greater than influences that might be due to latitude or elevation differences between the stations. ?? 2005 American Meteorological Society.
Thermal characteristics of wild and captive Micronesian Kingfisher nesting habitats
Kesler, Dylan C.; Haig, Susan M.
2004-01-01
To provide information for managing the captive population of endangered Guam Micronesian kingfishers (Halcyon cinnamomina cinnamomina), four biologically relevant thermal metrics were compared among captive facilities on the United States mainland and habitats used by wild Micronesian kingfishers on the island of Pohnpei (H. c. reichenbachii), Federated States of Micronesia. Additionally, aviaries where kingfishers laid eggs were compared to those in which birds did not attempt to breed. Compared to aviaries, habitats used by wild Pohnpei kingfishers had 3.2A?C higher daily maximum and minimum temperatures and the proportion of time when temperatures were in the birds' thermoneutral zone was 45% greater. No differences were found in the magnitude of temperature fluctuation in captive and wild environments. In captive environments in which birds bred, daily maximum temperatures were 2.1A?C higher and temperatures were within the thermoneutral zone 25% more often than in the aviaries where the kingfishers did not breed. No differences were found in the magnitude of temperature fluctuation or the daily minimum temperature. Results suggest that the thermal environment has the potential to influence reproduction, and that consideration should be given to increasing temperatures in captive breeding facilities to improve propagation of the endangered Micronesian kingfisher.
Durham, Catherine A; Bouma, Andrea; Meunier-Goddik, Lisbeth
2015-12-01
Artisan cheese makers lack access to valid economic data to help them evaluate business opportunities and make important business decisions such as determining cheese pricing structure. The objective of this study was to utilize an economic model to evaluate the net present value (NPV), internal rate of return, and payback period for artisan cheese production at different annual production volumes. The model was also used to determine the minimum retail price necessary to ensure positive NPV for 5 different cheese types produced at 4 different production volumes. Milk type, cheese yield, and aging time all affected variable costs. However, aged cheeses required additional investment for aging space (which needs to be larger for longer aging times), as did lower yield cheeses (by requiring larger-volume equipment for pasteurization and milk handling). As the volume of milk required increased, switching from vat pasteurization to high-temperature, short-time pasteurization was necessary for low-yield cheeses before being required for high-yield cheeses, which causes an additional increase in investment costs. Because of these differences, high-moisture, fresh cow milk cheeses can be sold for about half the price of hard, aged goat milk cheeses at the largest production volume or for about two-thirds the price at the lowest production volume examined. For example, for the given model assumptions, at an annual production of 13,608kg of cheese (30,000 lb), a fresh cow milk mozzarella should be sold at a minimum retail price of $27.29/kg ($12.38/lb), whereas a goat milk Gouda needs a minimum retail price of $49.54/kg ($22.47/lb). Artisan cheese makers should carefully evaluate annual production volumes. Although larger production volumes decrease average fixed cost and improve production efficiency, production can reach volumes where it becomes necessary to sell through distributors. Because distributors might pay as little as 35% of retail price, the retail price needs to be higher to compensate. An artisan cheese company that has not achieved the recognition needed to achieve a premium price may not find distribution through distributors profitable. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Sequentially evaporated thin Y-Ba-Co-O superconducting films on microwave substrates
NASA Technical Reports Server (NTRS)
Valco, G. J.; Rohrer, N. J.; Warner, J. D.; Bhasin, K. B.
1989-01-01
The development of high T sub c superconducting thin films on various microwave substrates is of major interest in space electronic systems. Thin films of YBa2Cu3O(7-Delta) were formed on SrTiO3, MgO, ZrO2 coated Al2O3, and LaAlO3 substrates by multi-layer sequential evaporation and subsequent annealing in oxygen. The technique allows controlled deposition of Cu, BaF2 and Y layers, as well as the ZrO buffer layers, to achieve reproducibility for microwave circuit fabrication. The three layer structure of Cu/BaF2/Y is repeated a minimum of four times. The films were annealed in an ambient of oxygen bubbled through water at temperatures between 850 C and 900 C followed by slow cooling (-2 C/minute) to 450 C, a low temperature anneal, and slow cooling to room temperature. Annealing times ranged from 15 minutes to 5 hrs. at high temperature and 0 to 6 hr. at 450 C. Silver contacts for four probe electrical measurements were formed by evaporation followed with an anneal at 500 C. The films were characterized by resistance-temperature measurements, energy dispersive X-ray spectroscopy, X-ray diffraction, and scanning electron microscopy. Critical transition temperatures ranged from 30 K to 87 K as a function of the substrate, composition of the film, thicknesses of the layers, and annealing conditions. Microwave ring resonator circuits were also patterned on these MgO and LaAlO3 substrates.
Isbert, C; Roggan, A; Ritz, J P; Müller, G; Buhr, H J; Lehmann, K S; Germer, C T
2001-11-01
The aim of this study was to determine the energy (J/mm3 tumor volume) and temperature required for a complete laser-induced thermotherapy (LITT) of experimental liver tumors, and to find out causes and areas of local recurrence followed by incomplete treatment. In VX-2 tumor-bearing rabbits LITT was performed using neodymium:yttrium-aluminum-garnet (Nd:YAG) laser (1064 nm) with a diffuser-tip applicator and a temperature feedback system. The animals were randomized into four groups (n = 20) that differed in the target temperature at the tumor border as follows: 45 degrees C, 50 degrees C, 55 degrees C and 60 degrees C. The target temperature was held for 10 min constant. Histologic examination (hematoxylin and eosin [H and E], nicotinamide adenine dinucleotide phosphate [NADPH]-dehydrogenase) was performed at 0 h, 24 h, 96 h, and 14 days after LITT. The pretreatment tumor volume of 2191 +/- 61 mm3 was the same for all groups (p > 0.05). Energy up to target temperature and total energy required, lesion size, and the rate of incomplete tumor ablation (recurrences) are listed below (ap < 0.05, Kruskal-Wallis test). Histologically, two forms of local recurrences could be differentiated intralesionary and extralesionary. To achieve complete in situ ablation under the given conditions, it is necessary to apply laser energy of 3 J/mm3 tumor volume. A minimum temperature of 60 degrees C on the tumor border presumed an application of 10 min. Recurrence was found outside the coagulation zone (extralesionary) and in high vascularized areas within the coagulation zone (intralesionary).
Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au
NASA Astrophysics Data System (ADS)
Carey, Patrick H.; Yang, Jiancheng; Ren, F.; Hays, David C.; Pearton, S. J.; Jang, Soohwan; Kuramata, Akito; Kravchenko, Ivan I.
2017-09-01
AZO interlayers between n-Ga2O3 and Ti/Au metallization significantly enhance Ohmic contact formation after annealing at ≥ 30 0°C. Without the presence of the AZO, similar anneals produce only rectifying current-voltage characteristics. Transmission Line Measurements of the Au/Ti/AZO/Ga2O3 stacks showed the specific contact resistance and transfer resistance decreased sharply from as-deposited values with annealing. The minimum contact resistance and specific contact resistance of 0.42 Ω-mm and 2.82 × 10-5 Ω-cm2 were achieved after a relatively low temperature 40 0°C annealing. The conduction band offset between AZO and Ga2O3 is 0.79 eV and provides a favorable pathway for improved electron transport across this interface.
NASA Astrophysics Data System (ADS)
Mierau, A.; Schnizer, P.; Fischer, E.; Macavei, J.; Wilfert, S.; Koch, S.; Weiland, T.; Kurnishov, R.; Shcherbakov, P.
SIS100, the world second large scale heavy ion synchrotron using fast ramped superconducting magnets, is to be built at FAIR. Its high current operation of intermediate charge state ions requires stable vacuum pressures < 10-12 mbar under dynamic machine conditions which are only achievable when the whole beam pipe is used as an huge cryopump. In order to find technological feasible design solutions, three opposite requirements have to be met: minimum magnetic field distortion caused by AC losses, mechanical stability and low and stable wall temperatures of the beam pipe. We present the possible design versions of the beam pipe for the high current curved dipole. The pros and cons of these proposed designs were studied using simplified analytical models, FEM calculations and tests on models.
Ohmic contacts on n-type β-Ga 2O 3 using AZO/Ti/Au
Carey, IV, Patrick H.; Yang, Jiancheng; Ren, F.; ...
2017-09-14
AZO interlayers between n-Ga 2O 3 and Ti/Au metallization significantly enhance Ohmic contact formation after annealing at ≥ 300°C. Without the presence of the AZO, similar anneals produce only rectifying current-voltage characteristics. Transmission Line Measurements of the Au/Ti/AZO/Ga 2O 3 stacks showed the specific contact resistance and transfer resistance decreased sharply from as-deposited values with annealing. The minimum contact resistance and specific contact resistance of 0.42 Ω-mm and 2.82 × 10 -5 Ω-cm 2 were achieved after a relatively low temperature 400°C annealing. In conclusion, the conduction band offset between AZO and Ga 2O 3 is 0.79 eV and providesmore » a favorable pathway for improved electron transport across this interface.« less
NASA Technical Reports Server (NTRS)
Bennett, William R.; Baldwin, Richard S.
2010-01-01
The NASA Glenn Research Center (GRC) Electrochemistry Branch designed and built five lithium-ion battery packs for demonstration in spacesuit simulators as a part of the 2007 Desert Research and Technology Studies (D-RATS) activity at Cinder Lake, Arizona. The experimental batteries incorporated advanced, NASA-developed electrolytes and included internal protection against over-current, overdischarge and over-temperature. The 500-g experimental batteries were designed to deliver a constant power of 22 W for 2.5 hr with a minimum voltage of 13 V. When discharged at the maximum expected power output of 38.5 W, the batteries operated for 103 min of discharge time, achieving a specific energy of 130 Wh/kg. This report summarizes design details and safety considerations. Results for field trials and laboratory testing are summarized.
Not Available
1981-01-29
Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors creating short circuits which are detectable as to location.
Tokarz, Richard D.
1983-01-01
Temperature profiles at elevated temperature conditions are monitored by use of an elongated device having two conductors spaced by the minimum distance required to normally maintain an open circuit between them. The melting point of one conductor is selected at the elevated temperature being detected, while the melting point of the other is higher. As the preselected temperature is reached, liquid metal will flow between the conductors, creating short circuits which are detectable as to location.
Functional Test on (TES) Thermal Enclosure System
NASA Technical Reports Server (NTRS)
1992-01-01
MSFC Test Engineer performing a functional test on the TES. The TES can be operated as a refrigerator, with a minimum set point temperature of 4.0 degrees C, or as an incubator, with a maximum set point temperature 40.0 degrees C of the set point. The TES can be set to maintain a constant temperature or programmed to change temperature settings over time, internal temperature recorded by a date logger.
Choi, Tayoung; Ganapathy, Sriram; Jung, Jaehak; Savage, David R.; Lakshmanan, Balasubramanian; Vecasey, Pamela M.
2013-04-16
A system and method for detecting a low performing cell in a fuel cell stack using measured cell voltages. The method includes determining that the fuel cell stack is running, the stack coolant temperature is above a certain temperature and the stack current density is within a relatively low power range. The method further includes calculating the average cell voltage, and determining whether the difference between the average cell voltage and the minimum cell voltage is greater than a predetermined threshold. If the difference between the average cell voltage and the minimum cell voltage is greater than the predetermined threshold and the minimum cell voltage is less than another predetermined threshold, then the method increments a low performing cell timer. A ratio of the low performing cell timer and a system run timer is calculated to identify a low performing cell.
NASA Astrophysics Data System (ADS)
Dhage, P. M.; Raghuwanshi, N. S.; Singh, R.; Mishra, A.
2017-05-01
Production of the principal paddy crop in West Bengal state of India is vulnerable to climate change due to limited water resources and strong dependence on surface irrigation. Therefore, assessment of impact of temperature scenarios on crop evapotranspiration (ETc) is essential for irrigation management in Kangsabati command (West Bengal). In the present study, impact of the projected temperatures on ETc was studied under climate change scenarios. Further, the performance of the bias correction and spatial downscaling (BCSD) technique was compared with the two well-known downscaling techniques, namely, multiple linear regression (MLR) and Kernel regression (KR), for the projections of daily maximum and minimum air temperatures for four stations, namely, Purulia, Bankura, Jhargram, and Kharagpur. In National Centers for Environmental Prediction (NCEP) and General Circulation Model (GCM), 14 predictors were used in MLR and KR techniques, whereas maximum and minimum surface air temperature predictor of CanESM2 GCM was used in BCSD technique. The comparison results indicated that the performance of the BCSD technique was better than the MLR and KR techniques. Therefore, the BCSD technique was used to project the future temperatures of study locations with three Representative Concentration Pathway (RCP) scenarios for the period of 2006-2100. The warming tendencies of maximum and minimum temperatures over the Kangsabati command area were projected as 0.013 and 0.014 °C/year under RCP 2.6, 0.015 and 0.023 °C/year under RCP 4.5, and 0.056 and 0.061 °C/year under RCP 8.5 for 2011-2100 period, respectively. As a result, kharif (monsoon) crop evapotranspiration demand of Kangsabati reservoir command (project area) will increase by approximately 10, 8, and 18 % over historical demand under RCP 2.6, 4.5, and 8.5 scenarios, respectively.
NASA Astrophysics Data System (ADS)
Abaurrea, J.; Asín, J.; Cebrián, A. C.
2018-02-01
The occurrence of extreme heat events in maximum and minimum daily temperatures is modelled using a non-homogeneous common Poisson shock process. It is applied to five Spanish locations, representative of the most common climates over the Iberian Peninsula. The model is based on an excess over threshold approach and distinguishes three types of extreme events: only in maximum temperature, only in minimum temperature and in both of them (simultaneous events). It takes into account the dependence between the occurrence of extreme events in both temperatures and its parameters are expressed as functions of time and temperature related covariates. The fitted models allow us to characterize the occurrence of extreme heat events and to compare their evolution in the different climates during the observed period. This model is also a useful tool for obtaining local projections of the occurrence rate of extreme heat events under climate change conditions, using the future downscaled temperature trajectories generated by Earth System Models. The projections for 2031-60 under scenarios RCP4.5, RCP6.0 and RCP8.5 are obtained and analysed using the trajectories from four earth system models which have successfully passed a preliminary control analysis. Different graphical tools and summary measures of the projected daily intensities are used to quantify the climate change on a local scale. A high increase in the occurrence of extreme heat events, mainly in July and August, is projected in all the locations, all types of event and in the three scenarios, although in 2051-60 the increase is higher under RCP8.5. However, relevant differences are found between the evolution in the different climates and the types of event, with a specially high increase in the simultaneous ones.
A pantropical analysis of the impacts of forest degradation and conversion on local temperature.
Senior, Rebecca A; Hill, Jane K; González Del Pliego, Pamela; Goode, Laurel K; Edwards, David P
2017-10-01
Temperature is a core component of a species' fundamental niche. At the fine scale over which most organisms experience climate (mm to ha), temperature depends upon the amount of radiation reaching the Earth's surface, which is principally governed by vegetation. Tropical regions have undergone widespread and extreme changes to vegetation, particularly through the degradation and conversion of rainforests. As most terrestrial biodiversity is in the tropics, and many of these species possess narrow thermal limits, it is important to identify local thermal impacts of rainforest degradation and conversion. We collected pantropical, site-level (<1 ha) temperature data from the literature to quantify impacts of land-use change on local temperatures, and to examine whether this relationship differed aboveground relative to belowground and between wet and dry seasons. We found that local temperature in our sample sites was higher than primary forest in all human-impacted land-use types (N = 113,894 daytime temperature measurements from 25 studies). Warming was pronounced following conversion of forest to agricultural land (minimum +1.6°C, maximum +13.6°C), but minimal and nonsignificant when compared to forest degradation (e.g., by selective logging; minimum +1°C, maximum +1.1°C). The effect was buffered belowground (minimum buffering 0°C, maximum buffering 11.4°C), whereas seasonality had minimal impact (maximum buffering 1.9°C). We conclude that forest-dependent species that persist following conversion of rainforest have experienced substantial local warming. Deforestation pushes these species closer to their thermal limits, making it more likely that compounding effects of future perturbations, such as severe droughts and global warming, will exceed species' tolerances. By contrast, degraded forests and belowground habitats may provide important refugia for thermally restricted species in landscapes dominated by agricultural land.
NASA Astrophysics Data System (ADS)
Ding, Y.; Chen, X.; Bi, R.; Zhang, L. H.; Li, L.; Zhao, M.
2016-12-01
Alkenones and sterols are useful biomarkers to construct past productivity and community structure changes in aquatic environments. Until now, the quantitative relationship between biomarker content and biomass in marine phytoplankton remains understudied, which hinders the quantitative reconstruction of ocean changes. In this study, we carried out laboratory culture experiments to determine the quantitative relationship between biomarker content and biomass under three temperatures (15°, 20° and 25°) and three N:P supply ratios (N:P=10:1, 24:1 and 63:1 mol mol-1) for three common phytoplankton groups, diatoms (Phaeodactylum tricornutum Bohlin, Skeletonema costatum, Chaetoceros muelleri), dinoflagellates (Karenia mikimotoi, Prorocentrum donghaiense, Prorocentrum minimum), and coccolithophores (Emiliania huxleyi). Alkenones were only detected in E. huxleyiand dinosterol was only detected in dinoflagellates, confirming that they are the biomarkers for these two groups of phytoplankton, respectively. Brassicasterol was detected in all three groups of phytoplankton, but its content was higher in diatoms, suggesting that it is still a useful biomarker for diatoms. Cell-normalized alkenone content (pg/cell) increases with increasing growth temperature by up to 30%; while the effect of nutrients on alkenone content is minimum. On the other hand, cell-normalized dinosterol content is not temperature dependent, but it is strongly affected by nutrient ratio changes. The effects of temperature and nutrients on cell-normalized brassicasterol content are phytoplankton dependent. For diatoms, the temperature effect is minimum while the nutrient effect is significant but also varies with temperatures. Our results have strong implications for understanding how different phytoplankton respond to global changes, and for more quantitative reconstruction of past productivity and community structure changes using these biomarkers.
Abecia, J A; Arrébola, F; Macías, A; Laviña, A; González-Casquet, O; Benítez, F; Palacios, C
2016-10-01
A total number of 1092 artificial inseminations (AIs) performed from March to May were documented over four consecutive years on 10 Payoya goat farms (36° N) and 19,392 AIs on 102 Rasa Aragonesa sheep farms (41° N) over 10 years. Mean, maximum, and minimum ambient temperatures, mean relative humidity, mean solar radiation, and total rainfall on each insemination day were recorded. Overall, fertility rates were 58 % in goats and 45 % in sheep. The fertility rates of the highest and lowest deciles of each of the meteorological variables indicated that temperature and rainfall had a significant effect on fertility in goats. Specifically, inseminations that were performed when mean (68 %), maximum (68 %), and minimum (66 %) temperatures were in the highest decile, and rainfall was in the lowest decile (59 %), had a significantly (P < 0.0001) higher proportion of does that became pregnant than did the ewes in the lowest decile (56, 54, 58, and 49 %, respectively). In sheep, the fertility rates of the highest decile of mean (62 %), maximum (62 %), and minimum (52 %) temperature, RH (52 %), THI (53 %), and rainfall (45 %) were significantly higher (P < 0.0001) than were the fertility rates among ewes in the lowest decile (46, 45, 45, 45, 46, and 43 %, respectively). In conclusion, weather was related to fertility in small ruminants after AI in spring. It remains to be determined whether scheduling the dates of insemination based on forecasted temperatures can improve the success of AI in goats and sheep.
The effects of hot nights on mortality in Barcelona, Spain
NASA Astrophysics Data System (ADS)
Royé, D.
2017-12-01
Heat-related effects on mortality have been widely analyzed using maximum and minimum temperatures as exposure variables. Nevertheless, the main focus is usually on the former with the minimum temperature being limited in use as far as human health effects are concerned. Therefore, new thermal indices were used in this research to describe the duration of night hours with air temperatures higher than the 95% percentile of the minimum temperature (hot night hours) and intensity as the summation of these air temperatures in degrees (hot night degrees). An exposure-response relationship between mortality due to natural, respiratory, and cardiovascular causes and summer night temperatures was assessed using data from the Barcelona region between 2003 and 2013. The non-linear relationship between the exposure and response variables was modeled using a distributed lag non-linear model. The estimated associations for both exposure variables and mortality shows a relationship with high and medium values that persist significantly up to a lag of 1-2 days. In mortality due to natural causes, an increase of 1.1% per 10% (CI95% 0.6-1.5) for hot night hours and 5.8% per each 10° (CI95% 3.5-8.2%) for hot night degrees is observed. The effects of hot night hours reach their maximum with 100% and lead to an increase by 9.2% (CI95% 5.3-13.1%). The hourly description of night heat effects reduced to a single indicator in duration and intensity is a new approach and shows a different perspective and significant heat-related effects on human health.
Artificial Intelligence Techniques for Predicting and Mapping Daily Pan Evaporation
NASA Astrophysics Data System (ADS)
Arunkumar, R.; Jothiprakash, V.; Sharma, Kirty
2017-09-01
In this study, Artificial Intelligence techniques such as Artificial Neural Network (ANN), Model Tree (MT) and Genetic Programming (GP) are used to develop daily pan evaporation time-series (TS) prediction and cause-effect (CE) mapping models. Ten years of observed daily meteorological data such as maximum temperature, minimum temperature, relative humidity, sunshine hours, dew point temperature and pan evaporation are used for developing the models. For each technique, several models are developed by changing the number of inputs and other model parameters. The performance of each model is evaluated using standard statistical measures such as Mean Square Error, Mean Absolute Error, Normalized Mean Square Error and correlation coefficient (R). The results showed that daily TS-GP (4) model predicted better with a correlation coefficient of 0.959 than other TS models. Among various CE models, CE-ANN (6-10-1) resulted better than MT and GP models with a correlation coefficient of 0.881. Because of the complex non-linear inter-relationship among various meteorological variables, CE mapping models could not achieve the performance of TS models. From this study, it was found that GP performs better for recognizing single pattern (time series modelling), whereas ANN is better for modelling multiple patterns (cause-effect modelling) in the data.
Optimization control of LNG regasification plant using Model Predictive Control
NASA Astrophysics Data System (ADS)
Wahid, A.; Adicandra, F. F.
2018-03-01
Optimization of liquified natural gas (LNG) regasification plant is important to minimize costs, especially operational costs. Therefore, it is important to choose optimum LNG regasification plant design and maintaining the optimum operating conditions through the implementation of model predictive control (MPC). Optimal tuning parameter for MPC such as P (prediction horizon), M (control of the horizon) and T (sampling time) are achieved by using fine-tuning method. The optimal criterion for design is the minimum amount of energy used and for control is integral of square error (ISE). As a result, the optimum design is scheme 2 which is developed by Devold with an energy savings of 40%. To maintain the optimum conditions, required MPC with P, M and T as follows: tank storage pressure: 90, 2, 1; product pressure: 95, 2, 1; temperature vaporizer: 65, 2, 2; and temperature heater: 35, 6, 5, with ISE value at set point tracking respectively 0.99, 1792.78, 34.89 and 7.54, or improvement of control performance respectively 4.6%, 63.5%, 3.1% and 58.2% compared to PI controller performance. The energy savings that MPC controllers can make when there is a disturbance in temperature rise 1°C of sea water is 0.02 MW.
Coupling of ions to superconducting circuits
NASA Astrophysics Data System (ADS)
Moeller, Soenke; Daniilidis, Nikos; Haeffner, Hartmut
2013-05-01
We present experimental progress towards coupling the motion of ion strings to the resonant mode of a superconducting high-quality tank circuit. We consider such a coupling as the first step towards interfacing trapped ions with superconducting qubits. In our demonstration experiment, we aim to reduce the temperature of the resonant mode of the tank circuit by extracting energy from the circuit via laser cooling an ion string. One of the main experimental challenges is to construct a tank circuit with such a high quality factor Q that the ion-resonator coupling exceeds the environment-resonator coupling. Currently, we achieve Q = 60 000 at a frequency of ω = 2 π . 5 . 7 MHz . For this mode, the coupling time-scale to the environment is on the order of 50 Hz. We plan to use a trap with an ion-electrode distance on the order of 100 μm resulting in an ion-resonator coupling of 1kHz. This coupling should reduce the electronic temperature of the resonant mode by a factor of 80 below the ambient temperature. For our trap geometry we expect a minimum trap depth of 50 meV for a trap drive frequency of 52 MHz with a 200 V amplitude. This results radial trap frequencies of 5 . 7 MHz . Research funded by DARPA grant #N66001-12-1-4234.
Design and Fabrication of a Composite Morphing Radiator Panel Using High Conductivity Fibers
NASA Technical Reports Server (NTRS)
Wescott, Matthew T.; McQuien, J. Scott; Bertagne, Christopher L.; Whitcomb, John D.; Hart, Darren J.; Erickson, Lisa R.
2017-01-01
Upcoming crewed space missions will involve large internal and external heat loads and require advanced thermal control systems to maintain a desired internal environment temperature. Radiators with at least 12:1 turndown ratios (the ratio between the maximum and minimum heat rejection rates) will be needed. However, current technologies are only able to achieve turndown ratios of approximately 3:1. A morphing radiator capable of altering shape could significantly increase turndown capabilities. Shape memory alloys offer qualities that may be well suited for this endeavor; their temperature-dependent phase changes could offer radiators the ability to passively control heat rejection. In 2015, a morphing radiator prototype was constructed and tested in a thermal vacuum environment, where it successfully demonstrated the morphing behavior and variable heat rejection. Newer composite prototypes have since been designed and manufactured using two distinct types of SMA materials. These models underwent temperature cycling tests in a thermal vacuum chamber and a series of fatigue tests to characterize the lifespan of these designs. The focus of this paper is to present the design approach and testing of the morphing composite facesheet. The discussion includes: an overall description of the project background, definition of performance requirements, composite materials selection, use of analytic and numerical design tools, facesheet fabrication, and finally fatigue testing with accompanying results.
NASA Astrophysics Data System (ADS)
Núñez-Chico, A. B.; Martínez, E.; Angurel, L. A.; Navarro, R.
2016-08-01
Early quench detection and thermal stability of superconducting coils are of great relevance for practical applications. Magnets made with second generation high temperature superconducting (2G-HTS) tapes present low quench propagation velocities and therefore slow voltage development and high local temperature rises, which may cause irreversible damage. Since quench propagation depends on the anisotropy of the thermal conductivity, this may be used to achieve an improvement of the thermal stability and robustness of 2G-HTS coils. On pancake type coils, the thermal conductivity along the tapes (coil’s azimuthal direction) is mostly fixed by the 2G-HTS tape characteristics, so that the reduction of anisotropy relies on the improvement of the radial thermal conductivity, which depends on the used materials between superconducting tapes, as well as on the winding and impregnation processes. In this contribution, we have explored two possibilities for such anisotropy reduction: by using anodised aluminium or stainless steel tapes co-wound with the 2G-HTS tapes. For all the analysed coils, critical current distribution, minimum quench energy values and both tangential and radial quench propagation velocities at different temperatures and currents are reported and compared with the results of similar coils co-wound with polyimide (Kapton®) tapes.
Nocturnal cooling in a very shallow cold air pool
NASA Astrophysics Data System (ADS)
Rakovec, Jože; Skok, Gregor; Žabkar, Rahela; Žagar, Nedjeljka
2015-04-01
Cold air pools (CAPs) may develop during nights in very shallow depressions. The depth of the stagnant air within a CAP influences the process of the cooling of nocturnal air and the resulting minimum temperature. A seven-month long field experiment was performed during winter 2013/2014 in an orchard near Kr\\vsko, Slovenia, located inside a very shallow basin only a few meters deep and approximately 500 m wide. Two locations at different elevations inside the basin were selected for measurement. The results showed that the nights (in terms of cooling) can be classified into three main categories; nights with overcast skies and weak cooling, windy nights with clear sky and strong cooling but with no difference in temperatures between locations inside the basin, and calm nights with even stronger cooling and significant temperature differences between locations inside the basin. On calm nights with clear skies, the difference at two measuring sites inside the basin can be up to 5 °C but the presence of even weak winds can cause sufficient turbulent mixing to negate any difference in temperature. To better understand the cooling process on calm, clear nights, we developed a simple 1-D thermodynamic conceptual model focusing on a very shallow CAP. The model has 5-layers (including two air layers representing air inside the CAP), and an analytical solution was obtained for the equilibrium temperatures. Sensitivity analysis of the model was performed. As expected, a larger soil heat conductivity or higher temperature in the ground increases the morning minimum temperatures. An increase in temperature of the atmosphere also increases the simulated minimum temperatures, while the temperature difference between the higher and lower locations remains almost the same. An increase in atmosphere humidity also increases the modelled equilibrium temperatures, while an increase of the humidity of the air inside the CAP results in lower equilibrium temperatures. The humidity of the air within the CAP and that of the free atmosphere strongly influence the differences in equilibrium temperatures at higher and lower locations. The more humid the air, the stronger the cooling at the lower location compared to the higher location.
Kucharik, Christopher J.; VanLoocke, Andy; Lenters, John D.; Motew, Melissa M.
2013-01-01
Miscanthus is an intriguing cellulosic bioenergy feedstock because its aboveground productivity is high for low amounts of agrochemical inputs, but soil temperatures below −3.5°C could threaten successful cultivation in temperate regions. We used a combination of observed soil temperatures and the Agro-IBIS model to investigate how strategic residue management could reduce the risk of rhizome threatening soil temperatures. This objective was addressed using a historical (1978–2007) reconstruction of extreme minimum 10 cm soil temperatures experienced across the Midwest US and model sensitivity studies that quantified the impact of crop residue on soil temperatures. At observation sites and for simulations that had bare soil, two critical soil temperature thresholds (50% rhizome winterkill at −3.5°C and −6.0°C for different Miscanthus genotypes) were reached at rhizome planting depth (10 cm) over large geographic areas. The coldest average annual extreme 10 cm soil temperatures were between −8°C to −11°C across North Dakota, South Dakota, and Minnesota. Large portions of the region experienced 10 cm soil temperatures below −3.5°C in 75% or greater for all years, and portions of North and South Dakota, Minnesota, and Wisconsin experienced soil temperatures below −6.0°C in 50–60% of all years. For simulated management options that established varied thicknesses (1–5 cm) of miscanthus straw following harvest, extreme minimum soil temperatures increased by 2.5°C to 6°C compared to bare soil, with the greatest warming associated with thicker residue layers. While the likelihood of 10 cm soil temperatures reaching −3.5°C was greatly reduced with 2–5 cm of surface residue, portions of the Dakotas, Nebraska, Minnesota, and Wisconsin still experienced temperatures colder than −3.5°C in 50–80% of all years. Nonetheless, strategic residue management could help increase the likelihood of overwintering of miscanthus rhizomes in the first few years after establishment, although low productivity and biomass availability during these early stages could hamper such efforts. PMID:23844244
USDA-ARS?s Scientific Manuscript database
Our objective was to identify temperature-related risk factors associated with the colonization of broiler-chicken flocks with Campylobacter spp. in Iceland, with an underlying assumption that at minimum ambient temperatures, flies (Musca domestica) play a role in the epidemiology and seasonality of...
USDA-ARS?s Scientific Manuscript database
The variability of temperature extremes has been the focus of attention during the past few decades, and may exert a great influence on the global hydrologic cycle and energy balance through thermal forcing. Based on daily minimum and maximum temperature observed by the China Meteorological Administ...
40 CFR 63.1365 - Test methods and initial compliance procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...
40 CFR 63.1365 - Test methods and initial compliance procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...
40 CFR 63.1365 - Test methods and initial compliance procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...
40 CFR 63.1365 - Test methods and initial compliance procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... temperature of 760 °C, the design evaluation must document that these conditions exist. (ii) For a combustion... autoignition temperature of the organic HAP, must consider the vent stream flow rate, and must establish the design minimum and average temperature in the combustion zone and the combustion zone residence time. (B...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-17
... chemistry, scrubber pressure drop, and scrubber inlet gas temperature hourly. The final rule does not... pressure) and inlet gas temperature to be based on the minimum flow rate (or line pressure) or maximum inlet gas temperature established during the initial performance test. It also includes two additional...
NASA Astrophysics Data System (ADS)
Igono, M. O.; Bjotvedt, G.; Sanford-Crane, H. T.
1992-06-01
The environmental profile of central Arizona is quantitatively described using meteorological data between 1971 and 1986. Utilizing ambient temperature criteria of hours per day less than 21° C, between 21 and 27° C, and more than 27° C, the environmental profile of central Arizona consists of varying levels of thermoneutral and heat stress periods. Milk production data from two commercial dairy farms from March 1990 to February 1991 were used to evaluate the seasonal effects identified in the environmental profile. Overall, milk production is lower during heat stress compared to thermoneutral periods. During heat stress, the cool period of hours per day with temperature less than 21° C provides a margin of safety to reduce the effects of heat stress on decreased milk production. Using minimum, mean and maximum ambient temperatures, the upper critical temperatures for milk production are 21, 27 and 32° C, respectively. Using the temperature-humidity index as the thermal environment indicator, the critical values for minimum, mean and maximum THI are 64, 72 and 76, respectively.
NASA Technical Reports Server (NTRS)
Cook, J. W.; Ewing, J. A.
1990-01-01
A quantitative relationship was determined between magnetic field strength (or magnetic flux) from photospheric magnetograph observations and the brightness temperature of solar fine-structure elements observed at 1600 A, where the predominant flux source is continuum emission from the solar temperature minimum region. A Kitt Peak magnetogram and spectroheliograph observations at 1600 A taken during a sounding rocket flight of the High Resolution Telescope and Spectrograph from December 11, 1987 were used. The statistical distributions of brightness temperature in the quiet sun at 1600 A, and absolute value of magnetic field strength in the same area were determined from these observations. Using a technique which obtains the best-fit relationship of a given functional form between these two histogram distributions, a quantitative relationship was determined between absolute value of magnetic field strength B and brightness temperature which is essentially linear from 10 to 150 G. An interpretation is suggested, in which a basal heating occurs generally, while brighter elements are produced in magnetic regions with temperature enhancements proportional to B.
Degree Day Requirements for Kudzu Bug (Hemiptera: Plataspidae), a Pest of Soybeans.
Grant, Jessica I; Lamp, William O
2018-04-02
Understanding the phenology of a new potential pest is fundamental for the development of a management program. Megacopta cribraria Fabricius (Hemiptera: Plataspidae), kudzu bug, is a pest of soybeans first detected in the United States in 2009 and in Maryland in 2013. We observed the phenology of kudzu bug life stages in Maryland, created a Celsius degree-day (CDD) model for development, and characterized the difference between microhabitat and ambient temperatures of both kudzu, Pueraria montana (Lour.) Merr. (Fabales: Fabaceae) and soybeans, Glycine max (L.) Merrill (Fabales: Fabaceae). In 2014, low population numbers yielded limited resolution from field phenology observations. We observed kudzu bug populations persisting within Maryland; but between 2013 and 2016, populations were low compared to populations in the southeastern United States. Based on the degree-day model, kudzu bug eggs require 80 CDD at a minimum temperature of 14°C to hatch. Nymphs require 545 CDD with a minimum temperature of 16°C for development. The CDD model matches field observations when factoring a biofix date of April 1 and a minimum preoviposition period of 17 d. The model suggests two full generations per year in Maryland. Standard air temperature monitors do not affect model predictions for pest management, as microhabitat temperature differences did not show a clear trend between kudzu and soybeans. Ultimately, producers can predict the timing of kudzu bug life stages with the CDD model for the use of timing management plans in soybean fields.
14 CFR 25.149 - Minimum control speed.
Code of Federal Regulations, 2014 CFR
2014-01-01
... (7) If applicable, the propeller of the inoperative engine— (i) Windmilling; (ii) In the most..., the propeller of the inoperative engine in the position it achieves without pilot action, assuming the... propeller of the more critical inoperative engine in the position it achieves without pilot action, assuming...
14 CFR 25.149 - Minimum control speed.
Code of Federal Regulations, 2013 CFR
2013-01-01
... (7) If applicable, the propeller of the inoperative engine— (i) Windmilling; (ii) In the most..., the propeller of the inoperative engine in the position it achieves without pilot action, assuming the... propeller of the more critical inoperative engine in the position it achieves without pilot action, assuming...
14 CFR 25.149 - Minimum control speed.
Code of Federal Regulations, 2012 CFR
2012-01-01
... (7) If applicable, the propeller of the inoperative engine— (i) Windmilling; (ii) In the most..., the propeller of the inoperative engine in the position it achieves without pilot action, assuming the... propeller of the more critical inoperative engine in the position it achieves without pilot action, assuming...
Njagi, Nkonge A; Oloo, Mayabi A; Kithinji, J; Kithinji, Magambo J
2012-12-01
There are practically no low cost, environmentally friendly options in practice whether incineration, autoclaving, chemical treatment or microwaving (World Health Organisation in Health-care waste management training at national level, [2006] for treatment of health-care waste. In Kenya, incineration is the most popular treatment option for hazardous health-care waste from health-care facilities. It is the choice practiced at both Kenyatta National Hospital, Nairobi and Moi Teaching and Referral Hospital, Eldoret. A study was done on the possible public health risks posed by incineration of the segregated hazardous health-care waste in one of the incinerators in each of the two hospitals. Gaseous emissions were sampled and analyzed for specific gases the equipment was designed and the incinerators Combustion efficiency (CE) established. Combustion temperatures were also recorded. A flue gas analyzer (Model-Testos-350 XL) was used to sample flue gases in an incinerator under study at Kenyatta National Hospital--Nairobi and Moi Teaching and Referral Hospital--Eldoret to assess their incineration efficiency. Flue emissions were sampled when the incinerators were fully operational. However the flue gases sampled in the study, by use of the integrated pump were, oxygen, carbon monoxide, nitrogen dioxide, nitrous oxide, sulphur dioxide and No(x). The incinerator at KNH operated at a mean stack temperature of 746 °C and achieved a CE of 48.1 %. The incinerator at MTRH operated at a mean stack temperature of 811 °C and attained a CE of 60.8 %. The two health-care waste incinerators achieved CE below the specified minimum National limit of 99 %. At the detected stack temperatures, there was a possibility that other than the emissions identified, it was possible that the two incinerators tested released dioxins, furans and antineoplastic (cytotoxic drugs) fumes should the drugs be subjected to incineration in the two units.
Factors affecting viability of Bifidobacterium bifidum during spray drying.
Shokri, Zahra; Fazeli, Mohammad Reza; Ardjmand, Mehdi; Mousavi, Seyyed Mohammad; Gilani, Kambiz
2015-01-25
There is substantial clinical data supporting the role of Bifidobacterium bifidum in human health particularly in benefiting the immune system and suppressing intestinal infections. Compared to the traditional lyophilization, spray-drying is an economical process for preparing large quantities of viable microorganisms. The technique offers high production rates and low operating costs but is not usually used for drying of substances prone to high temperature. The aim of this study was to establish the optimized environmental factors in spray drying of cultured bifidobacteria to obtain a viable and stable powder. The experiments were designed to test variables such as inlet air temperature, air pressure and also maltodextrin content. The combined effect of these variables on survival rateand moisture content of bacterial powder was studied using a central composite design (CCD). Sub-lethal heat-adaptation of a B. bifidum strain which was previously adapted to acid-bile-NaCl led to much more resistance to high outlet temperature during spray drying. The resistant B. bifidum was supplemented with cost friendly permeate, sucrose, yeast extract and different amount of maltodextrin before it was fed into a Buchi B-191 mini spray-dryer. Second-order polynomials were established to identify the relationship between the responses andthe three variables. Results of verification experiments and predicted values from fitted correlations were in close agreement at 95% confidence interval. The optimal values of the variables for maximum survival and minimum moisture content of B. bifidum powder were as follows: inlet air temperature of 111.15°C, air pressure of 4.5 bar and maltodextrin concentration of 6%. Under optimum conditions, the maximum survival of 28.38% was achieved while moisture was maintained at 4.05%. Viable and cost effective spray drying of Bifidobacterium bifidum could be achieved by cultivating heat and acid adapted strain into the culture media containing nutritional protective agents.
Changing climate and endangered high mountain ecosystems in Colombia.
Ruiz, Daniel; Moreno, Hernán Alonso; Gutiérrez, María Elena; Zapata, Paula Andrea
2008-07-15
High mountain ecosystems are among the most sensitive environments to changes in climatic conditions occurring on global, regional and local scales. The article describes the changing conditions observed over recent years in the high mountain basin of the Claro River, on the west flank of the Colombian Andean Central mountain range. Local ground truth data gathered at 4150 m, regional data available at nearby weather stations, and satellite info were used to analyze changes in the mean and the variance, and significant trends in climatic time series. Records included minimum, mean and maximum temperatures, relative humidity, rainfall, sunshine, and cloud characteristics. In high levels, minimum and maximum temperatures during the coldest days increased at a rate of about 0.6 degrees C/decade, whereas maximum temperatures during the warmest days increased at a rate of about 1.3 degrees C/decade. Rates of increase in maximum, mean and minimum diurnal temperature range reached 0.6, 0.7, and 0.5 degrees C/decade. Maximum, mean and minimum relative humidity records showed reductions of about 1.8, 3.9 and 6.6%/decade. The total number of sunny days per month increased in almost 2.1 days. The headwaters exhibited no changes in rainfall totals, but evidenced an increased occurrence of unusually heavy rainfall events. Reductions in the amount of all cloud types over the area reached 1.9%/decade. In low levels changes in mean monthly temperatures and monthly rainfall totals exceeded + 0.2 degrees C and - 4% per decade, respectively. These striking changes might have contributed to the retreat of glacier icecaps and to the disappearance of high altitude water bodies, as well as to the occurrence and rapid spread of natural and man-induced forest fires. Significant reductions in water supply, important disruptions of the integrity of high mountain ecosystems, and dramatic losses of biodiversity are now a steady menu of the severe climatic conditions experienced by these fragile tropical environments.
Muscle, skin and core temperature after -110°c cold air and 8°c water treatment.
Costello, Joseph Thomas; Culligan, Kevin; Selfe, James; Donnelly, Alan Edward
2012-01-01
The aim of this investigation was to elucidate the reductions in muscle, skin and core temperature following exposure to -110°C whole body cryotherapy (WBC), and compare these to 8°C cold water immersion (CWI). Twenty active male subjects were randomly assigned to a 4-min exposure of WBC or CWI. A minimum of 7 days later subjects were exposed to the other treatment. Muscle temperature in the right vastus lateralis (n=10); thigh skin (average, maximum and minimum) and rectal temperature (n=10) were recorded before and 60 min after treatment. The greatest reduction (P<0.05) in muscle (mean ± SD; 1 cm: WBC, 1.6 ± 1.2°C; CWI, 2.0 ± 1.0°C; 2 cm: WBC, 1.2 ± 0.7°C; CWI, 1.7 ± 0.9°C; 3 cm: WBC, 1.6 ± 0.6°C; CWI, 1.7 ± 0.5°C) and rectal temperature (WBC, 0.3 ± 0.2°C; CWI, 0.4 ± 0.2°C) were observed 60 min after treatment. The largest reductions in average (WBC, 12.1 ± 1.0°C; CWI, 8.4 ± 0.7°C), minimum (WBC, 13.2 ± 1.4°C; CWI, 8.7 ± 0.7°C) and maximum (WBC, 8.8 ± 2.0°C; CWI, 7.2 ± 1.9°C) skin temperature occurred immediately after both CWI and WBC (P<0.05). Skin temperature was significantly lower (P<0.05) immediately after WBC compared to CWI. The present study demonstrates that a single WBC exposure decreases muscle and core temperature to a similar level of those experienced after CWI. Although both treatments significantly reduced skin temperature, WBC elicited a greater decrease compared to CWI. These data may provide information to clinicians and researchers attempting to optimise WBC and CWI protocols in a clinical or sporting setting.
Trend analysis of long-term temperature time series in the Greater Toronto Area (GTA)
NASA Astrophysics Data System (ADS)
Mohsin, Tanzina; Gough, William A.
2010-08-01
As the majority of the world’s population is living in urban environments, there is growing interest in studying local urban climates. In this paper, for the first time, the long-term trends (31-162 years) of temperature change have been analyzed for the Greater Toronto Area (GTA). Annual and seasonal time series for a number of urban, suburban, and rural weather stations are considered. Non-parametric statistical techniques such as Mann-Kendall test and Theil-Sen slope estimation are used primarily for the assessing of the significance and detection of trends, and the sequential Mann test is used to detect any abrupt climate change. Statistically significant trends for annual mean and minimum temperatures are detected for almost all stations in the GTA. Winter is found to be the most coherent season contributing substantially to the increase in annual minimum temperature. The analyses of the abrupt changes in temperature suggest that the beginning of the increasing trend in Toronto started after the 1920s and then continued to increase to the 1960s. For all stations, there is a significant increase of annual and seasonal (particularly winter) temperatures after the 1980s. In terms of the linkage between urbanization and spatiotemporal thermal patterns, significant linear trends in annual mean and minimum temperature are detected for the period of 1878-1978 for the urban station, Toronto, while for the rural counterparts, the trends are not significant. Also, for all stations in the GTA that are situated in all directions except south of Toronto, substantial temperature change is detected for the periods of 1970-2000 and 1989-2000. It is concluded that the urbanization in the GTA has significantly contributed to the increase of the annual mean temperatures during the past three decades. In addition to urbanization, the influence of local climate, topography, and larger scale warming are incorporated in the analysis of the trends.
Zero expansion glass ceramic ZERODUR® roadmap for advanced lithography
NASA Astrophysics Data System (ADS)
Westerhoff, Thomas; Jedamzik, Ralf; Hartmann, Peter
2013-04-01
The zero expansion glass ceramic ZERODUR® is a well-established material in microlithography in critical components as wafer- and reticle-stages, mirrors and frames in the stepper positioning and alignment system. The very low coefficient of thermal expansion (CTE) and its extremely high CTE homogeneity are key properties to achieve the tight overlay requirements of advanced lithography processes. SCHOTT is continuously improving critical material properties of ZERODUR® essential for microlithography applications according to a roadmap driven by the ever tighter material specifications broken down from the customer roadmaps. This paper will present the SCHOTT Roadmap for ZERODUR® material property development. In the recent years SCHOTT established a physical model based on structural relaxation to describe the coefficient of thermal expansion's temperature dependence. The model is successfully applied for the new expansion grade ZERODUR® TAILORED introduced to the market in 2012. ZERODUR® TAILORED delivers the lowest thermal expansion of ZERODUR® products at microlithography tool application temperature allowing for higher thermal stability for tighter overlay control in IC production. Data will be reported demonstrating the unique CTE homogeneity of ZERODUR® and its very high reproducibility, a necessary precondition for serial production for microlithography equipment components. New data on the bending strength of ZERODUR® proves its capability to withstand much higher mechanical loads than previously reported. Utilizing a three parameter Weibull distribution it is possible to derive minimum strength values for a given ZERODUR® surface treatment. Consequently the statistical uncertainties of the earlier approach based on a two parameter Weibull distribution have been eliminated. Mechanical fatigue due to stress corrosion was included in a straightforward way. The derived formulae allows calculating life time of ZERODUR® components for a given stress load or the allowable maximum stress for a minimum required life time.
Ottonello, G; Richet, P; Vetuschi Zuccolini, M
2015-02-07
We present an application of the Scaling Particle Theory (SPT) coupled with an ab initio assessment of the electronic, dispersive, and repulsive energy terms based on the Polarized Continuum Model (PCM) aimed at reproducing the observed solubility behavior of OH2 over the entire compositional range from pure molten silica to pure water and wide pressure and temperature regimes. It is shown that the solution energy is dominated by cavitation terms, mainly entropic in nature, which cause a large negative solution entropy and a consequent marked increase of gas phase fugacity with increasing temperatures. Besides, the solution enthalpy is negative and dominated by electrostatic terms which depict a pseudopotential well whose minimum occurs at a low water fraction (XH2O) of about 6 mol. %. The fine tuning of the solute-solvent interaction is achieved through very limited adjustments of the electrostatic scaling factor γel which, in pure water, is slightly higher than the nominal value (i.e., γel = 1.224 against 1.2), it attains its minimum at low H2O content (γel = 0.9958) and then rises again at infinite dilution (γel = 1.0945). The complex solution behavior is interpreted as due to the formation of energetically efficient hydrogen bonding when OH functionals are in appropriate amount and relative positioning with respect to the discrete OH2 molecules, reinforcing in this way the nominal solute-solvent inductive interaction. The interaction energy derived from the SPT-PCM calculations is then recast in terms of a sub-regular Redlich-Kister expansion of appropriate order whereas the thermodynamic properties of the H2O component at its standard state (1-molal solution referred to infinite dilution) are calculated from partial differentiation of the solution energy over the intensive variables.
Lai, Yin-Hung; Chen, Bo-Gaun; Lee, Yuan Tseh; Wang, Yi-Sheng; Lin, Sheng Hsien
2014-08-15
Although several reaction models have been proposed in the literature to explain matrix-assisted laser desorption/ionization (MALDI), further study is still necessary to explore the important ionization pathways that occur under the high-temperature environment of MALDI. 2,4,6-Trihydroxyacetophenone (THAP) is an ideal compound for evaluating the contribution of thermal energy to an initial reaction with minimum side reactions. Desorbed neutral THAP and ions were measured using a crossed-molecular beam machine and commercial MALDI-TOF instrument, respectively. A quantitative model incorporating an Arrhenius-type desorption rate derived from transition state theory was proposed. Reaction enthalpy was calculated using GAUSSIAN 03 software with dielectric effect. Additional evidence of thermal-induced proton disproportionation was given by the indirect ionization of THAP embedded in excess fullerene molecules excited by a 450 nm laser. The quantitative model predicted that proton disproportionation of THAP would be achieved by thermal energy converted from a commonly used single UV laser photon. The dielectric effect reduced the reaction Gibbs free energy considerably even when the dielectric constant was reduced under high-temperature MALDI conditions. With minimum fitting parameters, observations of pure THAP and THAP mixed with fullerene both agreed with predictions. Proton disproportionation of solid THAP was energetically favorable with a single UV laser photon. The quantitative model revealed an important initial ionization pathway induced by the abrupt heating of matrix crystals. In the matrix crystals, the dielectric effect reduced reaction Gibbs free energy under typical MALDI conditions. The result suggested that thermal energy plays an important role in the initial ionization reaction of THAP. Copyright © 2014 John Wiley & Sons, Ltd.