Sample records for minimum bend radius

  1. Analysis of fracture in sheet bending and roll forming

    NASA Astrophysics Data System (ADS)

    Deole, Aditya D.; Barnett, Matthew; Weiss, Matthias

    2018-05-01

    The bending limit or minimum bending radius of sheet metal is conventionally measured in a wiping (swing arm) or in a vee bend test and reported as the minimum radius of the tool over which the sheet can be bent without fracture. Frequently the material kinks while bending so that the actual inner bend radius of the sheet metal is smaller than the tool radius giving rise to inaccuracy in these methods. It has been shown in the previous studies that conventional bend test methods may under-estimate formability in bending dominated processes such as roll forming. A new test procedure is proposed here to improve understanding and measurement of fracture in bending and roll forming. In this study, conventional wiping test and vee bend test have been performed on martensitic steel to determine the minimum bend radius. In addition, the vee bend test is performed in an Erichsen sheet metal tester equipped with the GOM Aramis system to enable strain measurement on the outer surface during bending. The strain measurement before the onset of fracture is then used to determine the minimum bend radius. To compare this result with a technological process, a vee channel is roll formed and in-situ strain measurement carried out with the Vialux Autogrid system. The strain distribution at fracture in the roll forming process is compared with that predicted by the conventional bending tests and by the improved process. It is shown that for this forming operation and material, the improved procedure gives a more accurate prediction of fracture.

  2. A comparison of deformation and failure behaviors of AZ31 and E-form Mg alloys under V-bending test

    NASA Astrophysics Data System (ADS)

    Choi, Shi-Hoon; Singh, Jaiveer; Kim, Min-Seong; Yoon, Jeong-Whan

    2016-08-01

    Deformation and failure behaviors of magnesium (Mg) alloys (AZ31 and E-form) were investigated using V-bending test. Formability of these Mg alloys was discussed in terms of minimum bending radius. Microtexture evolution in the deformed Mg alloys was examined via electron back-scattered diffraction (EBSD) technique. Two level simulation technique which combined continuum finite element method (FEM) and crystal plasticity FEM successfully simulated the microtexture evolution in Mg alloys during V-bending test. The effect of deformation twinning on the failure in Mg alloys was also examined.

  3. Design and analysis for a bend-resistant and large-mode-area photonic crystal fiber with hybrid cladding.

    PubMed

    Qin, Yan; Yang, Huajun; Jiang, Ping; Gui, Fengji; Caiyang, Weinan; Cao, Biao

    2018-05-10

    In this paper, an asymmetric large-mode-area photonic crystal fiber (LMA-PCF) with low bending loss at a smaller bending radius is designed. The finite-element method with a perfectly matched layer boundary is used to analyze the performance of the PCF. To achieve LMA-PCF with low bending loss, the air holes with double lattice constants and different sizes at the core are designed. Numerical results show that this structure can achieve low bending loss and LMA with a smaller bending radius at the wavelength of 1.55 μm. The effective mode area of the fundamental mode is larger than 1000  μm 2 when the bending radius is ≥10  cm. The bending loss of the fundamental mode is just 0.0113 dB/m, and the difference between the fundamental and high-order modes of the bending loss is larger than 10 3 when the bending radius is 10 cm. Simulation results show this novel PCF can achieve LMA and have effective single-mode operation when the bending orientation angle ranges in ±110°. This novel photonic crystal has potential application in high-power fiber lasers.

  4. Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection

    NASA Astrophysics Data System (ADS)

    Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing

    2018-07-01

    Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young’s modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.

  5. Flexible gas sensor based on graphene/ethyl cellulose nanocomposite with ultra-low strain response for volatile organic compounds rapid detection.

    PubMed

    Zhang, Qiankun; An, Chunhua; Fan, Shuangqing; Shi, Sigang; Zhang, Rongjie; Zhang, Jing; Li, Quanning; Zhang, Daihua; Hu, Xiaodong; Liu, Jing

    2018-04-18

    Minimizing the strain-induced undesirable effects is one of the major efforts to be made for flexible electronics. This work demonstrates a highly sensitive flexible gas sensor with ultra-low strain response, which is potentially suitable for wearable electronics applications. The gas sensing material is a free-standing and flexible thin film made of graphene/ethyl cellulose (EC) nanocomposite, which is then integrated with flexible substrate of polyethylene terephthalate. The sensor exhibits relative resistance change within 0.3% at a minimum bending radius of 3.18 mm and 0.2% at the bending radius of 5 mm after 400 bending cycles. The limited strain response attributes to several applied strategies, including using EC with high Young's modulus as the matrix material, maintaining high graphene concentration and adopting suspended device structure. In contrast to the almost negligible strain sensitivity, the sensor presents large and rapid responses toward volatile organic compounds (VOCs) at room temperature. Specifically, the sensor resistance rapidly increases upon the exposure to VOCs with detection limits ranging from 37 to 167 ppm. A preliminary demo of wearable gas sensing capability is also implemented by wearing the sensor on human hand, which successfully detects several VOCs, instead of normal hand gestures.

  6. Characterization and prediction of meandering channel migration in the GIS environment: a case study of the Sabine River in the USA.

    PubMed

    Heo, Joon; Duc, Trinh Anh; Cho, Hyung-Sik; Choi, Sung-Uk

    2009-05-01

    This study focused on the prediction of a 22 km meandering channel migration of the Sabine River between the states of Texas and Louisiana. The meander characteristics of 12 bends, identified from seven orthophotos taken between 1974 and 2004, were acquired in a GIS environment. Based on that earlier years' data acquisition, channel prediction was performed for the two years 1996 and 2004 using least squares estimation and linear extrapolations, yielding a satisfactory agreement with the observations (the median predicted and observed migration rates were 3.1 and 3.6 [m/year], respectively). The best-predicted migration rate was found to be associated with the longest orthophoto-recorded interval. The study confirmed that channel migration is strongly correlated with bend curvature and that the maximum migration rate of the bend corresponded to a radius of curvature [bend radius (R(C))/channel width (W(C))] of 2.5. In tight bends of a smaller radius of curvature than 1.6, secondary flow scouring near the bend apex increases bend curvature. The stability index of the dimensionless bend radius was determined to be 2.45. Overall, this study proves the effectiveness of least squares estimation with historical orthophotography for characterization of meandering channel migration.

  7. Contact Modelling of Large Radius Air Bending with Geometrically Exact Contact Algorithm

    NASA Astrophysics Data System (ADS)

    Vorkov, V.; Konyukhov, A.; Vandepitte, D.; Duflou, J. R.

    2016-08-01

    Usage of high-strength steels in conventional air bending is restricted due to limited bendability of these metals. Large-radius punches provide a typical approach for decreasing deformations during the bending process. However, as deflection progresses the loading scheme changes gradually. Therefore, modelling of the contact interaction is essential for an accurate description of the loading scheme. In the current contribution, the authors implemented a plane frictional contact element based on the penalty method. The geometrically exact contact algorithm is used for the penetration determination. The implementation is done using the OOFEM - open source finite element solver. In order to verify the simulation results, experiments have been conducted on a bending press brake for 4 mm Weldox 1300 with a punch radius of 30 mm and a die opening of 80 mm. The maximum error for the springback calculation is 0.87° for the bending angle of 144°. The contact interaction is a crucial part of large radius bending simulation and the implementation leads to a reliable solution for the springback angle.

  8. Biomechanical Effects of the Geometry of Ball-and-Socket Artificial Disc on Lumbar Spine: A Finite Element Study.

    PubMed

    Choi, Jisoo; Shin, Dong-Ah; Kim, Sohee

    2017-03-15

    A three-dimensional finite element model of intact lumbar spine was constructed and four surgical finite element models implanted with ball-and-socket artificial discs with four different radii of curvature were compared. To investigate biomechanical effects of the curvature of ball-and-socket artificial disc using finite element analysis. Total disc replacement (TDR) has been accepted as an alternative treatment because of its advantages over spinal fusion methods in degenerative disc disease. However, the influence of the curvature of artificial ball-and-socket discs has not been fully understood. Four surgical finite element models with different radii of curvature of ball-and-socket artificial discs were constructed. The range of motion (ROM) increased with decreasing radius of curvature in extension, flexion, and lateral bending, whereas it increased with increasing radius of curvature in axial torsion. The facet contact force was minimum with the largest radius of curvature in extension, flexion, and lateral bending, whereas it was maximum with the largest radius in axial torsion. It was also affected by the disc placement, more with posterior placement than anterior placement. The stress in L4 cancellous bone increased when the radius of curvature was too large or small. The geometry of ball-and-socket artificial disc significantly affects the ROM, facet contact force, and stress in the cancellous bone at the surgical level. The implication is that in performing TDR, the ball-and-socket design may not be ideal, as ROM and facet contact force are sensitive to the disc design, which may be exaggerated by the individual difference of anatomical geometry. N/A.

  9. Indigenously developed bending strain setup for I-V characterization of superconducting tapes and wires

    NASA Astrophysics Data System (ADS)

    Panchal, Arun; Bano, Anees; Ghate, Mahesh; Raj, Piyush; Pradhan, Subrata

    2017-04-01

    An indigenously developed bending strain setup to examine the effect of pure bending on critical current of superconducting tapes and strands has been presented in this paper. This set up is capable of applying various bending radius in situ at cryogenic temperature with rack and pinion gear mechanism. The bending strain applied on samples can be controlled externally by rotational input which is transferred in the form of bending radius during experiments. The working principle, design and optimization of this set up have been discussed. The performance and validation of this setup has been done on various HTS tapes and copper strands at 77 K in actual experimental facility. Effect of bending radius (15.5 mm - 48 mm) i.e. strains and ramp rate (2 A/s - 8 A/s) is observed on current capability of various HTS Tapes. It is observed that in uniform bending condition, degradation in current carrying capacity BSCCO and Di-BSCCO (˜ 30 %) is more as compare to YBCO (˜ 2.75 %) at 77 K. The effect of pure mechanical strain has been experimentally observed and presented.

  10. Symmetric tape round REBCO wire with J e (4.2 K, 15 T) beyond 450 A mm‑2 at 15 mm bend radius: a viable candidate for future compact accelerator magnet applications

    NASA Astrophysics Data System (ADS)

    Kar, Soumen; Luo, Wenbo; Ben Yahia, Anis; Li, Xiaofen; Majkic, Goran; Selvamanickam, Venkat

    2018-04-01

    Round REBCO (RE = rare earth) wires of 1.6–1.85 mm diameter have been fabricated using ultrathin REBCO tapes where the superconductor film is positioned near the geometric center. Such symmetric tape round (STAR) wires exhibit excellent tolerance to bend strain with a critical current retention of more than 97% when bent to a radius of 15 mm. A 1.6 mm diameter REBCO STAR wire made with six 2.5 mm wide symmetric tapes reached an engineering current density (J e) of 454 A mm‑2 at 4.2 K in a background field of 15 T at a bend radius of 15 mm. Such superior performance at a small bend radius can enable fabrication of future accelerator magnets, operating at magnetic fields above 20 T.

  11. Studies on the influence of axial bends on ultrasonic guided waves in hollow cylinders (pipes)

    NASA Astrophysics Data System (ADS)

    Verma, Bhupesh; Balasubramaniam, Krishnan; Rajagopal, Prabhu

    2013-01-01

    Ultrasonic guided waves in hollow cylinders (pipes) are today widely applied as rapid screening tools in the inspection of straight pipe segments in oil, power generation and petrochemical processing industries. However, the characteristics of guided wave propagation across features such as bends in the pipe network are complicated, hampering a wider application of the developed techniques. Although a growing number of studies in recent years have considered guided wave propagation across elbows and U-type bends, the topic is still not very well understood for a general bend angle φ, mean bend radius R and pipe thickness b. Here we use 3D Finite Element (FE) simulation to illumine the propagation of fundamental guided pipe modes across bends of several different angles φ. Two different bend radius regimes, R/λ ≈ 1 and 10 (where λ denotes the wavelength of the mode studied) are considered, exemplifying 'sharp' and gradual or 'slow' bends. Different typical pipe thicknesses b within these regimes are also studied. The results confirm the expectation that different bend radius regimes affect the waves differently. Further, while as observed in earlier studies, at moderate bend radii, fundamental modes travel almost unaffected by an elbow (bend angle φ = 90 degrees), we find that as the bend angle is reduced, there is a progressively larger extent of mode-conversion. These trends and results are validated using experiments.

  12. Subwavelength photonic crystal waveguide with trapezoidal shaped dielectric pillars in optical systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Xiaochuan; Chen, Ray T.

    2017-02-07

    A method for reducing loss in a subwavelength photonic crystal waveguide bend is disclosed. The method comprising: forming the subwavelength photonic crystal waveguide bend with a series of trapezoidal shaped dielectric pillars centered about a bend radius; wherein each of the trapezoidal shaped dielectric pillars comprise a top width, a bottom width, and a trapezoid height; wherein the length of the bottom width is greater than the length of the top width; and wherein the bottom width is closer to the center of the bend radius of the subwavelength photonic crystal waveguide bend than the top width. Other embodiments aremore » described and claimed.« less

  13. High-Sensitivity Fiber-Optic Ultrasound Sensors for Medical Imaging Applications

    PubMed Central

    Wen, H.; Wiesler, D.G.; Tveten, A.; Danver, B.; Dandridge, A.

    2010-01-01

    This paper presents several designs of high-sensitivity, compact fiber-optic ultrasound sensors that may be used for medical imaging applications. These sensors translate ultrasonic pulses into strains in single-mode optical fibers, which are measured with fiber-based laser interferometers at high precision. The sensors are simpler and less expensive to make than piezoelectric sensors, and are not susceptible to electromagnetic interference. It is possible to make focal sensors with these designs, and several schemes are discussed. Because of the minimum bending radius of optical fibers, the designs are suitable for single element sensors rather than for arrays. PMID:9691368

  14. The numeric calculation of eddy current distributions in transcranial magnetic stimulation.

    PubMed

    Tsuyama, Seichi; Hyodo, Akira; Sekino, Masaki; Hayami, Takehito; Ueno, Shoogo; Iramina, Keiji

    2008-01-01

    Transcranial magnetic stimulation (TMS) is a method to stimulate neurons in the brain. It is necessary to obtain eddy current distributions and determine parameters such as position, radius and bend-angle of the coil to stimulate target area exactly. In this study, we performed FEM-based numerical simulations of eddy current induced by TMS using three-dimentional human head model with inhomogeneous conductivity. We used double-cone coil and changed the coil radius and bend-angle of coil. The result of computer simulation showed that as coil radius increases, the eddy current became stronger everywhere. And coil with bend-angle of 22.5 degrees induced stronger eddy current than the coil with bendangle of 0 degrees. Meanwhile, when the bend-angle was 45 degrees, eddy current became weaker than these two cases. This simulation allowed us to determine appropriate parameter easier.

  15. Tube curvature measuring probe and method

    DOEpatents

    Sokol, George J.

    1990-01-01

    The present invention is directed to a probe and method for measuring the radius of curvature of a bend in a section of tubing. The probe includes a member with a pair of guide means, one located at each end of the member. A strain gauge is operatively connected to the member for detecting bending stress exrted on the member as the probe is drawn through and in engagement with the inner surface of a section of tubing having a bend. The method of the present invention includes steps utilizing a probe, like the aforementioned probe, which can be made to detect bends only in a single plane when having a fixed orientation relative the section of tubing to determine the maximum radius of curvature of the bend.

  16. Electrostatic bending response of a charged helix

    NASA Astrophysics Data System (ADS)

    Zampetaki, A. V.; Stockhofe, J.; Schmelcher, P.

    2018-04-01

    We explore the electrostatic bending response of a chain of charged particles confined on a finite helical filament. We analyze how the energy difference Δ E between the bent and the unbent helical chain scales with the length of the helical segment and the radius of curvature and identify features that are not captured by the standard notion of the bending rigidity, normally used as a measure of bending tendency in the linear response regime. Using Δ E to characterize the bending response of the helical chain we identify two regimes with qualitatively different bending behaviors for the ground state configuration: the regime of small and the regime of large radius-to-pitch ratio, respectively. Within the former regime, Δ E changes smoothly with the variation of the system parameters. Of particular interest are its oscillations with the number of charged particles encountered for commensurate fillings which yield length-dependent oscillations in the preferred bending direction of the helical chain. We show that the origin of these oscillations is the nonuniformity of the charge distribution caused by the long-range character of the Coulomb interactions and the finite length of the helix. In the second regime of large values of the radius-to-pitch ratio, sudden changes in the ground state structure of the charges occur as the system parameters vary, leading to complex and discontinuous variations in the ground state bending response Δ E .

  17. Electromechanical properties of amorphous In-Zn-Sn-O transparent conducting film deposited at various substrate temperatures on polyimide substrate

    NASA Astrophysics Data System (ADS)

    Kim, Young Sung; Lee, Eun Kyung; Eun, Kyoungtae; Choa, Sung-Hoon

    2015-09-01

    The electromechanical properties of the amorphous In-Zn-Sn-O (IZTO) film deposited at various substrate temperatures were investigated by bending, stretching, twisting, and cyclic bending fatigue tests. Amorphous IZTO films were grown on a transparent polyimide substrate using a pulsed DC magnetron sputtering system at different substrate temperatures ranging from room temperature to 200 °C. A single oxide alloyed ceramic target (In2O3: 80 wt %, ZnO: 10 wt %, SnO2: 10 wt % composition) was used. The amorphous IZTO film deposited at 150 °C exhibited an optimized electrical resistivity of 5.8 × 10-4 Ω cm, optical transmittance of 87%, and figure of merit of 8.3 × 10-3 Ω-1. The outer bending tests showed that the critical bending radius decreased as substrate temperature increased. On the other hand, in the inner bending tests, the critical bending radius increased with an increase in substrate temperature. The differences in the bendability of IZTO films for the outer and inner bending tests could be attributed to the internal residual stress of the films. The uniaxial stretching tests also showed the effects of the internal stress on the mechanical flexibility of the film. The bending and stretching test results demonstrated that the IZTO film had higher bendability and stretchability than the conventional ITO film. The IZTO film could withstand 10,000 bending cycles at a bending radius of 10 mm. The effect of the surface roughness on the mechanical durability of all IZTO films was very small due to their very smooth surfaces.

  18. Theoretical and experimental study of the bending influence on the capacitance of interdigitated micro-electrodes patterned on flexible substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina-Lopez, F.; Briand, D.; Rooij, N. F. de

    2013-11-07

    Interdigitated electrodes are common structures in the fields of microelectronics and MEMS. Recent developments in flexible electronics compel an understanding of such structures under bending constraints. In this work, the behavior of interdigitated micro-electrodes when subjected to circular bending has been theoretically and experimentally studied through changes in capacitance. An analytical model has been developed to calculate the expected variation in capacitance of such structures while undergoing outward and inward bending along the direction perpendicular to the electrodes. The model combines conformal mapping techniques to account for the electric field redistribution and fundamental aspects of solid mechanics in order tomore » define the geometrical deformation of the electrodes while bending. To experimentally verify our theoretical predictions, several interdigitated electrode structures with different geometries were fabricated on polymeric substrates by means of photolithography. The samples, placed in a customized bending setup, were bent to controlled radii of curvature while measuring their capacitance. A maximum variation in capacitance of less than 3% was observed at a minimum radius of curvature of 2.5 mm for all the devices tested with very thin electrodes whereas changes of up to 7% were found on stiffer, plated electrodes. Larger or smaller variations would be possible, in theory, by adjusting the geometry of the device. This work establishes a useful predictive tool for the design and evaluation of truly flexible/bendable electronics consisting of interdigitated structures, allowing one to tune the bending influence on the capacitance value through geometrical design.« less

  19. Strain sensing using optical fibers

    NASA Technical Reports Server (NTRS)

    Houghton, Richard; Hiles, Steven

    1994-01-01

    The main source of attenuation which will be studied is the optical fiber's sensitivity to bending at radii that are much larger than the radius of the fiber. This type of environmental attenuation causes losses that are a function of the severity of the bend. The average attenuation caused by bending varies exponentially with the bend radius. There are many different fibers, sources, and testing equipment available. This thesis describes tests that were performed to evaluate the variables that effect bending related attenuation and will discuss the consistency of the results. Descriptions and comparisons will be made between single mode and multimode fibers as well as instrumentation comparisons between detection equipment. Detailed analysis of the effects of the whispering gallery mode will be performed along with theorized methods for characterization of these modes.

  20. Flexible organic transistors and circuits with extreme bending stability

    NASA Astrophysics Data System (ADS)

    Sekitani, Tsuyoshi; Zschieschang, Ute; Klauk, Hagen; Someya, Takao

    2010-12-01

    Flexible electronic circuits are an essential prerequisite for the development of rollable displays, conformable sensors, biodegradable electronics and other applications with unconventional form factors. The smallest radius into which a circuit can be bent is typically several millimetres, limited by strain-induced damage to the active circuit elements. Bending-induced damage can be avoided by placing the circuit elements on rigid islands connected by stretchable wires, but the presence of rigid areas within the substrate plane limits the bending radius. Here we demonstrate organic transistors and complementary circuits that continue to operate without degradation while being folded into a radius of 100μm. This enormous flexibility and bending stability is enabled by a very thin plastic substrate (12.5μm), an atomically smooth planarization coating and a hybrid encapsulation stack that places the transistors in the neutral strain position. We demonstrate a potential application as a catheter with a sheet of transistors and sensors wrapped around it that enables the spatially resolved measurement of physical or chemical properties inside long, narrow tubes.

  1. 46 CFR 56.80-5 - Bending.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Bending. 56.80-5 Section 56.80-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will result...

  2. 46 CFR 56.80-5 - Bending.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Bending. 56.80-5 Section 56.80-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING PIPING SYSTEMS AND APPURTENANCES Bending and Forming § 56.80-5 Bending. Pipe may be bent by any hot or cold method and to any radius which will result...

  3. Computational study of duct and pipe flows using the method of pseudocompressibility

    NASA Technical Reports Server (NTRS)

    Williams, Robert W.

    1991-01-01

    A viscous, three-dimensional, incompressible, Navier-Stokes Computational Fluid Dynamics code employing pseudocompressibility is used for the prediction of laminar primary and secondary flows in two 90-degree bends of constant cross section. Under study are a square cross section duct bend with 2.3 radius ratio and a round cross section pipe bend with 2.8 radius ratio. Sensitivity of predicted primary and secondary flow to inlet boundary conditions, grid resolution, and code convergence is investigated. Contour and velocity versus spanwise coordinate plots comparing prediction to experimental data flow components are shown at several streamwise stations before, within, and after the duct and pipe bends. Discussion includes secondary flow physics, computational method, computational requirements, grid dependence, and convergence rates.

  4. Laser-Assisted Bending of Sharp Angles With Small Fillet Radius on Stainless Steel Sheets: Analysis of Experimental Set-Up and Processing Parameters

    NASA Astrophysics Data System (ADS)

    Gisario, Annamaria; Barletta, Massimiliano; Venettacci, Simone; Veniali, Francesco

    2015-06-01

    Achievement of sharp bending angles with small fillet radius on stainless steel sheets by mechanical bending requires sophisticated bending device and troublesome operational procedures, which can involve expensive molds, huge presses and large loads. In addition, springback is always difficult to control, thus often leading to final parts with limited precision and accuracy. In contrast, laser-assisted bending of metals is an emerging technology, as it often allows to perform difficult and multifaceted manufacturing tasks with relatively small efforts. In the present work, laser-assisted bending of stainless steel sheets to achieve sharp angles is thus investigated. First, bending trials were performed by combining laser irradiation with an auxiliary bending device triggered by a pneumatic actuator and based on kinematic of deformable quadrilaterals. Second, laser operational parameters, that is, scanning speed, power and number of passes, were varied to identify the most suitable processing settings. Bending angles and fillet radii were measured by coordinate measurement machine. Experimental data were elaborated by combined ANalysis Of Mean (ANOM) and ANalysis Of VAriance (ANOVA). Based on experimental findings, the best strategy to achieve an aircraft prototype from a stainless steel sheet was designed and implemented.

  5. Research on wire rope deformation distribution of WR-CVT

    NASA Astrophysics Data System (ADS)

    Zhang, Wu; Guo, Wei; Zhang, Chuanwei; Lu, Zhengxiong; Xu, Xiaobin

    2017-07-01

    A wire rope continuously variable transmissions (WR-CVT) has been introduced in the paper, in view of its less research, this paper mainly studied the deformation distribution of 6×7+IWS bending wire rope. The results shown that in the same section, half of the side strands are in a stretched state and half are in a compressed state. When the transmission ratio i=2.35, the maximum deformation and the minimum deformation are decrease when section U1 to U2, U3 transition. Wire deformation distribution when the transmission ratio i=0.42 is similar to that of i=0.2.35. Wire deformation amount and the deformation difference decrease as the transmission ratio decreases, this shows that the increase in the bending radius of the wire will make the wire deformation more uniform, and the reduction of the deformation difference will also reduce the wear. This study provides a basis for the study of fatigue and wears failure of WR-CVT components.

  6. Design of pseudo-symmetric high bit rate, bend insensitive optical fiber applicable for high speed FTTH

    NASA Astrophysics Data System (ADS)

    Makouei, Somayeh; Koozekanani, Z. D.

    2014-12-01

    In this paper, with sophisticated modification on modal-field distribution and introducing new design procedure, the single-mode fiber with ultra-low bending-loss and pseudo-symmetric high bit-rate of uplink and downlink, appropriate for fiber-to-the-home (FTTH) operation is presented. The bending-loss reduction and dispersion management are done by the means of Genetic Algorithm. The remarkable feature of this methodology is designing a bend-insensitive fiber without reduction of core radius and MFD. Simulation results show bending loss of 1.27×10-2 dB/turn at 1.55 μm for 5 mm curvature radius. The MFD and Aeff are 9.03 μm and 59.11 μm2. Moreover, the upstream and downstream bit-rates are approximately 2.38 Gbit/s-km and 3.05 Gbit/s-km.

  7. Reduction of radiation loss at small-radius bend using spoof surface plasmon polariton transmission line

    NASA Astrophysics Data System (ADS)

    Tang, Wen Xuan; Zhang, Hao Chi; Liu, Jun Feng; Xu, Jie; Cui, Tie Jun

    2017-01-01

    Spoof surface plasmon polariton (SPP) has been realized at low frequencies through corrugated metallic structures. As two-dimensional application, the ultrathin SPP transmission lines (TLs) have been proposed with great potentials for microwave compact circuits due to the strong field confinement and enhancement, as well as controllable dispersive properties. In this paper, we examine the radiation loss at small-radius bend, which may cause severe crosstalk in highly-integrated circuits or systems, for the SPP TLs. We theoretically analyze that the SPP TL has essential merit of low radiation loss, and show better performance of SPP TL than the conventional microstrip line through numerical simulations and experiments. Both simulated and measured results demonstrate that the new type of transmission line can efficiently suppress the radiation loss at small-radius bend, and hence reduce the crosstalk in circuits and systems.

  8. Finite Element Analysis and Experimental Study on Elbow Vibration Transmission Characteristics

    NASA Astrophysics Data System (ADS)

    Qing-shan, Dai; Zhen-hai, Zhang; Shi-jian, Zhu

    2017-11-01

    Pipeline system vibration is one of the significant factors leading to the vibration and noise of vessel. Elbow is widely used in the pipeline system. However, the researches about vibration of elbow are little, and there is no systematic study. In this research, we firstly analysed the relationship between elbow vibration transmission characteristics and bending radius by ABAQUS finite element simulation. Then, we conducted the further vibration test to observe the vibration transmission characteristics of different elbows which have the same diameter and different bending radius under different flow velocity. The results of simulation calculation and experiment both showed that the vibration acceleration levels of the pipeline system decreased with the increase of bending radius of the elbow, which was beneficial to reduce the transmission of vibration in the pipeline system. The results could be used as reference for further studies and designs for the low noise installation of pipeline system.

  9. Research on the Cross Section Precision of High-strength Steel Tube with Rectangular Section in Rotary Draw Bending

    NASA Astrophysics Data System (ADS)

    Yang, Hongliang; Zhao, Hao; Xing, Zhongwen

    2017-11-01

    For the demand of energy conservation and security improvement, high-strength steel (HSS) is increasingly being used to produce safety related automotive components. However, cross-section distortion occurs easily in bending of HSS tube with rectangular section (RS), affecting the forming precision. HSS BR1500HS tube by rotary draw bending is taken as the study object and a description method of cross-section distortion is proposed in this paper. The influence on cross-section precision of geometric parameters including cross-section position, thickness of tube, bend radius etc. are studied by experiment. Besides, simulation of the rotary draw bending of HSS tube with rectangular section by ABAQUS are carried out and compared to the experiment. The results by simulation agree well with the experiment and show that the cross-section is approximately trapezoidal after distortion; the maximum of distortion exists at 45 ∼ 60° of the bending direction; and the absolute and relative distortion values increase with the decreasing of tube thickness or bending radius. Therefore, the results can provide a reference for the design of geometric parameters of HSS tube with rectangular section in rotary draw bending.

  10. Mirages and the nature of Pluto's atmosphere

    NASA Technical Reports Server (NTRS)

    Stansberry, J. A.; Lunine, J. I.; Hubbard, W. B.; Yelle, R. V.; Hunten, D. M.

    1994-01-01

    We present model occultation lightcurves demonstrating that a strong thermal inversion layer at the base of Pluto's stratosphere can reproduce the minimum flux measured by the Kuiper Airborne Observatory (KAO) during the 1988 occultation of a star by Pluto. The inversion layer also forms the occultation equivalent of a mirage at a radius of 1198 km, which is capable of hiding tropospheres of significant depth. Pluto's surface lies below 1198 km, its radius depending on the depth of the troposphere. We begin by computing plausible temperature structures for Pluto's lower atmosphere, constrained by a calculation of the temperature of the atmosphere near the surface. We then trace rays from the occulted star through the model atmosphere, computing the resultant bending of the ray. Model light curves are obtained by summing the contribution of individual rays within the shadow of Pluto on Earth. We find that we can reproduce the KAO lightcurve using model atmospheres with a temperature inversion and no haze. We have explored models with tropospheres as deep as 40 km (implying a Pluto radius of 1158 km) that reproduce the suite of occultation data. Deeper tropospheres can be fitted to the data, but the mutual event radius of 1150 km probably provides a lower bound. If Pluto has a shallow or nonexistent troposphere, its density is consistent with formation in the solar nebula with modest water loss due to impact ejection. If the troposhere is relatively deep, implying a smaller radius and larger density, significant amounts of water loss are required.

  11. Influence of Tension-Compression Asymmetry on the Mechanical Behavior of AZ31B Magnesium Alloy Sheets in Bending

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Beeh, Elmar; Friedrich, Horst E.

    2016-03-01

    Magnesium alloys are promising materials for lightweight design in the automotive industry due to their high strength-to-mass ratio. This study aims to study the influence of tension-compression asymmetry on the radius of curvature and energy absorption capacity of AZ31B-O magnesium alloy sheets in bending. The mechanical properties were characterized using tension, compression, and three-point bending tests. The material exhibits significant tension-compression asymmetry in terms of strength and strain hardening rate due to extension twinning in compression. The compressive yield strength is much lower than the tensile yield strength, while the strain hardening rate is much higher in compression. Furthermore, the tension-compression asymmetry in terms of r value (Lankford value) was also observed. The r value in tension is much higher than that in compression. The bending results indicate that the AZ31B-O sheet can outperform steel and aluminum sheets in terms of specific energy absorption in bending mainly due to its low density. In addition, the AZ31B-O sheet was deformed with a larger radius of curvature than the steel and aluminum sheets, which brings a benefit to energy absorption capacity. Finally, finite element simulation for three-point bending was performed using LS-DYNA and the results confirmed that the larger radius of curvature of a magnesium specimen is mainly attributed to the high strain hardening rate in compression.

  12. Minimum emittance in TBA and MBA lattices

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Peng, Yue-Mei

    2015-03-01

    For reaching a small emittance in a modern light source, triple bend achromats (TBA), theoretical minimum emittance (TME) and even multiple bend achromats (MBA) have been considered. This paper derived the necessary condition for achieving minimum emittance in TBA and MBA theoretically, where the bending angle of inner dipoles has a factor of 31/3 bigger than that of the outer dipoles. Here, we also calculated the conditions attaining the minimum emittance of TBA related to phase advance in some special cases with a pure mathematics method. These results may give some directions on lattice design.

  13. Enhanced electrical stability of flexible indium tin oxide films prepared on stripe SiO 2 buffer layer-coated polymer substrates by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Yu, Zhi-nong; Zhao, Jian-jian; Xia, Fan; Lin, Ze-jiang; Zhang, Dong-pu; Leng, Jian; Xue, Wei

    2011-03-01

    The electrical stability of flexible indium tin oxide (ITO) films fabricated on stripe SiO 2 buffer layer-coated polyethylene terephthalate (PET) substrates by magnetron sputtering was investigated by the bending test. The ITO thin films with stripe SiO 2 buffer layer under bending have better electrical stability than those with flat SiO 2 buffer layer and without buffer layer. Especially in inward bending text, the ITO thin films with stripe SiO 2 buffer layer only have a slight resistance change when the bending radius r is not less than 8 mm, while the resistances of the films with flat SiO 2 buffer layer and without buffer layer increase significantly at r = 16 mm with decreasing bending radius. This improvement of electrical stability in bending test is due to the small mismatch factor α in ITO-SiO 2, the enhanced interface adhesion and the balance of residual stress. These results indicate that the stripe SiO 2 buffer layer is suited to enhance the electrical stability of flexible ITO film under bending.

  14. Single-mode optical fiber design with wide-band ultra low bending-loss for FTTH application.

    PubMed

    Watekar, Pramod R; Ju, Seongmin; Han, Won-Taek

    2008-01-21

    We propose a new design of a single-mode optical fiber (SMF) which exhibits ultra low bend sensitivity over a wide communication band (1.3 microm to 1.65 microm). A five-cladding fiber structure has been proposed to minimize the bending loss, estimated to be as low as 4.4x10(-10) dB/turn for the bend radius of 10 mm.

  15. Ultra-thin and smooth transparent electrode for flexible and leakage-free organic light-emitting diodes

    PubMed Central

    Ok, Ki-Hun; Kim, Jiwan; Park, So-Ra; Kim, Youngmin; Lee, Chan-Jae; Hong, Sung-Jei; Kwak, Min-Gi; Kim, Namsu; Han, Chul Jong; Kim, Jong-Woong

    2015-01-01

    A smooth, ultra-flexible, and transparent electrode was developed from silver nanowires (AgNWs) embedded in a colorless polyimide (cPI) by utilizing an inverted film-processing method. The resulting AgNW-cPI composite electrode had a transparency of >80%, a low sheet resistance of 8 Ω/□, and ultra-smooth surfaces comparable to glass. Leveraging the robust mechanical properties and flexibility of cPI, the thickness of the composite film was reduced to less than 10 μm, which is conducive to extreme flexibility. This film exhibited mechanical durability, for both outward and inward bending tests, up to a bending radius of 30 μm, while maintaining its electrical performance under cyclic bending (bending radius: 500 μm) for 100,000 iterations. Phosphorescent, blue organic light-emitting diodes (OLEDs) were fabricated using these composites as bottom electrodes (anodes). Hole-injection was poor, because AgNWs were largely buried beneath the composite's surface. Thus, we used a simple plasma treatment to remove the thin cPI layer overlaying the nanowires without introducing other conductive materials. As a result, we were able to finely control the flexible OLEDs' electroluminescent properties using the enlarged conductive pathways. The fabricated flexible devices showed only slight performance reductions of <3% even after repeated foldings with a 30 μm bending radius. PMID:25824143

  16. Localized states in an arbitrarily bent quantum wire (bend-imitating approach)

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Oleksity O.

    1996-02-01

    The bend-imitating matching technique is proposed to simplify the quantum mechanical treatment of singly and multiply bent 2D quantum wires of constant width, arbitrary bending angles, arbitrary bending radii and arbitrary distances between the bends. The spectrum of one-electron localized states and its dependence on the bending angle and the bending radius in a singly bent wire is explicitly calculated. Doubly bent wires are shown to possess doubly split localized states. The splitting energies as a function of the distance between the bends and the bending angles and bending radii have also been obtained. A similar description of bent 3D quantum wires and bent optical fibers is expected to be possible.

  17. On the critical flame radius and minimum ignition energy for spherical flame initiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Zheng; Burke, M. P.; Ju, Yiguang

    2011-01-01

    Spherical flame initiation from an ignition kernel is studied theoretically and numerically using different fuel/oxygen/helium/argon mixtures (fuel: hydrogen, methane, and propane). The emphasis is placed on investigating the critical flame radius controlling spherical flame initiation and its correlation with the minimum ignition energy. It is found that the critical flame radius is different from the flame thickness and the flame ball radius and that their relationship depends strongly on the Lewis number. Three different flame regimes in terms of the Lewis number are observed and a new criterion for the critical flame radius is introduced. For mixtures with Lewis numbermore » larger than a critical Lewis number above unity, the critical flame radius is smaller than the flame ball radius but larger than the flame thickness. As a result, the minimum ignition energy can be substantially over-predicted (under-predicted) based on the flame ball radius (the flame thickness). The results also show that the minimum ignition energy for successful spherical flame initiation is proportional to the cube of the critical flame radius. Furthermore, preferential diffusion of heat and mass (i.e. the Lewis number effect) is found to play an important role in both spherical flame initiation and flame kernel evolution after ignition. It is shown that the critical flame radius and the minimum ignition energy increase significantly with the Lewis number. Therefore, for transportation fuels with large Lewis numbers, blending of small molecule fuels or thermal and catalytic cracking will significantly reduce the minimum ignition energy.« less

  18. Further Results in Bend-Buckling Analysis of Ring Stiffened Cylindrical Shells.

    DTIC Science & Technology

    1986-08-01

    Submerged Shell Targets, NSWC TR 84-380, Dec 1984. 2. Moussouros, M., "Finite Element Modeling Techniques for Buckling Analysis of Cylindrical Shells...KCR, MBR , M0 , F0 , and I, R is the mean radius as given by R0 ) R0 - Mean radius of circular cylindrical shell (perfect shell or radius of

  19. Bend-insensitive single-mode photonic crystal fiber with ultralarge effective area for dual applications

    NASA Astrophysics Data System (ADS)

    Islam, Md. Asiful; Alam, M. Shah

    2013-05-01

    A novel photonic crystal fiber (PCF) having circular arrangement of cladding air holes has been designed and numerically optimized to obtain a bend insensitive single mode fiber with large mode area for both wavelength division multiplexing (WDM) communication and fiber-to-the-home (FTTH) application. The bending loss of the proposed bent PCF lies in the range of 10-3 to 10-4 dB/turn or lower over 1300 to 1700 nm, and 2 × 10-4 dB/turn at the wavelength of 1550 nm for a 30-mm bend radius with a higher order mode (HOM) cut-off frequency below 1200 nm for WDM application. When the whole structure of the PCF is scaled down, a bending loss of 6.78×10-4 dB/turn at 1550 nm for a 4-mm bend radius is obtained, and the loss remains in the order of 10-4 dB/turn over the same range of wavelength with an HOM cut-off frequency below 700 nm, and makes the fiber useful for FTTH applications. Furthermore, this structure is also optimized to show a splice loss near zero for fusion-splicing to a conventional single-mode fiber (SMF).

  20. Waveguide bends from nanometric silica wires

    NASA Astrophysics Data System (ADS)

    Tong, Limin; Lou, Jingyi; Mazur, Eric

    2005-02-01

    We propose to use bent silica wires with nanometric diameters to guide light as optical waveguide bend. We bend silica wires with scanning tunneling microscope probes under an optical microscope, and wire bends with bending radius smaller than 5 μm are obtained. Light from a He-Ne laser is launched into and guided through the wire bends, measured bending loss of a single bend is on the order of 1 dB. Brief introductions to the optical wave guiding and elastic bending properties of silica wires are also provided. Comparing with waveguide bends based on photonic bandgap structures, the waveguide bends from silica nanometric wires show advantages of simple structure, small overall size, easy fabrication and wide useful spectral range, which make them potentially useful in the miniaturization of photonic devices.

  1. Curvature effect on hemodynamic conditions at the inner bend of the carotid siphon and its relation to aneurysm formation.

    PubMed

    Lauric, Alexandra; Hippelheuser, James; Safain, Mina G; Malek, Adel M

    2014-09-22

    Although high-impact hemodynamic forces are thought to lead to cerebral aneurysmal change, little is known about the aneurysm formation on the inner aspect of vascular bends such as the internal carotid artery (ICA) siphon where wall shear stress (WSS) is expected to be low. This study evaluates the effect of vessel curvature and hemodynamics on aneurysm formation along the inner carotid siphon. Catheter 3D-rotational angiographic volumes of 35 ICA (10 aneurysms, 25 controls) were evaluated in 3D for radius of curvature and peak curvature of the siphon bend, followed by univariate statistical analysis. Computational fluid dynamic (CFD) simulations were performed on patient-derived models after aneurysm removal and on synthetic variants of increasing curvature. Peak focal siphon curvature was significantly higher in aneurysm bearing ICAs (0.36 ± 0.045 vs. 0.30 ± 0.048 mm(-1), p=0.003), with no difference in global radius of curvature (p=0.36). In CFD simulations, increasing parametric curvature tightness (from 5 to 3mm radius) resulted in dramatic increase of WSS and WSS gradient magnitude (WSSG) on the inner wall of the bend. In patient-derived data, the location of aneurysms coincided with regions of low WSS (<4 Pa) flanked by high WSS and WSSG peaks. WSS peaks correlated with the aneurysm neck. In contrast, control siphon bends displayed low, almost constant, WSS and WSSG profiles with little spatial variation. High bend curvature induces dynamically fluctuating high proximal WSS and WSSG followed by regions of flow stasis and recirculation, leading to local conditions known to induce destructive vessel wall remodeling and aneurysmal initiation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Performance Evaluation of Strain Gauge Printed Using Automatic Fluid Dispensing System on Conformal Substrates

    NASA Astrophysics Data System (ADS)

    Khairilhijra Khirotdin, Rd.; Faridzuan Ngadiron, Mohamad; Adzeem Mahadzir, Muhammad; Hassan, Nurhafizzah

    2017-08-01

    Smart textiles require flexible electronics that can withstand daily stresses like bends and stretches. Printing using conductive inks provides the flexibility required but the current printing techniques suffered from ink incompatibility, limited of substrates to be printed with and incompatible with conformal substrates due to its rigidity and low flexibility. An alternate printing technique via automatic fluid dispensing system is proposed and its performances on printing strain gauge on conformal substrates were evaluated to determine its feasibility. Process parameters studied including printing speed, deposition height, curing time and curing temperature. It was found that the strain gauge is proven functional as expected since different strains were induced when bent on variation of bending angles and curvature radiuses from designated bending fixtures. The average change of resistances were doubled before the strain gauge starts to break. Printed strain gauges also exhibited some excellence elasticity as they were able to resist bending up to 70° angle and 3 mm of curvature radius.

  3. Electro-mechanical characterization of MgB2 wires for the Superconducting Link Project at CERN

    NASA Astrophysics Data System (ADS)

    Konstantopoulou, K.; Ballarino, A.; Gharib, A.; Stimac, A.; Garcia Gonzalez, M.; Perez Fontenla, A. T.; Sugano, M.

    2016-08-01

    In previous years, the R & D program between CERN and Columbus Superconductors SpA led to the development of several configurations of MgB2 wires. The aim was to achieve excellent superconducting properties in high-current MgB2 cables for the HL-LHC upgrade. In addition to good electrical performance, the superconductor shall have good mechanical strength in view of the stresses during operation (Lorenz forces and thermal contraction) and handling (tension and bending) during cabling and installation at room temperature. Thus, the study of the mechanical properties of MgB2 wires is crucial for the cable design and its functional use. In the present work we report on the electro-mechanical characterization of ex situ processed composite MgB2 wires. Tensile tests (critical current versus strain) were carried out at 4.2 K and in a 3 T external field by means of a purpose-built bespoke device to determine the irreversible strain limit of the wire. The minimum bending radius of the wire was calculated taking into account the dependence of the critical current with the strain and it was then used to obtain the minimum twist pitch of MgB2 wires in the cable. Strands extracted from cables having different configurations were tested to quantify the critical current degradation. The Young’s modulus of the composite wire was measured at room temperature. Finally, all measured mechanical parameters will be used to optimize an 18-strand MgB2 cable configuration.

  4. Low-loss, compact, and fabrication-tolerant Si-wire 90° waveguide bend using clothoid and normal curves for large scale photonic integrated circuits.

    PubMed

    Fujisawa, Takeshi; Makino, Shuntaro; Sato, Takanori; Saitoh, Kunimasa

    2017-04-17

    Ultimately low-loss 90° waveguide bend composed of clothoid and normal curves is proposed for dense optical interconnect photonic integrated circuits. By using clothoid curves at the input and output of 90° waveguide bend, straight and bent waveguides are smoothly connected without increasing the footprint. We found that there is an optimum ratio of clothoid curves in the bend and the bending loss can be significantly reduced compared with normal bend. 90% reduction of the bending loss for the bending radius of 4 μm is experimentally demonstrated with excellent agreement between theory and experiment. The performance is compared with the waveguide bend with offset, and the proposed bend is superior to the waveguide bend with offset in terms of fabrication tolerance.

  5. Theory of Disk-to-Vesicle Transformation

    NASA Astrophysics Data System (ADS)

    Li, Jianfeng; Shi, An-Chang

    2009-03-01

    Self-assembled membranes from amphiphilic molecules, such as lipids and block copolymers, can assume a variety of morphologies dictated by energy minimization of system. The membrane energy is characterized by a bending modulus (κ), a Gaussian modulus (κG), and the line tension (γ) of the edge. Two basic morphologies of membranes are flat disks that minimize the bending energy at the cost of the edge energy, and enclosed vesicles that minimize the edge energy at the cost of bending energy. In our work, the transition from disk to vesicle is studied theoretically using the string method, which is designed to find the minimum energy path (MEP) or the most probable transition path between two local minima of an energy landscape. Previous studies of disk-to-vesicle transition usually approximate the transitional states by a series of spherical cups, and found that the spherical cups do not correspond to stable or meta-stable states of the system. Our calculation demonstrates that the intermediate shapes along the MEP are very different from spherical cups. Furthermore, some of these transitional states can be meta-stable. The disk-to-vesicle transition pathways are governed by two scaled parameters, κG/κ and γR0/4κ, where R0 is the radius of the disk. In particular, a meta-stable intermediate state is predicted, which may correspond to the open morphologies observed in experiments and simulations.

  6. Spontaneous generation of bending waves in isolated Milky Way-like discs

    NASA Astrophysics Data System (ADS)

    Chequers, Matthew H.; Widrow, Lawrence M.

    2017-12-01

    We study the spontaneous generation and evolution of bending waves in N-body simulations of two isolated Milky Way-like galaxy models. The models differ by their disc-to-halo mass ratios, and hence by their susceptibility to the formation of a bar and spiral structure. Seeded from shot noise in the particle distribution, bending waves rapidly form in both models and persist for many billions of years. Waves at intermediate radii manifest as corrugated structures in vertical position and velocity that are tightly wound, morphologically leading and dominated by the m = 1 azimuthal Fourier component. A spectral analysis of the waves suggests they are a superposition of modes from two continuous branches in the Galactocentric radius-rotational frequency plane. The lower frequency branch is dominant and is responsible for the corrugated, leading and warped structure. Over time, power in this branch migrates outward, lending credence to an inside-out formation scenario for the warp. Our power spectra qualitatively agree with results from linear perturbation theory and a WKB analysis, both of which include self-gravity. Thus, we conclude that the waves in our simulations are self-gravitating and not purely kinematic. These waves are reminiscent of the wave-like pattern recently found in Galactic star counts from the Sloan Digital Sky Survey and smoothly transition to a warp near the disc's edge. Velocity measurements from Gaia data will be instrumental in testing the true wave nature of the corrugations. We also compile a list of 'minimum requirements' needed to observe bending waves in external galaxies.

  7. The effect of macro-bending on power confinement factor in single mode fibers

    NASA Astrophysics Data System (ADS)

    Waluyo, T. B.; Bayuwati, D.; Mulyanto, I.

    2018-03-01

    One of the methods to determine the macro-bending effect in a single mode fiber is by calculating its power loss coefficient. We describe an alternative method by using the equation of fractional power in the fiber core. Knowing the fiber parameters such as its core radius, refractive indexes, and operating wavelength; we can calculate the V-number and the fractional power in the core. Because the value of the fiber refractive indexes and the propagation constant are affected by bending, we can calculate the value of the fractional power in the core as a function of the bending radius. We calculate the fractional power in the core of an SMF28 and SM600 fiber and, to verify our calculation, we measure its transmission loss using an optical spectrum analyzer. Our calculations and experimental results showed that for SMF28 fiber, there is about 4% power loss due to bending at 633 nm, about 8% at 1310 nm, about 20% at 1550 nm, and about 60% at 1064 nm. For SM600 fiber, there is about 6% power loss due to bending at 633 nm, about 11% at 850 nm, and this fiber is not suitable for operating wavelength beyond 1000 nm.

  8. Forming and Bending of Metal Foams

    NASA Astrophysics Data System (ADS)

    Nebosky, Paul; Tyszka, Daniel; Niebur, Glen; Schmid, Steven

    2004-06-01

    This study examines the formability of a porous tantalum foam, known as trabecular metal (TM). Used as a bone ingrowth surface on orthopedic implants, TM is desirable due to its combination of high strength, low relative density, and excellent osteoconductive properties. This research aims to develop bend and stretch forming as a cost-effective alternative to net machining and EDM for manufacturing thin parts made of TM. Experimentally, bending about a single axis using a wiping die was studied by observing cracking and measuring springback. It was found that die radius and clearance strongly affect the springback properties of TM, while punch speed, embossings, die radius and clearance all influence cracking. Depending on the various combinations of die radius and clearance, springback factor ranged from .70-.91. To examine the affect of the foam microstructure, bending also was examined numerically using a horizontal hexagonal mesh. As the hexagonal cells were elongated along the sheet length, elastic springback decreased. This can be explained by the earlier onset of plastic hinging occurring at the vertices of the cells. While the numerical results matched the experimental results for the case of zero clearance, differences at higher clearances arose due to an imprecise characterization of the post-yield properties of tantalum. By changing the material properties of the struts, the models can be modified for use with other open-cell metallic foams.

  9. Separation Control in a Centrifugal Bend Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Arthur, Michael; Corke, Thomas

    2011-11-01

    An experiment and CFD simulation are presented to examine the use of plasma actuators to control flow separation in a 2-D channel with a 135° inside-bend that is intended to represent a centrifugal bend in a gas turbine engine. The design inlet conditions are P = 330 psia., T =1100° F, and M = 0 . 24 . For these conditions, the flow separates on the inside radius of the bend. A CFD simulation was used to determine the location of the flow separation, and the conditions (location and voltage) of a plasma actuator that was needed to keep the flow attached. The plasma actuator body force model used in the simulation was updated to include the effect of high-pressure operation. An experiment was used to validate the simulation and to further investigate the effect of inlet pressure and Mach number on the flow separation control. This involved a transient high-pressure blow-down facility. The flow field is documented using an array of static pressure taps in the channel outside-radius side wall, and a rake of total pressure probes at the exit of the bend. The results as well as the pressure effect on the plasma actuators are presented.

  10. Computation of Flow and Heat Transfer in Flow Around a 180 deg Bend.

    DTIC Science & Technology

    1984-04-01

    be required if a more elaborate closure were adopted.[I- 9 Enayet et al [14] in a 900 bend with a radius:diameter ratio of I only 2.8:1 giving a Dean...Figure 9 indicates, however, that a satisfactory numerical simulation is nevertheless obtained. Enayet et al [14] also measured the development of...computations of the 2.P:1 90o bend of Enayet et al [1h] indicate a five-fold variation of local heat transfer coefficient around the bend at 750 . The

  11. The Conductive Silver Nanowires Fabricated by Two-beam Laser Direct Writing on the Flexible Sheet.

    PubMed

    He, Gui-Cang; Zheng, Mei-Ling; Dong, Xian-Zi; Jin, Feng; Liu, Jie; Duan, Xuan-Ming; Zhao, Zhen-Sheng

    2017-02-02

    Flexible electrically conductive nanowires are now a key component in the fields of flexible devices. The achievement of metal nanowire with good flexibility, conductivity, compact and smooth morphology is recognized as one critical milestone for the flexible devices. In this study, a two-beam laser direct writing system is designed to fabricate AgNW on PET sheet. The minimum width of the AgNW fabricated by this method is 187 ± 34 nm with the height of 84 ± 4 nm. We have investigated the electrical resistance under different voltages and the applicable voltage per meter range is determined to be less than 7.5 × 10 3  V/m for the fabricated AgNW. The flexibility of the AgNW is very excellent, since the resistance only increases 6.63% even after the stretched bending of 2000 times at such a small bending radius of 1.0 mm. The proposed two-beam laser direct writing is an efficient method to fabricate AgNW on the flexible sheet, which could be applied in flexible micro/nano devices.

  12. Investigation of the Effect of Blade Sweep on Rotor Vibratory Loads

    NASA Technical Reports Server (NTRS)

    Tarzanin, F. J., Jr.; Vlaminck, R. R.

    1983-01-01

    The effect of helicopter rotor blade planform sweep on rotor vibratory hub, blade, and control system loads has been analytically investigated. The importance of sweep angle, sweep initiation radius, flap bending stiffness and torsion bending stiffness is discussed. The mechanism by which sweep influences the vibratory hub loads is investigated.

  13. Simulation and analysis of tape spring for deployed space structures

    NASA Astrophysics Data System (ADS)

    Chang, Wei; Cao, DongJing; Lian, MinLong

    2018-03-01

    The tape spring belongs to the configuration of ringent cylinder shell, and the mechanical properties of the structure are significantly affected by the change of geometrical parameters. There are few studies on the influence of geometrical parameters on the mechanical properties of the tape spring. The bending process of the single tape spring was simulated based on simulation software. The variations of critical moment, unfolding moment, and maximum strain energy in the bending process were investigated, and the effects of different radius angles of section and thickness and length on driving capability of the simple tape spring was studied by using these parameters. Results show that the driving capability and resisting disturbance capacity grow with the increase of radius angle of section in the bending process of the single tape spring. On the other hand, these capabilities decrease with increasing length of the single tape spring. In the end, the driving capability and resisting disturbance capacity grow with the increase of thickness in the bending process of the single tape spring. The research has a certain reference value for improving the kinematic accuracy and reliability of deployable structures.

  14. Mechanical Integrity of Flexible In-Zn-Sn-O Film for Flexible Transparent Electrode

    NASA Astrophysics Data System (ADS)

    Kim, Young Sung; Oh, Se-In; Choa, Sung-Hoon

    2013-05-01

    The mechanical integrity of transparent In-Zn-Sn-O (IZTO) films is investigated using outer/inner bending, stretching, and twisting tests. Amorphous IZTO films are grown using a pulsed DC magnetron sputtering system with an IZTO target on a polyimide substrate at room temperature. Changes in the optical and electrical properties of IZTO films depend on the oxygen partial pressure applied during the film deposition process. In the case of 3% oxygen partial pressure, the IZTO films exhibit s resistivity of 8.3×10-4 Ω cm and an optical transmittance of 86%. The outer bending test shows that the critical bending radius decreases from 10 to 7.5 mm when the oxygen partial pressure is increased from 1 to 3%. The inner bending test reveals that the critical bending radius of all IZTO films is 3.5 mm regardless of oxygen partial pressure. The IZTO films also show excellent mechanical reliability in the bending fatigue tests of more than 10,000 cycles. In the uniaxial stretching tests, the electrical resistance of the IZTO film does not change until a strain of 2.4% is reached. The twisting tests demonstrate that the electrical resistance of IZTO films remains unchanged up to 25°. These results suggest that IZTO films have excellent mechanical durability and flexibility in comparison with already reported crystallized indium tin oxide (ITO) films.

  15. Macrobend optical sensing for pose measurement in soft robot arms

    NASA Astrophysics Data System (ADS)

    Sareh, Sina; Noh, Yohan; Li, Min; Ranzani, Tommaso; Liu, Hongbin; Althoefer, Kaspar

    2015-12-01

    This paper introduces a pose-sensing system for soft robot arms integrating a set of macrobend stretch sensors. The macrobend sensory design in this study consists of optical fibres and is based on the notion that bending an optical fibre modulates the intensity of the light transmitted through the fibre. This sensing method is capable of measuring bending, elongation and compression in soft continuum robots and is also applicable to wearable sensing technologies, e.g. pose sensing in the wrist joint of a human hand. In our arrangement, applied to a cylindrical soft robot arm, the optical fibres for macrobend sensing originate from the base, extend to the tip of the arm, and then loop back to the base. The connectors that link the fibres to the necessary opto-electronics are all placed at the base of the arm, resulting in a simplified overall design. The ability of this custom macrobend stretch sensor to flexibly adapt its configuration allows preserving the inherent softness and compliance of the robot which it is installed on. The macrobend sensing system is immune to electrical noise and magnetic fields, is safe (because no electricity is needed at the sensing site), and is suitable for modular implementation in multi-link soft continuum robotic arms. The measurable light outputs of the proposed stretch sensor vary due to bend-induced light attenuation (macrobend loss), which is a function of the fibre bend radius as well as the number of repeated turns. The experimental study conducted as part of this research revealed that the chosen bend radius has a far greater impact on the measured light intensity values than the number of turns (if greater than five). Taking into account that the bend radius is the only significantly influencing design parameter, the macrobend stretch sensors were developed to create a practical solution to the pose sensing in soft continuum robot arms. Henceforward, the proposed sensing design was benchmarked against an electromagnetic tracking system (NDI Aurora) for validation.

  16. A Temperature Sensor Based on a Polymer Optical Fiber Macro-Bend

    PubMed Central

    Moraleda, Alberto Tapetado; García, Carmen Vázquez; Zaballa, Joseba Zubia; Arrue, Jon

    2013-01-01

    The design and development of a plastic optical fiber (POF) macrobend temperature sensor is presented. The sensor has a linear response versus temperature at a fixed bend radius, with a sensitivity of 1.92·10−3 (°C)−1. The sensor system used a dummy fiber-optic sensor for reference purposes having a resolution below 0.3 °C. A comprehensive experimental analysis was carried out to provide insight into the effect of different surrounding media on practical macro-bend POF sensor implementation. Experimental results are successfully compared with bend loss calculations. PMID:24077323

  17. Grip and limb force limits to turning performance in competition horses

    PubMed Central

    Tan, Huiling; Wilson, Alan M.

    2011-01-01

    Manoeuverability is a key requirement for successful terrestrial locomotion, especially on variable terrain, and is a deciding factor in predator–prey interaction. Compared with straight-line running, bend running requires additional leg force to generate centripetal acceleration. In humans, this results in a reduction in maximum speed during bend running and a published model assuming maximum limb force as a constraint accurately predicts how much a sprinter must slow down on a bend given his maximum straight-line speed. In contrast, greyhounds do not slow down or change stride parameters during bend running, which suggests that their limbs can apply the additional force for this manoeuvre. We collected horizontal speed and angular velocity of heading of horses while they turned in different scenarios during competitive polo and horse racing. The data were used to evaluate the limits of turning performance. During high-speed turns of large radius horizontal speed was lower on the bend, as would be predicted from a model assuming a limb force limit to running speed. During small radius turns the angular velocity of heading decreased with increasing speed in a manner consistent with the coefficient of friction of the hoof–surface interaction setting the limit to centripetal force to avoid slipping. PMID:21147799

  18. Grip and limb force limits to turning performance in competition horses.

    PubMed

    Tan, Huiling; Wilson, Alan M

    2011-07-22

    Manoeuverability is a key requirement for successful terrestrial locomotion, especially on variable terrain, and is a deciding factor in predator-prey interaction. Compared with straight-line running, bend running requires additional leg force to generate centripetal acceleration. In humans, this results in a reduction in maximum speed during bend running and a published model assuming maximum limb force as a constraint accurately predicts how much a sprinter must slow down on a bend given his maximum straight-line speed. In contrast, greyhounds do not slow down or change stride parameters during bend running, which suggests that their limbs can apply the additional force for this manoeuvre. We collected horizontal speed and angular velocity of heading of horses while they turned in different scenarios during competitive polo and horse racing. The data were used to evaluate the limits of turning performance. During high-speed turns of large radius horizontal speed was lower on the bend, as would be predicted from a model assuming a limb force limit to running speed. During small radius turns the angular velocity of heading decreased with increasing speed in a manner consistent with the coefficient of friction of the hoof-surface interaction setting the limit to centripetal force to avoid slipping.

  19. The spanwise distribution of lift for minimum induced drag of wings having a given lift and a given bending moment

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1950-01-01

    The problem of the minimum induced drag of wings having a given lift and a given span is extended to include cases in which the bending moment to be supported by the wing is also given. The theory is limited to lifting surfaces traveling at subsonic speeds. It is found that the required shape of the downwash distribution can be obtained in an elementary way which is applicable to a variety of such problems. Expressions for the minimum drag and the corresponding spanwise load distributions are also given for the case in which the lift and the bending moment about the wing root are fixed while the span is allowed to vary. The results show a 15-percent reduction of the induced drag with a 15-percent increase in span as compared with results for an elliptically loaded wing having the same total lift and bending moment.

  20. SU-E-T-108: An Investigation of Cerenkov Light Production in the Exradin W1 Scintillator Under Various Measurement Conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simiele, E; Culberson, W

    2015-06-15

    Purpose: To investigate the effects of depth, fiber-optic cable bends, and incident radiation angle on Cerenkov production in the Standard Imaging Exradin W1. Methods: Measurements were completed using a Varian Clinac 21EX linear accelerator with an Exradin W1 scintillator as well as a cable-only scintillator (no scintillation material) to isolate the Cerenkov signal. The effects of cable bend radius and location were investigated by bending the fiber-optic cable into a circle with radii ranging from 1.0 to 10.8 cm and positioning the center of the coil at distances ranging from 10.0 to 175.0 cm from the photodiode. The effects ofmore » depth and incident radiation angle were investigated by performing measurements in water at depths ranging from 1.0 cm to 25.0 cm and angles ranging from 0° to 80°. Eclipse treatment-planning software was utilized to ensure a consistent dose was delivered to the W1 regardless of depth or angle. Results: Measured signal in both channels of the cable-only scintillator decreased as the bend radius decreased and as the distance between the bend and photodiode increased. A fiber bend of 1.0 cm radius produced a 17.1% decrease in the green channel response in the cable-only scintillator. The effect of depth was less severe; a maximum increase of 6.6% in the green channel response was observed at a depth of 25.0 cm in the W1. In the angular dependence investigation, the signal in both channels of the W1 peaked at an angle of 40°; which is in agreement with the nominal Cerenkov emission angle of 45°. Conclusion: The green channel response in the W1 (mainly Cerenkov signal) varied with depth, fiber-optic cable bends, and incident radiation angle. Fully characterizing Cerenkov production is essential to ensure it is properly accounted for in scintillator measurements. Research funding and materials received by Standard Imaging, Inc. (Middleton WI)« less

  1. Minimum required capture radius in a coplanar model of the aerial combat problem

    NASA Technical Reports Server (NTRS)

    Breakwell, J. V.; Merz, A. W.

    1977-01-01

    Coplanar aerial combat is modeled with constant speeds and specified turn rates. The minimum capture radius which will always permit capture, regardless of the initial conditions, is calculated. This 'critical' capture radius is also the maximum range which the evader can guarantee indefinitely if the initial range, for example, is large. A composite barrier is constructed which gives the boundary, at any heading, of relative positions for which the capture radius is less than critical.

  2. Bending and coupling losses in terahertz wire waveguides.

    PubMed

    Astley, Victoria; Scheiman, Julianna; Mendis, Rajind; Mittleman, Daniel M

    2010-02-15

    We present an experimental study of several common perturbations of wire waveguides for terahertz pulses. Sommerfeld waves retain significant signal strength and bandwidth even with large gaps in the wire, exhibiting more efficient recoupling at higher frequencies. We also describe a detailed study of bending losses. For a given turn angle, we observe an optimum radius of curvature that minimizes the overall propagation loss. These results emphasize the impact of the distortion of the spatial mode on the radiative bend loss.

  3. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    NASA Astrophysics Data System (ADS)

    Venturini, M.

    2016-06-01

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  4. Design of a triple-bend isochronous achromat with minimum coherent-synchrotron-radiation-induced emittance growth

    DOE PAGES

    Venturini, M.

    2016-06-09

    Using a 1D steady-state free-space coherent synchrotron radiation (CSR) model, we identify a special design setting for a triple-bend isochronous achromat that yields vanishing emittance growth from CSR. When a more refined CSR model with transient effects is included in the analysis, numerical simulations show that the main effect of the transients is to shift the emittance growth minimum slightly, with the minimum changing only modestly.

  5. A Compact Trench-Assisted Multi-Orbital-Angular-Momentum Multi-Ring Fiber for Ultrahigh-Density Space-Division Multiplexing (19 Rings × 22 Modes)

    PubMed Central

    Li, Shuhui; Wang, Jian

    2014-01-01

    We present a compact (130 μm cladding diameter) trench-assisted multi-orbital-angular-momentum (OAM) multi-ring fiber with 19 rings each supporting 22 modes with 18 OAM ones. Using the high-contrast-index ring and trench designs, the trench-assisted multi-OAM multi-ring fiber (TA-MOMRF) features both low-level inter-mode crosstalk and inter-ring crosstalk within a wide wavelength range (1520 to 1630 nm), which can potentially enable Pbit/s total transmission capacity and hundreds bit/s/Hz spectral efficiency in a single TA-MOMRF. Moreover, the effective refractive index difference of even and odd fiber eigenmodes induced by the ellipticity of ring and fiber bending and their impacts on the purity of OAM mode and mode coupling/crosstalk are analyzed. It is found that high-order OAM modes show preferable tolerance to the ring ellipticity and fiber bending. The designed fiber offers favorable tolerance to both small ellipticity of ring (<−22 dB crosstalk under an ellipticity of 0.5%) and small bend radius (<−20 dB crosstalk under a bend radius of 2 cm). PMID:24458159

  6. Mechanical Flexibility of Zinc Oxide Thin-Film Transistors Prepared by Transfer Printing Method

    NASA Astrophysics Data System (ADS)

    Eun, K. T.; Hwang, W. J.; Sharma, B. K.; Ahn, J. H.; Lee, Y. K.; Choa, S. H.

    In the present study, we demonstrate the performance of Zinc oxide thin film transistors (ZnO TFTs) array subjected to the strain under high bending test and the reliability of TFTs was confirmed for the bending fatigue test of 2000 cycles. Initially, ZnO TFTs were fabricated on Si substrate and subsequently transferred on flexible PET substrate using transfer printing process. It was observed that when the bending radius reached ≥ 11 mm then cracks start to initiate first at SiO2 bridges, acting as interconnecting layers among individual TFT. Whatever the strain is applied to the devices, it is almost equivalently adopted by the SiO2 bridges, as they are relatively weak compared to rest of the part. The initial cracking of destructed SiO2 bridge leads to the secondary cracks to the ITO electrodes upon further increment of bending radius. Numerical simulation suggested that the strain of SiO2 layer reached to fracture level of 0.55% which was concentrated at the edge of SiO2 bridge layer. It also suggests that the round shape of SiO2 bridge can be more fruitful to compensate the stress concentration and to prevent failure of device.

  7. Method for uniformly bending conduits

    DOEpatents

    Dekanich, S.J.

    1984-04-27

    The present invention is directed to a method for bending metal tubing through various radii while maintaining uniform cross section of the tubing. The present invention is practical by filling the tubing to a sufficient level with water, freezing the water to ice and bending the ice-filled tubing in a cooled die to the desired radius. The use of the ice as a filler material provides uniform cross-sectional bends of the tubing and upon removal of the ice provides an uncontaminated interior of the tubing which will enable it to be used in its intended application without encountering residual contaminants in the tubing due to the presence of the filler material.

  8. Low-bending loss and single-mode operation in few-mode optical fiber

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Wang, Hua; Chen, Ming-Yang; Wei, Jin; Cai, Zhi-Min; Li, Lu-Ming; Yang, Ji-Hai; Zhu, Yuan-Feng

    2016-10-01

    The technique of eliminating the higher-order modes in a few-mode optical fiber is proposed. The fiber is designed with a group of defect modes in the cladding. The higher-order modes in the fiber can be eliminated by bending the fiber to induce strong coupling between the defect modes and the higher-order modes. Numerical simulation shows the bending losses of the LP01 mode are lower than 1.5×10-4 dB/turn for the wavelength shorter than 1.625 μm. The proposed fiber can be bent multiple turns at small bending radius which are preferable for FTTH related applications.

  9. Bend-resistant large mode area fiber with novel segmented cladding

    NASA Astrophysics Data System (ADS)

    Ma, Shaoshuo; Ning, Tigang; Pei, Li; Li, Jing; Zheng, Jingjing

    2018-01-01

    A novel structure of segment cladding fiber (SCF) with characteristics of bend-resistance and large-mode-area (LMA) is proposed. In this new structure, the high refractive index (RI) core is periodically surrounded by high RI fan-segmented claddings. Numerical investigations show that effective single-mode operation of the proposed fiber with mode field area of 700 μm2 can be achieved when the bending radius is 15 cm. Besides, this fiber is insensitive to the bending orientation at the ranging of [-180°, 180°]. The proposed design shows great potential in high power fiber lasers and amplifiers with compact structure.

  10. Investigating fold structures of 2D materials by quantitative transmission electron microscopy.

    PubMed

    Wang, Zhiwei; Zhang, Zengming; Liu, Wei; Wang, Zhong Lin

    2017-04-01

    We report an approach developed for deriving 3D structural information of 2D membrane folds based on the recently-established quantitative transmission electron microscopy (TEM) in combination with density functional theory (DFT) calculations. Systematic multislice simulations reveal that the membrane folding leads to sufficiently strong electron scattering which enables a precise determination of bending radius. The image contrast depends also on the folding angles of 2D materials due to the variation of projection potentials, which however exerts much smaller effect compared with the bending radii. DFT calculations show that folded edges are typically characteristic of (fractional) nanotubes with the same curvature retained after energy optimization. Owing to the exclusion of Stobbs factor issue, numerical simulations were directly used in comparison with the experimental measurements on an absolute contrast scale, which results in a successful determination of bending radius of folded monolayer MoS 2 films. The method should be applicable to characterizing all 2D membranes with 3D folding features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. A Small U-Shaped Bending-Induced Interference Optical Fiber Sensor for the Measurement of Glucose Solutions.

    PubMed

    Fang, Yu-Lin; Wang, Chen-Tung; Chiang, Chia-Chin

    2016-09-09

    The study proposes a small U-shaped bending-induced interference optical fiber sensor; this novel sensor is a probe-type sensor manufactured using a mechanical device, a heat source, optical fiber and a packaging module. This probe-type sensor overcomes the shortcomings of conventional optical fibers, including being difficult to repair and a tendency to be influenced by external forces. We manufactured three types of sensors with different curvature radiuses. Specifically, sensors with three radiuses (1.5 mm, 2.0 mm, and 3.0 mm) were used to measure common water and glucose solutions with concentrations of between 6% and 30% (the interval between concentrations was 4%). The results show that the maximal sensitivity was 0.85 dB/% and that the linearly-dependent coefficient was 0.925. The results further show that not only can the small U-shaped bending-induced interference optical fiber sensor achieve high sensitivity in the measurement of glucose solutions, but that it can also achieve great stability and repeatability.

  12. Electrical and mechanical characteristics of fully transparent IZO thin-film transistors on stress-relieving bendable substrates

    NASA Astrophysics Data System (ADS)

    Park, Sukhyung; Cho, Kyoungah; Oh, Hyungon; Kim, Sangsig

    2016-10-01

    In this study, we report the electrical and mechanical characteristics of fully transparent indium zinc oxide (IZO) thin-film transistors (TFTs) fabricated on stress-relieving bendable substrates. An IZO TFT on a stress-relieving substrate can operate normally at a bending radius of 6 mm, while an IZO TFT on a normal plastic substrate fails to operate normally at a bending radius of 15 mm. A plastic island with high Young's modulus embedded on a soft elastomer layer with low Young's modulus plays the role of a stress-relieving substrate for the operation of the bent IZO TFT. The stress and strain distributions over the IZO TFT will be analyzed in detail in this paper.

  13. River meanders - Theory of minimum variance

    USGS Publications Warehouse

    Langbein, Walter Basil; Leopold, Luna Bergere

    1966-01-01

    Meanders are the result of erosion-deposition processes tending toward the most stable form in which the variability of certain essential properties is minimized. This minimization involves the adjustment of the planimetric geometry and the hydraulic factors of depth, velocity, and local slope.The planimetric geometry of a meander is that of a random walk whose most frequent form minimizes the sum of the squares of the changes in direction in each successive unit length. The direction angles are then sine functions of channel distance. This yields a meander shape typically present in meandering rivers and has the characteristic that the ratio of meander length to average radius of curvature in the bend is 4.7.Depth, velocity, and slope are shown by field observations to be adjusted so as to decrease the variance of shear and the friction factor in a meander curve over that in an otherwise comparable straight reach of the same riverSince theory and observation indicate meanders achieve the minimum variance postulated, it follows that for channels in which alternating pools and riffles occur, meandering is the most probable form of channel geometry and thus is more stable geometry than a straight or nonmeandering alinement.

  14. Development and validation of a canine radius replica for mechanical testing of orthopedic implants.

    PubMed

    Little, Jeffrey P; Horn, Timothy J; Marcellin-Little, Denis J; Harrysson, Ola L A; West, Harvey A

    2012-01-01

    To design and fabricate fiberglass-reinforced composite (FRC) replicas of a canine radius and compare their mechanical properties with those of radii from dog cadavers. Replicas based on 3 FRC formulations with 33%, 50%, or 60% short-length discontinuous fiberglass by weight (7 replicas/group) and 5 radii from large (> 30-kg) dog cadavers. Bones and FRC replicas underwent nondestructive mechanical testing including 4-point bending, axial loading, and torsion and destructive testing to failure during 4-point bending. Axial, internal and external torsional, and bending stiffnesses were calculated. Axial pullout loads for bone screws placed in the replicas and cadaveric radii were also assessed. Axial, internal and external torsional, and 4-point bending stiffnesses of FRC replicas increased significantly with increasing fiberglass content. The 4-point bending stiffness of 33% and 50% FRC replicas and axial and internal torsional stiffnesses of 33% FRC replicas were equivalent to the cadaveric bone stiffnesses. Ultimate 4-point bending loads did not differ significantly between FRC replicas and bones. Ultimate screw pullout loads did not differ significantly between 33% or 50% FRC replicas and bones. Mechanical property variability (coefficient of variation) of cadaveric radii was approximately 2 to 19 times that of FRC replicas, depending on loading protocols. Within the range of properties tested, FRC replicas had mechanical properties equivalent to and mechanical property variability less than those of radii from dog cadavers. Results indicated that FRC replicas may be a useful alternative to cadaveric bones for biomechanical testing of canine bone constructs.

  15. Wavelength tuning of multimode interference bandpass filters by mechanical bending: experiment and theory in comparison

    NASA Astrophysics Data System (ADS)

    Walbaum, T.; Fallnich, C.

    2012-07-01

    We present the tuning of multimode interference bandpass filters made of standard fibers by mechanical bending. Our setup allows continuous adjustment of the bending radius from infinity down to about 5 cm. The impact of bending on the transmission spectrum and on polarization is investigated experimentally, and a filter with a continuous tuning range of 13.6 nm and 86 % peak transmission was realized. By use of numerical simulations employing a semi-analytical mode expansion approach, we obtain quantitative understanding of the underlying physics. Further breakdown of the governing equations enables us to identify the fiber parameters that are relevant for the design of customized filters.

  16. The use of hazard road signs to improve the perception of severe bends.

    PubMed

    Milleville-Pennel, Isabelle; Jean-Michel, Hoc; Elise, Jolly

    2007-07-01

    Collision analysis indicates that many car accidents occur when negotiating a bend. Excessive speed and steering wheel errors are often given by way of explanation. Nevertheless, the underlying origin of these dramatic errors could be, at least in part, a poor estimation of bend curvature. The aim of this study was to investigate both the assessment of bend curvature by drivers and the impact of symbolic road signs that indicate a hazardous bend on this assessment. Thus, participants first viewed a video recording showing approaching bends of different curvature before being asked to assess the curvature of these bends. This assessment could either be a verbal (symbolic control) estimation of the bend's curvature and risk, or a sensorimotor (subsymbolic control) estimation of the bend's curvature (participants were asked to turn a steering wheel to mimic the position that would be necessary to accurately negotiate the bend). Results show that very severe bends (with a radius of less than 80 m) were actually underestimated. This was associated with an underestimation of risk corresponding to these bends and a poor sensorimotor anticipation of bend curvature. Road signs, which indicate risk significantly improve bend assessment, but this was of no use for sensorimotor anticipation. Thus, other indicators need to be envisaged in order to also improve this level of control.

  17. Loss reduction in silicon nanophotonic waveguide micro-bends through etch profile improvement

    NASA Astrophysics Data System (ADS)

    Selvaraja, Shankar Kumar; Bogaerts, Wim; Van Thourhout, Dries

    2011-04-01

    Single mode silicon photonic wire waveguides allow low-loss sharp micro-bends, which enables compact photonic devices and circuits. The circuit compactness is achieved at the cost of loss induced by micro-bends, which can seriously affect the device performance. The bend loss strongly depends on the bend radius, polarization, waveguide dimension and profile. In this paper, we present the effect of waveguide profile on the bend loss. We present waveguide profile improvement with optimized etch chemistry and the role of etch chemistry in adapting the etch profile of silicon is investigated. We experimentally demonstrate that by making the waveguide sidewalls vertical, the bend loss can be reduced up to 25% without affecting the propagation loss of the photonic wires. The bend loss of a 2 μm bend has been reduced from 0.039dB/90° bend to 0.028dB/90° bend by changing the sidewall angle from 81° to 90°, respectively. The propagation loss of 2.7 ± 0.1dB/cm and 3 ± 0.09dB/cm was observed for sloped and vertical photonic wires respectively was obtained.

  18. The nonlinear bending response of thin-walled laminated composite cylinders

    NASA Technical Reports Server (NTRS)

    Fuchs, Hannes P.; Hyer, Michael W.

    1992-01-01

    The geometrically nonlinear Donnell shell theory is applied to the problem of stable bending of thin-walled circular cylinders. Responses are computed for cylinders with a radius-to-thickness ratio of 50 and length-to-radius ratios of 1 and 5. Four laminated composite cylinders and an aluminum cylinder are considered. Critical moment estimates are presented for short cylinders for which compression-type buckling behavior is important, and for very long cylinders for which the cross-section flattening, i.e., Brazier effect, is important. A finite element analysis is used to estimate the critical end rotation in addition to establishing the range of validity of the prebuckling analysis. The radial displacement response shows that the character of the boundary layer is significantly influenced by the geometric nonlinearities. Application of a first ply failure analysis using the maximum stress criterion suggests that in nearly all instances material failure occurs before buckling. Failure of the composite cylinders can be attributed to fiber breakage. Striking similarities are seen between the prebuckling displacements of the bending problem and axial compression problem for short cylinders.

  19. Flight Investigation of Effects of Transition, Landing Approaches, Partial-Power Vertical Descents, and Droop-Stop Pounding on the Bending and Torsional Moments Encountered by a Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Ludi, LeRoy H.

    1959-01-01

    Flight tests have been conducted with a single-rotor helicopter, one blade of which was equipped at 14 percent and 40 percent of the blade radius with strain gages calibrated to measure moments rather than stresses, to determine the effects of transition, landing approaches, and partial-power vertical descents on the rotor-blade bending and torsional moments. In addition, ground tests were conducted to determine the effects of static droop-stop pounding on the rotor-blade moments. The results indicate that partial-power vertical descents and landing approaches produce rotor-blade moments that are higher than the moments encountered in any other flight condition investigated to date with this equipment. Decelerating through the transition region in level flight was found to result in higher vibratory moments than accelerating through this region. Deliberately induced static droop-stop pounding produced flapwise bending moments at the 14-percent-radius station which were as high as the moments experienced in landing approaches and partial-power vertical descents.

  20. Collapsed adhesion of carbon nanotubes on silicon substrates: continuum mechanics and atomistic simulations

    NASA Astrophysics Data System (ADS)

    Yuan, Xuebo; Wang, Youshan

    2018-02-01

    Carbon nanotubes (CNTs) can undergo collapse from the ordinary cylindrical configurations to bilayer ribbons when adhered on substrates. In this study, the collapsed adhesion of CNTs on the silicon substrates is investigated using both classical molecular dynamics (MD) simulations and continuum analysis. The governing equations and transversality conditions are derived based on the minimum potential energy principle and the energy-variational method, considering both the van der Waals interactions between CNTs and substrates and those inside CNTs. Closed-form solutions for the collapsed configuration are obtained which show good agreement with the results of MD simulations. The stability of adhesive configurations is investigated by analyzing the energy states. It is found that the adhesive states of single-walled CNTs (SWCNTs) (n, n) on the silicon substrates can be categorized by two critical radii, 0.716 and 0.892 nm. For SWCNTs with radius larger than 0.892 nm, they would fully collapse on the silicon substrates. For SWCNTs with radius less than 0.716 nm, the initial cylindrical configuration is energetically favorable. For SWCNTs with radius between two critical radii, the radially deformed state is metastable. The non-contact ends of all collapsed SWCNTs are identical with the same arc length of 2.38 nm. Finally, the role of number of walls on the adhesive configuration is investigated quantitatively. For multi-walled CNTs with the number of walls exceeding a certain value, the cylindrical configuration is stable due to the increasing bending stiffness. The present study can be useful for the design of CNT-based nanodevices.

  1. Flight Investigation of Effects of Selected Operating Conditions on the Bending and Torsional Moments Encountered by a Helicopter Rotor Blade

    NASA Technical Reports Server (NTRS)

    Ludi, LeRoy H.

    1961-01-01

    Flight tests have been conducted with a single-rotor helicopter to determine the effects of partial-power descents with forward speed, high-speed level turns, pull-outs from autorotation, and high-forward-speed high-rotor-speed autorotation on the flapwise bending and torsional moments of the rotor blade. One blade of the helicopter was equipped at 14 percent and 40 percent of the blade radius with strain gages calibrated to measure moments rather than stresses. The results indicate that the maximum moments encountered in partial-power descents with forward speed tend to be generally reduced from the maximum moments encountered during partid-power descents at zero forward speed. High-speed level turns and pull-outs from auto-rotation caused retreating-blade stall which produced torsional moments (values up to 2,400 inch-pounds). at the 14-percent-radius station that were as large as those encountered during the previous investigations of retreating-blade stall (values up t o 2,500 inch-pounds). High-forward- speed high-rotor-speed autorotation produced flapwise bending moments (values up to 7,200 inch-pounds) at the 40-percent-radius station which were as large as the flapwise bending moments (values up to 7,800 inch-pounds) a t the 14-percent-radius station encountered during partial - power vertical descents. The results of the present investigation (tip-speed ratios up to 0.325 and an unaccelerated level-flight mean lift coefficient of about 0.6), in combination with the related results of at zero forward speed produce the largest rotor-blade vibratory moments. However, inasmuch as these large moments occur only during 1 percent of the cycles and 88 percent of the cycles are at moment values less than 70 percent of these maximum values in partial-power descents, other conditions, such as high-speed flight where the large moments are combined with large percentages of time spent,must not be neglected in any rotor-blade service-life assessment.

  2. Determination of optimal tool parameters for hot mandrel bending of pipe elbows

    NASA Astrophysics Data System (ADS)

    Tabakajew, Dmitri; Homberg, Werner

    2018-05-01

    Seamless pipe elbows are important components in mechanical, plant and apparatus engineering. Typically, they are produced by the so-called `Hamburg process'. In this hot forming process, the initial pipes are subsequently pushed over an ox-horn-shaped bending mandrel. The geometric shape of the mandrel influences the diameter, bending radius and wall thickness distribution of the pipe elbow. This paper presents the numerical simulation model of the hot mandrel bending process created to ensure that the optimum mandrel geometry can be determined at an early stage. A fundamental analysis was conducted to determine the influence of significant parameters on the pipe elbow quality. The chosen methods and approach as well as the corresponding results are described in this paper.

  3. Handling performance control for hybrid 8-wheel-drive vehicle and simulation verification

    NASA Astrophysics Data System (ADS)

    Ni, Jun; Hu, Jibin

    2016-08-01

    In order to improve handling performance of a hybrid 8-Wheel-Drive vehicle, the handling performance control strategy was proposed. For armoured vehicle, besides handling stability in high speed, the minimum steer radius in low speed is also a key tactical and technical index. Based on that, the proposed handling performance control strategy includes 'Handling Stability' and 'Radius Minimization' control modes. In 'Handling Stability' control mode, 'Neutralsteer Radio' is defined to adjust the steering characteristics to satisfy different demand in different speed range. In 'Radius Minimization' control mode, the independent motors are controlled to provide an additional yaw moment to decrease the minimum steer radius. In order to verify the strategy, a simulation platform was built including engine and continuously variable transmission systems, generator and battery systems, independent motors and controllers systems, vehicle dynamic and tyre mechanical systems. The simulation results show that the handling performance of the vehicle can be enhanced significantly, and the minimum steer radius can be decreased by 20% which is significant improvement compared to the common level of main battle armoured vehicle around the world.

  4. Exact solutions for laminated composite cylindrical shells in cylindrical bending

    NASA Technical Reports Server (NTRS)

    Yuan, F. G.

    1992-01-01

    Analytic elasticity solutions for laminated composite cylindrical shells under cylindrical bending are presented. The material of the shell is assumed to be general cylindrically anisotropic. Based on the theory of cylindrical anisotropic elasticity, coupled governing partial differential equations are developed. The general expressions for the stresses and displacements in the laminated composite cylinders are discussed. The closed form solutions based on Classical Shell Theory (CST) and Donnell's (1933) theory are also derived for comparison purposes. Three examples illustrate the effect of radius-to-thickness ratio, coupling and stacking sequence. The results show that, in general, CST yields poor stress and displacement distributions for thick-section composite shells, but converges to the exact elasticity solution as the radius-to-thickness ratio increases. It is also shown that Donnell's theory significantly underestimates the stress and displacement response.

  5. Time-resolved energy spectrum measurement of a linear induction accelerator with the magnetic analyzer

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Jiang, Xiao-Guo; Yang, Guo-Jun; Chen, Si-Fu; Zhang, Zhuo; Wei, Tao; Li, Jin

    2015-01-01

    We recently set up a time-resolved optical beam diagnostic system. Using this system, we measured the high current electron beam energy in the accelerator under construction. This paper introduces the principle of the diagnostic system, describes the setup, and shows the results. A bending beam line was designed using an existing magnetic analyzer with a 300 mm-bending radius and a 60° bending angle at hard-edge approximation. Calculations show that the magnitude of the beam energy is about 18 MeV, and the energy spread is within 2%. Our results agree well with the initial estimates deduced from the diode voltage approach.

  6. Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis.

    PubMed

    Xu, Pengbai; Dong, Yongkang; Zhang, Juwang; Zhou, Dengwang; Jiang, Taofei; Xu, Jinlong; Zhang, Hongying; Zhu, Tao; Lu, Zhiwei; Chen, Liang; Bao, Xiaoyi

    2015-08-24

    We propose a bend-insensitive distributed Brillouin optical fiber sensing by using a singlemode-multimode-singlemode optical fiber structure for the first time to the best of our knowledge. The sensing fiber is a graded-index multimode fiber (GI-MMF) sandwiched by two standard single-mode fibers (SMFs) with central-alignment splicing at the interface between GI-MMF and SMF to excite the fundamental mode in GI-MMF. The sensing system can resist a minimal bend radius of 1.25mm while maintain the measurement performance, with which the measured coefficients of strain and temperature are 421.6MHz/% and 0.826MHz/°C, respectively. We also demonstrate that the higher-order modes excited in GI-MMF can be easily influenced by bending, so that exciting the fundamental mode is essential for bend-insensitive distributed sensing.

  7. Turbulent flow computation in a circular U-Bend

    NASA Astrophysics Data System (ADS)

    Miloud, Abdelkrim; Aounallah, Mohammed; Belkadi, Mustapha; Adjlout, Lahouari; Imine, Omar; Imine, Bachir

    2014-03-01

    Turbulent flows through a circular 180° curved bend with a curvature ratio of 3.375, defined as the the bend mean radius to pipe diameter is investigated numerically for a Reynolds number of 4.45×104. The computation is performed for a U-Bend with full long pipes at the entrance and at the exit. The commercial ANSYS FLUENT is used to solve the steady Reynolds-Averaged Navier-Stokes (RANS) equations. The performances of standard k-ɛ and the second moment closure RSM models are evaluated by comparing their numerical results against experimental data and testing their capabilities to capture the formation and extend this turbulence driven vortex. It is found that the secondary flows occur in the cross-stream half-plane of such configurations and primarily induced by high anisotropy of the cross-stream turbulent normal stresses near the outer bend.

  8. Optical confinement and light guiding in high dielectric contrast materials systems

    NASA Astrophysics Data System (ADS)

    Foresi, James S.

    A study of silicon photonic devices, including waveguides and microcavities, is presented in this thesis. The high index difference of Silicon-On-Insulator materials is used to design submicron devices capable of light localization and routing. Losses due to interface roughness between the high and low index materials are measured to be 40dB/cm. An analysis of lithographically induced interface roughness is performed and a method for evaluating nanometer-scale roughness is presented. High index differences lead to compact bends and power splitters. Bends of 2.0μm radius are measured to have losses less than 0.5dB. Splitting angles of 5o with losses less than 1.5dB are demonstrated. The bends and splitters are the most compact devices of their kind. The design, fabrication and analysis of two light confining devices in the SOI system are presented: photonic band gap (PBG) and microdisk microcavities. A PBG waveguide microcavity with minimum dimensions of 0.10μm is fabricated and transmission measurements reveal cavity Q's of 265, a resonant wavelength of 1564nm, and a modal volume of 0.27/mu m3. This is the first demonstration of PBG resonance at optical frequencies. The PBG microcavity volume is two orders of magnitude smaller than has been achieved in other microcavity devices. Microdisk and microring resonators are demonstrated. A waveguide-coupled microring is shown to operate as a channel dropping filter with Q's of 250 and a free spectral range of 25nm. The application of the microcavity devices to spontaneous emission control of erbium-doped silicon is analyzed. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  9. Stress Intensity Factors of Semi-Circular Bend Specimens with Straight-Through and Chevron Notches

    NASA Astrophysics Data System (ADS)

    Ayatollahi, M. R.; Mahdavi, E.; Alborzi, M. J.; Obara, Y.

    2016-04-01

    Semi-circular bend specimen is one of the useful test specimens for determining fracture toughness of rock and geo-materials. Generally, in rock test specimens, initial cracks are produced in two shapes: straight-edge cracks and chevron notches. In this study, the minimum dimensionless stress intensity factors of semi-circular bend specimen (SCB) with straight-through and chevron notches are calculated. First, using finite element analysis, a suitable relation for the dimensionless stress intensity factor of SCB with straight-through crack is presented based on the normalized crack length and half-distance between supports. For evaluating the validity and accuracy of this relation, the obtained results are then compared with numerical and experimental results reported in the literature. Subsequently, by performing some experiments and also finite element analysis of the SCB specimen with chevron notch, the minimum dimensionless stress intensity factor of this specimen is obtained. Using the new equation for the dimensionless stress intensity factor of SCB with straight-through crack and an analytical method, i.e., Bluhm's slice synthesis method, the minimum (critical) dimensionless stress intensity factor of chevron notched semi-circular bend specimens is calculated. Good agreement is observed between the results of two mentioned methods.

  10. Bending strength of shallow glued-laminated beams of a uniform grade

    Treesearch

    Catherine M. Marx; Russell C. Moody

    1981-01-01

    Ninety glued-laminated Douglas-fir or southern pine beams of a uniform grade with 2-, 4-, or 6-laminations were evaluated in static bending tests. No specially graded tension laminations or end joints were used. The purpose of the tests was to determine which of three present design criteria best predict near minimum bending strength values for shallow glued-laminated...

  11. A transparent bending-insensitive pressure sensor

    NASA Astrophysics Data System (ADS)

    Lee, Sungwon; Reuveny, Amir; Reeder, Jonathan; Lee, Sunghoon; Jin, Hanbit; Liu, Qihan; Yokota, Tomoyuki; Sekitani, Tsuyoshi; Isoyama, Takashi; Abe, Yusuke; Suo, Zhigang; Someya, Takao

    2016-05-01

    Measuring small normal pressures is essential to accurately evaluate external stimuli in curvilinear and dynamic surfaces such as natural tissues. Usually, sensitive and spatially accurate pressure sensors are achieved through conformal contact with the surface; however, this also makes them sensitive to mechanical deformation (bending). Indeed, when a soft object is pressed by another soft object, the normal pressure cannot be measured independently from the mechanical stress. Here, we show a pressure sensor that measures only the normal pressure, even under extreme bending conditions. To reduce the bending sensitivity, we use composite nanofibres of carbon nanotubes and graphene. Our simulations show that these fibres change their relative alignment to accommodate bending deformation, thus reducing the strain in individual fibres. Pressure sensitivity is maintained down to a bending radius of 80 μm. To test the suitability of our sensor for soft robotics and medical applications, we fabricated an integrated sensor matrix that is only 2 μm thick. We show real-time (response time of ∼20 ms), large-area, normal pressure monitoring under different, complex bending conditions.

  12. InP-based photonic integrated circuit platform on SiC wafer.

    PubMed

    Takenaka, Mitsuru; Takagi, Shinichi

    2017-11-27

    We have numerically investigated the properties of an InP-on-SiC wafer as a photonic integrated circuit (PIC) platform. By bonding a thin InP-based semiconductor on a SiC wafer, SiC can be used as waveguide cladding, a heat sink, and a support substrate simultaneously. Since the refractive index of SiC is sufficiently low, PICs can be fabricated using InP-based strip and rib waveguides with a minimum bend radius of approximately 7 μm. High-thermal-conductivity SiC underneath an InP-based waveguide core markedly improves heat dissipation, resulting in superior thermal properties of active devices such as laser diodes. The InP-on-SiC wafer has significantly smaller thermal stress than InP-on-SiO 2 /Si wafer, which prevents the thermal degradation of InP-based devices during high-temperature processes. Thus, InP on SiC provides an ideal platform for high-performance PICs.

  13. Geometry and surface controlled formation of nanoparticle helical ribbons

    NASA Astrophysics Data System (ADS)

    Pham, Jonathan; Lawrence, Jimmy; Lee, Dong; Grason, Gregory; Emrick, Todd; Crosby, Alfred

    2013-03-01

    Helical structures are interesting because of their space efficiency, mechanical tunability and everyday uses in both the synthetic and natural world. In general, the mechanisms governing helix formation are limited to bilayer material systems and chiral molecular structures. However, in a special range of dimensions where surface energy dominates (i.e. high surface to volume ratio), geometry rather than specific materials can drive helical formation of thin asymmetric ribbons. In an evaporative assembly technique called flow coating, based from the commonly observed coffee ring effect, we create nanoparticle ribbons possessing non-rectangular nanoscale cross-sections. When released into a liquid medium of water, interfacial tension between the asymmetric ribbon and water balances with the elastic cost of bending to form helices with a preferred radius of curvature and a minimum pitch. We demonstrate that this is a universal mechanism that can be used with a wide range of materials, such as quantum dots, metallic nanoparticles, or polymers. Nanoparticle helical ribbons display excellent structural integrity with spring-like characteristics and can be extended high strains.

  14. Piezoelectric Flexible LCP-PZT Composites for Sensor Applications at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Tolvanen, Jarkko; Hannu, Jari; Juuti, Jari; Jantunen, Heli

    2018-03-01

    In this paper fabrication of piezoelectric ceramic-polymer composites is demonstrated via filament extrusion enabling cost-efficient large-scale production of highly bendable pressure sensors feasible for elevated temperatures. These composites are fabricated by utilizing environmentally resistant and stable liquid crystal polymer matrix with addition of lead zirconate titanate at loading levels of 30 vol%. These composites, of approximately 0.99 mm thick and length of > 50 cm, achieved excellent bendability with minimum bending radius of 6.6 cm. The maximum piezoelectric coefficients d33 and g33 of the composites were > 14 pC/N and > 108 mVm/N at pressure < 10 kPa. In all cases, the piezoelectric charge coefficient (d33) of the composites decreased as a function of pressure. Also, piezoelectric coefficient (d33) further decreased in the case of increased frequency press-release cycle sand pre-stress levels by approximately 37-50%. However, the obtained results provide tools for fabricating novel piezoelectric sensors in highly efficient way for environments with elevated temperatures.

  15. Measurement and models of bent KAP(001) crystal integrated reflectivity and resolution (invited)

    NASA Astrophysics Data System (ADS)

    Loisel, G. P.; Wu, M.; Stolte, W.; Kruschwitz, C.; Lake, P.; Dunham, G. S.; Bailey, J. E.; Rochau, G. A.

    2016-11-01

    The Advanced Light Source beamline-9.3.1 x-rays are used to calibrate the rocking curve of bent potassium acid phthalate (KAP) crystals in the 2.3-4.5 keV photon-energy range. Crystals are bent on a cylindrically convex substrate with a radius of curvature ranging from 2 to 9 in. and also including the flat case to observe the effect of bending on the KAP spectrometric properties. As the bending radius increases, the crystal reflectivity converges to the mosaic crystal response. The X-ray Oriented Programs (xop) multi-lamellar model of bent crystals is used to model the rocking curve of these crystals and the calibration data confirm that a single model is adequate to reproduce simultaneously all measured integrated reflectivities and rocking-curve FWHM for multiple radii of curvature in both 1st and 2nd order of diffraction.

  16. Analysis of the bending radius of the cylindrical waveguide of polydimethylsiloxane for the purpose of lighting

    NASA Astrophysics Data System (ADS)

    Novak, M.; Jargus, J.; Fajkus, M.; Bednarek, L.; Vasinek, V.

    2017-10-01

    Polydimethylsiloxane (PDMS) can be used for its optical properties and its composition offers the possibility of use in the dangerous environments. Therefore authors of this article focused on more detailed working with this material. The authors describe the use of PDMS polymer for the light transmission over short distances (up to tens of centimeters). PDMS offers good prerequisites (mechanical properties) for the creating cylindrical lighting waveguide e.g. for the purpose of the automotive industry. The objective is to determine the maximum bending radius of the cylindrical waveguide of polydimethylsiloxane for different wavelengths of the visible spectrum and thus extend the knowledge for subsequent use in lighting. The created cylindrical waveguide consist of a core and a cladding. Cladding was formed by a PDMS having a lower refractive index in order to respect the condition of total reflection.

  17. Measurement and models of bent KAP(001) crystal integrated reflectivity and resolution (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Loisel, G. P., E-mail: gploise@sandia.gov; Wu, M.; Lake, P.

    2016-11-15

    The Advanced Light Source beamline-9.3.1 x-rays are used to calibrate the rocking curve of bent potassium acid phthalate (KAP) crystals in the 2.3-4.5 keV photon-energy range. Crystals are bent on a cylindrically convex substrate with a radius of curvature ranging from 2 to 9 in. and also including the flat case to observe the effect of bending on the KAP spectrometric properties. As the bending radius increases, the crystal reflectivity converges to the mosaic crystal response. The X-ray Oriented Programs (XOP) multi-lamellar model of bent crystals is used to model the rocking curve of these crystals and the calibration datamore » confirm that a single model is adequate to reproduce simultaneously all measured integrated reflectivities and rocking-curve FWHM for multiple radii of curvature in both 1st and 2nd order of diffraction.« less

  18. Full title: Biomechanical comparison between stainless steel, titanium and carbon-fiber reinforced polyetheretherketone volar locking plates for distal radius fractures.

    PubMed

    Mugnai, Raffaele; Tarallo, Luigi; Capra, Francesco; Catani, Fabio

    2018-05-25

    As the popularity of volar locked plate fixation for distal radius fractures has increased, so have the number and variety of implants, including variations in plate design, the size and angle of the screws, the locking screw mechanism, and the material of the plates. carbon-fiber reinforced polyetheretherketone (CFR-PEEK) plate features similar biomechanical properties to metallic plates, representing, therefore, an optimal alternative for the treatment of distal radius fractures. three different materials-composed plates were evaluated: stainless steel volar lateral column (Zimmer); titanium DVR (Hand Innovations); CFR-PEEK DiPHOS-RM (Lima Corporate). Six plates for each type were implanted in sawbones and an extra-articular rectangular osteotomy was created. Three plates for each material were tested for load to failure and bending stiffness in axial compression. Moreover, 3 constructs for each plate were evaluated after dynamically loading for 6000 cycles of fatigue. the mean bending stiffness pre-fatigue was significantly higher for the stainless steel plate. The titanium plate yielded the higher load to failure both pre and post fatigue. After cyclic loading, the bending stiffness increased by a mean of 24% for the stainless steel plate; 33% for the titanium; and 17% for the CFR-PEEK plate. The mean load to failure post-fatigue increased by a mean of 10% for the stainless steel and 14% for CFR-PEEK plates, whereas it decreased (-16%) for the titanium plate. Statistical analysis between groups reported significant values (p <.001) for all comparisons except for Hand Innovations vs. Zimmer bending stiffness post fatigue (p = .197). the significant higher load to failure of the titanium plate, makes it indicated for patients with higher functional requirements or at higher risk of trauma in the post-operative period. The CFR-PEEK plate showed material-specific disadvantages, represented by little tolerance to plastic deformation, and lower load to failure. N/A. Copyright © 2018. Published by Elsevier Masson SAS.

  19. Fabrication of SWCNT based flexible chemiresistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rajput, Mayank, E-mail: mnk.rajput1@gmail.com; Das, S.; Kaur, Rajvinder

    2016-04-13

    Carboxyl (-COOH) functionalized SWCNT chemiresistors have been realized on Kapton substrate patterned with Au microelectrodes by the drop casting of functionalized SWCNT dispersion in DI water. I-V measurements on fabricated chemiresistor showed ohmic behavior at different temperatures (25°C-120°C). The effect of bending on flexible functionalized SWCNT chemiresistor for different diameter has been measured. It has been found that bending at different radius of curvature doesn’t change the ohmic behavior of fabricated chemiresistor. Achieved results are promising for cheap flexible electronic devices.

  20. Laser Doppler measurements of laminar and turbulent flow in a pipe bend

    NASA Technical Reports Server (NTRS)

    Enayet, M. M.; Gibson, M. M.; Taylor, A. M. K. P.; Yianneskis, M.

    1982-01-01

    The streamwise components of velocity in the flow through a ninety degree bend of circular cross section for which the ratio of radius of curvature to diameter is 2.8 were measured. The development of strong pressure driven secondary flow in the form of a pair of counter rotating vortices in the steamwise direction is shown. Refractive index matching at the fluid wall interface was not employed; the displacement of the measurement volume due to refraction is allowed for in simple geometrical calculations.

  1. Atomistic modeling of dropwise condensation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sikarwar, B. S., E-mail: bssikarwar@amity.edu; Singh, P. L.; Muralidhar, K.

    The basic aim of the atomistic modeling of condensation of water is to determine the size of the stable cluster and connect phenomena occurring at atomic scale to the macroscale. In this paper, a population balance model is described in terms of the rate equations to obtain the number density distribution of the resulting clusters. The residence time is taken to be large enough so that sufficient time is available for all the adatoms existing in vapor-phase to loose their latent heat and get condensed. The simulation assumes clusters of a given size to be formed from clusters of smallermore » sizes, but not by the disintegration of the larger clusters. The largest stable cluster size in the number density distribution is taken to be representative of the minimum drop radius formed in a dropwise condensation process. A numerical confirmation of this result against predictions based on a thermodynamic model has been obtained. Results show that the number density distribution is sensitive to the surface diffusion coefficient and the rate of vapor flux impinging on the substrate. The minimum drop radius increases with the diffusion coefficient and the impinging vapor flux; however, the dependence is weak. The minimum drop radius predicted from thermodynamic considerations matches the prediction of the cluster model, though the former does not take into account the effect of the surface properties on the nucleation phenomena. For a chemically passive surface, the diffusion coefficient and the residence time are dependent on the surface texture via the coefficient of friction. Thus, physical texturing provides a means of changing, within limits, the minimum drop radius. The study reveals that surface texturing at the scale of the minimum drop radius does not provide controllability of the macro-scale dropwise condensation at large timescales when a dynamic steady-state is reached.« less

  2. Numerical Heat Transfer Prediction for Laminar Flow in a Circular Pipe with a 90° Bend

    NASA Astrophysics Data System (ADS)

    Patro, Pandaba; Rout, Ani; Barik, Ashok

    2018-06-01

    Laminar air flow in a 90° bend has been studied numerically to investigate convective heat transfer, which is of practical relevance to electronic systems and refrigeration piping layout. CFD simulations are performed for Reynolds number in the range 200 to 1000 at different bend radius ratios (5, 10 and 20). The heat transfer characteristics are found to be enhanced in the curved pipe compared to a straight pipe, which are subjected to the same flow rate. The curvature and buoyancy effectively increase heat transfer in viscous laminar flows. The correlation between the flow structure and the heat transfer is found to be strong.

  3. A mechanically enhanced hybrid nano-stratified barrier with a defect suppression mechanism for highly reliable flexible OLEDs.

    PubMed

    Jeong, Eun Gyo; Kwon, Seonil; Han, Jun Hee; Im, Hyeon-Gyun; Bae, Byeong-Soo; Choi, Kyung Cheol

    2017-05-18

    Understanding the mechanical behaviors of encapsulation barriers under bending stress is important when fabricating flexible organic light-emitting diodes (FOLEDs). The enhanced mechanical characteristics of a nano-stratified barrier were analyzed based on a defect suppression mechanism, and then experimentally demonstrated. Following the Griffith model, naturally-occurring cracks, which were caused by Zn etching at the interface of the nano-stratified structure, can curb the propagation of defects. Cross-section images after bending tests provided remarkable evidence to support the existence of a defect suppression mechanism. Many visible cracks were found in a single Al 2 O 3 layer, but not in the nano-stratified structure, due to the mechanism. The nano-stratified structure also enhanced the barrier's physical properties by changing the crystalline phase of ZnO. In addition, experimental results demonstrated the effect of the mechanism in various ways. The nano-stratified barrier maintained a low water vapor transmission rate after 1000 iterations of a 1 cm bending radius test. Using this mechanically enhanced hybrid nano-stratified barrier, FOLEDs were successfully encapsulated without losing mechanical or electrical performance. Finally, comparative lifetime measurements were conducted to determine reliability. After 2000 hours of constant current driving and 1000 iterations with a 1 cm bending radius, the FOLEDs retained 52.37% of their initial luminance, which is comparable to glass-lid encapsulation, with 55.96% retention. Herein, we report a mechanically enhanced encapsulation technology for FOLEDs using a nano-stratified structure with a defect suppression mechanism.

  4. Focal Length Controllable Ultrasonic Transducer Using Bimorph-Type Bending Actuator

    NASA Astrophysics Data System (ADS)

    Chae, Min-Ku; Kim, Moo-Joon; Ha, Kang-Lyeol; Lee, Chai-Bong

    2003-05-01

    Using a bimorph-type bending actuator, we propose a new method for controlling the focal length of a transducer by electric DC voltage. We designed two focal length controllable ultrasonic transducers with actuators, a line-focus and a point-focus transducer. The polyvinylidene fluoride (PVDF) piezoelectric type polymer film is used for transmitting and receiving of ultrasonic signals. Using the new method, it is confirmed by investigation of the underwater acoustic field that the focal length can be controlled to within 10% of the radius of the transducer curvature.

  5. All-fiber intensity bend sensor based on photonic crystal fiber with asymmetric air-hole structure

    NASA Astrophysics Data System (ADS)

    Budnicki, Dawid; Szostkiewicz, Lukasz; Szymanski, Michal O.; Ostrowski, Lukasz; Holdynski, Zbigniew; Lipinski, Stanislaw; Murawski, Michal; Wojcik, Grzegorz; Makara, Mariusz; Poturaj, Krzysztof; Mergo, Pawel; Napierala, Marek; Nasilowski, Tomasz

    2017-10-01

    Monitoring the geometry of an moving element is a crucial task for example in robotics. The robots equipped with fiber bend sensor integrated in their arms can be a promising solution for medicine, physiotherapy and also for application in computer games. We report an all-fiber intensity bend sensor, which is based on microstructured multicore optical fiber. It allows to perform a measurement of the bending radius as well as the bending orientation. The reported solution has a special airhole structure which makes the sensor only bend-sensitive. Our solution is an intensity based sensor, which measures power transmitted along the fiber, influenced by bend. The sensor is based on a multicore fiber with the special air-hole structure that allows detection of bending orientation in range of 360°. Each core in the multicore fiber is sensitive to bend in specified direction. The principle behind sensor operation is to differentiate the confinement loss of fundamental mode propagating in each core. Thanks to received power differences one can distinguish not only bend direction but also its amplitude. Multicore fiber is designed to utilize most common light sources that operate at 1.55 μm thus ensuring high stability of operation. The sensitivity of the proposed solution is equal 29,4 dB/cm and the accuracy of bend direction for the fiber end point is up to 5 degrees for 15 cm fiber length. Such sensitivity allows to perform end point detection with millimeter precision.

  6. 46 CFR 151.10-20 - Hull construction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... rests upon a pinnacle at the water surface. The maximum hull and tank bending moment and tank saddle reactions (if applicable) shall be determined. The hull bending stress shall not exceed the applicable... hull. In such case, the hull stress shall not exceed either 50 percent of the minimum ultimate tensile...

  7. 46 CFR 32.59-1 - Minimum section modulus and plating thickness requirements-TB/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... of that which is necessary to meet the bending moment developed under a full load condition in still water, using a permissible bending stress of 12.74 kN/cm2 (1.30 t/cm2, 8.25 Ltf/in2). (d) Within the 40...

  8. 46 CFR 32.59-1 - Minimum section modulus and plating thickness requirements-TB/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... of that which is necessary to meet the bending moment developed under a full load condition in still water, using a permissible bending stress of 12.74 kN/cm2 (1.30 t/cm2, 8.25 Ltf/in2). (d) Within the 40...

  9. 46 CFR 32.59-1 - Minimum section modulus and plating thickness requirements-TB/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... of that which is necessary to meet the bending moment developed under a full load condition in still water, using a permissible bending stress of 12.74 kN/cm2 (1.30 t/cm2, 8.25 Ltf/in2). (d) Within the 40...

  10. 46 CFR 32.59-1 - Minimum section modulus and plating thickness requirements-TB/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... of that which is necessary to meet the bending moment developed under a full load condition in still water, using a permissible bending stress of 12.74 kN/cm2 (1.30 t/cm2, 8.25 Ltf/in2). (d) Within the 40...

  11. 46 CFR 32.59-1 - Minimum section modulus and plating thickness requirements-TB/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... of that which is necessary to meet the bending moment developed under a full load condition in still water, using a permissible bending stress of 12.74 kN/cm2 (1.30 t/cm2, 8.25 Ltf/in2). (d) Within the 40...

  12. Effects of device size and material on the bending performance of resistive-switching memory devices fabricated on flexible substrates

    NASA Astrophysics Data System (ADS)

    Lee, Won-Ho; Yoon, Sung-Min

    2017-05-01

    The resistive change memory (RCM) devices using amorphous In-Ga-Zn-O (IGZO) and microcrystalline Al-doped ZnO (AZO) thin films were fabricated on plastic substrates and characterized for flexible electronic applications. The device cell sizes were varied to 25 × 25, 50 × 50, 100 × 100, and 200 × 200 μm2 to examine the effects of cell size on the resistive-switching (RS) behaviors at a flat state and under bending conditions. First, it was found that the high-resistance state programmed currents markedly increased with the increase in the cell size. Second, while the AZO RCM devices did not exhibit RESET operations at a curvature radius smaller than 8.0 mm, the IGZO RCM devices showed sound RS behaviors even at a curvature radius of 4.5 mm. Third, for the IGZO RCM devices with the cell size bigger than 100 × 100 μm2, the RESET operation could not be performed at a curvature radius smaller than 6.5 mm. Thus, it was elucidated that the RS characteristics of the flexible RCM devices using oxide semiconductor thin films were closely related to the types of RS materials and the cell size of the device.

  13. Calibration of nozzle for air mass flow measurement

    NASA Astrophysics Data System (ADS)

    Uher, Jan; Kanta, Lukáš

    2017-09-01

    The effort to make calibration measurement of mass flow through a nozzle was not satisfying. Traversing across the pipe radius with Pitot probe was done. The presence of overshoot behind the bend in the pipe was found. The overshoot led to an asymmetric velocity profile.

  14. Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades

    NASA Technical Reports Server (NTRS)

    Hodges, D. H.; Dowell, E. H.

    1974-01-01

    The equations of motion are developed by two complementary methods, Hamilton's principle and the Newtonian method. The resulting equations are valid to second order for long, straight, slender, homogeneous, isotropic beams undergoing moderate displacements. The ordering scheme is based on the restriction that squares of the bending slopes, the torsion deformation, and the chord/radius and thickness/radius ratios are negligible with respect to unity. All remaining nonlinear terms are retained. The equations are valid for beams with mass centroid axis and area centroid (tension) axis offsets from the elastic axis, nonuniform mass and stiffness section properties, variable pretwist, and a small precone angle. The strain-displacement relations are developed from an exact transformation between the deformed and undeformed coordinate systems. These nonlinear relations form an important contribution to the final equations. Several nonlinear structural and inertial terms in the final equations are identified that can substantially influence the aeroelastic stability and response of hingeless helicopter rotor blades.

  15. Modern methodology of designing target reliability into rotating mechanical components

    NASA Technical Reports Server (NTRS)

    Kececioglu, D. B.; Chester, L. B.

    1973-01-01

    Experimentally determined distributional cycles-to-failure versus maximum alternating nominal strength (S-N) diagrams, and distributional mean nominal strength versus maximum alternating nominal strength (Goodman) diagrams are presented. These distributional S-N and Goodman diagrams are for AISI 4340 steel, R sub c 35/40 hardness, round, cylindrical specimens 0.735 in. in diameter and 6 in. long with a circumferential groove 0.145 in. radius for a theoretical stress concentration = 1.42 and 0.034 in. radius for a stress concentration = 2.34. The specimens are subjected to reversed bending and steady torque in specially built, three complex-fatigue research machines. Based on these results, the effects on the distributional S-N and Goodman diagrams and on service life of superimposing steady torque on reversed bending are established, as well as the effect of various stress concentrations. In addition a computer program for determining the three-parameter Weibull distribution representing the cycles-to-failure data, and two methods for calculating the reliability of components subjected to cumulative fatigue loads are given.

  16. Effect of electromagnetic radiation on the coils used in aneurysm embolization.

    PubMed

    Lv, Xianli; Wu, Zhongxue; Li, Youxiang

    2014-06-01

    This study evaluated the effects of electromagnetic radiation in our daily lives on the coils used in aneurysm embolization. Faraday's electromagnetic induction principle was applied to analyze the effects of electromagnetic radiation on the coils used in aneurysm embolization. To induce a current of 0.5mA in less than 5 mm platinum coils required to stimulate peripheral nerves, the minimum magnetic field will be 0.86 μT. To induce a current of 0.5 mA in platinum coils by a hair dryer, the minimum aneurysm radius is 2.5 mm (5 mm aneurysm). To induce a current of 0.5 mA in platinum coils by a computer or TV, the minimum aneurysm radius is 8.6 mm (approximate 17 mm aneurysm). The minimum magnetic field is much larger than the flux densities produced by computer and TV, while the minimum aneurysm radius is much larger than most aneurysm sizes to levels produced by computer and TV. At present, the effects of electromagnetic radiation in our daily lives on intracranial coils do not produce a harmful reaction. Patients with coiled aneurysm are advised to avoid using hair dryers. This theory needs to be proved by further detailed complex investigations. Doctors should give patients additional instructions before the procedure, depending on this study.

  17. Effect of Electromagnetic Radiation on the Coils Used in Aneurysm Embolization

    PubMed Central

    Lv, Xianli; Wu, Zhongxue; Li, Youxiang

    2014-01-01

    Summary This study evaluated the effects of electromagnetic radiation in our daily lives on the coils used in aneurysm embolization. Faraday’s electromagnetic induction principle was applied to analyze the effects of electromagnetic radiation on the coils used in aneurysm embolization. To induce a current of 0.5mA in less than 5 mm platinum coils required to stimulate peripheral nerves, the minimum magnetic field will be 0.86 μT. To induce a current of 0.5 mA in platinum coils by a hair dryer, the minimum aneurysm radius is 2.5 mm (5 mm aneurysm). To induce a current of 0.5 mA in platinum coils by a computer or TV, the minimum aneurysm radius is 8.6 mm (approximate 17 mm aneurysm). The minimum magnetic field is much larger than the flux densities produced by computer and TV, while the minimum aneurysm radius is much larger than most aneurysm sizes to levels produced by computer and TV. At present, the effects of electromagnetic radiation in our daily lives on intracranial coils do not produce a harmful reaction. Patients with coiled aneurysm are advised to avoid using hair dryers. This theory needs to be proved by further detailed complex investigations. Doctors should give patients additional instructions before the procedure, depending on this study. PMID:24976203

  18. The influence of motion and stress on optical fibers

    NASA Astrophysics Data System (ADS)

    Murphy, Jeremy D.; Hill, Gary J.; MacQueen, Phillip J.; Taylor, Trey; Soukup, Ian; Moreira, Walter; Cornell, Mark E.; Good, John; Anderson, Seth; Fuller, Lindsay; Lee, Hanshin; Kelz, Andreas; Rafal, Marc; Rafferty, Tom; Tuttle, Sarah; Vattiat, Brian

    2012-09-01

    We report on extensive testing carried out on the optical fibers for the VIRUS instrument. The primary result of this work explores how 10+ years of simulated wear on a VIRUS fiber bundle affects both transmission and focal ratio degradation (FRD) of the optical fibers. During the accelerated lifetime tests we continuously monitored the fibers for signs of FRD. We find that transient FRD events were common during the portions of the tests when motion was at telescope slew rates, but dropped to negligible levels during rates of motion typical for science observation. Tests of fiber transmission and FRD conducted both before and after the lifetime tests reveal that while transmission values do not change over the 10+ years of simulated wear, a clear increase in FRD is seen in all 18 fibers tested. This increase in FRD is likely due to microfractures that develop over time from repeated flexure of the fiber bundle, and stands in contrast to the transient FRD events that stem from localized stress and subsequent modal diffusion of light within the fibers. There was no measurable wavelength dependence on the increase in FRD over 350 nm to 600 nm. We also report on bend radius tests conducted on individual fibers and find the 266 μm VIRUS fibers to be immune to bending-induced FRD at bend radii of R 10 cm. Below this bend radius FRD increases slightly with decreasing radius. Lastly, we give details of a degradation seen in the fiber bundle currently deployed on the Mitchell Spectrograph (formally VIRUS-P) at McDonald Observatory. The degradation is shown to be caused by a localized shear in a select number of optical fibers that leads to an explosive form of FRD. In a few fibers, the overall transmission loss through the instrument can exceed 80%. These results are important for the VIRUS instrument, and for both current and proposed instruments that make use of optical fibers, particularly when the fibers are in continual motion during an observation, or experience repeated mechanical stress during their deployment.

  19. Numerical Investigation of Temperature Distribution in an Eroded Bend Pipe and Prediction of Erosion Reduced Thickness

    PubMed Central

    Zhu, Hongjun; Feng, Guang; Wang, Qijun

    2014-01-01

    Accurate prediction of erosion thickness is essential for pipe engineering. The objective of the present paper is to study the temperature distribution in an eroded bend pipe and find a new method to predict the erosion reduced thickness. Computational fluid dynamic (CFD) simulations with FLUENT software are carried out to investigate the temperature field. And effects of oil inlet rate, oil inlet temperature, and erosion reduced thickness are examined. The presence of erosion pit brings about the obvious fluctuation of temperature drop along the extrados of bend. And the minimum temperature drop presents at the most severe erosion point. Small inlet temperature or large inlet velocity can lead to small temperature drop, while shallow erosion pit causes great temperature drop. The dimensionless minimum temperature drop is analyzed and the fitting formula is obtained. Using the formula we can calculate the erosion reduced thickness, which is only needed to monitor the outer surface temperature of bend pipe. This new method can provide useful guidance for pipeline monitoring and replacement. PMID:24719576

  20. Interaction between bending and tension forces in bilayer membranes.

    PubMed Central

    Secomb, T W

    1988-01-01

    A theoretical analysis is presented of the bending mechanics of a membrane consisting of two tightly-coupled leaflets, each of which shears and bends readily but strongly resists area changes. Structures of this type have been proposed to model biological membranes such as red blood cell membrane. It is shown that when such a membrane is bent, anisotropic components of resultant membrane tension (shear stresses) are induced, even when the tension in each leaflet is isotropic. The induced shear stresses increase as the square of the membrane curvature, and become significant for moderate curvatures (when the radius of curvature is much larger than the distance between the leaflets). This effect has implications for the analysis of shape and deformation of freely suspended and flowing red blood cells. PMID:3224154

  1. Bending energy of buckled edge dislocations

    NASA Astrophysics Data System (ADS)

    Kupferman, Raz

    2017-12-01

    The study of elastic membranes carrying topological defects has a longstanding history, going back at least to the 1950s. When allowed to buckle in three-dimensional space, membranes with defects can totally relieve their in-plane strain, remaining with a bending energy, whose rigidity modulus is small compared to the stretching modulus. In this paper we study membranes with a single edge dislocation. We prove that the minimum bending energy associated with strain-free configurations diverges logarithmically with the size of the system.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sterndorff, M.J.; O`Brien, P.

    ROLF (Retrievable Offshore Loading Facility) has been proposed as an alternative offshore oil export tanker loading system for the North Sea. The system consists of a flexible riser ascending from the seabed in a lazy wave configuration to the bow of a dynamically positioned tanker. In order to supplant and support the numerical analyses performed to design the system, an extensive model test program was carried out in a 3D offshore basin at scale 1:50. A model riser with properties equivalent to the properties of the oil filled prototype riser installed in seawater was tested in several combinations of wavesmore » and current. During the tests the forces at the bow of the tanker and at the pipeline end manifold were measured together with the motions of the tanker and the riser. The riser motions were measured by means of a video based 3D motion monitoring system. Of special importance was accurate determination of the minimum bending radius for the riser. This was derived based on the measured riser motions. The results of the model tests were compared to numerical analyses by an MCS proprietary riser analysis program.« less

  3. Clinical application of CO2 laser in periodontal treatment

    NASA Astrophysics Data System (ADS)

    Hayase, Yasuhiro

    1994-09-01

    CO2 lasers in particular are expected to have many dental applications because the CO2 laser beam exhibits strong tissue transpirative actions, such as instant coagulation, carbonization, and vaporization, and because its wavelength at 10.6 micrometers is fully absorbed by water so that the ability to make precise incisions with a high degree of safety is excellent, without damaging the deep tissues. However, clinical application of the CO2 laser has been slowed since a fiber which can conduct the laser beam to the oral cavity has only recently developed. This new fiber is an extremely flexible fiber with a minimum bending radius of 20 mm and utilizes pulse wave modes that have improved the handling characteristics in the mouth, and this has enabled us to apply the CO2 laser to a variety of periodontal conditions. The aim of this study was to evaluate the effectiveness of CO2 lasers for the early treatment of inflammation and pain relief of acute periodontitis, curettage of periodontal pockets, healing after excision of gingiva, and early improvement of gingivitis.

  4. Flexible heartbeat sensor for wearable device.

    PubMed

    Kwak, Yeon Hwa; Kim, Wonhyo; Park, Kwang Bum; Kim, Kunnyun; Seo, Sungkyu

    2017-08-15

    We demonstrate a flexible strain-gauge sensor and its use in a wearable application for heart rate detection. This polymer-based strain-gauge sensor was fabricated using a double-sided fabrication method with polymer and metal, i.e., polyimide and nickel-chrome. The fabrication process for this strain-gauge sensor is compatible with the conventional flexible printed circuit board (FPCB) processes facilitating its commercialization. The fabricated sensor showed a linear relation for an applied normal force of more than 930 kPa, with a minimum detectable force of 6.25Pa. This sensor can also linearly detect a bending radius from 5mm to 100mm. It is a thin, flexible, compact, and inexpensive (for mass production) heart rate detection sensor that is highly sensitive compared to the established optical photoplethysmography (PPG) sensors. It can detect not only the timing of heart pulsation, but also the amplitude or shape of the pulse signal. The proposed strain-gauge sensor can be applicable to various applications for smart devices requiring heartbeat detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Minimum constitutive relation error based static identification of beams using force method

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Takewaki, Izuru

    2017-05-01

    A new static identification approach based on the minimum constitutive relation error (CRE) principle for beam structures is introduced. The exact stiffness and the exact bending moment are shown to make the CRE minimal for given displacements to beam damages. A two-step substitution algorithm—a force-method step for the bending moment and a constitutive-relation step for the stiffness—is developed and its convergence is rigorously derived. Identifiability is further discussed and the stiffness in the undeformed region is found to be unidentifiable. An extra set of static measurements is complemented to remedy the drawback. Convergence and robustness are finally verified through numerical examples.

  6. Airfoil profiles for minimum pressure drag at supersonic velocities -- general analysis with application to linearized supersonic flow

    NASA Technical Reports Server (NTRS)

    Chapman, Dean R

    1952-01-01

    A theoretical investigation is made of the airfoil profile for minimum pressure drag at zero lift in supersonic flow. In the first part of the report a general method is developed for calculating the profile having the least pressure drag for a given auxiliary condition, such as a given structural requirement or a given thickness ratio. The various structural requirements considered include bending strength, bending stiffness, torsional strength, and torsional stiffness. No assumption is made regarding the trailing-edge thickness; the optimum value is determined in the calculations as a function of the base pressure. To illustrate the general method, the optimum airfoil, defined as the airfoil having minimum pressure drag for a given auxiliary condition, is calculated in a second part of the report using the equations of linearized supersonic flow.

  7. Thermochronology, Uplift and Erosion at the Australian-Pacific Plate Boundary Alpine Fault restraining bend, New Zealand

    NASA Astrophysics Data System (ADS)

    Sagar, M. W.; Seward, D.; Norton, K. P.

    2016-12-01

    The 650 km-long Australian-Pacific plate boundary Alpine Fault is remarkably straight at a regional scale, except for a prominent S-shaped bend in the northern South Island. This is a restraining bend and has been referred to as the `Big Bend' due to similarities with the Transverse Ranges section of the San Andreas Fault. The Alpine Fault is the main source of seismic hazard in the South Island, yet there are no constraints on slip rates at the Big Bend. Furthermore, the timing of Big Bend development is poorly constrained to the Miocene. To address these issues we are using the fission-track (FT) and 40Ar/39Ar thermochronometers, together with basin-averaged cosmogenic nuclide 10Be concentrations to constrain the onset and rate of Neogene-Quaternary exhumation of the Australian and Pacific plates at the Big Bend. Exhumation rates at the Big Bend are expected to be greater than those for adjoining sections of the Alpine Fault due to locally enhanced shortening. Apatite FT ages and modelled thermal histories indicate that exhumation of the Australian Plate had begun by 13 Ma and 3 km of exhumation has occurred since that time, requiring a minimum exhumation rate of 0.2 mm/year. In contrast, on the Pacific Plate, zircon FT cooling ages suggest ≥7 km of exhumation in the past 2-3 Ma, corresponding to a minimum exhumation rate of 2 mm/year. Preliminary assessment of stream channel gradients either side of the Big Bend suggests equilibrium between uplift and erosion. The implication of this is that Quaternary erosion rates estimated from 10Be concentrations will approximate uplift rates. These uplift rates will help to better constrain the dip-slip rate of the Alpine Fault, which will allow the National Seismic Hazard Model to be updated.

  8. Characterization and dynamic charge dependent modeling of conducting polymer trilayer bending

    NASA Astrophysics Data System (ADS)

    Farajollahi, Meisam; Sassani, Farrokh; Naserifar, Naser; Fannir, Adelyne; Plesse, Cédric; Nguyen, Giao T. M.; Vidal, Frédéric; Madden, John D. W.

    2016-11-01

    Trilayer bending actuators are charge driven devices that have the ability to function in air and provide large mechanical amplification. The electronic and mechanical properties of these actuators are known to be functions of their charge state making prediction of their responses more difficult when they operate over their full range of deformation. In this work, a combination of state space representation and a two-dimensional RC transmission line model are used to implement a nonlinear time variant model for conducting polymer-based trilayer actuators. Electrical conductivity and Young’s modulus of electromechanically active PEDOT conducting polymer containing films as a function of applied voltage were measured and incorporated into the model. A 16% drop in Young’s modulus and 24 times increase in conductivity are observed by oxidizing the PEDOT. A closed form formulation for radius of curvature of trilayer actuators considering asymmetric and location dependent Young’s modulus and conductivity in the conducting polymer layers is derived and implemented in the model. The nonlinear model shows the capability to predict the radius of curvature as a function of time and position with reasonable consistency (within 4%). The formulation is useful for general trilayer configurations to calculate the radius of curvature as a function of time. The proposed electrochemical modeling approach may also be useful for modeling energy storage devices.

  9. Measurement of fracture toughness by nanoindentation methods: Recent advances and future challenges

    DOE PAGES

    Sebastiani, Marco; Johanns, K. E.; Herbert, Erik G.; ...

    2015-04-30

    In this study, we describe recent advances and developments for the measurement of fracture toughness at small scales by the use of nanoindentation-based methods including techniques based on micro-cantilever beam bending and micro-pillar splitting. A critical comparison of the techniques is made by testing a selected group of bulk and thin film materials. For pillar splitting, cohesive zone finite element simulations are used to validate a simple relationship between the critical load at failure, the pillar radius, and the fracture toughness for a range of material properties and coating/substrate combinations. The minimum pillar diameter required for nucleation and growth ofmore » a crack during indentation is also estimated. An analysis of pillar splitting for a film on a dissimilar substrate material shows that the critical load for splitting is relatively insensitive to the substrate compliance for a large range of material properties. Experimental results from a selected group of materials show good agreement between single cantilever and pillar splitting methods, while a discrepancy of ~25% is found between the pillar splitting technique and double-cantilever testing. It is concluded that both the micro-cantilever and pillar splitting techniques are valuable methods for micro-scale assessment of fracture toughness of brittle ceramics, provided the underlying assumptions can be validated. Although the pillar splitting method has some advantages because of the simplicity of sample preparation and testing, it is not applicable to most metals because their higher toughness prevents splitting, and in this case, micro-cantilever bend testing is preferred.« less

  10. Optimal impulsive time-fixed orbital rendezvous and interception with path constraints

    NASA Technical Reports Server (NTRS)

    Taur, D.-R.; Prussing, J. E.; Coverstone-Carroll, V.

    1990-01-01

    Minimum-fuel, impulsive, time-fixed solutions are obtained for the problem of orbital rendezvous and interception with interior path constraints. Transfers between coplanar circular orbits in an inverse-square gravitational field are considered, subject to a circular path constraint representing a minimum or maximum permissible orbital radius. Primer vector theory is extended to incorporate path constraints. The optimal number of impulses, their times and positions, and the presence of initial or final coasting arcs are determined. The existence of constraint boundary arcs and boundary points is investigated as well as the optimality of a class of singular arc solutions. To illustrate the complexities introduced by path constraints, an analysis is made of optimal rendezvous in field-free space subject to a minimum radius constraint.

  11. A Robust Distributed Multipoint Fiber Optic Gas Sensor System Based on AGC Amplifier Structure.

    PubMed

    Zhu, Cunguang; Wang, Rende; Tao, Xuechen; Wang, Guangwei; Wang, Pengpeng

    2016-07-28

    A harsh environment-oriented distributed multipoint fiber optic gas sensor system realized by automatic gain control (AGC) technology is proposed. To improve the photoelectric signal reliability, the electronic variable gain can be modified in real time by an AGC closed-loop feedback structure to compensate for optical transmission loss which is caused by the fiber bend loss or other reasons. The deviation of the system based on AGC structure is below 4.02% when photoelectric signal decays due to fiber bending loss for bending radius of 5 mm, which is 20 times lower than the ordinary differential system. In addition, the AGC circuit with the same electric parameters can keep the baseline intensity of signals in different channels of the distributed multipoint sensor system at the same level. This avoids repetitive calibrations and streamlines the installation process.

  12. Application of the three-dimensional aperiodic Fourier modal method using arc elements in curvilinear coordinates.

    PubMed

    Bucci, Davide; Martin, Bruno; Morand, Alain

    2012-03-01

    This paper deals with a full vectorial generalization of the aperiodic Fourier modal method (AFMM) in cylindrical coordinates. The goal is to predict some key characteristics such as the bending losses of waveguides having an arbitrary distribution of the transverse refractive index. After a description of the method, we compare the results of the cylindrical coordinates AFMM with simulations by the finite-difference time-domain (FDTD) method performed on an S-bend structure made by a 500 nm × 200 nm silicon core (n=3.48) in silica (n=1.44) at a wavelength λ=1550 nm, the bending radius varying from 0.5 up to 2 μm. The FDTD and AFMM results show differences comparable to the variations obtained by changing the parameters of the FDTD simulations.

  13. 14 CFR 91.119 - Minimum safe altitudes: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... persons, an altitude of 1,000 feet above the highest obstacle within a horizontal radius of 2,000 feet of... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Minimum safe altitudes: General. 91.119... § 91.119 Minimum safe altitudes: General. Except when necessary for takeoff or landing, no person may...

  14. 14 CFR 91.119 - Minimum safe altitudes: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... persons, an altitude of 1,000 feet above the highest obstacle within a horizontal radius of 2,000 feet of... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Minimum safe altitudes: General. 91.119... § 91.119 Minimum safe altitudes: General. Except when necessary for takeoff or landing, no person may...

  15. 49 CFR 179.220-6 - Thickness of plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... heads; P = Minimum required bursting pressure in psig; S = Minimum tensile strength of plate material in p.s.i. as prescribed in AAR Specifications for Tank Cars, appendix M, Table M1; t = Minimum... seamless heads; L = Main inside radius to which head is dished, measured on concave side in inches; P...

  16. Research of distributed-fiber-optic pressure sensor

    NASA Astrophysics Data System (ADS)

    Lu, Xiao Ming; Ren, Xin; Chen, Yu-bao; Che, Rensheng

    1991-08-01

    The paper discribed the principle and method of distributed fiber optic pressure sensor utilizing OTDR technique. The relativity of the microbend loss and bend radius of the multimode optical fiber is discussed ,and its experimental curve is given. In this paper ,a new type of OTDR measuring system using single-chip microcomputer is introduced as well

  17. Design and performances of trench-assisted G.657.A&B fiber optimized towards more space savings and miniaturization of components

    NASA Astrophysics Data System (ADS)

    Boivin, David; Bigot-Astruc, Marianne; De Montmorillon, Louis-Anne; Provost, Lionel; Sillard, Pierre; Bergonzo, Aurélien

    2009-02-01

    After many years of expectations, Fiber To The Home (FTTH) has finally become a reality with a wide number of projects already running worldwide and growing. Optical fiber is inevitably taking more and more importance in our environment, but for many good reasons, the space we are truly willing or able to allocate to it remains limited. These installation constrainsts have turned into additional requirements that need to be addressed for both active and passive components. If exceptional bending performances obtained without degrading backward compatibilities is a pre-requisite to deployment success,1 other parameters also need to be carefully taken into account when designing the ideal candidate for use in confined environments. Among them, one can cite the bend loss homogeneity over length and bending directions, the resistance to high optical power under bending and the tolerance to modal noise. In this paper, we present the design and performances of a bend insensitive fiber optimized towards more space savings and miniaturization of components. In addition to exceptional bending performances - lower than 0.1 dB/turn over a 5 mm bending radius -, its design guarantees impressive homogeneity levels and enhanced safety margins for high power applications while being still resistant to modal noise. Successfull cleave- and splice-ability results are finally presented, making this fiber ideally suited for use in components, pigtails and patchcords.

  18. 3D MHD Simulations of Waves Excited in an Accretion Disk by a Rotating Magnetized Star

    NASA Astrophysics Data System (ADS)

    Lovelace, R. V. E.; Romanova, M. M.

    2014-01-01

    We present results of global 3D MHD simulations of warp and density waves in accretion disks excited by a rotating star with a misaligned dipole magnetic field. A wide range of cases are considered. We find for example that if the star's magnetosphere corotates approximately with the inner disk, then a strong one-arm bending wave or warp forms. The warp corotates with the star and has a maximum amplitude (|zω|/r ~ 0.3) between the corotation radius and the radius of the vertical resonance. If the magnetosphere rotates more slowly than the inner disk, then a bending wave is excited at the disk-magnetosphere boundary, but it does not form a large-scale warp. In this case the angular rotation of the disk [Ω(r,z = 0)] has a maximum as a function of r so that there is an inner region where dΩ/dr > 0. In this region we observe radially trapped density waves in approximate agreement with the theoretical prediction of a Rossby wave instability in this region.

  19. Imperceptible and Ultraflexible p-Type Transistors and Macroelectronics Based on Carbon Nanotubes.

    PubMed

    Cao, Xuan; Cao, Yu; Zhou, Chongwu

    2016-01-26

    Flexible thin-film transistors based on semiconducting single-wall carbon nanotubes are promising for flexible digital circuits, artificial skins, radio frequency devices, active-matrix-based displays, and sensors due to the outstanding electrical properties and intrinsic mechanical strength of carbon nanotubes. Nevertheless, previous research effort only led to nanotube thin-film transistors with the smallest bending radius down to 1 mm. In this paper, we have realized the full potential of carbon nanotubes by making ultraflexible and imperceptible p-type transistors and circuits with a bending radius down to 40 μm. In addition, the resulted transistors show mobility up to 12.04 cm(2) V(-1) S(-1), high on-off ratio (∼10(6)), ultralight weight (<3 g/m(2)), and good mechanical robustness (accommodating severe crumpling and 67% compressive strain). Furthermore, the nanotube circuits can operate properly with 33% compressive strain. On the basis of the aforementioned features, our ultraflexible p-type nanotube transistors and circuits have great potential to work as indispensable components for ultraflexible complementary electronics.

  20. Bend-imitating models of abruptly bent electron waveguides

    NASA Astrophysics Data System (ADS)

    Vakhnenko, Oleksiy O.

    2011-07-01

    The fundamentals of bend-imitating approach regarding the one-electron quantum mechanics in abruptly bent ideal electron waveguides are given. In general, the theory allows to model each particular circularlike bend of a continuous quantum wire as some effective multichannel scatterer being pointlike in longitudinal direction. Its scattering ability is determined by the bending angle, mean bending radius, lateral coordinate (or coordinates) in wire cross section, time (or electronic energy), and possibly by the applied magnetic field. In an equivalent formulation, the theory gives rise to rather simple matching rules for the electron wave function and its longitudinal derivative affecting only the straight parts of a wire and thereby permitting to bypass a detailed quantum mechanical consideration of elbow domains. The proposed technique is applicable for the analytical investigation of spectral and transport electronic properties related to the ideal abruptly bent 3D wirelike structures of fixed cross section and is adaptable to the 2D wirelike structures as well as to the wirelike structures subjected to the magnetic field perpendicular to the plane of wire bending. In the framework of bend-imitating approach, the investigation of electron scattering in a singly bent 2D quantum wire and a doubly bent 2D quantum wire with S-like bend has been made and the explicit dependences of transmission and reflection coefficients on geometrical parameters of respective structure as well as on electron energy have been obtained. The total suppression of mixing between the scattering channels of S-like bent quantum wire is predicted.

  1. Strain tolerance in technical Nb3Al superconductors

    NASA Astrophysics Data System (ADS)

    Banno, N.; Takeuchi, T.; Kitaguchi, H.; Tagawa, K.

    2006-10-01

    We observed crack formation in transformation-processed Nb3Al wires at room temperature, the wire being bent with a small clamp fixture with a curvature. The polished cross-section parallel to the longitudinal axis was observed, using a high power optical microscope or a field-emission scanning electron microscope. The bend strain limit for microcrack formation is found, changing the radius of the curvature of the clamp. The bend strain limit was found to be around 0.3% for standard Nb3Al wires. This corresponds to the irreversible tensile strain limit of the Ic characteristics determined with a 0.1 µV cm-1 criterion. Reduction of the barrier thickness should be avoided to keep to the bend strain limit. A new configuration of the Nb3Al wire is demonstrated to improve the bend strain limit. The filament is divided into segments in the transverse cross-section. The wire is fabricated by a double-stacking method. The bend strain limit is enhanced to about 0.85% for the wire surface; the equivalent strain of the outermost filament location is about 0.66%. A simple react and wind test for this wire was performed, where the wire experienced 0.86% bend strain. The degradation of Jc was found to be very small.

  2. Analytic description of the frictionally engaged in-plane bending process incremental swivel bending (ISB)

    NASA Astrophysics Data System (ADS)

    Frohn, Peter; Engel, Bernd; Groth, Sebastian

    2018-05-01

    Kinematic forming processes shape geometries by the process parameters to achieve a more universal process utilizations regarding geometric configurations. The kinematic forming process Incremental Swivel Bending (ISB) bends sheet metal strips or profiles in plane. The sequence for bending an arc increment is composed of the steps clamping, bending, force release and feed. The bending moment is frictionally engaged by two clamping units in a laterally adjustable bending pivot. A minimum clamping force hindering the material from slipping through the clamping units is a crucial criterion to achieve a well-defined incremental arc. Therefore, an analytic description of a singular bent increment is developed in this paper. The bending moment is calculated by the uniaxial stress distribution over the profiles' width depending on the bending pivot's position. By a Coulomb' based friction model, necessary clamping force is described in dependence of friction, offset, dimensions of the clamping tools and strip thickness as well as material parameters. Boundaries for the uniaxial stress calculation are given in dependence of friction, tools' dimensions and strip thickness. The results indicate that changing the bending pivot to an eccentric position significantly affects the process' bending moment and, hence, clamping force, which is given in dependence of yield stress and hardening exponent. FE simulations validate the model with satisfactory accordance.

  3. Optical bending sensor using distributed feedback solid state dye lasers on optical fiber.

    PubMed

    Kubota, Hiroyuki; Oomi, Soichiro; Yoshioka, Hiroaki; Watanabe, Hirofumi; Oki, Yuji

    2012-07-02

    Novel type of optical fiber sensor was proposed and demonstrated. The print-like fabrication technique fabricates multiple distributed feedback solid state dye lasers on a polymeric optical fiber (POF) with tapered coupling. This multi-active-sidecore structure was easily fabricated and provides multiple functions. Mounting the lasers on the same point of a multimode POF demonstrated a bending radius sensitivity of 20 m without any supports. Two axis directional sensing without cross talk was also confirmed. A more complicated mounting formation can demonstrate a twisted POF. The temperature property of the sensor was also studied, and elimination of the temperature influence was experimentally attained.

  4. Control of Flow Structure in Square Cross-Sectioned U Bend using Numerical Modeling

    NASA Astrophysics Data System (ADS)

    Yavuz, Mehmet Metin; Guden, Yigitcan

    2014-11-01

    Due to the curvature in U-bends, the flow development involves complex flow structures including Dean vortices and high levels of turbulence that are quite critical in considering noise problems and structural failure of the ducts. Computational fluid dynamic (CFD) models are developed using ANSYS Fluent to analyze and to control the flow structure in a square cross-sectioned U-bend with a radius of curvature Rc/D = 0.65. The predictions of velocity profiles on different angular positions of the U-bend are compared against the experimental results available in the literature and the previous numerical studies. The performances of different turbulence models are evaluated to propose the best numerical approach that has high accuracy with reduced computation time. The numerical results of the present study indicate improvements with respect to the previous numerical predictions and very good agreement with the available experimental results. In addition, a flow control technique is utilized to regulate the flow inside the bend. The elimination of Dean vortices along with significant reduction in turbulence levels in different cross flow planes are successfully achieved when the flow control technique is applied. The project is supported by Meteksan Defense Industries, Inc.

  5. Energy Balance for a Sonoluminescence Bubble Yields a Measure of Ionization Potential Lowering

    NASA Astrophysics Data System (ADS)

    Kappus, B.; Bataller, A.; Putterman, S. J.

    2013-12-01

    Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.

  6. Energy balance for a sonoluminescence bubble yields a measure of ionization potential lowering.

    PubMed

    Kappus, B; Bataller, A; Putterman, S J

    2013-12-06

    Application of energy conservation between input sound and the microplasma which forms at the moment of sonoluminescence places bounds on the process, whereby the gas is ionized. Detailed pulsed Mie scattering measurements of the radius versus time for a xenon bubble in sulfuric acid provide a complete characterization of the hydrodynamics and minimum radius. For a range of emission intensities, the blackbody spectrum emitted during collapse matches the minimum bubble radius, implying opaque conditions are attained. This requires a degree of ionization >36%. Analysis reveals only 2.1±0.6  eV/atom of energy available during light emission. In order to unbind enough charge, collective processes must therefore reduce the ionization potential by at least 75%. We interpret this as evidence that a phase transition to a highly ionized plasma is occurring during sonoluminescence.

  7. Minimum wear tube support hole design

    DOEpatents

    Glatthorn, Raymond H.

    1986-01-01

    A minimum-wear through-bore (16) is defined within a heat exchanger tube support plate (14) so as to have an hourglass configuration as determined by means of a constant radiused surface curvature (18) as defined by means of an external radius (R3), wherein the surface (18) extends between the upper surface (20) and lower surface (22) of the tube support plate (14). When a heat exchange tube (12) is disposed within the tube support plate (14) so as to pass through the through-bore (16), the heat exchange tube (12) is always in contact with a smoothly curved or radiused portion of the through-bore surface (16) whereby unacceptably excessive wear upon the heat exchange tube (12), as normally developed by means of sharp edges, lands, ridges, or the like conventionally part of the tube support plates, is eliminated or substantially reduced.

  8. Analysis of an x-ray mirror made from piezoelectric bimorph

    NASA Astrophysics Data System (ADS)

    Zhang, Yao; Li, Ming; Tang, Shanzhi; Gao, Junxiang; Zhang, Weiwei; Zhu, Peiping

    2017-07-01

    Theoretical analysis of the mechanical behavior of an x-ray mirror made from piezoelectric bimorph is presented. A complete two-dimensional relationship between the radius of curvature of the mirror and the applied voltage is derived. The accuracy of this relationship is studied by comparing the figures calculated by the relationship and Finite Element Analysis. The influences of several critical parameters in the relationship on the radius of curvature are analyzed. It is found that piezoelectric coefficient d31 is the main material property parameter that dominates the radius of curvature, and that the optimal thickness of PZT plate corresponding to largest bending range is 2.5 times of that of faceplate. It is demonstrated that the relationship is helpful for us to complete the primary design of the x-ray mirror made from piezoelectric bimorph.

  9. Numerical and experimental investigation of the bending response of thin-walled composite cylinders

    NASA Technical Reports Server (NTRS)

    Fuchs, J. P.; Hyer, M. W.; Starnes, J. H., Jr.

    1993-01-01

    A numerical and experimental investigation of the bending behavior of six eight-ply graphite-epoxy circular cylinders is presented. Bending is induced by applying a known end-rotation to each end of the cylinders, analogous to a beam in bending. The cylinders have a nominal radius of 6 inches, a length-to-radius ratio of 2 and 5, and a radius-to-thickness ratio of approximately 160. A (+/- 45/0/90)S quasi-isotropic layup and two orthotropic layups, (+/- 45/0 sub 2)S and (+/- 45/90 sub 2)S, are studied. A geometrically nonlinear special-purpose analysis, based on Donnell's nonlinear shell equations, is developed to study the prebuckling responses and gain insight into the effects of non-ideal boundary conditions and initial geometric imperfections. A geometrically nonlinear finite element analysis is utilized to compare with the prebuckling solutions of the special-purpose analysis and to study the buckling and post buckling responses of both geometrically perfect and imperfect cylinders. The imperfect cylinder geometries are represented by an analytical approximation of the measured shape imperfections. Extensive experimental data are obtained from quasi-static tests of the cylinders using a test fixture specifically designed for the present investigation. A description of the test fixture is included. The experimental data are compared to predictions for both perfect and imperfect cylinder geometries. Prebuckling results are presented in the form of displacement and strain profiles. Buckling end-rotations, moments, and strains are reported, and predicted mode shapes are presented. Observed and predicted moment vs. end-rotation relations, deflection patterns, and strain profiles are illustrated for the post buckling responses. It is found that a geometrically nonlinear boundary layer behavior characterizes the prebuckling responses. The boundary layer behavior is sensitive to laminate orthotropy, cylinder geometry, initial geometric imperfections, applied end-rotation, and non-ideal boundary conditions. Buckling end-rotations, strains, and moments are influenced by laminate orthotropy and initial geometric imperfections. Measured buckling results correlate well with predictions for the geometrically imperfect specimens. The postbuckling analyses predict equilibrium paths with a number of scallop-shaped branches that correspond to unique deflection patterns. The observed postbuckling deflection patterns and measured strain profiles show striking similarities to the predictions in some cases. Ultimate failure of the cylinders is attributed to an interlaminar shear failure mode along the nodal lines of the postbuckling deflection patterns.

  10. The biomechanics of human ribs: material and structural properties from dynamic tension and bending tests.

    PubMed

    Kemper, Andrew R; McNally, Craig; Pullins, Clayton A; Freeman, Laura J; Duma, Stefan M; Rouhana, Stephen M

    2007-10-01

    The purpose of this study was to quantify both the tensile material properties and structural response of human ribs in order to determine which variables contribute to regional variation in the strength of human ribs. This was done by performing 94 matched tests on human rib specimens; 46 tension coupon tests, 48 three-point bending tests. Contralateral matched specimens were dissected from anterior and lateral regions of ribs 4 through 7 of six male fresh frozen post mortem human subjects ranging from 42 to 81 years of age. Tension coupons were taken from one side of the thorax, while three-point bending specimens were taken from the opposite side as the tension coupons at corresponding anatomical locations. The results of the tension coupon testing showed that there were no significant differences with respect to region or rib level: ultimate stress (p=0.90; p=0.53), ultimate strain (p=0.49; p=0.86), or modulus (p=0.72; p=0.81). In contrast, lateral three-point bending specimens were found to have a significantly higher peak bending moment (p<0.01), peak strain (p=0.03), modulus (p=0.05), and stiffness (p<0.01) than anterior specimens. The lateral three-point bending specimens also had a significantly larger area moment of inertia (p<0.01), larger distance to the neutral axis (p<0.01), smaller ratio of distance to the neutral axis to area moment of inertia (p<0.01), larger cortical bone area (p<0.01), and larger radius of gyration (p<0.01) than the anterior specimens. In addition, the peak moment (Ant p=0.20; Lat p=0.02), peak strain (Ant p=0.05; Lat p=0.15), and stiffness (Ant p<0.01; Lat p<0.01) were found to vary significantly with respect to rib level. Similar to anatomical region, the changes in the structural response with respect to rib level were also accompanied by significant changes in geometry. For anterior specimens, distance to the neutral axis (p<0.01), ratio of the distance to the neutral axis to area moment of inertia (p=0.02) and radius of gyration (p=0.04) were found to be significantly different with respect to rib level. For lateral specimens, the area moment of inertia (p<0.01), distance to the neutral axis (p<0.01), ratio of the distance to the neutral axis to area moment of inertia (p<0.01), the cortical bone area (p=0.01), and radius of gyration (p=0.03) were found to be significantly different with respect to rib level. These results clearly illustrate that there is variation in the structural response of human ribs with respect to anatomical region and rib level and this variation is due to changes in local geometry of each rib while the material properties remain constant.

  11. Artificial muscles with adjustable stiffness

    NASA Astrophysics Data System (ADS)

    Mutlu, Rahim; Alici, Gursel

    2010-04-01

    This paper reports on a stiffness enhancement methodology based on using a suitably designed contact surface with which cantilevered-type conducting polymer bending actuators are in contact during operation. The contact surface constrains the bending behaviour of the actuators. Depending on the topology of the contact surface, the resistance of the polymer actuators to deformation, i.e. stiffness, is varied. As opposed to their predecessors, these polymer actuators operate in air. Finite element analysis and modelling are used to quantify the effect of the contact surface on the effective stiffness of a trilayer cantilevered beam, which represents a one-end-free, the-other-end-fixed polypyrrole (PPy) conducting polymer actuator under a uniformly distributed load. After demonstrating the feasibility of the adjustable stiffness concept, experiments were conducted to determine the stiffness of bending-type conducting polymer actuators in contact with a range (20-40 mm in radius) of circular contact surfaces. The numerical and experimental results presented demonstrate that the stiffness of the actuators can be varied using a suitably profiled contact surface. The larger the radius of the contact surface is, the higher is the stiffness of the polymer actuators. The outcomes of this study suggest that, although the stiffness of the artificial muscles considered in this study is constant for a given geometric size, and electrical and chemical operation conditions, it can be changed in a nonlinear fashion to suit the stiffness requirement of a considered application. The stiffness enhancement methodology can be extended to other ionic-type conducting polymer actuators.

  12. A simple analytical thermo-mechanical model for liquid crystal elastomer bilayer structures

    NASA Astrophysics Data System (ADS)

    Cui, Yun; Wang, Chengjun; Sim, Kyoseung; Chen, Jin; Li, Yuhang; Xing, Yufeng; Yu, Cunjiang; Song, Jizhou

    2018-02-01

    The bilayer structure consisting of thermal-responsive liquid crystal elastomers (LCEs) and other polymer materials with stretchable heaters has attracted much attention in applications of soft actuators and soft robots due to its ability to generate large deformations when subjected to heat stimuli. A simple analytical thermo-mechanical model, accounting for the non-uniform feature of the temperature/strain distribution along the thickness direction, is established for this type of bilayer structure. The analytical predictions of the temperature and bending curvature radius agree well with finite element analysis and experiments. The influences of the LCE thickness and the heat generation power on the bending deformation of the bilayer structure are fully investigated. It is shown that a thinner LCE layer and a higher heat generation power could yield more bending deformation. These results may help the design of soft actuators and soft robots involving thermal responsive LCEs.

  13. Effects of Bank Revetment on Sacramento River, California

    Treesearch

    Michael D. Harvey; Chester C. Watson

    1989-01-01

    Twelve low radius of curvature bends, half of which were rivetted, were studied in the Butte Basin reach of Sacramento River, California, to determine whether bank revetment deleteriously affected salmonid habitat. At low discharge (128.6 cubic meters/s) it was demonstrated that revetment does not cause channel narrowing or deepening, nor does it prevent re-entrainment...

  14. Meanderbelt Dynamics of the Sacramento River, California

    Treesearch

    Michael D. Harvey

    1989-01-01

    A 160 km-long reach of Sacramento River was studied with the objective of predicting future changes in channel planform and their effects on water-surface elevations. Planform data were used to develop regression relationships between bend radius of curvature (Rc) and both short-term (5 years) and long term (90 years) lateral migration rates (MR) and migration...

  15. Imperfection sensitivity of pressured buckling of biopolymer spherical shells

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2016-06-01

    Imperfection sensitivity is essential for mechanical behavior of biopolymer shells [such as ultrasound contrast agents (UCAs) and spherical viruses] characterized by high geometric heterogeneity. In this work, an imperfection sensitivity analysis is conducted based on a refined shell model recently developed for spherical biopolymer shells of high structural heterogeneity and thickness nonuniformity. The influence of related parameters (including the ratio of radius to average shell thickness, the ratio of transverse shear modulus to in-plane shear modulus, and the ratio of effective bending thickness to average shell thickness) on imperfection sensitivity is examined for pressured buckling. Our results show that the ratio of effective bending thickness to average shell thickness has a major effect on the imperfection sensitivity, while the effect of the ratio of transverse shear modulus to in-plane shear modulus is usually negligible. For example, with physically realistic parameters for typical imperfect spherical biopolymer shells, the present model predicts that actual maximum external pressure could be reduced to as low as 60% of that of a perfect UCA spherical shell or 55%-65% of that of a perfect spherical virus shell, respectively. The moderate imperfection sensitivity of spherical biopolymer shells with physically realistic imperfection is largely attributed to the fact that biopolymer shells are relatively thicker (defined by smaller radius-to-thickness ratio) and therefore practically realistic imperfection amplitude normalized by thickness is very small as compared to that of classical elastic thin shells which have much larger radius-to-thickness ratio.

  16. Numerical analysis of lasing characteristics in highly bend-compensated large-mode-area ytterbium-doped double-clad leakage channel fibers.

    PubMed

    Thavasi Raja, G; Halder, Raktim; Varshney, S K

    2015-12-10

    The bend-induced mode-area reduction and thermal effects are vital factors that affect the power scaling of fiber lasers. Recently, bend-compensated large-mode-area double-clad modified hybrid leakage channel fiber (M-HLCF) has been reported with a mode area greater than 1000  μm, while sustaining the single-mode behavior at 1064 nm for high-temperature environments. In this work, the lasing characteristics of a newly designed ytterbium-doped double-clad M-HLCF (YDMHLCF) have been numerically investigated for strongly pumped conditions. The doped region size is optimally found through simulations, equivalent to the size of core diameter ∼38  μm in order to achieve maximum conversion efficiency for the bent and straight cases. Numerical simulations further confirm that a 2 m long YDMHLCF exhibits slope efficiency of 78% and conversion efficiency of 79% for the straight case and also almost the same for the practical bending radius of 7.5 cm when pumped with a 975 nm laser source.

  17. Reliability Based Geometric Design of Horizontal Circular Curves

    NASA Astrophysics Data System (ADS)

    Rajbongshi, Pabitra; Kalita, Kuldeep

    2018-06-01

    Geometric design of horizontal circular curve primarily involves with radius of the curve and stopping sight distance at the curve section. Minimum radius is decided based on lateral thrust exerted on the vehicles and the minimum stopping sight distance is provided to maintain the safety in longitudinal direction of vehicles. Available sight distance at site can be regulated by changing the radius and middle ordinate at the curve section. Both radius and sight distance depend on design speed. Speed of vehicles at any road section is a variable parameter and therefore, normally the 98th percentile speed is taken as the design speed. This work presents a probabilistic approach for evaluating stopping sight distance, considering the variability of all input parameters of sight distance. It is observed that the 98th percentile sight distance value is much lower than the sight distance corresponding to 98th percentile speed. The distribution of sight distance parameter is also studied and found to follow a lognormal distribution. Finally, the reliability based design charts are presented for both plain and hill regions, and considering the effect of lateral thrust.

  18. A study on plastic wrinkling in thin-walled tube bending via an energy-based wrinkling prediction model

    NASA Astrophysics Data System (ADS)

    Li, H; Yang, H; Zhan, M

    2009-04-01

    Thin-walled tube bending is an advanced technology for producing precision bent tube parts in aerospace, aviation and automobiles, etc. With increasing demands of bending tubes with a larger tube diameter and a smaller bending radius, wrinkling instability is a critical issue to be solved urgently for improving the bending limit and forming quality in this process. In this study, by using the energy principle, combined with analytical and finite element (FE) numerical methods, an energy-based wrinkling prediction model for thin-walled tube bending is developed. A segment shell model is proposed to consider the critical wrinkling region, which captures the deformation features of the tube bending process. The dissipation energy created by the reaction forces at the tube-dies interface for restraining the compressive instability is also included in the prediction model, which can be numerically calculated via FE simulation. The validation of the model is performed and its physical significance is evaluated from various aspects. Then the plastic wrinkling behaviors in thin-walled tube bending are addressed. From the energy viewpoint, the effect of the basic parameters including the geometrical and material parameters on the onset of wrinkling is identified. In particular, the influence of multi-tools constraints such as clearance and friction at various interfaces on the wrinkling instability is obtained. The study provides instructive understanding of the plastic wrinkling instability and the model may be suitable for the wrinkling prediction of a doubly-curved shell in the complex forming process with contact conditions.

  19. Compression-bending of multi-component semi-rigid columns in response to axial loads and conjugate reciprocal extension-prediction of mechanical behaviours and implications for structural design.

    PubMed

    Lau, Ernest W

    2013-01-01

    The mathematical modelling of column buckling or beam bending under an axial or transverse load is well established. However, the existent models generally assume a high degree of symmetry in the structure of the column and minor longitudinal and transverse displacements. The situation when the column is made of several components with different mechanical properties asymmetrically distributed in the transverse section, semi-rigid, and subjected to multiple axial loads with significant longitudinal and transverse displacements through compression and bending has not been well characterised. A more comprehensive theoretical model allowing for these possibilities and assuming a circular arc contour for the bend is developed, and used to establish the bending axes, balance between compression and bending, and equivalent stiffness of the column. In certain situations, such as with pull cable catheters commonly used for minimally invasive surgical procedures, the compression loads are applied via cables running through channels inside a semi-rigid column. The model predicts the mathematical relationships between the radius of curvature of the bend and the tension in and normal force exerted by such cables. Conjugate extension with reciprocal compression-bending is a special structural arrangement for a semi-rigid column such that extension of one segment is linked to compression-bending of another by inextensible cables running between them. Leads are cords containing insulated electrical conductor coil and cables between the heart muscle and cardiac implantable electronic devices. Leads can behave like pull cable catheters through differential component pulling, providing a possible mechanism for inside-out abrasion and conductor cable externalisation. Certain design features may predispose to this mode of structural failure. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Studying hardness, workability and minimum bending radius in selectively laser-sintered Ti–6Al–4V alloy samples

    NASA Astrophysics Data System (ADS)

    Galkina, N. V.; Nosova, Y. A.; Balyakin, A. V.

    2018-03-01

    This research is relevant as it tries to improve the mechanical and service performance of the Ti–6Al–4V titanium alloy obtained by selective laser sintering. For that purpose, sintered samples were annealed at 750 and 850°C for an hour. Sintered and annealed samples were tested for hardness, workability and microstructure. It was found that incomplete annealing of selectively laser-sintered Ti–6Al–4V samples results in an insignificant reduction in hardness and ductility. Sintered and incompletely annealed samples had a hardness of 32..33 HRC, which is lower than the value of annealed parts specified in standards. Complete annealing at temperature 850°C reduces the hardness to 25 HRC and ductility by 15...20%. Incomplete annealing lowers the ductility factor from 0.08 to 0.06. Complete annealing lowers that value to 0.025. Complete annealing probably results in the embrittlement of sintered samples, perhaps due to their oxidation and hydrogenation in the air. Optical metallography showed lateral fractures in both sintered and annealed samples, which might be the reason why they had lower hardness and ductility.

  1. Springback Mechanism Analysis and Experiments on Robotic Bending of Rectangular Orthodontic Archwire

    NASA Astrophysics Data System (ADS)

    Jiang, Jin-Gang; Han, Ying-Shuai; Zhang, Yong-De; Liu, Yan-Jv; Wang, Zhao; Liu, Yi

    2017-11-01

    Fixed-appliance technology is the most common and effective malocclusion orthodontic treatment method, and its key step is the bending of orthodontic archwire. The springback of archwire did not consider the movement of the stress-strain-neutral layer. To solve this problem, a springback calculation model for rectangular orthodontic archwire is proposed. A bending springback experiment is conducted using an orthodontic archwire bending springback measurement device. The springback experimental results show that the theoretical calculation results using the proposed model coincide better with the experimental testing results than when movement of the stress-strain-neutral layer was not considered. A bending experiment with rectangular orthodontic archwire is conducted using a robotic orthodontic archwire bending system. The patient expriment result show that the maximum and minimum error ratios of formed orthodontic archwire parameters are 22.46% and 10.23% without considering springback and are decreased to 11.35% and 6.13% using the proposed model. The proposed springback calculation model, which considers the movement of the stress-strain-neutral layer, greatly improves the orthodontic archwire bending precision.

  2. Stress intensity and displacement coefficients for radially cracked ring segments subject to three-point bending

    NASA Technical Reports Server (NTRS)

    Gross, B.; Srawley, J. E.

    1983-01-01

    The boudary collocation method was used to generate Mode 1 stress intensity and crack mouth displacement coefficients for internally and externally radially cracked ring segments (arc bend specimens) subjected to three point radial loading. Numerical results were obtained for ring segment outer to inner radius ratios (R sub o/ R sub i) ranging from 1.10 to 2.50 and crack length to width ratios (a/W) ranging from 0.1 to 0.8. Stress intensity and crack mouth displacement coefficients were found to depend on the ratios R sub o/R sub i and a/W as well as the included angle between the directions of the reaction forces.

  3. Splicing Ge-doped photonic crystal fibers using commercial fusion splicer with default discharge parameters.

    PubMed

    Wang, Yiping; Bartelt, Hartmut; Brueckner, Sven; Kobelke, Jens; Rothhardt, Manfred; Mörl, Klaus; Ecke, Wolfgang; Willsch, Reinhardt

    2008-05-12

    A novel technique for splicing a small core Ge-doped photonic crystal fiber (PCF) was demonstrated using a commercial fusion splicer with default discharge parameters for the splicing of two standard single mode fibers (SMFs). Additional discharge parameter adjustments are not required to splice the PCF to several different SMFs. A low splice loss of 1.0 approximately 1.4 dB is achieved. Low or no light reflection is expected at the splice joint due to the complete fusion of the two fiber ends. The splice joint has a high bending strength and does not break when the bending radius is decreased to 4 mm.

  4. Sex determination from the radius and ulna in a modern South African sample.

    PubMed

    Barrier, I L O; L'Abbé, E N

    2008-07-18

    With a large number of unidentified skeletal remains found in South Africa, the development of population specific osteometric standards is imperative. Forensic anthropologists need to have access to a variety of techniques to establish accurate demographic profiles from complete, fragmentary and/or commingled remains. No research has been done on the forearm of African samples, even though these bones have been shown to exhibit sexual dimorphism. The purpose of this paper is to develop discriminant function formulae to determine sex from the radius and ulna in a South African population. The sample consisted of 200 male and 200 female skeletons from the Pretoria Bone (University of Pretoria) and Raymond A. Dart (Witwatersrand University) collections. Sixteen standard anthropometric measurements were taken from the radius (9) and ulna (7) and subjected to stepwise and direct discriminant function analysis. Distal breadth, minimum mid-shaft diameter and maximum head diameter were the best discriminators of sex for the radius, while minimum mid-shaft diameter and olecranon breadth were selected for the ulna. Classification accuracy for the forearm ranged from 76 to 86%. The radius and ulna can be considered moderate discriminators for determining sex in a South African group. However, it is advised that these formulae are used in conjunction with additional methods to determine sex.

  5. Toward Self-Growing Soft Robots Inspired by Plant Roots and Based on Additive Manufacturing Technologies.

    PubMed

    Sadeghi, Ali; Mondini, Alessio; Mazzolai, Barbara

    2017-09-01

    In this article, we present a novel class of robots that are able to move by growing and building their own structure. In particular, taking inspiration by the growing abilities of plant roots, we designed and developed a plant root-like robot that creates its body through an additive manufacturing process. Each robotic root includes a tubular body, a growing head, and a sensorized tip that commands the robot behaviors. The growing head is a customized three-dimensional (3D) printer-like system that builds the tubular body of the root in the format of circular layers by fusing and depositing a thermoplastic material (i.e., polylactic acid [PLA] filament) at the tip level, thus obtaining movement by growing. A differential deposition of the material can create an asymmetry that results in curvature of the built structure, providing the possibility of root bending to follow or escape from a stimulus or to reach a desired point in space. Taking advantage of these characteristics, the robotic roots are able to move inside a medium by growing their body. In this article, we describe the design of the growing robot together with the modeling of the deposition process and the description of the implemented growing movement strategy. Experiments were performed in air and in an artificial medium to verify the functionalities and to evaluate the robot performance. The results showed that the robotic root, with a diameter of 50 mm, grows with a speed of up to 4 mm/min, overcoming medium pressure of up to 37 kPa (i.e., it is able to lift up to 6 kg) and bending with a minimum radius of 100 mm.

  6. Toward Self-Growing Soft Robots Inspired by Plant Roots and Based on Additive Manufacturing Technologies

    PubMed Central

    Mondini, Alessio

    2017-01-01

    Abstract In this article, we present a novel class of robots that are able to move by growing and building their own structure. In particular, taking inspiration by the growing abilities of plant roots, we designed and developed a plant root-like robot that creates its body through an additive manufacturing process. Each robotic root includes a tubular body, a growing head, and a sensorized tip that commands the robot behaviors. The growing head is a customized three-dimensional (3D) printer-like system that builds the tubular body of the root in the format of circular layers by fusing and depositing a thermoplastic material (i.e., polylactic acid [PLA] filament) at the tip level, thus obtaining movement by growing. A differential deposition of the material can create an asymmetry that results in curvature of the built structure, providing the possibility of root bending to follow or escape from a stimulus or to reach a desired point in space. Taking advantage of these characteristics, the robotic roots are able to move inside a medium by growing their body. In this article, we describe the design of the growing robot together with the modeling of the deposition process and the description of the implemented growing movement strategy. Experiments were performed in air and in an artificial medium to verify the functionalities and to evaluate the robot performance. The results showed that the robotic root, with a diameter of 50 mm, grows with a speed of up to 4 mm/min, overcoming medium pressure of up to 37 kPa (i.e., it is able to lift up to 6 kg) and bending with a minimum radius of 100 mm. PMID:29062628

  7. Three-dimensional flow structure and patterns of bed shear stress in an evolving compound meander bend

    USGS Publications Warehouse

    Engel, Frank; Rhoads, Bruce L.

    2016-01-01

    Compound meander bends with multiple lobes of maximum curvature are common in actively evolving lowland rivers. Interaction among spatial patterns of mean flow, turbulence, bed morphology, bank failures and channel migration in compound bends is poorly understood. In this paper, acoustic Doppler current profiler (ADCP) measurements of the three-dimensional (3D) flow velocities in a compound bend are examined to evaluate the influence of channel curvature and hydrologic variability on the structure of flow within the bend. Flow structure at various flow stages is related to changes in bed morphology over the study timeframe. Increases in local curvature within the upstream lobe of the bend reduce outer bank velocities at morphologically significant flows, creating a region that protects the bank from high momentum flow and high bed shear stresses. The dimensionless radius of curvature in the upstream lobe is one-third less than that of the downstream lobe, with average bank erosion rates less than half of the erosion rates for the downstream lobe. Higher bank erosion rates within the downstream lobe correspond to the shift in a core of high velocity and bed shear stresses toward the outer bank as flow moves through the two lobes. These erosion patterns provide a mechanism for continued migration of the downstream lobe in the near future. Bed material size distributions within the bend correspond to spatial patterns of bed shear stress magnitudes, indicating that bed material sorting within the bend is governed by bed shear stress. Results suggest that patterns of flow, sediment entrainment, and planform evolution in compound meander bends are more complex than in simple meander bends. Moreover, interactions among local influences on the flow, such as woody debris, local topographic steering, and locally high curvature, tend to cause compound bends to evolve toward increasing planform complexity over time rather than stable configurations.

  8. 77 FR 70362 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-26

    ..., 747-400F, 747SR, and 747SP series airplanes. This AD was prompted by reports of cracks in the main entry door number 1 upper main sill outer chord, along the bend radius of the chord on several airplanes...) repairs of the upper main sill outer chord of the left and right side main entry door number 1, repetitive...

  9. Pipeline design and thermal stress analysis of a 10kW@20K helium refrigerator

    NASA Astrophysics Data System (ADS)

    Xu, D.; Gong, L. H.; Xu, P.; Liu, H. M.; Li, L. F.; Xu, X. D.

    2014-01-01

    This paper is based on the devices and pipeline in the horizontal cryogenic cold-box of a 10kW@20K helium refrigerator developed by Technical Institute of Physics and Chemistry, Chinese Academy of Sciences. Four devices, six valves, supporting components and pipe lines are positioned in the cold-box. At operating state, the temperature of these devices and pipeline is far below the room temperature, and the lowest temperature is 14K. Due to different material and temperature, the shrinkage of devices and pipes is different. Finite element analysis software SOLIDWORKS SIMULATION was used to numerically simulate the thermal stress and deformation. The results show that the thermal stress of pipe A is a little large. So we should change the pipe route or use a bellows expansion joint. Bellows expansion joints should also be used in the pipes connected to three of the six valves to protect them by decreasing the deformation. At last, the effect of diameter, thickness and bend radius on the thermal stress was analyzed. The results show that the thermal stress of the pipes increases with the increase of the diameter and the decrease of the bend radius.

  10. Bending stresses and bistable behavior in Fe-rich amorphous wire

    NASA Astrophysics Data System (ADS)

    Vázquez, M.; Gómez Polo, C.; Velázquez, J.; Hernando, A.

    1994-05-01

    The aim of this work is to analyze for the first time the changes in magnetic properties of an Fe-rich amorphous wire (Fe77.5Si7.5B15) when it is submitted to bending stresses. Upon a reduction of the radius of curvature, Rc, of the wire (i.e., increasing bending stresses), the main changes in the magnetic properties are summarized as follows: (a) Bistable behavior disappears when reducing Rc below about 11 cm but it is again observed for Rc less than about 2.5 cm. This latter effect is also obtained for short wires (less than around 7 cm) which do not show spontaneous bistability. (b) For the case when bending stresses make bistability disappear, the susceptibility increases more than one order of magnitude with regards to the case of bistable wire, and parallel to the increase of susceptibility, a reduction of remanent magnetization is observed. The disappearance and later occurrence of the bistable behavior with increasing bending stresses are discussed in terms of the tensile and compressive stresses induced when the sample is bent. The possibility of having bistable wires with toroidal symmetry is also discussed owing to its interest for particular applications as pulse generators with reduced size and magnetic switches.

  11. Development of in-vessel components of the microfission chamber for ITER.

    PubMed

    Ishikawa, M; Kondoh, T; Ookawa, K; Fujita, K; Yamauchi, M; Hayakawa, A; Nishitani, T; Kusama, Y

    2010-10-01

    Microfission chambers (MFCs) will measure the total neutron source strength in ITER. The MFCs will be installed behind blanket modules in the vacuum vessel (VV). Triaxial mineral insulated (MI) cables will carry signals from the MFCs. The joint connecting triaxial MI cables in the VV must be considered because the MFCs and the MI cables will be installed separately at different times. Vacuum tight triaxial connector of the MI cable has been designed and a prototype has been constructed. Performance tests indicate that the connector can be applied to the ITER environment. A small bending-radius test of the MI cable indicates no observed damage at a curvature radius of 100 mm.

  12. Development of in-vessel components of the microfission chamber for ITER1

    PubMed Central

    Ishikawa, M.; Kondoh, T.; Ookawa, K.; Fujita, K.; Yamauchi, M.; Hayakawa, A.; Nishitani, T.; Kusama, Y.

    2010-01-01

    Microfission chambers (MFCs) will measure the total neutron source strength in ITER. The MFCs will be installed behind blanket modules in the vacuum vessel (VV). Triaxial mineral insulated (MI) cables will carry signals from the MFCs. The joint connecting triaxial MI cables in the VV must be considered because the MFCs and the MI cables will be installed separately at different times. Vacuum tight triaxial connector of the MI cable has been designed and a prototype has been constructed. Performance tests indicate that the connector can be applied to the ITER environment. A small bending-radius test of the MI cable indicates no observed damage at a curvature radius of 100 mm. PMID:21033834

  13. The three-dimensional structure of swirl-switching in bent pipe flow

    DOE PAGES

    Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis; ...

    2017-11-27

    Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less

  14. The three-dimensional structure of swirl-switching in bent pipe flow

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hufnagel, Lorenz; Canton, Jacopo; Örlü, Ramis

    Swirl-switching is a low-frequency oscillatory phenomenon which affects the Dean vortices in bent pipes and may cause fatigue in piping systems. Despite thirty years worth of research, the mechanism that causes these oscillations and the frequencies that characterise them remain unclear. In this paper, we show that a three-dimensional wave-like structure is responsible for the low-frequency switching of the dominant Dean vortex. The present study, performed via direct numerical simulation, focuses on the turbulent flow through amore » $$90^{\\circ }$$pipe bend preceded and followed by straight pipe segments. A pipe with curvature 0.3 (defined as ratio between pipe radius and bend radius) is studied for a bulk Reynolds number $$Re=11\\,700$$, corresponding to a friction Reynolds number $$Re_{\\unicode[STIX]{x1D70F}}\\approx 360$$. Synthetic turbulence is generated at the inflow section and used instead of the classical recycling method in order to avoid the interference between recycling and swirl-switching frequencies. The flow field is analysed by three-dimensional proper orthogonal decomposition (POD) which for the first time allows the identification of the source of swirl-switching: a wave-like structure that originates in the pipe bend. Contrary to some previous studies, the flow in the upstream pipe does not show any direct influence on the swirl-switching modes. Finally, our analysis further shows that a three-dimensional characterisation of the modes is crucial to understand the mechanism, and that reconstructions based on two-dimensional POD modes are incomplete.« less

  15. EFFECT OF RADIUS OF LOADING NOSE AND SUPPORTS IN SHORT BEAM TEST FIXTURE ON FRACTURE MODE AND INTERLAMINAR SHEAR STRENGTH OF GFRP AT 77 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nishimura, A.

    2008-03-03

    A short beam test is useful to evaluate interlaminar shear strength of glass fiber reinforced plastics, especially for material selection. However, effect of test fixture configuration on interlaminar shear strength has not been clarified. This paper describes dependence of fracture mode and interlaminar shear strength on the fixture radius using the same materials and procedure. In addition, global understanding of the role of the fixture is discussed. When small loading nose and supports are used for the tests, bending fracture or translaminar fracture happens and the interlaminar shear strength would become smaller. By adopting the large radius loading nose andmore » supports (6 mm radius is recommended), it is newly recognized that some stress concentration is able to be reduced, and the interlaminar fracture tends to occur and the other fracture modes will be suppressed. The interlaminar shear strength of 2.5 mm thick GFRP plate of G-10CR is evaluated as 130-150 MPa at 77 K.« less

  16. Optimum dimensions of power solenoids for magnetic suspension

    NASA Technical Reports Server (NTRS)

    Kaznacheyev, B. A.

    1985-01-01

    Design optimization of power solenoids for controllable and stabilizable magnetic suspensions with force compensation in a wind tunnel is shown. It is assumed that the model of a levitating body is a sphere of ferromagnetic material with constant magnetic permeability. This sphere, with a radius much smaller than its distance from the solenoid above, is to be maintained in position on the solenoid axis by balance of the vertical electromagnetic force and the force of gravitation. The necessary vertical (axial) force generated by the solenoid is expressed as a function of relevant system dimensions, solenoid design parameters, and physical properties of the body. Three families of curves are obtained which depict the solenoid power for a given force as a function of the solenoid length with either outside radius or inside radius as a variable parameter and as a function of the outside radius with inside radius as a variable parameter. The curves indicate the optimum solenoid length and outside radius, for minimum power, corresponding to a given outside radius and inside radius, respectively.

  17. An analytical study of double bend achromat lattice.

    PubMed

    Fakhri, Ali Akbar; Kant, Pradeep; Singh, Gurnam; Ghodke, A D

    2015-03-01

    In a double bend achromat, Chasman-Green (CG) lattice represents the basic structure for low emittance synchrotron radiation sources. In the basic structure of CG lattice single focussing quadrupole (QF) magnet is used to form an achromat. In this paper, this CG lattice is discussed and an analytical relation is presented, showing the limitation of basic CG lattice to provide the theoretical minimum beam emittance in achromatic condition. To satisfy theoretical minimum beam emittance parameters, achromat having two, three, and four quadrupole structures is presented. In this structure, different arrangements of QF and defocusing quadruple (QD) are used. An analytical approach assuming quadrupoles as thin lenses has been followed for studying these structures. A study of Indus-2 lattice in which QF-QD-QF configuration in the achromat part has been adopted is also presented.

  18. Pyrrole multimers and pyrrole-acetylene hydrogen bonded complexes studied in N2 and para-H2 matrixes using matrix isolation infrared spectroscopy and ab initio computations

    NASA Astrophysics Data System (ADS)

    Sarkar, Shubhra; Ramanathan, N.; Gopi, R.; Sundararajan, K.

    2017-12-01

    Hydrogen bonded interaction of pyrrole multimer and acetylene-pyrrole complexes were studied in N2 and p-H2 matrixes. DFT computations showed T-shaped geometry for the pyrrole dimer and cyclic complex for the trimer and tetramer were the most stable structures, stabilized by Nsbnd H⋯π interactions. The experimental vibrational wavenumbers observed in N2 and p-H2 matrixes for the pyrrole multimers were correlated with the computed wavenumbers. Computations performed at MP2/aug-cc-pVDZ level of theory showed that C2H2 and C4H5N forms 1:1 hydrogen-bonded complexes stabilized by Csbnd H⋯π interaction (Complex A), Nsbnd H⋯π interaction (Complex B) and π⋯π interaction (Complex C), where the former complex is the global minimum and latter two complexes were the first and second local minima, respectively. Experimentally, 1:1 C2H2sbnd C4H5N complexes A (global minimum) and B (first local minimum) were identified from the shifts in the Nsbnd H stretching, Nsbnd H bending, Csbnd H bending region of pyrrole and Csbnd H asymmetric stretching and bending region of C2H2 in N2 and p-H2 matrixes. Computations were also performed for the higher complexes and found two minima corresponding to the 1:2 C2H2sbnd C4H5N and three minima for the 2:1 C2H2sbnd C4H5N complexes. Experimentally the global minimum 1:2 and 2:1 C2H2sbnd C4H5N complexes were identified in N2 and p-H2 matrixes.

  19. Low-Temperature-Annealed Reduced Graphene Oxide-Polyaniline Nanocomposites for Supercapacitor Applications

    NASA Astrophysics Data System (ADS)

    Liao, Chen-Yu; Chien, Hung-Hua; Hao, Yu-Chuan; Chen, Chieh-Wen; Yu, Ing-Song; Chen, Jian-Zhang

    2018-04-01

    Screen-printed reduced graphene oxide (rGO)-polyaniline (PANI) nanocomposites with/without post-annealing were used as the electrode of a supercapacitor with a polyvinyl alcohol/H2SO4 quasi-solid-state gel electrolyte. Annealing can remove part of the ineffective organic binders and thus enhance the supercapacitive performance. However, too high an annealing temperature may damage PANI, thus reducing the pseudocapacitance. Annealing at 100°C for 10 min results in the best achieved areal capacitance of 102.73 mF/cm2, as evaluated by cyclic voltammetry (CV) under a potential scan rate of 2 mV/s. The capacitance retention rate is 88% after 1000 CV cycles under bending with a bending radius of 0.55 cm.

  20. Metacarpal geometry changes during Thoroughbred race training are compatible with sagittal-plane cantilever bending.

    PubMed

    Merritt, J S; Davies, H M S

    2010-11-01

    Bending of the equine metacarpal bones during locomotion is poorly understood. Cantilever bending, in particular, may influence the loading of the metacarpal bones and surrounding structures in unique ways. We hypothesised that increased amounts of sagittal-plane cantilever bending may govern changes to the shape of the metacarpal bones of Thoroughbred racehorses during training. We hypothesised that this type of bending would require a linear change to occur in the combined second moment of area of the bones for sagittal-plane bending (I) during race training. Six Thoroughbred racehorses were used, who had all completed at least 4 years of race training at a commercial stable. The approximate change in I that had occurred during race training was computed from radiographic measurements at the start and end of training using a simple model of bone shape. A significant (P < 0.001), approximately linear pattern of change in I was observed in each horse, with the maximum change occurring proximally and the minimum change occurring distally. The pattern of change in I was compatible with the hypothesis that sagittal-plane cantilever bending governed changes to the shape of the metacarpal bones during race training. © 2010 EVJ Ltd.

  1. Steering characteristic of an articulated bus under quasi steady maneuvering

    NASA Astrophysics Data System (ADS)

    Ubaidillah, Setiawan, Budi Agus; Aridharma, Airlangga Putra; Lenggana, Bhre Wangsa; Caesar, Bernardus Placenta Previo

    2018-02-01

    Articulated buses have been being preferred as public transportation modes due to their operational capacity. Therefore, passenger safety must be the priority of this public service vehicle. This research focused on the analytical approach of steering characteristics of an articulated bus when it maneuvered steadily. Such turning condition could be referred as a stability parameter of the bus for preliminary handling assessment. The analytical approach employed kinematics relationship between front and rear bodies as well as steering capabilities. The quasi steady model was developed to determine steering parameters such as turning radius, oversteer, and understeer. The mathematical model was useful for determining both coefficients of understeer and oversteer. The dimension of articulated bus followed a commonly used bus as utilized in Trans Jakarta busses. Based on the simulation, for one minimum center of the body, the turning radius was calculated about 8.8 m and 7.6 m at steady turning speed of 10 km/h. In neutral condition, the minimum road radius should be 6.5 m at 10 km/h and 6.9 m at 40 km/h. For two centers of the body and oversteer condition, the front body has the turning radius of 8.8 m, while, the rear body has the turning radius of 9.8 m at both turning speeds of 40 km/h. The other steering parameters were discussed accordingly.

  2. Large Deformation of an Elastic Rod with Structural Anisotropy Subjected to Fluid Flow

    NASA Astrophysics Data System (ADS)

    Hassani, Masoud; Mureithi, Njuki; Gosselin, Frederick

    2015-11-01

    In the present work, we seek to understand the fundamental mechanisms of three-dimensional reconfiguration of plants by studying the large deformation of a flexible rod in fluid flow. Flexible rods made of Polyurethane foam and reinforced with Nylon fibers are tested in a wind tunnel. The rods have bending-torsion coupling which induces a torsional deformation during asymmetric bending. A mathematical model is also developed by coupling the Kirchhoff rod theory with a semi-empirical drag formulation. Different alignments of the material frame with respect to the flow direction and a range of structural properties are considered to study their effect on the deformation of the flexible rod and its drag scaling. Results show that twisting causes the flexible rods to reorient and bend with the minimum bending rigidity. It is also found that the drag scaling of the rod in the large deformation regime is not affected by torsion. Finally, using a proper set of dimensionless numbers, the state of a bending and twisting rod is characterized as a beam undergoing a pure bending deformation.

  3. Biocompatibility of sol-gel-derived titania-silica coated intramedullary NiTi nails.

    PubMed

    Muhonen, V; Kujala, S; Vuotikka, A; Aäritalo, V; Peltola, T; Areva, S; Närhi, T; Tuukkanen, J

    2009-02-01

    We investigated bone response to sol-gel-derived titania-silica coated functional intramedullary NiTi nails that applied a continuous bending force. Nails 26 mm in length, either straight or with a radius of curvature of 28 or 15 mm, were implanted in the cooled martensite form from a proximal to distal direction into the medullary cavity of the right femur in 40 Sprague-Dawley rats. Body temperature restored the austenite form, causing the curved implants to generate a bending force on the bone. The femurs were examined after 24 weeks. Bone length measurements did not reveal any bowing or shortening of the bone in the experimental groups. The results from histomorphometry demonstrated that the stronger bending force, together with sol-gel surface treatment, resulted in more bone deposition around the implant and the formation of significantly less fibrous tissue. Straight intramedullary nails, even those with a titania-silica coating, were poorly attached when compared to the implants with a curved austenite structure.

  4. 60-nm-thick basic photonic components and Bragg gratings on the silicon-on-insulator platform.

    PubMed

    Zou, Zhi; Zhou, Linjie; Li, Xinwan; Chen, Jianping

    2015-08-10

    We demonstrate integrated basic photonic components and Bragg gratings using 60-nm-thick silicon-on-insulator strip waveguides. The ultra-thin waveguides exhibit a propagation loss of 0.61 dB/cm and a bending loss of approximately 0.015 dB/180° with a 30 μm bending radius (including two straight-bend waveguide junctions). Basic structures based on the ultra-thin waveguides, including micro-ring resonators, 1 × 2 MMI couplers, and Mach-Zehnder interferometers are realized. Upon thinning-down, the waveguide effective refractive index is reduced, making the fabrication of Bragg gratings possible using the standard 248-nm deep ultra-violet (DUV) photolithography process. The Bragg grating exhibits a stopband width of 1 nm and an extinction ratio of 35 dB, which is practically applicable as an optical filter or a delay line. The transmission spectrum can be thermally tuned via an integrated resistive micro-heater formed by a heavily doped silicon slab beside the waveguide.

  5. Flexible Film Bulk Acoustic Wave Filters toward Radiofrequency Wireless Communication.

    PubMed

    Jiang, Yuan; Zhao, Yuan; Zhang, Lin; Liu, Bohua; Li, Quanning; Zhang, Menglun; Pang, Wei

    2018-03-30

    This paper presents a flexible radiofrequency filter with a central frequency of 2.4 GHz based on film bulk acoustic wave resonators (FBARs). The flexible filter consists of five air-gap type FBARs, each comprised of an aluminum nitride piezoelectric thin film sandwiched between two thin-film electrodes. By transfer printing the inorganic film structure from a silicon wafer to an ultrathin polyimide substrate, high electrical performance and mechanical flexibility are achieved. The filter has a peak insertion loss of -1.14 dB, a 3 dB bandwidth of 107 MHz, and a temperature coefficient of frequency of -27 ppm °C -1 . The passband and roll-off characteristics of the flexible filter are comparable with silicon-based commercial products. No electrical performance degradation and mechanical failure occur under bending tests with a bending radius of 2.5 mm or after 100 bending cycles. The flexible FBAR filters are believed to be promising candidates for future flexible wireless communication systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Polymer loaded microemulsions: Changeover from finite size effects to interfacial interactions

    NASA Astrophysics Data System (ADS)

    Kuttich, B.; Ivanova, O.; Grillo, I.; Stühn, B.

    2016-10-01

    Form fluctuations of microemulsion droplets are observed in experiments using dielectric spectroscopy (DS) and neutron spin echo spectroscopy (NSE). Previous work on dioctyl sodium sulfosuccinate based water in oil microemulsions in the droplet phase has shown that adding a water soluble polymer (Polyethylene glycol M = 1500 g mol-1) modifies these fluctuations. While for small droplet sizes (water core radius rc < 37 Å) compared to the size of the polymer both methods consistently showed a reduction in the bending modulus of the surfactant shell as a result of polymer addition, dielectric spectroscopy suggests the opposite behaviour for large droplets. This observation is now confirmed by NSE experiments on large droplets. Structural changes due to polymer addition are qualitatively independent of droplet size. Dynamical properties, however, display a clear variation with the number of polymer chains per droplet, leading to the observed changes in the bending modulus. Furthermore, the contribution of structural and dynamical properties on the changes in bending modulus shifts in weight. With increasing droplet size, we initially find dominating finite size effects and a changeover to a system, where interactions between the confined polymer and the surfactant shell dominate the bending modulus.

  7. Bent channel design in buried Er3+/Yb3+ codoped phosphate glass waveguide fabricated by field-assisted annealing

    NASA Astrophysics Data System (ADS)

    Zhao, Ruitu; Wang, Mu; Chen, Baojie; Liu, Ke; Pun, Edwin Yue-Bun; Lin, Hai

    2011-04-01

    Bent waveguide structures (S-, U-, and F-bend) based on buried Er3+/Yb3+ codoped phosphate glass waveguide channel fabricated by field-assisted annealing have been designed to achieve high-gain C-band integrated amplification. Using a simulated-bend method, the optimal radius for the curved structure is derived to be 0.90 cm with loss coefficient of 0.02 dB/cm, as the substrate size is schemed to be 4×3 cm2. In the wavelength range of 1520 to 1575 nm, obvious gain enhancement for the bent structure waveguides is anticipated, and for the F-bend waveguide, the internal gain at 1534-nm wavelength is derived to be 41.61 dB, which is much higher than the value of 26.22 and 13.81 dB in the U- and S-bend waveguides, respectively, and over three times higher than that of the straight one. The simulation results indicate that the bent structure design is beneficial in obtaining high signal gain in buried Er3+/Yb3+ codoped phosphate glass waveguides, which lays the foundation for further design and fabrication of integrated devices.

  8. Measurement of Capillary Radius and Contact Angle within Porous Media.

    PubMed

    Ravi, Saitej; Dharmarajan, Ramanathan; Moghaddam, Saeed

    2015-12-01

    The pore radius (i.e., capillary radius) and contact angle determine the capillary pressure generated in a porous medium. The most common method to determine these two parameters is through measurement of the capillary pressure generated by a reference liquid (i.e., a liquid with near-zero contact angle) and a test liquid. The rate of rise technique, commonly used to determine the capillary pressure, results in significant uncertainties. In this study, we utilize a recently developed technique for independently measuring the capillary pressure and permeability to determine the equivalent minimum capillary radii and contact angle of water within micropillar wick structures. In this method, the experimentally measured dryout threshold of a wick structure at different wicking lengths is fit to Darcy's law to extract the maximum capillary pressure generated by the test liquid. The equivalent minimum capillary radii of different wick geometries are determined by measuring the maximum capillary pressures generated using n-hexane as the working fluid. It is found that the equivalent minimum capillary radius is dependent on the diameter of pillars and the spacing between pillars. The equivalent capillary radii of micropillar wicks determined using the new method are found to be up to 7 times greater than the current geometry-based first-order estimates. The contact angle subtended by water at the walls of the micropillars is determined by measuring the capillary pressure generated by water within the arrays and the measured capillary radii for the different geometries. This mean contact angle of water is determined to be 54.7°.

  9. The relationship of intravascular bubbles to bends at altitude

    NASA Technical Reports Server (NTRS)

    Krutz, R. W.; Dixon, G. A.; Olson, R. M.; Moore, A. A.

    1986-01-01

    In response to recent findings attesting to a correlation between intravehicular bubbling and decompression sickness at intermediate altitudes, an attempt was made to define a minimum pressure for a pressure suit which would obviate the need for prebreathing 100 percent oxygen prior to extravehicular activity (EVA). Fifty-seven male subjects were exposed to altitudes ranging from 16,000 to 30,000 ft in two separate protocols. The first was designed to determine a pressure at which no bends occurred if a crewmember were decompressed from a sea level space station pressure just prior to EVA without prebreathing 100 percent oxygen. The other study was designed to define an altitude and exercise regimen at which bends-susceptible and bends-resistant crewmembers could be separated. It is shown that the close association which exists between severe bubbling and bends at a pressure altitude of 4.3 psia (30,000 ft) decreases as pressure is increased and essentially disappears at pressures less than or equal to 7.8 psia (16,000 ft).

  10. Theoretical constraints on the properties of low-mass neutron stars from the equation of state of nuclear matter in the inner crust

    NASA Astrophysics Data System (ADS)

    Wen, Yong-Mei; Wen, De-Hua

    2017-06-01

    By employing four typical equation of states (EOSs) of nuclear matter in the inner crust, the properties of low-mass neutron stars are investigated theoretically. Based on the well-known fact that there is a big gap between the neutron stars and white dwarfs in the mass-radius sequence of compact stars, according to the mass-radius relations of the four adopted EOSs, we conclude that there is a rough forbidden region for the central density and stellar radius to form a compact star; that is, there is no compact star in nature having central density in the region from about 1012kgm-3 to 1017kgm-3 , and there is also no compact star having a radius in the region from about 400 km to 2000 km. Moreover, the properties of the low-mass neutron stars are also explored. It is shown that for a stable neutron star near the minimum mass point, the stellar size (with radius >200 km) is much larger than that of normal neutron stars, and there is a compact "core" concentrated at about 95% of the stellar mass in the inner core with a radius of about 13 km and density higher than the neutron-drip point (4.3 ×1014kgm-3) . This property totally differs from that of normal neutron stars and white dwarfs. Furthermore, the Keplerian period, the moment of inertia, and the surface gravitational redshift of the star near the minimum-mass point are also investigated.

  11. New Variational Formulations of Hybrid Stress Elements

    NASA Technical Reports Server (NTRS)

    Pian, T. H. H.; Sumihara, K.; Kang, D.

    1984-01-01

    In the variational formulations of finite elements by the Hu-Washizu and Hellinger-Reissner principles the stress equilibrium condition is maintained by the inclusion of internal displacements which function as the Lagrange multipliers for the constraints. These versions permit the use of natural coordinates and the relaxation of the equilibrium conditions and render considerable improvements in the assumed stress hybrid elements. These include the derivation of invariant hybrid elements which possess the ideal qualities such as minimum sensitivity to geometric distortions, minimum number of independent stress parameters, rank sufficient, and ability to represent constant strain states and bending moments. Another application is the formulation of semiLoof thin shell elements which can yield excellent results for many severe test cases because the rigid body nodes, the momentless membrane strains, and the inextensional bending modes are all represented.

  12. Variations in lithospheric thickness on Venus

    NASA Technical Reports Server (NTRS)

    Johnson, C. L.; Sandwell, David T.

    1992-01-01

    Recent analyses of Magellan data have indicated many regions exhibiting topograhic flexure. On Venus, flexure is associated predominantly with coronae and the chasmata with Aphrodite Terra. Modeling of these flexural signatures allows the elastic and mechanical thickness of the lithosphere to be estimated. In areas where the lithosphere is flexed beyond its elastic limit the saturation moment provides information on the strength of the lithosphere. Modeling of 12 flexural features on Venus has indicated lithospheric thicknesses comparable with terrestrial values. This has important implications for the venusian heat budget. Flexure of a thin elastic plate due simultaneously to a line load on a continuous plate and a bending moment applied to the end of a broken plate is considered. The mean radius and regional topographic gradient are also included in the model. Features with a large radius of curvature were selected so that a two-dimensional approximation could be used. Comparisons with an axisymmetric model were made for some features to check the validity of the two-dimensional assumption. The best-fit elastic thickness was found for each profile crossing a given flexural feature. In addition, the surface stress and bending moment at the first zero crossing of each profile were also calculated. Flexural amplitudes and elastic thicknesses obtained for 12 features vary significantly. Three examples of the model fitting procedures are discussed.

  13. Compact microchannel system

    DOEpatents

    Griffiths, Stewart

    2003-09-30

    The present invention provides compact geometries for the layout of microchannel columns through the use of turns and straight channel segments. These compact geometries permit the use of long separation or reaction columns on a small microchannel substrate or, equivalently, permit columns of a fixed length to occupy a smaller substrate area. The new geometries are based in part on mathematical analyses that provide the minimum turn radius for which column performance in not degraded. In particular, we find that straight channel segments of sufficient length reduce the required minimum turn radius, enabling compact channel layout when turns and straight segments are combined. The compact geometries are obtained by using turns and straight segments in overlapped or nested arrangements to form pleated or coiled columns.

  14. Photon orbits and thermodynamic phase transition of d -dimensional charged AdS black holes

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liu, Yu-Xiao

    2018-05-01

    We study the relationship between the null geodesics and thermodynamic phase transition for the charged AdS black hole. In the reduced parameter space, we find that there exist nonmonotonic behaviors of the photon sphere radius and the minimum impact parameter for the pressure below its critical value. The study also shows that the changes of the photon sphere radius and the minimum impact parameter can serve as order parameters for the small-large black hole phase transition. In particular, these changes have an universal exponent of 1/2 near the critical point for any dimension d of spacetime. These results imply that there may exist universal critical behavior of gravity near the thermodynamic critical point of the black hole system.

  15. Theoretical and experimental study of bent fully aperiodic large-pitch fibers for enhancing the high-order modes delocalization

    NASA Astrophysics Data System (ADS)

    du Jeu, Rémi; Dauliat, Romain; Darwich, Dia; Auguste, Jean-Louis; Benoît, Aurélien; Leconte, Baptiste; Malleville, Marie-Alicia; Jamier, Raphaël.; Schuster, Kay; Roy, Philippe

    2018-02-01

    The power scaling of fiber lasers and amplifiers has triggered an extensive development of large-mode area fibers among which the most promising are the distributed mode filtering fibers and the large-pitch fibers. These structures enable for an effective higher-order modes delocalization and subsequently a singlemode emission. An interesting alternative consists in using the fully-aperiodic large-pitch fibers, into which the standard air-silica photonic crystal cladding is replaced by an aperiodic pattern made of solid low-index inclusions cladding. However, in such a structure, the core and the background cladding material surrounding it must have rigorously the same refractive index. Current synthesis processes and measurement techniques offer respectively a maximum resolution of 5×10-4 and 1×10-4 while the indexmatching must be as precise as 1×10-5 . Lately a gain material with a refractive index 1.5×10-4 higher than that of the background cladding material was fabricated, thus re-confining the first higher-order modes in the core. A numerical study is carried out on the benefit of bending such fully-aperiodic fiber to counteract this phenomenon. Optimized bending axis and radius have been determined. Experiments are done in a laser cavity operating at 1030 nm using an 88cm-long 51μm core diameter ytterbium-doped fiber. Results demonstrate an improvement of the M2 from 1.7 when the fiber is kept straight to 1.2 when it is bent with a 100 to 60 cm bend radius. These primary results are promising for future power scaling.

  16. Localized bulging in an inflated cylindrical tube of arbitrary thickness - the effect of bending stiffness

    NASA Astrophysics Data System (ADS)

    Fu, Y. B.; Liu, J. L.; Francisco, G. S.

    2016-05-01

    We study localized bulging of a cylindrical hyperelastic tube of arbitrary thickness when it is subjected to the combined action of inflation and axial extension. It is shown that with the internal pressure P and resultant axial force F viewed as functions of the azimuthal stretch on the inner surface and the axial stretch, the bifurcation condition for the initiation of a localized bulge is that the Jacobian of the vector function (P , F) should vanish. This is established using the dynamical systems theory by first computing the eigenvalues of a certain eigenvalue problem governing incremental deformations, and then deriving the bifurcation condition explicitly. The bifurcation condition is valid for all loading conditions, and in the special case of fixed resultant axial force it gives the expected result that the initiation pressure for localized bulging is precisely the maximum pressure in uniform inflation. It is shown that even if localized bulging cannot take place when the axial force is fixed, it is still possible if the axial stretch is fixed instead. The explicit bifurcation condition also provides a means to quantify precisely the effect of bending stiffness on the initiation pressure. It is shown that the (approximate) membrane theory gives good predictions for the initiation pressure, with a relative error less than 5%, for thickness/radius ratios up to 0.67. A two-term asymptotic bifurcation condition for localized bulging that incorporates the effect of bending stiffness is proposed, and is shown to be capable of giving extremely accurate predictions for the initiation pressure for thickness/radius ratios up to as large as 1.2.

  17. Optical waveguide device with an adiabatically-varying width

    DOEpatents

    Watts,; Michael R. , Nielson; Gregory, N [Albuquerque, NM

    2011-05-10

    Optical waveguide devices are disclosed which utilize an optical waveguide having a waveguide bend therein with a width that varies adiabatically between a minimum value and a maximum value of the width. One or more connecting members can be attached to the waveguide bend near the maximum value of the width thereof to support the waveguide bend or to supply electrical power to an impurity-doped region located within the waveguide bend near the maximum value of the width. The impurity-doped region can form an electrical heater or a semiconductor junction which can be activated with a voltage to provide a variable optical path length in the optical waveguide. The optical waveguide devices can be used to form a tunable interferometer (e.g. a Mach-Zehnder interferometer) which can be used for optical modulation or switching. The optical waveguide devices can also be used to form an optical delay line.

  18. Theoretical parametric study of the relative advantages of winglets and wing-tip extensions

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.; Riebe, G. D.; Fulton, C. L.

    1977-01-01

    It was found that for identical increases in bending moment, a winglet provides a greater gain in induced efficiency than a tip extension. Winglet toe-in angle allows design trades between efficiency and root moment. A winglet showed the greatest benefit when the wing loads were heavy near the tip. Washout diminished the benefit of either tip modification, and the gain in induced efficiency became a function of lift coefficient; heavy wing loadings obtained the greatest benefit from a winglet, and low speed performance was enhanced even more than cruise performance. Both induced efficiency and bending moment increased with winglet length and outward cant. The benefit of a winglet relative to a tip extension was greatest for a nearly vertical winglet. Root bending moment was proportional to the minimum weight of bending material required in the wing; it is a valid index of the impact of tip modifications on a new wing design.

  19. Theoretical Parametric Study of the Relative Advantages of Winglets and Wing-Tip Extensions

    NASA Technical Reports Server (NTRS)

    Heyson, H. H.; Riebe, G. D.; Fulton, C. L.

    1977-01-01

    For identical increases in bending moment, a winglet provides a greater gain in induced efficiency than tip extension. Winglet toe angle allows design trades between efficiency and root moment. A winglet shows the greatest benefit when the wing loads are heavy near the tip. Washout diminishes the benefit of either tip modification, and the gain in induced efficiency becomes a function of lift coefficient; thus, heavy wing loadings obtain the greatest benefit from a winglet, and low-speed performance is enhanced even more than cruise performance. Both induced efficiency and bending moment increase with winglet length and outward cant. The benefit of a winglet relative to a tip extension is greatest for a nearly vertical winglet. Root bending moment is proportional to the minimum weight of bending material required in the wing; thus, it is a valid index of the impact of tip modifications on a new wing design.

  20. An elastic-perfectly plastic analysis of the bending of the lithosphere at a trench

    NASA Technical Reports Server (NTRS)

    Turcotte, D. L.; Mcadoo, D. C.; Caldwell, J. G.

    1978-01-01

    A number of authors have modeled the flexure of the lithosphere at an oceanic trench using a thin elastic plate with a hydrostatic restoring force. In some cases good agreement with observed topography is obtained but in other cases the slope of the lithosphere within the trench is greater than that predicted by the elastic theory. In this paper the bending of a thin plate is considered using an elastic-perfectly plastic rheology. It is found that the lithosphere behaves elastically seaward of the trench, but that plasticity decreases the radius of curvature within the trench. The results are compared with a number of observed trench profiles. The elastic-perfectly plastic profiles are in excellent agreement with those profiles that deviate from elastic behavior.

  1. Age-related Changes in the Fracture Resistance of Male Fischer F344 Rat Bone

    PubMed Central

    Uppuganti, Sasidhar; Granke, Mathilde; Makowski, Alexander J.; Does, Mark D.; Nyman, Jeffry S.

    2015-01-01

    In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Both Raman spectroscopy and reference point indentation detected differences in tissue properties with age, though the trends did not necessarily match observations from human tissue. PMID:26610688

  2. Age-related changes in the fracture resistance of male Fischer F344 rat bone.

    PubMed

    Uppuganti, Sasidhar; Granke, Mathilde; Makowski, Alexander J; Does, Mark D; Nyman, Jeffry S

    2016-02-01

    In addition to the loss in bone volume that occurs with age, there is a decline in material properties. To test new therapies or diagnostic tools that target such properties as material strength and toughness, a pre-clinical model of aging would be useful in which changes in bone are similar to those that occur with aging in humans. Toward that end, we hypothesized that similar to human bone, the estimated toughness and material strength of cortical bone at the apparent-level decreases with age in the male Fischer F344 rat. In addition, we tested whether the known decline in trabecular architecture in rats translated to an age-related decrease in vertebra (VB) strength and whether non-X-ray techniques could quantify tissue changes at micron and sub-micron length scales. Bones were harvested from 6-, 12-, and 24-month (mo.) old rats (n=12 per age). Despite a loss in trabecular bone with age, VB compressive strength was similar among the age groups. Similarly, whole-bone strength (peak force) in bending was maintained (femur) or increased (radius) with aging. There was though an age-related decrease in post-yield toughness (radius) and bending strength (femur). The ability to resist crack initiation was actually higher for the 12-mo. and 24-mo. than for 6-mo. rats (notch femur), but the estimated work to propagate the crack was less for the aged bone. For the femur diaphysis region, porosity increased while bound water decreased with age. For the radius diaphysis, there was an age-related increase in non-enzymatic and mature enzymatic collagen crosslinks. Raman spectroscopy analysis of embedded cross-sections of the tibia mid-shaft detected an increase in carbonate subsitution with advanced aging for both inner and outer tissue. Published by Elsevier Inc.

  3. Effects of trampling on morphological and mechanical traits of dryland shrub species do not depend on water availability.

    PubMed

    Xu, Liang; Freitas, Sofia M A; Yu, Fei-Hai; Dong, Ming; Anten, Niels P R; Werger, Marinus J A

    2013-01-01

    In semiarid drylands water shortage and trampling by large herbivores are two factors limiting plant growth and distribution. Trampling can strongly affect plant performance, but little is known about responses of morphological and mechanical traits of woody plants to trampling and their possible interaction with water availability. Seedlings of four shrubs (Caragana intermedia, Cynanchum komarovi, Hedysarum laeve and Hippophae rhamnoides) common in the semiarid Mu Us Sandland were grown at 4% and 10% soil water content and exposed to either simulated trampling or not. Growth, morphological and mechanical traits were measured. Trampling decreased vertical height and increased basal diameter and stem resistance to bending and rupture (as indicated by the increased minimum bend and break force) in all species. Increasing water availability increased biomass, stem length, basal diameter, leaf thickness and rigidity of stems in all species except C. komarovii. However, there were no interactive effects of trampling and water content on any of these traits among species except for minimum bend force and the ratio between stem resistance to rupture and bending. Overall shrub species have a high degree of trampling resistance by morphological and mechanical modifications, and the effects of trampling do not depend on water availability. However, the increasing water availability can also affect trade-off between stem strength and flexibility caused by trampling, which differs among species. Water plays an important role not only in growth but also in trampling adaptation in drylands.

  4. CT-derived indices of canine osteosarcoma-affected antebrachial strength.

    PubMed

    Garcia, Tanya C; Steffey, Michele A; Zwingenberger, Allison L; Daniel, Leticia; Stover, Susan M

    2017-05-01

    To improve the prediction of fractures in dogs with bone tumors of the distal radius by identifying computed tomography (CT) indices that correlate with antebrachial bone strength and fracture location. Prospective experimental study. Dogs with antebrachial osteosarcoma (n = 10), and normal cadaver bones (n=9). Antebrachia were imaged with quantitative CT prior to biomechanical testing to failure. CT indices of structural properties were compared to yield force and maximum force using Pearson correlation tests. Straight beam failure (Fs), axial rigidity, curved beam failure (Fc), and craniocaudal bending moment of inertia (MOICrCd) CT indices most highly correlated (0.77 > R > 0.57) with yield and maximum forces when iOSA-affected and control bones were included in the analysis. Considering only OSA-affected bones, Fs, Fc, and axial rigidity correlated highly (0.85 > R > 0.80) with maximum force. In affected bones, the location of minimum axial rigidity and maximum MOICrCd correlated highly (R > 0.85) with the actual fracture location. CT-derived axial rigidity, Fs, and MOICrCd have strong linear relationships with yield and maximum force. These indices should be further evaluated prospectively in OSA-affected dogs that do, and do not, experience pathologic fracture. © 2017 The American College of Veterinary Surgeons.

  5. New presentation method for magnetic resonance angiography images based on skeletonization

    NASA Astrophysics Data System (ADS)

    Nystroem, Ingela; Smedby, Orjan

    2000-04-01

    Magnetic resonance angiography (MRA) images are usually presented as maximum intensity projections (MIP), and the choice of viewing direction is then critical for the detection of stenoses. We propose a presentation method that uses skeletonization and distance transformations, which visualizes variations in vessel width independent of viewing direction. In the skeletonization, the object is reduced to a surface skeleton and further to a curve skeleton. The skeletal voxels are labeled with their distance to the original background. For the curve skeleton, the distance values correspond to the minimum radius of the object at that point, i.e., half the minimum diameter of the blood vessel at that level. The following image processing steps are performed: resampling to cubic voxels, segmentation of the blood vessels, skeletonization ,and reverse distance transformation on the curve skeleton. The reconstructed vessels may be visualized with any projection method. Preliminary results are shown. They indicate that locations of possible stenoses may be identified by presenting the vessels as a structure with the minimum radius at each point.

  6. Finite element prediction on the chassis design of UniART4 racing car

    NASA Astrophysics Data System (ADS)

    Zaman, Z. I.; Basaruddin, K. S.; Basha, M. H.; Rahman, M. T. Abd; Daud, R.

    2017-09-01

    This paper presents the analysis and evaluation of the chassis design for University Automotive Racing Team No. 4 (UniART4) car based on finite element analysis. The existing UniART4 car chassis was measured and modelled geometrically using Solidwork before analysed in FEA software (ANSYS). Four types of static structural analysis were used to predict the chassis design capability under four different loading conditions; vertical bending, lateral bending, lateral torsion and horizontal lozenging. The results showed the chassis subjected to the highest stress and strain under horizontal lozenging, whereas the minimum stress and strain response was obtained under lateral bending. The present analysis result could provide valuable information in predicting the sustainability of the current UniART car chassis design.

  7. Coupled out of plane vibrations of spiral beams for micro-scale applications

    NASA Astrophysics Data System (ADS)

    Amin Karami, M.; Yardimoglu, Bulent; Inman, Daniel J.

    2010-12-01

    An analytical method is proposed to calculate the natural frequencies and the corresponding mode shape functions of an Archimedean spiral beam. The deflection of the beam is due to both bending and torsion, which makes the problem coupled in nature. The governing partial differential equations and the boundary conditions are derived using Hamilton's principle. Two factors make the vibrations of spirals different from oscillations of constant radius arcs. The first is the presence of terms with derivatives of the radius in the governing equations of spirals and the second is the fact that variations of radius of the beam causes the coefficients of the differential equations to be variable. It is demonstrated, using perturbation techniques that the derivative of the radius terms have negligible effect on structure's dynamics. The spiral is then approximated with many merging constant-radius curved sections joined together to approximate the slow change of radius along the spiral. The equations of motion are formulated in non-dimensional form and the effect of all the key parameters on natural frequencies is presented. Non-dimensional curves are used to summarize the results for clarity. We also solve the governing equations using Rayleigh's approximate method. The fundamental frequency results of the exact and Rayleigh's method are in close agreement. This to some extent verifies the exact solutions. The results show that the vibration of spirals is mostly torsional which complicates using the spiral beam as a host for a sensor or energy harvesting device.

  8. Automated design and optimization of flexible booster autopilots via linear programming. Volume 2: User's manual

    NASA Technical Reports Server (NTRS)

    Hauser, F. D.; Szollosi, G. D.; Lakin, W. S.

    1972-01-01

    COEBRA, the Computerized Optimization of Elastic Booster Autopilots, is an autopilot design program. The bulk of the design criteria is presented in the form of minimum allowed gain/phase stability margins. COEBRA has two optimization phases: (1) a phase to maximize stability margins; and (2) a phase to optimize structural bending moment load relief capability in the presence of minimum requirements on gain/phase stability margins.

  9. New developments in fabrication of high-energy-resolution analyzers for inelastic x-ray spectroscopy.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Said, A. H.; Sinn, H.; Divan, R.

    2011-05-01

    In this work new improvements related to the fabrication of spherical bent analyzers for 1 meV energy-resolution inelastic X-ray scattering spectroscopy are presented. The new method includes the use of a two-dimensional bender to achieve the required radius of curvature for X-ray analyzers. The advantage of this method is the ability to monitor the focus during bending, which leads to higher-efficiency analyzers.

  10. The Influence of Pd-Doped Au Wire Bonding on HAZ Microstructure and Looping Profile in Micro-Electromechanical Systems (MEMS) Packaging

    NASA Astrophysics Data System (ADS)

    Ismail, Roslina; Omar, Ghazali; Jalar, Azman; Majlis, Burhanuddin Yeop

    2015-07-01

    Wire bonding processes has been widely adopted in micro-electromechanical systems (MEMS) packaging especially in biomedical devices for the integration of components. In the first process sequence in wire bonding, the zone along the wire near the melted tips is called the heat-affected zone (HAZ). The HAZ plays an important factor that influenced the looping profiles of wire bonding process. This paper investigates the effect of dopants on microstructures in the HAZ. One precent palladium (Pd) was added to the as-drawn 4N gold wire and annealed at 600°C. The addition of Pd was able to moderate the grain growth in the HAZ by retarding the heat propagation to the wire. In the formation of the looping profile, the first bending point of the looping is highly associated with the length of the HAZ. The alloyed gold wire (2N gold) has a sharp angle at a distance of about 30 m from the neck of the wire with a measured bending radius of about 40 mm and bending angle of about 40° clockwise from vertical axis, while the 4N gold wire bends at a longer distance. It also shows that the HAZ for 4N gold is longer than 2N gold wire.

  11. Hollow-Structured Graphene-Silicone-Composite-Based Piezoresistive Sensors: Decoupled Property Tuning and Bending Reliability.

    PubMed

    Luo, Ningqi; Huang, Yan; Liu, Jing; Chen, Shih-Chi; Wong, Ching Ping; Zhao, Ni

    2017-10-01

    A versatile flexible piezoresistive sensor should maintain high sensitivity in a wide linear range, and provide a stable and repeatable pressure reading under bending. These properties are often difficult to achieve simultaneously with conventional filler-matrix composite active materials, as tuning of one material component often results in change of multiple sensor properties. Here, a material strategy is developed to realize a 3D graphene-poly(dimethylsiloxane) hollow structure, where the electrical conductivity and mechanical elasticity of the composite can be tuned separately by varying the graphene layer number and the poly(dimethylsiloxane) composition ratio, respectively. As a result, the sensor sensitivity and linear range can be easily improved through a decoupled tuning process, reaching a sensitivity of 15.9 kPa -1 in a 60 kPa linear region, and the sensor also exhibits fast response (1.2 ms rising time) and high stability. Furthermore, by optimizing the density of the graphene percolation network and thickness of the composite, the stability and repeatability of the sensor output under bending are improved, achieving a measurement error below 6% under bending radius variations from -25 to +25 mm. Finally, the potential applications of these sensors in wearable medical devices and robotic vision are explored. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Antonio; Oweis, Salah; Chagnon, Guy

    An electrochemical cell having a spiral winding around a central core, wherein the central core is provided with longitudinal grooves on its outer surface to facilitate electrolyte filing and accommodate overpressure. The core itself improves dissipation of heat generated along the center of the cell, and the hollow core design allows the cell core to have a larger radius, permitting the "jelly roll" winding to begin at a larger radius and thereby facilitate the initial turns of the winding by decreasing the amount of bending required of the electrode laminate at the beginning of the winding operation. The hollow coremore » also provides mechanical support end-to-end. A pair of washers are used at each end of the cell to sandwich current collection tabs in a manner that improves electrical and thermal conductivity while also providing structural integrity.« less

  13. Study on core radius minimization for long life Pb-Bi cooled CANDLE burnup scheme based fast reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Afifah, Maryam, E-mail: maryam.afifah210692@gmail.com; Su’ud, Zaki; Miura, Ryosuke

    2015-09-30

    Fast Breeder Reactor had been interested to be developed over the world because it inexhaustible source energy, one of those is CANDLE reactor which is have strategy in burn-up scheme, need not control roads for control burn-up, have a constant core characteristics during energy production and don’t need fuel shuffling. The calculation was made by basic reactor analysis which use Sodium coolant geometry core parameter as a reference core to study on minimum core reactor radius of CANDLE for long life Pb-Bi cooled, also want to perform pure coolant effect comparison between LBE and sodium in a same geometry design.more » The result show that the minimum core radius of Lead Bismuth cooled CANDLE is 100 cm and 500 MWth thermal output. Lead-Bismuth coolant for CANDLE reactor enable to reduce much reactor size and have a better void coefficient than Sodium cooled as the most coolant for FBR, then we will have a good point in safety analysis.« less

  14. Analysis and Design of Launch Vehicle Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Wie, Bong; Du, Wei; Whorton, Mark

    2008-01-01

    This paper describes the fundamental principles of launch vehicle flight control analysis and design. In particular, the classical concept of "drift-minimum" and "load-minimum" control principles is re-examined and its performance and stability robustness with respect to modeling uncertainties and a gimbal angle constraint is discussed. It is shown that an additional feedback of angle-of-attack or lateral acceleration can significantly improve the overall performance and robustness, especially in the presence of unexpected large wind disturbance. Non-minimum-phase structural filtering of "unstably interacting" bending modes of large flexible launch vehicles is also shown to be effective and robust.

  15. A half millimeter thick coplanar flexible battery with wireless recharging capability.

    PubMed

    Kim, Joo-Seong; Ko, Dongah; Yoo, Dong-Joo; Jung, Dae Soo; Yavuz, Cafer T; Kim, Nam-In; Choi, In-Suk; Song, Jae Yong; Choi, Jang Wook

    2015-04-08

    Most of the existing flexible lithium ion batteries (LIBs) adopt the conventional cofacial cell configuration where anode, separator, and cathode are sequentially stacked and so have difficulty in the integration with emerging thin LIB applications, such as smart cards and medical patches. In order to overcome this shortcoming, herein, we report a coplanar cell structure in which anodes and cathodes are interdigitatedly positioned on the same plane. The coplanar electrode design brings advantages of enhanced bending tolerance and capability of increasing the cell voltage by in series-connection of multiple single-cells in addition to its suitability for the thickness reduction. On the basis of these structural benefits, we develop a coplanar flexible LIB that delivers 7.4 V with an entire cell thickness below 0.5 mm while preserving stable electrochemical performance throughout 5000 (un)bending cycles (bending radius = 5 mm). Also, even the pouch case serves as barriers between anodes and cathodes to prevent Li dendrite growth and short-circuit formation while saving the thickness. Furthermore, for convenient practical use wireless charging via inductive electromagnetic energy transfer and solar cell integration is demonstrated.

  16. The adjustment of mantle plumes to changes in plate motion

    NASA Astrophysics Data System (ADS)

    Griffiths, Ross W.; Richards, Mark A.

    1989-05-01

    The relative motion of hotspots and lithospheric plates implies a velocity shear in the underlying mantle, causing horizontal advection of mantle plumes as they rise toward the lithosphere. Consequent tilting of plumes parallel to the direction of plate motion indicates that plumes must undergo a period of readjustment after the velocity vector for plate motion is altered. Thus the shape of bends in the surface tracks of hotspots, resulting from changes in plate motion, will reflect the plume adjustment. Laboratory experiments, as well as computations using a simple theory developed in Richards & Griffiths [1988] for the dynamics of continuous plume conduits, demonstrate that the bend in the surface track has a radius of curvature approximately equal to the maximum horizontal deflection of the conduit. Thus the sharpness of the bend at an age of 43Ma in the Hawaiian-Emperor volcanic chain implies that the deflection of the underlying plume in that case was small (<200 km). This small deflection is expected for plumes carrying large buoyancy fluxes, and it indicates that tilting of the conduit is unlikely to be sufficient to cause diapiric instability.

  17. Biomechanical study of prophylactic internal fixation of the radial osteocutaneous donor site using the sheep tibia model.

    PubMed

    Avery, C M E; Best, A; Patterson, P; Rolton, J; Ponter, A R S

    2007-09-01

    This study investigated the strengthening effect of different types of plate and position after osteotomy of the sheep tibia, which is a model for the radial osteocutaneous donor site. Fifty matched pairs of adult sheep tibias were tested in torsion and four-point bending. Firstly, the weakening effect of an osteotomy was compared with the intact bone. Then pairs of bones with an osteotomy were compared with and without reinforcement with different types of 3.5mm plate. The plate was placed in either the anterior (over the defect) or posterior (on the intact cortex) position. In torsion the mean strength of the intact bone was 45% greater than after osteotomy (P=0.02). The reinforced bone was on average 61% stronger than the unreinforced bone (P<0.001). In bending the mean strength of the intact bone was 188% greater than after osteotomy (P=0.02). The reinforced bone was on average 184% stronger then the unreinforced bone (P<0.001). The tibia was able to withstand much greater loads in bending. The dynamic compression plate was the strongest reinforcement in both torsion and bending. The position of the plate did not alter the strengthening effect in torsion but the posterior position resisted greater bending loads (P=0.01). This may not be relevant in clinical practice as the radius is likely to fracture first as a result of lower torsional forces.

  18. Temporal change in the electromechanical properties of dielectric elastomer minimum energy structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchberger, G., E-mail: erda.buchberger@jku.at; Hauser, B.; Jakoby, B.

    Dielectric elastomer minimum energy structures (DEMES) are soft electronic transducers and energy harvesters with potential for consumer goods. The temporal change in their electromechanical properties is of major importance for engineering tasks. Therefore, we study acrylic DEMES by impedance spectroscopy and by optical methods for a total time period of approx. 4.5 months. We apply either compliant electrodes from carbon black particles only or fluid electrodes from a mixture of carbon black particles and silicone oil. From the measurement data, the equivalent series capacitances and resistances as well as the bending angles of the transducers are obtained. We find thatmore » the equivalent series capacitances change in average between −12 %/1000 h and −4.0 %/1000 h, while the bending angles decrease linearly with slopes ranging from −15 %/1000 h to −7 %/1000 h. Transducers with high initial bending angles and electrodes from carbon black particles show the smallest changes of the electromechanical characteristics. The capacitances decrease faster for DEMES with fluid electrodes. Some DEMES of this type reveal huge and unpredictable fluctuations of the resistances over time due to the ageing of the contacts. Design guidelines for DEMES follow directly from the observed transient changes of their electromechanical performance.« less

  19. Optimal design of porous structures for the fastest liquid absorption.

    PubMed

    Shou, Dahua; Ye, Lin; Fan, Jintu; Fu, Kunkun

    2014-01-14

    Porous materials engineered for rapid liquid absorption are useful in many applications, including oil recovery, spacecraft life-support systems, moisture management fabrics, medical wound dressings, and microfluidic devices. Dynamic absorption in capillary tubes and porous media is driven by the capillary pressure, which is inversely proportional to the pore size. On the other hand, the permeability of porous materials scales with the square of the pore size. The dynamic competition between these two superimposed mechanisms for liquid absorption through a heterogeneous porous structure may lead to an overall minimum absorption time. In this work, we explore liquid absorption in two different heterogeneous porous structures [three-dimensional (3D) circular tubes and porous layers], which are composed of two sections with variations in radius/porosity and height. The absorption time to fill the voids of porous constructs is expressed as a function of radius/porosity and height of local sections, and the absorption process does not follow the classic Washburn's law. Under given height and void volume, these two-section structures with a negative gradient of radius/porosity against the absorption direction are shown to have faster absorption rates than control samples with uniform radius/porosity. In particular, optimal structural parameters, including radius/porosity and height, are found that account for the minimum absorption time. The liquid absorption in the optimized porous structure is up to 38% faster than in a control sample. The results obtained can be used a priori for the design of porous structures with excellent liquid management property in various fields.

  20. All-solid-state flexible supercapacitors fabricated with bacterial nanocellulose papers, carbon nanotubes, and triblock-copolymer ion gels.

    PubMed

    Kang, Yu Jin; Chun, Sang-Jin; Lee, Sung-Suk; Kim, Bo-Yeong; Kim, Jung Hyeun; Chung, Haegeun; Lee, Sun-Young; Kim, Woong

    2012-07-24

    We demonstrate all-solid-state flexible supercapacitors with high physical flexibility, desirable electrochemical properties, and excellent mechanical integrity, which were realized by rationally exploiting unique properties of bacterial nanocellulose, carbon nanotubes, and ionic liquid based polymer gel electrolytes. This deliberate choice and design of main components led to excellent supercapacitor performance such as high tolerance against bending cycles and high capacitance retention over charge/discharge cycles. More specifically, the performance of our supercapacitors was highly retained through 200 bending cycles to a radius of 3 mm. In addition, the supercapacitors showed excellent cyclability with C(sp) (~20 mF/cm(2)) reduction of only <0.5% over 5000 charge/discharge cycles at the current density of 10 A/g. Our demonstration could be an important basis for material design and development of flexible supercapacitors.

  1. Vacuum-deposited, nonpolymeric flexible organic light-emitting devices.

    PubMed

    Gu, G; Burrows, P E; Venkatesh, S; Forrest, S R; Thompson, M E

    1997-02-01

    We demonstrate mechanically flexible, organic light-emitting devices (OLED's) based on the nonpolymetric thin-film materials tris-(8-hydroxyquinoline) aluminum (Alq(3)) and N, N(?) -diphenyl- N, N(?) -bis(3-methylphenyl)1- 1(?) biphenyl-4, 4(?) diamine (TPD). The single heterostructure is vacuum deposited upon a transparent, lightweight, thin plastic substrate precoated with a transparent, conducting indium tin oxide thin film. The flexible OLED performance is comparable with that of conventional OLED's deposited upon glass substrates and does not deteriorate after repeated bending. The large-area (~1 - cm>(2)) devices can be bent without failure even after a permanent fold occurs if they are on the convex substrate surface or over a bend radius of ~0.5>cm if they are on the concave surface. Such devices are useful for ultralightweight, flexible, and comfortable full-color flat panel displays.

  2. An Experimental Study of Fatigue Crack Growth in Aluminum Sheet Subjected to Combined Bending and Membrane Stresses

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.

    1997-01-01

    An experimental study was conducted to determine the effects of combined bending and membrane cyclic stresses on the fatigue crack growth behavior of aluminum sheet material. The materials used in the tests were 0.040-in.- thick 2024-T3 alclad and 0.090-in.-thick 2024-T3 bare sheet. In the tests, the membrane stresses were applied as a constant amplitude loading at a stress ratio (minimum to maximum stress) of 0.02, and the bending stresses were applied as a constant amplitude deflection in phase with the membrane stresses. Tests were conducted at ratios of bending to membrane stresses (B/M) of 0, 0.75, and 1.50. The general trends of the results were for larger effects of bending for the higher B/M ratios, the lower membrane stresses, and the thicker material. The addition of cyclic bending stresses to a test with cyclic membrane stresses had only a small effect on the growth rates of through-thickness cracks in the thin material, but had a significant effect on the crack growth rates of through-thickness cracks in the thick material. Adding bending stresses to a test had the most effect on the initiation and early growth of cracks and had less effect on the growth of long through-thickness cracks.

  3. Bending the Curve: Sensitivity to Bending of Curved Paths and Application in Room-Scale VR.

    PubMed

    Langbehn, Eike; Lubos, Paul; Bruder, Gerd; Steinicke, Frank

    2017-04-01

    Redirected walking (RDW) promises to allow near-natural walking in an infinitely large virtual environment (VE) by subtle manipulations of the virtual camera. Previous experiments analyzed the human sensitivity to RDW manipulations by focusing on the worst-case scenario, in which users walk perfectly straight ahead in the VE, whereas they are redirected on a circular path in the real world. The results showed that a physical radius of at least 22 meters is required for undetectable RDW. However, users do not always walk exactly straight in a VE. So far, it has not been investigated how much a physical path can be bent in situations in which users walk a virtual curved path instead of a straight one. Such curved walking paths can be often observed, for example, when users walk on virtual trails, through bent corridors, or when circling around obstacles. In such situations the question is not, whether or not the physical path can be bent, but how much the bending of the physical path may vary from the bending of the virtual path. In this article, we analyze this question and present redirection by means of bending gains that describe the discrepancy between the bending of curved paths in the real and virtual environment. Furthermore, we report the psychophysical experiments in which we analyzed the human sensitivity to these gains. The results reveal encouragingly wider detection thresholds than for straightforward walking. Based on our findings, we discuss the potential of curved walking and present a first approach to leverage bent paths in a way that can provide undetectable RDW manipulations even in room-scale VR.

  4. High-brightness power delivery for fiber laser pumping: simulation and measurement of low-NA fiber guiding

    NASA Astrophysics Data System (ADS)

    Yanson, Dan; Levy, Moshe; Peleg, Ophir; Rappaport, Noam; Shamay, Moshe; Dahan, Nir; Klumel, Genady; Berk, Yuri; Baskin, Ilya

    2015-02-01

    Fiber laser manufacturers demand high-brightness laser diode pumps delivering optical pump energy in both a compact fiber core and narrow angular content. A pump delivery fiber of a 105 μm core and 0.22 numerical aperture (NA) is typically used, where the fiber NA is under-filled to ease the launch of laser diode emission into the fiber and make the fiber tolerant to bending. At SCD, we have developed multi-emitter fiber-coupled pump modules that deliver 50 W output from a 105 μm, 0.15 NA fiber at 915, 950 and 976 nm wavelengths enabling low-NA power delivery to a customer's fiber laser network. In this work, we address the challenges of coupling and propagating high optical powers from laser diode sources in weakly guiding step-index multimode fibers. We present simulations of light propagation inside the low-NA multimode fiber for different launch conditions and fiber bend diameters using a ray-racing tool and demonstrate how these affect the injection of light into cladding-bounded modes. The mode filling at launch and source NA directly limit the bend radius at which the fiber can be coiled. Experimentally, we measure the fiber bend loss using our 50 W fiber-coupled module and establish a critical bend diameter in agreement with our simulation results. We also employ thermal imaging to investigate fiber heating caused by macro-bends and angled cleaving. The low mode filling of the 0.15 NA fiber by our brightness-enhanced laser diodes allows it to be coiled with diameters down to 70 mm at full operating power despite the low NA and further eliminates the need for mode-stripping at fiber combiners and splices downstream from our pump modules.

  5. Determination of Vertical Borehole and Geological Formation Properties using the Crossed Contour Method.

    PubMed

    Leyde, Brian P; Klein, Sanford A; Nellis, Gregory F; Skye, Harrison

    2017-03-01

    This paper presents a new method called the Crossed Contour Method for determining the effective properties (borehole radius and ground thermal conductivity) of a vertical ground-coupled heat exchanger. The borehole radius is used as a proxy for the overall borehole thermal resistance. The method has been applied to both simulated and experimental borehole Thermal Response Test (TRT) data using the Duct Storage vertical ground heat exchanger model implemented in the TRansient SYstems Simulation software (TRNSYS). The Crossed Contour Method generates a parametric grid of simulated TRT data for different combinations of borehole radius and ground thermal conductivity in a series of time windows. The error between the average of the simulated and experimental bore field inlet and outlet temperatures is calculated for each set of borehole properties within each time window. Using these data, contours of the minimum error are constructed in the parameter space of borehole radius and ground thermal conductivity. When all of the minimum error contours for each time window are superimposed, the point where the contours cross (intersect) identifies the effective borehole properties for the model that most closely represents the experimental data in every time window and thus over the entire length of the experimental data set. The computed borehole properties are compared with results from existing model inversion methods including the Ground Property Measurement (GPM) software developed by Oak Ridge National Laboratory, and the Line Source Model.

  6. Self-Junctioned Copper Nanofiber Transparent Flexible Conducting Film via Electrospinning and Electroplating.

    PubMed

    An, Seongpil; Jo, Hong Seok; Kim, Do-Yeon; Lee, Hyun Jun; Ju, Byeong-Kwon; Al-Deyab, Salem S; Ahn, Jong-Hyun; Qin, Yueling; Swihart, Mark T; Yarin, Alexander L; Yoon, Sam S

    2016-09-01

    Self-junctioned copper nanofiber transparent flexible films are produced using electrospinning and electroplating processes that provide high performances of T = 97% and Rs = 0.42 Ω sq(-1) by eliminating junction resistance at wire intersections. The film remains conductive after being stretched by up to 770% (films with T = 76%) and after 1000 cycles of bending to a 5 mm radius. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Dynamic fiber delivery of 3 W 160 fs pulses with photonic crystal hollow core fiber patchcord

    NASA Astrophysics Data System (ADS)

    Resan, Bojan; Auchli, Raffael; Holtz, Ronald

    2017-02-01

    We report output characteristics from the FC/APC connectorized photonics crystal hollow core fiber when is subjected to coiling down to 50 mm radius, bending, torsion etc. We achieved coupling efficiency up to 75%, output average power 2 W and 24 nJ pulse energy. With proper coupling the depolarization could be as low as 7%. Torsion of the photonic crystal patchcord destroys the polarization and other pulse properties.

  8. River meanders and channel size

    USGS Publications Warehouse

    Williams, G.P.

    1986-01-01

    This study uses an enlarged data set to (1) compare measured meander geometry to that predicted by the Langbein and Leopold (1966) theory, (2) examine the frequency distribution of the ratio radius of curvature/channel width, and (3) derive 40 empirical equations (31 of which are original) involving meander and channel size features. The data set, part of which comes from publications by other authors, consists of 194 sites from a large variety of physiographic environments in various countries. The Langbein-Leopold sine-generated-curve theory for predicting radius of curvature agrees very well with the field data (78 sites). The ratio radius of curvature/channel width has a modal value in the range of 2 to 3, in accordance with earlier work; about one third of the 79 values is less than 2.0. The 40 empirical relations, most of which include only two variables, involve channel cross-section dimensions (bankfull area, width, and mean depth) and meander features (wavelength, bend length, radius of curvature, and belt width). These relations have very high correlation coefficients, most being in the range of 0.95-0.99. Although channel width traditionally has served as a scale indicator, bankfull cross-sectional area and mean depth also can be used for this purpose. ?? 1986.

  9. Plastic deformation of tubular crystals by dislocation glide.

    PubMed

    Beller, Daniel A; Nelson, David R

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  10. Plastic deformation of tubular crystals by dislocation glide

    NASA Astrophysics Data System (ADS)

    Beller, Daniel A.; Nelson, David R.

    2016-09-01

    Tubular crystals, two-dimensional lattices wrapped into cylindrical topologies, arise in many contexts, including botany and biofilaments, and in physical systems such as carbon nanotubes. The geometrical principles of botanical phyllotaxis, describing the spiral packings on cylinders commonly found in nature, have found application in all these systems. Several recent studies have examined defects in tubular crystals associated with crystalline packings that must accommodate a fixed tube radius. Here we study the mechanics of tubular crystals with variable tube radius, with dislocations interposed between regions of different phyllotactic packings. Unbinding and separation of dislocation pairs with equal and opposite Burgers vectors allow the growth of one phyllotactic domain at the expense of another. In particular, glide separation of dislocations offers a low-energy mode for plastic deformations of solid tubes in response to external stresses, reconfiguring the lattice step by step. Through theory and simulation, we examine how the tube's radius and helicity affects, and is in turn altered by, the mechanics of dislocation glide. We also discuss how a sufficiently strong bending rigidity can alter or arrest the deformations of tubes with small radii.

  11. Does space-time torsion determine the minimum mass of gravitating particles?

    NASA Astrophysics Data System (ADS)

    Böhmer, Christian G.; Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J.

    2018-03-01

    We derive upper and lower limits for the mass-radius ratio of spin-fluid spheres in Einstein-Cartan theory, with matter satisfying a linear barotropic equation of state, and in the presence of a cosmological constant. Adopting a spherically symmetric interior geometry, we obtain the generalized continuity and Tolman-Oppenheimer-Volkoff equations for a Weyssenhoff spin fluid in hydrostatic equilibrium, expressed in terms of the effective mass, density and pressure, all of which contain additional contributions from the spin. The generalized Buchdahl inequality, which remains valid at any point in the interior, is obtained, and general theoretical limits for the maximum and minimum mass-radius ratios are derived. As an application of our results we obtain gravitational red shift bounds for compact spin-fluid objects, which may (in principle) be used for observational tests of Einstein-Cartan theory in an astrophysical context. We also briefly consider applications of the torsion-induced minimum mass to the spin-generalized strong gravity model for baryons/mesons, and show that the existence of quantum spin imposes a lower bound for spinning particles, which almost exactly reproduces the electron mass.

  12. Does space-time torsion determine the minimum mass of gravitating particles?

    PubMed

    Böhmer, Christian G; Burikham, Piyabut; Harko, Tiberiu; Lake, Matthew J

    2018-01-01

    We derive upper and lower limits for the mass-radius ratio of spin-fluid spheres in Einstein-Cartan theory, with matter satisfying a linear barotropic equation of state, and in the presence of a cosmological constant. Adopting a spherically symmetric interior geometry, we obtain the generalized continuity and Tolman-Oppenheimer-Volkoff equations for a Weyssenhoff spin fluid in hydrostatic equilibrium, expressed in terms of the effective mass, density and pressure, all of which contain additional contributions from the spin. The generalized Buchdahl inequality, which remains valid at any point in the interior, is obtained, and general theoretical limits for the maximum and minimum mass-radius ratios are derived. As an application of our results we obtain gravitational red shift bounds for compact spin-fluid objects, which may (in principle) be used for observational tests of Einstein-Cartan theory in an astrophysical context. We also briefly consider applications of the torsion-induced minimum mass to the spin-generalized strong gravity model for baryons/mesons, and show that the existence of quantum spin imposes a lower bound for spinning particles, which almost exactly reproduces the electron mass.

  13. An Adaption Broadcast Radius-Based Code Dissemination Scheme for Low Energy Wireless Sensor Networks.

    PubMed

    Yu, Shidi; Liu, Xiao; Liu, Anfeng; Xiong, Naixue; Cai, Zhiping; Wang, Tian

    2018-05-10

    Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed ABRCD scheme shows better performance in different broadcast situations. Compared to previous schemes, the transmission delay is reduced by 41.11~78.42%, the number of broadcasts is reduced by 36.18~94.27% and the energy utilization ratio is improved up to 583.42%, while the network lifetime can be prolonged up to 274.99%.

  14. An Adaption Broadcast Radius-Based Code Dissemination Scheme for Low Energy Wireless Sensor Networks

    PubMed Central

    Yu, Shidi; Liu, Xiao; Cai, Zhiping; Wang, Tian

    2018-01-01

    Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed ABRCD scheme shows better performance in different broadcast situations. Compared to previous schemes, the transmission delay is reduced by 41.11~78.42%, the number of broadcasts is reduced by 36.18~94.27% and the energy utilization ratio is improved up to 583.42%, while the network lifetime can be prolonged up to 274.99%. PMID:29748525

  15. Wing flapping with minimum energy. [minimize the drag for a bending moment at the wing root

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1980-01-01

    For slow flapping motions it is found that the minimum energy loss occurs when the vortex wake moves as a rigid surface that rotates about the wing root - a condition analogous to that determined for a slow-turning propeller. The optimum circulation distribution determined by this condition differs from the elliptic distribution, showing a greater concentration of lift toward the tips. It appears that very high propulsive efficiencies are obtained by flapping.

  16. Wang-Landau density of states based study of the folding-unfolding transition in the mini-protein Trp-cage (TC5b)

    NASA Astrophysics Data System (ADS)

    Singh, Priya; Sarkar, Subir K.; Bandyopadhyay, Pradipta

    2014-07-01

    We present the results of a high-statistics equilibrium study of the folding/unfolding transition for the 20-residue mini-protein Trp-cage (TC5b) in water. The ECEPP/3 force field is used and the interaction with water is treated by a solvent-accessible surface area method. A Wang-Landau type simulation is used to calculate the density of states and the conditional probabilities for the various values of the radius of gyration and the number of native contacts at fixed values of energy—along with a systematic check on their convergence. All thermodynamic quantities of interest are calculated from this information. The folding-unfolding transition corresponds to a peak in the temperature dependence of the computed specific heat. This is corroborated further by the structural signatures of folding in the distributions for radius of gyration and the number of native contacts as a function of temperature. The potentials of mean force are also calculated for these variables, both separately and jointly. A local free energy minimum, in addition to the global minimum, is found in a temperature range substantially below the folding temperature. The free energy at this second minimum is approximately 5 kBT higher than the value at the global minimum.

  17. Effect of load introduction on graphite epoxy compression specimens

    NASA Technical Reports Server (NTRS)

    Reiss, R.; Yao, T. M.

    1981-01-01

    Compression testing of modern composite materials is affected by the manner in which the compressive load is introduced. Two such effects are investigated: (1) the constrained edge effect which prevents transverse expansion and is common to all compression testing in which the specimen is gripped in the fixture; and (2) nonuniform gripping which induces bending into the specimen. An analytical model capable of quantifying these foregoing effects was developed which is based upon the principle of minimum complementary energy. For pure compression, the stresses are approximated by Fourier series. For pure bending, the stresses are approximated by Legendre polynomials.

  18. Analysis of a deflating soap bubble

    NASA Astrophysics Data System (ADS)

    Jackson, David P.; Sleyman, Sarah

    2010-10-01

    A soap bubble on the end of a cylindrical tube is seen to deflate as the higher pressure air inside the bubble escapes through a tube. We perform an experiment to measure the radius of the slowly deflating bubble and observe that the radius decreases to a minimum before quickly increasing. This behavior reflects the fact that the bubble ends up as a flat surface over the end of the tube. A theoretical analysis reproduces this behavior and compares favorably with the experimental data.

  19. High-contrast germanium-doped silica-on-silicon waveguides

    NASA Astrophysics Data System (ADS)

    Dumais, Patrick; Callender, Claire; Blanchetière, Chantal; Ledderhof, Chris

    2012-10-01

    Silica-on-silicon planar lightwave circuits have a number of advantages including stability and low insertion loss to optical fiber networks. Standard GeO2 doping levels in the waveguide cores lead to a refractive index contrast, n/n, of 0.75%-2%. This range of index contrast requires relatively large bend radii in order to minimize bend losses. This limits the density scaling of these circuits. By using high dopant levels for a Δn/n of 4%, the bend radius can be decreased to less than 1 mm, from which significant gains in optical circuit density can be obtained. In addition, low-loss ring resonators with free spectral ranges of a few tens of gigahertz can be realized, enabling some additional optical signal processing and filtering on that scale. Optical devices with such high dopant levels have been reported by Bellman et al. in 2004 [1] but to the authors' knowledge, no other experimental work on high-delta GeO2-doped waveguides has been reported since. In this paper, we present experimental measurements on high-delta devices including directional couplers, MMI couplers, Mach-Zehnder interferometers, and ring resonators. Device performance, including propagation loss, bend loss, interferometer contrast ratio and birefringence will be presented. We demonstrate that ring resonators with 40 GHz free spectral range can be fabricated for optical signal processing.

  20. Implementation of a GPS-RO data processing system for the KIAPS-LETKF data assimilation system

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Kang, J.-S.; Jo, Y.; Kang, J. H.

    2014-11-01

    The Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing a new global numerical weather prediction model and an advanced data assimilation system. As part of the KIAPS Package for Observation Processing (KPOP) system for data assimilation, preprocessing and quality control modules for bending angle measurements of global positioning system radio occultation (GPS-RO) data have been implemented and examined. GPS-RO data processing system is composed of several steps for checking observation locations, missing values, physical values for Earth radius of curvature, and geoid undulation. An observation-minus-background check is implemented by use of a one-dimensional observational bending angle operator and tangent point drift is also considered in the quality control process. We have tested GPS-RO observations utilized by the Korean Meteorological Administration (KMA) within KPOP, based on both the KMA global model and the National Center for Atmospheric Research (NCAR) Community Atmosphere Model-Spectral Element (CAM-SE) as a model background. Background fields from the CAM-SE model are incorporated for the preparation of assimilation experiments with the KIAPS-LETKF data assimilation system, which has been successfully implemented to a cubed-sphere model with fully unstructured quadrilateral meshes. As a result of data processing, the bending angle departure statistics between observation and background shows significant improvement. Also, the first experiment in assimilating GPS-RO bending angle resulting from KPOP within KIAPS-LETKF shows encouraging results.

  1. DNA-lipid complexes: stability of honeycomb-like and spaghetti-like structures.

    PubMed Central

    May, S; Ben-Shaul, A

    1997-01-01

    A molecular level theory is presented for the thermodynamic stability of two (similar) types of structural complexes formed by (either single strand or supercoiled) DNA and cationic liposomes, both involving a monolayer-coated DNA as the central structural unit. In the "spaghetti" complex the central unit is surrounded by another, oppositely curved, monolayer, thus forming a bilayer mantle. The "honeycomb" complex is a bundle of hexagonally packed DNA-monolayer units. The formation free energy of these complexes, starting from a planar cationic/neutral lipid bilayer and bare DNA, is expressed as a sum of electrostatic, bending, mixing, and (for the honeycomb) chain frustration contributions. The electrostatic free energy is calculated using the Poisson-Boltzmann equation. The bending energy of the mixed lipid layers is treated in the quadratic curvature approximation with composition-dependent bending rigidity and spontaneous curvature. Ideal lipid mixing is assumed within each lipid monolayer. We found that the most stable monolayer-coated DNA units are formed when the charged/neutral lipid composition corresponds (nearly) to charge neutralization; the optimal monolayer radius corresponds to close DNA-monolayer contact. These conclusions are also valid for the honeycomb complex, as the chain frustration energy is found to be negligible. Typically, the stabilization energies for these structures are on the order of 1 k(B)T/A of DNA length, reflecting mainly the balance between the electrostatic and bending energies. The spaghetti complexes are less stable due to the additional bending energy of the external monolayer. A thermodynamic analysis is presented for calculating the equilibrium lipid compositions when the complexes coexist with excess bilayer. PMID:9370436

  2. Guided wave radiation from a point source in the proximity of a pipe bend

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brath, A. J.; Nagy, P. B.; Simonetti, F.

    Throughout the oil and gas industry corrosion and erosion damage monitoring play a central role in managing asset integrity. Recently, the use of guided wave technology in conjunction with tomography techniques has provided the possibility of obtaining point-by-point maps of wall thickness loss over the entire volume of a pipeline section between two ring arrays of ultrasonic transducers. However, current research has focused on straight pipes while little work has been done on pipe bends which are also the most susceptible to developing damage. Tomography of the bend is challenging due to the complexity and computational cost of the 3-Dmore » elastic model required to accurately describe guided wave propagation. To overcome this limitation, we introduce a 2-D anisotropic inhomogeneous acoustic model which represents a generalization of the conventional unwrapping used for straight pipes. The shortest-path ray-tracing method is then applied to the 2-D model to compute ray paths and predict the arrival times of the fundamental flexural mode, A0, excited by a point source on the straight section of pipe entering the bend and detected on the opposite side. Good agreement is found between predictions and experiments performed on an 8” diameter (D) pipe with 1.5 D bend radius. The 2-D model also reveals the existence of an acoustic lensing effect which leads to a focusing phenomenon also confirmed by the experiments. The computational efficiency of the 2-D model makes it ideally suited for tomography algorithms.« less

  3. Reactive Resonances in N+N2 Exchange Reaction

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Huo, Winifred M.; Dateo, Christopher E.; Schwenke, David W.; Stallcop, James R.

    2003-01-01

    Rich reactive resonances are found in a 3D quantum dynamics study of the N + N2 exchange reaction using a recently developed ab initio potential energy surface. This surface is characterized by a feature in the interaction region called Lake Eyring , that is, two symmetric transition states with a shallow minimum between them. An L2 analysis of the quasibound states associated with the shallow minimum confirms that the quasibound states associated with oscillations in all three degrees of freedom in Lake Eyring are responsible for the reactive resonances in the state-to-state reaction probabilities. The quasibound states, mostly the bending motions, give rise to strong reasonance peaks, whereas other motions contribute to the bumps and shoulders in the resonance structure. The initial state reaction probability further proves that the bending motions are the dominating factors of the reaction probability and have longer life times than the stretching motions. This is the first observation of reactive resonances from a "Lake Eyring" feature in a potential energy surface.

  4. Flexible organic light-emitting devices with a smooth and transparent silver nanowire electrode

    NASA Astrophysics Data System (ADS)

    Cui, Hai-Feng; Zhang, Yi-Fan; Li, Chuan-Nan

    2014-07-01

    We demonstrate a flexible organic light-emitting device (OLED) by using silver nanowire (AgNW) transparent electrode. A template stripping process has been employed to fabricate the AgNW electrode on a photopolymer substrate. From this approach, a random AgNW network electrode can be transferred to the flexible substrate and its roughness has been successfully decreased. As a result, the devices obtained by this method exhibit high efficiency. In addition, the flexible OLEDs keep good performance under a small bending radius.

  5. Ultra-Lightweight Resistive Switching Memory Devices Based on Silk Fibroin.

    PubMed

    Wang, Hong; Zhu, Bowen; Wang, Hua; Ma, Xiaohua; Hao, Yue; Chen, Xiaodong

    2016-07-01

    Ultra-lightweight resistive switching memory based on protein has been demonstrated. The memory foil is 0.4 mg cm(-2) , which is 320-fold lighter than silicon substrate, 20-fold lighter than office paper and can be sustained by a human hair. Additionally, high resistance OFF/ON ratio of 10(5) , retention time of 10(4) s, and excellent flexibility (bending radius of 800 μm) have been achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hexagonally packed DNA within bacteriophage T7 stabilized by curvature stress.

    PubMed Central

    Odijk, T

    1998-01-01

    A continuum computation is proposed for the bending stress stabilizing DNA that is hexagonally packed within bacteriophage T7. Because the inner radius of the DNA spool is rather small, the stress of the curved DNA genome is strong enough to balance its electrostatic self-repulsion so as to form a stable hexagonal phase. The theory is in accord with the microscopically determined structure of bacteriophage T7 filled with DNA within the experimental margin of error. PMID:9726924

  7. Highly Bendable In-Ga-ZnO Thin Film Transistors by Using a Thermally Stable Organic Dielectric Layer

    PubMed Central

    Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; kim, Yonghun; Park, Min-Ji; Yoon, Sung-Min; Youn, Hyoc-Min; Lee, Heon; Lee, Byoung Hun; Jung, Gun Young

    2016-01-01

    Flexible In-Ga-ZnO (IGZO) thin film transistor (TFT) on a polyimide substrate is produced by employing a thermally stable SA7 organic material as the multi-functional barrier and dielectric layers. The IGZO channel layer was sputtered at Ar:O2 gas flow rate of 100:1 sccm and the fabricated TFT exhibited excellent transistor performances with a mobility of 15.67 cm2/Vs, a threshold voltage of 6.4 V and an on/off current ratio of 4.5 × 105. Further, high mechanical stability was achieved by the use of organic/inorganic stacking of dielectric and channel layers. Thus, the IGZO transistor endured unprecedented bending strain up to 3.33% at a bending radius of 1.5 mm with no significant degradation in transistor performances along with a superior reliability up to 1000 cycles. PMID:27876893

  8. Highly Bendable In-Ga-ZnO Thin Film Transistors by Using a Thermally Stable Organic Dielectric Layer.

    PubMed

    Kumaresan, Yogeenth; Pak, Yusin; Lim, Namsoo; Kim, Yonghun; Park, Min-Ji; Yoon, Sung-Min; Youn, Hyoc-Min; Lee, Heon; Lee, Byoung Hun; Jung, Gun Young

    2016-11-23

    Flexible In-Ga-ZnO (IGZO) thin film transistor (TFT) on a polyimide substrate is produced by employing a thermally stable SA7 organic material as the multi-functional barrier and dielectric layers. The IGZO channel layer was sputtered at Ar:O 2 gas flow rate of 100:1 sccm and the fabricated TFT exhibited excellent transistor performances with a mobility of 15.67 cm 2 /Vs, a threshold voltage of 6.4 V and an on/off current ratio of 4.5 × 10 5 . Further, high mechanical stability was achieved by the use of organic/inorganic stacking of dielectric and channel layers. Thus, the IGZO transistor endured unprecedented bending strain up to 3.33% at a bending radius of 1.5 mm with no significant degradation in transistor performances along with a superior reliability up to 1000 cycles.

  9. Vibration characteristics of a steadily rotating slender ring

    NASA Technical Reports Server (NTRS)

    Lallman, F. J.

    1980-01-01

    Partial differential equations are derived to describe the structural vibrations of a uniform homogeneous ring which is very flexible because the radius is very large compared with the cross sectional dimensions. Elementary beam theory is used and small deflections are assumed in the derivation. Four sets of structural modes are examined: bending and compression modes in the plane of the ring; bending modes perpendicular to the plane of the ring; and twisting modes about the centroid of the ring cross section. Spatial and temporal characteristics of these modes, presented in terms of vibration frequencies and ratios between vibration amplitudes, are demonstrated in several figures. Given a sufficiently high rotational rate, the dynamics of the ring approach those of a vibrating string. In this case, the velocity of traveling wave in the material of the ring approaches in velocity of the material relative to inertial space, resulting in structural modes which are almost stationary in space.

  10. Evanescent wave absorbance based fiber optic biosensor for label-free detection of E. coli at 280 nm wavelength.

    PubMed

    Bharadwaj, Reshma; Sai, V V R; Thakare, Kamini; Dhawangale, Arvind; Kundu, Tapanendu; Titus, Susan; Verma, Pradeep Kumar; Mukherji, Soumyo

    2011-03-15

    A novel label-free technique for the detection of pathogens based on evanescent wave absorbance (EWA) changes at 280 nm from a U-bent optical fiber sensor is demonstrated. Bending a decladded fiber into a U-shaped structure enhances the penetration depth of evanescent waves and hence sensitivity of the probe. We show that the enhanced EWA response from such U-bent probes, caused by the inherent optical absorbance properties of bacterial cells or biomolecules specifically bound to the sensor surface, can be exploited for the detection of pathogens. A portable optical set-up with a UV light emitting diode, a spectrometer and U-bent fiber optic probe of 200 μm core diameter, 0.75 mm bend radius and effective probe length of 1cm demonstrated an ability to detect less than 1000 cfu/ml. Copyright © 2011. Published by Elsevier B.V.

  11. Fabrication, characterization and applications of flexible vertical InGaN micro-light emitting diode arrays.

    PubMed

    Tian, Pengfei; McKendry, Jonathan J D; Gu, Erdan; Chen, Zhizhong; Sun, Yongjian; Zhang, Guoyi; Dawson, Martin D; Liu, Ran

    2016-01-11

    Flexible vertical InGaN micro-light emitting diode (micro-LED) arrays have been fabricated and characterized for potential applications in flexible micro-displays and visible light communication. The LED epitaxial layers were transferred from initial sapphire substrates to flexible AuSn substrates by metal bonding and laser lift off techniques. The current versus voltage characteristics of flexible micro-LEDs degraded after bending the devices, but the electroluminescence spectra show little shift even under a very small bending radius 3 mm. The high thermal conductivity of flexible metal substrates enables high thermal saturation current density and high light output power of the flexible micro-LEDs, benefiting the potential applications in flexible high-brightness micro-displays and high-speed visible light communication. We have achieved ~40 MHz modulation bandwidth and 120 Mbit/s data transmission speed for a typical flexible micro-LED.

  12. Reversible Modulation of DNA-Based Hydrogel Shapes by Internal Stress Interactions.

    PubMed

    Hu, Yuwei; Kahn, Jason S; Guo, Weiwei; Huang, Fujian; Fadeev, Michael; Harries, Daniel; Willner, Itamar

    2016-12-14

    We present the assembly of asymmetric two-layer hybrid DNA-based hydrogels revealing stimuli-triggered reversibly modulated shape transitions. Asymmetric, linear hydrogels that include layer-selective switchable stimuli-responsive elements that control the hydrogel stiffness are designed. Trigger-induced stress in one of the layers results in the bending of the linear hybrid structure, thereby minimizing the elastic free energy of the systems. The removal of the stress by a counter-trigger restores the original linear bilayer hydrogel. The stiffness of the DNA hydrogel layers is controlled by thermal, pH (i-motif), K + ion/crown ether (G-quadruplexes), chemical (pH-doped polyaniline), or biocatalytic (glucose oxidase/urease) triggers. A theoretical model relating the experimental bending radius of curvatures of the hydrogels with the Young's moduli and geometrical parameters of the hydrogels is provided. Promising applications of shape-regulated stimuli-responsive asymmetric hydrogels include their use as valves, actuators, sensors, and drug delivery devices.

  13. Surface-agnostic highly stretchable and bendable conductive MXene multilayers

    PubMed Central

    An, Hyosung; Habib, Touseef; Shah, Smit; Gao, Huili; Radovic, Miladin; Green, Micah J.; Lutkenhaus, Jodie L.

    2018-01-01

    Stretchable, bendable, and foldable conductive coatings are crucial for wearable electronics and biometric sensors. These coatings should maintain functionality while simultaneously interfacing with different types of surfaces undergoing mechanical deformation. MXene sheets as conductive two-dimensional nanomaterials are promising for this purpose, but it is still extremely difficult to form surface-agnostic MXene coatings that can withstand extreme mechanical deformation. We report on conductive and conformal MXene multilayer coatings that can undergo large-scale mechanical deformation while maintaining a conductivity as high as 2000 S/m. MXene multilayers are successfully deposited onto flexible polymer sheets, stretchable poly(dimethylsiloxane), nylon fiber, glass, and silicon. The coating shows a recoverable resistance response to bending (up to 2.5-mm bending radius) and stretching (up to 40% tensile strain), which was leveraged for detecting human motion and topographical scanning. We anticipate that this discovery will allow for the implementation of MXene-based coatings onto mechanically deformable objects. PMID:29536044

  14. Development of cubic Bezier curve and curve-plane intersection method for parametric submarine hull form design to optimize hull resistance using CFD

    NASA Astrophysics Data System (ADS)

    Chrismianto, Deddy; Zakki, Ahmad Fauzan; Arswendo, Berlian; Kim, Dong Joon

    2015-12-01

    Optimization analysis and computational fluid dynamics (CFDs) have been applied simultaneously, in which a parametric model plays an important role in finding the optimal solution. However, it is difficult to create a parametric model for a complex shape with irregular curves, such as a submarine hull form. In this study, the cubic Bezier curve and curve-plane intersection method are used to generate a solid model of a parametric submarine hull form taking three input parameters into account: nose radius, tail radius, and length-height hull ratio ( L/ H). Application program interface (API) scripting is also used to write code in the ANSYS design modeler. The results show that the submarine shape can be generated with some variation of the input parameters. An example is given that shows how the proposed method can be applied successfully to a hull resistance optimization case. The parametric design of the middle submarine type was chosen to be modified. First, the original submarine model was analyzed, in advance, using CFD. Then, using the response surface graph, some candidate optimal designs with a minimum hull resistance coefficient were obtained. Further, the optimization method in goal-driven optimization (GDO) was implemented to find the submarine hull form with the minimum hull resistance coefficient ( C t ). The minimum C t was obtained. The calculated difference in C t values between the initial submarine and the optimum submarine is around 0.26%, with the C t of the initial submarine and the optimum submarine being 0.001 508 26 and 0.001 504 29, respectively. The results show that the optimum submarine hull form shows a higher nose radius ( r n ) and higher L/ H than those of the initial submarine shape, while the radius of the tail ( r t ) is smaller than that of the initial shape.

  15. The Solar Neighborhood. XXXII. The Hydrogen Burning Limit

    NASA Astrophysics Data System (ADS)

    Dieterich, Sergio B.; Henry, Todd J.; Jao, Wei-Chun; Winters, Jennifer G.; Hosey, Altonio D.; Riedel, Adric R.; Subasavage, John P.

    2014-05-01

    We construct a Hertzsprung-Russell diagram for the stellar/substellar boundary based on a sample of 63 objects ranging in spectral type from M6V to L4. We report newly observed VRI photometry for all 63 objects and new trigonometric parallaxes for 37 objects. The remaining 26 objects have trigonometric parallaxes from the literature. We combine our optical photometry and trigonometric parallaxes with 2MASS and WISE photometry and employ a novel spectral energy distribution fitting algorithm to determine effective temperatures, bolometric luminosities, and radii. Our uncertainties range from ~20 K to ~150 K in temperature, ~0.01 to ~0.06 in log (L/L ⊙) and ~3% to ~10% in radius. We check our methodology by comparing our calculated radii to radii directly measured via long baseline optical interferometry. We find evidence for the local minimum in the radius-temperature and radius-luminosity trends that signals the end of the stellar main sequence and the start of the brown dwarf sequence at T eff ~ 2075 K, log (L/L ⊙) ~ -3.9, and (R/R ⊙) ~ 0.086. The existence of this local minimum is predicted by evolutionary models, but at temperatures ~400 K cooler. The minimum radius happens near the locus of 2MASS J0523-1403, an L2.5 dwarf with V - K = 9.42. We make qualitative arguments as to why the effects of the recent revision in solar abundances accounts for the discrepancy between our findings and the evolutionary models. We also report new color-absolute magnitude relations for optical and infrared colors which are useful for estimating photometric distances. We study the optical variability of all 63 targets and find an overall variability fraction of 36^{+9}_{-7}% at a threshold of 15 mmag in the I band, which is in agreement with previous studies.

  16. The engineering of construction specifications for externally bonded FRP composites

    NASA Astrophysics Data System (ADS)

    Yang, Xinbao

    This dissertation, consisting of six technical papers, presents the results of research on the theme of developing engineering and the construction specifications for externally bonded FRP composites. For particular, the work focuses on three critical aspects of the performance of FRP systems: fiber misalignment, corner radius, and lap splice length. Based on both experimental and theoretical investigations, the main contribution of this work is the development of recommendations on fiber misalignment limit, minimum corner radius, lap splice length to be used as guidance in the construction practice of FRP strengthening of concrete structures. The first three papers focus on the strength and stiffness degradation of CFRP laminates from fiber misalignment. It was concluded that misalignment affects strength more than stiffness. In practice, when all fibers in a laminate can be regarded as through fibers, it is recommended to use a reduction factor for strength and no reduction factor for stiffness to account for fiber misalignment. Findings from concrete beams strengthened with misaligned CFRP laminates verified these recommendations. The fourth and fifth papers investigate the effect of corner radius on the mechanical properties of CFRP laminates wrapped around a rectangular cross section. A unique reusable test device was fabricated to determine fiber stress and radial stress of CFRP laminates with different corner radii. Comparison performed with finite element analyses shows that the test method and the reusable device were viable and the stress concentration needs to be considered in FRP laminate wrapped corners. A minimum of 1.0 in. corner radius was recommended for practice. The sixth paper summarizes the research on the lap splice length of FRP laminates under static and repeated loads. Although a lap splice length of 1.5 in. is sufficient for CFRP laminates to develop the ultimate static tensile strength, a minimum of 4.0 in. is recommended in order to account for repeated loads.

  17. Low-temperature, solution-processed ZrO2:B thin film: a bifunctional inorganic/organic interfacial glue for flexible thin-film transistors.

    PubMed

    Park, Jee Ho; Oh, Jin Young; Han, Sun Woong; Lee, Tae Il; Baik, Hong Koo

    2015-03-04

    A solution-processed boron-doped peroxo-zirconium oxide (ZrO2:B) thin film has been found to have multifunctional characteristics, providing both hydrophobic surface modification and a chemical glue layer. Specifically, a ZrO2:B thin film deposited on a hydrophobic layer becomes superhydrophilic following ultraviolet-ozone (UVO) treatment, whereas the same treatment has no effect on the hydrophobicity of the hydrophobic layer alone. Investigation of the ZrO2:B/hydrophobic interface layer using angle-resolved X-ray photoelectron spectroscopy (AR XPS) confirmed it to be chemically bonded like glue. Using the multifunctional nature of the ZrO2:B thin film, flexible amorphous indium oxide (In2O3) thin-film transistors (TFTs) were subsequently fabricated on a polyimide substrate along with a ZrO2:B/poly-4-vinylphenol (PVP) dielectric. An aqueous In2O3 solution was successfully coated onto the ZrO2:B/PVP dielectric, and the surface and chemical properties of the PVP and ZrO2:B thin films were analyzed by contact angle measurement, atomic force microscopy (AFM), Fourier transform infrared (FT-IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The surface-engineered PVP dielectric was found to have a lower leakage current density (Jleak) of 4.38 × 10(-8) A/cm(2) at 1 MV/cm, with no breakdown behavior observed up to a bending radius of 5 mm. In contrast, the electrical characteristics of the flexible amorphous In2O3 TFT such as on/off current ratio (Ion/off) and electron mobility remained similar up to 10 mm of bending without degradation, with the device being nonactivated at a bending radius of 5 mm. These results suggest that ZrO2:B thin films could be used for low-temperature, solution-processed surface-modified flexible devices.

  18. Tidal disruption of fuzzy dark matter subhalo cores

    NASA Astrophysics Data System (ADS)

    Du, Xiaolong; Schwabe, Bodo; Niemeyer, Jens C.; Bürger, David

    2018-03-01

    We study tidal stripping of fuzzy dark matter (FDM) subhalo cores using simulations of the Schrödinger-Poisson equations and analyze the dynamics of tidal disruption, highlighting the differences with standard cold dark matter. Mass loss outside of the tidal radius forces the core to relax into a less compact configuration, lowering the tidal radius. As the characteristic radius of a solitonic core scales inversely with its mass, tidal stripping results in a runaway effect and rapid tidal disruption of the core once its central density drops below 4.5 times the average density of the host within the orbital radius. Additionally, we find that the core is deformed into a tidally locked ellipsoid with increasing eccentricities until it is completely disrupted. Using the core mass loss rate, we compute the minimum mass of cores that can survive several orbits for different FDM particle masses and compare it with observed masses of satellite galaxies in the Milky Way.

  19. Screen-printed SnO2/CNT quasi-solid-state gel-electrolyte supercapacitor

    NASA Astrophysics Data System (ADS)

    Kuok, Fei-Hong; Liao, Chen-Yu; Chen, Chieh-Wen; Hao, Yu-Chuan; Yu, Ing-Song; Chen, Jian-Zhang

    2017-11-01

    This study investigates a quasi-solid-state gel-electrolyte supercapacitor fabricated with nanoporous SnO2/CNT nanocomposite electrodes and a polyvinyl alcohol/sulfuric acid (PVA/H2SO4) gel electrolyte. First, pastes containing SnO2 nanoparticles, CNTs, ethyl cellulose, and terpineol are screen-printed onto carbon cloth. A tube furnace is then used for calcining the SnO2/CNT electrodes on carbon cloth. After furnace-calcination, the wettability of SnO2/CNT significantly improved; furthermore, the XPS analysis shows that number of C-O bond and oxygen content significantly decrease after furnace-calcination owing to the burnout of the ethyl cellulose by the furnace calcination processes. The furnace-calcined SnO2/CNT electrodes sandwich the PVA/H2SO4 gel electrolyte to form a supercapacitor. The fabricated supercapacitor exhibits an areal capacitance of 5.61 mF cm-2 when flat and 5.68 mF cm-2 under bending with a bending radius (R) of 1.0 cm. After a 1000 cycle stability test, the capacitance retention rates of the supercapacitor are 96% and 97% when flat and under bending (R  =  1.0 cm), respectively.

  20. Crack Propagation Calculations for Optical Fibers under Static Bending and Tensile Loads Using Continuum Damage Mechanics

    PubMed Central

    Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun

    2017-01-01

    Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers. PMID:29140284

  1. Stress concentrations for straight-shank and countersunk holes in plates subjected to tension, bending, and pin loading

    NASA Technical Reports Server (NTRS)

    Shivakumar, K. N.; Newman, J. C., Jr.

    1992-01-01

    A three dimensional stress concentration analysis was conducted on straight shank and countersunk (rivet) holes in a large plate subjected to various loading conditions. Three dimensional finite element analysis were performed with 20 node isoparametric elements. The plate material was assumed to be linear elastic and isotropic, with a Poisson ratio of 0.3. Stress concentration along the bore of the hole were computed for several ratios of hole radius to plate thickness (0.1 to 2.5) and ratios of countersink depth to plate thickness (0.25 to 1). The countersink angles were varied from 80 to 100 degrees in some typical cases, but the angle was held constant at 100 degrees for most cases. For straight shank holes, three types of loading were considered: remote tension, remote bending, and wedge loading in the hole. Results for remote tension and wedge loading were used to estimate stress concentration for simulated rivet in pin loading. For countersunk holes only remote tension and bending were considered. Based on the finite element results, stress concentration equations were developed. Whenever possible, the present results were compared with other numerical solutions and experimental results from the literature.

  2. Pressure-sensitive strain sensor based on a single percolated Ag nanowire layer embedded in colorless polyimide

    NASA Astrophysics Data System (ADS)

    Lee, Chan-Jae; Jun, Sungwoo; Ju, Byeong-Kwon; Kim, Jong-Woong

    2017-06-01

    This paper presents the fabrication of an elastomer-free, transparent, pressure-sensitive strain sensor consisting of a specially designed silver nanowire (AgNW) pattern and colorless polyimide (cPI). A percolated AgNW network was patterned with a simple tandem compound circuit, which was then embedded in the surface of the cPI via inverted layer processing. The resulting film-type sensor was highly transparent ( 93.5% transmittance at 550 nm) and mechanically stable (capable of resisting 10000 cycles of bending to a 500 μm radius of curvature). We demonstrated that a thin, transparent, and mechanically stable electrode can be produced using a combination of AgNWs and cPI, and used to produce a system sensitive to pressure-induced bending. The capacitance of the AgNW tandem compound electrode pattern grew via fringing, which increased with the pressure-induced bending applied to the surface of the sensor. The sensitivity was four times higher than that of an elastomeric pressure sensor made with the same design. Finally, we demonstrated a skin-like pressure sensor attached to the inside wrist of a human arm.

  3. Crack Propagation Calculations for Optical Fibers under Static Bending and Tensile Loads Using Continuum Damage Mechanics.

    PubMed

    Chen, Yunxia; Cui, Yuxuan; Gong, Wenjun

    2017-11-15

    Static fatigue behavior is the main failure mode of optical fibers applied in sensors. In this paper, a computational framework based on continuum damage mechanics (CDM) is presented to calculate the crack propagation process and failure time of optical fibers subjected to static bending and tensile loads. For this purpose, the static fatigue crack propagation in the glass core of the optical fiber is studied. Combining a finite element method (FEM), we use the continuum damage mechanics for the glass core to calculate the crack propagation path and corresponding failure time. In addition, three factors including bending radius, tensile force and optical fiber diameter are investigated to find their impacts on the crack propagation process and failure time of the optical fiber under concerned situations. Finally, experiments are conducted and the results verify the correctness of the simulation calculation. It is believed that the proposed method could give a straightforward description of the crack propagation path in the inner glass core. Additionally, the predicted crack propagation time of the optical fiber with different factors can provide effective suggestions for improving the long-term usage of optical fibers.

  4. High-power picosecond pulse delivery through hollow core photonic band gap fibers

    NASA Astrophysics Data System (ADS)

    Michieletto, Mattia; Johansen, Mette M.; Lyngsø, Jens K.; Lægsgaard, Jesper; Bang, Ole; Alkeskjold, Thomas T.

    2016-03-01

    We demonstrated robust and bend insensitive fiber delivery of high power laser with diffraction limited beam quality for two different kinds of hollow core band gap fibers. The light source for this experiment consists of ytterbium-doped double clad fiber aeroGAIN-ROD-PM85 in a high power amplifier setup. It provided 22ps pulses with a maximum average power of 95W, 40MHz repetition rate at 1032nm (~2.4μJ pulse energy), with M2 <1.3. We determined the facet damage threshold for a 7-cells hollow core photonic bandgap fiber and showed up to 59W average power output for a 5 meters fiber. The damage threshold for a 19-cell hollow core photonic bandgap fiber exceeded the maximum power provided by the light source and up to 76W average output power was demonstrated for a 1m fiber. In both cases, no special attention was needed to mitigate bend sensitivity. The fibers were coiled on 8 centimeters radius spools and even lower bending radii were present. In addition, stimulated rotational Raman scattering arising from nitrogen molecules was measured through a 42m long 19 cell hollow core fiber.

  5. Enhancing wind turbines efficiency with passive reconfiguration of flexible blades

    NASA Astrophysics Data System (ADS)

    Cognet, Vincent P. A.; Thiria, Benjamin; Courrech Du Pont, Sylvain; MSC Team; PMMH Team

    2015-11-01

    Nature provides excellent examples where flexible materials are advantageous in a fluid stream. By folding, leaves decrease the drag caused by air stream; and birds' flapping is much more efficient with flexible wings. Motivated by this, we investigate the effect of flexible blades on the performance of a wind turbine. The effect of chordwise flexible blades is studied both experimentally and theoretically on a small wind turbine in steady state. Four parameters are varied: the wind velocity, the resisting torque, the pitch angle, and the blade's bending modulus. We find an optimum efficiency with respect to the bending modulus. By tuning our four parameters, the wind turbine with flexible blades has a high-efficiency range significantly larger than rigid blades', and, furthermore enhances the operating range. These results are all the more important as one of the current issues concerning wind turbines is the enlargement of their operating range. To explain these results, we propose a simple two-dimensional model by discretising the blade along the radius. We take into account the variation of drag and lift coefficients with the bending ability. This model matches experimental observations and demonstrates the contribution of the reconfiguration of the blade. Matiere et Systemes Complexes.

  6. Determination of Vertical Borehole and Geological Formation Properties using the Crossed Contour Method

    PubMed Central

    Leyde, Brian P.; Klein, Sanford A; Nellis, Gregory F.; Skye, Harrison

    2017-01-01

    This paper presents a new method called the Crossed Contour Method for determining the effective properties (borehole radius and ground thermal conductivity) of a vertical ground-coupled heat exchanger. The borehole radius is used as a proxy for the overall borehole thermal resistance. The method has been applied to both simulated and experimental borehole Thermal Response Test (TRT) data using the Duct Storage vertical ground heat exchanger model implemented in the TRansient SYstems Simulation software (TRNSYS). The Crossed Contour Method generates a parametric grid of simulated TRT data for different combinations of borehole radius and ground thermal conductivity in a series of time windows. The error between the average of the simulated and experimental bore field inlet and outlet temperatures is calculated for each set of borehole properties within each time window. Using these data, contours of the minimum error are constructed in the parameter space of borehole radius and ground thermal conductivity. When all of the minimum error contours for each time window are superimposed, the point where the contours cross (intersect) identifies the effective borehole properties for the model that most closely represents the experimental data in every time window and thus over the entire length of the experimental data set. The computed borehole properties are compared with results from existing model inversion methods including the Ground Property Measurement (GPM) software developed by Oak Ridge National Laboratory, and the Line Source Model. PMID:28785125

  7. A flexible amorphous Bi(5)Nb(3)O(15) film for the gate insulator of the low-voltage operating pentacene thin-film transistor fabricated at room temperature.

    PubMed

    Cho, Kyung-Hoon; Seong, Tae-Geun; Choi, Joo-Young; Kim, Jin-Seong; Kwon, Jae-Hong; Shin, Sang-Il; Chung, Myung-Ho; Ju, Byeong-Kwon; Nahm, Sahn

    2009-10-20

    The amorphous Bi(5)Nb(3)O(15) film grown at room temperature under an oxygen-plasma sputtering ambient (BNRT-O(2) film) has a hydrophobic surface with a surface energy of 35.6 mJ m(-2), which is close to that of the orthorhombic pentacene (38 mJ m(-2)), resulting in the formation of a good pentacene layer without the introduction of an additional polymer layer. This film was very flexible, maintaining a high capacitance of 145 nF cm(-2) during and after 10(5) bending cycles with a small curvature radius of 7.5 mm. This film was optically transparent. Furthermore, the flexible, pentacene-based, organic thin-film transistors (OTFTs) fabricated on the poly(ether sulfone) substrate at room temperature using a BNRT-O(2) film as a gate insulator exhibited a promising device performance with a high field effect mobility of 0.5 cm(2) V(-1) s(-1), an on/off current modulation of 10(5), and a small subthreshold slope of 0.2 V decade(-1) under a low operating voltage of -5 V. This device also maintained a high carrier mobility of 0.45 cm(2) V(-1 )s(-1) during the bending with a small curvature radius of 9 mm. Therefore, the BNRT-O(2) film is considered a promising material for the gate insulator of the flexible, pentacene-based OTFT.

  8. Bending analysis of agglomerated carbon nanotube-reinforced beam resting on two parameters modified Vlasov model foundation

    NASA Astrophysics Data System (ADS)

    Ghorbanpour Arani, A.; Zamani, M. H.

    2018-06-01

    The present work deals with bending behavior of nanocomposite beam resting on two parameters modified Vlasov model foundation (MVMF), with consideration of agglomeration and distribution of carbon nanotubes (CNTs) in beam matrix. Equivalent fiber based on Eshelby-Mori-Tanaka approach is employed to determine influence of CNTs aggregation on elastic properties of CNT-reinforced beam. The governing equations are deduced using the principle of minimum potential energy under assumption of the Euler-Bernoulli beam theory. The MVMF required the estimation of γ parameter; to this purpose, unique iterative technique based on variational principles is utilized to compute value of the γ and subsequently fourth-order differential equation is solved analytically. Eventually, the transverse displacements and bending stresses are obtained and compared for different agglomeration parameters, various boundary conditions simultaneously and variant elastic foundation without requirement to instate values for foundation parameters.

  9. Simultaneous refractive index and temperature measurements using a tapered bend-resistant fiber interferometer.

    PubMed

    Lu, Ping; Harris, Jeremie; Xu, Yanping; Lu, Yuangang; Chen, Liang; Bao, Xiaoyi

    2012-11-15

    Simultaneous measurements of refractive index (RI) and temperature are proposed and experimentally demonstrated by using a tapered bend-resistant fiber interferometer. Different phase shifts of an inner and outer cladding mode of the fiber interferometer are measured to determine the temperature compensated RI of a glycerol solution. The temperature coefficients of the inner and outer cladding modes are -0.0253 rad/°C and -0.0523 rad/°C, and the RI coefficients are 4.0403 rad/RIU and 44.823 rad/RIU, respectively. The minimum errors of temperature and RI are 0.6°C and 0.001 RIU, respectively.

  10. The Influence of Notch Root Radius and Austenitizing Temperature on Fracture Appearance of As-Quenched Charpy-V Type AISI4340 Steel Specimens

    NASA Astrophysics Data System (ADS)

    Firrao, D.; Begley, J. A.; Silva, G.; Roberti, R.; de Benedetti, B.

    1982-06-01

    Charpy-V type samples either step-quenched from 1200 °C or directly quenched from the usual 870 °C temperature, fractured by a slow bend test procedure, have been fractographically examined. Their notch root radius, ρ, ranged from almost zero (fatigue precrack) up to 2.0 mm. The fracture initiation process at the notch differs according to root radius and heat treatment. Conventionally austenitized samples with ρ values larger than 0.07 mm approximately ( ρ eff) always display a continuous shear lip formation along the notch surface, whereas specimens with smaller notches do not exhibit a similar feature. Moreover, shear lip width in specimens with ρ > ρ eff is linearly related to the applied J-integral at fracture. In high temperature austenitized samples similar shear lips are almost nonexistent. The above findings, as well as overall fractographic features, are combined to explain why blunt notch AISI 4340 steel specimens display a better fracture resistance if they are conventionally heat treated, whereas fatigue precracked samples show a superior fracture toughness when they are step-quenched from 1200 °C. Variations of fracture morphologies with the notch root radius and heat treating procedures are associated with a shift toward higher Charpy transition temperatures under the combined influence of decreasing root radii and coarsening of the prior austenitic grain size at high austenitizing temperatures.

  11. Failure mechanism of hollow tree trunks due to cross-sectional flattening

    PubMed Central

    Huang, Yan-San; Hsu, Fu-Lan; Lee, Chin-Mei

    2017-01-01

    Failure of hollow trees in urban areas is a worldwide concern, and it can be caused by different mechanisms, i.e. bending stresses or flattening-related failures. Here we derive a new analytical expression for predicting the bending moment for tangential cracking, and compare the breaking moment of various failure modes, including Brazier buckling, tangential cracking, shear failure and conventional bending failure, as a function of t/R ratio, where t and R are the trunk wall thickness and trunk radius, respectively, of a hollow tree. We use Taiwan red cypress as an example and show that its failure modes and the corresponding t/R ratios are: Brazier buckling (Mode I), tangential cracking followed by longitudinal splitting (Mode II) and conventional bending failure (Mode III) for 0 < t/R < 0.06, 0.06 < t/R < 0.27 and 0.27 < t/R < 1, respectively. The exact values of those ratios may vary within and among species, but the variation is much smaller than individual mechanical properties. Also, shear failure, another type of cracking due to maximum shear stress near the neutral axis of the tree trunk, is unlikely to occur since it requires much larger bending moments. Hence, we conclude that tangential cracking due to cross-sectional flattening, followed by longitudinal splitting, is dominant for hollow trunks. Our equations are applicable to analyse straight hollow tree trunks and plant stems, but are not applicable to those with side openings or those with only heart decay. Our findings provide insights for those managing trees in urban situations and those managing for conservation of hollow-dependent fauna in both urban and rural settings. PMID:28484616

  12. Miniature fiber optic loop subcomponent for compact sensors and dense routing

    NASA Astrophysics Data System (ADS)

    Gillham, Frederick J.; Stowe, David W.; Ouellette, Thomas R.; Pryshlak, Adrian P.

    1999-05-01

    Fiber optic data links and embedded sensors, such as Fabry- Perot and Mach-Zehnders, are important elements in smart structure architectures. Unfortunately, one problem with optical fiber is the inherent limit through which fibers and cables can be looped. A revolutionary, patented technology has been developed which overcomes this problem. Based on processing the fiber into low loss miniature bends, it permits routing the fiber to difficult areas, and minimizing the size of sensors and components. The minimum bend diameter for singlemode fiber is typically over two inches in diameter, to avoid light attenuation and limit stresses which could prematurely break the fiber. With the new miniature bend technology, bend diameters as small as 1 mm are readily achieved. One embodiment is a sub-component with standard singlemode fiber formed into a 180 degree bend and packaged in a glass tube only 1.5 mm OD X 8 mm long, Figure 1. Measured insertion loss is less than 0.2 dB from 1260 nm to 1680 nm. A final processing step which anneals the fiber into the eventual curvature, reduces the internal stress, thereby resulting in long life expectancy with robust immunity to external loading. This paper addresses the optical and physical performance of the sub-component. Particular attention is paid to attenuation spectra, polarization dependent loss, reflectance, thermal cycle, damp heat, and shock tests. Applications are presented which employs the bend technology. Concatenating right angle bends into a 'wire harness' demonstrates the ability to route fiber through a smart engine or satellite structure. Miniature optical coils are proposed for sensors and expansion joints.

  13. Iterated Stretching of Viscoelastic Jets

    NASA Technical Reports Server (NTRS)

    Chang, Hsueh-Chia; Demekhin, Evgeny A.; Kalaidin, Evgeny

    1999-01-01

    We examine, with asymptotic analysis and numerical simulation, the iterated stretching dynamics of FENE and Oldroyd-B jets of initial radius r(sub 0), shear viscosity nu, Weissenberg number We, retardation number S, and capillary number Ca. The usual Rayleigh instability stretches the local uniaxial extensional flow region near a minimum in jet radius into a primary filament of radius [Ca(1 - S)/ We](sup 1/2)r(sub 0) between two beads. The strain-rate within the filament remains constant while its radius (elastic stress) decreases (increases) exponentially in time with a long elastic relaxation time 3We(r(sup 2, sub 0)/nu). Instabilities convected from the bead relieve the tension at the necks during this slow elastic drainage and trigger a filament recoil. Secondary filaments then form at the necks from the resulting stretching. This iterated stretching is predicted to occur successively to generate high-generation filaments of radius r(sub n), (r(sub n)/r(sub 0)) = square root of 2[r(sub n-1)/r(sub 0)](sup 3/2) until finite-extensibility effects set in.

  14. Low-loss hollow-core silica fibers with adjacent nested anti-resonant tubes.

    PubMed

    Habib, Md Selim; Bang, Ole; Bache, Morten

    2015-06-29

    We report on numerical design optimization of hollow-core anti-resonant fibers with the aim of reducing transmission losses. We show that re-arranging the nested anti-resonant tubes in the cladding to be adjacent has the effect of significantly reducing leakage as well as bending losses, and for reaching high loss extinction ratios between the fundamental mode and higher order modes. We investigate two versions of the proposed design, one optimized for the mid-IR and another scaled down version for the near-IR and compare them in detail with previously proposed anti-resonant fiber designs including nested elements. Our proposed design is superior with respect to obtaining the lowest leakage losses and the bend losses are also much lower than for the previous designs. Leakage losses as low as 0.0015 dB/km and bending losses of 0.006 dB/km at 5 cm bending radius are predicted at the ytterbium lasing wavelength 1.06 µm. When optimizing the higher-order-mode extinction ratio, the low leakage loss is sacrificed to get an effective single-mode behavior of the fiber. We show that the higher-order-mode extinction ratio is more than 1500 in the range 1.0-1.1 µm around the ytterbium lasing wavelength, while in the mid-IR it can be over 100 around λ = 2.94 μm. This is higher than the previously considered structures in the literature using nested tubes.

  15. Light bending, static dark energy, and related uniqueness of Schwarzschild-de Sitter spacetime

    NASA Astrophysics Data System (ADS)

    Ali, Md Sabir; Bhattacharya, Sourav

    2018-01-01

    Since the Schwarzschild-de Sitter spacetime is static inside the cosmological event horizon, if the dark energy state parameter is sufficiently close to -1 , apparently one could still expect an effectively static geometry, in the attraction dominated region inside the maximum turnaround radius, RTA ,max, of a cosmic structure. We take the first order metric derived recently assuming a static and ideal dark energy fluid with equation of state P (r )=α ρ (r ) as a source in Bhattacharya and Tomaras [Eur. Phys. J. C 77, 526 (2017), 10.1140/epjc/s10052-017-5102-4], which reproduced the expression for RTA ,max found earlier in the cosmological McVittie spacetime. Here we show that the equality originates from the equivalence of geodesic motion in these two backgrounds, in the nonrelativistic regime. We extend this metric up to the third order and compute the bending of light using the Rindler-Ishak method. For α ≠-1 , a dark energy dependent term appears in the bending equation, unlike the case of the cosmological constant, α =-1 . Because of this new term in particular, existing data for the light bending at galactic scales yields (1 +α )≲O (10-14), thereby practically ruling out any such static and inhomogeneous dark energy fluid we started with. Implication of this result pertaining to the uniqueness of the Schwarzschild-de Sitter spacetime in such an inhomogeneous dark energy background is discussed.

  16. Implementation of a GPS-RO data processing system for the KIAPS-LETKF data assimilation system

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Kang, J.-S.; Jo, Y.; Kang, J. H.

    2015-03-01

    The Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing a new global numerical weather prediction model and an advanced data assimilation system. As part of the KIAPS package for observation processing (KPOP) system for data assimilation, preprocessing, and quality control modules for bending-angle measurements of global positioning system radio occultation (GPS-RO) data have been implemented and examined. The GPS-RO data processing system is composed of several steps for checking observation locations, missing values, physical values for Earth radius of curvature, and geoid undulation. An observation-minus-background check is implemented by use of a one-dimensional observational bending-angle operator, and tangent point drift is also considered in the quality control process. We have tested GPS-RO observations utilized by the Korean Meteorological Administration (KMA) within KPOP, based on both the KMA global model and the National Center for Atmospheric Research Community Atmosphere Model with Spectral Element dynamical core (CAM-SE) as a model background. Background fields from the CAM-SE model are incorporated for the preparation of assimilation experiments with the KIAPS local ensemble transform Kalman filter (LETKF) data assimilation system, which has been successfully implemented to a cubed-sphere model with unstructured quadrilateral meshes. As a result of data processing, the bending-angle departure statistics between observation and background show significant improvement. Also, the first experiment in assimilating GPS-RO bending angle from KPOP within KIAPS-LETKF shows encouraging results.

  17. Enhancement in Elastic Bending Rigidity of Polymer Loaded Reverse Microemulsions.

    PubMed

    Geethu, P M; Yadav, Indresh; Aswal, Vinod K; Satapathy, Dillip K

    2017-11-14

    Elastic bending rigidity of the surfactant shell is a crucial parameter which determines the phase behavior and stability of microemulsion droplets. For water-in-oil reverse microemulsions stabilized by AOT (sodium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate) surfactant, the elastic bending rigidity is close to thermal energy at room temperature (k B T) and can be modified by the presence of hydrophilic polymers. Here, we explore the influence of two polymers polyethylene glycol (PEG) and polyvinylpyrrolidone (PVP), both having nearly same size (radius of gyration, R g ) but different dipole moment, on elastic bending rigidity of water-AOT-n-decane reverse microemulsions via estimating the percolation temperatures (T P ) and droplet radii using dielectric relaxation spectroscopy (DRS) and small-angle neutron scattering (SANS) techniques. Notably, an increase in T P is observed on introducing PEG and PVP polymers and is attributed to the adsorption of polymer chains onto the surfactant monolayer. The stability of the droplet phase of microemulsion after the incorporation of PEG and PVP polymers is confirmed by contrast matching SANS experiments. An enhancement in elastic bending rigidity of AOT surfactant shell amounting to ∼46% is observed upon incorporation of PVP into the droplet core, whereas for PEG addition, a smaller increase of about 17% is recorded. We conjecture that the considerable increase in elastic bending rigidity of the surfactant monolayer upon introducing PVP is because of the strong ion-dipole interaction between anionic AOT and dipoles present along the PVP polymer chains. Scaling exponents extracted from the temperature dependent electrical conductivity measurements and the frequency dependent scaling of conductivity at percolation indicate the dynamic nature of percolation for both pure and polymer loaded reverse microemulsions. The decrease in activation energy of percolation upon incorporating PEG and PVP polymer molecules also reflects the increased stability of microemulsion droplets against thermal fluctuations.

  18. Structural mechanics of DNA wrapping in the nucleosome.

    PubMed

    Battistini, Federica; Hunter, Christopher A; Gardiner, Eleanor J; Packer, Martin J

    2010-02-19

    Experimental X-ray crystal structures and a database of calculated structural parameters of DNA octamers were used in combination to analyse the mechanics of DNA bending in the nucleosome core complex. The 1kx5 X-ray crystal structure of the nucleosome core complex was used to determine the relationship between local structure at the base-step level and the global superhelical conformation observed for nucleosome-bound DNA. The superhelix is characterised by a large curvature (597 degrees) in one plane and very little curvature (10 degrees) in the orthogonal plane. Analysis of the curvature at the level of 10-step segments shows that there is a uniform curvature of 30 degrees per helical turn throughout most of the structure but that there are two sharper kinks of 50 degrees at +/-2 helical turns from the central dyad base pair. The curvature is due almost entirely to the base-step parameter roll. There are large periodic variations in roll, which are in phase with the helical twist and account for 500 degrees of the total curvature. Although variations in the other base-step parameters perturb the local path of the DNA, they make minimal contributions to the total curvature. This implies that DNA bending in the nucleosome is achieved using the roll-slide-twist degree of freedom previously identified as the major degree of freedom in naked DNA oligomers. The energetics of bending into a nucleosome-bound conformation were therefore analysed using a database of structural parameters that we have previously developed for naked DNA oligomers. The minimum energy roll, the roll flexibility force constant and the maximum and minimum accessible roll values were obtained for each base step in the relevant octanucleotide context to account for the effects of conformational coupling that vary with sequence context. The distribution of base-step roll values and corresponding strain energy required to bend DNA into the nucleosome-bound conformation defined by the 1kx5 structure were obtained by applying a constant bending moment. When a single bending moment was applied to the entire sequence, the local details of the calculated structure did not match the experiment. However, when local 10-step bending moments were applied separately, the calculated structure showed excellent agreement with experiment. This implies that the protein applies variable bending forces along the DNA to maintain the superhelical path required for nucleosome wrapping. In particular, the 50 degrees kinks are constraints imposed by the protein rather than a feature of the 1kx5 DNA sequence. The kinks coincide with a relatively flexible region of the sequence, and this is probably a prerequisite for high-affinity nucleosome binding, but the bending strain energy is significantly higher at these points than for the rest of the sequence. In the most rigid regions of the sequence, a higher strain energy is also required to achieve the standard 30 degrees curvature per helical turn. We conclude that matching of the DNA sequence to the local roll periodicity required to achieve bending, together with the increased flexibility required at the kinks, determines the sequence selectivity of DNA wrapping in the nucleosome. 2009 Elsevier Ltd. All rights reserved.

  19. Proceedings of the IREAPS Technical Symposium (9th) Held in San Diego, California on September 14-16, 1982. Volume 1 (The National Shipbuilding Research Program)

    DTIC Science & Technology

    1982-01-01

    templates. Bends plate to radius of forming cylinder. One sided butt welds up through 5/8" using magnet bed for alignment. Automatically fits and welds...up to nine stiffeners per panel. Exit Butt Weld One sided butt welds stiffened bottom panels to Tank Top Fitting Area each other using magnet bed for...be over-emphasized! Benefits derived from the model are somewhat like magnetism . Model usage is inversely proportional to the square of the distance

  20. 46 CFR 32.63-20 - Hull structure-B/ALL.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... condition such that the forward rake bulkhead rests upon a pinnacle at the water surface, the maximum hull bending stress shall not exceed the following limits: (1) Independent tanks may be installed in such a... stress shall not exceed either 50 percent of the minimum ultimate tensile strength of the material or 70...

  1. 46 CFR 32.63-20 - Hull structure-B/ALL.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... bending stress shall not exceed the following limits: (1) Independent tanks may be installed in such a... stress shall not exceed either 50 percent of the minimum ultimate tensile strength of the material or 70... reduction in hull stress when independent tanks are installed in such a manner as to contribute to the...

  2. 46 CFR 151.10-20 - Hull construction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... reactions (if applicable) shall be determined. The hull bending stress shall not exceed the applicable... hull. In such case, the hull stress shall not exceed either 50 percent of the minimum ultimate tensile... such case, the hull stress shall not exceed the percentage stress values prescribed in § 151.10-20(b)(2...

  3. 46 CFR 151.10-20 - Hull construction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... reactions (if applicable) shall be determined. The hull bending stress shall not exceed the applicable... hull. In such case, the hull stress shall not exceed either 50 percent of the minimum ultimate tensile... such case, the hull stress shall not exceed the percentage stress values prescribed in § 151.10-20(b)(2...

  4. 46 CFR 32.63-20 - Hull structure-B/ALL.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... bending stress shall not exceed the following limits: (1) Independent tanks may be installed in such a... stress shall not exceed either 50 percent of the minimum ultimate tensile strength of the material or 70... reduction in hull stress when independent tanks are installed in such a manner as to contribute to the...

  5. 46 CFR 32.63-20 - Hull structure-B/ALL.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... bending stress shall not exceed the following limits: (1) Independent tanks may be installed in such a... stress shall not exceed either 50 percent of the minimum ultimate tensile strength of the material or 70... reduction in hull stress when independent tanks are installed in such a manner as to contribute to the...

  6. 46 CFR 32.63-20 - Hull structure-B/ALL.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... bending stress shall not exceed the following limits: (1) Independent tanks may be installed in such a... stress shall not exceed either 50 percent of the minimum ultimate tensile strength of the material or 70... reduction in hull stress when independent tanks are installed in such a manner as to contribute to the...

  7. Effect of Impact Angle on the Erosion Rate of Coherent Granular Soil, with a Chernozemic Soil as an Example

    NASA Astrophysics Data System (ADS)

    Larionov, G. A.; Bushueva, O. G.; Gorobets, A. V.; Dobrovol'skaya, N. G.; Kiryukhina, Z. P.; Krasnov, S. F.; Kobylchenko Kuksina, L. V.; Litvin, L. F.; Sudnitsyn, I. I.

    2018-02-01

    It has been shown in experiments in a hydraulic flume with a knee-shaped bend that the rate of soil erosion more than doubles at the flow impact angles to the channel side from 0° to 50°. At higher channel bends, the experiment could not be performed because of backwater. Results of erosion by water stream approaching the sample surface at angles between 2° and 90° are reported. It has been found that the maximum erosion rate is observed at flow impact angles of about 45°, and the minimum rate at 90°. The minimum soil erosion rate is five times lower than the maximum erosion rate. This is due to the difference in the rate of free water penetration into the upper soil layer, and the impact of the hydrodynamic pressure, which is maximum at the impact angle of 90°. The penetration of water into the interaggregate space results in the breaking of bonds between aggregates, which is the main condition for the capture of particles by the flow.

  8. Tandem steerable running gear

    NASA Technical Reports Server (NTRS)

    Fincannon, O. J.; Glenn, D. L.

    1972-01-01

    Characteristics of steering assembly for vehicle designed to move large components of space flight vehicles are presented. Design makes it possible to move heavy and bulky items through narrow passageways with tight turns. Typical configuration is illustrated to show dimensions of turning radius and minimum distances involved.

  9. Tube support for moisture separator reheater

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabatino, R.A.

    1987-08-11

    In combination with a moisture separator reheater for a nuclear steam generating power plant, a reheater is described comprising: a sealed elongated substantially horizontal tubular shell member, a cycle fluid inlet passing through the shell member in predetermined position, mositure separator means positioned within the shell member proximate the bottom portion thereof, heat exchanger means comprising a plurality of elongated metallic U-shaped members disposed substantially within the shell member, a tube sheet member supporing the U-shaped tube members at one end thereof. The improvement consists of: the tube support member means proximate the U-bend portion of the U-shaped tube membersmore » each comprising an upper movable tube support member and a lower immovable tube support member, the remainder of the tube support means being immovable, the upper movable tube support member spacing and supporting the top leg portions of the U-shaped tube members, the lower immovable tube support member spacing and supporting the bottom leg portions of the U-shaped tube members, whereby the top leg portions of the U-shaped tube members proximate the U-bend are permitted to move to compensate for any increase in radius in the U-bend portion of the U-shaped tube member due to thermal expansion.« less

  10. Highly Robust Neutral Plane Oxide TFTs Withstanding 0.25 mm Bending Radius for Stretchable Electronics

    PubMed Central

    Kim, Yong-Hwan; Lee, Eunji; Um, Jae Gwang; Mativenga, Mallory; Jang, Jin

    2016-01-01

    Advancements in thin-film transistor (TFT) technology have extended to electronics that can withstand extreme bending or even folding. Although the use of ultrathin plastic substrates has achieved considerable advancement towards this end, free-standing ultrathin plastics inevitably suffer from mechanical instability and are very difficult to handle during TFT fabrication. Here, in addition to the use of a 1.5 μm-thick polyimide (PI) substrate, a 1.5 μm-thick PI film is also deposited on top of the TFT devices to ensure that the devices are located at the neutral plane of the two PI films for high folding stability. For mechanical support during TFT fabrication up to the deposition of the top PI film, the PI substrate is spin coated on top of a carrier glass that is coated with a mixture of carbon nanotubes (CNTs) and graphene oxide (GO). The mixture of CNT and GO facilitates mechanical detachment of the neutral plane (NP) TFTs from the carrier glass before they are transferred to a polydimethylsiloxane (PDMS) substrate as islands. Being located in the neutral bending plane, the NP TFT can be transferred to the PDMS without performance degradation and exhibit excellent mechanical stability after stretching the PDMS substrate up to a 25% elastic elongation. PMID:27165715

  11. Stress-intensity factors for circumferential surface cracks in pipes and rods under tension and bending loads

    NASA Technical Reports Server (NTRS)

    Raju, I. S.; Newman, J. C., Jr.

    1985-01-01

    The purpose of this paper is to present stress-intensity factors for a wide range of nearly semi-elliptical surface cracks in pipes and rods. The configurations were subjected to either remote tension or bending loads. For pipes, the ratio of crack depth to crack length (a/c) ranged from 0.6 to 1; the ratio of crack depth to wall thickness (a/t) ranged from 0.2 to 0.8; and the ratio of internal radius to wall thickness (R/t) ranged from 1 to 10. For rods, the ratio of crack depth to crack length also ranged from 0.6 to 1; and the ratio of crack depth to rod diameter (a/D) ranged from 0.05 to 0.35. These particular crack configurations were chosen to cover the range of crack shapes (a/c) that have been observed in experiments conducted on pipes and rods under tension and bending fatigue loads. The stress-intensity factors were calculated by a three-dimensional finite-element method. The finite-element models employed singularity elements along the crack front and linear-strain elements elsewhere. The models had about 6500 degrees of freedom. The stress-intensity factors were evaluated using a nodal-force method.

  12. Large Eddy Simulation of Supercritical CO2 Through Bend Pipes

    NASA Astrophysics Data System (ADS)

    He, Xiaoliang; Apte, Sourabh; Dogan, Omer

    2017-11-01

    Supercritical Carbon Dioxide (sCO2) is investigated as working fluid for power generation in thermal solar, fossil energy and nuclear power plants at high pressures. Severe erosion has been observed in the sCO2 test loops, particularly in nozzles, turbine blades and pipe bends. It is hypothesized that complex flow features such as flow separation and property variations may lead to large oscillations in the wall shear stresses and result in material erosion. In this work, large eddy simulations are conducted at different Reynolds numbers (5000, 27,000 and 50,000) to investigate the effect of heat transfer in a 90 degree bend pipe with unit radius of curvature in order to identify the potential causes of the erosion. The simulation is first performed without heat transfer to validate the flow solver against available experimental and computational studies. Mean flow statistics, turbulent kinetic energy, shear stresses and wall force spectra are computed and compared with available experimental data. Formation of counter-rotating vortices, named Dean vortices, are observed. Secondary flow pattern and swirling-switching flow motions are identified and visualized. Effects of heat transfer on these flow phenomena are then investigated by applying a constant heat flux at the wall. DOE Fossil Energy Crosscutting Technology Research Program.

  13. Flexible Lithium-Ion Batteries with High Areal Capacity Enabled by Smart Conductive Textiles.

    PubMed

    Ha, Sung Hoon; Shin, Kyu Hang; Park, Hae Won; Lee, Yun Jung

    2018-02-05

    Increasing demand for flexible devices in various applications, such as smart watches, healthcare, and military applications, requires the development of flexible energy-storage devices, such as lithium-ion batteries (LIBs) with high flexibility and capacity. However, it is difficult to ensure high capacity and high flexibility simultaneously through conventional electrode preparation processes. Herein, smart conductive textiles are employed as current collectors for flexible LIBs owing to their inherent flexibility, fibrous network, rough surface for better adhesion, and electrical conductivity. Conductivity and flexibility are further enhanced by nanosizing lithium titanate oxide (LTO) and lithium iron phosphate (LFP) active materials, and hybridizing them with a flexible 2D graphene template. The resulting LTO/LFP full cells demonstrate high areal capacity and flexibility with tolerance to mechanical fatigue. The battery achieves a capacity of 1.2 mA h cm -2 while showing excellent flexibility. The cells demonstrate stable open circuit voltage retention under repeated flexing for 1000 times at a bending radius of 10 mm. The discharge capacity of the unflexed battery is retained in cells subjected to bending for 100 times at bending radii of 30, 20, and 10 mm, respectively, confirming that the suggested electrode configuration successfully prevents structural damage (delamination or cracking) upon repeated deformation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Numerical Manifold Method for the Forced Vibration of Thin Plates during Bending

    PubMed Central

    Jun, Ding; Song, Chen; Wei-Bin, Wen; Shao-Ming, Luo; Xia, Huang

    2014-01-01

    A novel numerical manifold method was derived from the cubic B-spline basis function. The new interpolation function is characterized by high-order coordination at the boundary of a manifold element. The linear elastic-dynamic equation used to solve the bending vibration of thin plates was derived according to the principle of minimum instantaneous potential energy. The method for the initialization of the dynamic equation and its solution process were provided. Moreover, the analysis showed that the calculated stiffness matrix exhibited favorable performance. Numerical results showed that the generalized degrees of freedom were significantly fewer and that the calculation accuracy was higher for the manifold method than for the conventional finite element method. PMID:24883403

  15. Gyroaverage effects on nontwist Hamiltonians: Separatrix reconnection and chaos suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Martinell, J.

    2012-01-01

    A study of finite Larmor radius (FLR) effects on E x B test particle chaotic transport in non-monotonic zonal flows with drift waves in magnetized plasmas is presented. Due to the non-monotonicity of the zonal flow, the Hamiltonian does not satisfy the twist condition. The electrostatic potential is modeled as a linear superposition of a zonal flow and the regular neutral modes of the Hasegawa-Mima equation. FLR effects are incorporated by gyro-averaging the E x B Hamiltonian. It is shown that there is a critical value of the Larmor radius for which the zonal flow transitions from a profile withmore » one maximum to a profile with two maxima and a minimum. This bifurcation leads to the creation of additional shearless curves and resonances. The gyroaveraged nontwist Hamiltonian exhibits complex patterns of separatrix reconnection. A change in the Larmor radius can lead to heteroclinic-homoclinic bifurcations and dipole formation. For Larmor radii for which the zonal flow has bifurcated, double heteroclinic-heteroclinic, homoclinic-homoclinic and heteroclinic-homoclinic separatrix topologies are observed. It is also shown that chaotic transport is typically reduced as the Larmor radius increases. Poincare sections show that, for large enough Larmor radius, chaos can be practically suppressed. In particular, changes of the Larmor radius can restore the shearless curve.« less

  16. The Minimum Clinically Important Difference of the Patient-rated Wrist Evaluation Score for Patients With Distal Radius Fractures.

    PubMed

    Walenkamp, Monique M J; de Muinck Keizer, Robert-Jan; Goslings, J Carel; Vos, Lara M; Rosenwasser, Melvin P; Schep, Niels W L

    2015-10-01

    The Patient-rated Wrist Evaluation (PRWE) is a commonly used instrument in upper extremity surgery and in research. However, to recognize a treatment effect expressed as a change in PRWE, it is important to be aware of the minimum clinically important difference (MCID) and the minimum detectable change (MDC). The MCID of an outcome tool like the PRWE is defined as the smallest change in a score that is likely to be appreciated by a patient as an important change, while the MDC is defined as the smallest amount of change that can be detected by an outcome measure. A numerical change in score that is less than the MCID, even when statistically significant, does not represent a true clinically relevant change. To our knowledge, the MCID and MDC of the PRWE have not been determined in patients with distal radius fractures. We asked: (1) What is the MCID of the PRWE score for patients with distal radius fractures? (2) What is the MDC of the PRWE? Our prospective cohort study included 102 patients with a distal radius fracture and a median age of 59 years (interquartile range [IQR], 48-66 years). All patients completed the PRWE questionnaire during each of two separate visits. At the second visit, patients were asked to indicate the degree of clinical change they appreciated since the previous visit. Accordingly, patients were categorized in two groups: (1) minimally improved or (2) no change. The groups were used to anchor the changes observed in the PRWE score to patients' perspectives of what was clinically important. We determined the MCID using an anchor-based receiver operator characteristic method. In this context, the change in the PRWE score was considered a diagnostic test, and the anchor (minimally improved or no change as noted by the patients from visit to visit) was the gold standard. The optimal receiver operator characteristic cutoff point calculated with the Youden index reflected the value of the MCID. In our study, the MCID of the PRWE was 11.5 points. The area under the curve was 0.54 (95% CI, 0.37-0.70) for the pain subscale and 0.71 (95% CI, 0.57-0.85) for the function subscale. We determined the MDC to be 11.0 points. We determined the MCID of the PRWE score for patients with distal radius fractures using the anchor-based approach and verified that the MDC of the PRWE was sufficiently small to detect our MCID. We recommend using an improvement on the PRWE of more than 11.5 points as the smallest clinically relevant difference when evaluating the effects of treatments and when performing sample-size calculations on studies of distal radius fractures.

  17. Layout designs of surface barrier coatings for boosting the capability of oxygen/vapor obstruction utilized in flexible electronics

    NASA Astrophysics Data System (ADS)

    Lee, Chang-Chun; Huang, Pei-Chen; He, Jing-Yan

    2018-04-01

    Organic light-emitting diode-based flexible and rollable displays have become a promising candidate for next-generation flexible electronics. For this reason, the design of surface multi-layered barriers should be optimized to enhance the long-term mechanical reliability of a flexible encapsulation that prevents the penetration of oxygen and vapor. In this study, finite element-based stress simulation was proposed to estimate the mechanical reliability of gas/vapor barrier design with low-k/silicon nitride (low-k/SiNx) stacking architecture. Consequently, stress-induced failure of critical thin films within the flexible display under various bending conditions must be considered. The feasibility of one pair SiO2/SiNx barrier design, which overcomes the complex lamination process, and the critical bending radius, which is decreased to 1.22 mm, were also examined. In addition, the influence of distance between neutral axes to the concerned layer surface dominated the induced-stress magnitude rather than the stress compliant mechanism provided from stacked low-k films.

  18. Transparent and Flexible Capacitors with an Ultrathin Structure by Using Graphene as Bottom Electrodes.

    PubMed

    Guo, Tao; Zhang, Guozhen; Su, Xi; Zhang, Heng; Wan, Jiaxian; Chen, Xue; Wu, Hao; Liu, Chang

    2017-11-28

    Ultrathin, transparent and flexible capacitors using graphene as the bottom electrodes were directly fabricated on polyethylene naphthalate (PEN) substrates. ZrO₂ dielectric films were deposited on the treated surface of graphene by atomic layer deposition (ALD). The deposition process did not introduce any detectible defects in the graphene, as indicated by Raman measurements, guaranteeing the electrical performances of the graphene electrodes. The Aluminum-doped zinc oxide (AZO) films were prepared as the top electrodes using the ALD technique. The capacitors presented a high capacitance density (10.3 fF/μm² at 10 kHz) and a relatively low leakage current (5.3 × 10 -6 A/cm² at 1 V). Bending tests revealed that the capacitors were able to work normally at an outward bending radius of 10 mm without any deterioration of electrical properties. The capacitors exhibited an average optical transmittance of close to 70% at visible wavelengths. Thus, it opens the door to practical applications in transparent integrated circuits.

  19. Transparent and Flexible Capacitors with an Ultrathin Structure by Using Graphene as Bottom Electrodes

    PubMed Central

    Guo, Tao; Zhang, Guozhen; Su, Xi; Zhang, Heng; Wan, Jiaxian; Chen, Xue; Wu, Hao; Liu, Chang

    2017-01-01

    Ultrathin, transparent and flexible capacitors using graphene as the bottom electrodes were directly fabricated on polyethylene naphthalate (PEN) substrates. ZrO2 dielectric films were deposited on the treated surface of graphene by atomic layer deposition (ALD). The deposition process did not introduce any detectible defects in the graphene, as indicated by Raman measurements, guaranteeing the electrical performances of the graphene electrodes. The Aluminum-doped zinc oxide (AZO) films were prepared as the top electrodes using the ALD technique. The capacitors presented a high capacitance density (10.3 fF/μm2 at 10 kHz) and a relatively low leakage current (5.3 × 10−6 A/cm2 at 1 V). Bending tests revealed that the capacitors were able to work normally at an outward bending radius of 10 mm without any deterioration of electrical properties. The capacitors exhibited an average optical transmittance of close to 70% at visible wavelengths. Thus, it opens the door to practical applications in transparent integrated circuits. PMID:29182551

  20. Highly adhesive and high fatigue-resistant copper/PET flexible electronic substrates

    NASA Astrophysics Data System (ADS)

    Park, Sang Jin; Ko, Tae-Jun; Yoon, Juil; Moon, Myoung-Woon; Oh, Kyu Hwan; Han, Jun Hyun

    2018-01-01

    A voidless Cu/PET substrate is fabricated by producing a superhydrophilic PET surface comprised of nanostructures with large width and height and then by Cu electroless plating. Effect of PET surface nanostructure size on the failure mechanism of the Cu/PET substrate is studied. The fabricated Cu/PET substrate exhibits a maximum peel strength of 1300 N m-1 without using an interlayer, and virtually no increase in electrical resistivity under the extreme cyclic bending condition of 1 mm curvature radius after 300 k cycles. The authors find that there is an optimum nanostructure size for the highest Cu/PET adhesion strength, and the failure mechanism of the Cu/PET flexible substrate depends on the PET surface nanostructure size. Thus, this work presents the possibility to produce flexible metal/polymer electronic substrates that have excellent interfacial adhesion between the metal and polymer and high fatigue resistance against repeated bending. Such metal/polymer substrates provides new design opportunities for wearable electronic devices that can withstand harsh environments and have extended lifetimes.

  1. Highly-flexible, ultra-thin, and transparent single-layer graphene/silver composite electrodes for organic light emitting diodes

    NASA Astrophysics Data System (ADS)

    Li, Kun; Wang, Hu; Li, Huiying; Li, Ye; Jin, Guangyong; Gao, Lanlan; Marco, Mazzeo; Duan, Yu

    2017-08-01

    Transparent conductive electrode (TCE) platforms are required in many optoelectronic devices, including organic light emitting diodes (OLEDs). To date, indium tin oxide based electrodes are widely used in TCEs but they still have few limitations in term of achieving flexible OLEDs and display techniques. In this paper, highly-flexible and ultra-thin TCEs were fabricated for use in OLEDs by combining single-layer graphene (SLG) with thin silver layers of only several nanometers in thickness. The as-prepared SLG + Ag (8 nm) composite electrodes showed low sheet resistances of 8.5 Ω/□, high stability over 500 bending cycles, and 74% transmittance at 550 nm wavelength. Furthermore, SLG + Ag composite electrodes employed as anodes in OLEDs delivered turn-on voltages of 2.4 V, with luminance exceeding 1300 cd m-2 at only 5 V, and maximum luminance reaching up 40 000 cd m-2 at 9 V. Also, the devices could work normally under less than the 1 cm bending radius.

  2. Improving the estimate of the effective elastic modulus derived from three-point bending tests of long bones.

    PubMed

    Kourtis, Lampros C; Carter, Dennis R; Beaupre, Gary S

    2014-08-01

    Three-point bending tests are often used to determine the apparent or effective elastic modulus of long bones. The use of beam theory equations to interpret such tests can result in a substantial underestimation of the true effective modulus. In this study three-dimensional, nonlinear finite element analysis is used to quantify the errors inherent in beam theory and to create plots that can be used to correct the elastic modulus calculated from beam theory. Correction plots are generated for long bones representative of a variety of species commonly used in research studies. For a long bone with dimensions comparable to the mouse femur, the majority of the error in the effective elastic modulus results from deformations to the bone cross section that are not accounted for in the equations from beam theory. In some cases, the effective modulus calculated from beam theory can be less than one-third of the true effective modulus. Errors are larger: (1) for bones having short spans relative to bone length; (2) for bones with thin vs. thick cortices relative to periosteal diameter; and (3) when using a small radius or "knife-edge" geometry for the center loading ram and the outer supports in the three-point testing system. The use of these correction plots will enable researchers to compare results for long bones from different animal strains and to compare results obtained using testing systems that differ with regard to length between the outer supports and the radius used for the loading ram and outer supports.

  3. Forced-folding by laccolith and saucer-shaped sill intrusions on the Earth, planets and icy satellites

    NASA Astrophysics Data System (ADS)

    Michaut, Chloé

    2017-04-01

    Horizontal intrusions probably initially start as cracks, with negligible surface deformation. Once their horizontal extents become large enough compared to their depths, they make room for themselves by lifting up their overlying roofs, creating characteristic surface deformations that can be observed at the surface of planets. We present a model where magma flows below a thin elastic overlying layer characterized by a flexural wavelength Λ and study the dynamics and morphology of such a magmatic intrusion. Our results show that, depending on its size, the intrusion present different shapes and thickness-to-radius relationships. During a first phase, elastic bending of the overlying layer is the main source of driving pressure in the flow; the pressure decreases as the flow radius increases, the intrusion is bell-shaped and its thickness is close to being proportional to its radius. When the intrusion radius becomes larger than 4 times Λ, the flow enters a gravity current regime and progressively develops a pancake shape with a flat top. We study the effect of topography on flow spreading in particular in the case where the flow is constrained by a lithostatic barrier within a depression, such as an impact crater on planets or a caldera on Earth. We show that the resulting shape for the flow depends on the ratio between the flexural wavelength of the layer overlying the intrusion and the depression radius. The model is tested against terrestrial data and is shown to well explain the size and morphology of laccoliths and saucer-shaped sills on Earth. We use our results to detect and characterize shallow solidified magma reservoirs in the crust of terrestrial planets and potential shallow water reservoirs in the ice shell of icy satellites.

  4. Biomechanical Assessment of the Dorsal Spanning Bridge Plate in Distal Radius Fracture Fixation: Implications for Immediate Weight-Bearing.

    PubMed

    Huang, Jerry I; Peterson, Bret; Bellevue, Kate; Lee, Nicolas; Smith, Sean; Herfat, Safa

    2017-04-01

    The goal of this study was to compare the biomechanical stability of a 2.4-mm dorsal spanning bridge plate with a volar locking plate (VLP) in a distal radius fracture model, during simulated crutch weight-bearing. Five paired cadaveric forearms were tested. A 1-cm dorsal wedge osteotomy was created to simulate an unstable distal radius fracture with dorsal comminution. Fractures were fixed with a VLP or a dorsal bridge plate (DBP). Specimens were mounted to a crutch handle, and optical motion-tracking sensors were attached to the proximal and distal segments. Specimens were loaded in compression at 1 mm/s on a servohydraulic test frame until failure, defined as 2 mm of gap site displacement. The VLP construct was significantly more stable to axial load in a crutch weight-bearing model compared with the DBP plate (VLP: 493 N vs DBP: 332 N). Stiffness was higher in the VLP constructs, but this was not statistically significant (VLP: 51.4 N/mm vs DBP: 32.4 N/mm). With the crutch weight-bearing model, DBP failed consistently with wrist flexion and plate bending, whereas VLP failed with axial compression at the fracture site and dorsal collapse. Dorsal spanning bridge plating is effective as an internal spanning fixator in treating highly comminuted intra-articular distal radius fracture and prevents axial collapse at the radiocarpal joint. However, bridge plating may not offer advantages in early weight-bearing or transfer in polytrauma patients, with less axial stability in our crutch weight-bearing model compared with volar plating. A stiffer 3.5-mm DBP or use of a DBP construct without the central holes may be considered for distal radius fractures if the goal is early crutch weight-bearing through the injured extremity.

  5. SURGICAL TREATMENT OF DISTAL RADIUS FRACTURES WITH A VOLAR LOCKED PLATE: CORRELATION OF CLINICAL AND RADIOGRAPHIC RESULTS

    PubMed Central

    Xavier, Claudio Roberto Martins; Dal Molin, Danilo Canesin; dos Santos, Rafael Mota Marins; dos Santos, Roberto Della Torre; Neto, Julio Cezar Ferreira

    2015-01-01

    Objectives: To analyze and correlate the clinical and radiographic results from patients with distal radius fractures who underwent surgical treatment with a fixed-angle volar locked plate. Methods: Sixty-four patients with distal radius fractures were evaluated. They all underwent surgical treatment with a volar locked plate for the distal radius, with a minimum of six months of postoperative follow-up. They underwent a physical examination that measured range of motion and grip strength, answered the Disabilities of the Arm, Shoulder, and Hand (DASH) questionnaire and underwent radiographic examination. Results: In the physical examination on the patients, all the range-of-motion measurements were reduced. Grip strength measured in kgf was on average 85.8% of the strength on the unaffected side. The mean DASH score was 15.99. A significant relationship was found between lower DASH scores and losses of extension and grip strength. On the radiographs, the mean values in relation to the unfractured side were 84.0% for radial inclination, 85.4% for radial length and 86.8% for volar deviation of the radius. Loss of radial length was correlated with losses of extension and grip strength. PMID:27027046

  6. Study on warning radius of diffuse reflection laser warning based on fish-eye lens

    NASA Astrophysics Data System (ADS)

    Chen, Bolin; Zhang, Weian

    2013-09-01

    The diffuse reflection type of omni-directional laser warning based on fish-eye lens is becoming more and more important. As one of the key parameters of warning system, the warning radius should be put into investigation emphatically. The paper firstly theoretically analyzes the energy detected by single pixel of FPA detector in the system under complicated environment. Then the least energy detectable by each single pixel of the system is computed in terms of detector sensitivity, system noise, and minimum SNR. Subsequently, by comparison between the energy detected by single pixel and the least detectable energy, the warning radius is deduced from Torrance-Sparrow five-parameter semiempirical statistic model. Finally, a field experiment was developed to validate the computational results. It has been found that the warning radius has a close relationship with BRDF parameters of the irradiated target, propagation distance, angle of incidence, and detector sensitivity, etc. Furthermore, an important fact is shown that the experimental values of warning radius are always less than that of theoretical ones, due to such factors as the optical aberration of fish-eye lens, the transmissivity of narrowband filter, and the packing ratio of detector.

  7. 14 CFR 97.3 - Symbols and terms used in procedures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... procedures means helicopter procedures, with applicable minimums as prescribed in § 97.35. Helicopters may... above a designated helicopter landing area elevation used for helicopter instrument approach procedures... highest terrain/surface within a 5,200-foot radius of the missed approach point used in helicopter...

  8. Speed and design consistency of combined horizontal and vertical alignments in two-lane rural roads.

    DOT National Transportation Integrated Search

    2014-04-01

    One of the most important equations in highway design is the formula for the minimum radius of horizontal curve which : considers the design speed of the highway, the superelevation, and the side friction factor. Traditionally, differences in : the h...

  9. 14 CFR 97.3 - Symbols and terms used in procedures.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... procedures means helicopter procedures, with applicable minimums as prescribed in § 97.35. Helicopters may... above a designated helicopter landing area elevation used for helicopter instrument approach procedures... highest terrain/surface within a 5,200-foot radius of the missed approach point used in helicopter...

  10. 14 CFR 97.3 - Symbols and terms used in procedures.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... procedures means helicopter procedures, with applicable minimums as prescribed in § 97.35. Helicopters may... above a designated helicopter landing area elevation used for helicopter instrument approach procedures... highest terrain/surface within a 5,200-foot radius of the missed approach point used in helicopter...

  11. Control of Superelastic Behavior of NiTi Wires Aided by Thermomechanical Treatment with Reference to Three-Point Bending

    NASA Astrophysics Data System (ADS)

    Shahmir, Hamed; Nili-Ahmadabadi, Mahmoud; Naghdi, Fariba; Habibi-Parsa, Mohammad; Haririan, Ismaeil

    2014-04-01

    The aim of this study is to investigate the effect of thermomechanical treatment on the superelastic behavior of a Ti-50.5 at.%Ni wire in terms of loading/unloading plateau, mechanical hysteresis, and permanent set to optimize these parameters for orthodontic applications. A new three-point bending fixture, oral cavity configuration three-point bending (OCTPB) test, was utilized to determine the superelastic property in clinical condition, and therefore, the tests were carried out at 37 °C. The results indicate that the thermomechanical treatment is crucial for thermal transformation and mechanically induced transformation characteristics of the wire. Annealing of thermomechanically treated specimens at 300 and 400 °C for 1/2 and 1 h leads to good superelasticity for orthodontic applications. However, the best superelasticity at body temperature is obtained after annealing at 300 °C for 1/2 h with regard to low and constant unloading force and minimum permanent set.

  12. Superconducting energy storage magnet

    NASA Technical Reports Server (NTRS)

    Boom, Roger W. (Inventor); Eyssa, Yehia M. (Inventor); Abdelsalam, Mostafa K. (Inventor); Huang, Xianrui (Inventor)

    1993-01-01

    A superconducting magnet is formed having composite conductors arrayed in coils having turns which lie on a surface defining substantially a frustum of a cone. The conical angle with respect to the central axis is preferably selected such that the magnetic pressure on the coil at the widest portion of the cone is substantially zero. The magnet structure is adapted for use as an energy storage magnet mounted in an earthen trench or tunnel where the strength the surrounding soil is lower at the top of the trench or tunnel than at the bottom. The composite conductor may be formed having a ripple shape to minimize stresses during charge up and discharge and has a shape for each ripple selected such that the conductor undergoes a minimum amount of bending during the charge and discharge cycle. By minimizing bending, the working of the normal conductor in the composite conductor is minimized, thereby reducing the increase in resistance of the normal conductor that occurs over time as the conductor undergoes bending during numerous charge and discharge cycles.

  13. Analyses on the geometrical structure of magnetic field in the current sheet based on cluster measurements

    NASA Astrophysics Data System (ADS)

    Shen, C.; Li, X.; Dunlop, M.; Liu, Z. X.; Balogh, A.; Baker, D. N.; Hapgood, M.; Wang, X.

    2003-05-01

    The geometrical structure of the magnetic field is a critical character in the magnetospheric dynamics. Using the magnetic field data measured by the Cluster constellation satellites, the geometrical structure including the curvature radius, directions of curvature, and normal of the osculating planes of the magnetic field lines within the current sheet/neutral sheet have been investigated. The results are (1) Inside of the tail neutral sheet (NS), the curvature of magnetic field lines points towards Earth, the normal of the osculating plane points duskward, and the characteristic half width (or the minimum curvature radius) of the neutral sheet is generally less than 2 RE, for many cases less than 1600 km. (2) Outside of the neutral sheet, the curvature of magnetic field lines pointed northward (southward) at the north (south) side of NS, the normal of the osculating plane points dawnward, and the curvature radius is about 5 RE ˜ 10 RE. (3) Thin NS, where the magnetic field lines have the minimum of the curvature radius less than 0.25 RE, may appear at all the local time between LT 20 hours and 4 hours, but thin NS occurs more frequently near to midnight than that at the dawnside and duskside. (4) The size of the NS is dependent on substorm phases. Generally, the NS is thin during the growth and expansion phases and grows thick during the recovery phase. (5) For the one-dimensional NS, the half thickness and flapping velocity of the NS could be quantitatively determined. Therefore the differential geometry analyses based on Cluster 4-point magnetic measurements open a window for visioning the three-dimensional static and dynamic magnetic field structure of geomagnetosphere.

  14. Mechanical behavior of cells in microinjection: a minimum potential energy study.

    PubMed

    Liu, Fei; Wu, Dan; Chen, Ken

    2013-08-01

    Microinjection is a widely used technique to deliver foreign materials into biological cells. We propose a mathematical model to study the mechanical behavior of a cell in microinjection. Firstly, a cell is modeled by a hyperelastic membrane and interior cytoplasm. Then, based on the fact that the equilibrium configuration of a cell would minimize the potential energy, the energy function during microinjection is analyzed. With Lagrange multiplier and Rayleigh-Ritz technique, we successfully minimize the potential energy and obtain the equilibrium configuration. Upon this model, the injection force, the injection distance, the radius of the microinjector and the membrane stress are studied. The analysis demonstrates that the microinjector radius has a significant influence on the cell mechanical behavior: (1) the larger radius generates larger injection force and larger interior pressure at the same injection distance; (2) the radius determines the place where the membrane is most likely to rupture by governing the membrane stress distribution. For a fine microinjector with radius less than 20% of the cell radius, the most likely rupture point located at the edge of the contact area between the microinjector and the membrane; however, it may move to the middle of the equilibrium configuration as the radius increases. To verify our model, some experiments were conducted on zebrafish egg cells. The results show that the computational analysis agrees with the experimental data, which supports the findings from the theoretical model. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. 30 CFR 250.1613 - Diverter systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... a minimum number of turns in the vent line(s) downstream of the spool outlet flange, and the radius... system utilizes only one spool outlet, branch lines shall be installed to provide downwind diversion capability, and (2) No spool outlet or diverter line internal diameter shall be less than 10 inches, except...

  16. Effect of Brake Forming on the Strength of 24S-T Aluminum-alloy Sheet

    NASA Technical Reports Server (NTRS)

    Heimerl, George J; Woods, Walter

    1946-01-01

    Tests were made to determine the effect of brake forming on the strength of 24S-T aluminum alloy sheet that had been formed to an inside bend radius of three times the sheet thickness. The results for both directions of the grain of the material showed that the compressive yield stresses were appreciably increased, that the tensile yield stresses were moderately increased, that the ultimate tensile stresses were only slightly increased, that the elongations were considerably reduced, and that the shapes of the tensile and compressive stress-strain curves were markedly changed.

  17. Parametric design of tri-axial nested Helmholtz coils

    NASA Astrophysics Data System (ADS)

    Abbott, Jake J.

    2015-05-01

    This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.

  18. Parametric design of tri-axial nested Helmholtz coils.

    PubMed

    Abbott, Jake J

    2015-05-01

    This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.

  19. Transmission characteristics of femtosecond optical pulses in hollow-core fibers

    NASA Astrophysics Data System (ADS)

    Mohebbi, Mohammad

    2005-09-01

    Hollow-core fibers with fused silica and metal claddings are studied for transmission of femtosecond optical pulses at a wavelength of 800 nm. The measured transmission loss of a silver-coated hollow fiber with a core diameter of 250 μm is 0.44 dB/m. A bending loss of 1.1 dB/m was measured for this waveguide with a radius of curvature of 1 m. It is shown that the fundamental hybrid mode HE 11 has negligible pulse spreading. In the presence of higher order modes modal dispersion becomes dominant and depends strongly on the core diameter.

  20. Parametric design of tri-axial nested Helmholtz coils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abbott, Jake J., E-mail: jake.abbott@utah.edu

    This paper provides an optimal parametric design for tri-axial nested Helmholtz coils, which are used to generate a uniform magnetic field with controllable magnitude and direction. Circular and square coils, both with square cross section, are considered. Practical considerations such as wire selection, wire-wrapping efficiency, wire bending radius, choice of power supply, and inductance and time response are included. Using the equations provided, a designer can quickly create an optimal set of custom coils to generate a specified field magnitude in the uniform-field region while maintaining specified accessibility to the central workspace. An example case study is included.

  1. IRTF observations of the occultation of 28 Sgr by Saturn

    NASA Technical Reports Server (NTRS)

    Harrington, Joseph; Cooke, Maren L.; Forrest, William J.; Pipher, Judith L.; Dunham, Edward W.; Elliot, J. L.

    1993-01-01

    NASA's Mauna Kea IR Telescope Facility obtained an IR-imaging time series for the July 3, 1989 occultation of 28 Sgr by Saturn and its rings; the stellar signal is present in these images throughout the ring occultation event. These data are noted to vary systematically with respect to the Voyager data over large radius scales, perhaps due to stellar signal diffraction through the rings. The stellar diameter, which is projected to be about 20 km, placed most bending- and density-wave trains below measurable resolution. Masses and mean optical depths are presented for individual ring sections.

  2. Metal band drives in spacecraft mechanisms

    NASA Technical Reports Server (NTRS)

    Maus, Daryl

    1993-01-01

    Transmitting and changing the characteristics of force and stroke is a requirement in nearly all mechanisms. Examples include changing linear to rotary motion, providing a 90 deg change in direction, and amplifying stroke or force. Requirements for size, weight, efficiency and reliability create unique problems in spacecraft mechanisms. Flexible metal band and cam drive systems provide powerful solutions to these problems. Band drives, rack and pinion gears, and bell cranks are compared for effectiveness. Band drive issues are discussed including materials, bend radius, fabrication, attachment and reliability. Numerous mechanisms are shown which illustrate practical applications of band drives.

  3. 76 FR 66179 - Standard Instrument Approach Procedures, and Takeoff Minimums and Obstacle Departure Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Aeronautical Center, 6500 South MacArthur Blvd., Oklahoma City, OK 73169 (Mail Address: P.O. Box 25082... Metropolitan, ILS OR LOC Z RWY 29R, Orig Denver, CO, Rocky Mountain Metropolitan, RNAV (GPS) RWY 29L, Amdt 1... Obstacle DP, Amdt 3 North Bend, OR, Southwest Oregon Rgnl, NDB RWY 4, Amdt 5A [[Page 66181

  4. 76 FR 35098 - Standard Instrument Approach Procedures, and Takeoff Minimums and Obstacle Departure Procedures...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... North Bend Southwest Rgnl...... 1/9838 5/2/11 RNAV (RNP) Z RWY 4, Orig 30-Jun-11 MT Bozeman Gallatin... City, OK. 73169 (Mail Address: P.O. Box 25082 Oklahoma City, OK 73125) telephone: (405) 954-4164... appropriate FAA Form 8260, as modified by the National Flight Data Center (FDC)/Permanent Notice to Airmen (P...

  5. The multidirectional bending properties of the human lumbar intervertebral disc.

    PubMed

    Spenciner, David; Greene, David; Paiva, James; Palumbo, Mark; Crisco, Joseph

    2006-01-01

    While the biomechanical properties of the isolated intervertebral disc have been well studied in the three principal anatomic directions of flexion/extension, axial rotation, and lateral bending, there is little data on the properties in the more functional directions that are combinations of these principal anatomic directions. To determine the bending flexibility, range of motion (ROM), and neutral zone (NZ) of the human lumbar disc in multiple directions and to determine if the values about the combined moment axes can be predicted from the values about principal moment axes. Three-dimensional biomechanical analysis of the elastic bending properties of human lumbar discs about principal and combined moment axes. Pure, unconstrained moments were applied about multiple axes. The bending properties (flexibility, ROM, and NZ) of isolated lumbar discs (n=4 for L2/L3 and n=3 for L4/L5) were determined in the six principal directions and in 20 combined directions. The experimental values were compared with those predicted from the linear combination of the six principal moment axes. The maximum and minimum values of the biomechanical properties were found at the principal moment axes. Among combined moment axes, ROM and NZ (but not flexibility) values were predicted from the principal moment axis values. The principal moment axes coincide with the primary mechanical axes of the intervertebral disc and demonstrate significant differences in direction for values of flexibility, ROM, and NZ. Not all combined moment axis values can be predicted from principal moment axis values.

  6. Static bending deflection and free vibration analysis of moderate thick symmetric laminated plates using multidimensional wave digital filters

    NASA Astrophysics Data System (ADS)

    Tseng, Chien-Hsun

    2018-06-01

    This paper aims to develop a multidimensional wave digital filtering network for predicting static and dynamic behaviors of composite laminate based on the FSDT. The resultant network is, thus, an integrated platform that can perform not only the free vibration but also the bending deflection of moderate thick symmetric laminated plates with low plate side-to-thickness ratios (< = 20). Safeguarded by the Courant-Friedrichs-Levy stability condition with the least restriction in terms of optimization technique, the present method offers numerically high accuracy, stability and efficiency to proceed a wide range of modulus ratios for the FSDT laminated plates. Instead of using a constant shear correction factor (SCF) with a limited numerical accuracy for the bending deflection, an optimum SCF is particularly sought by looking for a minimum ratio of change in the transverse shear energy. This way, it can predict as good results in terms of accuracy for certain cases of bending deflection. Extensive simulation results carried out for the prediction of maximum bending deflection have demonstratively proven that the present method outperforms those based on the higher-order shear deformation and layerwise plate theories. To the best of our knowledge, this is the first work that shows an optimal selection of SCF can significantly increase the accuracy of FSDT-based laminates especially compared to the higher order theory disclaiming any correction. The highest accuracy of overall solution is compared to the 3D elasticity equilibrium one.

  7. Modeling the Flexural Rigidity of Rod Photoreceptors

    PubMed Central

    Haeri, Mohammad; Knox, Barry E.; Ahmadi, Aphrodite

    2013-01-01

    In vertebrate eyes, the rod photoreceptor has a modified cilium with an extended cylindrical structure specialized for phototransduction called the outer segment (OS). The OS has numerous stacked membrane disks and can bend or break when subjected to mechanical forces. The OS exhibits axial structural variation, with extended bands composed of a few hundred membrane disks whose thickness is diurnally modulated. Using high-resolution confocal microscopy, we have observed OS flexing and disruption in live transgenic Xenopus rods. Based on the experimental observations, we introduce a coarse-grained model of OS mechanical rigidity using elasticity theory, representing the axial OS banding explicitly via a spring-bead model. We calculate a bending stiffness of ∼105 nN⋅μm2, which is seven orders-of-magnitude larger than that of typical cilia and flagella. This bending stiffness has a quadratic relation to OS radius, so that thinner OS have lower fragility. Furthermore, we find that increasing the spatial frequency of axial OS banding decreases OS rigidity, reducing its fragility. Moreover, the model predicts a tendency for OS to break in bands with higher spring number density, analogous to the experimental observation that transgenic rods tended to break preferentially in bands of high fluorescence. We discuss how pathological alterations of disk membrane properties by mutant proteins may lead to increased OS rigidity and thus increased breakage, ultimately contributing to retinal degeneration. PMID:23442852

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Lenhart, S.M.

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less

  9. Optimal Recursive Digital Filters for Active Bending Stabilization

    NASA Technical Reports Server (NTRS)

    Orr, Jeb S.

    2013-01-01

    In the design of flight control systems for large flexible boosters, it is common practice to utilize active feedback control of the first lateral structural bending mode so as to suppress transients and reduce gust loading. Typically, active stabilization or phase stabilization is achieved by carefully shaping the loop transfer function in the frequency domain via the use of compensating filters combined with the frequency response characteristics of the nozzle/actuator system. In this paper we present a new approach for parameterizing and determining optimal low-order recursive linear digital filters so as to satisfy phase shaping constraints for bending and sloshing dynamics while simultaneously maximizing attenuation in other frequency bands of interest, e.g. near higher frequency parasitic structural modes. By parameterizing the filter directly in the z-plane with certain restrictions, the search space of candidate filter designs that satisfy the constraints is restricted to stable, minimum phase recursive low-pass filters with well-conditioned coefficients. Combined with optimal output feedback blending from multiple rate gyros, the present approach enables rapid and robust parametrization of autopilot bending filters to attain flight control performance objectives. Numerical results are presented that illustrate the application of the present technique to the development of rate gyro filters for an exploration-class multi-engined space launch vehicle.

  10. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.

    PubMed

    Zafarparandeh, Iman; Erbulut, Deniz U; Ozer, Ali F

    2016-07-01

    Numerous finite element models of the cervical spine have been proposed, with exact geometry or with symmetric approximation in the geometry. However, few researches have investigated the sensitivity of predicted motion responses to the geometry of the cervical spine. The goal of this study was to evaluate the effect of symmetric assumption on the predicted motion by finite element model of the cervical spine. We developed two finite element models of the cervical spine C2-C7. One model was based on the exact geometry of the cervical spine (asymmetric model), whereas the other was symmetric (symmetric model) about the mid-sagittal plane. The predicted range of motion of both models-main and coupled motions-was compared with published experimental data for all motion planes under a full range of loads. The maximum differences between the asymmetric model and symmetric model predictions for the principal motion were 31%, 78%, and 126% for flexion-extension, right-left lateral bending, and right-left axial rotation, respectively. For flexion-extension and lateral bending, the minimum difference was 0%, whereas it was 2% for axial rotation. The maximum coupled motions predicted by the symmetric model were 1.5° axial rotation and 3.6° lateral bending, under applied lateral bending and axial rotation, respectively. Those coupled motions predicted by the asymmetric model were 1.6° axial rotation and 4° lateral bending, under applied lateral bending and axial rotation, respectively. In general, the predicted motion response of the cervical spine by the symmetric model was in the acceptable range and nonlinearity of the moment-rotation curve for the cervical spine was properly predicted. © IMechE 2016.

  11. The different baryonic Tully-Fisher relations at low masses.

    PubMed

    Brook, Chris B; Santos-Santos, Isabel; Stinson, Greg

    2016-06-11

    We compare the Baryonic Tully-Fisher relation (BTFR) of simulations and observations of galaxies ranging from dwarfs to spirals, using various measures of rotational velocity V rot . We explore the BTFR when measuring V rot at the flat part of the rotation curve, V flat , at the extent of H i gas, V last , and using 20 per cent ( W 20 ) and 50 per cent ( W 50 ) of the width of H i line profiles. We also compare with the maximum circular velocity of the parent halo, [Formula: see text], within dark matter only simulations. The different BTFRs increasingly diverge as galaxy mass decreases. Using V last  one obtains a power law over four orders of magnitude in baryonic mass, with slope similar to the observed BTFR. Measuring V flat gives similar results as V last when galaxies with rising rotation curves are excluded. However, higher rotation velocities would be found for low-mass galaxies if the cold gas extended far enough for V rot to reach a maximum. W 20 gives a similar slope as V last but with slightly lower values of V rot for low-mass galaxies, although this may depend on the extent of the gas in your galaxy sample. W 50 bends away from these other relations towards low velocities at low masses. By contrast, [Formula: see text] bends towards high velocities for low-mass galaxies, as cold gas does not extend out to the radius at which haloes reach [Formula: see text]. Our study highlights the need for careful comparisons between observations and models: one needs to be consistent about the particular method of measuring V rot , and precise about the radius at which velocities are measured.

  12. Migration Rate Of Tidal Meanders: Inferences From The Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Finotello, A.; D'Alpaos, A.; Ghinassi, M.; Lanzoni, S.; Marani, M.; Rinaldo, A.

    2015-12-01

    Meandering channels are ubiquitous features of tidal landscapes. However, despite their fundamental role on the eco-morphodynamic evolution of these landscapes, tidal meanders have received less attention when compared to their fluvial counterparts. Improving current understanding of tidal meander migration, a largely-examined topic in fluvial landscapes, is a key step to highlight analogies and differences between tidal and fluvial cases. The migration of about 400 meander bends, belonging to 40 salt-marsh channels in the Northern Venice Lagoon (Italy), from 1968 to nowadays, has been investigated by means of both a classical method in fluvial frameworks and new procedure. Similarities with fluvial meanders occur, although important difference also emerge. Meanders cutting through the San Felice marsh follow the relationship between cartesian length and channel width, typical of meanders developed within different settings. However, meander migration rates proved to be smaller than those characterizing fluvial meanders. Indeed, the analysis of meander migration suggests a mean migration rate of about 0.10 m/year, consistent with the few data available in the literature. As for the fluvial case, the maximum-potential migration rate (i.e. the envelope curve of the relationship between migration rate and bend radius, both divided by channel width) reaches a maximum for radius-over-width ratio included between 2 and 3, regardless of the considered method. Nevertheless, the new-proposed method allows us to provide a more objective and continuous characterization. By using this new procedure, the channel curvature has finally been Fourier-analyzed, confirming the importance of even harmonics along the curvature spectrum. A correlation between migration rates and dominant harmonics seems to drive the evolution of tidal meanders and might represent a key-feature to distinguish them from their fluvial counterparts.

  13. Measuring the number and spacing of molecular motors propelling a gliding microtubule

    NASA Astrophysics Data System (ADS)

    Fallesen, Todd L.; Macosko, Jed C.; Holzwarth, G.

    2011-01-01

    The molecular motor gliding assay, in which a microtubule or other filament moves across a surface coated with motors, has provided much insight into how molecular motors work. The kinesin-microtubule system is also a strong candidate for the job of nanoparticle transporter in nanotechnology devices. In most cases, several motors transport each filament. Each motor serves both to bind the microtubule to a stationary surface and to propel the microtubule along the surface. By applying a uniform transverse force of 4-19 pN to a superparamagnetic bead attached to the trailing end of the microtubule, we have measured the distance d between binding points (motors). The average value of d was determined as a function of motor surface density σ. The measurements agree well with the scaling model of Duke, Holy, and Liebler, which predicts that ~σ-2/5 if 0.05⩽σ⩽20μm-2 [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.74.330 74, 330 (1995)]. The distribution of d fits an extension of the model. The radius of curvature of a microtubule bent at a binding point by the force of the magnetic bead was ≈1 μm, 5000-fold smaller than the radius of curvature of microtubules subjected only to thermal forces. This is evidence that at these points of high bending stress, generated by the force on the magnetic bead, the microtubule is in the more flexible state of a two-state model of microtubule bending proposed by Heussinger, Schüller, and Frey [Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.81.021904 81, 021904 (2010)].

  14. 49 CFR 194.103 - Significant and substantial harm; operator's statement.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... a stress level greater than 50 percent of the specified minimum yield strength of the pipe, (4) Is located within a 5 mile (8 kilometer) radius of potentially affected public drinking water intakes and could reasonably be expected to reach public drinking water intakes, or (5) Is located within a 1 mile...

  15. 49 CFR 194.103 - Significant and substantial harm; operator's statement.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... a stress level greater than 50 percent of the specified minimum yield strength of the pipe, (4) Is located within a 5 mile (8 kilometer) radius of potentially affected public drinking water intakes and could reasonably be expected to reach public drinking water intakes, or (5) Is located within a 1 mile...

  16. Minimum trim drag design for interfering lifting surfaces using vortex-lattice methodology

    NASA Technical Reports Server (NTRS)

    Lamar, J. E.

    1976-01-01

    A new method has been developed by which the mean camber surface can be determined for trimmed noncoplanar planforms with minimum vortex drag under subsonic conditions. The method uses a vortex lattice and overcomes previous difficulties with chord loading specification; it uses a Trefftz plane analysis to determine the optimum span loading for minimum drag, then solves for the mean camber surface of the wing which will provide the required loading. Pitching-moment or root-bending-moment constraints can be employed as well at the design lift coefficient. Sensitivity studies of vortex-lattice arrangement have been made with this method and are presented. Comparisons with other theories show generally good agreement. The versatility of the method is demonstrated by applying it to (1) isolated wings, (2) wing-canard configurations, (3) a tandem wing, and (4) a wing-winglet configuration.

  17. Gyroaverage effects on nontwist Hamiltonians: separatrix reconnection and chaos suppression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Del-Castillo-Negrete, Diego B; Martinell, J.

    2012-01-01

    A study of nite Larmor radius (FLR) eects on E B test particle chaotic transport in non- monotonic zonal ows with drift waves in magnetized plasmas is presented. Due to the non- monotonicity of the zonal ow, the Hamiltonian does not satisfy the twist condition. The electro- static potential is modeled as a linear superposition of a zonal ow and regular neutral modes of the Hasegawa-Mima equation. FLR eects are incorporated by gyro-averaging the EB Hamiltonian. It is shown that there is a critical value the Larmor radius for which the zonal ow transitions from a prole with one maximummore » to a prole with two maxima and a minimum. This bifurcation leads to the creation of additional shearless curves and resonances. The gyroaveraged nontwist Hamiltonian exhibits complex patterns of separatrix reconnection. A change in the Larmor ra- dius can lead to heteroclinic-homoclinic bifurcations and dipole formation. For Larmor radii for which the zonal ow has bifurcated, double heteroclinic-heteroclinic, homoclinic-homoclinic and heteroclinic-homoclinic topologies are observed. It is also shown that chaotic transport is typically reduced as the Larmor radius increases. Poincare sections shows that, for large enough Larmor radius, chaos can be practically suppressed. In particular, small changes on the Larmor radius can restore the shearless curve.« less

  18. Laboratory Modelling of the Effect of Bend Orientation on the Morphological Development of Alluvial Channels

    NASA Astrophysics Data System (ADS)

    Good, R. G. R.; Sullivan, C.; Binns, A. D.

    2017-12-01

    Bend orientation, or skewness, in natural streams is often caused by riparian vegetation or underlying geology that lead to a meandering stream following a non-sinuous path. The bend orientation affects how the fluid momentum interacts with the bed and banks, which can alter the location and shape of bedforms as well as the channel planform geometry. An experimental study in a laboratory sand flume with movable bed and banks (5.6 m long, 1.9 m wide; D50 = 0.7 mm; B = 0.2m; 3 wavelengths) was carried out to quantify the effect of bend orientation on bedform development and planform changes. While previous research in the literature has found that channels with an upstream bend orientation had a less developed secondary flow than a downstream orientation, few studies on the morphological development of streams having varying bend orientation have been conducted. In total, three runs were carried out using channels with upstream, downstream, and no skewness. The runs progressed in a series of time-steps to monitor the morphological evolution of the streams with time. Sediment transport rates were quantified at the outlet, flow was measured using an ultrasonic flow meter at the inlet, flow depths were measured at the apex of the bends, and channel morphology was measured at each time step using Structure-from-Motion photogrammetry with Agisoft Photoscan. Bend orientation was found to influence the position of the point bar development as well as the locations of maximum and minimum channel migration. Relative to the bend apex, point bars tended to be positioned in the same direction as the channel skewness. Channel width showed the greatest variation with the upstream orientation, with the channel narrowing before the apex where the channel flows in the up-valley direction, and widening downstream of the apex. These results show that the channel orientation influences the morphological development of the channel bed and banks. The effect of velocity structure and turbulence regime on the morphological development in the three bend orientations was analysed by comparing morphological and flow data at each time step. Results from this research will benefit the design of future engineered channels, as certain channel orientations may be preferable for managing erosion and sediment transport within a watershed.

  19. Don't Fence Me In: Free Meanders in a Confined River Valley

    NASA Astrophysics Data System (ADS)

    Eke, E. C.; Wilcock, P. R.

    2015-12-01

    The interaction between meandering river channels and inerodible valley walls provides a useful test of our ability to understand meander dynamics. In some cases, river meanders confined between valley walls display distinctive angular bends in a dynamic equilibrium such that their size and shape persist as the meander migrates. In other cases, meander geometry is more varied and changes as the meander migrates. The ratio of channel to valley width has been identified as a useful parameter for defining confined meanders, but is not sufficient to distinguish cases in which sharp angular bends are able to migrate with little change in geometry. Here, we examine the effect of water and sediment supply on the geometry of confined rivers in order to identify conditions under which meander geometry reaches a persistent dynamic equilibrium. Because channel width and meander geometry are closely related, we use a numerical meander model that allows for independent migration of both banks, thereby allowing channel width to vary in space and time. We hypothesize that confined meanders with persistent angular bends have smaller transport rates of bed material and that their migration is driven by erosion of the cutbank (bank-pull migration). When bed material supply is sufficiently large that point bar deposition drives meander migration (bar-push migration), confined meander bends have a larger radius of curvature and a geometry that varies as the meander migrates. We test this hypothesis using historical patterns of confined meander migration for rivers with different rates of sediment supply and bed material transport. Interpretation of the meander migration pattern is provided by the free-width meander migration model.

  20. High transconductance zinc oxide thin-film transistors on flexible plastic substrates

    NASA Astrophysics Data System (ADS)

    Kimura, Yuta; Higaki, Tomohiro; Maemoto, Toshihiko; Sasa, Shigehiko; Inoue, Masataka

    2012-02-01

    We report the fabrication and characterization on high-performance ZnO based TFTs on unheated plastic substrate. ZnO films were grown by pulsed laser deposition (PLD) on polyethylene napthalate (PEN) substrates. Top-gate ZnO-TFTs were fabricated by photolithography and wet chemical etching. The source and drain contacts were formed by lift-off of e-beam deposited Ti(20 nm)/Au(200 nm). An HfO2 with thickness 100 nm was selected as the gate insulator, and top gate electrode Ti(20 nm)/Au(200 nm) was deposited by e-beam evaporation. We prepared a set of the structure with SiO2/TiO2 to investigate the characteristic changes that appear in the film characteristics in response to bending. From the ID-VDS and the transfer characteristics which are affected by bending and return for the ZnO-TFT with SiO2/TiO2 buffers, the TFTs were bent to a curvature radius of 8.5 mm. The transconductance, gm is obtained 1.7 mS/mm on flat, 1.4 mS/mm on bending and 1.3 mS/mm on returning the film, respectively. The ID-VDS characteristics were therefore not changed by bending. All of the devices exhibited a clear pinch-off behavior and a high on/off current ratio of ˜10^6. The threshold voltages, Vth were not changed drastically. Furthermore, TFT structures were changed from a conventional top-gate type to a bottom-gate type. A high transconductance of 95.8 mS/mm was achieved in the bottom-gate type TFT by using Al2O3 oxide buffer.

  1. Can the relativistic light-bending model explain X-ray spectral variations of Seyfert galaxies?

    NASA Astrophysics Data System (ADS)

    Mizumoto, Misaki; Moriyama, Kotaro; Ebisawa, Ken; Mineshige, Shin; Kawanaka, Norita; Tsujimoto, Masahiro

    2018-04-01

    Many Seyfert galaxies are known to exhibit Fe-K broad emission line features in their X-ray energy spectra. The observed lines have three distinct features: (1) the line profiles are skewed and show significant low-energy tails, (2) the Fe-K band has low variability, which produces a broad and deep dip in the root-mean-square (rms) spectra, and (3) photons in this band have time lags behind those in the adjacent energy bands with amplitudes of several Rg/c, where Rg is the gravitational radius. The "relativistic light-bending model" is proposed to explain these observed features, where a compact X-ray source ("lamp post") above an extreme Kerr black hole illuminates the innermost area of the accretion disc. In this paper, we critically examine the relativistic light-bending model by computing the rms spectra and the lag features using a ray-tracing technique, when a lamp post moves vertically on the black hole spin axis. As a result, we found that the observed deep rms dip requires that the iron is extremely overabundant (≳10 solar), whereas the observed lag amplitude is consistent with the normal iron abundance. Furthermore, disappearance of the lag in the high-flux state requires a source height as high as ˜40 Rg, which contradicts the relativistically broad emission line feature. Our simulations agree with the data that the reverberation feature moves to lower frequencies with larger source height; however, if this scenario is correct, the simulations predict the detection of a clear Fe-K lag at low frequencies, which is not constrained in the data. Therefore, we conclude that the relativistic light-bending model may not explain the characteristic Fe-K spectral variations in Seyfert galaxies.

  2. Can the relativistic light-bending model explain X-ray spectral variations of Seyfert galaxies?

    NASA Astrophysics Data System (ADS)

    Mizumoto, Misaki; Moriyama, Kotaro; Ebisawa, Ken; Mineshige, Shin; Kawanaka, Norita; Tsujimoto, Masahiro

    2018-06-01

    Many Seyfert galaxies are known to exhibit Fe-K broad emission line features in their X-ray energy spectra. The observed lines have three distinct features: (1) the line profiles are skewed and show significant low-energy tails, (2) the Fe-K band has low variability, which produces a broad and deep dip in the root-mean-square (rms) spectra, and (3) photons in this band have time lags behind those in the adjacent energy bands with amplitudes of several Rg/c, where Rg is the gravitational radius. The "relativistic light-bending model" is proposed to explain these observed features, where a compact X-ray source ("lamp post") above an extreme Kerr black hole illuminates the innermost area of the accretion disc. In this paper, we critically examine the relativistic light-bending model by computing the rms spectra and the lag features using a ray-tracing technique, when a lamp post moves vertically on the black hole spin axis. As a result, we found that the observed deep rms dip requires that the iron is extremely overabundant (≳10 solar), whereas the observed lag amplitude is consistent with the normal iron abundance. Furthermore, disappearance of the lag in the high-flux state requires a source height as high as ˜40 Rg, which contradicts the relativistically broad emission line feature. Our simulations agree with the data that the reverberation feature moves to lower frequencies with larger source height; however, if this scenario is correct, the simulations predict the detection of a clear Fe-K lag at low frequencies, which is not constrained in the data. Therefore, we conclude that the relativistic light-bending model may not explain the characteristic Fe-K spectral variations in Seyfert galaxies.

  3. THE GRAVITATIONAL DRAG FORCE ON AN EXTENDED OBJECT MOVING IN A GAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernal, Cristian G.; Sánchez-Salcedo, F. J.

    2013-09-20

    Using axisymmetrical numerical simulations, we revisit the gravitational drag felt by a gravitational Plummer sphere with mass M and core radius R{sub s} moving at constant velocity V{sub 0} through a background homogeneous medium of adiabatic gas. Since the potential is non-diverging, there is no gas removal due to accretion. When R{sub s} is larger than the Bondi radius R{sub B} , the perturbation is linear at every point and the drag force is well fitted by the time-dependent Ostriker's formula with r{sub min} = 2.25R{sub s} , where r{sub min} is the minimum impact parameter in the Coulomb logarithm.more » In the deep nonlinear supersonic regime (R{sub s} << R{sub B} ), the minimum radius is no longer related to R{sub s} but to R{sub B} . We find r{sub min}=3.3M{sup -2.5}R{sub B} for Mach numbers of the perturber between 1.5 and 4, although r{sub min}= 2M{sup -2}R{sub B}=2GM/V{sup 2}{sub 0} also provides a good fit at M>2. As a consequence, the drag force does not depend sensitively on the nonlinearity parameter A, defined as R{sub B} /R{sub s} , for A values larger than a certain critical value A{sub cr}. We show that our generalized Ostriker's formula for the drag force is more accurate than the formula suggested by Kim and Kim.« less

  4. The Particle Size Distribution in Saturn’s C Ring from UVIS and VIMS Stellar Occultations and RSS Radio Occultations

    NASA Astrophysics Data System (ADS)

    Jerousek, Richard Gregory; Colwell, Josh; Hedman, Matthew M.; French, Richard G.; Marouf, Essam A.; Esposito, Larry; Nicholson, Philip D.

    2017-10-01

    The Cassini Ultraviolet Imaging Spectrograph (UVIS) and Visual and Infrared Mapping Spectrometer (VIMS) have measured ring optical depths over a wide range of viewing geometries at effective wavelengths of 0.15 μm and 2.9 μm respectively. Using Voyager S and X band radio occultations and the direct inversion of the forward scattered S band signal, Marouf et al. (1982), (1983), and Zebker et al. (1985) determined the power-law size distribution parameters assuming a minimum particle radius of 1 mm. Many further studies have also constrained aspects of the particle size distribution throughout the main rings. Marouf et al. (2008a) determined the smallest ring particles to have radii of 4-5 mm using Cassini RSS data. Harbison et al. (2013) used VIMS solar occultations and also found minimum particle sizes of 4-5 mm in the C ring with q ~ 3.1, where n(a)da=Ca^(-q)da is the assumed differential power-law size distribution for particles of radius a. Recent studies of excess variance in stellar signal by Colwell et al. (2017, submitted) constrain the cross-section-weighted effective particle radius to 1 m to several meters. Using the wide range of viewing geometries available to VIMS and UVIS stellar occultations we find that normal optical depth does not strongly depend on viewing geometry at 10km resolution (which would be the case if self-gravity wakes were present). Throughout the C ring, we fit power-law derived optical depths to those measured by UVIS, VIMS, and by the Cassini Radio Science Subsystem (RSS) at 0.94 and 3.6 cm wavelengths to constrain the four parameters of the size distribution at 10km radial resolution. We find significant amounts of particle size sorting throughout the region with a positive correlation between maximum particles size (amax) and normal optical depth with a mean value of amax ~ 3 m in the background C ring. This correlation is negative in the C ring plateaus. We find an inverse correlation in minimum particle radius with normal optical depth and a mean value of amin ~ 4 mm in the background C ring with slightly larger smallest particles in the C ring plateaus.

  5. A spectral radius scaling semi-implicit iterative time stepping method for reactive flow simulations with detailed chemistry

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Xiao, Zhixiang; Ren, Zhuyin

    2018-09-01

    A spectral radius scaling semi-implicit time stepping scheme has been developed for simulating unsteady compressible reactive flows with detailed chemistry, in which the spectral radius in the LUSGS scheme has been augmented to account for viscous/diffusive and reactive terms and a scalar matrix is proposed to approximate the chemical Jacobian using the minimum species destruction timescale. The performance of the semi-implicit scheme, together with a third-order explicit Runge-Kutta scheme and a Strang splitting scheme, have been investigated in auto-ignition and laminar premixed and nonpremixed flames of three representative fuels, e.g., hydrogen, methane, and n-heptane. Results show that the minimum species destruction time scale can well represent the smallest chemical time scale in reactive flows and the proposed scheme can significantly increase the allowable time steps in simulations. The scheme is stable when the time step is as large as 10 μs, which is about three to five orders of magnitude larger than the smallest time scales in various tests considered. For the test flames considered, the semi-implicit scheme achieves second order of accuracy in time. Moreover, the errors in quantities of interest are smaller than those from the Strang splitting scheme indicating the accuracy gain when the reaction and transport terms are solved coupled. Results also show that the relative efficiency of different schemes depends on fuel mechanisms and test flames. When the minimum time scale in reactive flows is governed by transport processes instead of chemical reactions, the proposed semi-implicit scheme is more efficient than the splitting scheme. Otherwise, the relative efficiency depends on the cost in sub-iterations for convergence within each time step and in the integration for chemistry substep. Then, the capability of the compressible reacting flow solver and the proposed semi-implicit scheme is demonstrated for capturing the hydrogen detonation waves. Finally, the performance of the proposed method is demonstrated in a two-dimensional hydrogen/air diffusion flame.

  6. Wing flapping with minimum energy

    NASA Technical Reports Server (NTRS)

    Jones, R. T.

    1980-01-01

    A technique employed by Prandtl and Munk is adapted for the case of a wing in flapping motion to determine its lift distribution. The problem may be reduced to one of minimizing induced drag for a specified and periodically varying bending moment at the wing root. It is concluded that two wings in close tandem arrangement, moving in opposite phase, would eliminate the induced aerodynamic losses calculated

  7. Study on the fixed point in crustal deformation before strong earthquake

    NASA Astrophysics Data System (ADS)

    Niu, A.; Li, Y.; Yan, W. Mr

    2017-12-01

    Usually, scholars believe that the fault pre-sliding or expansion phenomenon will be observed near epicenter area before strong earthquake, but more and more observations show that the crust deformation nearby epicenter area is smallest(Zhou, 1997; Niu,2009,2012;Bilham, 2005; Amoruso et al., 2010). The theory of Fixed point t is a branch of mathematics that arises from the theory of topological transformation and has important applications in obvious model analysis. An important precursory was observed by two tilt-meter sets, installed at Wenchuan Observatory in the epicenter area, that the tilt changes were the smallest compared with the other 8 stations around them in one year before the Wenchuan earthquake. To subscribe the phenomenon, we proposed the minimum annual variation range that used as a topological transformation. The window length is 1 year, and the sliding length is 1 day. The convergence of points with minimum annual change in the 3 years before the Wenchuan earthquake is studied. And the results show that the points with minimum deformation amplitude basically converge to the epicenter region before the earthquake. The possible mechanism of fixed point of crustal deformation was explored. Concerning the fixed point of crust deformation, the liquidity of lithospheric medium and the isostasy theory are accepted by many scholars (Bott &Dean, 1973; Merer et al.1988; Molnar et al., 1975,1978; Tapponnier et al., 1976; Wang et al., 2001). To explain the fixed point of crust deformation before earthquakes, we study the plate bending model (Bai, et al., 2003). According to plate bending model and real deformation data, we have found that the earthquake rupture occurred around the extreme point of plate bending, where the velocities of displacement, tilt, strain, gravity and so on are close to zero, and the fixed points are located around the epicenter.The phenomenon of fixed point of crust deformation is different from former understandings about the earthquake rupture precursor. 1) The observations for crust deformation in natural conditions are different with dry and static experiments, and the former had the meaning of stress wave.2)The earthquake rupture has a special triggering mechanism that is different from the experiment with limited scale rock fracture.

  8. The Formation Environment of Jupiter's Moons

    NASA Technical Reports Server (NTRS)

    Turner, Neal; Lee, Man Hoi; Sano, Takayoshi

    2012-01-01

    Do circumjovian disk models have conductivities consistent with the assumed accretion stresses? Broadly, YES, for both minimum-mass and gas-starved models: magnetic stresses are weak in the MM models, as needed to keep the material in place. Stresses are stronger in the gas-starved models, as assumed in deriving the flow to the planet. However, future minimum-mass modeling may need to consider the loss of dust-depleted gas from the surface layers to the planet. The gas-starved models should have stress varying in radius. Dust evolution is a key process for further study, since the recombination occurs on the grains.

  9. Experimental and Theoretical Study on Minimum Achievable Foil Thickness during Asymmetric Rolling

    PubMed Central

    Tang, Delin; Liu, Xianghua; Song, Meng; Yu, Hailiang

    2014-01-01

    Parts produced by microforming are becoming ever smaller. Similarly, the foils required in micro-machines are becoming ever thinner. The asymmetric rolling technique is capable of producing foils that are thinner than those produced by the conventional rolling technique. The difference between asymmetric rolling and conventional rolling is the ‘cross-shear’ zone. However, the influence of the cross-shear zone on the minimum achievable foil thickness during asymmetric rolling is still uncertain. In this paper, we report experiments designed to understand this critical influencing factor on the minimum achievable thickness in asymmetric rolling. Results showed that the minimum achievable thickness of rolled foils produced by asymmetric rolling with a rolling speed ratio of 1.3 can be reduced to about 30% of that possible by conventional rolling technique. Furthermore, the minimum achievable thickness during asymmetric rolling could be correlated to the cross-shear ratio, which, in turn, could be related to the rolling speed ratio. From the experimental results, a formula to calculate the minimum achievable thickness was established, considering the parameters cross-shear ratio, friction coefficient, work roll radius, etc. in asymmetric rolling. PMID:25203265

  10. Modeling for Ultrasonic Health Monitoring of Foams with Embedded Sensors

    NASA Technical Reports Server (NTRS)

    Wang, L.; Rokhlin, S. I.; Rokhlin, Stanislav, I.

    2005-01-01

    In this report analytical and numerical methods are proposed to estimate the effective elastic properties of regular and random open-cell foams. The methods are based on the principle of minimum energy and on structural beam models. The analytical solutions are obtained using symbolic processing software. The microstructure of the random foam is simulated using Voronoi tessellation together with a rate-dependent random close-packing algorithm. The statistics of the geometrical properties of random foams corresponding to different packing fractions have been studied. The effects of the packing fraction on elastic properties of the foams have been investigated by decomposing the compliance into bending and axial compliance components. It is shown that the bending compliance increases and the axial compliance decreases when the packing fraction increases. Keywords: Foam; Elastic properties; Finite element; Randomness

  11. Statistical survey on the magnetic structure in magnetotail current sheets

    NASA Astrophysics Data System (ADS)

    Rong, Z. J.; Wan, W. X.; Shen, C.; Li, X.; Dunlop, M. W.; Petrukovich, A. A.; Zhang, T. L.; Lucek, E.

    2011-09-01

    On the basis of the multipoint magnetic observations of Cluster in the region 15-19 RE downtail, the magnetic field structure in magnetotail current sheet (CS) center is statistically surveyed. It is found that the By component (in GSM coordinates) is distributed mainly within ∣By∣ < 5nT, while the Bz component is mostly positive and distributes mainly within 1˜10 nT. The plane of the magnetic field lines (MFLs) is mostly vertical to the equatorial plane, with the radius of curvature (Rc) of the MFLs being directed earthward and the binormal (perpendicular to the curvature and magnetic field direction) being directed azimuthally westward. The curvature radius of MFLs reaches a minimum, Rc,min, at the CS center and is larger than the corresponding local half thickness of the neutral sheet, h. Statistically, it is found that the overall surface of the CS, with the normal pointing basically along the south-north direction, can be approximated to be a plane parallel to equatorial plane, although the local CS may be flapping and is frequently tilted to the equatorial plane. The tilted CS (normal inclined to the equatorial plane) is apt to be observed near both flanks and is mainly associated with the slippage of magnetic flux tubes. It is statistically verified that the minimum curvature radius, Rc,min, half thickness of neutral sheet, h, and the slipping angle of MFLs, δ, in the CS satisfies h = Rc,min cosδ. The current density, with a mean strength of 4-8 nA/m2, basically flows azimuthally and tangentially to the surface of the CS, from dawn side to the dusk side. There is an obvious dawn-dusk asymmetry of CS, however. For magnetic local times (MLT) ˜21:00-˜01:00, the CS is relatively thinner; the minimum curvature radius of MFLs, Rc,min (0.6-1 RE) and the half-thickness of neutral sheet, h (0.2-0.4 RE), are relatively smaller, and Bz (3-5 nT) and the minimum magnetic field, Bmin (5-7 nT), are weaker. It is also found that negative Bz has a higher probability of occurrence and the cross-tail current density jY is dominant (2-4 nA/m2) in comparison to those values near both flanks. This implies that magnetic activity, e.g., magnetic reconnection and current disruption, could be triggered more frequently in CS with ˜21:00-˜01:00 MLT. Accordingly, if mapped to the region in the auroral ionosphere, it is expected that substorm onset would be optically observed with higher probability for ˜21:00-˜01:00 MLT, which is well in agreement with statistical observations of auroral substorm onset.

  12. Boson peak and Ioffe-Regel criterion in amorphous siliconlike materials: The effect of bond directionality.

    PubMed

    Beltukov, Y M; Fusco, C; Parshin, D A; Tanguy, A

    2016-02-01

    The vibrational properties of model amorphous materials are studied by combining complete analysis of the vibration modes, dynamical structure factor, and energy diffusivity with exact diagonalization of the dynamical matrix and the kernel polynomial method, which allows a study of very large system sizes. Different materials are studied that differ only by the bending rigidity of the interactions in a Stillinger-Weber modelization used to describe amorphous silicon. The local bending rigidity can thus be used as a control parameter, to tune the sound velocity together with local bonds directionality. It is shown that for all the systems studied, the upper limit of the Boson peak corresponds to the Ioffe-Regel criterion for transverse waves, as well as to a minimum of the diffusivity. The Boson peak is followed by a diffusivity's increase supported by longitudinal phonons. The Ioffe-Regel criterion for transverse waves corresponds to a common characteristic mean-free path of 5-7 Å (which is slightly bigger for longitudinal phonons), while the fine structure of the vibrational density of states is shown to be sensitive to the local bending rigidity.

  13. Approximations for column effect in airplane wing spars

    NASA Technical Reports Server (NTRS)

    Warner, Edward P; Short, Mac

    1927-01-01

    The significance attaching to "column effect" in airplane wing spars has been increasingly realized with the passage of time, but exact computations of the corrections to bending moment curves resulting from the existence of end loads are frequently omitted because of the additional labor involved in an analysis by rigorously correct methods. The present report represents an attempt to provide for approximate column effect corrections that can be graphically or otherwise expressed so as to be applied with a minimum of labor. Curves are plotted giving approximate values of the correction factors for single and two bay trusses of varying proportions and with various relationships between axial and lateral loads. It is further shown from an analysis of those curves that rough but useful approximations can be obtained from Perry's formula for corrected bending moment, with the assumed distance between points of inflection arbitrarily modified in accordance with rules given in the report. The discussion of general rules of variation of bending stress with axial load is accompanied by a study of the best distribution of the points of support along a spar for various conditions of loading.

  14. A modified variational method for nonlinear vibration analysis of rotating beams including Coriolis effects

    NASA Astrophysics Data System (ADS)

    Tian, Jiajin; Su, Jinpeng; Zhou, Kai; Hua, Hongxing

    2018-07-01

    This paper presents a general formulation for nonlinear vibration analysis of rotating beams. A modified variational method combined with a multi-segment partitioning technique is employed to derive the free and transient vibration behaviors of the rotating beams. The strain energy and kinetic energy functional are formulated based on the order truncation principle of the fully geometrically nonlinear beam theory. The Coriolis effects as well as nonlinear effects due to the coupling of bending-stretching, bending-twist and twist-stretching are taken into account. The present method relaxes the need to explicitly meet the requirements of the boundary conditions for the admissible functions, and allows the use of any linearly independent, complete basis functions as admissible functions for rotating beams. Moreover, the method is readily used to deal with the nonlinear transient vibration problems for rotating beams subjected to dynamic loads. The accuracy, convergence and efficiency of the proposed method are examined by numerical examples. The influences of Coriolis and centrifugal forces on the vibration behaviors of the beams with various hub radiuses and slenderness ratios and rotating at different angular velocities are also investigated.

  15. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.

    PubMed

    Han, Jun Hee; Kim, Do-Hong; Jeong, Eun Gyo; Lee, Tae-Woo; Lee, Myung Keun; Park, Jeong Woo; Lee, Hoseung; Choi, Kyung Cheol

    2017-05-17

    To keep pace with the era of transparent and deformable electronics, electrode functions should be improved. In this paper, an innovative structure is suggested to overcome the trade-off between optical and electrical properties that commonly arises with transparent electrodes. The structure of double-stacked metal films showed high conductivity (<3 Ω/sq) and high transparency (∼90%) simultaneously. A proper space between two metal films led to high transmittance by an optical phenomenon. The principle of parallel connection allowed the electrode to have high conductivity. In situ fabrication was possible because the only materials composing the electrode were silver and WO 3 , which can be deposited by thermal evaporation. The electrode was flexible enough to withstand 10 000 bending cycles with a 1 mm bending radius. Furthermore, a few μm scale patterning of the electrode was easily implemented by using photolithography, which is widely employed industrially for patterning. Flexible organic light-emitting diodes and a transparent flexible thin-film transistor were successfully fabricated with the proposed electrode. Various practical applications of this electrode to new transparent flexible electronics are expected.

  16. Mechanically Flexible and High-Performance CMOS Logic Circuits.

    PubMed

    Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-10-13

    Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal-oxide-semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices.

  17. New design studies for TRIUMF's ARIEL High Resolution Separator

    NASA Astrophysics Data System (ADS)

    Maloney, J. A.; Baartman, R.; Marchetto, M.

    2016-06-01

    As part of its new Advanced Rare IsotopE Laboratory (ARIEL), TRIUMF is designing a novel High Resolution Separator (HRS) (Maloney et al., 2015) to separate rare isotopes. The HRS has a 180° bend, separated into two 90° magnetic dipoles, bend radius 1.2 m, with an electrostatic multipole corrector between them. Second order correction comes mainly from the dipole edge curvatures, but is intended to be fine-tuned with a sextupole component and a small octupole component in the multipole. This combination is designed to achieve 1:20,000 resolution for a 3 μm (horizontal) and 6 μm (vertical) emittance. A design for the HRS dipole magnets achieves both radial and integral flatness goals of <10-5. A review of the optical design for the HRS is presented, including the study of limiting factors affecting separation, matching and aberration correction. Field simulations from the OPERA-3D (OPERA) [2] models of the dipole magnets are used in COSY Infinity (COSY) (Berz and Makino, 2005) [3] to find and optimize the transfer maps to 3rd order and study residual nonlinearities to 8th order.

  18. Turbulent flow in a 180 deg bend: Modeling and computations

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.

    1989-01-01

    A low Reynolds number k-epsilon turbulence model was presented which yields accurate predictions of the kinetic energy near the wall. The model is validated with the experimental channel flow data of Kreplin and Eckelmann. The predictions are also compared with earlier results from direct simulation of turbulent channel flow. The model is especially useful for internal flows where the inflow boundary condition of epsilon is not easily prescribed. The model partly derives from some observations based on earlier direct simulation results of near-wall turbulence. The low Reynolds number turbulence model together with an existing curvature correction appropriate to spinning cylinder flows was used to simulate the flow in a U-bend with the same radius of curvature as the Space Shuttle Main Engine (SSME) Turn-Around Duct (TAD). The present computations indicate a space varying curvature correction parameter as opposed to a constant parameter as used in the spinning cylinder flows. Comparison with limited available experimental data is made. The comparison is favorable, but detailed experimental data is needed to further improve the curvature model.

  19. Mechanically Flexible and High-Performance CMOS Logic Circuits

    PubMed Central

    Honda, Wataru; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-01-01

    Low-power flexible logic circuits are key components required by the next generation of flexible electronic devices. For stable device operation, such components require a high degree of mechanical flexibility and reliability. Here, the mechanical properties of low-power flexible complementary metal–oxide–semiconductor (CMOS) logic circuits including inverter, NAND, and NOR are investigated. To fabricate CMOS circuits on flexible polyimide substrates, carbon nanotube (CNT) network films are used for p-type transistors, whereas amorphous InGaZnO films are used for the n-type transistors. The power consumption and voltage gain of CMOS inverters are <500 pW/mm at Vin = 0 V (<7.5 nW/mm at Vin = 5 V) and >45, respectively. Importantly, bending of the substrate is not found to cause significant changes in the device characteristics. This is also observed to be the case for more complex flexible NAND and NOR logic circuits for bending states with a curvature radius of 2.6 mm. The mechanical stability of these CMOS logic circuits makes them ideal candidates for use in flexible integrated devices. PMID:26459882

  20. Buckled Thin-Film Transistors and Circuits on Soft Elastomers for Stretchable Electronics.

    PubMed

    Cantarella, Giuseppe; Vogt, Christian; Hopf, Raoul; Münzenrieder, Niko; Andrianakis, Panagiotis; Petti, Luisa; Daus, Alwin; Knobelspies, Stefan; Büthe, Lars; Tröster, Gerhard; Salvatore, Giovanni A

    2017-08-30

    Although recent progress in the field of flexible electronics has allowed the realization of biocompatible and conformable electronics, systematic approaches which combine high bendability (<3 mm bending radius), high stretchability (>3-4%), and low complexity in the fabrication process are still missing. Here, we show a technique to induce randomly oriented and customized wrinkles on the surface of a biocompatible elastomeric substrate, where Thin-Film Transistors (TFTs) and circuits (inverter and logic NAND gates) based on amorphous-IGZO are fabricated. By tuning the wavelength and the amplitude of the wrinkles, the devices are fully operational while bent to 13 μm bending radii as well as while stretched up to 5%, keeping unchanged electrical properties. Moreover, a flexible rectifier is also realized, showing no degradation in the performances while flat or wrapped on an artificial human wrist. As proof of concept, transparent TFTs are also fabricated, presenting comparable electrical performances to the nontransparent ones. The extension of the buckling approach from our TFTs to circuits demonstrates the scalability of the process, prospecting applications in wireless stretchable electronics to be worn or implanted.

  1. Internally supported flexible duct joint. [device for conducting fluids in high pressure systems

    NASA Technical Reports Server (NTRS)

    Kuhn, R. F., Jr. (Inventor)

    1975-01-01

    An internally supported, flexible duct joint for use in conducting fluids under relatively high pressures in systems where relatively large deflection angles must be accommodated is presented. The joint includes a flexible tubular bellows and an elongated base disposed within the bellows. The base is connected through radiating struts to the bellows near mid-portion and to each of the opposite end portions of the bellows through a pivotal connecting body. A motion-controlling linkage is provided for linking the connecting bodies, whereby angular displacement of the joint is controlled and uniformity in the instantaneous bend radius of the duct is achieved as deflection is imposed.

  2. An entropy method for induced drag minimization

    NASA Technical Reports Server (NTRS)

    Greene, George C.

    1989-01-01

    A fundamentally new approach to the aircraft minimum induced drag problem is presented. The method, a 'viscous lifting line', is based on the minimum entropy production principle and does not require the planar wake assumption. An approximate, closed form solution is obtained for several wing configurations including a comparison of wing extension, winglets, and in-plane wing sweep, with and without a constraint on wing-root bending moment. Like the classical lifting-line theory, this theory predicts that induced drag is proportional to the square of the lift coefficient and inversely proportioinal to the wing aspect ratio. Unlike the classical theory, it predicts that induced drag is Reynolds number dependent and that the optimum spanwise circulation distribution is non-elliptic.

  3. Time optimal paths for high speed maneuvering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reister, D.B.; Lenhart, S.M.

    1993-01-01

    Recent theoretical results have completely solved the problem of determining the minimum length path for a vehicle with a minimum turning radius moving from an initial configuration to a final configuration. Time optimal paths for a constant speed vehicle are a subset of the minimum length paths. This paper uses the Pontryagin maximum principle to find time optimal paths for a constant speed vehicle. The time optimal paths consist of sequences of axes of circles and straight lines. The maximum principle introduces concepts (dual variables, bang-bang solutions, singular solutions, and transversality conditions) that provide important insight into the nature ofmore » the time optimal paths. We explore the properties of the optimal paths and present some experimental results for a mobile robot following an optimal path.« less

  4. A viable dipole magnet concept with REBCO CORC® wires and further development needs for high-field magnet applications

    NASA Astrophysics Data System (ADS)

    Wang, Xiaorong; Caspi, Shlomo; Dietderich, Daniel R.; Ghiorso, William B.; Gourlay, Stephen A.; Higley, Hugh C.; Lin, Andy; Prestemon, Soren O.; van der Laan, Danko; Weiss, Jeremy D.

    2018-04-01

    REBCO coated conductors maintain a high engineering current density above 16 T at 4.2 K. That fact will significantly impact markets of various magnet applications including high-field magnets for high-energy physics and fusion reactors. One of the main challenges for the high-field accelerator magnet is the use of multi-tape REBCO cables with high engineering current density in magnet development. Several approaches developing high-field accelerator magnets using REBCO cables are demonstrated. In this paper, we introduce an alternative concept based on the canted cos θ (CCT) magnet design using conductor on round core (CORC®) wires that are wound from multiple REBCO tapes with a Cu core. We report the development and test of double-layer three-turn CCT dipole magnets using CORC® wires at 77 and 4.2 K. The scalability of the CCT design allowed us to effectively develop and demonstrate important magnet technology features such as coil design, winding, joints and testing with minimum conductor lengths. The test results showed that the CCT dipole magnet using CORC® wires was a viable option in developing a REBCO accelerator magnet. One of the critical development needs is to increase the engineering current density of the 3.7 mm diameter CORC® wire to 540 A mm-2 at 21 T, 4.2 K and to reduce the bending radius to 15 mm. This would enable a compact REBCO dipole insert magnet to generate a 5 T field in a background field of 16 T at 4.2 K.

  5. Minimum Weight Design of a Leaf Spring Tapered in Thickness and Width for the Hubble Space Telescope-Space Support Equipment

    NASA Technical Reports Server (NTRS)

    Rodriguez, P. I.

    1990-01-01

    A linear elastic solution to the problem of minimum weight design of cantilever beams with variable width and depth is presented. The solution shown is for the specific application of the Hubble Space Telescope maintenance mission hardware. During these maintenance missions, delicate instruments must be isolated from the potentially damaging vibration environment of the space shuttle cargo bay during the ascent and descent phases. The leaf springs are designed to maintain the isolation system natural frequency at a level where load transmission to the instruments in a minimum. Nonlinear programming is used for the optimization process. The weight of the beams is the objective function with the deflection and allowable bending stress as the constraint equations. The design variables are the width and depth of the beams at both the free and the fixed ends.

  6. Static black hole and vacuum energy: thin shell and incompressible fluid

    NASA Astrophysics Data System (ADS)

    Ho, Pei-Ming; Matsuo, Yoshinori

    2018-03-01

    With the back reaction of the vacuum energy-momentum tensor consistently taken into account, we study static spherically symmetric black-hole-like solutions to the semi-classical Einstein equation. The vacuum energy is assumed to be given by that of 2-dimensional massless scalar fields, as a widely used model in the literature for black holes. The solutions have no horizon. Instead, there is a local minimum in the radius. We consider thin shells as well as incompressible fluid as the matter content of the black-hole-like geometry. The geometry has several interesting features due to the back reaction of vacuum energy. In particular, Buchdahl's inequality can be violated without divergence in pressure, even if the surface is below the Schwarzschild radius. At the same time, the surface of the star can not be far below the Schwarzschild radius for a density not much higher than the Planck scale, and the proper distance from its surface to the origin can be very short even for very large Schwarzschild radius. The results also imply that, contrary to the folklore, in principle the Boulware vacuum can be physical for black holes.

  7. Sensitive zone parameters and curvature radius evaluation for polymer optical fiber curvature sensors

    NASA Astrophysics Data System (ADS)

    Leal-Junior, Arnaldo G.; Frizera, Anselmo; José Pontes, Maria

    2018-03-01

    Polymer optical fibers (POFs) are suitable for applications such as curvature sensors, strain, temperature, liquid level, among others. However, for enhancing sensitivity, many polymer optical fiber curvature sensors based on intensity variation require a lateral section. Lateral section length, depth, and surface roughness have great influence on the sensor sensitivity, hysteresis, and linearity. Moreover, the sensor curvature radius increase the stress on the fiber, which leads on variation of the sensor behavior. This paper presents the analysis relating the curvature radius and lateral section length, depth and surface roughness with the sensor sensitivity, hysteresis and linearity for a POF curvature sensor. Results show a strong correlation between the decision parameters behavior and the performance for sensor applications based on intensity variation. Furthermore, there is a trade-off among the sensitive zone length, depth, surface roughness, and curvature radius with the sensor desired performance parameters, which are minimum hysteresis, maximum sensitivity, and maximum linearity. The optimization of these parameters is applied to obtain a sensor with sensitivity of 20.9 mV/°, linearity of 0.9992 and hysteresis below 1%, which represent a better performance of the sensor when compared with the sensor without the optimization.

  8. Pulsar Emission Geometry and Accelerating Field Strength

    NASA Technical Reports Server (NTRS)

    DeCesar, Megan E.; Harding, Alice K.; Miller, M. Coleman; Kalapotharakos, Constantinos; Parent, Damien

    2012-01-01

    The high-quality Fermi LAT observations of gamma-ray pulsars have opened a new window to understanding the generation mechanisms of high-energy emission from these systems, The high statistics allow for careful modeling of the light curve features as well as for phase resolved spectral modeling. We modeled the LAT light curves of the Vela and CTA I pulsars with simulated high-energy light curves generated from geometrical representations of the outer gap and slot gap emission models. within the vacuum retarded dipole and force-free fields. A Markov Chain Monte Carlo maximum likelihood method was used to explore the phase space of the magnetic inclination angle, viewing angle. maximum emission radius, and gap width. We also used the measured spectral cutoff energies to estimate the accelerating parallel electric field dependence on radius. under the assumptions that the high-energy emission is dominated by curvature radiation and the geometry (radius of emission and minimum radius of curvature of the magnetic field lines) is determined by the best fitting light curves for each model. We find that light curves from the vacuum field more closely match the observed light curves and multiwavelength constraints, and that the calculated parallel electric field can place additional constraints on the emission geometry

  9. Photo-ionization cross-section of donor-related in (In,Ga)N/GaN core/shell under hydrostatic pressure and electric field effects

    NASA Astrophysics Data System (ADS)

    El Ghazi, Haddou; John Peter, A.

    2017-04-01

    Hydrogenic-like donor-impurity related self and induced polarizations, bending energy and photo-ionization cross section in spherical core/shell zinc blende (In,Ga)N/GaN are computed. Based on the variational approach and within effective-mass and one parabolic approximations, the calculations are made under finite potential barrier taking into account of the discontinuity of the effective-mass and the constant dielectric. The photo-ionization cross section is studied according to the photon incident energy considering the effects of hydrostatic pressure, applied electric field, structure's radius, impurity's position and indium composition in the core. It is obtained that the influences mentioned above lead to either blue shifts or redshifts of the resonant peak of the photo-ionization cross section spectrum. The unusual behavior related to the structure radius is discussed which is as a consequence of the finite potential confinement. We have shown that the photo-ionization cross section can be controlled with adjusting the internal and external factors. These properties can be useful for producing some device applications such as quantum dot infrared photodetectors.

  10. Visualization of Secondary Flow Development in High Aspect Ratio Channels with Curvature

    NASA Technical Reports Server (NTRS)

    Meyer, Michael L.; Giuliani, James E.

    1994-01-01

    The results of an experimental project to visually examine the secondary flow structure that develops in curved, high aspect-ratio rectangular channels are presented. The results provide insight into the fluid dynamics within high aspect ratio channels. A water flow test rig constructed out of plexiglass, with an adjustable aspect ratio, was used for these experiments. Results were obtained for a channel geometry with a hydraulic diameter of 10.6 mm (0.417 in.), an aspect ratio of 5.0, and a hydraulic radius to curvature radius ratio of 0.0417. Flow conditions were varied to achieve Reynolds numbers up to 5,100. A new particle imaging velocimetry technique was developed which could resolve velocity information from particles entering and leaving the field of view. Time averaged secondary flow velocity vectors, obtained using this velocimetry technique, are presented for 30 degrees, 60 degrees, and 90 degrees into a 180 degrees bend and at a Reynolds number of 5,100. The secondary flow results suggest the coexistence of both the classical curvature induced vortex pair flow structure and the eddies seen in straight turbulent channel flow.

  11. Mechanical properties and deformation mechanism of Al2O3 determined from in situ transmission electron microscopy compression

    NASA Astrophysics Data System (ADS)

    Lin, Kai-Peng; Stachiv, Ivo; Fang, Te-Hua

    2017-07-01

    The mechanical properties and deformation mechanism of alumina (Al2O3) ceramic nanopillars and microstructures have been studied using in situ transmission electron microscopy (TEM) compression and nanoindentation experiments. It has been found that the Young’s modulus of Al2O3 nanopillars significantly increases with a decrease of its thickness; it ranges from 54.8 GPa for the nanopillar of radius 175 nm to 347.5 GPa for the one of radius of 75 nm. The hardness of Al2O3 microstructures estimated by the nanoindentation is between 3.19 to 20.60 GPa. The Raman spectra of Al2O3 substrate has a production peak (577.3 cm-1) between 418.3 and 645.2 (cm-1) peaks. The strain hardening behavior of Al2O3 microstructures has been observed and the impact of size on the compressive and bending behavior of Al2O3 micro-pillared structures is also examined and explained.

  12. Robotic Arm Comprising Two Bending Segments

    NASA Technical Reports Server (NTRS)

    Mehling, Joshua S.; Difler, Myron A.; Ambrose, Robert O.; Chu, Mars W.; Valvo, Michael C.

    2010-01-01

    The figure shows several aspects of an experimental robotic manipulator that includes a housing from which protrudes a tendril- or tentacle-like arm 1 cm thick and 1 m long. The arm consists of two collinear segments, each of which can be bent independently of the other, and the two segments can be bent simultaneously in different planes. The arm can be retracted to a minimum length or extended by any desired amount up to its full length. The arm can also be made to rotate about its own longitudinal axis. Some prior experimental robotic manipulators include single-segment bendable arms. Those arms are thicker and shorter than the present one. The present robotic manipulator serves as a prototype of future manipulators that, by virtue of the slenderness and multiple- bending capability of their arms, are expected to have sufficient dexterity for operation within spaces that would otherwise be inaccessible. Such manipulators could be especially well suited as means of minimally invasive inspection during construction and maintenance activities. Each of the two collinear bending arm segments is further subdivided into a series of collinear extension- and compression-type helical springs joined by threaded links. The extension springs occupy the majority of the length of the arm and engage passively in bending. The compression springs are used for actively controlled bending. Bending is effected by means of pairs of antagonistic tendons in the form of spectra gel spun polymer lines that are attached at specific threaded links and run the entire length of the arm inside the spring helix from the attachment links to motor-driven pulleys inside the housing. Two pairs of tendons, mounted in orthogonal planes that intersect along the longitudinal axis, are used to effect bending of each segment. The tendons for actuating the distal bending segment are in planes offset by an angle of 45 from those of the proximal bending segment: This configuration makes it possible to accommodate all eight tendons at the same diameter along the arm. The threaded links have central bores through which power and video wires can be strung (1) from a charge-coupled-device camera mounted on the tip of the arms (2) back along the interior of the arm into the housing and then (3) from within the housing to an external video monitor.

  13. ZERODUR: bending strength data for etched surfaces

    NASA Astrophysics Data System (ADS)

    Hartmann, Peter; Leys, Antoine; Carré, Antoine; Kerz, Franca; Westerhoff, Thomas

    2014-07-01

    In a continuous effort since 2007 a considerable amount of new data and information has been gathered on the bending strength of the extremely low thermal expansion glass ceramic ZERODUR®. By fitting a three parameter Weibull distribution to the data it could be shown that for homogenously ground surfaces minimum breakage stresses exist lying much higher than the previously applied design limits. In order to achieve even higher allowable stress values diamond grain ground surfaces have been acid etched, a procedure widely accepted as strength increasing measure. If surfaces are etched taking off layers with thickness which are comparable to the maximum micro crack depth of the preceding grinding process they also show statistical distributions compatible with a three parameter Weibull distribution. SCHOTT has performed additional measurement series with etch solutions with variable composition testing the applicability of this distribution and the possibility to achieve further increase of the minimum breakage stress. For long term loading applications strength change with time and environmental media are important. The parameter needed for prediction calculations which is combining these influences is the stress corrosion constant. Results from the past differ significantly from each other. On the basis of new investigations better information will be provided for choosing the best value for the given application conditions.

  14. Projection Moire Interferometry for Rotorcraft Applications: Deformation Measurements of Active Twist Rotor Blades

    NASA Technical Reports Server (NTRS)

    Fleming, Gary A.; Soto, Hector L.; South, Bruce W.

    2002-01-01

    Projection Moire Interferometry (PMI) has been used during wind tunnel tests to obtain azimuthally dependent blade bending and twist measurements for a 4-bladed Active Twist Rotor (ATR) system in simulated forward flight. The ATR concept offers a means to reduce rotor vibratory loads and noise by using piezoelectric active fiber composite actuators embedded in the blade structure to twist each blade as they rotate throughout the rotor azimuth. The twist imparted on the blades for blade control causes significant changes in blade loading, resulting in complex blade deformation consisting of coupled bending and twist. Measurement of this blade deformation is critical in understanding the overall behavior of the ATR system and the physical mechanisms causing the reduction in rotor loads and noise. PMI is a non-contacting, video-based optical measurement technique capable of obtaining spatially continuous structural deformation measurements over the entire object surface within the PMI system field-of-view. When applied to rotorcraft testing, PMI can be used to measure the azimuth-dependent blade bending and twist along the full span of the rotor blade. This paper presents the PMI technique as applied to rotorcraft testing, and provides results obtained during the ATR tests demonstrating the PMI system performance. PMI measurements acquired at select blade actuation conditions generating minimum and maximum rotor loads are provided to explore the interrelationship between rotor loads, blade bending, and twist.

  15. Multidirectional volar fixed-angle plating using cancellous locking screws for distal radius fractures--evaluation of three screw configurations in an extra-articular fracture model.

    PubMed

    Weninger, Patrick; Dall'Ara, Enrico; Drobetz, Herwig; Nemec, Wolfgang; Figl, Markus; Redl, Heinz; Hertz, Harald; Zysset, Philippe

    2011-01-01

    Volar fixed-angle plating is a popular treatment for unstable distal radius fractures. Despite the availability of plating systems for treating distal radius fractures, little is known about the mechanical properties of multidirectional fixed-angle plates. The aim of this study was to compare the primary fixation stability of three possible screw configurations in a distal extra-articular fracture model using a multidirectional fixed-angle plate with metaphyseal cancellous screws distally. Eighteen Sawbones radii (Sawbones, Sweden, model# 1027) were used to simulate an extra-articular distal radius fracture according to AO/OTA 23 A3. Plates were fixed to the shaft with one non-locking screw in the oval hole and two locking screws as recommended by the manufacturer. Three groups (n = 6) were defined by screw configuration in the distal metaphyseal fragment: Group 1: distal row of screws only; Group 2: 2 rows of screws, parallel insertion; Group 3: 2 rows of screws, proximal screws inserted with 30° of inclination. Specimens underwent mechanical testing under axial compression within the elastic range and load controlled between 20 N and 200 N at a rate of 40 N/s. Axial stiffness and type of construct failure were recorded. There was no difference regarding axial stiffness between the three groups. In every specimen, failure of the Sawbone-implant-construct occurred as plastic bending of the volar titanium plate when the dorsal wedge was closed. Considering the limitations of the study, the recommendation to use two rows of screws or to place screws in the proximal metaphyseal row with inclination cannot be supported by our mechanical data.

  16. Large radius of curvature measurement based on the evaluation of interferogram-quality metric in non-null interferometry

    NASA Astrophysics Data System (ADS)

    Yang, Zhongming; Dou, Jiantai; Du, Jinyu; Gao, Zhishan

    2018-03-01

    Non-null interferometry could use to measure the radius of curvature (ROC), we have presented a virtual quadratic Newton rings phase-shifting moiré-fringes measurement method for large ROC measurement (Yang et al., 2016). In this paper, we propose a large ROC measurement method based on the evaluation of the interferogram-quality metric by the non-null interferometer. With the multi-configuration model of the non-null interferometric system in ZEMAX, the retrace errors and the phase introduced by the test surface are reconstructed. The interferogram-quality metric is obtained by the normalized phase-shifted testing Newton rings with the spherical surface model in the non-null interferometric system. The radius curvature of the test spherical surface can be obtained until the minimum of the interferogram-quality metric is found. Simulations and experimental results are verified the feasibility of our proposed method. For a spherical mirror with a ROC of 41,400 mm, the measurement accuracy is better than 0.13%.

  17. Alcohol sensor based on u-bent hetero-structured fiber optic

    NASA Astrophysics Data System (ADS)

    Patrialova, Sefi N.; Hatta, Agus M.; Sekartedjo, Sekartedjo

    2016-11-01

    A sensor based on a fiber optic hetero-structure to determine the concentration of alcohol has been proposed. The structure of the sensing probe in this research is a singlemode-multimode-singlemode (SMS) which bent into Ushaped and soon called as SMS u-bent. The SMS structure was chosen to get a higher sensitivity. This research utilizes the principle of multimode interference and evanescent field by modifying the cladding with various alcohol concentration. Testing of the sensor's performance has been done by measuring the sensor's power output response to the length of the SMS fiber optic, bending diameter, and alcohol concentration. Based on the experiment result, the ubent SMS fiber optic with 50 mm bending diameter and 63 mm MMF lenght has the highest sensitivity, 3.87 dB/% and the minimum resolution, 0.26 x 10-3 %.

  18. Quantum dynamics of the Einstein-Rosen wormhole throat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunstatter, Gabor; Peltola, Ari; Louko, Jorma

    2011-02-15

    We consider the polymer quantization of the Einstein wormhole throat theory for an eternal Schwarzschild black hole. We numerically solve the difference equation describing the quantum evolution of an initially Gaussian, semiclassical wave packet. As expected from previous work on loop quantum cosmology, the wave packet remains semiclassical until it nears the classical singularity at which point it enters a quantum regime in which the fluctuations become large. The expectation value of the radius reaches a minimum as the wave packet is reflected from the origin and emerges to form a near-Gaussian but asymmetrical semiclassical state at late times. Themore » value of the minimum depends in a nontrivial way on the initial mass/energy of the pulse, its width, and the polymerization scale. For wave packets that are sufficiently narrow near the bounce, the semiclassical bounce radius is obtained. Although the numerics become difficult to control in this limit, we argue that for pulses of finite width the bounce persists as the polymerization scale goes to zero, suggesting that in this model the loop quantum gravity effects mimicked by polymer quantization do not play a crucial role in the quantum bounce.« less

  19. A method for determining the radius of an open cluster from stellar proper motions

    NASA Astrophysics Data System (ADS)

    Sánchez, Néstor; Alfaro, Emilio J.; López-Martínez, Fátima

    2018-04-01

    We propose a method for calculating the radius of an open cluster in an objective way from an astrometric catalogue containing, at least, positions and proper motions. It uses the minimum spanning tree in the proper motion space to discriminate cluster stars from field stars and it quantifies the strength of the cluster-field separation by means of a statistical parameter defined for the first time in this paper. This is done for a range of different sampling radii from where the cluster radius is obtained as the size at which the best cluster-field separation is achieved. The novelty of this strategy is that the cluster radius is obtained independently of how its stars are spatially distributed. We test the reliability and robustness of the method with both simulated and real data from a well-studied open cluster (NGC 188), and apply it to UCAC4 data for five other open clusters with different catalogued radius values. NGC 188, NGC 1647, NGC 6603, and Ruprecht 155 yielded unambiguous radius values of 15.2 ± 1.8, 29.4 ± 3.4, 4.2 ± 1.7, and 7.0 ± 0.3 arcmin, respectively. ASCC 19 and Collinder 471 showed more than one possible solution, but it is not possible to know whether this is due to the involved uncertainties or due to the presence of complex patterns in their proper motion distributions, something that could be inherent to the physical object or due to the way in which the catalogue was sampled.

  20. Molecular simulation of dispersion and mechanical stability of organically modified layered silicates in polymer matrices

    NASA Astrophysics Data System (ADS)

    Fu, Yao-Tsung

    The experimental analysis of nanometer-scale separation processes and mechanical properties at buried interfaces in nanocomposites has remained difficult. We have employed molecular dynamics simulation in relation to available experimental data to alleviate such limitations and gain insight into the dispersion and mechanical stability of organically modified layered silicates in hydrophobic polymer matrices. We analyzed cleavage energies of various organically modified silicates as a function of the cation exchange capacity, surfactant head group chemistry, and chain length using MD simulations with the PCFF-PHYLLOSILICATE force field. The range of the cleavage energy is between 25 and 210 mJ/m2 upon the molecular structures and packing of surfactants. As a function of chain length, the cleavage energy indicates local minima for interlayer structures comprised of loosely packed layers of alkyl chains and local maxima for interlayer structures comprised of densely packed layers of alkyl chains between the layers. In addition, the distribution of cationic head groups between the layers in the equilibrium state determines whether large increases in cleavage energy due to Coulomb attraction. We have also examined mechanical bending and failure mechanisms of layered silicates on the nanometer scale using molecular dynamics simulation in comparison to a library of TEM data of polymer nanocomposites. We investigated the energy of single clay lamellae as a function of bending radius and different cation density. The layer energy increases particularly for bending radii below 20 nm and is largely independent of cation exchange capacity. The analysis of TEM images of agglomerated and exfoliated aluminosilicates of different CEC in polymer matrices at small volume fractions showed bending radii in excess of 100 nm due to free volumes in the polymer matrix. At a volume fraction >5%, however, bent clay layers were found with bending radii <20 nm and kinks as a failure mechanism in good agreement with simulation results. We have examined thermal conductivity of organically modified layered silicates using molecular dynamics simulation in comparison to experimental results by laser measurement. The thermal conductivity slightly increased from 0.08 to 0.14 Wm-1K-1 with increasing chain length, related to the gallery spacing and interlayer density of the organic material.

  1. Role of the membrane cortex in neutrophil deformation in small pipets.

    PubMed Central

    Zhelev, D V; Needham, D; Hochmuth, R M

    1994-01-01

    The simplest model for a neutrophil in its "passive" state views the cell as consisting of a liquid-like cytoplasmic region surrounded by a membrane. The cell surface is in a state of isotropic contraction, which causes the cell to assume a spherical shape. This contraction is characterized by the cortical tension. The cortical tension shows a weak area dilation dependence, and it determines the elastic properties of the cell for small curvature deformations. At high curvature deformations in small pipets (with internal radii less than 1 micron), the measured critical suction pressure for cell flow into the pipet is larger than its estimate from the law of Laplace. A model is proposed where the region consisting of the cytoplasm membrane and the underlying cortex (having a finite thickness) is introduced at the cell surface. The mechanical properties of this region are characterized by the apparent cortical tension (defined as a free contraction energy per unit area) and the apparent bending modulus (introduced as a bending free energy per unit area) of its middle plane. The model predicts that for small curvature deformations (in pipets having radii larger than 1.2 microns) the role of the cortical thickness and the resistance for bending of the membrane-cortex complex is negligible. For high curvature deformations, they lead to elevated suction pressures above the values predicted from the law of Laplace. The existence of elevated suction pressures for pipets with radii from 1 micron down to 0.24 micron is found experimentally. The measured excess suction pressures cannot be explained only by the modified law of Laplace (for a cortex with finite thickness and negligible bending resistance), because it predicts unacceptable high cortical thicknesses (from 0.3 to 0.7 micron). It is concluded that the membrane-cortex complex has an apparent bending modulus from 1 x 10(-18) to 2 x 10(-18) J for a cortex with a thickness from 0.1 micron down to values much smaller than the radius of the smallest pipet (0.24 micron) used in this study. Images FIGURE 1 PMID:7948682

  2. Approximate minimum-time trajectories for 2-link flexible manipulators

    NASA Technical Reports Server (NTRS)

    Eisler, G. R.; Segalman, D. J.; Robinett, R. D.

    1989-01-01

    Powell's nonlinear programming code, VF02AD, was used to generate approximate minimum-time tip trajectories for 2-link semi-rigid and flexible manipulator movements in the horizontal plane. The manipulator is modeled with an efficient finite-element scheme for an n-link, m-joint system with horizontal-plane bending only. Constraints on the trajectory include boundary conditions on position and energy for a rest-to-rest maneuver, straight-line tracking between boundary positions, and motor torque limits. Trajectory comparisons utilize a change in the link stiffness, EI, to transition from the semi-rigid to flexible case. Results show the level of compliance necessary to excite significant modal behavior. Quiescence of the final configuration is examined with the finite-element model.

  3. Controlling coupled bending-twisting vibrations of anisotropic composite wing

    NASA Astrophysics Data System (ADS)

    Ryabov, Victor; Yartsev, Boris

    2018-05-01

    The paper discusses the possibility to control coupled bending-twisting vibrations of anisotropic composite wing by means of the monoclinic structures in the reinforcement of the plating. Decomposing the potential straining energy and kinetic energy of natural vibration modes into interacting and non-interacting parts, it became possible to introduce the two coefficients that integrally consider the effect of geometry and reinforcement structure upon the dynamic response parameters of the wing. The first of these coefficients describes the elastic coupling of the natural vibration modes, the second coefficient describes the inertial one. The paper describes the numerical studies showing how the orientation of considerably anisotropic CRP layers in the plating affects natural frequencies, loss factors, coefficients of elastic and inertial coupling for several lower tones of natural bending-twisting vibrations of the wing. Besides, for each vibration mode, partial values of the above mentioned dynamic response parameters were determined by means of the relationships for orthotropic structures where instead of "free" shearing modulus in the reinforcement plant, "pure" shearing modulus is used. Joint analysis of the obtained results has shown that each pair of bending-twisting vibration modes has its orientation angle ranges of the reinforcing layers where the inertial coupling caused by asymmetry of the cross-section profile with respect to the main axes of inertia decreases, down to the complete extinction, due to the generation of the elastic coupling in the plating material. These ranges are characterized by the two main features: 1) the difference in the natural frequencies of the investigated pair of bending-twisting vibration modes is the minimum and 2) natural frequencies of bending-twisting vibrations belong to a stretch restricted by corresponding partial natural frequencies of the investigated pair of vibration modes. This result is of practical importance because it enables approximate analysis of real composite wings with complex geometry in the existing commercial software packages.

  4. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    NASA Astrophysics Data System (ADS)

    Han, Huixian; Li, Anyang; Guo, Hua

    2014-12-01

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S0) electronic state has been constructed by fitting ˜37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm-1. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies up to 12 700 cm-1 above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.

  5. The bending stiffness of shoes is beneficial to running energetics if it does not disturb the natural MTP joint flexion.

    PubMed

    Oh, Keonyoung; Park, Sukyung

    2017-02-28

    A local minimum for running energetics has been reported for a specific bending stiffness, implying that shoe stiffness assists in running propulsion. However, the determinant of the metabolic optimum remains unknown. Highly stiff shoes significantly increase the moment arm of the ground reaction force (GRF) and reduce the leverage effect of joint torque at ground push-off. Inspired by previous findings, we hypothesized that the restriction of the natural metatarsophalangeal (MTP) flexion caused by stiffened shoes and the corresponding joint torque changes may reduce the benefit of shoe bending stiffness to running energetics. We proposed the critical stiffness, k cr , which is defined as the ratio of the MTP joint (MTPJ) torque to the maximal MTPJ flexion angle, as a possible threshold of the elastic benefit of shoe stiffness. 19 subjects participated in a running test while wearing insoles with five different bending stiffness levels. Joint angles, GRFs, and metabolic costs were measured and analyzed as functions of the shoe stiffness. No significant changes were found in the take-off velocity of the center of mass (CoM), but the horizontal ground push-offs were significantly reduced at different shoe stiffness levels, indicating that complementary changes in the lower-limb joint torques were introduced to maintain steady running. Slight increases in the ankle, knee, and hip joint angular impulses were observed at stiffness levels exceeding the critical stiffness, whereas the angular impulse at the MTPJ was significantly reduced. These results indicate that the shoe bending stiffness is beneficial to running energetics if it does not disturb the natural MTPJ flexion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. An enhanced computational method for age-at-death estimation based on the pubic symphysis using 3D laser scans and thin plate splines.

    PubMed

    Stoyanova, Detelina; Algee-Hewitt, Bridget F B; Slice, Dennis E

    2015-11-01

    The pubic symphysis is frequently used to estimate age-at-death from the adult skeleton. Assessment methods require the visual comparison of the bone morphology against age-informative characteristics that represent a series of phases. Age-at-death is then estimated from the age-range previously associated with the chosen phase. While easily executed, the "morphoscopic" process of feature-scoring and bone-to-phase-matching is known to be subjective. Studies of method and practitioner error demonstrate a need for alternative tools to quantify age-progressive change in the pubic symphysis. This article proposes a more objective, quantitative method that analyzes three-dimensional (3D) surface scans of the pubic symphysis using a thin plate spline algorithm (TPS). This algorithm models the bending of a flat plane to approximately match the surface of the bone and minimizes the bending energy required for this transformation. Known age-at-death and bending energy were used to construct a linear model to predict age from observed bending energy. This approach is tested with scans from 44 documented white male skeletons and 12 casts. The results of the surface analysis show a significant association (regression p-value = 0.0002 and coefficient of determination = 0.2270) between the minimum bending energy and age-at-death, with a root mean square error of ≈19 years. This TPS method yields estimates comparable to established methods but offers a fully integrated, objective and quantitative framework of analysis and has potential for use in archaeological and forensic casework. © 2015 Wiley Periodicals, Inc.

  7. Circular lasers for telecommunications and rf/photonics applications

    NASA Astrophysics Data System (ADS)

    Griffel, Giora

    2000-04-01

    Following a review of ring resonator research in the past decade we shall report a novel bi-level etching technique that permits the use of standard photolithography for coupling to deeply-etched ring resonator structures. The technique is employed to demonstrate InGaAsP laterally- coupled racetrack ring resonators laser with record low threshold currents of 66 mA. The racetrack laser have curved sections of 150 micrometers radius with negligible bending loss. The lasers operate CW single mode up to nearly twice threshold with a 26 dB side-mode-suppression ratio. We shall also present a transfer matrix formalism for the analysis of ring resonator arrays and indicate application examples for flat band filter synthesis.

  8. Experimental study of plastic responses of pipe elbows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenstreet, W.L.

    Load-deflection responses were determined experimentally for sixteen 152.4-mm (6-in.) (nominal) commercial carbon steel pipe elbows and four 152.4-mm (6-in.) stainless steel elbows. Each specimen was loaded with an external force of sufficient magnitude to produce predominantly plastic response. The influences of bend radius and wall thickness were studied, as well as the effect of internal prssure on load-deflection behavior. Comparisons of results from stainless steel and from carbon steel elbows indicate differences in responses attributable to material differences. The results were interpreted in terms of limit analysis concepts, and collapse loads were determined. Trends given by the collapse loads aremore » identified and discussed.« less

  9. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1981-01-01

    An approximate solution was obtained for a cylindrical shell containing a part-through surface crack. It was assumed that the shell contains a circumferential or axial semi-elliptic internal or external surface crack and was subjected to a uniform membrane loading or a uniform bending moment away from the crack region. A Reissner type theory was used to account for the effects of the transverse shear deformations. The stress intensity factor at the deepest penetration point of the crack was tabulated for bending and membrane loading by varying three dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided by the results of the elasticity solution obtained from the axisymmetric crack problem for the circumferential crack, and that found from the plane strain problem for a circular ring having a radial crack for the axial crack. The line-spring model gives the expected results in comparison with the elasticity solutions. Results also compare well with the existing finite element solution of the pressurized cylinder containing an internal semi-elliptic surface crack.

  10. Flow and Heat Transfer Tests in New Loop at 2757 kPa (400 psi)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Woloshun, Keith Albert

    2016-06-13

    A helium flow and heat transfer experiment has been designed for the new helium flow loop facility at LANL. This new facility is centered on an Aerzen GM 12.4 Root’s blower, selected for operation at higher pressure, up to 2757 kPa, and mass flow rate, up to 400 g/s. This replaces the previous Tuthill PD plus 3206 blower and loop limited to 2067 kPa (300 psi) and 100 g/s. The resistively heated test piece is comprised of 7 electric heaters with embedded thermocouples. The plant design for the Mo100 to Mo99 targets requires sharp bends and geometry changes in themore » helium flow tube immediately before and after the target. An idealized fully developed flow configuration with straight entry and exit will be tested and compared with an option that employs rectangular tubing to make the bend at a radius consistent with and practical for the actual plant design. The current plant design, with circular tubing and a sudden contraction to rectangular just prior to target entrance, will also be tested. This requires some modification of the test piece, as described in the report.« less

  11. Doehlert experimental design applied to optimization of light emitting textile structures

    NASA Astrophysics Data System (ADS)

    Oguz, Yesim; Cochrane, Cedric; Koncar, Vladan; Mordon, Serge R.

    2016-07-01

    A light emitting fabric (LEF) has been developed for photodynamic therapy (PDT) for the treatment of dermatologic diseases such as Actinic Keratosis (AK). A successful PDT requires homogenous and reproducible light with controlled power and wavelength on the treated skin area. Due to the shape of the human body, traditional PDT with external light sources is unable to deliver homogenous light everywhere on the skin (head vertex, hand, etc.). For better light delivery homogeneity, plastic optical fibers (POFs) have been woven in textile in order to emit laterally the injected light. The previous studies confirmed that the light power could be locally controlled by modifying the radius of POF macro-bendings within the textile structure. The objective of this study is to optimize the distribution of macro-bendings over the LEF surface in order to increase the light intensity (mW/cm2), and to guarantee the best possible light deliver homogeneity over the LEF which are often contradictory. Fifteen experiments have been carried out with Doehlert experimental design involving Response Surface Methodology (RSM). The proposed models are fitted to the experimental data to enable the optimal set up of the warp yarns tensions.

  12. A novel C-shaped, gold nanoparticle coated, embedded polymer waveguide for localized surface plasmon resonance based detection.

    PubMed

    Prabhakar, Amit; Mukherji, Soumyo

    2010-12-21

    In this study, a novel embedded optical waveguide based sensor which utilizes localized surface plasmon resonance of gold nanoparticles coated on a C-shaped polymer waveguide is being reported. The sensor, as designed, can be used as an analysis chip for detection of minor variations in the refractive index of its microenvironment, which makes it suitable for wide scale use as an affinity biosensor. The C-shaped waveguide coupled with microfluidic channel was fabricated by single step patterning of SU8 on an oxidized silicon wafer. The absorbance due to the localized surface plasmon resonance (LSPR) of SU8 waveguide bound gold nano particle (GNP) was found to be linear with refractive index changes between 1.33 and 1.37. A GNP coated C-bent waveguide of 200 μ width with a bend radius of 1 mm gave rise to a sensitivity of ~5 ΔA/RIU at 530 nm as compared to the ~2.5 ΔA/RIU (refractive index units) of the same dimension bare C-bend SU8 waveguide. The resolution of the sensor probe was ~2 × 10(-4) RIU.

  13. Extremely flexible, transparent, and strain-sensitive electroluminescent device based on ZnS:Cu-polyvinyl butyral composite and silver nanowires

    NASA Astrophysics Data System (ADS)

    Jun, Sungwoo; Kim, Youngmin; Ju, Byeong-Kwon; Kim, Jong-Woong

    2018-01-01

    A multifunctional alternate current electroluminescent device (ACEL) was achieved by compositing ZnS:Cu particles in polyvinyl butyral (PVB) with two layers of percolated silver nanowire (AgNW) electrodes. The strong hydrogen bonding interactions and entanglement of PVB chains considerably strengthened the PVB, and thus, the cured mixture of ZnS:Cu particles and freestanding PVB required no additional support. The device was fabricated by embedding AgNWs on both sides of the ZnS:Cu-PVB composite film using an inverted layer process and intense-pulsed-light treatment. The strong affinity of PVB to the polyvinyl pyrrolidone (PVP) layer, which capped the AgNWs, mechanically stabilized the device to such an extent that it could resist 10,000 bending cycles under a curvature radius of 500 μm. Using AgNW networks in both the top and bottom electrodes made a double-sided light-emitting device that could be applied to wearable lightings or flexible digital signage. The capacitance formed in the device sensitively varied with the applied bending and unfolding, thus demonstrating that the device can also be used as a deformation sensor.

  14. Simulating Army-Relevant Spur Gear Contacts with a Ball-on-Disc Tribometer

    DTIC Science & Technology

    2015-09-01

    on Steel Ceramic on Ceramic 23 amount of run in is a parameter that must be considered when simulating gear or bearing contacts, and can even be...minimum track diameters.......................19 Fig. 13 Hertzian contact stress for steel and ceramic contacts ............................21 Fig...14 Contact radius for steel and ceramic contacts .........................................21 Fig. 15 Contact area for steel and ceramic contacts

  15. Bubble formation in water with addition of a hydrophobic solute.

    PubMed

    Okamoto, Ryuichi; Onuki, Akira

    2015-07-01

    We show that phase separation can occur in a one-component liquid outside its coexistence curve (CX) with addition of a small amount of a solute. The solute concentration at the transition decreases with increasing the difference of the solvation chemical potential between liquid and gas. As a typical bubble-forming solute, we consider O2 in ambient liquid water, which exhibits mild hydrophobicity and its critical temperature is lower than that of water. Such a solute can be expelled from the liquid to form gaseous domains while the surrounding liquid pressure is higher than the saturated vapor pressure p cx. This solute-induced bubble formation is a first-order transition in bulk and on a partially dried wall, while a gas film grows continuously on a completely dried wall. We set up a bubble free energy ΔG for bulk and surface bubbles with a small volume fraction ϕ. It becomes a function of the bubble radius R under the Laplace pressure balance. Then, for sufficiently large solute densities above a threshold, ΔG exhibits a local maximum at a critical radius and a minimum at an equilibrium radius. We also examine solute-induced nucleation taking place outside CX, where bubbles larger than the critical radius grow until attainment of equilibrium.

  16. Assimilation of Tropical Cyclone Track and Wind Radius Data with an Ensemble Kalman Filter

    NASA Astrophysics Data System (ADS)

    Kunii, M.

    2014-12-01

    Improving tropical cyclone (TC) forecasts is one of the most important issues in meteorology, but TC intensity forecasts are a challenging task. Because the lack of observations near TCs usually results in degraded accuracy of initial fields, utilizing TC advisory data in data assimilation typically has started with an ensemble Kalman filtering (EnKF). In this study, TC intensity and position information was directly assimilated using the EnKF, and the impact of these observations was investigated by comparing different assimilation strategies. Another experiment with TC wind radius data was carried out to examine the influence of TC shape parameters. Sensitivity experiments indicated that the assimilation of TC intensity and position data yielded results that were superior to those based on conventional assimilation of TC minimum sea level pressure as a standard surface pressure observation. Assimilation of TC radius data modified TC outer circulations closer to observations. The impacts of these TC parameters were also evaluated using the case of Typhoon Talas in 2011. The TC intensity, position, and wind radius data led to improved TC track forecasts and thence to improved precipitation forecasts. These results imply that initialization with these TC-related observations benefits TC forecasts, offering promise for the prevention and mitigation of natural disasters caused by TCs.

  17. Modeling postshock evolution of large electropores

    NASA Astrophysics Data System (ADS)

    Neu, John C.; Krassowska, Wanda

    2003-02-01

    The Smoluchowski equation (SE), which describes the evolution of pores created by electric shocks, cannot be applied to modeling large and long-lived pores for two reasons: (1) it does not predict pores of radius above 20 nm without also predicting membrane rupture; (2) it does not predict postshock growth of pores. This study proposes a model in which pores are coupled by membrane tension, resulting in a nonlinear generalization of SE. The predictions of the model are explored using examples of homogeneous (all pore radii r are equal) and heterogeneous (0⩽r⩽rmax) distributions of pores. Pores in a homogeneous population either shrink to zero or assume a stable radius corresponding to the minimum of the bilayer energy. For a heterogeneous population, such a stable radius does not exist. All pores, except rmax, shrink to zero and rmax grows to infinity. However, the unbounded growth of rmax is not physical because the number of pores per cell decreases in time and the continuum model loses validity. When the continuum formulation is replaced by the discrete one, the model predicts the coarsening process: all pores, except rmax, shrink to zero and rmax assumes a stable radius. Thus, the model with tension-coupled pores does not predict membrane rupture and the predicted postshock growth of pores is consistent with experimental evidence.

  18. Adhesive behavior of micro/nano-textured surfaces

    NASA Astrophysics Data System (ADS)

    Zhang, Yuyan; Wang, Xiaoli; Li, Hanqing; Wang, Ben

    2015-02-01

    A numerical model of the adhesive contact between a rigid smooth sphere and an elastic textured surface based on the Lennard-Jones interatomic potential law and the Hamaker summation method is established. Textures are considered by introducing the texture height distribution into the gap equation. Simulation results show that the pull-off force on textured surfaces decreases compared to that on smooth surfaces. Furthermore, effects of sphere-shaped textures on reducing adhesion are more obvious than cylinder-shaped or cube-shaped textures when the coverage area ratio, maximum height and interval of textures are fixed. For surfaces with sphere-shaped textures, variation trends of the mean pull-off force with texture density are not monotonous, and there exists a certain range of texture densities in which the mean pull-off force is small and its variation is insignificant. In addition, the pull-off force depends also on the maximum height and radius of textures. On one hand, if the texture radius is fixed, larger maximum height results in smaller pull-off force, and if the maximum height is fixed, the pull-off force tends to increase almost linearly with increases in texture radius. On the other hand, if the height-diameter ratio of textures is fixed, the pull-off force reaches a minimum at an optimum texture radius or maximum height.

  19. Modeling chain folding in protein-constrained circular DNA.

    PubMed Central

    Martino, J A; Olson, W K

    1998-01-01

    An efficient method for sampling equilibrium configurations of DNA chains binding one or more DNA-bending proteins is presented. The technique is applied to obtain the tertiary structures of minimal bending energy for a selection of dinucleosomal minichromosomes that differ in degree of protein-DNA interaction, protein spacing along the DNA chain contour, and ring size. The protein-bound portions of the DNA chains are represented by tight, left-handed supercoils of fixed geometry. The protein-free regions are modeled individually as elastic rods. For each random spatial arrangement of the two nucleosomes assumed during a stochastic search for the global minimum, the paths of the flexible connecting DNA segments are determined through a numerical solution of the equations of equilibrium for torsionally relaxed elastic rods. The minimal energy forms reveal how protein binding and spacing and plasmid size differentially affect folding and offer new insights into experimental minichromosome systems. PMID:9591675

  20. A refined finite element method for bending analysis of laminated plates integrated with piezoelectric fiber-reinforced composite actuators

    NASA Astrophysics Data System (ADS)

    Rouzegar, J.; Abbasi, A.

    2018-03-01

    This research presents a finite element formulation based on four-variable refined plate theory for bending analysis of cross-ply and angle-ply laminated composite plates integrated with a piezoelectric fiber-reinforced composite actuator under electromechanical loading. The four-variable refined plate theory is a simple and efficient higher-order shear deformation theory, which predicts parabolic variation of transverse shear stresses across the plate thickness and satisfies zero traction conditions on the plate free surfaces. The weak form of governing equations is derived using the principle of minimum potential energy, and a 4-node non-conforming rectangular plate element with 8 degrees of freedom per node is introduced for discretizing the domain. Several benchmark problems are solved by the developed MATLAB code and the obtained results are compared with those from exact and other numerical solutions, showing good agreement.

  1. Is Bone Grafting Necessary in the Treatment of Malunited Distal Radius Fractures?

    PubMed Central

    Disseldorp, Dominique J. G.; Poeze, Martijn; Hannemann, Pascal F. W.; Brink, Peter R. G.

    2015-01-01

    Background Open wedge osteotomy with bone grafting and plate fixation is the standard procedure for the correction of malunited distal radius fractures. Bone grafts are used to increase structural stability and to enhance new bone formation. However, bone grafts are also associated with donor site morbidity, delayed union at bone–graft interfaces, size mismatch between graft and osteotomy defect, and additional operation time. Purpose The goal of this study was to assess bone healing and secondary fracture displacement in the treatment of malunited distal radius fractures without the use of bone grafting. Methods Between January 1993 and December 2013, 132 corrective osteotomies and plate fixations without bone grafting were performed for malunited distal radius fractures. The minimum follow-up time was 12 months. Primary study outcomes were time to complete bone healing and secondary fracture displacement. Preoperative and postoperative radiographs during follow-up were compared with each other, as well as with radiographs of the uninjured side. Results All 132 osteotomies healed. In two cases (1.5%), healing took more than 4 months, but reinterventions were not necessary. No cases of secondary fracture displacement or hardware failure were observed. Significant improvements in all radiographic parameters were shown after corrective osteotomy and plate fixation. Conclusion This study shows that bone grafts are not required for bone healing and prevention of secondary fracture displacement after corrective osteotomy and plate fixation of malunited distal radius fractures. Level of evidence Therapeutic, level IV, case series with no comparison group PMID:26261748

  2. Spatially Tailored and Functionally Graded Light-Weight Structures for Optimum Mechanical Performance

    DTIC Science & Technology

    2008-01-15

    grading scheme involves embedding particles only in the outer layers of a laminate , achieving maximal increases in bending stiffness with a minimum...by Eq. (19), with d=2. Longitudinal-transverse shear modulus The shear modulus for distortion of the laminate in axes with one direction aligned...The effective Poisson’s ratio νeLT is dictated by the other material constants of the laminate (Hill, 1964; Torquato, 2001): 12 νe LT = ν f + ν

  3. Design of composite scaffolds and three-dimensional shape analysis for tissue-engineered ear

    PubMed Central

    Cervantes, Thomas M.; Bassett, Erik K.; Tseng, Alan; Kimura, Anya; Roscioli, Nick; Randolph, Mark A.; Vacanti, Joseph P.; Hadlock, Theresa A.; Gupta, Rajiv; Pomerantseva, Irina; Sundback, Cathryn A.

    2013-01-01

    Engineered cartilage is a promising option for auricular reconstruction. We have previously demonstrated that a titanium wire framework within a composite collagen ear-shaped scaffold helped to maintain the gross dimensions of the engineered ear after implantation, resisting the deformation forces encountered during neocartilage maturation and wound healing. The ear geometry was redesigned to achieve a more accurate aesthetic result when implanted subcutaneously in a nude rat model. A non-invasive method was developed to assess size and shape changes of the engineered ear in three dimensions. Computer models of the titanium framework were obtained from CT scans before and after implantation. Several parameters were measured including the overall length, width and depth, the minimum intrahelical distance and overall curvature values for each beam section within the framework. Local curvature values were measured to gain understanding of the bending forces experienced by the framework structure in situ. Length and width changed by less than 2%, whereas the depth decreased by approximately 8% and the minimum intrahelical distance changed by approximately 12%. Overall curvature changes identified regions most susceptible to deformation. Eighty-nine per cent of local curvature measurements experienced a bending moment less than 50 µN-m owing to deformation forces during implantation. These quantitative shape analysis results have identified opportunities to improve shape fidelity of engineered ear constructs. PMID:23904585

  4. Design of composite scaffolds and three-dimensional shape analysis for tissue-engineered ear.

    PubMed

    Cervantes, Thomas M; Bassett, Erik K; Tseng, Alan; Kimura, Anya; Roscioli, Nick; Randolph, Mark A; Vacanti, Joseph P; Hadlock, Theresa A; Gupta, Rajiv; Pomerantseva, Irina; Sundback, Cathryn A

    2013-10-06

    Engineered cartilage is a promising option for auricular reconstruction. We have previously demonstrated that a titanium wire framework within a composite collagen ear-shaped scaffold helped to maintain the gross dimensions of the engineered ear after implantation, resisting the deformation forces encountered during neocartilage maturation and wound healing. The ear geometry was redesigned to achieve a more accurate aesthetic result when implanted subcutaneously in a nude rat model. A non-invasive method was developed to assess size and shape changes of the engineered ear in three dimensions. Computer models of the titanium framework were obtained from CT scans before and after implantation. Several parameters were measured including the overall length, width and depth, the minimum intrahelical distance and overall curvature values for each beam section within the framework. Local curvature values were measured to gain understanding of the bending forces experienced by the framework structure in situ. Length and width changed by less than 2%, whereas the depth decreased by approximately 8% and the minimum intrahelical distance changed by approximately 12%. Overall curvature changes identified regions most susceptible to deformation. Eighty-nine per cent of local curvature measurements experienced a bending moment less than 50 µN-m owing to deformation forces during implantation. These quantitative shape analysis results have identified opportunities to improve shape fidelity of engineered ear constructs.

  5. Military Standard: Human Engineering Design Criteria for Military Systems, Equipment and facilities

    DTIC Science & Technology

    1989-03-14

    10 oz.) 1.4 N (5oz.) 2.8 N ( 10 o0.) Maximum 26 mm (1 In.) 11 N (40 W 5.6 N (20 oz.) 23 N ( 80 oz.) DISPLACEMENT Fingertip Thwmb or Palm Minimum 2mm I64...DEPTH SEPARATION REUISTANCE MINIMUM 30mm 11mm 3mm mm 10 mm 1.7 N 1.11 6.) (7/16 .) (11# i.) (1/ .) (13/32 n .) (goal 75 am It mm 13 mm LI N 13 N0 W W3S...RADIUS LOAD SPECIFICATION L, LENTH 0, DIATEI 1 00 RP , mu in. - In. m In, m n , ,[T A INIMUM 25 1 10 3/8 38 l h 13 1/2

  6. Estimation of the effective heating systems radius as a method of the reliability improving and energy efficiency

    NASA Astrophysics Data System (ADS)

    Akhmetova, I. G.; Chichirova, N. D.

    2017-11-01

    When conducting an energy survey of heat supply enterprise operating several boilers located not far from each other, it is advisable to assess the degree of heat supply efficiency from individual boiler, the possibility of energy consumption reducing in the whole enterprise by switching consumers to a more efficient source, to close in effective boilers. It is necessary to consider the temporal dynamics of perspective load connection, conditions in the market changes. To solve this problem the radius calculation of the effective heat supply from the thermal energy source can be used. The disadvantage of existing methods is the high complexity, the need to collect large amounts of source data and conduct a significant amount of computational efforts. When conducting an energy survey of heat supply enterprise operating a large number of thermal energy sources, rapid assessment of the magnitude of the effective heating radius requires. Taking into account the specifics of conduct and objectives of the energy survey method of calculation of effective heating systems radius, to use while conducting the energy audit should be based on data available heat supply organization in open access, minimize efforts, but the result should be to match the results obtained by other methods. To determine the efficiency radius of Kazan heat supply system were determined share of cost for generation and transmission of thermal energy, capital investment to connect new consumers. The result were compared with the values obtained with the previously known methods. The suggested Express-method allows to determine the effective radius of the centralized heat supply from heat sources, in conducting energy audits with the effort minimum and the required accuracy.

  7. Accuracy of unmodified Stokes' integration in the R-C-R procedure for geoid computation

    NASA Astrophysics Data System (ADS)

    Ismail, Zahra; Jamet, Olivier

    2015-06-01

    Geoid determinations by the Remove-Compute-­Restore (R-C-R) technique involves the application of Stokes' integral on reduced gravity anomalies. Numerical Stokes' integration produces an error depending on the choice of the integration radius, grid resolution and Stokes' kernel function. In this work, we aim to evaluate the accuracy of Stokes' integral through a study on synthetic gravitational signals derived from EGM2008 on three different landscape areas with respect to the size of the integration domain and the resolution of the anomaly grid. The influence of the integration radius was studied earlier by several authors. Using real data, they found that the choice of relatively small radii (less than 1°) enables to reach an optimal accuracy. We observe a general behaviour coherent with these earlier studies. On the other hand, we notice that increasing the integration radius up to 2° or 2.5° might bring significantly better results. We note that, unlike the smallest radius corresponding to a local minimum of the error curve, the optimal radius in the range 0° to 6° depends on the terrain characteristics. We also find that the high frequencies, from degree 600, improve continuously with the integration radius in both semi-­mountainous and mountain areas. Finally, we note that the relative error of the computed geoid heights depends weakly on the anomaly spherical harmonic degree in the range from degree 200 to 2000. It remains greater than 10 % for any integration radii up to 6°. This result tends to prove that a one centimetre accuracy cannot be reached in semi-mountainous and mountainous regions with the unmodified Stokes' kernel.

  8. Impacts of SST Patterns on Rapid Intensification of Typhoon Megi (2010)

    NASA Astrophysics Data System (ADS)

    Kanada, Sachie; Tsujino, Satoki; Aiki, Hidenori; Yoshioka, Mayumi K.; Miyazawa, Yasumasa; Tsuboki, Kazuhisa; Takayabu, Izuru

    2017-12-01

    Typhoon Megi (2010), a very intense tropical cyclone with a minimum central pressure of 885 hPa, was characterized by especially rapid intensification. We investigated this intensification process by a simulation experiment using a high-resolution (0.02° × 0.02°) three-dimensional atmosphere-ocean coupled regional model. We also performed a sensitivity experiment with a time-fixed sea surface temperature (SST). The coupled model successfully simulated the minimum central pressure of Typhoon Megi, whereas the fixed SST experiment simulated an excessively low minimum central pressure of 839 hPa. The simulation results also showed a close relationship between the radial SST profiles and the rapid intensification process. Because the warm sea increased near-surface water vapor and hence the convective available potential energy, the high SST in the eye region facilitated tall and intense updrafts inside the radius of maximum wind speed and led to the start of rapid intensification. In contrast, high SST outside this radius induced local secondary updrafts that inhibited rapid intensification even if the mean SST in the core region exceeded 29.0°C. These secondary updrafts moved inward and eventually merged with the primary eyewall updrafts. Then the storm intensified rapidly when the high SST appeared in the eye region. Thus, the changes in the local SST pattern around the storm center strongly affected the rapid intensification process by modulating the radial structure of core convection. Our results also show that the use of a high-resolution three-dimensional atmosphere-ocean coupled model offers promise for improving intensity forecasts of tropical cyclones.

  9. Planets around the evolved stars 24 Boötis and γ Libra: A 30 d-period planet and a double giant-planet system in possible 7:3 MMR

    NASA Astrophysics Data System (ADS)

    Takarada, Takuya; Sato, Bun'ei; Omiya, Masashi; Harakawa, Hiroki; Nagasawa, Makiko; Izumiura, Hideyuki; Kambe, Eiji; Takeda, Yoichi; Yoshida, Michitoshi; Itoh, Yoichi; Ando, Hiroyasu; Kokubo, Eiichiro; Ida, Shigeru

    2018-05-01

    We report the detection of planets around two evolved giant stars from radial velocity measurements at Okayama Astrophysical observatory. 24 Boo (G3 IV) has a mass of 0.99 M_{⊙}, a radius of 10.64 R_{⊙}, and a metallicity of [Fe/H] = -0.77. The star hosts one planet with a minimum mass of 0.91 MJup and an orbital period of 30.35 d. The planet has one of the shortest orbital periods among those ever found around evolved stars using radial-velocity methods. The stellar radial velocities show additional periodicity with 150 d, which can probably be attributed to stellar activity. The star is one of the lowest-metallicity stars orbited by planets currently known. γ Lib (K0 III) is also a metal-poor giant with a mass of 1.47 M_{⊙}, a radius of 11.1 R_{⊙}, and [Fe/H] = -0.30. The star hosts two planets with minimum masses of 1.02 MJup and 4.58 MJup, and periods of 415 d and 964 d, respectively. The star has the second-lowest metallicity among the giant stars hosting more than two planets. Dynamical stability analysis for the γ Lib system sets the minimum orbital inclination angle to be about 70° and suggests that the planets are in 7:3 mean-motion resonance, though the current best-fitting orbits for the radial-velocity data are not totally regular.

  10. Measurement of Kirchhoff's stress intensity factors in bending plates

    NASA Astrophysics Data System (ADS)

    Bäcker, D.; Kuna, M.; Häusler, C.

    2014-03-01

    A measurement method of the stress intensity factors defined by KIRCHHOFF's theory for a crack in a bending plate is shown. For this purpose, a thin piezoelectric polyvinylidene fluoride film (PVDF) is attached to the surface of the cracked plate. The measured electrical voltages are coupled with the load type and the crack tip position relative to the sensor film. Stress intensity factors and the crack tip position can be determined by solving the non-linear inverse problem based on the measured signals. To guarantee solvability of the problem, more measuring electrodes on the film have to be taken in to account. To the developed sensor concept the KIRCHHOFF's plate theory has been applied. In order to connect the electrical signals and the stress intensity factors the stresses near the crack tip have to be written in eigenfunctions (see WILLIAMS [1]). The presented method was verified by means of the example of a straight crack of the length 2a in an infinite isotropic plate under all- side bending. It was found that the positioning of the electrodes is delimited by two radii. On one hand, the measurement points should not be too close to the crack tip. In this area, the Kirchhoff's plate theory cannot be used effectively. On the other hand, the measuring electrodes should be placed at a smaller distance to each other and not too far from the crack tip regarding the convergence radius of the WILLIAMS series expansion. Test calculations on a straight crack in an infinite isotropic plate showed the general applicability of the measurement method.

  11. Deformation of giant vesicles in AC electric fields —Dependence of the prolate-to-oblate transition frequency on vesicle radius

    NASA Astrophysics Data System (ADS)

    Antonova, K.; Vitkova, V.; Mitov, M. D.

    2010-02-01

    The electrodeformation of giant vesicles is studied as a function of their radii and the frequency of the applied AC field. At low frequency the shape is prolate, at sufficiently high frequency it is oblate and at some frequency, fc, the shape changes from prolate to oblate. A linear dependence of the prolate-to-oblate transition inverse frequency, 1/fc, on the vesicle radius is found. The nature of this phenomenon does not change with the variation of both the solution conductivity, σ, and the type of the fluid enclosed by the lipid membrane (water, sucrose or glucose aqueous solution). When σ increases, the value of fc increases while the slope of the line 1/fc(r) decreases. For vesicles in symmetrical conditions (the same conductivity of the inner and the outer solution) a linear dependence between σ and the critical frequency, fc, is obtained for conductivities up to σ=114 μS/cm. For vesicles with sizes below a certain minimum radius, depending on the solution conductivity, no shape transition could be observed.

  12. Transverse-electric plasmonic modes of cylindrical graphene-based waveguide at near-infrared and visible frequencies

    PubMed Central

    Kuzmin, Dmitry A.; Bychkov, Igor V.; Shavrov, Vladimir G.; Kotov, Leonid N.

    2016-01-01

    Transverse-electric (TE) surface plasmons (SPs) are very unusual for plasmonics phenomenon. Graphene proposes a unique possibility to observe these plasmons. Due to transverse motion of carriers, TE SPs speed is usually close to bulk light one. In this work we discuss conditions of TE SPs propagation in cylindrical graphene-based waveguides. We found that the negativity of graphene conductivity’s imaginary part is not a sufficient condition. The structure supports TE SPs when the core radius of waveguide is larger than the critical value Rcr. Critical radius depends on the light frequency and the difference of permittivities inside and outside the waveguide. Minimum value of Rcr is comparable with the wavelength of volume wave and corresponds to interband carriers transition in graphene. We predict that use of multilayer graphene will lead to decrease of critical radius. TE SPs speed may differ more significantly from bulk light one in case of epsilon-near-zero core and shell of the waveguide. Results may open the door for practical applications of TE SPs in optics, including telecommunications. PMID:27225745

  13. Nanoscale manipulation of membrane curvature for probing endocytosis in live cells.

    PubMed

    Zhao, Wenting; Hanson, Lindsey; Lou, Hsin-Ya; Akamatsu, Matthew; Chowdary, Praveen D; Santoro, Francesca; Marks, Jessica R; Grassart, Alexandre; Drubin, David G; Cui, Yi; Cui, Bianxiao

    2017-08-01

    Clathrin-mediated endocytosis (CME) involves nanoscale bending and inward budding of the plasma membrane, by which cells regulate both the distribution of membrane proteins and the entry of extracellular species. Extensive studies have shown that CME proteins actively modulate the plasma membrane curvature. However, the reciprocal regulation of how the plasma membrane curvature affects the activities of endocytic proteins is much less explored, despite studies suggesting that membrane curvature itself can trigger biochemical reactions. This gap in our understanding is largely due to technical challenges in precisely controlling the membrane curvature in live cells. In this work, we use patterned nanostructures to generate well-defined membrane curvatures ranging from +50 nm to -500 nm radius of curvature. We find that the positively curved membranes are CME hotspots, and that key CME proteins, clathrin and dynamin, show a strong preference towards positive membrane curvatures with a radius <200 nm. Of ten CME-related proteins we examined, all show preferences for positively curved membrane. In contrast, other membrane-associated proteins and non-CME endocytic protein caveolin1 show no such curvature preference. Therefore, nanostructured substrates constitute a novel tool for investigating curvature-dependent processes in live cells.

  14. Weak deflection gravitational lensing for photons coupled to Weyl tensor in a Schwarzschild black hole

    NASA Astrophysics Data System (ADS)

    Cao, Wei-Guang; Xie, Yi

    2018-03-01

    Beyond the Einstein-Maxwell model, electromagnetic field might couple with gravitational field through the Weyl tensor. In order to provide one of the missing puzzles of the whole physical picture, we investigate weak deflection lensing for photons coupled to the Weyl tensor in a Schwarzschild black hole under a unified framework that is valid for its two possible polarizations. We obtain its coordinate-independent expressions for all observables of the geometric optics lensing up to the second order in the terms of ɛ which is the ratio of the angular gravitational radius to angular Einstein radius of the lens. These observables include bending angle, image position, magnification, centroid and time delay. The contributions of such a coupling on some astrophysical scenarios are also studied. We find that, in the cases of weak deflection lensing on a star orbiting the Galactic Center Sgr A*, Galactic microlensing on a star in the bulge and astrometric microlensing by a nearby object, these effects are beyond the current limits of technology. However, measuring the variation of the total flux of two weak deflection lensing images caused by the Sgr A* might be a promising way for testing such a coupling in the future.

  15. On the wavelength dependence of the effects of turbulence on average refraction angles in occultations by planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Haugstad, B. S.; Eshleman, V. R.

    1979-01-01

    The dependence of the effects of planetary atmospheric turbulence on radio or optical wavelength in occultation experiments is discussed, and the analysis of Hubbard and Jokipii (1977) is criticized. It is argued that in deriving a necessary condition for the applicability of their method, Hubbard and Jokipii neglect a factor proportional to the square of the ratio of atmospheric or local Fresnel zone radius and the inner scale of turbulence, and fail to establish sufficient conditions, thereby omitting the square of the ratio of atmospheric scale height and the local Fresnel zone radius. The total discrepancy is said to mean that the results correspond to geometrical optics instead of wave optics, as claimed, thus being inapplicable in a dicussion of wavelength dependence. Calculations based on geometrical optics show that the bias in the average bending angle depends on the wavelength in the same way as does the bias in phase path caused by turbulence in a homogeneous atmosphere. Hubbard and Jokipii comment that the criterion of Haugstad and Eshleman is incorrect and show that there is a large wave optical domain where the results are independent of wavelength.

  16. Adaptable Optical Fiber Displacement-Curvature Sensor Based on a Modal Michelson Interferometer with a Tapered Single Mode Fiber

    PubMed Central

    Salceda-Delgado, G.; Martinez-Rios, A.; Selvas-Aguilar, R.; Álvarez-Tamayo, R. I.; Castillo-Guzman, A.; Ibarra-Escamilla, B.; Durán-Ramírez, V. M.; Enriquez-Gomez, L. F.

    2017-01-01

    A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes. PMID:28574421

  17. Adaptable Optical Fiber Displacement-Curvature Sensor Based on a Modal Michelson Interferometer with a Tapered Single Mode Fiber.

    PubMed

    Salceda-Delgado, G; Martinez-Rios, A; Selvas-Aguilar, R; Álvarez-Tamayo, R I; Castillo-Guzman, A; Ibarra-Escamilla, B; Durán-Ramírez, V M; Enriquez-Gomez, L F

    2017-06-02

    A compact, highly sensitive optical fiber displacement and curvature radius sensor is presented. The device consists of an adiabatic bi-conical fused fiber taper spliced to a single-mode fiber (SMF) segment with a flat face end. The bi-conical taper structure acts as a modal coupling device between core and cladding modes for the SMF segment. When the bi-conical taper is bent by an axial displacement, the symmetrical bi-conical shape of the tapered structure is stressed, causing a change in the refractive index profile which becomes asymmetric. As a result, the taper adiabaticity is lost, and interference between modes appears. As the bending increases, a small change in the fringe visibility and a wavelength shift on the periodical reflection spectrum of the in-fiber interferometer is produced. The displacement sensitivity and the spectral periodicity of the device can be adjusted by the proper selection of the SMF length. Sensitivities from around 1.93 to 3.4 nm/mm were obtained for SMF length between 7.5 and 12.5 cm. Both sensor interrogations, wavelength shift and visibility contrast, can be used to measure displacement and curvature radius magnitudes.

  18. Refined conservation strategies for Golden-winged Warblers in the West Virginia highlands with implications for the broader avian community

    USGS Publications Warehouse

    Aldinger, Kyle R.; Wood, Petra B.; Johnson, Catherine M.

    2017-01-01

    Golden-winged Warbler (Vermivora chrysoptera) populations in the Appalachian Mountains region of North America are imperiled, warranting species-specific conservation. However, management for Golden-winged Warblers can affect both early-successional and forest species, many of which are also declining in the region. We conducted point counts in sites representing a range of successional stages within the Golden-winged Warbler's breeding range in West Virginia, USA, during 2008–2015. We identified plausible models of Golden-winged Warbler density using covariates at 4 spatial scales representing annual dispersal (5-km radius), extraterritorial movement (1.5-km radius), intraterritorial movement (100-m radius), and local resource utilization (11.3-m radius). Golden-winged Warbler density peaked at an intermediate elevation at the 1.5-km radius scale, but was negatively associated with 100-m radius minimum elevation. Density was positively associated with 100-m radius shrubland cover. Southerly latitudes were associated with higher densities when modeled alone, but there was no association when controlling for other covariates. We then examined the relationship between covariates from these plausible models and avian community structure using canonical correspondence analysis to assess the value of Golden-winged Warbler conservation for the broader avian community. We identified 5 species likely to benefit from management for Golden-winged Warblers and 21 species likely to be affected positively or negatively to varying degrees depending on their affinity for early-successional vegetation communities. Golden-winged Warblers were plotted higher along the 100-m shrubland cover gradient than any other bird species, suggesting that they may be the most shrubland area–sensitive songbird in our study area. However, the species also requires heavily forested landscapes. Therefore, a species-specific conservation strategy that balances shrubland (patches of 9–13 ha in size, comprising 15% of the landscape) and contiguous forest area (≥75% of the landscape) could concurrently meet the needs of Golden-winged Warblers and the 26 other species identified.

  19. Eddington-limited X-Ray Bursts as Distance Indicators. I. Systematic Trends and Spherical Symmetry in Bursts from 4U 1728-34

    NASA Astrophysics Data System (ADS)

    Galloway, Duncan K.; Psaltis, Dimitrios; Chakrabarty, Deepto; Muno, Michael P.

    2003-06-01

    We investigate the limitations of thermonuclear X-ray bursts as a distance indicator for the weakly magnetized accreting neutron star 4U 1728-34. We measured the unabsorbed peak flux of 81 bursts in public data from the Rossi X-Ray Timing Explorer (RXTE). The distribution of peak fluxes was bimodal: 66 bursts exhibited photospheric radius expansion (presumably reaching the local Eddington limit) and were distributed about a mean bolometric flux of 9.2×10-8ergscm-2s-1, while the remaining (non-radius expansion) bursts reached 4.5×10-8ergscm-2s-1, on average. The peak fluxes of the radius expansion bursts were not constant, exhibiting a standard deviation of 9.4% and a total variation of 46%. These bursts showed significant correlations between their peak flux and the X-ray colors of the persistent emission immediately prior to the burst. We also found evidence for quasi-periodic variation of the peak fluxes of radius expansion bursts, with a timescale of ~=40 days. The persistent flux observed with RXTE/ASM over 5.8 yr exhibited quasi-periodic variability on a similar timescale. We suggest that these variations may have a common origin in reflection from a warped accretion disk. Once the systematic variation of the peak burst fluxes is subtracted, the residual scatter is only ~=3%, roughly consistent with the measurement uncertainties. The narrowness of this distribution strongly suggests that (1) the radiation from the neutron star atmosphere during radius expansion episodes is nearly spherically symmetric and (2) the radius expansion bursts reach a common peak flux that may be interpreted as a standard candle intensity. Adopting the minimum peak flux for the radius expansion bursts as the Eddington flux limit, we derive a distance for the source of 4.4-4.8 kpc (assuming RNS=10 km), with the uncertainty arising from the probable range of the neutron star mass MNS=1.4-2 Msolar.

  20. Liquid propellant reorientation in a low-gravity environment

    NASA Technical Reports Server (NTRS)

    Sumner, I. E.

    1978-01-01

    An existing empirical analysis relating to the reorientation of liquids in cylindrical tanks due to propulsive settling in a low gravity environment was extended to include the effects of geyser formation in the Weber number range from 4 to 10. Estimates of the minimum velocity increment required to be imposed on the propellant tank to achieve liquid reorientation were made. The resulting Bond numbers, based on tank radius, were found to be in the range from 3 to 5, depending upon the initial liquid fill level, with higher Bond number required for high initial fill levels. The resulting Weber numbers, based on tank radius and the velocity of the liquid leading edge, were calculated to be in the range from 6.5 to 8.5 for cylindrical tanks having a fineness ratio of 2.0, with Weber numbers of somewhat greater values for longer cylindrical tanks. It, therefore, appeared to be advantageous to allow small geysers to form and then dissipate into the surface of the collected liquid in order to achieve the minimum velocity increment. The Bond numbers which defined the separation between regions in which geyser formation did and did not occur due to propulsive settling in a spherical tank configuration ranged from 2 to 9 depending upon the liquid fill level.

  1. Numerical and analytical studies of critical radius in spherical and cylindrical geometries for corona discharge in air and CO2-rich environments

    NASA Astrophysics Data System (ADS)

    Engle, J. A.; Riousset, J. A.

    2016-12-01

    In order to determine the most effective geometry of a lightning rod, one must first understand the physical difference between their current designs. Benjamin Franklin's original theory of sharp tipped rods suggests an increase of local electric field, while Moore et al.'s (2000) studies of rounded tips evince an increased probability of strike (Moore et al., 2000; Gibson et al., 2009).In this analysis, the plasma discharge is produced between two electrodes with a high potential difference, resulting in ionization of the neutral gas particle. This process, when done at low current and low temperature can create a corona discharges, which can be observed as a luminescent emission. The Cartesian geometry known as Paschen, or Townsend, theory is particularly well suited to model experimental laboratory scenario, however, it is limited in its applicability to lightning rods. Franklin's sharp tip and Moore et al.'s (2000) rounded tip fundamentally differ in the radius of curvature of the upper end of the rod. As a first approximation, the rod can be modelled as an equipotential conducting sphere above the ground. Hence, we expand the classic Cartesian geometry into spherical and cylindrical geometries. In this work we explore the effects of shifting from the classical parallel plate analysis to spherical and cylindrical geometries more adapted for studies of lightning rods or power lines. Utilizing Townsend's equation for corona discharge, we estimate a critical radius and minimum breakdown voltage that allows ionization of the air around an electrode. Additionally, we explore the influence of the gas in which the discharge develops. We use BOLSIG+, a numerical solver for the Boltzmann equation, to calculate Townsend coefficients for CO2-rich atmospheric conditions. This allows us to expand the scope of this study to other planetary bodies such as Mars (Hagelaar, 2005). We solve the problem both numerically and analytically to present simplified formulas per each geometry and gas mixture. The development of a numerical framework will ultimately let us test the influence of additional parameters such as background ionization, initiation criterion, and charge conservation on the values of the critical radius and minimum breakdown voltage.

  2. Low loss fusion splicing polarization-maintaining photonic crystal fiber and conventional polarization-maintaining fiber

    NASA Astrophysics Data System (ADS)

    Zuoming, Sun; Ningfang, Song; Jing, Jin; Jingming, Song; Pan, Ma

    2012-12-01

    An efficient and simple method of fusion splicing of a Polarization-Maintaining Photonic Crystal Fiber (PM-PCF) and a conventional Polarization-Maintaining Fiber (PMF) with a low loss of 0.65 dB in experiment is reported. The minimum bending diameter of the joint can reach 2 cm. Theoretical calculation of the splicing loss based on mode field diameters (MFDs) mismatch of the two kinds of fibers is given. All parameters affected the splicing loss were studied.

  3. Application of the line-spring model to a cylindrical shell containing a circumferential or axial part-through crack

    NASA Technical Reports Server (NTRS)

    Delale, F.; Erdogan, F.

    1982-01-01

    The line-spring model developed by Rice and Levy (1972) is used to obtain an approximate solution for a cylindrical shell containing a part-through surface crack. A Reissner type theory is used to account for the effects of the transverse shear deformations, and the stress intensity factor at the deepest penetration point of the crack is tabulated for bending and membrane loading by varying three-dimensionless length parameters of the problem formed from the shell radius, the shell thickness, the crack length, and the crack depth. The upper bounds of the stress intensity factors are provided, and qualitatively the line-spring model gives the expected results in comparison with elasticity solutions.

  4. A flexible, gigahertz, and free-standing thin film piezoelectric MEMS resonator with high figure of merit

    NASA Astrophysics Data System (ADS)

    Jiang, Yuan; Zhang, Menglun; Duan, Xuexin; Zhang, Hao; Pang, Wei

    2017-07-01

    In this paper, a 2.6 GHz air-gap type thin film piezoelectric MEMS resonator was fabricated on a flexible polyethylene terephthalate film. A fabrication process combining transfer printing and hot-embossing was adopted to form a free-standing structure. The flexible radio frequency MEMS resonator possesses a quality factor of 946 and an effective coupling coefficient of 5.10%, and retains its high performance at a substrate bending radius of 1 cm. The achieved performance is comparable to that of conventional resonators on rigid silicon wafers. Our demonstration provides a viable approach to realizing universal MEMS devices on flexible polymer substrates, which is of great significance for building future fully integrated and multi-functional wireless flexible electronic systems.

  5. Integrated optics interferometer for high precision displacement measurement

    NASA Astrophysics Data System (ADS)

    Persegol, Dominique; Collomb, Virginie; Minier, Vincent

    2017-11-01

    We present the design and fabrication aspects of an integrated optics interferometer used in the optical head of a compact and lightweight displacement sensor developed for spatial applications. The process for fabricating the waveguides of the optical chip is a double thermal ion exchange of silver and sodium in a silicate glass. This two step process is adapted for the fabrication of high numerical aperture buried waveguides having negligible losses for bending radius as low as 10 mm. The optical head of the sensor is composed of a reference arm, a sensing arm and an interferometer which generates a one dimensional fringe pattern allowing a multiphase detection. Four waveguides placed at the output of the interferometer deliver four ideally 90° phase shifted signals.

  6. A Reynolds stress model for near-wall turbulence

    NASA Technical Reports Server (NTRS)

    Durbin, P. A.

    1993-01-01

    The paper formulates a tensorially consistent near-wall second-order closure model. Redistributive terms in the Reynolds stress equations are modeled by an elliptic relaxation equation in order to represent strongly nonhomogeneous effects produced by the presence of walls; this replaces the quasi-homogeneous algebraic models that are usually employed, and avoids the need for ad hoc damping functions. The model is solved for channel flow and boundary layers with zero and adverse pressure gradients. Good predictions of Reynolds stress components, mean flow, skin friction, and displacement thickness are obtained in various comparisons to experimental and direct numerical simulation data. The model is also applied to a boundary layer flowing along a wall with a 90-deg, constant-radius, convex bend.

  7. The CV period minimum

    NASA Astrophysics Data System (ADS)

    Kolb, Ulrich; Baraffe, Isabelle

    Using improved, up-to-date stellar input physics tested against observations of low-mass stars and brown dwarfs we calculate the secular evolution of low-donor-mass CVs, including those which form with a brown dwarf donor star. Our models confirm the mismatch between the calculated minimum period (plus or minus in ~= 70 min) and the observed short-period cut-off (~= 80 min) in the CV period histogram. Theoretical period distributions synthesized from our model sequences always show an accumulation of systems at the minimum period, a feature absent in the observed distribution. We suggest that non-magnetic CVs become unobservable as they are effectively trapped in permanent quiescence before they reach plus or minus in, and that small-number statistics may hide the period spike for magnetic CVs. We calculate the minimum period for high mass transfer rate sequences and discuss the relevance of these for explaining the location of CV secondaries in the orbital-period-spectral-type diagram. We also show that a recently suggested revised mass-radius relation for low-mass main-sequence stars cannot explain the CV period gap.

  8. Single mode low-NA step index Yb-doped fiber design for output powers beyond 4kW (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Beier, Franz; Proske, Fritz; Hupel, Christian; Kuhn, Stefan; Hein, Sigrun; Sattler, Bettina; Nold, Johannes; Haarlammert, Nicoletta; Schreiber, Thomas; Eberhardt, Ramona; Tünnermann, Andreas

    2017-03-01

    Fiber amplifiers are representing one of the most promising solid state laser concepts, due to the compact setup size, a simple thermal management and furthermore excellent beam quality. In this contribution, we report on the latest results from a low-NA, large mode area single mode fiber with a single mode output power beyond 4 kW without any indication of mode instabilities or nonlinear effects and high slope efficiency. Furthermore, we quantify the influence of the bending diameter of our manufactured low NA fiber on the average core loss by an OFDR measurement and determine the optimal bending diameter in comparison to a second fiber with a slightly changed NA. The fibers used in the experiments were fabricated by MCVD technology combined with the solution doping technique. The investigation indicates the limitation of the step index fiber design and its influence on the use in high power fiber amplifiers. We demonstrate, that even a slightly change in the core NA crucially influences the minimum bending diameter of the fiber and has to be taken into account in applications. The measured output power represents to the best of our knowledge the highest single mode output power of an amplifier fiber ever reported on.

  9. Toward spectroscopically accurate global ab initio potential energy surface for the acetylene-vinylidene isomerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Huixian; School of Physics, Northwest University, Xi’an, Shaanxi 710069; Li, Anyang

    2014-12-28

    A new full-dimensional global potential energy surface (PES) for the acetylene-vinylidene isomerization on the ground (S{sub 0}) electronic state has been constructed by fitting ∼37 000 high-level ab initio points using the permutation invariant polynomial-neural network method with a root mean square error of 9.54 cm{sup −1}. The geometries and harmonic vibrational frequencies of acetylene, vinylidene, and all other stationary points (two distinct transition states and one secondary minimum in between) have been determined on this PES. Furthermore, acetylene vibrational energy levels have been calculated using the Lanczos algorithm with an exact (J = 0) Hamiltonian. The vibrational energies upmore » to 12 700 cm{sup −1} above the zero-point energy are in excellent agreement with the experimentally derived effective Hamiltonians, suggesting that the PES is approaching spectroscopic accuracy. In addition, analyses of the wavefunctions confirm the experimentally observed emergence of the local bending and counter-rotational modes in the highly excited bending vibrational states. The reproduction of the experimentally derived effective Hamiltonians for highly excited bending states signals the coming of age for the ab initio based PES, which can now be trusted for studying the isomerization reaction.« less

  10. A novel variable stiffness mechanism for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Li, Wen-Bo; Zhang, Wen-Ming; Zou, Hong-Xiang; Peng, Zhi-Ke; Meng, Guang

    2017-08-01

    In this paper, a novel variable stiffness mechanism is proposed for the design of a variable stiffness dielectric elastomer actuator (VSDEA) which combines a flexible strip with a DEA in a dielectric elastomer minimum energy structure. The DEA induces an analog tuning of the transverse curvature of the strip, thus conveniently providing a voltage-controllable flexural rigidity. The VSDEA tends to be a fully flexible and compact structure with the advantages of simplicity and fast response. Both experimental and theoretical investigations are carried out to reveal the variable stiffness performances of the VSDEA. The effect of the clamped location on the bending stiffness of the VSDEA is analyzed, and then effects of the lengths, the loading points and the applied voltages on the bending stiffness are experimentally investigated. An analytical model is developed to verify the availability of this variable stiffness mechanism, and the theoretical results demonstrate that the bending stiffness of the VSDEA decreases as the applied voltage increases, which agree well with the experimental data. Moreover, the experimental results show that the maximum change of the relative stiffness can reach about 88.80%. It can be useful for the design and optimization of active variable stiffness structures and DEAs for soft robots, vibration control, and morphing applications.

  11. Gravitational Instability of a Dust Layer Composed of Porous Silicate Dust Aggregates in a Protoplanetary Disk

    NASA Astrophysics Data System (ADS)

    Tatsuuma, Misako; Michikoshi, Shugo; Kokubo, Eiichiro

    2018-03-01

    Planetesimal formation is one of the most important unsolved problems in planet formation theory. In particular, rocky planetesimal formation is difficult because silicate dust grains are easily broken when they collide. It has recently been proposed that they can grow as porous aggregates when their monomer radius is smaller than ∼10 nm, which can also avoid the radial drift toward the central star. However, the stability of a layer composed of such porous silicate dust aggregates has not been investigated. Therefore, we investigate the gravitational instability (GI) of this dust layer. To evaluate the disk stability, we calculate Toomre’s stability parameter Q, for which we need to evaluate the equilibrium random velocity of dust aggregates. We calculate the equilibrium random velocity considering gravitational scattering and collisions between dust aggregates, drag by mean flow of gas, stirring by gas turbulence, and gravitational scattering by gas density fluctuation due to turbulence. We derive the condition of the GI using the disk mass, dust-to-gas ratio, turbulent strength, orbital radius, and dust monomer radius. We find that, for the minimum mass solar nebula model at 1 au, the dust layer becomes gravitationally unstable when the turbulent strength α ≲ 10‑5. If the dust-to-gas ratio is increased twice, the GI occurs for α ≲ 10‑4. We also find that the dust layer is more unstable in disks with larger mass, higher dust-to-gas ratio, and weaker turbulent strength, at larger orbital radius, and with a larger monomer radius.

  12. Improved planetary boundary layer retrievals using a combination of direct and reflected bending angles from radio occultations

    NASA Astrophysics Data System (ADS)

    Wang, K. N.; Ao, C. O.; de la Torre Juarez, M.

    2017-12-01

    As a remote sensing technique, Global Positioning System (GPS) radio occultation (RO) is a suitable method to observe lower troposphere due to its high vertical resolution and cloud-penetrating capability. However, super-refraction (SR), or ducting, caused by large refractivity gradients usually associated with the top of the planetary boundary layer, can violate the uniqueness condition necessary for the traditional inverse Abel transform. Consequently, the retrieved refractivity, which is the minimum profile among an infinite number of potential solutions corresponding to the same bending angle profile, will be negatively biased under ducting layers. Previous research has shown that optimal estimation techniques that combine low altitude RO retrievals and the collocated precipitable water (PW) estimates can effectively reduce the negative RO bias and enhance the data quality under the ducting layer (Wang et al, 2017). Here we propose an improvement that uses the reflected RO bending angle observation information as a source for refractivity constraints. The RO signal reflected from the Earth surface profile can be reconstructed by solely using GPS-RO data without requiring external information such as PW. The radio holographic (RH) method is adapted here to calculate the reflected RO bending angle, and the forward model simulation is implemented to validate this preliminary concept. Our results suggest that this new approach can distinguish between different refractivity profiles when ducting occurs and theoretically this should reduce the negative bias. In addition, It also improves the RO observation in lower troposphere by capturing the sharpness and height of the critical layer separating the free troposphere from the boundary layer.

  13. Topology for efficient information dissemination in ad-hoc networking

    NASA Technical Reports Server (NTRS)

    Jennings, E.; Okino, C. M.

    2002-01-01

    In this paper, we explore the information dissemination problem in ad-hoc wirless networks. First, we analyze the probability of successful broadcast, assuming: the nodes are uniformly distributed, the available area has a lower bould relative to the total number of nodes, and there is zero knowledge of the overall topology of the network. By showing that the probability of such events is small, we are motivated to extract good graph topologies to minimize the overall transmissions. Three algorithms are used to generate topologies of the network with guaranteed connectivity. These are the minimum radius graph, the relative neighborhood graph and the minimum spanning tree. Our simulation shows that the relative neighborhood graph has certain good graph properties, which makes it suitable for efficient information dissemination.

  14. Dorsal or Volar Plate Fixation of the Distal Radius: Does the Complication Rate Help Us to Choose?

    PubMed

    Disseldorp, D J G; Hannemann, P F W; Poeze, M; Brink, P R G

    2016-08-01

    Internal fixation with plates is a reliable fixation technique for the treatment of distal radius fractures. An ongoing discussion exists whether volar or dorsal plating is the appropriate technique. In clinical practice, volar plate fixation is usually preferred because of the assumed lower complication frequency. However, recent studies with the newer generation low-profile dorsal plates reported lower complication rates. The aim of our study was to evaluate the differences in complication rates between volar and dorsal plate for the treatment of distal radius fractures in adult patients. A total of 214 patients with acute distal radius fractures were included in this retrospective study with a minimum 2 years of follow-up. In total, 123 patients were treated with dorsal plate fixation and 91 patients with volar plate fixation. Our primary study outcome was complication rate. The overall risk for complications was 15.4% in the dorsal group and 14.3% in the volar group (p = 0.81). A total of 19 patients had implant removal due to complications: 11 patients in the dorsal group and 8 patients in the volar group (p = 0.97). There is no preferred plate fixation technique based on these study results. In our opinion, decision for type of plate fixation should be based on fracture type and surgeon's experience with the specific approach and plate types. Therapeutic level III.

  15. Numerical simulation of microcarrier motion in a rotating wall vessel bioreactor.

    PubMed

    Ju, Zhi-Hao; Liu, Tian-Qing; Ma, Xue-Hu; Cui, Zhan-Feng

    2006-06-01

    To analyze the forces of rotational wall vessel (RWV) bioreactor on small tissue pieces or microcarrier particles and to determine the tracks of microcarrier particles in RWV bioreactor. The motion of the microcarrier in the rotating wall vessel (RWV) bioreactor with both the inner and outer cylinders rotating was modeled by numerical simulation. The continuous trajectory of microcarrier particles, including the possible collision with the wall was obtained. An expression between the minimum rotational speed difference of the inner and outer cylinders and the microcarrier particle or aggregate radius could avoid collisions with either wall. The range of microcarrier radius or tissue size, which could be safely cultured in the RWV bioreactor, in terms of shear stress level, was determined. The model works well in describing the trajectory of a heavier microcarrier particle in rotating wall vessel.

  16. Why is the rapid burster different from all other galactic-bulge X-ray sources?

    NASA Astrophysics Data System (ADS)

    Milgrom, M.

    1987-01-01

    It is suggested that the rapid X-ray burster exhibits unique behavior because it contains a neutron star whose stellar radius is smaller than the minimum radius of a circular orbit that is stable according to general relativity. The star accretes from a disk that extends down to the last stable orbit. In this state, the disk is unstable against a rapid fall and accretion of its innermost part onto the star. The sudden dumping of mass gives rise to a burst of X-rays. The disk then heals, refilling the inner region at a pace that is dictated mainly by the global accretion rate, in order to ready itself for the next burst. In all other galactic-bulge-type sources, the neutron star is larger than the last stable orbit.

  17. Radiographic evaluation of acute distal radius fracture stability: A comparative cadaveric study between a thermo-formable bracing system and traditional fiberglass casting.

    PubMed

    Santoni, Brandon G; Aira, Jazmine R; Diaz, Miguel A; Kyle Stoops, T; Simon, Peter

    2017-08-01

    Distal radius fractures are common musculoskeletal injuries and many can be treated non-operatively with cast immobilization. A thermo-formable brace has been developed for management of such fractures, but no data exist regarding its comparative stabilizing efficacy to fiberglass casting. A worst-case distal radius fracture was created in 6 cadaveric forearms. A radiolucent loading fixture was created to apply cantilever bending/compression loads ranging from 4.5N to 66.7N across the simulated fracture in the: (1) non-stabilized, (2) braced; and (3) casted forearms, each forearm serving as its own control. Fracture fragment translations and rotations were measured radiographically using orthogonal radiographs and a 2D-3D, CT-based transformation methodology. Under 4.5N of load in the non-stabilized condition, average sagittal plane rotation and 3D center of mass translation of the fracture fragment were 12.3° and 5.3mm, respectively. At the 4.5N load step, fragment rotation with the brace (avg. 0.0°) and cast (0.1°) reduced sagittal plane rotation compared to the non-stabilized forearm (P<0.001). There were no significant differences in measured sagittal plane fracture fragment rotations or 3D fragment translations between the brace or cast at any of the four load steps (4.5N, 22.2N, 44.5N, and 66.7N, P≥0.138). In this in vitro radiographic study utilizing 6 cadaveric forearms with simulated severe-case, unstable and comminuted distal radius fractures, the thermo-formable brace stabilized the fracture in a manner that was not radiographically or biomechanically different from traditional fiberglass casting. Study results support the use of the thermo-formable brace clinically. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. New QCT analysis approach shows the importance of fall orientation on femoral neck strength.

    PubMed

    Carpenter, R Dana; Beaupré, Gary S; Lang, Thomas F; Orwoll, Eric S; Carter, Dennis R

    2005-09-01

    The influence of fall orientation on femur strength has important implications for understanding hip fracture risk. A new image analysis technique showed that the strength of the femoral neck in 37 males varied significantly along the neck axis and that bending strength varied by a factor of up to 2.8 for different loading directions. Osteoporosis is associated with decreased BMD and increased hip fracture risk, but it is unclear whether specific osteoporotic changes in the proximal femur lead to a more vulnerable overall structure. Nonhomogeneous beam theory, which is used to determine the mechanical response of composite structures to applied loads, can be used along with QCT to estimate the resistance of the femoral neck to axial forces and bending moments. The bending moment [My(theta)] sufficient to induce yielding within femoral neck sections was estimated for a range of bending orientations (theta) using in vivo QCT images of 37 male (mean age, 73 years; range, 65-87 years) femora. Volumetric BMD, axial stiffness, average moment at yield (M(y,avg)), maximum and minimum moment at yield (M(y,max) and M(y,min)), bone strength index (BSI), stress-strain index (SSI), and density-weighted moments of resistance (Rx and Ry) were also computed. Differences among the proximal, mid-, and distal neck regions were detected using ANOVA. My(theta) was found to vary by as much as a factor of 2.8 for different bending directions. Axial stiffness, M(y,avg), M(y,max), M(y,min), BSI, and Rx differed significantly between all femoral neck regions, with an overall trend of increasing axial stiffness and bending strength when moving from the proximal neck to the distal neck. Mean axial stiffness increased 62% between the proximal and distal neck, and mean M(y,avg) increased 53% between the proximal and distal neck. The results of this study show that femoral neck strength strongly depends on both fall orientation and location along the neck axis. Compressive yielding in the superior portion of the femoral neck is expected to initiate fracture in a fall to the side.

  19. Sub-band gap photo-enhanced secondary electron emission from high-purity single-crystal chemical-vapor-deposited diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yater, J. E., E-mail: joan.yater@nrl.navy.mil; Shaw, J. L.; Pate, B. B.

    2016-02-07

    Secondary-electron-emission (SEE) current measured from high-purity, single-crystal (100) chemical-vapor-deposited diamond is found to increase when sub-band gap (3.06 eV) photons are incident on the hydrogenated surface. Although the light does not produce photoemission directly, the SEE current increases by more than a factor of 2 before saturating with increasing laser power. In energy distribution curves (EDCs), the emission peak shows a corresponding increase in intensity with increasing laser power. However, the emission-onset energy in the EDCs remains constant, indicating that the bands are pinned at the surface. On the other hand, changes are observed on the high-energy side of the distributionmore » as the laser power increases, with a well-defined shoulder becoming more pronounced. From an analysis of this feature in the EDCs, it is deduced that upward band bending is present in the near-surface region during the SEE measurements and this band bending suppresses the SEE yield. However, sub-band gap photon illumination reduces the band bending and thereby increases the SEE current. Because the bands are pinned at the surface, we conclude that the changes in the band levels occur below the surface in the electron transport region. Sample heating produces similar effects as observed with sub-band gap photon illumination, namely, an increase in SEE current and a reduction in band bending. However, the upward band bending is not fully removed by either increasing laser power or temperature, and a minimum band bending of ∼0.8 eV is established in both cases. The sub-band gap photo-excitation mechanism is under further investigation, although it appears likely at present that defect or gap states play a role in the photo-enhanced SEE process. In the meantime, the study demonstrates the ability of visible light to modify the electronic properties of diamond and enhance the emission capabilities, which may have potential impact for diamond-based vacuum electron sources, particle detectors, and other electronic devices.« less

  20. Alpha particle condensation in {sup 12}C and nuclear rainbow scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohkubo, S.; Hirabayashi, Y.

    2008-05-12

    It is shown that the large radius of the Hoyle state of {sup 12}C with a dilute density distribution in an {alpha} particle condensate can be clearly seen in the shift of the rainbow angle (therefore the Airy minimum) to a larger angle in {alpha}+{sup 12}C rainbow scattering at the high energy region and prerainbow oscillations in {sup 3}He+{sup 12}C scattering at the lower energy region.

  1. Nonstatic radiating spheres in general relativity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krori, K.D.; Borgohain, P.; Sarma, R.

    1985-02-15

    The method of Herrera, Jimenez, and Ruggeri of obtaining nonstatic solutions of Einstein's field equations to study the evolution of stellar bodies is applied to obtain two models of nonstatic radiating spheres from two well-known static solutions of field equations, viz., Tolman's solutions IV and V. Whereas Tolman's type-IV model is found to be contracting for the period under investigation, Tolman's type-V model shows a bounce after attaining a minimum radius.

  2. Geologic Interpretation of Gravity Anomalies

    DTIC Science & Technology

    1990-04-19

    acts on the mass equal to one. The 3trength of the gravitational force is designated by letter g. For brevity it is usually called gravitational force...between centers of spherical bodies, and m and m, - their total masses. Let us designate total mass of Earth through M and its radius through R. The...those normal sections, which have at the particular point maximum and minimum curvature (by precisely this fact it is explained designation of

  3. Simple Correctors for Elimination of High-Order Modes in Corrugated Waveguide Transmission Lines

    PubMed Central

    Kowalski, Elizabeth J.; Shapiro, Michael A.; Temkin, Richard J.

    2014-01-01

    When using overmoded corrugated waveguide transmission lines for high power applications, it is necessary to control the mode content of the system. Ideally, overmoded corrugated transmission lines operate in the fundamental HE11 mode and provide low losses for long distances. Unwanted higher order modes (HOMs), particularly LP11 and HE12, are often excited in the experimental systems due to practical misalignments in the transmission line system. This paper discusses how the unwanted modes propagate along with the fundamental mode in the transmission line system by formulating an equation that relates the center of power offset and angle of propagation of a beam (for the HE11 and LP11 modes) or the waist size and phase front radius of curvature of a beam (for the HE11 and HE12 modes). By introducing two miter bend correctors into the transmission system—miter bends that have slightly angled or ellipsoidal mirrors—the HOMs can be precisely manipulated in the system. This technique can be used to eliminate small quantities of unwanted modes, thereby creating a nearly pure fundamental mode beam with minimal losses. Examples of these applications are calculated and show the theoretical conversion of up to 10% HOM content into the fundamental HE11 mode with minimal losses. PMID:25067859

  4. Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rolston, Nicholas; Printz, Adam D.; Hilt, Florian

    Here in this paper, we report on submicron organosilicate barrier films produced rapidly in air by a scalable spray plasma process that improves both the stability and efficiency of perovskite solar cells. The plasma is at sufficiently low temperature to prevent damage to the underlying layers. Oxidizing species and heat from the plasma improve device performance by enhancing both interfacial contact and the conductivity of the hole transporting layer. The thickness of the barrier films is tunable and transparent over the entire visible spectrum. The morphology and density of the barrier are shown to improve with the addition of amore » fluorine-based precursor. Devices with submicron coatings exhibited significant improvements in stability, maintaining 92% of their initial power conversion efficiencies after more than 3000 h in dry heat (85 °C, 25% RH) while also being resistant to degradation under simulated operational conditions of continuous exposure to light, heat, and moisture. X-ray diffraction measurements performed while heating showed the barrier film dramatically slows the formation of PbI 2. The barrier films also are compatible with flexible devices, exhibiting no signs of cracking or delamination after 10000 bending cycles on a 127 μm substrate with a bending radius of 1 cm.« less

  5. Corrosion of NiTi Wires with Cracked Oxide Layer

    NASA Astrophysics Data System (ADS)

    Racek, Jan; Šittner, Petr; Heller, Luděk; Pilch, Jan; Petrenec, Martin; Sedlák, Petr

    2014-07-01

    Corrosion behavior of superelastic NiTi shape memory alloy wires with cracked TiO2 surface oxide layers was investigated by electrochemical corrosion tests (Electrochemical Impedance Spectroscopy, Open Circuit Potential, and Potentiodynamic Polarization) on wires bent into U-shapes of various bending radii. Cracks within the oxide on the surface of the bent wires were observed by FIB-SEM and TEM methods. The density and width of the surface oxide cracks dramatically increase with decreasing bending radius. The results of electrochemical experiments consistently show that corrosion properties of NiTi wires with cracked oxide layers (static load keeps the cracks opened) are inferior compared to the corrosion properties of the straight NiTi wires covered by virgin uncracked oxides. Out of the three methods employed, the Electrochemical Impedance Spectroscopy seems to be the most appropriate test for the electrochemical characterization of the cracked oxide layers, since the impedance curves (Nyquist plot) of differently bent NiTi wires can be associated with increasing state of the surface cracking and since the NiTi wires are exposed to similar conditions as the surfaces of NiTi implants in human body. On the other hand, the potentiodynamic polarization test accelerates the corrosion processes and provides clear evidence that the corrosion resistance of bent superelastic NiTi wires degrades with oxide cracking.

  6. High temperature sensing using higher-order-mode rejected sapphire-crystal fiber gratings

    NASA Astrophysics Data System (ADS)

    Zhan, Chun; Kim, Jae Hun; Lee, Jon; Yin, Stuart; Ruffin, Paul; Luo, Claire

    2007-09-01

    In this paper, we report the fabrication of higher-order-mode rejected fiber Bragg gratings (FBGs) in sapphire crystal fiber using infrared (IR) femtosecond laser illumination. The grating is tested in high temperature furnace up to 1600 degree Celsius. As sapphire fiber is only available as highly multimode fiber, a scheme to filter out higher order modes in favor for the fundamental mode is theoretically evaluated and experimentally demonstrated. The approach is to use an ultra thin sapphire crystal fiber (60 micron in diameter) to decrease the number of modes. The small diameter fiber also enables bending the fiber to certain radius which is carefully chosen to provide low loss for the fundamental mode LP01 and high loss for the other high-order modes. After bending, less-than-2-nm resonant peak bandwidth is achieved. The grating spectrum is improved, and higher resolution sensing measurement can be achieved. This mode filtering method is very easy to implement. Furthermore, the sapphire fiber is sealed with hi-purity alumina ceramic cement inside a flexible high temperature titanium tube, and the highly flexible titanium tube offers a robust packaging to sapphire fiber. Our high temperature sapphire grating sensor is very promising in extremely high temperature sensing application.

  7. Reinforced Electrode Architecture for a Flexible Battery with Paperlike Characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gaikwad, AM; Chu, HN; Qeraj, R

    2013-02-10

    Compliant energy storage has not kept pace with flexible electronics. Herein we demonstrate a technique to reinforce arbitrary battery electrodes by supporting them with mechanically tough, low-cost fibrous membranes, which also serve as the separator. The membranes were laminated to form a full cell, and this stacked membrane reinforcement bears the loads during flexing. This technique was used to make a high energy density, nontoxic Zn-MnO2 battery with printed current collectors. The Zn and MnO2 electrodes were prepared by using a solution-based embedding process. The cell had a nominal potential of 1.5 V and an effective capacity of approximately 3more » mA h cm(-2). We investigated the effect of bending and fatigue on the electrochemical performance and mechanical integrity of the battery. The battery was able to maintain its capacity even after 1000 flex cycles to a bend radius of 2.54 cm. The battery showed an improvement in discharge capacity (ca. 10%) if the MnO2 electrode was flexed to tension as a result of the improvement of particle-to-particle contact. In a demonstration, the flexible battery was used to power a light-emitting diode display integrated with a strain sensor and microcontroller.« less

  8. Low-voltage operating flexible ferroelectric organic field-effect transistor nonvolatile memory with a vertical phase separation P(VDF-TrFE-CTFE)/PS dielectric

    NASA Astrophysics Data System (ADS)

    Xu, Meili; Xiang, Lanyi; Xu, Ting; Wang, Wei; Xie, Wenfa; Zhou, Dayu

    2017-10-01

    Future flexible electronic systems require memory devices combining low-power operation and mechanical bendability. However, high programming/erasing voltages, which are universally needed to switch the storage states in previously reported ferroelectric organic field-effect transistor (Fe-OFET) nonvolatile memories (NVMs), severely prevent their practical applications. In this work, we develop a route to achieve a low-voltage operating flexible Fe-OFET NVM. Utilizing vertical phase separation, an ultrathin self-organized poly(styrene) (PS) buffering layer covers the surface of the ferroelectric polymer layer by one-step spin-coating from their blending solution. The ferroelectric polymer with a low coercive field contributes to low-voltage operation in the Fe-OFET NVM. The polymer PS contributes to the improvement of mobility, attributing to screening the charge scattering and decreasing the surface roughness. As a result, a high performance flexible Fe-OFET NVM is achieved at the low P/E voltages of ±10 V, with a mobility larger than 0.2 cm2 V-1 s-1, a reliable P/E endurance over 150 cycles, stable data storage retention capability over 104 s, and excellent mechanical bending durability with a slight performance degradation after 1000 repetitive tensile bending cycles at a curvature radius of 5.5 mm.

  9. Embedded Ag Grid Electrodes as Current Collector for Ultraflexible Transparent Solid-State Supercapacitor.

    PubMed

    Xu, Jian-Long; Liu, Yan-Hua; Gao, Xu; Sun, Yilin; Shen, Su; Cai, Xinlei; Chen, Linsen; Wang, Sui-Dong

    2017-08-23

    Flexible transparent solid-state supercapacitors have attracted immerse attention for the power supply of next-generation flexible "see-through" or "invisible" electronics. For fabrication of such devices, high-performance flexible transparent current collectors are highly desired. In this paper, the utilization of embedded Ag grid transparent conductive electrodes (TCEs) fabricated by a facile soft ultraviolet imprinting lithography method combined with scrap techniques, as the current collector for flexible transparent solid-state supercapacitors, is demonstrated. The embedded Ag grid TCEs exhibit not only excellent optoelectronic properties (R S ∼ 2.0 Ω sq -1 and T ∼ 89.74%) but also robust mechanical properties, which could meet the conductivity, transparency, and flexibility needs of current collectors for flexible transparent supercapacitors. The obtained supercapacitor exhibits large specific capacitance, long cycling life, high optical transparency (T ∼ 80.58% at 550 nm), high flexibility, and high stability. Owing to the embedded Ag grid TCE structure, the device shows a slight capacitance loss of 2.6% even after 1000 cycles of repetitive bending for a bending radius of up to 2.0 mm. This paves the way for developing high-performance current collectors and thus flexible transparent energy storage devices, and their general applicability opens up opportunities for flexible transparent electronics.

  10. Laser patterning of highly conductive flexible circuits

    NASA Astrophysics Data System (ADS)

    Ji, Seok Young; Muhammed Ajmal, C.; Kim, Taehun; Chang, Won Seok; Baik, Seunghyun

    2017-04-01

    There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks. The CFA was composed of micro-scale Ag flakes, multiwalled carbon nanotubes decorated with Ag nanoparticles, and a nitrile-butadiene-rubber matrix. The Teflon-coated polyethylene terephthalate film was used as a flexible substrate. The width of lines (50-500 μm) and circuit patterns were controlled by the programmable scanning of a focused laser beam (power = 50 mW, scanning speed = 1 mm s-1). The laser irradiation removed solvent and induced effective coalescence among fillers providing a conductivity as high as 25 012 S cm-1. The conductivity stability was excellent under the ambient air and humid environments. The normalized resistance change of the pattern was smaller than 1.2 at the bending radius of 5 mm. The cyclability and adhesion of the laser-sintered line pattern on the substrate was excellent. A flexible circuit was fabricated sequentially for operating light emitting diodes during the bending motion, demonstrating excellent feasibility for practical applications in flexible electronics.

  11. Improved stability and efficiency of perovskite solar cells with submicron flexible barrier films deposited in air

    DOE PAGES

    Rolston, Nicholas; Printz, Adam D.; Hilt, Florian; ...

    2017-10-27

    Here in this paper, we report on submicron organosilicate barrier films produced rapidly in air by a scalable spray plasma process that improves both the stability and efficiency of perovskite solar cells. The plasma is at sufficiently low temperature to prevent damage to the underlying layers. Oxidizing species and heat from the plasma improve device performance by enhancing both interfacial contact and the conductivity of the hole transporting layer. The thickness of the barrier films is tunable and transparent over the entire visible spectrum. The morphology and density of the barrier are shown to improve with the addition of amore » fluorine-based precursor. Devices with submicron coatings exhibited significant improvements in stability, maintaining 92% of their initial power conversion efficiencies after more than 3000 h in dry heat (85 °C, 25% RH) while also being resistant to degradation under simulated operational conditions of continuous exposure to light, heat, and moisture. X-ray diffraction measurements performed while heating showed the barrier film dramatically slows the formation of PbI 2. The barrier films also are compatible with flexible devices, exhibiting no signs of cracking or delamination after 10000 bending cycles on a 127 μm substrate with a bending radius of 1 cm.« less

  12. Flexible Textile-Based Organic Transistors Using Graphene/Ag Nanoparticle Electrode

    PubMed Central

    Kim, Youn; Kwon, Yeon Ju; Lee, Kang Eun; Oh, Youngseok; Um, Moon-Kwang; Seong, Dong Gi; Lee, Jea Uk

    2016-01-01

    Highly flexible and electrically-conductive multifunctional textiles are desirable for use in wearable electronic applications. In this study, we fabricated multifunctional textile composites by vacuum filtration and wet-transfer of graphene oxide films on a flexible polyethylene terephthalate (PET) textile in association with embedding Ag nanoparticles (AgNPs) to improve the electrical conductivity. A flexible organic transistor can be developed by direct transfer of a dielectric/semiconducting double layer on the graphene/AgNP textile composite, where the textile composite was used as both flexible substrate and conductive gate electrode. The thermal treatment of a textile-based transistor enhanced the electrical performance (mobility = 7.2 cm2·V−1·s−1, on/off current ratio = 4 × 105, and threshold voltage = −1.1 V) due to the improvement of interfacial properties between the conductive textile electrode and the ion-gel dielectric layer. Furthermore, the textile transistors exhibited highly stable device performance under extended bending conditions (with a bending radius down to 3 mm and repeated tests over 1000 cycles). We believe that our simple methods for the fabrication of graphene/AgNP textile composite for use in textile-type transistors can potentially be applied to the development of flexible large-area electronic clothes. PMID:28335276

  13. Post-buckling of a pressured biopolymer spherical shell with the mode interaction

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Ru, C. Q.

    2018-03-01

    Imperfection sensitivity is essential for mechanical behaviour of biopolymer shells characterized by high geometric heterogeneity. The present work studies initial post-buckling and imperfection sensitivity of a pressured biopolymer spherical shell based on non-axisymmetric buckling modes and associated mode interaction. Our results indicate that for biopolymer spherical shells with moderate radius-to-thickness ratio (say, less than 30) and smaller effective bending thickness (say, less than 0.2 times average shell thickness), the imperfection sensitivity predicted based on the axisymmetric mode without the mode interaction is close to the present results based on non-axisymmetric modes with the mode interaction with a small (typically, less than 10%) relative errors. However, for biopolymer spherical shells with larger effective bending thickness, the maximum load an imperfect shell can sustain predicted by the present non-axisymmetric analysis can be significantly (typically, around 30%) lower than those predicted based on the axisymmetric mode without the mode interaction. In such cases, a more accurate non-axisymmetric analysis with the mode interaction, as given in the present work, is required for imperfection sensitivity of pressured buckling of biopolymer spherical shells. Finally, the implications of the present study to two specific types of biopolymer spherical shells (viral capsids and ultrasound contrast agents) are discussed.

  14. Carbon nanotube woven textile photodetector

    NASA Astrophysics Data System (ADS)

    Zubair, Ahmed; Wang, Xuan; Mirri, Francesca; Tsentalovich, Dmitri E.; Fujimura, Naoki; Suzuki, Daichi; Soundarapandian, Karuppasamy P.; Kawano, Yukio; Pasquali, Matteo; Kono, Junichiro

    2018-01-01

    The increasing interest in mobile and wearable technology demands the enhancement of functionality of clothing through incorporation of sophisticated architectures of multifunctional materials. Flexible electronic and photonic devices based on organic materials have made impressive progress over the past decade, but higher performance, simpler fabrication, and most importantly, compatibility with woven technology are desired. Here we report on the development of a weaved, substrateless, and polarization-sensitive photodetector based on doping-engineered fibers of highly aligned carbon nanotubes. This room-temperature-operating, self-powered detector responds to radiation in an ultrabroad spectral range, from the ultraviolet to the terahertz, through the photothermoelectric effect, with a low noise-equivalent power (a few nW/Hz 1 /2) throughout the range and with a Z T -factor value that is twice as large as that of previously reported carbon nanotube-based photothermoelectric photodetectors. Particularly, we fabricated a ˜1 -m-long device consisting of tens of p+-p- junctions and weaved it into a shirt. This device demonstrated a collective photoresponse of the series-connected junctions under global illumination. The performance of the device did not show any sign of deterioration through 200 bending tests with a bending radius smaller than 100 μ m as well as standard washing and ironing cycles. This unconventional photodetector will find applications in wearable technology that require detection of electromagnetic radiation.

  15. Laser patterning of highly conductive flexible circuits.

    PubMed

    Ji, Seok Young; Ajmal, C Muhammed; Kim, Taehun; Chang, Won Seok; Baik, Seunghyun

    2017-04-21

    There has been considerable attention paid to highly conductive flexible adhesive (CFA) materials as electrodes and interconnectors for future flexible electronic devices. However, the patterning technology still needs to be developed to construct micro-scale electrodes and circuits. Here we developed the selective laser sintering technology where the pattering and curing were accomplished simultaneously without making additional masks. The CFA was composed of micro-scale Ag flakes, multiwalled carbon nanotubes decorated with Ag nanoparticles, and a nitrile-butadiene-rubber matrix. The Teflon-coated polyethylene terephthalate film was used as a flexible substrate. The width of lines (50-500 μm) and circuit patterns were controlled by the programmable scanning of a focused laser beam (power = 50 mW, scanning speed = 1 mm s -1 ). The laser irradiation removed solvent and induced effective coalescence among fillers providing a conductivity as high as 25 012 S cm -1 . The conductivity stability was excellent under the ambient air and humid environments. The normalized resistance change of the pattern was smaller than 1.2 at the bending radius of 5 mm. The cyclability and adhesion of the laser-sintered line pattern on the substrate was excellent. A flexible circuit was fabricated sequentially for operating light emitting diodes during the bending motion, demonstrating excellent feasibility for practical applications in flexible electronics.

  16. Effects of cementation surface modifications on fracture resistance of zirconia.

    PubMed

    Srikanth, Ramanathan; Kosmac, Tomaz; Della Bona, Alvaro; Yin, Ling; Zhang, Yu

    2015-04-01

    To examine the effects of glass infiltration (GI) and alumina coating (AC) on the indentation flexural load and four-point bending strength of monolithic zirconia. Plate-shaped (12 mm × 12 mm × 1.0 mm or 1.5 or 2.0 mm) and bar-shaped (4 mm × 3 mm × 25 mm) monolithic zirconia specimens were fabricated. In addition to monolithic zirconia (group Z), zirconia monoliths were glass-infiltrated or alumina-coated on their tensile surfaces to form groups ZGI and ZAC, respectively. They were also glass-infiltrated on their upper surfaces, and glass-infiltrated or alumina-coated on their lower (tensile) surfaces to make groups ZGI2 and ZAC2, respectively. For comparison, porcelain-veneered zirconia (group PVZ) and monolithic lithium disilicate glass-ceramic (group LiDi) specimens were also fabricated. The plate-shaped specimens were cemented onto a restorative composite base for Hertzian indentation using a tungsten carbide spherical indenter with a radius of 3.2mm. Critical loads for indentation flexural fracture at the zirconia cementation surface were measured. Strengths of bar-shaped specimens were evaluated in four-point bending. Glass infiltration on zirconia tensile surfaces increased indentation flexural loads by 32% in Hertzian contact and flexural strength by 24% in four-point bending. Alumina coating showed no significant effect on resistance to flexural damage of zirconia. Monolithic zirconia outperformed porcelain-veneered zirconia and monolithic lithium disilicate glass-ceramics in terms of both indentation flexural load and flexural strength. While both alumina coating and glass infiltration can be used to effectively modify the cementation surface of zirconia, glass infiltration can further increase the flexural fracture resistance of zirconia. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Generic conditions for suppressing the coherent synchrotron radiation induced emittance growth in a two-dipole achromat

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Cui, Xiaohao; Huang, Xiyang; Xu, Gang

    2014-06-01

    The effect of the coherent synchrotron radiation (CSR) becomes evident, and leads to increased beam energy spread and transverse emittance dilution, as both the emittance and bunch length of the electron beams are continuously pushed down in present and forthcoming high-brightness light sources and linear colliders. Suppressing this effect is important to preserve the expected machine performance. Methods of the R-matrix analysis and the Courant-Snyder formalism analysis have been proposed to evaluate and to suppress the emittance growth due to CSR in achromatic cells. In this paper a few important modifications are made on these two methods, which enable us to prove that these two methods are equivalent to each other. With the modified analysis, we obtain explicit and generic conditions of cancelling the CSR-driven emittance excitation in a single achromat consisting of two dipoles of arbitrary bending angles. In spite of the fact that the analysis constrains itself in a linear regime, based on the assumption that CSR-induced particle energy deviation is proportional to both θ and ρ1/3, with θ being the bending angle and ρ the bending radius, it is demonstrated through ELEGANT simulations that the conditions derived from this analysis are still effective in suppressing the emittance growth when a more detailed one-dimensional CSR model is considered. In addition, it illustrates that the emittance growth can be reduced to a lower level with the proposed conditions than with the other two approaches, such as matching the beam envelope to the CSR kick and setting the cell-to-cell betatron phase advance to an appropriate value.

  18. Geomorphic and hydraulic assessment of the Bear River in and near Evanston, Wyoming

    USGS Publications Warehouse

    Smith, M.E.; Maderak, M.L.

    1993-01-01

    Geomorphic and hydraulic characteristics of the Bear River in and near Evanston, Wyoming, were assessed to assist planners in stabilizing the river channel. Present-day channel instability is the result of both human-made and natural factors. The primary factor is channelization of the river in Evanston, where several meander loops were cut off artificially during early development of the city. Other contributing factors include channel-width constrictions, bank stabilization, isolated bend cutoffs upstream from the city, and flooding in 1983 and 1984. A geomorphic analysis of bankfull-channel pattern, based on four aerial photographs taken during 1946-86, quantified geomorphic properties (reach sinuosity, bend sinuosity, bend radius of curvature, and bed length) that are characteristic of the study reach. The reach sinuosity of reach 2 (the channelized reach in Evanston) was 1.18 in 1986 and remained about the same throughout the period (1946-86). The reach sinuosity of reach 2 prior to channelization was substantially larger, about 2.3 as determined from maps prepared before 1946. Hydraulic analysis of the present-day channel (surveyed 1981-87) using a one-dimensional water-surface-profile computer model identified a bankfull discharge for the study reach of 3,600 cu ft/sec. A comparison of bankfull hydraulic properties for reaches 1, 2, and 3 indicated that the effects in reach 2 of channelization and channel-width constriction--increased slope, faster velocities, and greater hydraulic radii. The present-day channel slope in reach 2 is 0.00518 ft/ft, whereas a more stable slope would be between 0.00431 ft/ft (present-day slope in reach 1) and 0.00486 ft/ft (present-day slope in reach 3).

  19. THE STRUCTURE AND STELLAR CONTENT OF THE OUTER DISKS OF GALAXIES: A NEW VIEW FROM THE Pan-STARRS1 MEDIUM DEEP SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zheng; Thilker, David A.; Heckman, Timothy M.

    2015-02-20

    We present the results of an analysis of Pan-STARRS1 Medium Deep Survey multi-band (grizy) images of a sample of 698 low-redshift disk galaxies that span broad ranges in stellar mass, star-formation rate, and bulge/disk ratio. We use population synthesis spectral energy distribution fitting techniques to explore the radial distribution of the light, color, surface mass density, mass/light ratio, and age of the stellar populations. We characterize the structure and stellar content of the galaxy disks out to radii of about twice Petrosian r {sub 90}, beyond which the halo light becomes significant. We measure normalized radial profiles for sub-samples ofmore » galaxies in three bins each of stellar mass and concentration. We also fit radial profiles to each galaxy. The majority of galaxies have down-bending radial surface brightness profiles in the bluer bands with a break radius at roughly r {sub 90}. However, they typically show single unbroken exponentials in the reddest bands and in the stellar surface mass density. We find that the mass/light ratio and stellar age radial profiles have a characteristic 'U' shape. There is a good correlation between the amplitude of the down-bend in the surface brightness profile and the rate of the increase in the M/L ratio in the outer disk. As we move from late- to early-type galaxies, the amplitude of the down-bend and the radial gradient in M/L both decrease. Our results imply a combination of stellar radial migration and suppression of recent star formation can account for the stellar populations of the outer disk.« less

  20. Fatigue of reinforcing bars during hydro-demolition

    NASA Astrophysics Data System (ADS)

    Hyland, C. W. K.; Ouwejan, A.

    2017-05-01

    Reinforcing steel fractured during hydro-demolition of a reinforced concrete pier head due to low cycle flexural fatigue from vibration caused by impact of the high pressure water jet on the exposed length of the bars. Research into the fatigue performance of steel reinforcing steel tends to focus on the high cycle axial performance in reinforced concrete members and re-bending behaviour. However with the increasing use of hydro-demolition of concrete structures as part of remediation works care is required to ensure the steel reinforcement exposed to the high pressure jet of water is not going to suffer relatively low cycle flexural damage that may compromise the designed performance of the completed reinforced concrete structure. This paper describes the failure assessment, fatigue analysis, and metallographic examination that was undertaken. It was found that the rib to flank transition radius on the reinforcement steel was small enough to cause a significant stress concentration effect and was the location of fatigue crack growth. A relatively simple analysis using the maximum unrestrained cantilevered bar length and force exerted by the water jet was used to calculate the maximum expected bending moment. This was compared to the bending capacity at initiation of yielding at the rib flank transition accounting for stress concentration effects. This showed that the observed cyclic reversing ductile crack growth and fracture of the H25 bars was consistent with the loading applied. A method is proposed based on these observations to assess suitable limits for unrestrained bar lengths or maximum working offset of the water jet from the point of bar restraint when undertaking hydro-demolition work. The fatigue critical performance requirements of AS/NZS4671 500E bars are also therefore compared with those of BS4449:2005 and PN EN/ISO 15630-1:2011 for comparable 500C bars

  1. Effects of cementation surface modifications on fracture resistance of zirconia

    PubMed Central

    Srikanth, Ramanathan; Kosmac, Tomaz; Bona, Alvaro Della; Yin, Ling; Zhang, Yu

    2015-01-01

    Objectives To examine the effects of glass infiltration (GI) and alumina coating (AC) on the indentation flexural load and four-point bending strength of monolithic zirconia. Methods Plate-shaped (12 mm × 12 mm × 1.0 mm or 1.5 mm or 2.0 mm) and bar-shaped (4 mm × 3 mm × 25 mm) monolithic zirconia specimens were fabricated. In addition to monolithic zirconia (group Z), zirconia monoliths were glass-infiltrated or alumina-coated on their tensile surfaces to form groups ZGI and ZAC, respectively. They were also glass-infiltrated on their upper surfaces, and glass-infiltrated or alumina-coated on their lower (tensile) surfaces to make groups ZGI2 and ZAC2, respectively. For comparison, porcelain-veneered zirconia (group PVZ) and monolithic lithium disilicate glass-ceramic (group LiDi) specimens were also fabricated. The plate-shaped specimens were cemented onto a restorative composite base for Hertzian indentation using a tungsten carbide spherical indenter with a radius of 3.2 mm. Critical loads for indentation flexural fracture at the zirconia cementation surface were measured. Strengths of bar-shaped specimens were evaluated in four-point bending. Results Glass infiltration on zirconia tensile surfaces increased indentation flexural loads by 32% in Hertzian contact and flexural strength by 24% in four-point bending. Alumina coating showed no significant effect on resistance to flexural damage of zirconia. Monolithic zirconia outperformed porcelain-veneered zirconia and monolithic lithium disilicate glass-ceramics in terms of both indentation flexural load and flexural strength. Significance While both alumina coating and glass infiltration can be used to effectively modify the cementation surface of zirconia, glass infiltration can further increase the flexural fracture resistance of zirconia. PMID:25687628

  2. Rotor Re-Design for the SSME Fuel Flowmeter

    NASA Technical Reports Server (NTRS)

    Marcu, Bogdan

    1999-01-01

    The present report describes the process of redesigning a new rotor for the SSME Fuel Flowmeter. The new design addresses the specific requirement of a lower rotor speed which would allow the SSME operation at 1 15% rated power level without reaching a blade excitation by the wakes behind the hexagonal flow straightener upstream at frequencies close to the blade natural frequency. A series of calculations combining fleet flowmeters test data, airfoil fluid dynamics and CFD simulations of flow patterns behind the flowmeter's hexagonal straightener has led to a blade twist design alpha = alpha (radius) targeting a kf constant of 0.8256. The kf constant relates the fuel volume flow to the flowmeter rotor speed, for this particular value 17685 GPM at 3650 RPM. Based on this angle distribution, two actual blade designs were developed. A first design using the same blade airfoil as the original design targeted the new kf value only. A second design using a variable blade chord length and airfoil relative thickness targeted simultaneously the new kf value and an optimum blade design destined to provide smooth and stable operation and a significant increase in the blade natural frequency associated with the first bending mode, such that a comfortable margin could be obtained at 115% RPL. The second design is a result of a concurrent engineering process, during which several iterations were made in order to achieve a targeted blade natural frequency associated with the first bending mode of 1300 Hz. Water flow tests preliminary results indicate a kf value of 0.8179 for the f-irst design, which is within 1% of the target value. The second design rotor shows a natural frequency associated with the first bending mode of 1308 Hz, and a water-flow calibration constant of kf 0.8169.

  3. Modeling the Conformation-Specific Infrared Spectra of N-Alkylbenzenes

    NASA Astrophysics Data System (ADS)

    Tabor, Daniel P.; Sibert, Edwin; Hewett, Daniel M.; Korn, Joseph A.; Zwier, Timothy S.

    2016-06-01

    Conformation-specific UV-IR double resonance spectra are presented for n-alkylbenzenes. With the aid of a local mode Hamiltonian that includes the effects of stretch-bend Fermi coupling, the spectra of ethyl, n-propyl, and n-butylbenzene are assigned to individual conformers. These molecules allow for further development of the work on a first principles method for calculating alkyl stretch spectra. Due to the consistency of the anharmonic couplings from conformer to conformer, construction of the model Hamiltonian for a given conformer only requires a harmonic frequency calculation at the conformer's minimum geometry as an input. The model Hamiltonian can be parameterized with either density functional theory or MP2 electronic structure calculations. The relative strengths and weaknesses of these methods are evaluated, including their predictions of the relative energetics of the conformers. Finally, the IR spectra for conformers that have the alkyl chain bend back and interact with the π cloud of the benzene ring are modeled.

  4. Saddle point localization of molecular wavefunctions.

    PubMed

    Mellau, Georg Ch; Kyuberis, Alexandra A; Polyansky, Oleg L; Zobov, Nikolai; Field, Robert W

    2016-09-15

    The quantum mechanical description of isomerization is based on bound eigenstates of the molecular potential energy surface. For the near-minimum regions there is a textbook-based relationship between the potential and eigenenergies. Here we show how the saddle point region that connects the two minima is encoded in the eigenstates of the model quartic potential and in the energy levels of the [H, C, N] potential energy surface. We model the spacing of the eigenenergies with the energy dependent classical oscillation frequency decreasing to zero at the saddle point. The eigenstates with the smallest spacing are localized at the saddle point. The analysis of the HCN ↔ HNC isomerization states shows that the eigenstates with small energy spacing relative to the effective (v1, v3, ℓ) bending potentials are highly localized in the bending coordinate at the transition state. These spectroscopically detectable states represent a chemical marker of the transition state in the eigenenergy spectrum. The method developed here provides a basis for modeling characteristic patterns in the eigenenergy spectrum of bound states.

  5. Wearable sensors for patient-specific boundary shape estimation to improve the forward model for electrical impedance tomography (EIT) of neonatal lung function.

    PubMed

    Khor, Joo Moy; Tizzard, Andrew; Demosthenous, Andreas; Bayford, Richard

    2014-06-01

    Electrical impedance tomography (EIT) could be significantly advantageous to continuous monitoring of lung development in newborn and, in particular, preterm infants as it is non-invasive and safe to use within the intensive care unit. It has been demonstrated that accurate boundary form of the forward model is important to minimize artefacts in reconstructed electrical impedance images. This paper presents the outcomes of initial investigations for acquiring patient-specific thorax boundary information using a network of flexible sensors that imposes no restrictions on the patient's normal breathing and movements. The investigations include: (1) description of the basis of the reconstruction algorithms, (2) tests to determine a minimum number of bend sensors, (3) validation of two approaches to reconstruction and (4) an example of a commercially available bend sensor and its performance. Simulation results using ideal sensors show that, in the worst case, a total shape error of less than 6% with respect to its total perimeter can be achieved.

  6. Computer program documentation for a subcritical wing design code using higher order far-field drag minimization

    NASA Technical Reports Server (NTRS)

    Kuhlman, J. M.; Shu, J. Y.

    1981-01-01

    A subsonic, linearized aerodynamic theory, wing design program for one or two planforms was developed which uses a vortex lattice near field model and a higher order panel method in the far field. The theoretical development of the wake model and its implementation in the vortex lattice design code are summarized and sample results are given. Detailed program usage instructions, sample input and output data, and a program listing are presented in the Appendixes. The far field wake model assumes a wake vortex sheet whose strength varies piecewise linearly in the spanwise direction. From this model analytical expressions for lift coefficient, induced drag coefficient, pitching moment coefficient, and bending moment coefficient were developed. From these relationships a direct optimization scheme is used to determine the optimum wake vorticity distribution for minimum induced drag, subject to constraints on lift, and pitching or bending moment. Integration spanwise yields the bound circulation, which is interpolated in the near field vortex lattice to obtain the design camber surface(s).

  7. Isothermal elastohydrodynamic lubrication of point contacts. 4: Starvation results

    NASA Technical Reports Server (NTRS)

    Hamrock, B. J.; Dowson, D.

    1976-01-01

    The influence of lubricant starvation on minimum film thickness was investigated by moving the inlet boundary closer to the contact center. The following expression was derived for the dimensionless inlet distance at the boundary between the fully flooded and starved conditions: m* = 1 + 3.06 ((R/b)(R/b)H) to the power 0.58, where R is the effective radius of curvature, b is the semiminor axis of the contact ellipse, and H is the central film thickness for fully flooded conditions. A corresponding expression was also given based on the minimum film thickness for fully flooded conditions. Therefore, for m m*, starvation occurs and, for m m*, a fully flooded condition exists. Two other expressions were also derived for the central and minimum film thicknesses for a starved condition. Contour plots of the pressure and the film thickness in and around the contact are shown for the fully flooded and starved lubricating conditions, from which the film thickness was observed to decrease substantially as starvation increases.

  8. Behavior of Tip-Steerable Needles in ex vivo and in vivo Tissue

    PubMed Central

    Majewicz, Ann; Marra, Steven P.; van Vledder, Mark G.; Lin, MingDe; Choti, Michael A.; Song, Danny Y.; Okamura, Allison M.

    2012-01-01

    Robotic needle steering is a promising technique to improve the effectiveness of needle-based clinical procedures, such as biopsies and ablation, by computer-controlled, curved insertions of needles within solid organs. In this paper, we explore the capabilities, challenges, and clinical relevance of asymmetric-tip needle steering though experiments in ex vivo and in vivo tissue. We evaluate the repeatability of needle insertion in inhomogeneous biological tissue and compare ex vivo and in vivo needle curvature and insertion forces. Steerable needles curved more in kidney than in liver and prostate, likely due to differences in tissue properties. Pre-bent needles produced higher insertion forces in liver and more curvature in vivo than ex vivo. When compared to straight stainless steel needles, steerable needles did not cause a measurable increase in tissue damage and did not exert more force during insertion. The minimum radius of curvature achieved by pre-bent needles was 5.23 cm in ex vivo tissue, and 10.4 cm in in vivo tissue. The curvatures achieved by bevel tip needles were negligible for in vivo tissue. The minimum radius of curvature for bevel tip needles in ex vivo tissue was 16.4 cm; however, about half of the bevel tip needles had negligible curvatures. We also demonstrate a potential clinical application of needle steering by targeting and ablating overlapping regions of cadaveric canine liver. PMID:22711767

  9. Relationship between distal radius fracture malunion and arm-related disability: A prospective population-based cohort study with 1-year follow-up

    PubMed Central

    2011-01-01

    Background Distal radius fracture is a common injury and may result in substantial dysfunction and pain. The purpose was to investigate the relationship between distal radius fracture malunion and arm-related disability. Methods The prospective population-based cohort study included 143 consecutive patients above 18 years with an acute distal radius fracture treated with closed reduction and either cast (55 patients) or external and/or percutaneous pin fixation (88 patients). The patients were evaluated with the disabilities of the arm, shoulder and hand (DASH) questionnaire at baseline (concerning disabilities before fracture) and one year after fracture. The 1-year follow-up included the SF-12 health status questionnaire and clinical and radiographic examinations. Patients were classified into three hypothesized severity categories based on fracture malunion; no malunion, malunion involving either dorsal tilt (>10 degrees) or ulnar variance (≥1 mm), and combined malunion involving both dorsal tilt and ulnar variance. Multivariate regression analyses were performed to determine the relationship between the 1-year DASH score and malunion and the relative risk (RR) of obtaining DASH score ≥15 and the number needed to harm (NNH) were calculated. Results The mean DASH score at one year after fracture was significantly higher by a minimum of 10 points with each malunion severity category. The RR for persistent disability was 2.5 if the fracture healed with malunion involving either dorsal tilt or ulnar variance and 3.7 if the fracture healed with combined malunion. The NNH was 2.5 (95% CI 1.8-5.4). Malunion had a statistically significant relationship with worse SF-12 score (physical health) and grip strength. Conclusion Malunion after distal radius fracture was associated with higher arm-related disability regardless of age. PMID:21232088

  10. Volar fixed-angle plating of extra-articular distal radius fractures--a biomechanical analysis comparing threaded screws and smooth pegs.

    PubMed

    Weninger, Patrick; Dall'Ara, Enrico; Leixnering, Martin; Pezzei, Christoph; Hertz, Harald; Drobetz, Herwig; Redl, Heinz; Zysset, Philippe

    2010-11-01

    Distal radius fractures represent the most common fractures in adult individuals. Volar fixed-angle plating has become a popular modality for treating unstable distal radius fractures. Most of the plates allow insertion of either threaded locking screws or smooth locking pegs. To date, no biomechanical studies compare locking screws and pegs under axial and torsional loading. Ten Sawbones radii were used to simulate an AO/OTA A3 fracture. Volar fixed-angle plates (Aptus Radius 2.5, Medartis, Switzerland) with threaded locking screws (n = 5) or smooth locking pegs (n = 5) were used to fix the distal metaphyseal fragment. Each specimen was tested under axial compression and under torsional load with a servohydraulic testing machine. Qualitative parameters were recorded as well as axial and torsional stiffness, torsion strength, energy absorbed during monotonic loading and energy absorbed in one cycle. Axial stiffness was comparable between both groups (p = 0.818). If smooth pegs were used, a 17% reduction of torsional stiffness (p = 0.017) and a 12% reduction of minimum torque (p = 0.012) were recorded. A 12% reduction of energy absorbed (p = 0.013) during monotonic loading and unloading was recorded if smooth pegs were used. A 34% reduction of energy absorbed in one cycle (p < 0.007) was recorded if threaded screws were used. Sliding of the pegs out of the distal radius metaphyses of the synthetic bones was recorded at a mean torque of 3.80 Nm ± 0.19 Nm. No sliding was recorded if threaded screws were used. According to the results of this study using Sawbones, volar fixed-angle plates with threaded locking screws alone are mechanically superior to volar fixed-angle plates with smooth locking pegs alone under torsional loading.

  11. White organic light-emitting diodes with 4 nm metal electrode

    NASA Astrophysics Data System (ADS)

    Lenk, Simone; Schwab, Tobias; Schubert, Sylvio; Müller-Meskamp, Lars; Leo, Karl; Gather, Malte C.; Reineke, Sebastian

    2015-10-01

    We investigate metal layers with a thickness of only a few nanometers as anode replacement for indium tin oxide (ITO) in white organic light-emitting diodes (OLEDs). The ultrathin metal electrodes prove to be an excellent alternative that can, with regard to the angular dependence and efficiency of the OLED devices, outperform the ITO reference. Furthermore, unlike ITO, the thin composite metal electrodes are readily compatible with demanding architectures (e.g., top-emission or transparent OLEDs, device unit stacking, etc.) and flexible substrates. Here, we compare the sheet resistance of both types of electrodes on polyethylene terephthalate for different bending radii. The electrical performance of ITO breaks down at a radius of 10 mm, while the metal electrode remains intact even at radii smaller than 1 mm.

  12. Metallic positive expulsion diaphragms

    NASA Technical Reports Server (NTRS)

    Gleich, D.

    1972-01-01

    High-cycle life ring-reinforced hemispherical type positive expulsion diaphragm performance was demonstrated by room temperature fluid expulsion tests of 13" diameter, 8 mil thick stainless steel configurations. A maximum of eleven (11) leak-free, fluid expulsions were achieved by a 25 deg cone angle diaphragm hoop-reinforced with .110-inch cross-sectional diameter wires. This represents a 70% improvement in diaphragm reversal cycle life compared to results previously obtained. The reversal tests confirmed analytic predictions for diaphragm cycle life increases due to increasing values of diaphragm cone angle, radius to thickness ratio and material strain to necking capacity. Practical fabrication techniques were demonstrated for forming close-tolerance, thin corrugated shells and for obtaining closely controlled reinforcing ring stiffness required to maximize diaphragm cycle life. A non-destructive inspection technique for monitoring large local shell bending strains was developed.

  13. Flexible single-crystal silicon nanomembrane photonic crystal cavity.

    PubMed

    Xu, Xiaochuan; Subbaraman, Harish; Chakravarty, Swapnajit; Hosseini, Amir; Covey, John; Yu, Yalin; Kwong, David; Zhang, Yang; Lai, Wei-Cheng; Zou, Yi; Lu, Nanshu; Chen, Ray T

    2014-12-23

    Flexible inorganic electronic devices promise numerous applications, especially in fields that could not be covered satisfactorily by conventional rigid devices. Benefits on a similar scale are also foreseeable for silicon photonic components. However, the difficulty in transferring intricate silicon photonic devices has deterred widespread development. In this paper, we demonstrate a flexible single-crystal silicon nanomembrane photonic crystal microcavity through a bonding and substrate removal approach. The transferred cavity shows a quality factor of 2.2×10(4) and could be bent to a curvature of 5 mm radius without deteriorating the performance compared to its counterparts on rigid substrates. A thorough characterization of the device reveals that the resonant wavelength is a linear function of the bending-induced strain. The device also shows a curvature-independent sensitivity to the ambient index variation.

  14. Chromospherically active stars. VI - HD 136901 = UV CrB: A massive ellipsoidal K giant single-lined spectroscopic binary

    NASA Technical Reports Server (NTRS)

    Fekel, Francis C.; Kirkpatrick, J. Davy; Yang, Xinxing; Strassmeier, Klaus G.

    1989-01-01

    The variable star HD 136901 = UV CrB is a chromospherically active K2 III single-lined spectroscopic binary with an orbital period of 18.665 days. It has modest-strength Ca H and K emission and UV features, while H-alpha is a strong absorption feature containing little or no emission. The inclination of the system is 53 + or - 12 deg. The v sin i of the primary is 42 + or - 2 km/s, resulting in a minimum radius of 15.5 + or - 0.8 solar. When compared with the Roche lobe radius, this results in a mass ratio of 2.90 or larger. Additional constraints indicate that the secondary has a mass between 0.85 and 1.25 solar. Thus, the mass of the primary is at least 2.5 solar and probably is in the range 2.5-4 solar.

  15. The frequency-dependent directivity of a planar fabry-perot polymer film ultrasound sensor.

    PubMed

    Cox, Benjamin T; Beard, Paul C

    2007-02-01

    A model of the frequency-dependent directivity of a planar, optically-addressed, Fabry-Perot (FP), polymer film ultrasound sensor is described and validated against experimental directivity measurements made over a frequency range of 1 to 15 MHz and angles from normal incidence to 80 degrees. The model may be used, for example, as a predictive tool to improve sensor design, or to provide a noise-free response function that could be deconvolved from sound-field measurements in order to improve accuracy in high-frequency metrology and imaging applications. The specific question of whether effective element sizes as small as the optical-diffraction limit can be achieved was investigated. For a polymer film sensor with a FP cavity of thickness d, the minimum effective element radius was found to be about 0.9 d, and that an illumination spot radius of less than d/4 is required to achieve it.

  16. Effects of forebody geometry on subsonic boundary-layer stability

    NASA Technical Reports Server (NTRS)

    Dodbele, Simha S.

    1990-01-01

    As part of an effort to develop computational techniques for design of natural laminar flow fuselages, a computational study was made of the effect of forebody geometry on laminar boundary layer stability on axisymmetric body shapes. The effects of nose radius on the stability of the incompressible laminar boundary layer was computationally investigated using linear stability theory for body length Reynolds numbers representative of small and medium-sized airplanes. The steepness of the pressure gradient and the value of the minimum pressure (both functions of fineness ratio) govern the stability of laminar flow possible on an axisymmetric body at a given Reynolds number. It was found that to keep the laminar boundary layer stable for extended lengths, it is important to have a small nose radius. However, nose shapes with extremely small nose radii produce large pressure peaks at off-design angles of attack and can produce vortices which would adversely affect transition.

  17. Radio sounding of the solar corona during 1995 solar conjunction of the Ulysses spacecraft

    NASA Technical Reports Server (NTRS)

    Bird, M. K.; Paetzold, M.; Karl, J.; Edenhofer, P.; Asmar, S. W.

    1995-01-01

    The Ulysses spacecraft will pass through superior solar conjunction on March 5 1995, a few days before its perihelion and passage through the ecliptic plane. Dual-frequency S/X-band ranging and Doppler observations will be conducted in support of the Ulysses Solar Corona Experiment (SCE) during a three-week interval centered on the conjunction. The occultation geometry is unique in the annals of interplanetary exploration. As viewed from Earth, the spacecraft will appear to cut diagonally through the southwest quadrant of the solar corona from the South Pole to the equator. The minimum proximate distance to the Sun of the radio ray path will be 21.6 solar radius. The entire latitude scan from pole to equator occurs for a limited range of solar offset distances (is less than 30 solar radius thus facilitating the separation of latitudinal from radial variations in the coronal density and associated parameters of interest.

  18. Determination of plasma pinch time and effective current radius of double planar wire array implosions from current measurements on a 1-MA linear transformer driver

    NASA Astrophysics Data System (ADS)

    Steiner, Adam M.; Yager-Elorriaga, David A.; Patel, Sonal G.; Jordan, Nicholas M.; Gilgenbach, Ronald M.; Safronova, Alla S.; Kantsyrev, Victor L.; Shlyaptseva, Veronica V.; Shrestha, Ishor; Schmidt-Petersen, Maximillian T.

    2016-10-01

    Implosions of planar wire arrays were performed on the Michigan Accelerator for Inductive Z-pinch Experiments, a linear transformer driver (LTD) at the University of Michigan. These experiments were characterized by lower than expected peak currents and significantly longer risetimes compared to studies performed on higher impedance machines. A circuit analysis showed that the load inductance has a significant impact on the current output due to the comparatively low impedance of the driver; the long risetimes were also attributed to high variability in LTD switch closing times. A circuit model accounting for these effects was employed to measure changes in load inductance as a function of time to determine plasma pinch timing and calculate a minimum effective current-carrying radius. These calculations showed good agreement with available shadowgraphy and x-ray diode measurements.

  19. a Fractal Permeability Model Coupling Boundary-Layer Effect for Tight Oil Reservoirs

    NASA Astrophysics Data System (ADS)

    Wang, Fuyong; Liu, Zhichao; Jiao, Liang; Wang, Congle; Guo, Hu

    A fractal permeability model coupling non-flowing boundary-layer effect for tight oil reservoirs was proposed. Firstly, pore structures of tight formations were characterized with fractal theory. Then, with the empirical equation of boundary-layer thickness, Hagen-Poiseuille equation and fractal theory, a fractal torturous capillary tube model coupled with boundary-layer effect was developed, and verified with experimental data. Finally, the parameters influencing effective liquid permeability were quantitatively investigated. The research results show that effective liquid permeability of tight formations is not only decided by pore structures, but also affected by boundary-layer distributions, and effective liquid permeability is the function of fluid type, fluid viscosity, pressure gradient, fractal dimension, tortuosity fractal dimension, minimum pore radius and maximum pore radius. For the tight formations dominated with nanoscale pores, boundary-layer effect can significantly reduce effective liquid permeability, especially under low pressure gradient.

  20. Strange stars

    NASA Technical Reports Server (NTRS)

    Alcock, Charles; Farhi, Edward; Olinto, Angela

    1986-01-01

    Strange matter, a form of quark matter that is postulated to be absolute stable, may be the true ground stage of the hadrons. If this hypothesis is correct, neutron stars may convert to 'strange stars'. The mass-radius relation for strange stars is very different from that of neutron stars; there is no minimum mass, and for mass of 1 solar mass or less, mass is proportional to the cube of the radius. For masses between 1 solar mass and 2 solar masses, the radii of strange stars are about 10 km, as for neutron stars. Strange stars may have an exposed quark surface, which is capable of radiating at rates greatly exceeding the Eddington limit, but has a low emissivity for X-ray photons. The stars may have a thin crust with the same composition as the preneutron drip outer layer of a conventional neutron star crust. Strange stars cool efficiently via neutrino emission.

  1. PRODUCTION OF HELIUM IN IRON METEORITES BY THE ACTION OF COSMIC RAYS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoffman, J.H.; Nier, A.O.

    1958-12-15

    The helium distribution in a slice from the iron meteorite, Grant, was measured aud plotted in the form of contour maps. The contours of constant helium show a minimum helium content and isotopic ratio, He/sup 3//He/sup 4/, near the center of the slice, tbe isotopic ratio varying from 0.26 near the center to 0.30 at the surface. A cosmogenic helium production rate equation was fitted to the data giving a He/sup 3//He/sup 4/ production ratio by primary cosmic rays of 0.50 and by secondary particles of 0.14. Primary and secondary particle interaction cross sections were found to be 540 mbmore » and 720 mb, respectively. The ratio of the average post-atmospheric radius to the pre- atmospheric radius of Grant was calculated to be 0.65. (auth)« less

  2. Thermomechanical stability and integrability of an embedded ceramic antenna with an integrated sensor element for wireless reading in harsh environments

    NASA Astrophysics Data System (ADS)

    Sturesson, P.; Khaji, Z.; Knaust, S.; Sundqvist, J.; Klintberg, L.; Thornell, G.

    2013-12-01

    This paper reports on the design, manufacturing and evaluation of a small, wirelessly powered and read resonating antenna circuit with an integrated pressure sensor. The work aims at developing miniature devices suitable for harsh environments, where high temperature prevents the use of conventional, silicon-based microdevices. Here, the device is made of alumina with platinum as conducting material. Ceramic green tapes were structured using high-precision milling, metallized using screen printing, and subsequently laminated to form stacks before they were sintered. The device's frequency shift as a function of temperature was studied up to 900°C. The contributions to the shift both from the thermomechanical deformation of the device at large, and from the integrated and, so far, self-pressurized sensor were sorted out. A total frequency shift of 3200 ppm was observed for the pressure sensor for heating over the whole range. Negligible levels of thermally induced radius of curvature were observed. With three-point bending, a frequency shift of 180 ppm was possible to induce with a curvature of radius of 220 m at a 10 N load. The results indicate that a robust pressure sensor node, which can register pressure changes of a few bars at 900°C and wirelessly transmit the signal, is viable.

  3. The motion of a train of vesicles in channel flow

    NASA Astrophysics Data System (ADS)

    Barakat, Joseph; Shaqfeh, Eric

    2017-11-01

    The inertialess motion of a train of lipid-bilayer vesicles flowing through a channel is simulated using a 3D boundary integral equation method. Steady-state results are reported for vesicles positioned concentrically inside cylindrical channels of circular, square, and rectangular cross sections. The vesicle translational velocity U and excess channel pressure drop Δp+ depend strongly on the ratio of the vesicle radius to the hydraulic radius λ and the vesicle reduced volume υ. ``Deflated vesicles'' of lower reduced volume υ are more streamlined and translate with greater velocity U relative to the mean flow velocity V. Increasing the vesicle size (λ) increases the wall friction force and extra pressure drop Δp+, which in turn reduces the vesicle velocity U. Hydrodynamic interactions between vesicles in a periodic train are largely screened by the channel walls, in accordance with previous results for spheres and drops. The hydraulic resistance is compared across different cross sections, and a simple correction factor is proposed to unify the results. Nonlinear effects are observed when β - the ratio of membrane bending elasticity to viscous traction - is changed. The simulation results show excellent agreement with available experimental measurements as well as a previously reported ``small-gap theory'' valid for large values of λ. NSF CBET 1066263/1066334.

  4. Utilizing insulating nanoparticles as the spacer in laminated flexible polymer solar cells for improved mechanical stability.

    PubMed

    Lu, Yunzhang; Alexander, Clement; Xiao, Zhengguo; Yuan, Yongbo; Zhang, Runyu; Huang, Jinsong

    2012-08-31

    Roll-to-roll lamination is one promising technique to produce large-area organic electronic devices such as solar cells with a large through output. One challenge in this process is the frequent electric point shorting of the cathode and anode by the excess or concentrated applied stress from many possible sources. In this paper, we report a method to avoid electric point shorting by incorporating insulating and hard barium titanate (BaTiO(3)) nanoparticles (NPs) into the active layer to work as a spacer. It has been demonstrated that the incorporated BaTiO(3) NPs in poly(3-hexylthiophene):[6,6]-phenyl-c-61-butyric acid methyl ester (P3HT:PCBM) bulk heterojunction solar cells cause no deleterious effect to the power conversion process of this type of solar cell. The resulting laminated devices with NPs in the active layer display the same efficiency as the devices without NPs, while the laminated devices with NPs can sustain a ten times higher lamination stress of over 6 MPa. The flexible polymer solar cell device with incorporated NPs shows a much smaller survivable curvature radius of 4 mm, while a regular flexible device can only sustain a bending curvature radius of 8 mm before fracture.

  5. Permanent fine tuning of silicon microring devices by femtosecond laser surface amorphization and ablation.

    PubMed

    Bachman, Daniel; Chen, Zhijiang; Fedosejevs, Robert; Tsui, Ying Y; Van, Vien

    2013-05-06

    We demonstrate the fine tuning capability of femtosecond laser surface modification as a permanent trimming mechanism for silicon photonic components. Silicon microring resonators with a 15 µm radius were irradiated with single 400 nm wavelength laser pulses at varying fluences. Below the laser ablation threshold, surface amorphization of the crystalline silicon waveguides yielded a tuning rate of 20 ± 2 nm/J · cm(-2)with a minimum resonance wavelength shift of 0.10nm. Above that threshold, ablation yielded a minimum resonance shift of -1.7 nm. There was some increase in waveguide loss for both trimming mechanisms. We also demonstrated the application of the method by using it to permanently correct the resonance mismatch of a second-order microring filter.

  6. The influence of simulated clinical use on the flexibility of rotary ProTaper Universal, K3 and EndoSequence nickel-titanium instruments.

    PubMed

    Viana, A C D; Pereira, E S J; Bahia, M G A; Buono, V T L

    2013-09-01

    To investigate the influence of cyclic flexural and torsional loading on the flexibility of ProTaper Universal, K3 and EndoSequence nickel-titanium instruments, in view of the hypothesis that these types of loading would decrease the flexibility of the selected NiTi rotary files. The instruments evaluated were S2 and F1 ProTaper Universal, sizes 20 and 25, .06 taper K3, and sizes 20 and 25, .06 taper EndoSequence. Flexibility was determined by 45° bending tests according to ISO 3630-1 specification. Values of the bending moment (MB ) obtained with new instruments were considered as the control group (CG). Bending tests were then conducted in instruments previously fatigued to one-fourth and three-fourths of their average fatigue life (fatigue groups, FG¼ and FG¾), as well as after cyclic torsional loading (torsional group, TG). Fatigue tests were carried out in a bench device that allowed the files to rotate freely inside an artificial canal with an angle of curvature of 45° and a radius of 5 mm. Cyclic torsional loading tests were performed that entailed rotating the instrument from zero angular deflection to 180° and then returning to zero applied torque in 20 cycles. Data were analysed using one-way analysis of variance at a significance level of 5%. Simulated clinical use by means of flexural fatigue tests did not affect the flexibility of the instruments, except for a significant increase in flexibility observed in a few instruments (P < 0.05). In addition, comparative statistical analyses between the values of MB measured in new instruments and after cyclic torsional loading showed no significant differences between them (P > 0.05). The flexibility of rotary ProTaper Universal, K3 and EndoSequence NiTi instruments, measured in bending tests, was not adversely affected by simulated clinical use in curved root canals. © 2013 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  7. Molecular basis of endosomal-membrane association for the dengue virus envelope protein

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rogers, David M.; Kent, Michael S.; Rempe, Susan B.

    Dengue virus is coated by an icosahedral shell of 90 envelope protein dimers that convert to trimers at low pH and promote fusion of its membrane with the membrane of the host endosome. We provide the first estimates for the free energy barrier and minimum for two key steps in this process: host membrane bending and protein–membrane binding. Both are studied using complementary membrane elastic, continuum electrostatics and all-atom molecular dynamics simulations. The predicted host membrane bending required to form an initial fusion stalk presents a 22–30 kcal/mol free energy barrier according to a constrained membrane elastic model. Combined continuummore » and molecular dynamics results predict a 15 kcal/mol free energy decrease on binding of each trimer of dengue envelope protein to a membrane with 30% anionic phosphatidylglycerol lipid. The bending cost depends on the preferred curvature of the lipids composing the host membrane leaflets, while the free energy gained for protein binding depends on the surface charge density of the host membrane. The fusion loop of the envelope protein inserts exactly at the level of the interface between the membrane's hydrophobic and head-group regions. As a result, the methods used in this work provide a means for further characterization of the structures and free energies of protein-assisted membrane fusion.« less

  8. Molecular basis of endosomal-membrane association for the dengue virus envelope protein

    DOE PAGES

    Rogers, David M.; Kent, Michael S.; Rempe, Susan B.

    2015-01-02

    Dengue virus is coated by an icosahedral shell of 90 envelope protein dimers that convert to trimers at low pH and promote fusion of its membrane with the membrane of the host endosome. We provide the first estimates for the free energy barrier and minimum for two key steps in this process: host membrane bending and protein–membrane binding. Both are studied using complementary membrane elastic, continuum electrostatics and all-atom molecular dynamics simulations. The predicted host membrane bending required to form an initial fusion stalk presents a 22–30 kcal/mol free energy barrier according to a constrained membrane elastic model. Combined continuummore » and molecular dynamics results predict a 15 kcal/mol free energy decrease on binding of each trimer of dengue envelope protein to a membrane with 30% anionic phosphatidylglycerol lipid. The bending cost depends on the preferred curvature of the lipids composing the host membrane leaflets, while the free energy gained for protein binding depends on the surface charge density of the host membrane. The fusion loop of the envelope protein inserts exactly at the level of the interface between the membrane's hydrophobic and head-group regions. As a result, the methods used in this work provide a means for further characterization of the structures and free energies of protein-assisted membrane fusion.« less

  9. Direct formulation of a 4-node hybrid shell element with rotational degrees of freedom

    NASA Technical Reports Server (NTRS)

    Aminpour, Mohammad A.

    1990-01-01

    A simple 4-node assumed-stress hybrid quadrilateral shell element with rotational or drilling degrees of freedom is formulated. The element formulation is based directly on a 4-node element. This direct formulation requires fewer computations than a similar element that is derived from an internal 8-node isoparametric element in which the midside degrees of freedom are eliminated in favor of rotational degree of freedom at the corner nodes. The formulation is based on the principle of minimum complementary energy. The membrane part of the element has 12 degrees of freedom including rotational degrees of freedom. The bending part of the element also has 12 degrees of freedom. The bending part of the quadratic variations for both in-plane and out-of-plane displacement fields and linear variations for both in-plane and out-of-plane rotation fields are assumed along the edges of the element. The element Cartesian-coordinate system is chosen such as to make the stress field invariant with respect to node numbering. The membrane part of the stress field is based on a 9-parameter equilibrating stress field, while the bending part is based on a 13-parameter equilibrating stress field. The element passes the patch test, is nearly insensitive to mesh distortion, does not lock, possesses the desirable invariance properties, has no spurious modes, and produces accurate and reliable results.

  10. Resistance properties of coal-water slurry flowing through local piping fittings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Meng; Duan, Yu Feng

    2009-07-15

    Local resistance characteristics of coal-water slurry (CWS) flowing through three types of piping components, namely gradual contractions, sudden contractions and 90 horizontal bends, were investigated at a transportation test facility. The results show that CWS exhibits different rheological behaviors, i.e., the shear-thinning, Newtonian, and shear-thicken, at different shear rates. When CWS flows through the gradual contractions, the local pressure loss firstly decreases to a minimum, and then increases as the gradual contraction angle ({theta}) increases. When the CWS flow through the sudden contractions, with the increase of pipe diameter ratio ({beta}), the local pressure loss increases for the two kindsmore » of CWS, SHEN-HUA (S-H) CWS and YAN-ZHOU (Y-Z) CWS whose mass concentration range from 57% to 59% and 59% to 62%, respectively. For 90 horizontal bends, there is an optimal value of the bend diameter ratio (Rc/D) at which the local pressure loss is the least. Furthermore, the local resistance coefficient (K) in the empirical correlations is determined from the experimental data. The correlations show that as Re increases, K of the three fittings declines quickly at first. However, with further increase in Re, K shows different behaviors for the three fittings due to the special rheological property of CWS at higher shear rates. The factors of {theta}, {beta} and Rc/D have minor effects on K. (author)« less

  11. Resistance properties of coal-water slurry flowing through local piping fittings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, L.; Duan, Y.F.

    2009-07-15

    Local resistance characteristics of coal-water slurry (CWS) flowing through three types of piping components, namely gradual contractions, sudden contractions and 90 horizontal bends, were investigated at a transportation test facility. The results show that CWS exhibits different rheological behaviors, i.e., the shear-thinning, Newtonian, and shear-thicken, at different shear rates. When CWS flows through the gradual contractions, the local pressure loss firstly decreases to a minimum, and then increases as the gradual contraction angle {theta} increases. When the CWS flow through the sudden contractions, with the increase of pipe diameter ratio {beta}, the local pressure loss increases for the two kindsmore » of CWS, SHEN-HUA (S-H) CWS and YAN-ZHOU (Y-Z) CWS whose mass concentration range from 57% to 59% and 59% to 62%, respectively. For 90 horizontal bends, there is an optimal value of the bend diameter ratio (Rc/D) at which the local pressure loss is the least. Furthermore, the local resistance coefficient (K) in the empirical correlations is determined from the experimental data. The correlations show that as Re increases, K of the three fittings declines quickly at first. However, with further increase in Re, K shows different behaviors for the three fittings due to the special rheological property of CWS at higher shear rates. The factors of theta, beta and Rc/D have minor effects on K.« less

  12. Bending of Euler-Bernoulli nanobeams based on the strain-driven and stress-driven nonlocal integral models: a numerical approach

    NASA Astrophysics Data System (ADS)

    Oskouie, M. Faraji; Ansari, R.; Rouhi, H.

    2018-04-01

    Eringen's nonlocal elasticity theory is extensively employed for the analysis of nanostructures because it is able to capture nanoscale effects. Previous studies have revealed that using the differential form of the strain-driven version of this theory leads to paradoxical results in some cases, such as bending analysis of cantilevers, and recourse must be made to the integral version. In this article, a novel numerical approach is developed for the bending analysis of Euler-Bernoulli nanobeams in the context of strain- and stress-driven integral nonlocal models. This numerical approach is proposed for the direct solution to bypass the difficulties related to converting the integral governing equation into a differential equation. First, the governing equation is derived based on both strain-driven and stress-driven nonlocal models by means of the minimum total potential energy. Also, in each case, the governing equation is obtained in both strong and weak forms. To solve numerically the derived equations, matrix differential and integral operators are constructed based upon the finite difference technique and trapezoidal integration rule. It is shown that the proposed numerical approach can be efficiently applied to the strain-driven nonlocal model with the aim of resolving the mentioned paradoxes. Also, it is able to solve the problem based on the strain-driven model without inconsistencies of the application of this model that are reported in the literature.

  13. CO2 enrichment alters diurnal stem radius fluctuations of 36-yr-old Larix decidua growing at the alpine tree line.

    PubMed

    Dawes, Melissa A; Zweifel, Roman; Dawes, Nicholas; Rixen, Christian; Hagedorn, Frank

    2014-06-01

    To understand how trees at high elevations might use water differently in the future, we investigated the effects of CO2 enrichment and soil warming (separately and combined) on the water relations of Larix decidua growing at the tree line in the Swiss Alps. We assessed diurnal stem radius fluctuations using point dendrometers and applied a hydraulic plant model using microclimate and soil water potential data as inputs. Trees exposed to CO2 enrichment for 9 yr showed smaller diurnal stem radius contractions (by 46 ± 16%) and expansions (42 ± 16%) compared with trees exposed to ambient CO2 . Additionally, there was a delay in the timing of daily maximum (40 ± 12 min) and minimum (63 ± 14 min) radius values for trees growing under elevated CO2 . Parameters optimized with the hydraulic model suggested that CO2 -enriched trees had an increased flow resistance between the xylem and bark, representing a more buffered water supply system. Soil warming did not alter diurnal fluctuation dynamics or the CO2 response. Elevated CO2 altered the hydraulic water flow and storage system within L. decidua trees, which might have contributed to enhanced growth during 9 yr of CO2 enrichment and could ultimately influence the future competitive ability of this key tree-line species. © 2014 WSL Institute for Snow and Avalanche Research - SLF. New Phytologist © 2014 New Phytologist Trust.

  14. A super-Earth transiting a nearby low-mass star.

    PubMed

    Charbonneau, David; Berta, Zachory K; Irwin, Jonathan; Burke, Christopher J; Nutzman, Philip; Buchhave, Lars A; Lovis, Christophe; Bonfils, Xavier; Latham, David W; Udry, Stéphane; Murray-Clay, Ruth A; Holman, Matthew J; Falco, Emilio E; Winn, Joshua N; Queloz, Didier; Pepe, Francesco; Mayor, Michel; Delfosse, Xavier; Forveille, Thierry

    2009-12-17

    A decade ago, the detection of the first transiting extrasolar planet provided a direct constraint on its composition and opened the door to spectroscopic investigations of extrasolar planetary atmospheres. Because such characterization studies are feasible only for transiting systems that are both nearby and for which the planet-to-star radius ratio is relatively large, nearby small stars have been surveyed intensively. Doppler studies and microlensing have uncovered a population of planets with minimum masses of 1.9-10 times the Earth's mass (M[symbol:see text]), called super-Earths. The first constraint on the bulk composition of this novel class of planets was afforded by CoRoT-7b (refs 8, 9), but the distance and size of its star preclude atmospheric studies in the foreseeable future. Here we report observations of the transiting planet GJ 1214b, which has a mass of 6.55M[symbol:see text]), and a radius 2.68 times Earth's radius (R[symbol:see text]), indicating that it is intermediate in stature between Earth and the ice giants of the Solar System. We find that the planetary mass and radius are consistent with a composition of primarily water enshrouded by a hydrogen-helium envelope that is only 0.05% of the mass of the planet. The atmosphere is probably escaping hydrodynamically, indicating that it has undergone significant evolution during its history. The star is small and only 13 parsecs away, so the planetary atmosphere is amenable to study with current observatories.

  15. Scalable Top-Down Approach Tailored by Interferometric Lithography to Achieve Large-Area Single-Mode GaN Nanowire Laser Arrays on Sapphire Substrate.

    PubMed

    Behzadirad, Mahmoud; Nami, Mohsen; Wostbrock, Neal; Zamani Kouhpanji, Mohammad Reza; Feezell, Daniel F; Brueck, Steven R J; Busani, Tito

    2018-03-27

    GaN nanowires are promising for optical and optoelectronic applications because of their waveguiding properties and large optical band gap. However, developing a precise, scalable, and cost-effective fabrication method with a high degree of controllability to obtain high-aspect-ratio nanowires with high optical properties and minimum crystal defects remains a challenge. Here, we present a scalable two-step top-down approach using interferometric lithography, for which parameters can be controlled precisely to achieve highly ordered arrays of nanowires with excellent quality and desired aspect ratios. The wet-etch mechanism is investigated, and the etch rates of m-planes {11̅00} (sidewalls) were measured to be 2.5 to 70 nm/h depending on the Si doping concentration. Using this method, uniform nanowire arrays were achieved over a large area (>10 5 μm 2 ) with an spect ratio as large as 50, a radius as small as 17 nm, and atomic-scale sidewall roughness (<1 nm). FDTD modeling demonstrated HE 11 is the dominant transverse mode in the nanowires with a radius of sub-100 nm, and single-mode lasing from vertical cavity nanowire arrays with different doping concentrations on a sapphire substrate was interestingly observed in photoluminescence measurements. High Q-factors of ∼1139-2443 were obtained in nanowire array lasers with a radius and length of 65 nm and 2 μm, respectively, corresponding to a line width of 0.32-0.15 nm (minimum threshold of 3.31 MW/cm 2 ). Our results show that fabrication of high-quality GaN nanowire arrays with adaptable aspect ratio and large-area uniformity is feasible through a top-down approach using interferometric lithography and is promising for fabrication of III-nitride-based nanophotonic devices (radial/axial) on the original substrate.

  16. Implications of Gamma-Ray Transparency Constraints in Blazars: Minimum Distances and Gamma-Ray Collimation

    NASA Technical Reports Server (NTRS)

    Becker, Peter A.; Kafatos, Menas

    1995-01-01

    We develop a general expression for the gamma - gamma absorption coefficient, alpha(sub gamma(gamma)) for gamma-rays propagating in an arbitrary direction at an arbitrary point in space above an X-ray-emitting accretion disk. The X-ray intensity is assumed to vary as a power law in energy and radius between the outer disk radius, R(sub 0), and the inner radius, R(sub ms) which is the radius of marginal stability for a Schwarzschild black hole. We use our result for alpha(sub gamma(gamma)) to calculate the gamma - gamma optical depth, tau(sub gamma(gamma)) for gamma - rays created at height z and propagating at angle Phi relative to the disk axis, and we show that for Phi = 0 and z greater than or approx equal to R(sub 0), tau(sub gamma(gamma)) proportional to Epsilon(sup alpha)z(sup -2(alpha) - 3), where alpha is the X-ray spectral index and Epsilon is the gamma - ray energy. As an application, we use our formalism to compute the minimum distance between the central black hole and the site of production of the gamma-rays detected by EGRET during the 1991 June flare of 3C 279. In order to obtain an upper limit, we assume that all of the X-rays observed contemporaneously by Ginga were emitted by the disk. Our results suggest that the observed gamma - rays may have originated within less than or approx equal to 45 GM/sq c from a black hole of mass greater than or approx equal to 10(exp 9) solar mass, perhaps in active plasma located above the central funnel of the accretion disk. This raises the possibility of establishing a direct connection between the production of the observed gamma - rays and the accretion of material onto the black hole. We also consider the variation of the optical depth as a function of the angle of propagation Phi. Our results indicate that the "focusing" of the gamma - rays along the disk axis due to pair production is strong enough to explain the observed degree of alignment in blazar sources. If the gamma - rays are produced isotropically in gamma - ray blazars, then these objects should appear as bright MeV sources when viewed along off-axis lines of sight.

  17. Manchester Coding Option for SpaceWire: Providing Choices for System Level Design

    NASA Technical Reports Server (NTRS)

    Rakow, Glenn; Kisin, Alex

    2014-01-01

    This paper proposes an optional coding scheme for SpaceWire in lieu of the current Data Strobe scheme for three reasons. First reason is to provide a straightforward method for electrical isolation of the interface; secondly to provide ability to reduce the mass and bend radius of the SpaceWire cable; and thirdly to provide a means for a common physical layer over which multiple spacecraft onboard data link protocols could operate for a wide range of data rates. The intent is to accomplish these goals without significant change to existing SpaceWire design investments. The ability to optionally use Manchester coding in place of the current Data Strobe coding provides the ability to DC balanced the signal transitions unlike the SpaceWire Data Strobe coding; and therefore the ability to isolate the electrical interface without concern. Additionally, because the Manchester code has the clock and data encoded on the same signal, the number of wires of the existing SpaceWire cable could be optionally reduced by 50. This reduction could be an important consideration for many users of SpaceWire as indicated by the already existing effort underway by the SpaceWire working group to reduce the cable mass and bend radius by elimination of shields. However, reducing the signal count by half would provide even greater gains. It is proposed to restrict the data rate for the optional Manchester coding to a fixed data rate of 10 Megabits per second (Mbps) in order to make the necessary changes simple and still able to run in current radiation tolerant Field Programmable Gate Arrays (FPGAs). Even with this constraint, 10 Mbps will meet many applications where SpaceWire is used. These include command and control applications and many instruments applications with have moderate data rate. For most NASA flight implementations, SpaceWire designs are in rad-tolerant FPGAs, and the desire to preserve the heritage design investment is important for cost and risk considerations. The Manchester coding option can be accommodated in existing designs with only changes to the FPGA.

  18. Engineer Design of a Mono-Mooring System.

    DTIC Science & Technology

    1966-01-01

    swivels . When asked whether the bogie rails were machined by a large radius boring mill , Mr. Coombe indicated that these rails are rolled then V welded...lifted aboard the transp ort vessel , the disposi- tion of the various system compo- nents shall be as follows: 1. Buoy shall be complete , with...tugboat , equipped with towing winch or pow9r capstan , LOA 110 ’ — 120’, twin screw; BHP-l000 minimum . 7. It has been assumed that weld- ing machines

  19. Large-area flexible monolithic ITO/WO3/Nb2O5/NiVOχ/ITO electrochromic devices prepared by using magnetron sputter deposition

    NASA Astrophysics Data System (ADS)

    Tang, Chien-Jen; Ye, Jia-Ming; Yang, Yueh-Ting; He, Ju-Liang

    2016-05-01

    Electrochromic devices (ECDs) have been applied in smart windows to control the transmission of sunlight in green buildings, saving up to 40-50% electricity consumption and ultimately reducing carbon dioxide emissions. However, the high manufacturing costs and difficulty of transportation of conventional massive large area ECDs has limited widespread applications. A unique design replacing the glass substrate commonly used in the ECD windows with inexpensive, light-weight and flexible polymeric substrate materials would accelerate EC adoption allowing them to be supplemented for regular windows without altering window construction. In this study, an ITO/WO3/Nb2O5/NiVOχ/ITO all-solid-state monolithic ECD with an effective area of 24 cm × 18 cm is successfully integrated on a PET substrate by using magnetron sputter deposition. The electrochromic performance and bending durability of the resultant material are also investigated. The experimental results indicate that the ultimate response times for the prepared ECD is 6 s for coloring at an applied voltage of -3 V and 5 s for bleaching at an applied voltage of +3 V, respectively. The optical transmittances for the bleached and colored state at a wavelength of 633 nm are 53% and 11%, respectively. The prepared ECD can sustain over 8000 repeated coloring and bleaching cycles, as well as tolerate a bending radius of curvature of 7.5 cm.

  20. A morphological comparison of narrow, low-gradient streams traversing wetland environments to alluvial streams.

    PubMed

    Jurmu, Michael C

    2002-12-01

    Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.

Top