Sample records for minimum classification error

  1. Multiple-rule bias in the comparison of classification rules

    PubMed Central

    Yousefi, Mohammadmahdi R.; Hua, Jianping; Dougherty, Edward R.

    2011-01-01

    Motivation: There is growing discussion in the bioinformatics community concerning overoptimism of reported results. Two approaches contributing to overoptimism in classification are (i) the reporting of results on datasets for which a proposed classification rule performs well and (ii) the comparison of multiple classification rules on a single dataset that purports to show the advantage of a certain rule. Results: This article provides a careful probabilistic analysis of the second issue and the ‘multiple-rule bias’, resulting from choosing a classification rule having minimum estimated error on the dataset. It quantifies this bias corresponding to estimating the expected true error of the classification rule possessing minimum estimated error and it characterizes the bias from estimating the true comparative advantage of the chosen classification rule relative to the others by the estimated comparative advantage on the dataset. The analysis is applied to both synthetic and real data using a number of classification rules and error estimators. Availability: We have implemented in C code the synthetic data distribution model, classification rules, feature selection routines and error estimation methods. The code for multiple-rule analysis is implemented in MATLAB. The source code is available at http://gsp.tamu.edu/Publications/supplementary/yousefi11a/. Supplementary simulation results are also included. Contact: edward@ece.tamu.edu Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:21546390

  2. Original and Mirror Face Images and Minimum Squared Error Classification for Visible Light Face Recognition.

    PubMed

    Wang, Rong

    2015-01-01

    In real-world applications, the image of faces varies with illumination, facial expression, and poses. It seems that more training samples are able to reveal possible images of the faces. Though minimum squared error classification (MSEC) is a widely used method, its applications on face recognition usually suffer from the problem of a limited number of training samples. In this paper, we improve MSEC by using the mirror faces as virtual training samples. We obtained the mirror faces generated from original training samples and put these two kinds of samples into a new set. The face recognition experiments show that our method does obtain high accuracy performance in classification.

  3. Computer discrimination procedures applicable to aerial and ERTS multispectral data

    NASA Technical Reports Server (NTRS)

    Richardson, A. J.; Torline, R. J.; Allen, W. A.

    1970-01-01

    Two statistical models are compared in the classification of crops recorded on color aerial photographs. A theory of error ellipses is applied to the pattern recognition problem. An elliptical boundary condition classification model (EBC), useful for recognition of candidate patterns, evolves out of error ellipse theory. The EBC model is compared with the minimum distance to the mean (MDM) classification model in terms of pattern recognition ability. The pattern recognition results of both models are interpreted graphically using scatter diagrams to represent measurement space. Measurement space, for this report, is determined by optical density measurements collected from Kodak Ektachrome Infrared Aero Film 8443 (EIR). The EBC model is shown to be a significant improvement over the MDM model.

  4. Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements.

    PubMed

    Caprihan, A; Pearlson, G D; Calhoun, V D

    2008-08-15

    Principal component analysis (PCA) is often used to reduce the dimension of data before applying more sophisticated data analysis methods such as non-linear classification algorithms or independent component analysis. This practice is based on selecting components corresponding to the largest eigenvalues. If the ultimate goal is separation of data in two groups, then these set of components need not have the most discriminatory power. We measured the distance between two such populations using Mahalanobis distance and chose the eigenvectors to maximize it, a modified PCA method, which we call the discriminant PCA (DPCA). DPCA was applied to diffusion tensor-based fractional anisotropy images to distinguish age-matched schizophrenia subjects from healthy controls. The performance of the proposed method was evaluated by the one-leave-out method. We show that for this fractional anisotropy data set, the classification error with 60 components was close to the minimum error and that the Mahalanobis distance was twice as large with DPCA, than with PCA. Finally, by masking the discriminant function with the white matter tracts of the Johns Hopkins University atlas, we identified left superior longitudinal fasciculus as the tract which gave the least classification error. In addition, with six optimally chosen tracts the classification error was zero.

  5. Empirically Estimable Classification Bounds Based on a Nonparametric Divergence Measure

    PubMed Central

    Berisha, Visar; Wisler, Alan; Hero, Alfred O.; Spanias, Andreas

    2015-01-01

    Information divergence functions play a critical role in statistics and information theory. In this paper we show that a non-parametric f-divergence measure can be used to provide improved bounds on the minimum binary classification probability of error for the case when the training and test data are drawn from the same distribution and for the case where there exists some mismatch between training and test distributions. We confirm the theoretical results by designing feature selection algorithms using the criteria from these bounds and by evaluating the algorithms on a series of pathological speech classification tasks. PMID:26807014

  6. Multilayer perceptron, fuzzy sets, and classification

    NASA Technical Reports Server (NTRS)

    Pal, Sankar K.; Mitra, Sushmita

    1992-01-01

    A fuzzy neural network model based on the multilayer perceptron, using the back-propagation algorithm, and capable of fuzzy classification of patterns is described. The input vector consists of membership values to linguistic properties while the output vector is defined in terms of fuzzy class membership values. This allows efficient modeling of fuzzy or uncertain patterns with appropriate weights being assigned to the backpropagated errors depending upon the membership values at the corresponding outputs. During training, the learning rate is gradually decreased in discrete steps until the network converges to a minimum error solution. The effectiveness of the algorithm is demonstrated on a speech recognition problem. The results are compared with those of the conventional MLP, the Bayes classifier, and the other related models.

  7. Analyzing thematic maps and mapping for accuracy

    USGS Publications Warehouse

    Rosenfield, G.H.

    1982-01-01

    Two problems which exist while attempting to test the accuracy of thematic maps and mapping are: (1) evaluating the accuracy of thematic content, and (2) evaluating the effects of the variables on thematic mapping. Statistical analysis techniques are applicable to both these problems and include techniques for sampling the data and determining their accuracy. In addition, techniques for hypothesis testing, or inferential statistics, are used when comparing the effects of variables. A comprehensive and valid accuracy test of a classification project, such as thematic mapping from remotely sensed data, includes the following components of statistical analysis: (1) sample design, including the sample distribution, sample size, size of the sample unit, and sampling procedure; and (2) accuracy estimation, including estimation of the variance and confidence limits. Careful consideration must be given to the minimum sample size necessary to validate the accuracy of a given. classification category. The results of an accuracy test are presented in a contingency table sometimes called a classification error matrix. Usually the rows represent the interpretation, and the columns represent the verification. The diagonal elements represent the correct classifications. The remaining elements of the rows represent errors by commission, and the remaining elements of the columns represent the errors of omission. For tests of hypothesis that compare variables, the general practice has been to use only the diagonal elements from several related classification error matrices. These data are arranged in the form of another contingency table. The columns of the table represent the different variables being compared, such as different scales of mapping. The rows represent the blocking characteristics, such as the various categories of classification. The values in the cells of the tables might be the counts of correct classification or the binomial proportions of these counts divided by either the row totals or the column totals from the original classification error matrices. In hypothesis testing, when the results of tests of multiple sample cases prove to be significant, some form of statistical test must be used to separate any results that differ significantly from the others. In the past, many analyses of the data in this error matrix were made by comparing the relative magnitudes of the percentage of correct classifications, for either individual categories, the entire map or both. More rigorous analyses have used data transformations and (or) two-way classification analysis of variance. A more sophisticated step of data analysis techniques would be to use the entire classification error matrices using the methods of discrete multivariate analysis or of multiviariate analysis of variance.

  8. Statistical learning from nonrecurrent experience with discrete input variables and recursive-error-minimization equations

    NASA Astrophysics Data System (ADS)

    Carter, Jeffrey R.; Simon, Wayne E.

    1990-08-01

    Neural networks are trained using Recursive Error Minimization (REM) equations to perform statistical classification. Using REM equations with continuous input variables reduces the required number of training experiences by factors of one to two orders of magnitude over standard back propagation. Replacing the continuous input variables with discrete binary representations reduces the number of connections by a factor proportional to the number of variables reducing the required number of experiences by another order of magnitude. Undesirable effects of using recurrent experience to train neural networks for statistical classification problems are demonstrated and nonrecurrent experience used to avoid these undesirable effects. 1. THE 1-41 PROBLEM The statistical classification problem which we address is is that of assigning points in ddimensional space to one of two classes. The first class has a covariance matrix of I (the identity matrix) the covariance matrix of the second class is 41. For this reason the problem is known as the 1-41 problem. Both classes have equal probability of occurrence and samples from both classes may appear anywhere throughout the ddimensional space. Most samples near the origin of the coordinate system will be from the first class while most samples away from the origin will be from the second class. Since the two classes completely overlap it is impossible to have a classifier with zero error. The minimum possible error is known as the Bayes error and

  9. Predicting alpine headwater stream intermittency: a case study in the northern Rocky Mountains

    USGS Publications Warehouse

    Sando, Thomas R.; Blasch, Kyle W.

    2015-01-01

    This investigation used climatic, geological, and environmental data coupled with observational stream intermittency data to predict alpine headwater stream intermittency. Prediction was made using a random forest classification model. Results showed that the most important variables in the prediction model were snowpack persistence, represented by average snow extent from March through July, mean annual mean monthly minimum temperature, and surface geology types. For stream catchments with intermittent headwater streams, snowpack, on average, persisted until early June, whereas for stream catchments with perennial headwater streams, snowpack, on average, persisted until early July. Additionally, on average, stream catchments with intermittent headwater streams were about 0.7 °C warmer than stream catchments with perennial headwater streams. Finally, headwater stream catchments primarily underlain by coarse, permeable sediment are significantly more likely to have intermittent headwater streams than those primarily underlain by impermeable bedrock. Comparison of the predicted streamflow classification with observed stream status indicated a four percent classification error for first-order streams and a 21 percent classification error for all stream orders in the study area.

  10. Multiclass Bayes error estimation by a feature space sampling technique

    NASA Technical Reports Server (NTRS)

    Mobasseri, B. G.; Mcgillem, C. D.

    1979-01-01

    A general Gaussian M-class N-feature classification problem is defined. An algorithm is developed that requires the class statistics as its only input and computes the minimum probability of error through use of a combined analytical and numerical integration over a sequence simplifying transformations of the feature space. The results are compared with those obtained by conventional techniques applied to a 2-class 4-feature discrimination problem with results previously reported and 4-class 4-feature multispectral scanner Landsat data classified by training and testing of the available data.

  11. Automatic tissue characterization from ultrasound imagery

    NASA Astrophysics Data System (ADS)

    Kadah, Yasser M.; Farag, Aly A.; Youssef, Abou-Bakr M.; Badawi, Ahmed M.

    1993-08-01

    In this work, feature extraction algorithms are proposed to extract the tissue characterization parameters from liver images. Then the resulting parameter set is further processed to obtain the minimum number of parameters representing the most discriminating pattern space for classification. This preprocessing step was applied to over 120 pathology-investigated cases to obtain the learning data for designing the classifier. The extracted features are divided into independent training and test sets and are used to construct both statistical and neural classifiers. The optimal criteria for these classifiers are set to have minimum error, ease of implementation and learning, and the flexibility for future modifications. Various algorithms for implementing various classification techniques are presented and tested on the data. The best performance was obtained using a single layer tensor model functional link network. Also, the voting k-nearest neighbor classifier provided comparably good diagnostic rates.

  12. A False Alarm Reduction Method for a Gas Sensor Based Electronic Nose

    PubMed Central

    Rahman, Mohammad Mizanur; Suksompong, Prapun; Toochinda, Pisanu; Taparugssanagorn, Attaphongse

    2017-01-01

    Electronic noses (E-Noses) are becoming popular for food and fruit quality assessment due to their robustness and repeated usability without fatigue, unlike human experts. An E-Nose equipped with classification algorithms and having open ended classification boundaries such as the k-nearest neighbor (k-NN), support vector machine (SVM), and multilayer perceptron neural network (MLPNN), are found to suffer from false classification errors of irrelevant odor data. To reduce false classification and misclassification errors, and to improve correct rejection performance; algorithms with a hyperspheric boundary, such as a radial basis function neural network (RBFNN) and generalized regression neural network (GRNN) with a Gaussian activation function in the hidden layer should be used. The simulation results presented in this paper show that GRNN has more correct classification efficiency and false alarm reduction capability compared to RBFNN. As the design of a GRNN and RBFNN is complex and expensive due to large numbers of neuron requirements, a simple hyperspheric classification method based on minimum, maximum, and mean (MMM) values of each class of the training dataset was presented. The MMM algorithm was simple and found to be fast and efficient in correctly classifying data of training classes, and correctly rejecting data of extraneous odors, and thereby reduced false alarms. PMID:28895910

  13. A False Alarm Reduction Method for a Gas Sensor Based Electronic Nose.

    PubMed

    Rahman, Mohammad Mizanur; Charoenlarpnopparut, Chalie; Suksompong, Prapun; Toochinda, Pisanu; Taparugssanagorn, Attaphongse

    2017-09-12

    Electronic noses (E-Noses) are becoming popular for food and fruit quality assessment due to their robustness and repeated usability without fatigue, unlike human experts. An E-Nose equipped with classification algorithms and having open ended classification boundaries such as the k -nearest neighbor ( k -NN), support vector machine (SVM), and multilayer perceptron neural network (MLPNN), are found to suffer from false classification errors of irrelevant odor data. To reduce false classification and misclassification errors, and to improve correct rejection performance; algorithms with a hyperspheric boundary, such as a radial basis function neural network (RBFNN) and generalized regression neural network (GRNN) with a Gaussian activation function in the hidden layer should be used. The simulation results presented in this paper show that GRNN has more correct classification efficiency and false alarm reduction capability compared to RBFNN. As the design of a GRNN and RBFNN is complex and expensive due to large numbers of neuron requirements, a simple hyperspheric classification method based on minimum, maximum, and mean (MMM) values of each class of the training dataset was presented. The MMM algorithm was simple and found to be fast and efficient in correctly classifying data of training classes, and correctly rejecting data of extraneous odors, and thereby reduced false alarms.

  14. Constrained binary classification using ensemble learning: an application to cost-efficient targeted PrEP strategies.

    PubMed

    Zheng, Wenjing; Balzer, Laura; van der Laan, Mark; Petersen, Maya

    2018-01-30

    Binary classification problems are ubiquitous in health and social sciences. In many cases, one wishes to balance two competing optimality considerations for a binary classifier. For instance, in resource-limited settings, an human immunodeficiency virus prevention program based on offering pre-exposure prophylaxis (PrEP) to select high-risk individuals must balance the sensitivity of the binary classifier in detecting future seroconverters (and hence offering them PrEP regimens) with the total number of PrEP regimens that is financially and logistically feasible for the program. In this article, we consider a general class of constrained binary classification problems wherein the objective function and the constraint are both monotonic with respect to a threshold. These include the minimization of the rate of positive predictions subject to a minimum sensitivity, the maximization of sensitivity subject to a maximum rate of positive predictions, and the Neyman-Pearson paradigm, which minimizes the type II error subject to an upper bound on the type I error. We propose an ensemble approach to these binary classification problems based on the Super Learner methodology. This approach linearly combines a user-supplied library of scoring algorithms, with combination weights and a discriminating threshold chosen to minimize the constrained optimality criterion. We then illustrate the application of the proposed classifier to develop an individualized PrEP targeting strategy in a resource-limited setting, with the goal of minimizing the number of PrEP offerings while achieving a minimum required sensitivity. This proof of concept data analysis uses baseline data from the ongoing Sustainable East Africa Research in Community Health study. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Locality-preserving sparse representation-based classification in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Gao, Lianru; Yu, Haoyang; Zhang, Bing; Li, Qingting

    2016-10-01

    This paper proposes to combine locality-preserving projections (LPP) and sparse representation (SR) for hyperspectral image classification. The LPP is first used to reduce the dimensionality of all the training and testing data by finding the optimal linear approximations to the eigenfunctions of the Laplace Beltrami operator on the manifold, where the high-dimensional data lies. Then, SR codes the projected testing pixels as sparse linear combinations of all the training samples to classify the testing pixels by evaluating which class leads to the minimum approximation error. The integration of LPP and SR represents an innovative contribution to the literature. The proposed approach, called locality-preserving SR-based classification, addresses the imbalance between high dimensionality of hyperspectral data and the limited number of training samples. Experimental results on three real hyperspectral data sets demonstrate that the proposed approach outperforms the original counterpart, i.e., SR-based classification.

  16. A Discriminative Approach to EEG Seizure Detection

    PubMed Central

    Johnson, Ashley N.; Sow, Daby; Biem, Alain

    2011-01-01

    Seizures are abnormal sudden discharges in the brain with signatures represented in electroencephalograms (EEG). The efficacy of the application of speech processing techniques to discriminate between seizure and non-seizure states in EEGs is reported. The approach accounts for the challenges of unbalanced datasets (seizure and non-seizure), while also showing a system capable of real-time seizure detection. The Minimum Classification Error (MCE) algorithm, which is a discriminative learning algorithm with wide-use in speech processing, is applied and compared with conventional classification techniques that have already been applied to the discrimination between seizure and non-seizure states in the literature. The system is evaluated on 22 pediatric patients multi-channel EEG recordings. Experimental results show that the application of speech processing techniques and MCE compare favorably with conventional classification techniques in terms of classification performance, while requiring less computational overhead. The results strongly suggests the possibility of deploying the designed system at the bedside. PMID:22195192

  17. Noise tolerant dendritic lattice associative memories

    NASA Astrophysics Data System (ADS)

    Ritter, Gerhard X.; Schmalz, Mark S.; Hayden, Eric; Tucker, Marc

    2011-09-01

    Linear classifiers based on computation over the real numbers R (e.g., with operations of addition and multiplication) denoted by (R, +, x), have been represented extensively in the literature of pattern recognition. However, a different approach to pattern classification involves the use of addition, maximum, and minimum operations over the reals in the algebra (R, +, maximum, minimum) These pattern classifiers, based on lattice algebra, have been shown to exhibit superior information storage capacity, fast training and short convergence times, high pattern classification accuracy, and low computational cost. Such attributes are not always found, for example, in classical neural nets based on the linear inner product. In a special type of lattice associative memory (LAM), called a dendritic LAM or DLAM, it is possible to achieve noise-tolerant pattern classification by varying the design of noise or error acceptance bounds. This paper presents theory and algorithmic approaches for the computation of noise-tolerant lattice associative memories (LAMs) under a variety of input constraints. Of particular interest are the classification of nonergodic data in noise regimes with time-varying statistics. DLAMs, which are a specialization of LAMs derived from concepts of biological neural networks, have successfully been applied to pattern classification from hyperspectral remote sensing data, as well as spatial object recognition from digital imagery. The authors' recent research in the development of DLAMs is overviewed, with experimental results that show utility for a wide variety of pattern classification applications. Performance results are presented in terms of measured computational cost, noise tolerance, classification accuracy, and throughput for a variety of input data and noise levels.

  18. Combating speckle in SAR images - Vector filtering and sequential classification based on a multiplicative noise model

    NASA Technical Reports Server (NTRS)

    Lin, Qian; Allebach, Jan P.

    1990-01-01

    An adaptive vector linear minimum mean-squared error (LMMSE) filter for multichannel images with multiplicative noise is presented. It is shown theoretically that the mean-squared error in the filter output is reduced by making use of the correlation between image bands. The vector and conventional scalar LMMSE filters are applied to a three-band SIR-B SAR, and their performance is compared. Based on a mutliplicative noise model, the per-pel maximum likelihood classifier was derived. The authors extend this to the design of sequential and robust classifiers. These classifiers are also applied to the three-band SIR-B SAR image.

  19. CURE-SMOTE algorithm and hybrid algorithm for feature selection and parameter optimization based on random forests.

    PubMed

    Ma, Li; Fan, Suohai

    2017-03-14

    The random forests algorithm is a type of classifier with prominent universality, a wide application range, and robustness for avoiding overfitting. But there are still some drawbacks to random forests. Therefore, to improve the performance of random forests, this paper seeks to improve imbalanced data processing, feature selection and parameter optimization. We propose the CURE-SMOTE algorithm for the imbalanced data classification problem. Experiments on imbalanced UCI data reveal that the combination of Clustering Using Representatives (CURE) enhances the original synthetic minority oversampling technique (SMOTE) algorithms effectively compared with the classification results on the original data using random sampling, Borderline-SMOTE1, safe-level SMOTE, C-SMOTE, and k-means-SMOTE. Additionally, the hybrid RF (random forests) algorithm has been proposed for feature selection and parameter optimization, which uses the minimum out of bag (OOB) data error as its objective function. Simulation results on binary and higher-dimensional data indicate that the proposed hybrid RF algorithms, hybrid genetic-random forests algorithm, hybrid particle swarm-random forests algorithm and hybrid fish swarm-random forests algorithm can achieve the minimum OOB error and show the best generalization ability. The training set produced from the proposed CURE-SMOTE algorithm is closer to the original data distribution because it contains minimal noise. Thus, better classification results are produced from this feasible and effective algorithm. Moreover, the hybrid algorithm's F-value, G-mean, AUC and OOB scores demonstrate that they surpass the performance of the original RF algorithm. Hence, this hybrid algorithm provides a new way to perform feature selection and parameter optimization.

  20. Minimum distance classification in remote sensing

    NASA Technical Reports Server (NTRS)

    Wacker, A. G.; Landgrebe, D. A.

    1972-01-01

    The utilization of minimum distance classification methods in remote sensing problems, such as crop species identification, is considered. Literature concerning both minimum distance classification problems and distance measures is reviewed. Experimental results are presented for several examples. The objective of these examples is to: (a) compare the sample classification accuracy of a minimum distance classifier, with the vector classification accuracy of a maximum likelihood classifier, and (b) compare the accuracy of a parametric minimum distance classifier with that of a nonparametric one. Results show the minimum distance classifier performance is 5% to 10% better than that of the maximum likelihood classifier. The nonparametric classifier is only slightly better than the parametric version.

  1. Comparison of three methods for long-term monitoring of boreal lake area using Landsat TM and ETM+ imagery

    USGS Publications Warehouse

    Roach, Jennifer K.; Griffith, Brad; Verbyla, David

    2012-01-01

    Programs to monitor lake area change are becoming increasingly important in high latitude regions, and their development often requires evaluating tradeoffs among different approaches in terms of accuracy of measurement, consistency across multiple users over long time periods, and efficiency. We compared three supervised methods for lake classification from Landsat imagery (density slicing, classification trees, and feature extraction). The accuracy of lake area and number estimates was evaluated relative to high-resolution aerial photography acquired within two days of satellite overpasses. The shortwave infrared band 5 was better at separating surface water from nonwater when used alone than when combined with other spectral bands. The simplest of the three methods, density slicing, performed best overall. The classification tree method resulted in the most omission errors (approx. 2x), feature extraction resulted in the most commission errors (approx. 4x), and density slicing had the least directional bias (approx. half of the lakes with overestimated area and half of the lakes with underestimated area). Feature extraction was the least consistent across training sets (i.e., large standard error among different training sets). Density slicing was the best of the three at classifying small lakes as evidenced by its lower optimal minimum lake size criterion of 5850 m2 compared with the other methods (8550 m2). Contrary to conventional wisdom, the use of additional spectral bands and a more sophisticated method not only required additional processing effort but also had a cost in terms of the accuracy and consistency of lake classifications.

  2. Error, Power, and Blind Sentinels: The Statistics of Seagrass Monitoring

    PubMed Central

    Schultz, Stewart T.; Kruschel, Claudia; Bakran-Petricioli, Tatjana; Petricioli, Donat

    2015-01-01

    We derive statistical properties of standard methods for monitoring of habitat cover worldwide, and criticize them in the context of mandated seagrass monitoring programs, as exemplified by Posidonia oceanica in the Mediterranean Sea. We report the novel result that cartographic methods with non-trivial classification errors are generally incapable of reliably detecting habitat cover losses less than about 30 to 50%, and the field labor required to increase their precision can be orders of magnitude higher than that required to estimate habitat loss directly in a field campaign. We derive a universal utility threshold of classification error in habitat maps that represents the minimum habitat map accuracy above which direct methods are superior. Widespread government reliance on blind-sentinel methods for monitoring seafloor can obscure the gradual and currently ongoing losses of benthic resources until the time has long passed for meaningful management intervention. We find two classes of methods with very high statistical power for detecting small habitat cover losses: 1) fixed-plot direct methods, which are over 100 times as efficient as direct random-plot methods in a variable habitat mosaic; and 2) remote methods with very low classification error such as geospatial underwater videography, which is an emerging, low-cost, non-destructive method for documenting small changes at millimeter visual resolution. General adoption of these methods and their further development will require a fundamental cultural change in conservation and management bodies towards the recognition and promotion of requirements of minimal statistical power and precision in the development of international goals for monitoring these valuable resources and the ecological services they provide. PMID:26367863

  3. Error analysis of filtering operations in pixel-duplicated images of diabetic retinopathy

    NASA Astrophysics Data System (ADS)

    Mehrubeoglu, Mehrube; McLauchlan, Lifford

    2010-08-01

    In this paper, diabetic retinopathy is chosen for a sample target image to demonstrate the effectiveness of image enlargement through pixel duplication in identifying regions of interest. Pixel duplication is presented as a simpler alternative to data interpolation techniques for detecting small structures in the images. A comparative analysis is performed on different image processing schemes applied to both original and pixel-duplicated images. Structures of interest are detected and and classification parameters optimized for minimum false positive detection in the original and enlarged retinal pictures. The error analysis demonstrates the advantages as well as shortcomings of pixel duplication in image enhancement when spatial averaging operations (smoothing filters) are also applied.

  4. An improved SRC method based on virtual samples for face recognition

    NASA Astrophysics Data System (ADS)

    Fu, Lijun; Chen, Deyun; Lin, Kezheng; Li, Ao

    2018-07-01

    The sparse representation classifier (SRC) performs classification by evaluating which class leads to the minimum representation error. However, in real world, the number of available training samples is limited due to noise interference, training samples cannot accurately represent the test sample linearly. Therefore, in this paper, we first produce virtual samples by exploiting original training samples at the aim of increasing the number of training samples. Then, we take the intra-class difference as data representation of partial noise, and utilize the intra-class differences and training samples simultaneously to represent the test sample in a linear way according to the theory of SRC algorithm. Using weighted score level fusion, the respective representation scores of the virtual samples and the original training samples are fused together to obtain the final classification results. The experimental results on multiple face databases show that our proposed method has a very satisfactory classification performance.

  5. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks

    PubMed Central

    Jang, Hojin; Plis, Sergey M.; Calhoun, Vince D.; Lee, Jong-Hwan

    2016-01-01

    Feedforward deep neural networks (DNN), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean ± standard deviation; %) of 6.9 (± 3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4 ± 4.6) and the two-layer network (7.4 ± 4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the extraction of hidden representations of fMRI volumes associated with tasks across multiple hidden layers. Our study may be beneficial to the automatic classification/diagnosis of neuropsychiatric and neurological diseases and prediction of disease severity and recovery in (pre-) clinical settings using fMRI volumes without requiring an estimation of activation patterns or ad hoc statistical evaluation. PMID:27079534

  6. Task-specific feature extraction and classification of fMRI volumes using a deep neural network initialized with a deep belief network: Evaluation using sensorimotor tasks.

    PubMed

    Jang, Hojin; Plis, Sergey M; Calhoun, Vince D; Lee, Jong-Hwan

    2017-01-15

    Feedforward deep neural networks (DNNs), artificial neural networks with multiple hidden layers, have recently demonstrated a record-breaking performance in multiple areas of applications in computer vision and speech processing. Following the success, DNNs have been applied to neuroimaging modalities including functional/structural magnetic resonance imaging (MRI) and positron-emission tomography data. However, no study has explicitly applied DNNs to 3D whole-brain fMRI volumes and thereby extracted hidden volumetric representations of fMRI that are discriminative for a task performed as the fMRI volume was acquired. Our study applied fully connected feedforward DNN to fMRI volumes collected in four sensorimotor tasks (i.e., left-hand clenching, right-hand clenching, auditory attention, and visual stimulus) undertaken by 12 healthy participants. Using a leave-one-subject-out cross-validation scheme, a restricted Boltzmann machine-based deep belief network was pretrained and used to initialize weights of the DNN. The pretrained DNN was fine-tuned while systematically controlling weight-sparsity levels across hidden layers. Optimal weight-sparsity levels were determined from a minimum validation error rate of fMRI volume classification. Minimum error rates (mean±standard deviation; %) of 6.9 (±3.8) were obtained from the three-layer DNN with the sparsest condition of weights across the three hidden layers. These error rates were even lower than the error rates from the single-layer network (9.4±4.6) and the two-layer network (7.4±4.1). The estimated DNN weights showed spatial patterns that are remarkably task-specific, particularly in the higher layers. The output values of the third hidden layer represented distinct patterns/codes of the 3D whole-brain fMRI volume and encoded the information of the tasks as evaluated from representational similarity analysis. Our reported findings show the ability of the DNN to classify a single fMRI volume based on the extraction of hidden representations of fMRI volumes associated with tasks across multiple hidden layers. Our study may be beneficial to the automatic classification/diagnosis of neuropsychiatric and neurological diseases and prediction of disease severity and recovery in (pre-) clinical settings using fMRI volumes without requiring an estimation of activation patterns or ad hoc statistical evaluation. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. 12 CFR 1777.20 - Capital classifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... notice of proposed capital classification, holds core capital equaling or exceeding the minimum capital... classification, holds core capital equaling or exceeding the minimum capital level. (3) Significantly... the date specified in the notice of proposed capital classification, holds core capital less than the...

  8. The minimum distance approach to classification

    NASA Technical Reports Server (NTRS)

    Wacker, A. G.; Landgrebe, D. A.

    1971-01-01

    The work to advance the state-of-the-art of miminum distance classification is reportd. This is accomplished through a combination of theoretical and comprehensive experimental investigations based on multispectral scanner data. A survey of the literature for suitable distance measures was conducted and the results of this survey are presented. It is shown that minimum distance classification, using density estimators and Kullback-Leibler numbers as the distance measure, is equivalent to a form of maximum likelihood sample classification. It is also shown that for the parametric case, minimum distance classification is equivalent to nearest neighbor classification in the parameter space.

  9. Classification of resistance to passive motion using minimum probability of error criterion.

    PubMed

    Chan, H C; Manry, M T; Kondraske, G V

    1987-01-01

    Neurologists diagnose many muscular and nerve disorders by classifying the resistance to passive motion of patients' limbs. Over the past several years, a computer-based instrument has been developed for automated measurement and parameterization of this resistance. In the device, a voluntarily relaxed lower extremity is moved at constant velocity by a motorized driver. The torque exerted on the extremity by the machine is sampled, along with the angle of the extremity. In this paper a computerized technique is described for classifying a patient's condition as 'Normal' or 'Parkinson disease' (rigidity), from the torque versus angle curve for the knee joint. A Legendre polynomial, fit to the curve, is used to calculate a set of eight normally distributed features of the curve. The minimum probability of error approach is used to classify the curve as being from a normal or Parkinson disease patient. Data collected from 44 different subjects was processes and the results were compared with an independent physician's subjective assessment of rigidity. There is agreement in better than 95% of the cases, when all of the features are used.

  10. On the design of classifiers for crop inventories

    NASA Technical Reports Server (NTRS)

    Heydorn, R. P.; Takacs, H. C.

    1986-01-01

    Crop proportion estimators that use classifications of satellite data to correct, in an additive way, a given estimate acquired from ground observations are discussed. A linear version of these estimators is optimal, in terms of minimum variance, when the regression of the ground observations onto the satellite observations in linear. When this regression is not linear, but the reverse regression (satellite observations onto ground observations) is linear, the estimator is suboptimal but still has certain appealing variance properties. In this paper expressions are derived for those regressions which relate the intercepts and slopes to conditional classification probabilities. These expressions are then used to discuss the question of classifier designs that can lead to low-variance crop proportion estimates. Variance expressions for these estimates in terms of classifier omission and commission errors are also derived.

  11. Development of a methodology for classifying software errors

    NASA Technical Reports Server (NTRS)

    Gerhart, S. L.

    1976-01-01

    A mathematical formalization of the intuition behind classification of software errors is devised and then extended to a classification discipline: Every classification scheme should have an easily discernible mathematical structure and certain properties of the scheme should be decidable (although whether or not these properties hold is relative to the intended use of the scheme). Classification of errors then becomes an iterative process of generalization from actual errors to terms defining the errors together with adjustment of definitions according to the classification discipline. Alternatively, whenever possible, small scale models may be built to give more substance to the definitions. The classification discipline and the difficulties of definition are illustrated by examples of classification schemes from the literature and a new study of observed errors in published papers of programming methodologies.

  12. Classification and reduction of pilot error

    NASA Technical Reports Server (NTRS)

    Rogers, W. H.; Logan, A. L.; Boley, G. D.

    1989-01-01

    Human error is a primary or contributing factor in about two-thirds of commercial aviation accidents worldwide. With the ultimate goal of reducing pilot error accidents, this contract effort is aimed at understanding the factors underlying error events and reducing the probability of certain types of errors by modifying underlying factors such as flight deck design and procedures. A review of the literature relevant to error classification was conducted. Classification includes categorizing types of errors, the information processing mechanisms and factors underlying them, and identifying factor-mechanism-error relationships. The classification scheme developed by Jens Rasmussen was adopted because it provided a comprehensive yet basic error classification shell or structure that could easily accommodate addition of details on domain-specific factors. For these purposes, factors specific to the aviation environment were incorporated. Hypotheses concerning the relationship of a small number of underlying factors, information processing mechanisms, and error types types identified in the classification scheme were formulated. ASRS data were reviewed and a simulation experiment was performed to evaluate and quantify the hypotheses.

  13. Moments and Root-Mean-Square Error of the Bayesian MMSE Estimator of Classification Error in the Gaussian Model.

    PubMed

    Zollanvari, Amin; Dougherty, Edward R

    2014-06-01

    The most important aspect of any classifier is its error rate, because this quantifies its predictive capacity. Thus, the accuracy of error estimation is critical. Error estimation is problematic in small-sample classifier design because the error must be estimated using the same data from which the classifier has been designed. Use of prior knowledge, in the form of a prior distribution on an uncertainty class of feature-label distributions to which the true, but unknown, feature-distribution belongs, can facilitate accurate error estimation (in the mean-square sense) in circumstances where accurate completely model-free error estimation is impossible. This paper provides analytic asymptotically exact finite-sample approximations for various performance metrics of the resulting Bayesian Minimum Mean-Square-Error (MMSE) error estimator in the case of linear discriminant analysis (LDA) in the multivariate Gaussian model. These performance metrics include the first, second, and cross moments of the Bayesian MMSE error estimator with the true error of LDA, and therefore, the Root-Mean-Square (RMS) error of the estimator. We lay down the theoretical groundwork for Kolmogorov double-asymptotics in a Bayesian setting, which enables us to derive asymptotic expressions of the desired performance metrics. From these we produce analytic finite-sample approximations and demonstrate their accuracy via numerical examples. Various examples illustrate the behavior of these approximations and their use in determining the necessary sample size to achieve a desired RMS. The Supplementary Material contains derivations for some equations and added figures.

  14. Automatic Quality Inspection of Percussion Cap Mass Production by Means of 3D Machine Vision and Machine Learning Techniques

    NASA Astrophysics Data System (ADS)

    Tellaeche, A.; Arana, R.; Ibarguren, A.; Martínez-Otzeta, J. M.

    The exhaustive quality control is becoming very important in the world's globalized market. One of these examples where quality control becomes critical is the percussion cap mass production. These elements must achieve a minimum tolerance deviation in their fabrication. This paper outlines a machine vision development using a 3D camera for the inspection of the whole production of percussion caps. This system presents multiple problems, such as metallic reflections in the percussion caps, high speed movement of the system and mechanical errors and irregularities in percussion cap placement. Due to these problems, it is impossible to solve the problem by traditional image processing methods, and hence, machine learning algorithms have been tested to provide a feasible classification of the possible errors present in the percussion caps.

  15. AVNM: A Voting based Novel Mathematical Rule for Image Classification.

    PubMed

    Vidyarthi, Ankit; Mittal, Namita

    2016-12-01

    In machine learning, the accuracy of the system depends upon classification result. Classification accuracy plays an imperative role in various domains. Non-parametric classifier like K-Nearest Neighbor (KNN) is the most widely used classifier for pattern analysis. Besides its easiness, simplicity and effectiveness characteristics, the main problem associated with KNN classifier is the selection of a number of nearest neighbors i.e. "k" for computation. At present, it is hard to find the optimal value of "k" using any statistical algorithm, which gives perfect accuracy in terms of low misclassification error rate. Motivated by the prescribed problem, a new sample space reduction weighted voting mathematical rule (AVNM) is proposed for classification in machine learning. The proposed AVNM rule is also non-parametric in nature like KNN. AVNM uses the weighted voting mechanism with sample space reduction to learn and examine the predicted class label for unidentified sample. AVNM is free from any initial selection of predefined variable and neighbor selection as found in KNN algorithm. The proposed classifier also reduces the effect of outliers. To verify the performance of the proposed AVNM classifier, experiments are made on 10 standard datasets taken from UCI database and one manually created dataset. The experimental result shows that the proposed AVNM rule outperforms the KNN classifier and its variants. Experimentation results based on confusion matrix accuracy parameter proves higher accuracy value with AVNM rule. The proposed AVNM rule is based on sample space reduction mechanism for identification of an optimal number of nearest neighbor selections. AVNM results in better classification accuracy and minimum error rate as compared with the state-of-art algorithm, KNN, and its variants. The proposed rule automates the selection of nearest neighbor selection and improves classification rate for UCI dataset and manually created dataset. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Variable Selection for Road Segmentation in Aerial Images

    NASA Astrophysics Data System (ADS)

    Warnke, S.; Bulatov, D.

    2017-05-01

    For extraction of road pixels from combined image and elevation data, Wegner et al. (2015) proposed classification of superpixels into road and non-road, after which a refinement of the classification results using minimum cost paths and non-local optimization methods took place. We believed that the variable set used for classification was to a certain extent suboptimal, because many variables were redundant while several features known as useful in Photogrammetry and Remote Sensing are missed. This motivated us to implement a variable selection approach which builds a model for classification using portions of training data and subsets of features, evaluates this model, updates the feature set, and terminates when a stopping criterion is satisfied. The choice of classifier is flexible; however, we tested the approach with Logistic Regression and Random Forests, and taylored the evaluation module to the chosen classifier. To guarantee a fair comparison, we kept the segment-based approach and most of the variables from the related work, but we extended them by additional, mostly higher-level features. Applying these superior features, removing the redundant ones, as well as using more accurately acquired 3D data allowed to keep stable or even to reduce the misclassification error in a challenging dataset.

  17. Fully Convolutional Networks for Ground Classification from LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Rizaldy, A.; Persello, C.; Gevaert, C. M.; Oude Elberink, S. J.

    2018-05-01

    Deep Learning has been massively used for image classification in recent years. The use of deep learning for ground classification from LIDAR point clouds has also been recently studied. However, point clouds need to be converted into an image in order to use Convolutional Neural Networks (CNNs). In state-of-the-art techniques, this conversion is slow because each point is converted into a separate image. This approach leads to highly redundant computation during conversion and classification. The goal of this study is to design a more efficient data conversion and ground classification. This goal is achieved by first converting the whole point cloud into a single image. The classification is then performed by a Fully Convolutional Network (FCN), a modified version of CNN designed for pixel-wise image classification. The proposed method is significantly faster than state-of-the-art techniques. On the ISPRS Filter Test dataset, it is 78 times faster for conversion and 16 times faster for classification. Our experimental analysis on the same dataset shows that the proposed method results in 5.22 % of total error, 4.10 % of type I error, and 15.07 % of type II error. Compared to the previous CNN-based technique and LAStools software, the proposed method reduces the total error and type I error (while type II error is slightly higher). The method was also tested on a very high point density LIDAR point clouds resulting in 4.02 % of total error, 2.15 % of type I error and 6.14 % of type II error.

  18. Selecting a restoration technique to minimize OCR error.

    PubMed

    Cannon, M; Fugate, M; Hush, D R; Scovel, C

    2003-01-01

    This paper introduces a learning problem related to the task of converting printed documents to ASCII text files. The goal of the learning procedure is to produce a function that maps documents to restoration techniques in such a way that on average the restored documents have minimum optical character recognition error. We derive a general form for the optimal function and use it to motivate the development of a nonparametric method based on nearest neighbors. We also develop a direct method of solution based on empirical error minimization for which we prove a finite sample bound on estimation error that is independent of distribution. We show that this empirical error minimization problem is an extension of the empirical optimization problem for traditional M-class classification with general loss function and prove computational hardness for this problem. We then derive a simple iterative algorithm called generalized multiclass ratchet (GMR) and prove that it produces an optimal function asymptotically (with probability 1). To obtain the GMR algorithm we introduce a new data map that extends Kesler's construction for the multiclass problem and then apply an algorithm called Ratchet to this mapped data, where Ratchet is a modification of the Pocket algorithm . Finally, we apply these methods to a collection of documents and report on the experimental results.

  19. Classification-Based Spatial Error Concealment for Visual Communications

    NASA Astrophysics Data System (ADS)

    Chen, Meng; Zheng, Yefeng; Wu, Min

    2006-12-01

    In an error-prone transmission environment, error concealment is an effective technique to reconstruct the damaged visual content. Due to large variations of image characteristics, different concealment approaches are necessary to accommodate the different nature of the lost image content. In this paper, we address this issue and propose using classification to integrate the state-of-the-art error concealment techniques. The proposed approach takes advantage of multiple concealment algorithms and adaptively selects the suitable algorithm for each damaged image area. With growing awareness that the design of sender and receiver systems should be jointly considered for efficient and reliable multimedia communications, we proposed a set of classification-based block concealment schemes, including receiver-side classification, sender-side attachment, and sender-side embedding. Our experimental results provide extensive performance comparisons and demonstrate that the proposed classification-based error concealment approaches outperform the conventional approaches.

  20. C-fuzzy variable-branch decision tree with storage and classification error rate constraints

    NASA Astrophysics Data System (ADS)

    Yang, Shiueng-Bien

    2009-10-01

    The C-fuzzy decision tree (CFDT), which is based on the fuzzy C-means algorithm, has recently been proposed. The CFDT is grown by selecting the nodes to be split according to its classification error rate. However, the CFDT design does not consider the classification time taken to classify the input vector. Thus, the CFDT can be improved. We propose a new C-fuzzy variable-branch decision tree (CFVBDT) with storage and classification error rate constraints. The design of the CFVBDT consists of two phases-growing and pruning. The CFVBDT is grown by selecting the nodes to be split according to the classification error rate and the classification time in the decision tree. Additionally, the pruning method selects the nodes to prune based on the storage requirement and the classification time of the CFVBDT. Furthermore, the number of branches of each internal node is variable in the CFVBDT. Experimental results indicate that the proposed CFVBDT outperforms the CFDT and other methods.

  1. Acquiring Research-grade ALSM Data in the Commercial Marketplace

    NASA Astrophysics Data System (ADS)

    Haugerud, R. A.; Harding, D. J.; Latypov, D.; Martinez, D.; Routh, S.; Ziegler, J.

    2003-12-01

    The Puget Sound Lidar Consortium, working with TerraPoint, LLC, has procured a large volume of ALSM (topographic lidar) data for scientific research. Research-grade ALSM data can be characterized by their completeness, density, and accuracy. Complete data include-at a minimum-X, Y, Z, time, and classification (ground, vegetation, structure, blunder) for each laser reflection. Off-nadir angle and return number for multiple returns are also useful. We began with a pulse density of 1/sq m, and after limited experiments still find this density satisfactory in the dense second-growth forests of western Washington. Lower pulse densities would have produced unacceptably limited sampling in forested areas and aliased some topographic features. Higher pulse densities do not produce markedly better topographic models, in part because of limitations of reproducibility between the overlapping survey swaths used to achieve higher density. Our experience in a variety of forest types demonstrates that the fraction of pulses that produce ground returns varies with vegetation cover, laser beam divergence, laser power, and detector sensitivity, but have not quantified this relationship. The most significant operational limits on vertical accuracy of ALSM appear to be instrument calibration and the accuracy with which returns are classified as ground or vegetation. TerraPoint has recently implemented in-situ calibration using overlapping swaths (Latypov and Zosse, 2002, see http://www.terrapoint.com/News_damirACSM_ASPRS2002.html). On the consumer side, we routinely perform a similar overlap analysis to produce maps of relative Z error between swaths; we find that in bare, low-slope regions the in-situ calibration has reduced this internal Z error to 6-10 cm RMSE. Comparison with independent ground control points commonly illuminates inconsistencies in how GPS heights have been reduced to orthometric heights. Once these inconsistencies are resolved, it appears that the internal errors are the bulk of the error of the survey. The error maps suggest that with in-situ calibration, minor time-varying errors with a period of circa 1 sec are the largest remaining source of survey error. For forested terrain, limited ground penetration and errors in return classification can severely limit the accuracy of resulting topographic models. Initial work by Haugerud and Harding demonstrated the feasibility of fully-automatic return classification; however, TerraPoint has found that better results can be obtained more effectively with 3rd-party classification software that allows a mix of automated routines and human intervention. Our relationship has been evolving since early 2000. Important aspects of this relationship include close communication between data producer and consumer, a willingness to learn from each other, significant technical expertise and resources on the consumer side, and continued refinement of achievable, quantitative performance and accuracy specifications. Most recently we have instituted a slope-dependent Z accuracy specification that TerraPoint first developed as a heuristic for surveying mountainous terrain in Switzerland. We are now working on quantifying the internal consistency of topographic models in forested areas, using a variant of overlap analysis, and standards for the spatial distribution of internal errors.

  2. SB certification handout material requirements, test methods, responsibilities, and minimum classification levels for mixture-based specification for flexible base.

    DOT National Transportation Integrated Search

    2012-10-01

    A handout with tables representing the material requirements, test methods, responsibilities, and minimum classification levels mixture-based specification for flexible base and details on aggregate and test methods employed, along with agency and co...

  3. Undergraduate paramedic students cannot do drug calculations.

    PubMed

    Eastwood, Kathryn; Boyle, Malcolm J; Williams, Brett

    2012-01-01

    Previous investigation of drug calculation skills of qualified paramedics has highlighted poor mathematical ability with no published studies having been undertaken on undergraduate paramedics. There are three major error classifications. Conceptual errors involve an inability to formulate an equation from information given, arithmetical errors involve an inability to operate a given equation, and finally computation errors are simple errors of addition, subtraction, division and multiplication. The objective of this study was to determine if undergraduate paramedics at a large Australia university could accurately perform common drug calculations and basic mathematical equations normally required in the workplace. A cross-sectional study methodology using a paper-based questionnaire was administered to undergraduate paramedic students to collect demographical data, student attitudes regarding their drug calculation performance, and answers to a series of basic mathematical and drug calculation questions. Ethics approval was granted. The mean score of correct answers was 39.5% with one student scoring 100%, 3.3% of students (n=3) scoring greater than 90%, and 63% (n=58) scoring 50% or less, despite 62% (n=57) of the students stating they 'did not have any drug calculations issues'. On average those who completed a minimum of year 12 Specialist Maths achieved scores over 50%. Conceptual errors made up 48.5%, arithmetical 31.1% and computational 17.4%. This study suggests undergraduate paramedics have deficiencies in performing accurate calculations, with conceptual errors indicating a fundamental lack of mathematical understanding. The results suggest an unacceptable level of mathematical competence to practice safely in the unpredictable prehospital environment.

  4. Robust linear discriminant models to solve financial crisis in banking sectors

    NASA Astrophysics Data System (ADS)

    Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Idris, Faoziah; Ali, Hazlina; Omar, Zurni

    2014-12-01

    Linear discriminant analysis (LDA) is a widely-used technique in patterns classification via an equation which will minimize the probability of misclassifying cases into their respective categories. However, the performance of classical estimators in LDA highly depends on the assumptions of normality and homoscedasticity. Several robust estimators in LDA such as Minimum Covariance Determinant (MCD), S-estimators and Minimum Volume Ellipsoid (MVE) are addressed by many authors to alleviate the problem of non-robustness of the classical estimates. In this paper, we investigate on the financial crisis of the Malaysian banking institutions using robust LDA and classical LDA methods. Our objective is to distinguish the "distress" and "non-distress" banks in Malaysia by using the LDA models. Hit ratio is used to validate the accuracy predictive of LDA models. The performance of LDA is evaluated by estimating the misclassification rate via apparent error rate. The results and comparisons show that the robust estimators provide a better performance than the classical estimators for LDA.

  5. Clarification of terminology in medication errors: definitions and classification.

    PubMed

    Ferner, Robin E; Aronson, Jeffrey K

    2006-01-01

    We have previously described and analysed some terms that are used in drug safety and have proposed definitions. Here we discuss and define terms that are used in the field of medication errors, particularly terms that are sometimes misunderstood or misused. We also discuss the classification of medication errors. A medication error is a failure in the treatment process that leads to, or has the potential to lead to, harm to the patient. Errors can be classified according to whether they are mistakes, slips, or lapses. Mistakes are errors in the planning of an action. They can be knowledge based or rule based. Slips and lapses are errors in carrying out an action - a slip through an erroneous performance and a lapse through an erroneous memory. Classification of medication errors is important because the probabilities of errors of different classes are different, as are the potential remedies.

  6. 7 CFR 51.2952 - Size specifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... specifications. Size shall be specified in accordance with the facts in terms of one of the following classifications: (a) Mammoth size. Mammoth size means walnuts of which not over 12 percent, by count, pass through... foregoing classifications, size of walnuts may be specified in terms of minimum diameter, or minimum and...

  7. 7 CFR 51.2952 - Size specifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... specifications. Size shall be specified in accordance with the facts in terms of one of the following classifications: (a) Mammoth size. Mammoth size means walnuts of which not over 12 percent, by count, pass through... foregoing classifications, size of walnuts may be specified in terms of minimum diameter, or minimum and...

  8. Minimum-error quantum distinguishability bounds from matrix monotone functions: A comment on 'Two-sided estimates of minimum-error distinguishability of mixed quantum states via generalized Holevo-Curlander bounds' [J. Math. Phys. 50, 032106 (2009)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyson, Jon

    2009-06-15

    Matrix monotonicity is used to obtain upper bounds on minimum-error distinguishability of arbitrary ensembles of mixed quantum states. This generalizes one direction of a two-sided bound recently obtained by the author [J. Tyson, J. Math. Phys. 50, 032106 (2009)]. It is shown that the previously obtained special case has unique properties.

  9. 7 CFR 51.1995 - U.S. No. 1.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Well formed; and, (2) Clean and bright. (3) Free from: (i) Blanks; and, (ii) Broken or split shells. (4... minimum diameter, minimum and maximum diameters, or in accordance with one of the size classifications in Table I. Table I Size classifications Maximum size—Will pass through a round opening of the following...

  10. 46 CFR 8.260 - Revocation of classification society recognition.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Revocation of classification society recognition. 8.260... VESSEL INSPECTION ALTERNATIVES Recognition of a Classification Society § 8.260 Revocation of classification society recognition. A recognized classification society which fails to maintain the minimum...

  11. 7 CFR 51.2836 - Size classifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Size classifications. 51.2836 Section 51.2836...) Size Classifications § 51.2836 Size classifications. The size of onions may be specified in accordance with one of the following classifications. Size designation Minimum diameter Inches Millimeters Maximum...

  12. 7 CFR 51.2836 - Size classifications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 2 2013-01-01 2013-01-01 false Size classifications. 51.2836 Section 51.2836...-Granex-Grano and Creole Types) Size Classifications § 51.2836 Size classifications. The size of onions may be specified in accordance with one of the following classifications. Size designation Minimum...

  13. 7 CFR 51.2836 - Size classifications.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 2 2014-01-01 2014-01-01 false Size classifications. 51.2836 Section 51.2836...-Granex-Grano and Creole Types) Size Classifications § 51.2836 Size classifications. The size of onions may be specified in accordance with one of the following classifications. Size designation Minimum...

  14. 7 CFR 51.2836 - Size classifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Size classifications. 51.2836 Section 51.2836...) Size Classifications § 51.2836 Size classifications. The size of onions may be specified in accordance with one of the following classifications. Size designation Minimum diameter Inches Millimeters Maximum...

  15. 7 CFR 51.2836 - Size classifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Size classifications. 51.2836 Section 51.2836...) Size Classifications § 51.2836 Size classifications. The size of onions may be specified in accordance with one of the following classifications. Size designation Minimum diameter Inches Millimeters Maximum...

  16. 46 CFR 8.260 - Revocation of classification society recognition.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Revocation of classification society recognition. 8.260... VESSEL INSPECTION ALTERNATIVES Recognition of a Classification Society § 8.260 Revocation of classification society recognition. A recognized classification society which fails to maintain the minimum...

  17. Determining the optimal window length for pattern recognition-based myoelectric control: balancing the competing effects of classification error and controller delay.

    PubMed

    Smith, Lauren H; Hargrove, Levi J; Lock, Blair A; Kuiken, Todd A

    2011-04-01

    Pattern recognition-based control of myoelectric prostheses has shown great promise in research environments, but has not been optimized for use in a clinical setting. To explore the relationship between classification error, controller delay, and real-time controllability, 13 able-bodied subjects were trained to operate a virtual upper-limb prosthesis using pattern recognition of electromyogram (EMG) signals. Classification error and controller delay were varied by training different classifiers with a variety of analysis window lengths ranging from 50 to 550 ms and either two or four EMG input channels. Offline analysis showed that classification error decreased with longer window lengths (p < 0.01 ). Real-time controllability was evaluated with the target achievement control (TAC) test, which prompted users to maneuver the virtual prosthesis into various target postures. The results indicated that user performance improved with lower classification error (p < 0.01 ) and was reduced with longer controller delay (p < 0.01 ), as determined by the window length. Therefore, both of these effects should be considered when choosing a window length; it may be beneficial to increase the window length if this results in a reduced classification error, despite the corresponding increase in controller delay. For the system employed in this study, the optimal window length was found to be between 150 and 250 ms, which is within acceptable controller delays for conventional multistate amplitude controllers.

  18. Selecting Power-Efficient Signal Features for a Low-Power Fall Detector.

    PubMed

    Wang, Changhong; Redmond, Stephen J; Lu, Wei; Stevens, Michael C; Lord, Stephen R; Lovell, Nigel H

    2017-11-01

    Falls are a serious threat to the health of older people. A wearable fall detector can automatically detect the occurrence of a fall and alert a caregiver or an emergency response service so they may deliver immediate assistance, improving the chances of recovering from fall-related injuries. One constraint of such a wearable technology is its limited battery life. Thus, minimization of power consumption is an important design concern, all the while maintaining satisfactory accuracy of the fall detection algorithms implemented on the wearable device. This paper proposes an approach for selecting power-efficient signal features such that the minimum desirable fall detection accuracy is assured. Using data collected in simulated falls, simulated activities of daily living, and real free-living trials, all using young volunteers, the proposed approach selects four features from a set of ten commonly used features, providing a power saving of 75.3%, while limiting the error rate of a binary classification decision tree fall detection algorithm to 7.1%.Falls are a serious threat to the health of older people. A wearable fall detector can automatically detect the occurrence of a fall and alert a caregiver or an emergency response service so they may deliver immediate assistance, improving the chances of recovering from fall-related injuries. One constraint of such a wearable technology is its limited battery life. Thus, minimization of power consumption is an important design concern, all the while maintaining satisfactory accuracy of the fall detection algorithms implemented on the wearable device. This paper proposes an approach for selecting power-efficient signal features such that the minimum desirable fall detection accuracy is assured. Using data collected in simulated falls, simulated activities of daily living, and real free-living trials, all using young volunteers, the proposed approach selects four features from a set of ten commonly used features, providing a power saving of 75.3%, while limiting the error rate of a binary classification decision tree fall detection algorithm to 7.1%.

  19. Image data compression having minimum perceptual error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1995-01-01

    A method for performing image compression that eliminates redundant and invisible image components is described. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  20. Method and Apparatus for Powered Descent Guidance

    NASA Technical Reports Server (NTRS)

    Acikmese, Behcet (Inventor); Blackmore, James C. L. (Inventor); Scharf, Daniel P. (Inventor)

    2013-01-01

    A method and apparatus for landing a spacecraft having thrusters with non-convex constraints is described. The method first computes a solution to a minimum error landing problem for a convexified constraints, then applies that solution to a minimum fuel landing problem for convexified constraints. The result is a solution that is a minimum error and minimum fuel solution that is also a feasible solution to the analogous system with non-convex thruster constraints.

  1. The use of a contextual, modal and psychological classification of medication errors in the emergency department: a retrospective descriptive study.

    PubMed

    Cabilan, C J; Hughes, James A; Shannon, Carl

    2017-12-01

    To describe the contextual, modal and psychological classification of medication errors in the emergency department to know the factors associated with the reported medication errors. The causes of medication errors are unique in every clinical setting; hence, error minimisation strategies are not always effective. For this reason, it is fundamental to understand the causes specific to the emergency department so that targeted strategies can be implemented. Retrospective analysis of reported medication errors in the emergency department. All voluntarily staff-reported medication-related incidents from 2010-2015 from the hospital's electronic incident management system were retrieved for analysis. Contextual classification involved the time, place and the type of medications involved. Modal classification pertained to the stage and issue (e.g. wrong medication, wrong patient). Psychological classification categorised the errors in planning (knowledge-based and rule-based errors) and skill (slips and lapses). There were 405 errors reported. Most errors occurred in the acute care area, short-stay unit and resuscitation area, during the busiest shifts (0800-1559, 1600-2259). Half of the errors involved high-alert medications. Many of the errors occurred during administration (62·7%), prescribing (28·6%) and commonly during both stages (18·5%). Wrong dose, wrong medication and omission were the issues that dominated. Knowledge-based errors characterised the errors that occurred in prescribing and administration. The highest proportion of slips (79·5%) and lapses (76·1%) occurred during medication administration. It is likely that some of the errors occurred due to the lack of adherence to safety protocols. Technology such as computerised prescribing, barcode medication administration and reminder systems could potentially decrease the medication errors in the emergency department. There was a possibility that some of the errors could be prevented if safety protocols were adhered to, which highlights the need to also address clinicians' attitudes towards safety. Technology can be implemented to help minimise errors in the ED, but this must be coupled with efforts to enhance the culture of safety. © 2017 John Wiley & Sons Ltd.

  2. Effects of uncertainty and variability on population declines and IUCN Red List classifications.

    PubMed

    Rueda-Cediel, Pamela; Anderson, Kurt E; Regan, Tracey J; Regan, Helen M

    2018-01-22

    The International Union for Conservation of Nature (IUCN) Red List Categories and Criteria is a quantitative framework for classifying species according to extinction risk. Population models may be used to estimate extinction risk or population declines. Uncertainty and variability arise in threat classifications through measurement and process error in empirical data and uncertainty in the models used to estimate extinction risk and population declines. Furthermore, species traits are known to affect extinction risk. We investigated the effects of measurement and process error, model type, population growth rate, and age at first reproduction on the reliability of risk classifications based on projected population declines on IUCN Red List classifications. We used an age-structured population model to simulate true population trajectories with different growth rates, reproductive ages and levels of variation, and subjected them to measurement error. We evaluated the ability of scalar and matrix models parameterized with these simulated time series to accurately capture the IUCN Red List classification generated with true population declines. Under all levels of measurement error tested and low process error, classifications were reasonably accurate; scalar and matrix models yielded roughly the same rate of misclassifications, but the distribution of errors differed; matrix models led to greater overestimation of extinction risk than underestimations; process error tended to contribute to misclassifications to a greater extent than measurement error; and more misclassifications occurred for fast, rather than slow, life histories. These results indicate that classifications of highly threatened taxa (i.e., taxa with low growth rates) under criterion A are more likely to be reliable than for less threatened taxa when assessed with population models. Greater scrutiny needs to be placed on data used to parameterize population models for species with high growth rates, particularly when available evidence indicates a potential transition to higher risk categories. © 2018 Society for Conservation Biology.

  3. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    NASA Technical Reports Server (NTRS)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  4. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    NASA Technical Reports Server (NTRS)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps/incidents are attributed to human error. As a part of Safety within space exploration ground processing operations, the identification and/or classification of underlying contributors and causes of human error must be identified, in order to manage human error. This research provides a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  5. Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS)

    NASA Technical Reports Server (NTRS)

    Alexander, Tiffaney Miller

    2017-01-01

    Research results have shown that more than half of aviation, aerospace and aeronautics mishaps incidents are attributed to human error. As a part of Quality within space exploration ground processing operations, the identification and or classification of underlying contributors and causes of human error must be identified, in order to manage human error.This presentation will provide a framework and methodology using the Human Error Assessment and Reduction Technique (HEART) and Human Factor Analysis and Classification System (HFACS), as an analysis tool to identify contributing factors, their impact on human error events, and predict the Human Error probabilities (HEPs) of future occurrences. This research methodology was applied (retrospectively) to six (6) NASA ground processing operations scenarios and thirty (30) years of Launch Vehicle related mishap data. This modifiable framework can be used and followed by other space and similar complex operations.

  6. Factors That Affect Large Subunit Ribosomal DNA Amplicon Sequencing Studies of Fungal Communities: Classification Method, Primer Choice, and Error

    PubMed Central

    Porter, Teresita M.; Golding, G. Brian

    2012-01-01

    Nuclear large subunit ribosomal DNA is widely used in fungal phylogenetics and to an increasing extent also amplicon-based environmental sequencing. The relatively short reads produced by next-generation sequencing, however, makes primer choice and sequence error important variables for obtaining accurate taxonomic classifications. In this simulation study we tested the performance of three classification methods: 1) a similarity-based method (BLAST + Metagenomic Analyzer, MEGAN); 2) a composition-based method (Ribosomal Database Project naïve Bayesian classifier, NBC); and, 3) a phylogeny-based method (Statistical Assignment Package, SAP). We also tested the effects of sequence length, primer choice, and sequence error on classification accuracy and perceived community composition. Using a leave-one-out cross validation approach, results for classifications to the genus rank were as follows: BLAST + MEGAN had the lowest error rate and was particularly robust to sequence error; SAP accuracy was highest when long LSU query sequences were classified; and, NBC runs significantly faster than the other tested methods. All methods performed poorly with the shortest 50–100 bp sequences. Increasing simulated sequence error reduced classification accuracy. Community shifts were detected due to sequence error and primer selection even though there was no change in the underlying community composition. Short read datasets from individual primers, as well as pooled datasets, appear to only approximate the true community composition. We hope this work informs investigators of some of the factors that affect the quality and interpretation of their environmental gene surveys. PMID:22558215

  7. Masked and unmasked error-related potentials during continuous control and feedback

    NASA Astrophysics Data System (ADS)

    Lopes Dias, Catarina; Sburlea, Andreea I.; Müller-Putz, Gernot R.

    2018-06-01

    The detection of error-related potentials (ErrPs) in tasks with discrete feedback is well established in the brain–computer interface (BCI) field. However, the decoding of ErrPs in tasks with continuous feedback is still in its early stages. Objective. We developed a task in which subjects have continuous control of a cursor’s position by means of a joystick. The cursor’s position was shown to the participants in two different modalities of continuous feedback: normal and jittered. The jittered feedback was created to mimic the instability that could exist if participants controlled the trajectory directly with brain signals. Approach. This paper studies the electroencephalographic (EEG)—measurable signatures caused by a loss of control over the cursor’s trajectory, causing a target miss. Main results. In both feedback modalities, time-locked potentials revealed the typical frontal-central components of error-related potentials. Errors occurring during the jittered feedback (masked errors) were delayed in comparison to errors occurring during normal feedback (unmasked errors). Masked errors displayed lower peak amplitudes than unmasked errors. Time-locked classification analysis allowed a good distinction between correct and error classes (average Cohen-, average TPR  =  81.8% and average TNR  =  96.4%). Time-locked classification analysis between masked error and unmasked error classes revealed results at chance level (average Cohen-, average TPR  =  60.9% and average TNR  =  58.3%). Afterwards, we performed asynchronous detection of ErrPs, combining both masked and unmasked trials. The asynchronous detection of ErrPs in a simulated online scenario resulted in an average TNR of 84.0% and in an average TPR of 64.9%. Significance. The time-locked classification results suggest that the masked and unmasked errors were indistinguishable in terms of classification. The asynchronous classification results suggest that the feedback modality did not hinder the asynchronous detection of ErrPs.

  8. Undergraduate paramedic students cannot do drug calculations

    PubMed Central

    Eastwood, Kathryn; Boyle, Malcolm J; Williams, Brett

    2012-01-01

    BACKGROUND: Previous investigation of drug calculation skills of qualified paramedics has highlighted poor mathematical ability with no published studies having been undertaken on undergraduate paramedics. There are three major error classifications. Conceptual errors involve an inability to formulate an equation from information given, arithmetical errors involve an inability to operate a given equation, and finally computation errors are simple errors of addition, subtraction, division and multiplication. The objective of this study was to determine if undergraduate paramedics at a large Australia university could accurately perform common drug calculations and basic mathematical equations normally required in the workplace. METHODS: A cross-sectional study methodology using a paper-based questionnaire was administered to undergraduate paramedic students to collect demographical data, student attitudes regarding their drug calculation performance, and answers to a series of basic mathematical and drug calculation questions. Ethics approval was granted. RESULTS: The mean score of correct answers was 39.5% with one student scoring 100%, 3.3% of students (n=3) scoring greater than 90%, and 63% (n=58) scoring 50% or less, despite 62% (n=57) of the students stating they ‘did not have any drug calculations issues’. On average those who completed a minimum of year 12 Specialist Maths achieved scores over 50%. Conceptual errors made up 48.5%, arithmetical 31.1% and computational 17.4%. CONCLUSIONS: This study suggests undergraduate paramedics have deficiencies in performing accurate calculations, with conceptual errors indicating a fundamental lack of mathematical understanding. The results suggest an unacceptable level of mathematical competence to practice safely in the unpredictable prehospital environment. PMID:25215067

  9. Image Data Compression Having Minimum Perceptual Error

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1997-01-01

    A method is presented for performing color or grayscale image compression that eliminates redundant and invisible image components. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The quantization matrix comprises visual masking by luminance and contrast technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  10. Automatic Recognition of Phonemes Using a Syntactic Processor for Error Correction.

    DTIC Science & Technology

    1980-12-01

    OF PHONEMES USING A SYNTACTIC PROCESSOR FOR ERROR CORRECTION THESIS AFIT/GE/EE/8D-45 Robert B. ’Taylor 2Lt USAF Approved for public release...distribution unlimilted. AbP AFIT/GE/EE/ 80D-45 AUTOMATIC RECOGNITION OF PHONEMES USING A SYNTACTIC PROCESSOR FOR ERROR CORRECTION THESIS Presented to the...Testing ..................... 37 Bayes Decision Rule for Minimum Error ........... 37 Bayes Decision Rule for Minimum Risk ............ 39 Mini Max Test

  11. A minimum spanning forest based classification method for dedicated breast CT images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pike, Robert; Sechopoulos, Ioannis; Fei, Baowei, E-mail: bfei@emory.edu

    Purpose: To develop and test an automated algorithm to classify different types of tissue in dedicated breast CT images. Methods: Images of a single breast of five different patients were acquired with a dedicated breast CT clinical prototype. The breast CT images were processed by a multiscale bilateral filter to reduce noise while keeping edge information and were corrected to overcome cupping artifacts. As skin and glandular tissue have similar CT values on breast CT images, morphologic processing is used to identify the skin based on its position information. A support vector machine (SVM) is trained and the resulting modelmore » used to create a pixelwise classification map of fat and glandular tissue. By combining the results of the skin mask with the SVM results, the breast tissue is classified as skin, fat, and glandular tissue. This map is then used to identify markers for a minimum spanning forest that is grown to segment the image using spatial and intensity information. To evaluate the authors’ classification method, they use DICE overlap ratios to compare the results of the automated classification to those obtained by manual segmentation on five patient images. Results: Comparison between the automatic and the manual segmentation shows that the minimum spanning forest based classification method was able to successfully classify dedicated breast CT image with average DICE ratios of 96.9%, 89.8%, and 89.5% for fat, glandular, and skin tissue, respectively. Conclusions: A 2D minimum spanning forest based classification method was proposed and evaluated for classifying the fat, skin, and glandular tissue in dedicated breast CT images. The classification method can be used for dense breast tissue quantification, radiation dose assessment, and other applications in breast imaging.« less

  12. On the use of interaction error potentials for adaptive brain computer interfaces.

    PubMed

    Llera, A; van Gerven, M A J; Gómez, V; Jensen, O; Kappen, H J

    2011-12-01

    We propose an adaptive classification method for the Brain Computer Interfaces (BCI) which uses Interaction Error Potentials (IErrPs) as a reinforcement signal and adapts the classifier parameters when an error is detected. We analyze the quality of the proposed approach in relation to the misclassification of the IErrPs. In addition we compare static versus adaptive classification performance using artificial and MEG data. We show that the proposed adaptive framework significantly improves the static classification methods. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. A neural network for noise correlation classification

    NASA Astrophysics Data System (ADS)

    Paitz, Patrick; Gokhberg, Alexey; Fichtner, Andreas

    2018-02-01

    We present an artificial neural network (ANN) for the classification of ambient seismic noise correlations into two categories, suitable and unsuitable for noise tomography. By using only a small manually classified data subset for network training, the ANN allows us to classify large data volumes with low human effort and to encode the valuable subjective experience of data analysts that cannot be captured by a deterministic algorithm. Based on a new feature extraction procedure that exploits the wavelet-like nature of seismic time-series, we efficiently reduce the dimensionality of noise correlation data, still keeping relevant features needed for automated classification. Using global- and regional-scale data sets, we show that classification errors of 20 per cent or less can be achieved when the network training is performed with as little as 3.5 per cent and 16 per cent of the data sets, respectively. Furthermore, the ANN trained on the regional data can be applied to the global data, and vice versa, without a significant increase of the classification error. An experiment where four students manually classified the data, revealed that the classification error they would assign to each other is substantially larger than the classification error of the ANN (>35 per cent). This indicates that reproducibility would be hampered more by human subjectivity than by imperfections of the ANN.

  14. Identifying presence of correlated errors in GRACE monthly harmonic coefficients using machine learning algorithms

    NASA Astrophysics Data System (ADS)

    Piretzidis, Dimitrios; Sra, Gurveer; Karantaidis, George; Sideris, Michael G.

    2017-04-01

    A new method for identifying correlated errors in Gravity Recovery and Climate Experiment (GRACE) monthly harmonic coefficients has been developed and tested. Correlated errors are present in the differences between monthly GRACE solutions, and can be suppressed using a de-correlation filter. In principle, the de-correlation filter should be implemented only on coefficient series with correlated errors to avoid losing useful geophysical information. In previous studies, two main methods of implementing the de-correlation filter have been utilized. In the first one, the de-correlation filter is implemented starting from a specific minimum order until the maximum order of the monthly solution examined. In the second one, the de-correlation filter is implemented only on specific coefficient series, the selection of which is based on statistical testing. The method proposed in the present study exploits the capabilities of supervised machine learning algorithms such as neural networks and support vector machines (SVMs). The pattern of correlated errors can be described by several numerical and geometric features of the harmonic coefficient series. The features of extreme cases of both correlated and uncorrelated coefficients are extracted and used for the training of the machine learning algorithms. The trained machine learning algorithms are later used to identify correlated errors and provide the probability of a coefficient series to be correlated. Regarding SVMs algorithms, an extensive study is performed with various kernel functions in order to find the optimal training model for prediction. The selection of the optimal training model is based on the classification accuracy of the trained SVM algorithm on the same samples used for training. Results show excellent performance of all algorithms with a classification accuracy of 97% - 100% on a pre-selected set of training samples, both in the validation stage of the training procedure and in the subsequent use of the trained algorithms to classify independent coefficients. This accuracy is also confirmed by the external validation of the trained algorithms using the hydrology model GLDAS NOAH. The proposed method meet the requirement of identifying and de-correlating only coefficients with correlated errors. Also, there is no need of applying statistical testing or other techniques that require prior de-correlation of the harmonic coefficients.

  15. Hyperspectral feature mapping classification based on mathematical morphology

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Li, Junwei; Wang, Guangping; Wu, Jingli

    2016-03-01

    This paper proposed a hyperspectral feature mapping classification algorithm based on mathematical morphology. Without the priori information such as spectral library etc., the spectral and spatial information can be used to realize the hyperspectral feature mapping classification. The mathematical morphological erosion and dilation operations are performed respectively to extract endmembers. The spectral feature mapping algorithm is used to carry on hyperspectral image classification. The hyperspectral image collected by AVIRIS is applied to evaluate the proposed algorithm. The proposed algorithm is compared with minimum Euclidean distance mapping algorithm, minimum Mahalanobis distance mapping algorithm, SAM algorithm and binary encoding mapping algorithm. From the results of the experiments, it is illuminated that the proposed algorithm's performance is better than that of the other algorithms under the same condition and has higher classification accuracy.

  16. 7 CFR 51.3198 - Size classifications.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 2 2012-01-01 2012-01-01 false Size classifications. 51.3198 Section 51.3198... STANDARDS) United States Standards for Grades of Bermuda-Granex-Grano Type Onions Size Classifications § 51.3198 Size classifications. Size shall be specified in connection with the grade in terms of minimum...

  17. 7 CFR 51.3198 - Size classifications.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Size classifications. 51.3198 Section 51.3198... STANDARDS) United States Standards for Grades of Bermuda-Granex-Grano Type Onions Size Classifications § 51.3198 Size classifications. Size shall be specified in connection with the grade in terms of minimum...

  18. 7 CFR 51.3198 - Size classifications.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Size classifications. 51.3198 Section 51.3198... STANDARDS) United States Standards for Grades of Bermuda-Granex-Grano Type Onions Size Classifications § 51.3198 Size classifications. Size shall be specified in connection with the grade in terms of minimum...

  19. Analysis of DSN software anomalies

    NASA Technical Reports Server (NTRS)

    Galorath, D. D.; Hecht, H.; Hecht, M.; Reifer, D. J.

    1981-01-01

    A categorized data base of software errors which were discovered during the various stages of development and operational use of the Deep Space Network DSN/Mark 3 System was developed. A study team identified several existing error classification schemes (taxonomies), prepared a detailed annotated bibliography of the error taxonomy literature, and produced a new classification scheme which was tuned to the DSN anomaly reporting system and encapsulated the work of others. Based upon the DSN/RCI error taxonomy, error data on approximately 1000 reported DSN/Mark 3 anomalies were analyzed, interpreted and classified. Next, error data are summarized and histograms were produced highlighting key tendencies.

  20. Desert plains classification based on Geomorphometrical parameters (Case study: Aghda, Yazd)

    NASA Astrophysics Data System (ADS)

    Tazeh, mahdi; Kalantari, Saeideh

    2013-04-01

    This research focuses on plains. There are several tremendous methods and classification which presented for plain classification. One of The natural resource based classification which is mostly using in Iran, classified plains into three types, Erosional Pediment, Denudation Pediment Aggradational Piedmont. The qualitative and quantitative factors to differentiate them from each other are also used appropriately. In this study effective Geomorphometrical parameters in differentiate landforms were applied for plain. Geomorphometrical parameters are calculable and can be extracted using mathematical equations and the corresponding relations on digital elevation model. Geomorphometrical parameters used in this study included Percent of Slope, Plan Curvature, Profile Curvature, Minimum Curvature, the Maximum Curvature, Cross sectional Curvature, Longitudinal Curvature and Gaussian Curvature. The results indicated that the most important affecting Geomorphometrical parameters for plain and desert classifications includes: Percent of Slope, Minimum Curvature, Profile Curvature, and Longitudinal Curvature. Key Words: Plain, Geomorphometry, Classification, Biophysical, Yazd Khezarabad.

  1. How Well Do Molecular and Pedigree Relatedness Correspond, in Populations with Diverse Mating Systems, and Various Types and Quantities of Molecular and Demographic Data?

    PubMed

    Kopps, Anna M; Kang, Jungkoo; Sherwin, William B; Palsbøll, Per J

    2015-06-30

    Kinship analyses are important pillars of ecological and conservation genetic studies with potentially far-reaching implications. There is a need for power analyses that address a range of possible relationships. Nevertheless, such analyses are rarely applied, and studies that use genetic-data-based-kinship inference often ignore the influence of intrinsic population characteristics. We investigated 11 questions regarding the correct classification rate of dyads to relatedness categories (relatedness category assignments; RCA) using an individual-based model with realistic life history parameters. We investigated the effects of the number of genetic markers; marker type (microsatellite, single nucleotide polymorphism SNP, or both); minor allele frequency; typing error; mating system; and the number of overlapping generations under different demographic conditions. We found that (i) an increasing number of genetic markers increased the correct classification rate of the RCA so that up to >80% first cousins can be correctly assigned; (ii) the minimum number of genetic markers required for assignments with 80 and 95% correct classifications differed between relatedness categories, mating systems, and the number of overlapping generations; (iii) the correct classification rate was improved by adding additional relatedness categories and age and mitochondrial DNA data; and (iv) a combination of microsatellite and single-nucleotide polymorphism data increased the correct classification rate if <800 SNP loci were available. This study shows how intrinsic population characteristics, such as mating system and the number of overlapping generations, life history traits, and genetic marker characteristics, can influence the correct classification rate of an RCA study. Therefore, species-specific power analyses are essential for empirical studies. Copyright © 2015 Kopps et al.

  2. Neyman-Pearson classification algorithms and NP receiver operating characteristics

    PubMed Central

    Tong, Xin; Feng, Yang; Li, Jingyi Jessica

    2018-01-01

    In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (that is, the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, α, on the type I error. Despite its century-long history in hypothesis testing, the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than α do not satisfy the type I error control objective because the resulting classifiers are likely to have type I errors much larger than α, and the NP paradigm has not been properly implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, such as logistic regression, support vector machines, and random forests. Powered by this algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose α in a data-adaptive way and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and NP-ROC bands, available in the R package nproc, through simulation and real data studies. PMID:29423442

  3. Neyman-Pearson classification algorithms and NP receiver operating characteristics.

    PubMed

    Tong, Xin; Feng, Yang; Li, Jingyi Jessica

    2018-02-01

    In many binary classification applications, such as disease diagnosis and spam detection, practitioners commonly face the need to limit type I error (that is, the conditional probability of misclassifying a class 0 observation as class 1) so that it remains below a desired threshold. To address this need, the Neyman-Pearson (NP) classification paradigm is a natural choice; it minimizes type II error (that is, the conditional probability of misclassifying a class 1 observation as class 0) while enforcing an upper bound, α, on the type I error. Despite its century-long history in hypothesis testing, the NP paradigm has not been well recognized and implemented in classification schemes. Common practices that directly limit the empirical type I error to no more than α do not satisfy the type I error control objective because the resulting classifiers are likely to have type I errors much larger than α, and the NP paradigm has not been properly implemented in practice. We develop the first umbrella algorithm that implements the NP paradigm for all scoring-type classification methods, such as logistic regression, support vector machines, and random forests. Powered by this algorithm, we propose a novel graphical tool for NP classification methods: NP receiver operating characteristic (NP-ROC) bands motivated by the popular ROC curves. NP-ROC bands will help choose α in a data-adaptive way and compare different NP classifiers. We demonstrate the use and properties of the NP umbrella algorithm and NP-ROC bands, available in the R package nproc, through simulation and real data studies.

  4. Design Considerations of Polishing Lap for Computer-Controlled Cylindrical Polishing Process

    NASA Technical Reports Server (NTRS)

    Khan, Gufran S.; Gubarev, Mikhail; Arnold, William; Ramsey, Brian D.

    2009-01-01

    This paper establishes a relationship between the polishing process parameters and the generation of mid spatial-frequency error. The consideration of the polishing lap design to optimize the process in order to keep residual errors to a minimum and optimization of the process (speeds, stroke, etc.) and to keep the residual mid spatial-frequency error to a minimum, is also presented.

  5. An evaluation of ISOCLS and CLASSY clustering algorithms for forest classification in northern Idaho. [Elk River quadrange of the Clearwater National Forest

    NASA Technical Reports Server (NTRS)

    Werth, L. F. (Principal Investigator)

    1981-01-01

    Both the iterative self-organizing clustering system (ISOCLS) and the CLASSY algorithms were applied to forest and nonforest classes for one 1:24,000 quadrangle map of northern Idaho and the classification and mapping accuracies were evaluated with 1:30,000 color infrared aerial photography. Confusion matrices for the two clustering algorithms were generated and studied to determine which is most applicable to forest and rangeland inventories in future projects. In an unsupervised mode, ISOCLS requires many trial-and-error runs to find the proper parameters to separate desired information classes. CLASSY tells more in a single run concerning the classes that can be separated, shows more promise for forest stratification than ISOCLS, and shows more promise for consistency. One major drawback to CLASSY is that important forest and range classes that are smaller than a minimum cluster size will be combined with other classes. The algorithm requires so much computer storage that only data sets as small as a quadrangle can be used at one time.

  6. Evaluation of normalization methods for cDNA microarray data by k-NN classification

    PubMed Central

    Wu, Wei; Xing, Eric P; Myers, Connie; Mian, I Saira; Bissell, Mina J

    2005-01-01

    Background Non-biological factors give rise to unwanted variations in cDNA microarray data. There are many normalization methods designed to remove such variations. However, to date there have been few published systematic evaluations of these techniques for removing variations arising from dye biases in the context of downstream, higher-order analytical tasks such as classification. Results Ten location normalization methods that adjust spatial- and/or intensity-dependent dye biases, and three scale methods that adjust scale differences were applied, individually and in combination, to five distinct, published, cancer biology-related cDNA microarray data sets. Leave-one-out cross-validation (LOOCV) classification error was employed as the quantitative end-point for assessing the effectiveness of a normalization method. In particular, a known classifier, k-nearest neighbor (k-NN), was estimated from data normalized using a given technique, and the LOOCV error rate of the ensuing model was computed. We found that k-NN classifiers are sensitive to dye biases in the data. Using NONRM and GMEDIAN as baseline methods, our results show that single-bias-removal techniques which remove either spatial-dependent dye bias (referred later as spatial effect) or intensity-dependent dye bias (referred later as intensity effect) moderately reduce LOOCV classification errors; whereas double-bias-removal techniques which remove both spatial- and intensity effect reduce LOOCV classification errors even further. Of the 41 different strategies examined, three two-step processes, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, all of which removed intensity effect globally and spatial effect locally, appear to reduce LOOCV classification errors most consistently and effectively across all data sets. We also found that the investigated scale normalization methods do not reduce LOOCV classification error. Conclusion Using LOOCV error of k-NNs as the evaluation criterion, three double-bias-removal normalization strategies, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, outperform other strategies for removing spatial effect, intensity effect and scale differences from cDNA microarray data. The apparent sensitivity of k-NN LOOCV classification error to dye biases suggests that this criterion provides an informative measure for evaluating normalization methods. All the computational tools used in this study were implemented using the R language for statistical computing and graphics. PMID:16045803

  7. Evaluation of normalization methods for cDNA microarray data by k-NN classification.

    PubMed

    Wu, Wei; Xing, Eric P; Myers, Connie; Mian, I Saira; Bissell, Mina J

    2005-07-26

    Non-biological factors give rise to unwanted variations in cDNA microarray data. There are many normalization methods designed to remove such variations. However, to date there have been few published systematic evaluations of these techniques for removing variations arising from dye biases in the context of downstream, higher-order analytical tasks such as classification. Ten location normalization methods that adjust spatial- and/or intensity-dependent dye biases, and three scale methods that adjust scale differences were applied, individually and in combination, to five distinct, published, cancer biology-related cDNA microarray data sets. Leave-one-out cross-validation (LOOCV) classification error was employed as the quantitative end-point for assessing the effectiveness of a normalization method. In particular, a known classifier, k-nearest neighbor (k-NN), was estimated from data normalized using a given technique, and the LOOCV error rate of the ensuing model was computed. We found that k-NN classifiers are sensitive to dye biases in the data. Using NONRM and GMEDIAN as baseline methods, our results show that single-bias-removal techniques which remove either spatial-dependent dye bias (referred later as spatial effect) or intensity-dependent dye bias (referred later as intensity effect) moderately reduce LOOCV classification errors; whereas double-bias-removal techniques which remove both spatial- and intensity effect reduce LOOCV classification errors even further. Of the 41 different strategies examined, three two-step processes, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, all of which removed intensity effect globally and spatial effect locally, appear to reduce LOOCV classification errors most consistently and effectively across all data sets. We also found that the investigated scale normalization methods do not reduce LOOCV classification error. Using LOOCV error of k-NNs as the evaluation criterion, three double-bias-removal normalization strategies, IGLOESS-SLFILTERW7, ISTSPLINE-SLLOESS and IGLOESS-SLLOESS, outperform other strategies for removing spatial effect, intensity effect and scale differences from cDNA microarray data. The apparent sensitivity of k-NN LOOCV classification error to dye biases suggests that this criterion provides an informative measure for evaluating normalization methods. All the computational tools used in this study were implemented using the R language for statistical computing and graphics.

  8. Alzheimer Classification Using a Minimum Spanning Tree of High-Order Functional Network on fMRI Dataset

    PubMed Central

    Guo, Hao; Liu, Lei; Chen, Junjie; Xu, Yong; Jie, Xiang

    2017-01-01

    Functional magnetic resonance imaging (fMRI) is one of the most useful methods to generate functional connectivity networks of the brain. However, conventional network generation methods ignore dynamic changes of functional connectivity between brain regions. Previous studies proposed constructing high-order functional connectivity networks that consider the time-varying characteristics of functional connectivity, and a clustering method was performed to decrease computational cost. However, random selection of the initial clustering centers and the number of clusters negatively affected classification accuracy, and the network lost neurological interpretability. Here we propose a novel method that introduces the minimum spanning tree method to high-order functional connectivity networks. As an unbiased method, the minimum spanning tree simplifies high-order network structure while preserving its core framework. The dynamic characteristics of time series are not lost with this approach, and the neurological interpretation of the network is guaranteed. Simultaneously, we propose a multi-parameter optimization framework that involves extracting discriminative features from the minimum spanning tree high-order functional connectivity networks. Compared with the conventional methods, our resting-state fMRI classification method based on minimum spanning tree high-order functional connectivity networks greatly improved the diagnostic accuracy for Alzheimer's disease. PMID:29249926

  9. Bayesian learning for spatial filtering in an EEG-based brain-computer interface.

    PubMed

    Zhang, Haihong; Yang, Huijuan; Guan, Cuntai

    2013-07-01

    Spatial filtering for EEG feature extraction and classification is an important tool in brain-computer interface. However, there is generally no established theory that links spatial filtering directly to Bayes classification error. To address this issue, this paper proposes and studies a Bayesian analysis theory for spatial filtering in relation to Bayes error. Following the maximum entropy principle, we introduce a gamma probability model for describing single-trial EEG power features. We then formulate and analyze the theoretical relationship between Bayes classification error and the so-called Rayleigh quotient, which is a function of spatial filters and basically measures the ratio in power features between two classes. This paper also reports our extensive study that examines the theory and its use in classification, using three publicly available EEG data sets and state-of-the-art spatial filtering techniques and various classifiers. Specifically, we validate the positive relationship between Bayes error and Rayleigh quotient in real EEG power features. Finally, we demonstrate that the Bayes error can be practically reduced by applying a new spatial filter with lower Rayleigh quotient.

  10. Sources of error in estimating truck traffic from automatic vehicle classification data

    DOT National Transportation Integrated Search

    1998-10-01

    Truck annual average daily traffic estimation errors resulting from sample classification counts are computed in this paper under two scenarios. One scenario investigates an improper factoring procedure that may be used by highway agencies. The study...

  11. Assessing the statistical significance of the achieved classification error of classifiers constructed using serum peptide profiles, and a prescription for random sampling repeated studies for massive high-throughput genomic and proteomic studies.

    PubMed

    Lyons-Weiler, James; Pelikan, Richard; Zeh, Herbert J; Whitcomb, David C; Malehorn, David E; Bigbee, William L; Hauskrecht, Milos

    2005-01-01

    Peptide profiles generated using SELDI/MALDI time of flight mass spectrometry provide a promising source of patient-specific information with high potential impact on the early detection and classification of cancer and other diseases. The new profiling technology comes, however, with numerous challenges and concerns. Particularly important are concerns of reproducibility of classification results and their significance. In this work we describe a computational validation framework, called PACE (Permutation-Achieved Classification Error), that lets us assess, for a given classification model, the significance of the Achieved Classification Error (ACE) on the profile data. The framework compares the performance statistic of the classifier on true data samples and checks if these are consistent with the behavior of the classifier on the same data with randomly reassigned class labels. A statistically significant ACE increases our belief that a discriminative signal was found in the data. The advantage of PACE analysis is that it can be easily combined with any classification model and is relatively easy to interpret. PACE analysis does not protect researchers against confounding in the experimental design, or other sources of systematic or random error. We use PACE analysis to assess significance of classification results we have achieved on a number of published data sets. The results show that many of these datasets indeed possess a signal that leads to a statistically significant ACE.

  12. Automated Classification of Phonological Errors in Aphasic Language

    PubMed Central

    Ahuja, Sanjeev B.; Reggia, James A.; Berndt, Rita S.

    1984-01-01

    Using heuristically-guided state space search, a prototype program has been developed to simulate and classify phonemic errors occurring in the speech of neurologically-impaired patients. Simulations are based on an interchangeable rule/operator set of elementary errors which represent a theory of phonemic processing faults. This work introduces and evaluates a novel approach to error simulation and classification, it provides a prototype simulation tool for neurolinguistic research, and it forms the initial phase of a larger research effort involving computer modelling of neurolinguistic processes.

  13. ANALYSIS OF A CLASSIFICATION ERROR MATRIX USING CATEGORICAL DATA TECHNIQUES.

    USGS Publications Warehouse

    Rosenfield, George H.; Fitzpatrick-Lins, Katherine

    1984-01-01

    Summary form only given. A classification error matrix typically contains tabulation results of an accuracy evaluation of a thematic classification, such as that of a land use and land cover map. The diagonal elements of the matrix represent the counts corrected, and the usual designation of classification accuracy has been the total percent correct. The nondiagonal elements of the matrix have usually been neglected. The classification error matrix is known in statistical terms as a contingency table of categorical data. As an example, an application of these methodologies to a problem of remotely sensed data concerning two photointerpreters and four categories of classification indicated that there is no significant difference in the interpretation between the two photointerpreters, and that there are significant differences among the interpreted category classifications. However, two categories, oak and cottonwood, are not separable in classification in this experiment at the 0. 51 percent probability. A coefficient of agreement is determined for the interpreted map as a whole, and individually for each of the interpreted categories. A conditional coefficient of agreement for the individual categories is compared to other methods for expressing category accuracy which have already been presented in the remote sensing literature.

  14. New wideband radar target classification method based on neural learning and modified Euclidean metric

    NASA Astrophysics Data System (ADS)

    Jiang, Yicheng; Cheng, Ping; Ou, Yangkui

    2001-09-01

    A new method for target classification of high-range resolution radar is proposed. It tries to use neural learning to obtain invariant subclass features of training range profiles. A modified Euclidean metric based on the Box-Cox transformation technique is investigated for Nearest Neighbor target classification improvement. The classification experiments using real radar data of three different aircraft have demonstrated that classification error can reduce 8% if this method proposed in this paper is chosen instead of the conventional method. The results of this paper have shown that by choosing an optimized metric, it is indeed possible to reduce the classification error without increasing the number of samples.

  15. What Do Spelling Errors Tell Us? Classification and Analysis of Errors Made by Greek Schoolchildren with and without Dyslexia

    ERIC Educational Resources Information Center

    Protopapas, Athanassios; Fakou, Aikaterini; Drakopoulou, Styliani; Skaloumbakas, Christos; Mouzaki, Angeliki

    2013-01-01

    In this study we propose a classification system for spelling errors and determine the most common spelling difficulties of Greek children with and without dyslexia. Spelling skills of 542 children from the general population and 44 children with dyslexia, Grades 3-4 and 7, were assessed with a dictated common word list and age-appropriate…

  16. Effectiveness of Global Features for Automatic Medical Image Classification and Retrieval – the experiences of OHSU at ImageCLEFmed

    PubMed Central

    Kalpathy-Cramer, Jayashree; Hersh, William

    2008-01-01

    In 2006 and 2007, Oregon Health & Science University (OHSU) participated in the automatic image annotation task for medical images at ImageCLEF, an annual international benchmarking event that is part of the Cross Language Evaluation Forum (CLEF). The goal of the automatic annotation task was to classify 1000 test images based on the Image Retrieval in Medical Applications (IRMA) code, given a set of 10,000 training images. There were 116 distinct classes in 2006 and 2007. We evaluated the efficacy of a variety of primarily global features for this classification task. These included features based on histograms, gray level correlation matrices and the gist technique. A multitude of classifiers including k-nearest neighbors, two-level neural networks, support vector machines, and maximum likelihood classifiers were evaluated. Our official error rates for the 1000 test images were 26% in 2006 using the flat classification structure. The error count in 2007 was 67.8 using the hierarchical classification error computation based on the IRMA code in 2007. Confusion matrices as well as clustering experiments were used to identify visually similar classes. The use of the IRMA code did not help us in the classification task as the semantic hierarchy of the IRMA classes did not correspond well with the hierarchy based on clustering of image features that we used. Our most frequent misclassification errors were along the view axis. Subsequent experiments based on a two-stage classification system decreased our error rate to 19.8% for the 2006 dataset and our error count to 55.4 for the 2007 data. PMID:19884953

  17. Bandwidth efficient channel estimation method for airborne hyperspectral data transmission in sparse doubly selective communication channels

    NASA Astrophysics Data System (ADS)

    Vahidi, Vahid; Saberinia, Ebrahim; Regentova, Emma E.

    2017-10-01

    A channel estimation (CE) method based on compressed sensing (CS) is proposed to estimate the sparse and doubly selective (DS) channel for hyperspectral image transmission from unmanned aircraft vehicles to ground stations. The proposed method contains three steps: (1) the priori estimate of the channel by orthogonal matching pursuit (OMP), (2) calculation of the linear minimum mean square error (LMMSE) estimate of the received pilots given the estimated channel, and (3) estimate of the complex amplitudes and Doppler shifts of the channel using the enhanced received pilot data applying a second round of a CS algorithm. The proposed method is named DS-LMMSE-OMP, and its performance is evaluated by simulating transmission of AVIRIS hyperspectral data via the communication channel and assessing their fidelity for the automated analysis after demodulation. The performance of the DS-LMMSE-OMP approach is compared with that of two other state-of-the-art CE methods. The simulation results exhibit up to 8-dB figure of merit in the bit error rate and 50% improvement in the hyperspectral image classification accuracy.

  18. Error-related brain activity and error awareness in an error classification paradigm.

    PubMed

    Di Gregorio, Francesco; Steinhauser, Marco; Maier, Martin E

    2016-10-01

    Error-related brain activity has been linked to error detection enabling adaptive behavioral adjustments. However, it is still unclear which role error awareness plays in this process. Here, we show that the error-related negativity (Ne/ERN), an event-related potential reflecting early error monitoring, is dissociable from the degree of error awareness. Participants responded to a target while ignoring two different incongruent distractors. After responding, they indicated whether they had committed an error, and if so, whether they had responded to one or to the other distractor. This error classification paradigm allowed distinguishing partially aware errors, (i.e., errors that were noticed but misclassified) and fully aware errors (i.e., errors that were correctly classified). The Ne/ERN was larger for partially aware errors than for fully aware errors. Whereas this speaks against the idea that the Ne/ERN foreshadows the degree of error awareness, it confirms the prediction of a computational model, which relates the Ne/ERN to post-response conflict. This model predicts that stronger distractor processing - a prerequisite of error classification in our paradigm - leads to lower post-response conflict and thus a smaller Ne/ERN. This implies that the relationship between Ne/ERN and error awareness depends on how error awareness is related to response conflict in a specific task. Our results further indicate that the Ne/ERN but not the degree of error awareness determines adaptive performance adjustments. Taken together, we conclude that the Ne/ERN is dissociable from error awareness and foreshadows adaptive performance adjustments. Our results suggest that the relationship between the Ne/ERN and error awareness is correlative and mediated by response conflict. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Toward attenuating the impact of arm positions on electromyography pattern-recognition based motion classification in transradial amputees

    PubMed Central

    2012-01-01

    Background Electromyography (EMG) pattern-recognition based control strategies for multifunctional myoelectric prosthesis systems have been studied commonly in a controlled laboratory setting. Before these myoelectric prosthesis systems are clinically viable, it will be necessary to assess the effect of some disparities between the ideal laboratory setting and practical use on the control performance. One important obstacle is the impact of arm position variation that causes the changes of EMG pattern when performing identical motions in different arm positions. This study aimed to investigate the impacts of arm position variation on EMG pattern-recognition based motion classification in upper-limb amputees and the solutions for reducing these impacts. Methods With five unilateral transradial (TR) amputees, the EMG signals and tri-axial accelerometer mechanomyography (ACC-MMG) signals were simultaneously collected from both amputated and intact arms when performing six classes of arm and hand movements in each of five arm positions that were considered in the study. The effect of the arm position changes was estimated in terms of motion classification error and compared between amputated and intact arms. Then the performance of three proposed methods in attenuating the impact of arm positions was evaluated. Results With EMG signals, the average intra-position and inter-position classification errors across all five arm positions and five subjects were around 7.3% and 29.9% from amputated arms, respectively, about 1.0% and 10% low in comparison with those from intact arms. While ACC-MMG signals could yield a similar intra-position classification error (9.9%) as EMG, they had much higher inter-position classification error with an average value of 81.1% over the arm positions and the subjects. When the EMG data from all five arm positions were involved in the training set, the average classification error reached a value of around 10.8% for amputated arms. Using a two-stage cascade classifier, the average classification error was around 9.0% over all five arm positions. Reducing ACC-MMG channels from 8 to 2 only increased the average position classification error across all five arm positions from 0.7% to 1.0% in amputated arms. Conclusions The performance of EMG pattern-recognition based method in classifying movements strongly depends on arm positions. This dependency is a little stronger in intact arm than in amputated arm, which suggests that the investigations associated with practical use of a myoelectric prosthesis should use the limb amputees as subjects instead of using able-body subjects. The two-stage cascade classifier mode with ACC-MMG for limb position identification and EMG for limb motion classification may be a promising way to reduce the effect of limb position variation on classification performance. PMID:23036049

  20. Minimum-Light Spectral Classifications for M-Type Mira Variables

    NASA Astrophysics Data System (ADS)

    Wing, Robert F.

    2015-08-01

    Many bright, well-known Mira variables, including most of the 378 stars for which the AAVSO publishes predicted dates of maximum and minimum in its annual Bulletins, have never been spectroscopically observed close to the time of minimum light, and consequently their catalogued ranges in spectral type are often grossly and misleadingly under-represented. In an effort to improve this situation, for the past 12 years I have been using my 6-color system of narrow-band classification photometry to observe Miras predicted to be near minimum light at the times of my biannual observing runs with the CTIO 0.9-m telescope (operated by the SMARTS consortium). The 6-color system measures the 7100 A band of TiO, which serves to classify stars in the interval K4 to M8, and the 1.06 micron band of VO, which is effective for stars of type M8 and later. To date I have made 431 observations of approximately 220 different (and mostly southern) Miras. Examples are shown of the observed 6-color spectra, and the classifications derived from them.

  1. Position Between Trunk and Pelvis During Gait Depending on the Gross Motor Function Classification System.

    PubMed

    Sanz-Mengibar, Jose Manuel; Altschuck, Natalie; Sanchez-de-Muniain, Paloma; Bauer, Christian; Santonja-Medina, Fernando

    2017-04-01

    To understand whether there is a trunk postural control threshold in the sagittal plane for the transition between the Gross Motor Function Classification System (GMFCS) levels measured with 3-dimensional gait analysis. Kinematics from 97 children with spastic bilateral cerebral palsy from spine angles according to Plug-In Gait model (Vicon) were plotted relative to their GMFCS level. Only average and minimum values of the lumbar spine segment correlated with GMFCS levels. Maximal values at loading response correlated independently with age at all functional levels. Average and minimum values were significant when analyzing age in combination with GMFCS level. There are specific postural control patterns in the average and minimum values for the position between trunk and pelvis in the sagittal plane during gait, for the transition among GMFCS I-III levels. Higher classifications of gross motor skills correlate with more extended spine angles.

  2. Classification of Stellar Spectra with Fuzzy Minimum Within-Class Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Zhong-bao, Liu; Wen-ai, Song; Jing, Zhang; Wen-juan, Zhao

    2017-06-01

    Classification is one of the important tasks in astronomy, especially in spectra analysis. Support Vector Machine (SVM) is a typical classification method, which is widely used in spectra classification. Although it performs well in practice, its classification accuracies can not be greatly improved because of two limitations. One is it does not take the distribution of the classes into consideration. The other is it is sensitive to noise. In order to solve the above problems, inspired by the maximization of the Fisher's Discriminant Analysis (FDA) and the SVM separability constraints, fuzzy minimum within-class support vector machine (FMWSVM) is proposed in this paper. In FMWSVM, the distribution of the classes is reflected by the within-class scatter in FDA and the fuzzy membership function is introduced to decrease the influence of the noise. The comparative experiments with SVM on the SDSS datasets verify the effectiveness of the proposed classifier FMWSVM.

  3. Quantum-state comparison and discrimination

    NASA Astrophysics Data System (ADS)

    Hayashi, A.; Hashimoto, T.; Horibe, M.

    2018-05-01

    We investigate the performance of discrimination strategy in the comparison task of known quantum states. In the discrimination strategy, one infers whether or not two quantum systems are in the same state on the basis of the outcomes of separate discrimination measurements on each system. In some cases with more than two possible states, the optimal strategy in minimum-error comparison is that one should infer the two systems are in different states without any measurement, implying that the discrimination strategy performs worse than the trivial "no-measurement" strategy. We present a sufficient condition for this phenomenon to happen. For two pure states with equal prior probabilities, we determine the optimal comparison success probability with an error margin, which interpolates the minimum-error and unambiguous comparison. We find that the discrimination strategy is not optimal except for the minimum-error case.

  4. Algorithmic Classification of Five Characteristic Types of Paraphasias.

    PubMed

    Fergadiotis, Gerasimos; Gorman, Kyle; Bedrick, Steven

    2016-12-01

    This study was intended to evaluate a series of algorithms developed to perform automatic classification of paraphasic errors (formal, semantic, mixed, neologistic, and unrelated errors). We analyzed 7,111 paraphasias from the Moss Aphasia Psycholinguistics Project Database (Mirman et al., 2010) and evaluated the classification accuracy of 3 automated tools. First, we used frequency norms from the SUBTLEXus database (Brysbaert & New, 2009) to differentiate nonword errors and real-word productions. Then we implemented a phonological-similarity algorithm to identify phonologically related real-word errors. Last, we assessed the performance of a semantic-similarity criterion that was based on word2vec (Mikolov, Yih, & Zweig, 2013). Overall, the algorithmic classification replicated human scoring for the major categories of paraphasias studied with high accuracy. The tool that was based on the SUBTLEXus frequency norms was more than 97% accurate in making lexicality judgments. The phonological-similarity criterion was approximately 91% accurate, and the overall classification accuracy of the semantic classifier ranged from 86% to 90%. Overall, the results highlight the potential of tools from the field of natural language processing for the development of highly reliable, cost-effective diagnostic tools suitable for collecting high-quality measurement data for research and clinical purposes.

  5. Human error analysis of commercial aviation accidents using the human factors analysis and classification system (HFACS)

    DOT National Transportation Integrated Search

    2001-02-01

    The Human Factors Analysis and Classification System (HFACS) is a general human error framework : originally developed and tested within the U.S. military as a tool for investigating and analyzing the human : causes of aviation accidents. Based upon ...

  6. Current Assessment and Classification of Suicidal Phenomena using the FDA 2012 Draft Guidance Document on Suicide Assessment: A Critical Review.

    PubMed

    Sheehan, David V; Giddens, Jennifer M; Sheehan, Kathy Harnett

    2014-09-01

    Standard international classification criteria require that classification categories be comprehensive to avoid type II error. Categories should be mutually exclusive and definitions should be clear and unambiguous (to avoid type I and type II errors). In addition, the classification system should be robust enough to last over time and provide comparability between data collections. This article was designed to evaluate the extent to which the classification system contained in the United States Food and Drug Administration 2012 Draft Guidance for the prospective assessment and classification of suicidal ideation and behavior in clinical trials meets these criteria. A critical review is used to assess the extent to which the proposed categories contained in the Food and Drug Administration 2012 Draft Guidance are comprehensive, unambiguous, and robust. Assumptions that underlie the classification system are also explored. The Food and Drug Administration classification system contained in the 2012 Draft Guidance does not capture the full range of suicidal ideation and behavior (type II error). Definitions, moreover, are frequently ambiguous (susceptible to multiple interpretations), and the potential for misclassification (type I and type II errors) is compounded by frequent mismatches in category titles and definitions. These issues have the potential to compromise data comparability within clinical trial sites, across sites, and over time. These problems need to be remedied because of the potential for flawed data output and consequent threats to public health, to research on the safety of medications, and to the search for effective medication treatments for suicidality.

  7. An experimental study of interstitial lung tissue classification in HRCT images using ANN and role of cost functions

    NASA Astrophysics Data System (ADS)

    Dash, Jatindra K.; Kale, Mandar; Mukhopadhyay, Sudipta; Khandelwal, Niranjan; Prabhakar, Nidhi; Garg, Mandeep; Kalra, Naveen

    2017-03-01

    In this paper, we investigate the effect of the error criteria used during a training phase of the artificial neural network (ANN) on the accuracy of the classifier for classification of lung tissues affected with Interstitial Lung Diseases (ILD). Mean square error (MSE) and the cross-entropy (CE) criteria are chosen being most popular choice in state-of-the-art implementations. The classification experiment performed on the six interstitial lung disease (ILD) patterns viz. Consolidation, Emphysema, Ground Glass Opacity, Micronodules, Fibrosis and Healthy from MedGIFT database. The texture features from an arbitrary region of interest (AROI) are extracted using Gabor filter. Two different neural networks are trained with the scaled conjugate gradient back propagation algorithm with MSE and CE error criteria function respectively for weight updation. Performance is evaluated in terms of average accuracy of these classifiers using 4 fold cross-validation. Each network is trained for five times for each fold with randomly initialized weight vectors and accuracies are computed. Significant improvement in classification accuracy is observed when ANN is trained by using CE (67.27%) as error function compared to MSE (63.60%). Moreover, standard deviation of the classification accuracy for the network trained with CE (6.69) error criteria is found less as compared to network trained with MSE (10.32) criteria.

  8. Approximate error conjugation gradient minimization methods

    DOEpatents

    Kallman, Jeffrey S

    2013-05-21

    In one embodiment, a method includes selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, calculating an approximate error using the subset of rays, and calculating a minimum in a conjugate gradient direction based on the approximate error. In another embodiment, a system includes a processor for executing logic, logic for selecting a subset of rays from a set of all rays to use in an error calculation for a constrained conjugate gradient minimization problem, logic for calculating an approximate error using the subset of rays, and logic for calculating a minimum in a conjugate gradient direction based on the approximate error. In other embodiments, computer program products, methods, and systems are described capable of using approximate error in constrained conjugate gradient minimization problems.

  9. Particle Swarm Optimization approach to defect detection in armour ceramics.

    PubMed

    Kesharaju, Manasa; Nagarajah, Romesh

    2017-03-01

    In this research, various extracted features were used in the development of an automated ultrasonic sensor based inspection system that enables defect classification in each ceramic component prior to despatch to the field. Classification is an important task and large number of irrelevant, redundant features commonly introduced to a dataset reduces the classifiers performance. Feature selection aims to reduce the dimensionality of the dataset while improving the performance of a classification system. In the context of a multi-criteria optimization problem (i.e. to minimize classification error rate and reduce number of features) such as one discussed in this research, the literature suggests that evolutionary algorithms offer good results. Besides, it is noted that Particle Swarm Optimization (PSO) has not been explored especially in the field of classification of high frequency ultrasonic signals. Hence, a binary coded Particle Swarm Optimization (BPSO) technique is investigated in the implementation of feature subset selection and to optimize the classification error rate. In the proposed method, the population data is used as input to an Artificial Neural Network (ANN) based classification system to obtain the error rate, as ANN serves as an evaluator of PSO fitness function. Copyright © 2016. Published by Elsevier B.V.

  10. The impact of OCR accuracy on automated cancer classification of pathology reports.

    PubMed

    Zuccon, Guido; Nguyen, Anthony N; Bergheim, Anton; Wickman, Sandra; Grayson, Narelle

    2012-01-01

    To evaluate the effects of Optical Character Recognition (OCR) on the automatic cancer classification of pathology reports. Scanned images of pathology reports were converted to electronic free-text using a commercial OCR system. A state-of-the-art cancer classification system, the Medical Text Extraction (MEDTEX) system, was used to automatically classify the OCR reports. Classifications produced by MEDTEX on the OCR versions of the reports were compared with the classification from a human amended version of the OCR reports. The employed OCR system was found to recognise scanned pathology reports with up to 99.12% character accuracy and up to 98.95% word accuracy. Errors in the OCR processing were found to minimally impact on the automatic classification of scanned pathology reports into notifiable groups. However, the impact of OCR errors is not negligible when considering the extraction of cancer notification items, such as primary site, histological type, etc. The automatic cancer classification system used in this work, MEDTEX, has proven to be robust to errors produced by the acquisition of freetext pathology reports from scanned images through OCR software. However, issues emerge when considering the extraction of cancer notification items.

  11. Error Detection in Mechanized Classification Systems

    ERIC Educational Resources Information Center

    Hoyle, W. G.

    1976-01-01

    When documentary material is indexed by a mechanized classification system, and the results judged by trained professionals, the number of documents in disagreement, after suitable adjustment, defines the error rate of the system. In a test case disagreement was 22 percent and, of this 22 percent, the computer correctly identified two-thirds of…

  12. Nonlinear dimension reduction and clustering by Minimum Curvilinearity unfold neuropathic pain and tissue embryological classes.

    PubMed

    Cannistraci, Carlo Vittorio; Ravasi, Timothy; Montevecchi, Franco Maria; Ideker, Trey; Alessio, Massimo

    2010-09-15

    Nonlinear small datasets, which are characterized by low numbers of samples and very high numbers of measures, occur frequently in computational biology, and pose problems in their investigation. Unsupervised hybrid-two-phase (H2P) procedures-specifically dimension reduction (DR), coupled with clustering-provide valuable assistance, not only for unsupervised data classification, but also for visualization of the patterns hidden in high-dimensional feature space. 'Minimum Curvilinearity' (MC) is a principle that-for small datasets-suggests the approximation of curvilinear sample distances in the feature space by pair-wise distances over their minimum spanning tree (MST), and thus avoids the introduction of any tuning parameter. MC is used to design two novel forms of nonlinear machine learning (NML): Minimum Curvilinear embedding (MCE) for DR, and Minimum Curvilinear affinity propagation (MCAP) for clustering. Compared with several other unsupervised and supervised algorithms, MCE and MCAP, whether individually or combined in H2P, overcome the limits of classical approaches. High performance was attained in the visualization and classification of: (i) pain patients (proteomic measurements) in peripheral neuropathy; (ii) human organ tissues (genomic transcription factor measurements) on the basis of their embryological origin. MC provides a valuable framework to estimate nonlinear distances in small datasets. Its extension to large datasets is prefigured for novel NMLs. Classification of neuropathic pain by proteomic profiles offers new insights for future molecular and systems biology characterization of pain. Improvements in tissue embryological classification refine results obtained in an earlier study, and suggest a possible reinterpretation of skin attribution as mesodermal. https://sites.google.com/site/carlovittoriocannistraci/home.

  13. Privacy-Preserving Evaluation of Generalization Error and Its Application to Model and Attribute Selection

    NASA Astrophysics Data System (ADS)

    Sakuma, Jun; Wright, Rebecca N.

    Privacy-preserving classification is the task of learning or training a classifier on the union of privately distributed datasets without sharing the datasets. The emphasis of existing studies in privacy-preserving classification has primarily been put on the design of privacy-preserving versions of particular data mining algorithms, However, in classification problems, preprocessing and postprocessing— such as model selection or attribute selection—play a prominent role in achieving higher classification accuracy. In this paper, we show generalization error of classifiers in privacy-preserving classification can be securely evaluated without sharing prediction results. Our main technical contribution is a new generalized Hamming distance protocol that is universally applicable to preprocessing and postprocessing of various privacy-preserving classification problems, such as model selection in support vector machine and attribute selection in naive Bayes classification.

  14. Information analysis of a spatial database for ecological land classification

    NASA Technical Reports Server (NTRS)

    Davis, Frank W.; Dozier, Jeff

    1990-01-01

    An ecological land classification was developed for a complex region in southern California using geographic information system techniques of map overlay and contingency table analysis. Land classes were identified by mutual information analysis of vegetation pattern in relation to other mapped environmental variables. The analysis was weakened by map errors, especially errors in the digital elevation data. Nevertheless, the resulting land classification was ecologically reasonable and performed well when tested with higher quality data from the region.

  15. Sample Training Based Wildfire Segmentation by 2D Histogram θ-Division with Minimum Error

    PubMed Central

    Dong, Erqian; Sun, Mingui; Jia, Wenyan; Zhang, Dengyi; Yuan, Zhiyong

    2013-01-01

    A novel wildfire segmentation algorithm is proposed with the help of sample training based 2D histogram θ-division and minimum error. Based on minimum error principle and 2D color histogram, the θ-division methods were presented recently, but application of prior knowledge on them has not been explored. For the specific problem of wildfire segmentation, we collect sample images with manually labeled fire pixels. Then we define the probability function of error division to evaluate θ-division segmentations, and the optimal angle θ is determined by sample training. Performances in different color channels are compared, and the suitable channel is selected. To further improve the accuracy, the combination approach is presented with both θ-division and other segmentation methods such as GMM. Our approach is tested on real images, and the experiments prove its efficiency for wildfire segmentation. PMID:23878526

  16. Structural MRI-based detection of Alzheimer's disease using feature ranking and classification error.

    PubMed

    Beheshti, Iman; Demirel, Hasan; Farokhian, Farnaz; Yang, Chunlan; Matsuda, Hiroshi

    2016-12-01

    This paper presents an automatic computer-aided diagnosis (CAD) system based on feature ranking for detection of Alzheimer's disease (AD) using structural magnetic resonance imaging (sMRI) data. The proposed CAD system is composed of four systematic stages. First, global and local differences in the gray matter (GM) of AD patients compared to the GM of healthy controls (HCs) are analyzed using a voxel-based morphometry technique. The aim is to identify significant local differences in the volume of GM as volumes of interests (VOIs). Second, the voxel intensity values of the VOIs are extracted as raw features. Third, the raw features are ranked using a seven-feature ranking method, namely, statistical dependency (SD), mutual information (MI), information gain (IG), Pearson's correlation coefficient (PCC), t-test score (TS), Fisher's criterion (FC), and the Gini index (GI). The features with higher scores are more discriminative. To determine the number of top features, the estimated classification error based on training set made up of the AD and HC groups is calculated, with the vector size that minimized this error selected as the top discriminative feature. Fourth, the classification is performed using a support vector machine (SVM). In addition, a data fusion approach among feature ranking methods is introduced to improve the classification performance. The proposed method is evaluated using a data-set from ADNI (130 AD and 130 HC) with 10-fold cross-validation. The classification accuracy of the proposed automatic system for the diagnosis of AD is up to 92.48% using the sMRI data. An automatic CAD system for the classification of AD based on feature-ranking method and classification errors is proposed. In this regard, seven-feature ranking methods (i.e., SD, MI, IG, PCC, TS, FC, and GI) are evaluated. The optimal size of top discriminative features is determined by the classification error estimation in the training phase. The experimental results indicate that the performance of the proposed system is comparative to that of state-of-the-art classification models. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Algorithms for Hyperspectral Endmember Extraction and Signature Classification with Morphological Dendritic Networks

    NASA Astrophysics Data System (ADS)

    Schmalz, M.; Ritter, G.

    Accurate multispectral or hyperspectral signature classification is key to the nonimaging detection and recognition of space objects. Additionally, signature classification accuracy depends on accurate spectral endmember determination [1]. Previous approaches to endmember computation and signature classification were based on linear operators or neural networks (NNs) expressed in terms of the algebra (R, +, x) [1,2]. Unfortunately, class separation in these methods tends to be suboptimal, and the number of signatures that can be accurately classified often depends linearly on the number of NN inputs. This can lead to poor endmember distinction, as well as potentially significant classification errors in the presence of noise or densely interleaved signatures. In contrast to traditional CNNs, autoassociative morphological memories (AMM) are a construct similar to Hopfield autoassociatived memories defined on the (R, +, ?,?) lattice algebra [3]. Unlimited storage and perfect recall of noiseless real valued patterns has been proven for AMMs [4]. However, AMMs suffer from sensitivity to specific noise models, that can be characterized as erosive and dilative noise. On the other hand, the prior definition of a set of endmembers corresponds to material spectra lying on vertices of the minimum convex region covering the image data. These vertices can be characterized as morphologically independent patterns. It has further been shown that AMMs can be based on dendritic computation [3,6]. These techniques yield improved accuracy and class segmentation/separation ability in the presence of highly interleaved signature data. In this paper, we present a procedure for endmember determination based on AMM noise sensitivity, which employs morphological dendritic computation. We show that detected endmembers can be exploited by AMM based classification techniques, to achieve accurate signature classification in the presence of noise, closely spaced or interleaved signatures, and simulated camera optical distortions. In particular, we examine two critical cases: (1) classification of multiple closely spaced signatures that are difficult to separate using distance measures, and (2) classification of materials in simulated hyperspectral images of spaceborne satellites. In each case, test data are derived from a NASA database of space material signatures. Additional analysis pertains to computational complexity and noise sensitivity, which are superior to classical NN based techniques.

  18. Navigator alignment using radar scan

    DOEpatents

    Doerry, Armin W.; Marquette, Brandeis

    2016-04-05

    The various technologies presented herein relate to the determination of and correction of heading error of platform. Knowledge of at least one of a maximum Doppler frequency or a minimum Doppler bandwidth pertaining to a plurality of radar echoes can be utilized to facilitate correction of the heading error. Heading error can occur as a result of component drift. In an ideal situation, a boresight direction of an antenna or the front of an aircraft will have associated therewith at least one of a maximum Doppler frequency or a minimum Doppler bandwidth. As the boresight direction of the antenna strays from a direction of travel at least one of the maximum Doppler frequency or a minimum Doppler bandwidth will shift away, either left or right, from the ideal situation.

  19. Synthetic Aperture Sonar Processing with MMSE Estimation of Image Sample Values

    DTIC Science & Technology

    2016-12-01

    UNCLASSIFIED/UNLIMITED 13. SUPPLEMENTARY NOTES 14. ABSTRACT MMSE (minimum mean- square error) target sample estimation using non-orthogonal basis...orthogonal, they can still be used in a minimum mean‐ square  error (MMSE)  estimator that models the object echo as a weighted sum of the multi‐aspect basis...problem.                     3    Introduction      Minimum mean‐ square  error (MMSE) estimation is applied to target imaging with synthetic aperture

  20. An automatic agricultural zone classification procedure for crop inventory satellite images

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Kux, H. J.; Velasco, F. R. D.; Deoliveira, M. O. B.

    1982-01-01

    A classification procedure for assessing crop areal proportion in multispectral scanner image is discussed. The procedure is into four parts: labeling; classification; proportion estimation; and evaluation. The procedure also has the following characteristics: multitemporal classification; the need for a minimum field information; and verification capability between automatic classification and analyst labeling. The processing steps and the main algorithms involved are discussed. An outlook on the future of this technology is also presented.

  1. Documentation of procedures for textural/spatial pattern recognition techniques

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.; Bryant, W. F.

    1976-01-01

    A C-130 aircraft was flown over the Sam Houston National Forest on March 21, 1973 at 10,000 feet altitude to collect multispectral scanner (MSS) data. Existing textural and spatial automatic processing techniques were used to classify the MSS imagery into specified timber categories. Several classification experiments were performed on this data using features selected from the spectral bands and a textural transform band. The results indicate that (1) spatial post-processing a classified image can cut the classification error to 1/2 or 1/3 of its initial value, (2) spatial post-processing the classified image using combined spectral and textural features produces a resulting image with less error than post-processing a classified image using only spectral features and (3) classification without spatial post processing using the combined spectral textural features tends to produce about the same error rate as a classification without spatial post processing using only spectral features.

  2. Local gray level S-curve transformation - A generalized contrast enhancement technique for medical images.

    PubMed

    Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep

    2017-04-01

    Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Gas chimney detection based on improving the performance of combined multilayer perceptron and support vector classifier

    NASA Astrophysics Data System (ADS)

    Hashemi, H.; Tax, D. M. J.; Duin, R. P. W.; Javaherian, A.; de Groot, P.

    2008-11-01

    Seismic object detection is a relatively new field in which 3-D bodies are visualized and spatial relationships between objects of different origins are studied in order to extract geologic information. In this paper, we propose a method for finding an optimal classifier with the help of a statistical feature ranking technique and combining different classifiers. The method, which has general applicability, is demonstrated here on a gas chimney detection problem. First, we evaluate a set of input seismic attributes extracted at locations labeled by a human expert using regularized discriminant analysis (RDA). In order to find the RDA score for each seismic attribute, forward and backward search strategies are used. Subsequently, two non-linear classifiers: multilayer perceptron (MLP) and support vector classifier (SVC) are run on the ranked seismic attributes. Finally, to capitalize on the intrinsic differences between both classifiers, the MLP and SVC results are combined using logical rules of maximum, minimum and mean. The proposed method optimizes the ranked feature space size and yields the lowest classification error in the final combined result. We will show that the logical minimum reveals gas chimneys that exhibit both the softness of MLP and the resolution of SVC classifiers.

  4. 29 CFR 697.2 - Industry wage rates and effective dates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of goods for commerce, as these terms are defined in section 3 of the Fair Labor Standards Act of... classifications in which such employee is engaged. Industry Minimum wage EffectiveOctober 3, 2005 EffectiveOctober...) Classification A 4.09 4.09 4.09 (2) Classification B 3.92 3.92 3.92 (3) Classification C 3.88 3.88 3.88 (e...

  5. 29 CFR 510.22 - Industries eligible for minimum wage phase-in.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Industries eligible for minimum wage phase-in. 510.22 Section 510.22 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR... ACT IN PUERTO RICO Classification of Industries § 510.22 Industries eligible for minimum wage phase-in...

  6. 29 CFR 510.22 - Industries eligible for minimum wage phase-in.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Industries eligible for minimum wage phase-in. 510.22... ACT IN PUERTO RICO Classification of Industries § 510.22 Industries eligible for minimum wage phase-in. (a) Appendix A contains a listing of all industries included in the Census of Manufacturing. Appendix...

  7. 29 CFR 510.22 - Industries eligible for minimum wage phase-in.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Industries eligible for minimum wage phase-in. 510.22... ACT IN PUERTO RICO Classification of Industries § 510.22 Industries eligible for minimum wage phase-in. (a) Appendix A contains a listing of all industries included in the Census of Manufacturing. Appendix...

  8. 29 CFR 510.22 - Industries eligible for minimum wage phase-in.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Industries eligible for minimum wage phase-in. 510.22... ACT IN PUERTO RICO Classification of Industries § 510.22 Industries eligible for minimum wage phase-in. (a) Appendix A contains a listing of all industries included in the Census of Manufacturing. Appendix...

  9. 29 CFR 510.22 - Industries eligible for minimum wage phase-in.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Industries eligible for minimum wage phase-in. 510.22... ACT IN PUERTO RICO Classification of Industries § 510.22 Industries eligible for minimum wage phase-in. (a) Appendix A contains a listing of all industries included in the Census of Manufacturing. Appendix...

  10. Data analysis in emission tomography using emission-count posteriors

    NASA Astrophysics Data System (ADS)

    Sitek, Arkadiusz

    2012-11-01

    A novel approach to the analysis of emission tomography data using the posterior probability of the number of emissions per voxel (emission count) conditioned on acquired tomographic data is explored. The posterior is derived from the prior and the Poisson likelihood of the emission-count data by marginalizing voxel activities. Based on emission-count posteriors, examples of Bayesian analysis including estimation and classification tasks in emission tomography are provided. The application of the method to computer simulations of 2D tomography is demonstrated. In particular, the minimum-mean-square-error point estimator of the emission count is demonstrated. The process of finding this estimator can be considered as a tomographic image reconstruction technique since the estimates of the number of emissions per voxel divided by voxel sensitivities and acquisition time are the estimates of the voxel activities. As an example of a classification task, a hypothesis stating that some region of interest (ROI) emitted at least or at most r-times the number of events in some other ROI is tested. The ROIs are specified by the user. The analysis described in this work provides new quantitative statistical measures that can be used in decision making in diagnostic imaging using emission tomography.

  11. Human error analysis of commercial aviation accidents: application of the Human Factors Analysis and Classification system (HFACS).

    PubMed

    Wiegmann, D A; Shappell, S A

    2001-11-01

    The Human Factors Analysis and Classification System (HFACS) is a general human error framework originally developed and tested within the U.S. military as a tool for investigating and analyzing the human causes of aviation accidents. Based on Reason's (1990) model of latent and active failures, HFACS addresses human error at all levels of the system, including the condition of aircrew and organizational factors. The purpose of the present study was to assess the utility of the HFACS framework as an error analysis and classification tool outside the military. The HFACS framework was used to analyze human error data associated with aircrew-related commercial aviation accidents that occurred between January 1990 and December 1996 using database records maintained by the NTSB and the FAA. Investigators were able to reliably accommodate all the human causal factors associated with the commercial aviation accidents examined in this study using the HFACS system. In addition, the classification of data using HFACS highlighted several critical safety issues in need of intervention research. These results demonstrate that the HFACS framework can be a viable tool for use within the civil aviation arena. However, additional research is needed to examine its applicability to areas outside the flight deck, such as aircraft maintenance and air traffic control domains.

  12. Practical Procedures for Constructing Mastery Tests to Minimize Errors of Classification and to Maximize or Optimize Decision Reliability.

    ERIC Educational Resources Information Center

    Byars, Alvin Gregg

    The objectives of this investigation are to develop, describe, assess, and demonstrate procedures for constructing mastery tests to minimize errors of classification and to maximize decision reliability. The guidelines are based on conditions where item exchangeability is a reasonable assumption and the test constructor can control the number of…

  13. Adaptive feedforward control of non-minimum phase structural systems

    NASA Astrophysics Data System (ADS)

    Vipperman, J. S.; Burdisso, R. A.

    1995-06-01

    Adaptive feedforward control algorithms have been effectively applied to stationary disturbance rejection. For structural systems, the ideal feedforward compensator is a recursive filter which is a function of the transfer functions between the disturbance and control inputs and the error sensor output. Unfortunately, most control configurations result in a non-minimum phase control path; even a collocated control actuator and error sensor will not necessarily produce a minimum phase control path in the discrete domain. Therefore, the common practice is to choose a suitable approximation of the ideal compensator. In particular, all-zero finite impulse response (FIR) filters are desirable because of their inherent stability for adaptive control approaches. However, for highly resonant systems, large order filters are required for broadband applications. In this work, a control configuration is investigated for controlling non-minimum phase lightly damped structural systems. The control approach uses low order FIR filters as feedforward compensators in a configuration that has one more control actuator than error sensors. The performance of the controller was experimentally evaluated on a simply supported plate under white noise excitation for a two-input, one-output (2I1O) system. The results show excellent error signal reduction, attesting to the effectiveness of the method.

  14. Comparing K-mer based methods for improved classification of 16S sequences.

    PubMed

    Vinje, Hilde; Liland, Kristian Hovde; Almøy, Trygve; Snipen, Lars

    2015-07-01

    The need for precise and stable taxonomic classification is highly relevant in modern microbiology. Parallel to the explosion in the amount of sequence data accessible, there has also been a shift in focus for classification methods. Previously, alignment-based methods were the most applicable tools. Now, methods based on counting K-mers by sliding windows are the most interesting classification approach with respect to both speed and accuracy. Here, we present a systematic comparison on five different K-mer based classification methods for the 16S rRNA gene. The methods differ from each other both in data usage and modelling strategies. We have based our study on the commonly known and well-used naïve Bayes classifier from the RDP project, and four other methods were implemented and tested on two different data sets, on full-length sequences as well as fragments of typical read-length. The difference in classification error obtained by the methods seemed to be small, but they were stable and for both data sets tested. The Preprocessed nearest-neighbour (PLSNN) method performed best for full-length 16S rRNA sequences, significantly better than the naïve Bayes RDP method. On fragmented sequences the naïve Bayes Multinomial method performed best, significantly better than all other methods. For both data sets explored, and on both full-length and fragmented sequences, all the five methods reached an error-plateau. We conclude that no K-mer based method is universally best for classifying both full-length sequences and fragments (reads). All methods approach an error plateau indicating improved training data is needed to improve classification from here. Classification errors occur most frequent for genera with few sequences present. For improving the taxonomy and testing new classification methods, the need for a better and more universal and robust training data set is crucial.

  15. An experimental evaluation of the incidence of fitness-function/search-algorithm combinations on the classification performance of myoelectric control systems with iPCA tuning

    PubMed Central

    2013-01-01

    Background The information of electromyographic signals can be used by Myoelectric Control Systems (MCSs) to actuate prostheses. These devices allow the performing of movements that cannot be carried out by persons with amputated limbs. The state of the art in the development of MCSs is based on the use of individual principal component analysis (iPCA) as a stage of pre-processing of the classifiers. The iPCA pre-processing implies an optimization stage which has not yet been deeply explored. Methods The present study considers two factors in the iPCA stage: namely A (the fitness function), and B (the search algorithm). The A factor comprises two levels, namely A1 (the classification error) and A2 (the correlation factor). Otherwise, the B factor has four levels, specifically B1 (the Sequential Forward Selection, SFS), B2 (the Sequential Floating Forward Selection, SFFS), B3 (Artificial Bee Colony, ABC), and B4 (Particle Swarm Optimization, PSO). This work evaluates the incidence of each one of the eight possible combinations between A and B factors over the classification error of the MCS. Results A two factor ANOVA was performed on the computed classification errors and determined that: (1) the interactive effects over the classification error are not significative (F0.01,3,72 = 4.0659 > f AB  = 0.09), (2) the levels of factor A have significative effects on the classification error (F0.02,1,72 = 5.0162 < f A  = 6.56), and (3) the levels of factor B over the classification error are not significative (F0.01,3,72 = 4.0659 > f B  = 0.08). Conclusions Considering the classification performance we found a superiority of using the factor A2 in combination with any of the levels of factor B. With respect to the time performance the analysis suggests that the PSO algorithm is at least 14 percent better than its best competitor. The latter behavior has been observed for a particular configuration set of parameters in the search algorithms. Future works will investigate the effect of these parameters in the classification performance, such as length of the reduced size vector, number of particles and bees used during optimal search, the cognitive parameters in the PSO algorithm as well as the limit of cycles to improve a solution in the ABC algorithm. PMID:24369728

  16. Exploring human error in military aviation flight safety events using post-incident classification systems.

    PubMed

    Hooper, Brionny J; O'Hare, David P A

    2013-08-01

    Human error classification systems theoretically allow researchers to analyze postaccident data in an objective and consistent manner. The Human Factors Analysis and Classification System (HFACS) framework is one such practical analysis tool that has been widely used to classify human error in aviation. The Cognitive Error Taxonomy (CET) is another. It has been postulated that the focus on interrelationships within HFACS can facilitate the identification of the underlying causes of pilot error. The CET provides increased granularity at the level of unsafe acts. The aim was to analyze the influence of factors at higher organizational levels on the unsafe acts of front-line operators and to compare the errors of fixed-wing and rotary-wing operations. This study analyzed 288 aircraft incidents involving human error from an Australasian military organization occurring between 2001 and 2008. Action errors accounted for almost twice (44%) the proportion of rotary wing compared to fixed wing (23%) incidents. Both classificatory systems showed significant relationships between precursor factors such as the physical environment, mental and physiological states, crew resource management, training and personal readiness, and skill-based, but not decision-based, acts. The CET analysis showed different predisposing factors for different aspects of skill-based behaviors. Skill-based errors in military operations are more prevalent in rotary wing incidents and are related to higher level supervisory processes in the organization. The Cognitive Error Taxonomy provides increased granularity to HFACS analyses of unsafe acts.

  17. The evaluation of alternate methodologies for land cover classification in an urbanizing area

    NASA Technical Reports Server (NTRS)

    Smekofski, R. M.

    1981-01-01

    The usefulness of LANDSAT in classifying land cover and in identifying and classifying land use change was investigated using an urbanizing area as the study area. The question of what was the best technique for classification was the primary focus of the study. The many computer-assisted techniques available to analyze LANDSAT data were evaluated. Techniques of statistical training (polygons from CRT, unsupervised clustering, polygons from digitizer and binary masks) were tested with minimum distance to the mean, maximum likelihood and canonical analysis with minimum distance to the mean classifiers. The twelve output images were compared to photointerpreted samples, ground verified samples and a current land use data base. Results indicate that for a reconnaissance inventory, the unsupervised training with canonical analysis-minimum distance classifier is the most efficient. If more detailed ground truth and ground verification is available, the polygons from the digitizer training with the canonical analysis minimum distance is more accurate.

  18. Adaptive color halftoning for minimum perceived error using the blue noise mask

    NASA Astrophysics Data System (ADS)

    Yu, Qing; Parker, Kevin J.

    1997-04-01

    Color halftoning using a conventional screen requires careful selection of screen angles to avoid Moire patterns. An obvious advantage of halftoning using a blue noise mask (BNM) is that there are no conventional screen angle or Moire patterns produced. However, a simple strategy of employing the same BNM on all color planes is unacceptable in case where a small registration error can cause objectionable color shifts. In a previous paper by Yao and Parker, strategies were presented for shifting or inverting the BNM as well as using mutually exclusive BNMs for different color planes. In this paper, the above schemes will be studied in CIE-LAB color space in terms of root mean square error and variance for luminance channel and chrominance channel respectively. We will demonstrate that the dot-on-dot scheme results in minimum chrominance error, but maximum luminance error and the 4-mask scheme results in minimum luminance error but maximum chrominance error, while the shift scheme falls in between. Based on this study, we proposed a new adaptive color halftoning algorithm that takes colorimetric color reproduction into account by applying 2-mutually exclusive BNMs on two different color planes and applying an adaptive scheme on other planes to reduce color error. We will show that by having one adaptive color channel, we obtain increased flexibility to manipulate the output so as to reduce colorimetric error while permitting customization to specific printing hardware.

  19. 76 FR 62816 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-11

    ... specify the risk group (RG) classification for several common attenuated strains of bacteria and viruses... minimum containment level required for experiments subject to the NIH Guidelines. The classification of...

  20. Optical tomographic detection of rheumatoid arthritis with computer-aided classification schemes

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.; Klose, Alexander D.; Netz, Uwe; Beuthan, Jürgen; Hielscher, Andreas H.

    2009-02-01

    A recent research study has shown that combining multiple parameters, drawn from optical tomographic images, leads to better classification results to identifying human finger joints that are affected or not affected by rheumatic arthritis RA. Building up on the research findings of the previous study, this article presents an advanced computer-aided classification approach for interpreting optical image data to detect RA in finger joints. Additional data are used including, for example, maximum and minimum values of the absorption coefficient as well as their ratios and image variances. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index and area under the curve AUC. Results were compared to different benchmarks ("gold standard"): magnet resonance, ultrasound and clinical evaluation. Maximum accuracies (AUC=0.88) were reached when combining minimum/maximum-ratios and image variances and using ultrasound as gold standard.

  1. How should children with speech sound disorders be classified? A review and critical evaluation of current classification systems.

    PubMed

    Waring, R; Knight, R

    2013-01-01

    Children with speech sound disorders (SSD) form a heterogeneous group who differ in terms of the severity of their condition, underlying cause, speech errors, involvement of other aspects of the linguistic system and treatment response. To date there is no universal and agreed-upon classification system. Instead, a number of theoretically differing classification systems have been proposed based on either an aetiological (medical) approach, a descriptive-linguistic approach or a processing approach. To describe and review the supporting evidence, and to provide a critical evaluation of the current childhood SSD classification systems. Descriptions of the major specific approaches to classification are reviewed and research papers supporting the reliability and validity of the systems are evaluated. Three specific paediatric SSD classification systems; the aetiologic-based Speech Disorders Classification System, the descriptive-linguistic Differential Diagnosis system, and the processing-based Psycholinguistic Framework are identified as potentially useful in classifying children with SSD into homogeneous subgroups. The Differential Diagnosis system has a growing body of empirical support from clinical population studies, across language error pattern studies and treatment efficacy studies. The Speech Disorders Classification System is currently a research tool with eight proposed subgroups. The Psycholinguistic Framework is a potential bridge to linking cause and surface level speech errors. There is a need for a universally agreed-upon classification system that is useful to clinicians and researchers. The resulting classification system needs to be robust, reliable and valid. A universal classification system would allow for improved tailoring of treatments to subgroups of SSD which may, in turn, lead to improved treatment efficacy. © 2012 Royal College of Speech and Language Therapists.

  2. The application of Aronson's taxonomy to medication errors in nursing.

    PubMed

    Johnson, Maree; Young, Helen

    2011-01-01

    Medication administration is a frequent nursing activity that is prone to error. In this study of 318 self-reported medication incidents (including near misses), very few resulted in patient harm-7% required intervention or prolonged hospitalization or caused temporary harm. Aronson's classification system provided an excellent framework for analysis of the incidents with a close connection between the type of error and the change strategy to minimize medication incidents. Taking a behavioral approach to medication error classification has provided helpful strategies for nurses such as nurse-call cards on patient lockers when patients are absent and checking of medication sign-off by outgoing and incoming staff at handover.

  3. Center for Seismic Studies Final Technical Report, October 1992 through October 1993

    DTIC Science & Technology

    1994-02-07

    SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT OF REPORT OF THIS PAGE OF ABSTRACT...Upper limit of depth error as a function of mb for estimates based on P and S waves for three netowrks : GSETr-2, ALPHA, and ALPHA + a 50 station...U 4A 4 U 4S as 1 I I I Figure 42: Upper limit of depth error as a function of mb for estimatesbased on P and S waves for three netowrk : GSETT-2o ALPHA

  4. Assimilation of a knowledge base and physical models to reduce errors in passive-microwave classifications of sea ice

    NASA Technical Reports Server (NTRS)

    Maslanik, J. A.; Key, J.

    1992-01-01

    An expert system framework has been developed to classify sea ice types using satellite passive microwave data, an operational classification algorithm, spatial and temporal information, ice types estimated from a dynamic-thermodynamic model, output from a neural network that detects the onset of melt, and knowledge about season and region. The rule base imposes boundary conditions upon the ice classification, modifies parameters in the ice algorithm, determines a `confidence' measure for the classified data, and under certain conditions, replaces the algorithm output with model output. Results demonstrate the potential power of such a system for minimizing overall error in the classification and for providing non-expert data users with a means of assessing the usefulness of the classification results for their applications.

  5. Detection of terrain indices related to soil salinity and mapping salt-affected soils using remote sensing and geostatistical techniques.

    PubMed

    Triki Fourati, Hela; Bouaziz, Moncef; Benzina, Mourad; Bouaziz, Samir

    2017-04-01

    Traditional surveying methods of soil properties over landscapes are dramatically cost and time-consuming. Thus, remote sensing is a proper choice for monitoring environmental problem. This research aims to study the effect of environmental factors on soil salinity and to map the spatial distribution of this salinity over the southern east part of Tunisia by means of remote sensing and geostatistical techniques. For this purpose, we used Advanced Spaceborne Thermal Emission and Reflection Radiometer data to depict geomorphological parameters: elevation, slope, plan curvature (PLC), profile curvature (PRC), and aspect. Pearson correlation between these parameters and soil electrical conductivity (EC soil ) showed that mainly slope and elevation affect the concentration of salt in soil. Moreover, spectral analysis illustrated the high potential of short-wave infrared (SWIR) bands to identify saline soils. To map soil salinity in southern Tunisia, ordinary kriging (OK), minimum distance (MD) classification, and simple regression (SR) were used. The findings showed that ordinary kriging technique provides the most reliable performances to identify and classify saline soils over the study area with a root mean square error of 1.83 and mean error of 0.018.

  6. Spelling in adolescents with dyslexia: errors and modes of assessment.

    PubMed

    Tops, Wim; Callens, Maaike; Bijn, Evi; Brysbaert, Marc

    2014-01-01

    In this study we focused on the spelling of high-functioning students with dyslexia. We made a detailed classification of the errors in a word and sentence dictation task made by 100 students with dyslexia and 100 matched control students. All participants were in the first year of their bachelor's studies and had Dutch as mother tongue. Three main error categories were distinguished: phonological, orthographic, and grammatical errors (on the basis of morphology and language-specific spelling rules). The results indicated that higher-education students with dyslexia made on average twice as many spelling errors as the controls, with effect sizes of d ≥ 2. When the errors were classified as phonological, orthographic, or grammatical, we found a slight dominance of phonological errors in students with dyslexia. Sentence dictation did not provide more information than word dictation in the correct classification of students with and without dyslexia. © Hammill Institute on Disabilities 2012.

  7. A Guide for Setting the Cut-Scores to Minimize Weighted Classification Errors in Test Batteries

    ERIC Educational Resources Information Center

    Grabovsky, Irina; Wainer, Howard

    2017-01-01

    In this article, we extend the methodology of the Cut-Score Operating Function that we introduced previously and apply it to a testing scenario with multiple independent components and different testing policies. We derive analytically the overall classification error rate for a test battery under the policy when several retakes are allowed for…

  8. [Classifications in forensic medicine and their logical basis].

    PubMed

    Kovalev, A V; Shmarov, L A; Ten'kov, A A

    2014-01-01

    The objective of the present study was to characterize the main requirements for the correct construction of classifications used in forensic medicine, with special reference to the errors that occur in the relevant text-books, guidelines, and manuals and the ways to avoid them. This publication continues the series of thematic articles of the authors devoted to the logical errors in the expert conclusions. The preparation of further publications is underway to report the results of the in-depth analysis of the logical errors encountered in expert conclusions, text-books, guidelines, and manuals.

  9. Sensitivity analysis of the GEMS soil organic carbon model to land cover land use classification uncertainties under different climate scenarios in Senegal

    USGS Publications Warehouse

    Dieye, A.M.; Roy, David P.; Hanan, N.P.; Liu, S.; Hansen, M.; Toure, A.

    2012-01-01

    Spatially explicit land cover land use (LCLU) change information is needed to drive biogeochemical models that simulate soil organic carbon (SOC) dynamics. Such information is increasingly being mapped using remotely sensed satellite data with classification schemes and uncertainties constrained by the sensing system, classification algorithms and land cover schemes. In this study, automated LCLU classification of multi-temporal Landsat satellite data were used to assess the sensitivity of SOC modeled by the Global Ensemble Biogeochemical Modeling System (GEMS). The GEMS was run for an area of 1560 km2 in Senegal under three climate change scenarios with LCLU maps generated using different Landsat classification approaches. This research provides a method to estimate the variability of SOC, specifically the SOC uncertainty due to satellite classification errors, which we show is dependent not only on the LCLU classification errors but also on where the LCLU classes occur relative to the other GEMS model inputs.

  10. Application of genetic algorithm in the evaluation of the profile error of archimedes helicoid surface

    NASA Astrophysics Data System (ADS)

    Zhu, Lianqing; Chen, Yunfang; Chen, Qingshan; Meng, Hao

    2011-05-01

    According to minimum zone condition, a method for evaluating the profile error of Archimedes helicoid surface based on Genetic Algorithm (GA) is proposed. The mathematic model of the surface is provided and the unknown parameters in the equation of surface are acquired through least square method. Principle of GA is explained. Then, the profile error of Archimedes Helicoid surface is obtained through GA optimization method. To validate the proposed method, the profile error of an Archimedes helicoid surface, Archimedes Cylindrical worm (ZA worm) surface, is evaluated. The results show that the proposed method is capable of correctly evaluating the profile error of Archimedes helicoid surface and satisfy the evaluation standard of the Minimum Zone Method. It can be applied to deal with the measured data of profile error of complex surface obtained by three coordinate measurement machines (CMM).

  11. Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM.

    PubMed

    Gu, Bin; Sheng, Victor S; Tay, Keng Yeow; Romano, Walter; Li, Shuo

    2017-06-01

    Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.

  12. Systems Operation Studies for Automated Guideway Transit Systems - Classification and Definition of AGT Systems

    DOT National Transportation Integrated Search

    1980-02-01

    The report describes the development of an AGT classification structure. Five classes are defined based on three system characteristics: service type, minimum travelling unit capacity, and maximum operating velocity. The five classes defined are: Per...

  13. Cost effectiveness of the U.S. Geological Survey's stream-gaging program in Wisconsin

    USGS Publications Warehouse

    Walker, J.F.; Osen, L.L.; Hughes, P.E.

    1987-01-01

    A minimum budget of $510,000 is required to operate the program; a budget less than this does not permit proper service and maintenance of the gaging stations. At this minimum budget, the theoretical average standard error of instantaneous discharge is 14.4%. The maximum budget analyzed was $650,000 and resulted in an average standard of error of instantaneous discharge of 7.2%. 

  14. Evaluating data mining algorithms using molecular dynamics trajectories.

    PubMed

    Tatsis, Vasileios A; Tjortjis, Christos; Tzirakis, Panagiotis

    2013-01-01

    Molecular dynamics simulations provide a sample of a molecule's conformational space. Experiments on the mus time scale, resulting in large amounts of data, are nowadays routine. Data mining techniques such as classification provide a way to analyse such data. In this work, we evaluate and compare several classification algorithms using three data sets which resulted from computer simulations, of a potential enzyme mimetic biomolecule. We evaluated 65 classifiers available in the well-known data mining toolkit Weka, using 'classification' errors to assess algorithmic performance. Results suggest that: (i) 'meta' classifiers perform better than the other groups, when applied to molecular dynamics data sets; (ii) Random Forest and Rotation Forest are the best classifiers for all three data sets; and (iii) classification via clustering yields the highest classification error. Our findings are consistent with bibliographic evidence, suggesting a 'roadmap' for dealing with such data.

  15. Biomarker selection and classification of "-omics" data using a two-step bayes classification framework.

    PubMed

    Assawamakin, Anunchai; Prueksaaroon, Supakit; Kulawonganunchai, Supasak; Shaw, Philip James; Varavithya, Vara; Ruangrajitpakorn, Taneth; Tongsima, Sissades

    2013-01-01

    Identification of suitable biomarkers for accurate prediction of phenotypic outcomes is a goal for personalized medicine. However, current machine learning approaches are either too complex or perform poorly. Here, a novel two-step machine-learning framework is presented to address this need. First, a Naïve Bayes estimator is used to rank features from which the top-ranked will most likely contain the most informative features for prediction of the underlying biological classes. The top-ranked features are then used in a Hidden Naïve Bayes classifier to construct a classification prediction model from these filtered attributes. In order to obtain the minimum set of the most informative biomarkers, the bottom-ranked features are successively removed from the Naïve Bayes-filtered feature list one at a time, and the classification accuracy of the Hidden Naïve Bayes classifier is checked for each pruned feature set. The performance of the proposed two-step Bayes classification framework was tested on different types of -omics datasets including gene expression microarray, single nucleotide polymorphism microarray (SNParray), and surface-enhanced laser desorption/ionization time-of-flight (SELDI-TOF) proteomic data. The proposed two-step Bayes classification framework was equal to and, in some cases, outperformed other classification methods in terms of prediction accuracy, minimum number of classification markers, and computational time.

  16. Evaluation criteria for software classification inventories, accuracies, and maps

    NASA Technical Reports Server (NTRS)

    Jayroe, R. R., Jr.

    1976-01-01

    Statistical criteria are presented for modifying the contingency table used to evaluate tabular classification results obtained from remote sensing and ground truth maps. This classification technique contains information on the spatial complexity of the test site, on the relative location of classification errors, on agreement of the classification maps with ground truth maps, and reduces back to the original information normally found in a contingency table.

  17. The search for structure - Object classification in large data sets. [for astronomers

    NASA Technical Reports Server (NTRS)

    Kurtz, Michael J.

    1988-01-01

    Research concerning object classifications schemes are reviewed, focusing on large data sets. Classification techniques are discussed, including syntactic, decision theoretic methods, fuzzy techniques, and stochastic and fuzzy grammars. Consideration is given to the automation of MK classification (Morgan and Keenan, 1973) and other problems associated with the classification of spectra. In addition, the classification of galaxies is examined, including the problems of systematic errors, blended objects, galaxy types, and galaxy clusters.

  18. Global distortion of GPS networks associated with satellite antenna model errors

    NASA Astrophysics Data System (ADS)

    Cardellach, E.; Elósegui, P.; Davis, J. L.

    2007-07-01

    Recent studies of the GPS satellite phase center offsets (PCOs) suggest that these have been in error by ˜1 m. Previous studies had shown that PCO errors are absorbed mainly by parameters representing satellite clock and the radial components of site position. On the basis of the assumption that the radial errors are equal, PCO errors will therefore introduce an error in network scale. However, PCO errors also introduce distortions, or apparent deformations, within the network, primarily in the radial (vertical) component of site position that cannot be corrected via a Helmert transformation. Using numerical simulations to quantify the effects of PCO errors, we found that these PCO errors lead to a vertical network distortion of 6-12 mm per meter of PCO error. The network distortion depends on the minimum elevation angle used in the analysis of the GPS phase observables, becoming larger as the minimum elevation angle increases. The steady evolution of the GPS constellation as new satellites are launched, age, and are decommissioned, leads to the effects of PCO errors varying with time that introduce an apparent global-scale rate change. We demonstrate here that current estimates for PCO errors result in a geographically variable error in the vertical rate at the 1-2 mm yr-1 level, which will impact high-precision crustal deformation studies.

  19. Global Distortion of GPS Networks Associated with Satellite Antenna Model Errors

    NASA Technical Reports Server (NTRS)

    Cardellach, E.; Elosequi, P.; Davis, J. L.

    2007-01-01

    Recent studies of the GPS satellite phase center offsets (PCOs) suggest that these have been in error by approx.1 m. Previous studies had shown that PCO errors are absorbed mainly by parameters representing satellite clock and the radial components of site position. On the basis of the assumption that the radial errors are equal, PCO errors will therefore introduce an error in network scale. However, PCO errors also introduce distortions, or apparent deformations, within the network, primarily in the radial (vertical) component of site position that cannot be corrected via a Helmert transformation. Using numerical simulations to quantify the effects of PC0 errors, we found that these PCO errors lead to a vertical network distortion of 6-12 mm per meter of PCO error. The network distortion depends on the minimum elevation angle used in the analysis of the GPS phase observables, becoming larger as the minimum elevation angle increases. The steady evolution of the GPS constellation as new satellites are launched, age, and are decommissioned, leads to the effects of PCO errors varying with time that introduce an apparent global-scale rate change. We demonstrate here that current estimates for PCO errors result in a geographically variable error in the vertical rate at the 1-2 mm/yr level, which will impact high-precision crustal deformation studies.

  20. Procedural Error and Task Interruption

    DTIC Science & Technology

    2016-09-30

    red for research on errors and individual differences . Results indicate predictive validity for fluid intelligence and specifi c forms of work...TERMS procedural error, task interruption, individual differences , fluid intelligence, sleep deprivation 16. SECURITY CLASSIFICATION OF: 17...and individual differences . It generates rich data on several kinds of errors, including procedural errors in which steps are skipped or repeated

  1. The Sources of Error in Spanish Writing.

    ERIC Educational Resources Information Center

    Justicia, Fernando; Defior, Sylvia; Pelegrina, Santiago; Martos, Francisco J.

    1999-01-01

    Determines the pattern of errors in Spanish spelling. Analyzes and proposes a classification system for the errors made by children in the initial stages of the acquisition of spelling skills. Finds the diverse forms of only 20 Spanish words produces 36% of the spelling errors in Spanish; and substitution is the most frequent type of error. (RS)

  2. A research of selected textural features for detection of asbestos-cement roofing sheets using orthoimages

    NASA Astrophysics Data System (ADS)

    Książek, Judyta

    2015-10-01

    At present, there has been a great interest in the development of texture based image classification methods in many different areas. This study presents the results of research carried out to assess the usefulness of selected textural features for detection of asbestos-cement roofs in orthophotomap classification. Two different orthophotomaps of southern Poland (with ground resolution: 5 cm and 25 cm) were used. On both orthoimages representative samples for two classes: asbestos-cement roofing sheets and other roofing materials were selected. Estimation of texture analysis usefulness was conducted using machine learning methods based on decision trees (C5.0 algorithm). For this purpose, various sets of texture parameters were calculated in MaZda software. During the calculation of decision trees different numbers of texture parameters groups were considered. In order to obtain the best settings for decision trees models cross-validation was performed. Decision trees models with the lowest mean classification error were selected. The accuracy of the classification was held based on validation data sets, which were not used for the classification learning. For 5 cm ground resolution samples, the lowest mean classification error was 15.6%. The lowest mean classification error in the case of 25 cm ground resolution was 20.0%. The obtained results confirm potential usefulness of the texture parameter image processing for detection of asbestos-cement roofing sheets. In order to improve the accuracy another extended study should be considered in which additional textural features as well as spectral characteristics should be analyzed.

  3. Magnetic Nanoparticle Thermometer: An Investigation of Minimum Error Transmission Path and AC Bias Error

    PubMed Central

    Du, Zhongzhou; Su, Rijian; Liu, Wenzhong; Huang, Zhixing

    2015-01-01

    The signal transmission module of a magnetic nanoparticle thermometer (MNPT) was established in this study to analyze the error sources introduced during the signal flow in the hardware system. The underlying error sources that significantly affected the precision of the MNPT were determined through mathematical modeling and simulation. A transfer module path with the minimum error in the hardware system was then proposed through the analysis of the variations of the system error caused by the significant error sources when the signal flew through the signal transmission module. In addition, a system parameter, named the signal-to-AC bias ratio (i.e., the ratio between the signal and AC bias), was identified as a direct determinant of the precision of the measured temperature. The temperature error was below 0.1 K when the signal-to-AC bias ratio was higher than 80 dB, and other system errors were not considered. The temperature error was below 0.1 K in the experiments with a commercial magnetic fluid (Sample SOR-10, Ocean Nanotechnology, Springdale, AR, USA) when the hardware system of the MNPT was designed with the aforementioned method. PMID:25875188

  4. 41 CFR 105-62.102 - Authority to originally classify.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... originally classify. (a) Top secret, secret, and confidential. The authority to originally classify information as Top Secret, Secret, or Confidential may be exercised only by the Administrator and is delegable... classification authority. Delegations of original classification authority are limited to the minimum number...

  5. 41 CFR 105-62.102 - Authority to originally classify.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... originally classify. (a) Top secret, secret, and confidential. The authority to originally classify information as Top Secret, Secret, or Confidential may be exercised only by the Administrator and is delegable... classification authority. Delegations of original classification authority are limited to the minimum number...

  6. 41 CFR 105-62.102 - Authority to originally classify.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... originally classify. (a) Top secret, secret, and confidential. The authority to originally classify information as Top Secret, Secret, or Confidential may be exercised only by the Administrator and is delegable... classification authority. Delegations of original classification authority are limited to the minimum number...

  7. Pareto-optimal multi-objective dimensionality reduction deep auto-encoder for mammography classification.

    PubMed

    Taghanaki, Saeid Asgari; Kawahara, Jeremy; Miles, Brandon; Hamarneh, Ghassan

    2017-07-01

    Feature reduction is an essential stage in computer aided breast cancer diagnosis systems. Multilayer neural networks can be trained to extract relevant features by encoding high-dimensional data into low-dimensional codes. Optimizing traditional auto-encoders works well only if the initial weights are close to a proper solution. They are also trained to only reduce the mean squared reconstruction error (MRE) between the encoder inputs and the decoder outputs, but do not address the classification error. The goal of the current work is to test the hypothesis that extending traditional auto-encoders (which only minimize reconstruction error) to multi-objective optimization for finding Pareto-optimal solutions provides more discriminative features that will improve classification performance when compared to single-objective and other multi-objective approaches (i.e. scalarized and sequential). In this paper, we introduce a novel multi-objective optimization of deep auto-encoder networks, in which the auto-encoder optimizes two objectives: MRE and mean classification error (MCE) for Pareto-optimal solutions, rather than just MRE. These two objectives are optimized simultaneously by a non-dominated sorting genetic algorithm. We tested our method on 949 X-ray mammograms categorized into 12 classes. The results show that the features identified by the proposed algorithm allow a classification accuracy of up to 98.45%, demonstrating favourable accuracy over the results of state-of-the-art methods reported in the literature. We conclude that adding the classification objective to the traditional auto-encoder objective and optimizing for finding Pareto-optimal solutions, using evolutionary multi-objective optimization, results in producing more discriminative features. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. An Extended Spectral-Spatial Classification Approach for Hyperspectral Data

    NASA Astrophysics Data System (ADS)

    Akbari, D.

    2017-11-01

    In this paper an extended classification approach for hyperspectral imagery based on both spectral and spatial information is proposed. The spatial information is obtained by an enhanced marker-based minimum spanning forest (MSF) algorithm. Three different methods of dimension reduction are first used to obtain the subspace of hyperspectral data: (1) unsupervised feature extraction methods including principal component analysis (PCA), independent component analysis (ICA), and minimum noise fraction (MNF); (2) supervised feature extraction including decision boundary feature extraction (DBFE), discriminate analysis feature extraction (DAFE), and nonparametric weighted feature extraction (NWFE); (3) genetic algorithm (GA). The spectral features obtained are then fed into the enhanced marker-based MSF classification algorithm. In the enhanced MSF algorithm, the markers are extracted from the classification maps obtained by both SVM and watershed segmentation algorithm. To evaluate the proposed approach, the Pavia University hyperspectral data is tested. Experimental results show that the proposed approach using GA achieves an approximately 8 % overall accuracy higher than the original MSF-based algorithm.

  9. A Study of Light Level Effect on the Accuracy of Image Processing-based Tomato Grading

    NASA Astrophysics Data System (ADS)

    Prijatna, D.; Muhaemin, M.; Wulandari, R. P.; Herwanto, T.; Saukat, M.; Sugandi, W. K.

    2018-05-01

    Image processing method has been used in non-destructive tests of agricultural products. Compared to manual method, image processing method may produce more objective and consistent results. Image capturing box installed in currently used tomato grading machine (TEP-4) is equipped with four fluorescence lamps to illuminate the processed tomatoes. Since the performance of any lamp will decrease if its service time has exceeded its lifetime, it is predicted that this will affect tomato classification. The objective of this study was to determine the minimum light levels which affect classification accuracy. This study was conducted by varying light level from minimum and maximum on tomatoes in image capturing boxes and then investigates its effects on image characteristics. Research results showed that light intensity affects two variables which are important for classification, for example, area and color of captured image. Image processing program was able to determine correctly the weight and classification of tomatoes when light level was 30 lx to 140 lx.

  10. Determination of optimum threshold values for EMG time domain features; a multi-dataset investigation

    NASA Astrophysics Data System (ADS)

    Nlandu Kamavuako, Ernest; Scheme, Erik Justin; Englehart, Kevin Brian

    2016-08-01

    Objective. For over two decades, Hudgins’ set of time domain features have extensively been applied for classification of hand motions. The calculation of slope sign change and zero crossing features uses a threshold to attenuate the effect of background noise. However, there is no consensus on the optimum threshold value. In this study, we investigate for the first time the effect of threshold selection on the feature space and classification accuracy using multiple datasets. Approach. In the first part, four datasets were used, and classification error (CE), separability index, scatter matrix separability criterion, and cardinality of the features were used as performance measures. In the second part, data from eight classes were collected during two separate days with two days in between from eight able-bodied subjects. The threshold for each feature was computed as a factor (R = 0:0.01:4) times the average root mean square of data during rest. For each day, we quantified CE for R = 0 (CEr0) and minimum error (CEbest). Moreover, a cross day threshold validation was applied where, for example, CE of day two (CEodt) is computed based on optimum threshold from day one and vice versa. Finally, we quantified the effect of the threshold when using training data from one day and test data of the other. Main results. All performance metrics generally degraded with increasing threshold values. On average, CEbest (5.26 ± 2.42%) was significantly better than CEr0 (7.51 ± 2.41%, P = 0.018), and CEodt (7.50 ± 2.50%, P = 0.021). During the two-fold validation between days, CEbest performed similar to CEr0. Interestingly, when using the threshold values optimized per subject from day one and day two respectively, on the cross-days classification, the performance decreased. Significance. We have demonstrated that threshold value has a strong impact on the feature space and that an optimum threshold can be quantified. However, this optimum threshold is highly data and subject driven and thus do not generalize well. There is a strong evidence that R = 0 provides a good trade-off between system performance and generalization. These findings are important for practical use of pattern recognition based myoelectric control.

  11. Determination of optimum threshold values for EMG time domain features; a multi-dataset investigation.

    PubMed

    Kamavuako, Ernest Nlandu; Scheme, Erik Justin; Englehart, Kevin Brian

    2016-08-01

    For over two decades, Hudgins' set of time domain features have extensively been applied for classification of hand motions. The calculation of slope sign change and zero crossing features uses a threshold to attenuate the effect of background noise. However, there is no consensus on the optimum threshold value. In this study, we investigate for the first time the effect of threshold selection on the feature space and classification accuracy using multiple datasets. In the first part, four datasets were used, and classification error (CE), separability index, scatter matrix separability criterion, and cardinality of the features were used as performance measures. In the second part, data from eight classes were collected during two separate days with two days in between from eight able-bodied subjects. The threshold for each feature was computed as a factor (R = 0:0.01:4) times the average root mean square of data during rest. For each day, we quantified CE for R = 0 (CEr0) and minimum error (CEbest). Moreover, a cross day threshold validation was applied where, for example, CE of day two (CEodt) is computed based on optimum threshold from day one and vice versa. Finally, we quantified the effect of the threshold when using training data from one day and test data of the other. All performance metrics generally degraded with increasing threshold values. On average, CEbest (5.26 ± 2.42%) was significantly better than CEr0 (7.51 ± 2.41%, P = 0.018), and CEodt (7.50 ± 2.50%, P = 0.021). During the two-fold validation between days, CEbest performed similar to CEr0. Interestingly, when using the threshold values optimized per subject from day one and day two respectively, on the cross-days classification, the performance decreased. We have demonstrated that threshold value has a strong impact on the feature space and that an optimum threshold can be quantified. However, this optimum threshold is highly data and subject driven and thus do not generalize well. There is a strong evidence that R = 0 provides a good trade-off between system performance and generalization. These findings are important for practical use of pattern recognition based myoelectric control.

  12. LDPC Codes with Minimum Distance Proportional to Block Size

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel; Thorpe, Jeremy

    2009-01-01

    Low-density parity-check (LDPC) codes characterized by minimum Hamming distances proportional to block sizes have been demonstrated. Like the codes mentioned in the immediately preceding article, the present codes are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. The previously mentioned codes have low decoding thresholds and reasonably low error floors. However, the minimum Hamming distances of those codes do not grow linearly with code-block sizes. Codes that have this minimum-distance property exhibit very low error floors. Examples of such codes include regular LDPC codes with variable degrees of at least 3. Unfortunately, the decoding thresholds of regular LDPC codes are high. Hence, there is a need for LDPC codes characterized by both low decoding thresholds and, in order to obtain acceptably low error floors, minimum Hamming distances that are proportional to code-block sizes. The present codes were developed to satisfy this need. The minimum Hamming distances of the present codes have been shown, through consideration of ensemble-average weight enumerators, to be proportional to code block sizes. As in the cases of irregular ensembles, the properties of these codes are sensitive to the proportion of degree-2 variable nodes. A code having too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code having too many such nodes tends not to exhibit a minimum distance that is proportional to block size. Results of computational simulations have shown that the decoding thresholds of codes of the present type are lower than those of regular LDPC codes. Included in the simulations were a few examples from a family of codes characterized by rates ranging from low to high and by thresholds that adhere closely to their respective channel capacity thresholds; the simulation results from these examples showed that the codes in question have low error floors as well as low decoding thresholds. As an example, the illustration shows the protograph (which represents the blueprint for overall construction) of one proposed code family for code rates greater than or equal to 1.2. Any size LDPC code can be obtained by copying the protograph structure N times, then permuting the edges. The illustration also provides Field Programmable Gate Array (FPGA) hardware performance simulations for this code family. In addition, the illustration provides minimum signal-to-noise ratios (Eb/No) in decibels (decoding thresholds) to achieve zero error rates as the code block size goes to infinity for various code rates. In comparison with the codes mentioned in the preceding article, these codes have slightly higher decoding thresholds.

  13. Wildlife management by habitat units: A preliminary plan of action

    NASA Technical Reports Server (NTRS)

    Frentress, C. D.; Frye, R. G.

    1975-01-01

    Procedures for yielding vegetation type maps were developed using LANDSAT data and a computer assisted classification analysis (LARSYS) to assist in managing populations of wildlife species by defined area units. Ground cover in Travis County, Texas was classified on two occasions using a modified version of the unsupervised approach to classification. The first classification produced a total of 17 classes. Examination revealed that further grouping was justified. A second analysis produced 10 classes which were displayed on printouts which were later color-coded. The final classification was 82 percent accurate. While the classification map appeared to satisfactorily depict the existing vegetation, two classes were determined to contain significant error. The major sources of error could have been eliminated by stratifying cluster sites more closely among previously mapped soil associations that are identified with particular plant associations and by precisely defining class nomenclature using established criteria early in the analysis.

  14. The effect of lossy image compression on image classification

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1995-01-01

    We have classified four different images, under various levels of JPEG compression, using the following classification algorithms: minimum-distance, maximum-likelihood, and neural network. The training site accuracy and percent difference from the original classification were tabulated for each image compression level, with maximum-likelihood showing the poorest results. In general, as compression ratio increased, the classification retained its overall appearance, but much of the pixel-to-pixel detail was eliminated. We also examined the effect of compression on spatial pattern detection using a neural network.

  15. Image-adapted visually weighted quantization matrices for digital image compression

    NASA Technical Reports Server (NTRS)

    Watson, Andrew B. (Inventor)

    1994-01-01

    A method for performing image compression that eliminates redundant and invisible image components is presented. The image compression uses a Discrete Cosine Transform (DCT) and each DCT coefficient yielded by the transform is quantized by an entry in a quantization matrix which determines the perceived image quality and the bit rate of the image being compressed. The present invention adapts or customizes the quantization matrix to the image being compressed. The quantization matrix comprises visual masking by luminance and contrast techniques and by an error pooling technique all resulting in a minimum perceptual error for any given bit rate, or minimum bit rate for a given perceptual error.

  16. The Relationship between Occurrence Timing of Dispensing Errors and Subsequent Danger to Patients under the Situation According to the Classification of Drugs by Efficacy.

    PubMed

    Tsuji, Toshikazu; Nagata, Kenichiro; Kawashiri, Takehiro; Yamada, Takaaki; Irisa, Toshihiro; Murakami, Yuko; Kanaya, Akiko; Egashira, Nobuaki; Masuda, Satohiro

    2016-01-01

    There are many reports regarding various medical institutions' attempts at the prevention of dispensing errors. However, the relationship between occurrence timing of dispensing errors and subsequent danger to patients has not been studied under the situation according to the classification of drugs by efficacy. Therefore, we analyzed the relationship between position and time regarding the occurrence of dispensing errors. Furthermore, we investigated the relationship between occurrence timing of them and danger to patients. In this study, dispensing errors and incidents in three categories (drug name errors, drug strength errors, drug count errors) were classified into two groups in terms of its drug efficacy (efficacy similarity (-) group, efficacy similarity (+) group), into three classes in terms of the occurrence timing of dispensing errors (initial phase errors, middle phase errors, final phase errors). Then, the rates of damage shifting from "dispensing errors" to "damage to patients" were compared as an index of danger between two groups and among three classes. Consequently, the rate of damage in "efficacy similarity (-) group" was significantly higher than that in "efficacy similarity (+) group". Furthermore, the rate of damage is the highest in "initial phase errors", the lowest in "final phase errors" among three classes. From the results of this study, it became clear that the earlier the timing of dispensing errors occurs, the more severe the damage to patients becomes.

  17. Minimum Error Bounded Efficient L1 Tracker with Occlusion Detection (PREPRINT)

    DTIC Science & Technology

    2011-01-01

    Minimum Error Bounded Efficient `1 Tracker with Occlusion Detection Xue Mei\\ ∗ Haibin Ling† Yi Wu†[ Erik Blasch‡ Li Bai] \\Assembly Test Technology...proposed BPR-L1 tracker is tested on several challenging benchmark sequences involving chal- lenges such as occlusion and illumination changes. In all...point method de - pends on the value of the regularization parameter λ. In the experiments, we found that the total number of PCG is a few hundred. The

  18. Evaluation of alternative model selection criteria in the analysis of unimodal response curves using CART

    USGS Publications Warehouse

    Ribic, C.A.; Miller, T.W.

    1998-01-01

    We investigated CART performance with a unimodal response curve for one continuous response and four continuous explanatory variables, where two variables were important (ie directly related to the response) and the other two were not. We explored performance under three relationship strengths and two explanatory variable conditions: equal importance and one variable four times as important as the other. We compared CART variable selection performance using three tree-selection rules ('minimum risk', 'minimum risk complexity', 'one standard error') to stepwise polynomial ordinary least squares (OLS) under four sample size conditions. The one-standard-error and minimum-risk-complexity methods performed about as well as stepwise OLS with large sample sizes when the relationship was strong. With weaker relationships, equally important explanatory variables and larger sample sizes, the one-standard-error and minimum-risk-complexity rules performed better than stepwise OLS. With weaker relationships and explanatory variables of unequal importance, tree-structured methods did not perform as well as stepwise OLS. Comparing performance within tree-structured methods, with a strong relationship and equally important explanatory variables, the one-standard-error-rule was more likely to choose the correct model than were the other tree-selection rules 1) with weaker relationships and equally important explanatory variables; and 2) under all relationship strengths when explanatory variables were of unequal importance and sample sizes were lower.

  19. Classification Model for Forest Fire Hotspot Occurrences Prediction Using ANFIS Algorithm

    NASA Astrophysics Data System (ADS)

    Wijayanto, A. K.; Sani, O.; Kartika, N. D.; Herdiyeni, Y.

    2017-01-01

    This study proposed the application of data mining technique namely Adaptive Neuro-Fuzzy inference system (ANFIS) on forest fires hotspot data to develop classification models for hotspots occurrence in Central Kalimantan. Hotspot is a point that is indicated as the location of fires. In this study, hotspot distribution is categorized as true alarm and false alarm. ANFIS is a soft computing method in which a given inputoutput data set is expressed in a fuzzy inference system (FIS). The FIS implements a nonlinear mapping from its input space to the output space. The method of this study classified hotspots as target objects by correlating spatial attributes data using three folds in ANFIS algorithm to obtain the best model. The best result obtained from the 3rd fold provided low error for training (error = 0.0093676) and also low error testing result (error = 0.0093676). Attribute of distance to road is the most determining factor that influences the probability of true and false alarm where the level of human activities in this attribute is higher. This classification model can be used to develop early warning system of forest fire.

  20. AN EXPERIMENTAL ASSESSMENT OF MINIMUM MAPPING UNIT SIZE

    EPA Science Inventory

    Land-cover (LC) maps derived from remotely sensed data are often presented using a minimum mapping unit (MMU). The choice of a MMU that is appropriate for the projected use of a classification is important. The objective of this experiment was to determine the optimal MMU of a L...

  1. Classification based upon gene expression data: bias and precision of error rates.

    PubMed

    Wood, Ian A; Visscher, Peter M; Mengersen, Kerrie L

    2007-06-01

    Gene expression data offer a large number of potentially useful predictors for the classification of tissue samples into classes, such as diseased and non-diseased. The predictive error rate of classifiers can be estimated using methods such as cross-validation. We have investigated issues of interpretation and potential bias in the reporting of error rate estimates. The issues considered here are optimization and selection biases, sampling effects, measures of misclassification rate, baseline error rates, two-level external cross-validation and a novel proposal for detection of bias using the permutation mean. Reporting an optimal estimated error rate incurs an optimization bias. Downward bias of 3-5% was found in an existing study of classification based on gene expression data and may be endemic in similar studies. Using a simulated non-informative dataset and two example datasets from existing studies, we show how bias can be detected through the use of label permutations and avoided using two-level external cross-validation. Some studies avoid optimization bias by using single-level cross-validation and a test set, but error rates can be more accurately estimated via two-level cross-validation. In addition to estimating the simple overall error rate, we recommend reporting class error rates plus where possible the conditional risk incorporating prior class probabilities and a misclassification cost matrix. We also describe baseline error rates derived from three trivial classifiers which ignore the predictors. R code which implements two-level external cross-validation with the PAMR package, experiment code, dataset details and additional figures are freely available for non-commercial use from http://www.maths.qut.edu.au/profiles/wood/permr.jsp

  2. LACIE performance predictor FOC users manual

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The LACIE Performance Predictor (LPP) is a computer simulation of the LACIE process for predicting worldwide wheat production. The simulation provides for the introduction of various errors into the system and provides estimates based on these errors, thus allowing the user to determine the impact of selected error sources. The FOC LPP simulates the acquisition of the sample segment data by the LANDSAT Satellite (DAPTS), the classification of the agricultural area within the sample segment (CAMS), the estimation of the wheat yield (YES), and the production estimation and aggregation (CAS). These elements include data acquisition characteristics, environmental conditions, classification algorithms, the LACIE aggregation and data adjustment procedures. The operational structure for simulating these elements consists of the following key programs: (1) LACIE Utility Maintenance Process, (2) System Error Executive, (3) Ephemeris Generator, (4) Access Generator, (5) Acquisition Selector, (6) LACIE Error Model (LEM), and (7) Post Processor.

  3. Sensitivity of geographic information system outputs to errors in remotely sensed data

    NASA Technical Reports Server (NTRS)

    Ramapriyan, H. K.; Boyd, R. K.; Gunther, F. J.; Lu, Y. C.

    1981-01-01

    The sensitivity of the outputs of a geographic information system (GIS) to errors in inputs derived from remotely sensed data (RSD) is investigated using a suitability model with per-cell decisions and a gridded geographic data base whose cells are larger than the RSD pixels. The process of preparing RSD as input to a GIS is analyzed, and the errors associated with classification and registration are examined. In the case of the model considered, it is found that the errors caused during classification and registration are partially compensated by the aggregation of pixels. The compensation is quantified by means of an analytical model, a Monte Carlo simulation, and experiments with Landsat data. The results show that error reductions of the order of 50% occur because of aggregation when 25 pixels of RSD are used per cell in the geographic data base.

  4. Analysis of the relationship between the monthly temperatures and weather types in Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Peña Angulo, Dhais; Trigo, Ricardo; Nicola, Cortesi; José Carlos, González-Hidalgo

    2016-04-01

    In this study, the relationship between the atmospheric circulation and weather types and the monthly average maximum and minimum temperatures in the Iberian Peninsula is modeled (period 1950-2010). The temperature data used were obtained from a high spatial resolution (10km x 10km) dataset (MOTEDAS dataset, Gonzalez-Hidalgo et al., 2015a). In addition, a dataset of Portuguese temperatures was used (obtained from the Portuguese Institute of Sea and Atmosphere). The weather type classification used was the one developed by Jenkinson and Collison, which was adapted for the Iberian Peninsula by Trigo and DaCamara (2000), using Sea Level Pressure data from NCAR/NCEP Reanalysis dataset (period 1951-2010). The analysis of the behaviour of monthly temperatures based on the weather types was carried out using a stepwise regression procedure of type forward to estimate temperatures in each cell of the considered grid, for each month, and for both maximum and minimum monthly average temperatures. The model selects the weather types that best estimate the temperatures. From the validation model it was obtained the error distribution in the time (months) and space (Iberian Peninsula). The results show that best estimations are obtained for minimum temperatures, during the winter months and in coastal areas. González-Hidalgo J.C., Peña-Angulo D., Brunetti M., Cortesi, C. (2015a): MOTEDAS: a new monthly temperature database for mainland Spain and the trend in temperature (1951-2010). International Journal of Climatology 31, 715-731. DOI: 10.1002/joc.4298

  5. Error Analysis in Composition of Iranian Lower Intermediate Students

    ERIC Educational Resources Information Center

    Taghavi, Mehdi

    2012-01-01

    Learners make errors during the process of learning languages. This study examines errors in writing task of twenty Iranian lower intermediate male students aged between 13 and 15. A subject was given to the participants was a composition about the seasons of a year. All of the errors were identified and classified. Corder's classification (1967)…

  6. Stitching-error reduction in gratings by shot-shifted electron-beam lithography

    NASA Technical Reports Server (NTRS)

    Dougherty, D. J.; Muller, R. E.; Maker, P. D.; Forouhar, S.

    2001-01-01

    Calculations of the grating spatial-frequency spectrum and the filtering properties of multiple-pass electron-beam writing demonstrate a tradeoff between stitching-error suppression and minimum pitch separation. High-resolution measurements of optical-diffraction patterns show a 25-dB reduction in stitching-error side modes.

  7. Modeling Multiplicative Error Variance: An Example Predicting Tree Diameter from Stump Dimensions in Baldcypress

    Treesearch

    Bernard R. Parresol

    1993-01-01

    In the context of forest modeling, it is often reasonable to assume a multiplicative heteroscedastic error structure to the data. Under such circumstances ordinary least squares no longer provides minimum variance estimates of the model parameters. Through study of the error structure, a suitable error variance model can be specified and its parameters estimated. This...

  8. Invariance of the bit error rate in the ancilla-assisted homodyne detection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoshida, Yuhsuke; Takeoka, Masahiro; Sasaki, Masahide

    2010-11-15

    We investigate the minimum achievable bit error rate of the discrimination of binary coherent states with the help of arbitrary ancillary states. We adopt homodyne measurement with a common phase of the local oscillator and classical feedforward control. After one ancillary state is measured, its outcome is referred to the preparation of the next ancillary state and the tuning of the next mixing with the signal. It is shown that the minimum bit error rate of the system is invariant under the following operations: feedforward control, deformations, and introduction of any ancillary state. We also discuss the possible generalization ofmore » the homodyne detection scheme.« less

  9. Combining multiple decisions: applications to bioinformatics

    NASA Astrophysics Data System (ADS)

    Yukinawa, N.; Takenouchi, T.; Oba, S.; Ishii, S.

    2008-01-01

    Multi-class classification is one of the fundamental tasks in bioinformatics and typically arises in cancer diagnosis studies by gene expression profiling. This article reviews two recent approaches to multi-class classification by combining multiple binary classifiers, which are formulated based on a unified framework of error-correcting output coding (ECOC). The first approach is to construct a multi-class classifier in which each binary classifier to be aggregated has a weight value to be optimally tuned based on the observed data. In the second approach, misclassification of each binary classifier is formulated as a bit inversion error with a probabilistic model by making an analogy to the context of information transmission theory. Experimental studies using various real-world datasets including cancer classification problems reveal that both of the new methods are superior or comparable to other multi-class classification methods.

  10. Credit Risk Evaluation Using a C-Variable Least Squares Support Vector Classification Model

    NASA Astrophysics Data System (ADS)

    Yu, Lean; Wang, Shouyang; Lai, K. K.

    Credit risk evaluation is one of the most important issues in financial risk management. In this paper, a C-variable least squares support vector classification (C-VLSSVC) model is proposed for credit risk analysis. The main idea of this model is based on the prior knowledge that different classes may have different importance for modeling and more weights should be given to those classes with more importance. The C-VLSSVC model can be constructed by a simple modification of the regularization parameter in LSSVC, whereby more weights are given to the lease squares classification errors with important classes than the lease squares classification errors with unimportant classes while keeping the regularized terms in its original form. For illustration purpose, a real-world credit dataset is used to test the effectiveness of the C-VLSSVC model.

  11. Feature extraction and classification algorithms for high dimensional data

    NASA Technical Reports Server (NTRS)

    Lee, Chulhee; Landgrebe, David

    1993-01-01

    Feature extraction and classification algorithms for high dimensional data are investigated. Developments with regard to sensors for Earth observation are moving in the direction of providing much higher dimensional multispectral imagery than is now possible. In analyzing such high dimensional data, processing time becomes an important factor. With large increases in dimensionality and the number of classes, processing time will increase significantly. To address this problem, a multistage classification scheme is proposed which reduces the processing time substantially by eliminating unlikely classes from further consideration at each stage. Several truncation criteria are developed and the relationship between thresholds and the error caused by the truncation is investigated. Next an approach to feature extraction for classification is proposed based directly on the decision boundaries. It is shown that all the features needed for classification can be extracted from decision boundaries. A characteristic of the proposed method arises by noting that only a portion of the decision boundary is effective in discriminating between classes, and the concept of the effective decision boundary is introduced. The proposed feature extraction algorithm has several desirable properties: it predicts the minimum number of features necessary to achieve the same classification accuracy as in the original space for a given pattern recognition problem; and it finds the necessary feature vectors. The proposed algorithm does not deteriorate under the circumstances of equal means or equal covariances as some previous algorithms do. In addition, the decision boundary feature extraction algorithm can be used both for parametric and non-parametric classifiers. Finally, some problems encountered in analyzing high dimensional data are studied and possible solutions are proposed. First, the increased importance of the second order statistics in analyzing high dimensional data is recognized. By investigating the characteristics of high dimensional data, the reason why the second order statistics must be taken into account in high dimensional data is suggested. Recognizing the importance of the second order statistics, there is a need to represent the second order statistics. A method to visualize statistics using a color code is proposed. By representing statistics using color coding, one can easily extract and compare the first and the second statistics.

  12. Effective Diagnosis of Alzheimer's Disease by Means of Association Rules

    NASA Astrophysics Data System (ADS)

    Chaves, R.; Ramírez, J.; Górriz, J. M.; López, M.; Salas-Gonzalez, D.; Illán, I.; Segovia, F.; Padilla, P.

    In this paper we present a novel classification method of SPECT images for the early diagnosis of the Alzheimer's disease (AD). The proposed method is based on Association Rules (ARs) aiming to discover interesting associations between attributes contained in the database. The system uses firstly voxel-as-features (VAF) and Activation Estimation (AE) to find tridimensional activated brain regions of interest (ROIs) for each patient. These ROIs act as inputs to secondly mining ARs between activated blocks for controls, with a specified minimum support and minimum confidence. ARs are mined in supervised mode, using information previously extracted from the most discriminant rules for centering interest in the relevant brain areas, reducing the computational requirement of the system. Finally classification process is performed depending on the number of previously mined rules verified by each subject, yielding an up to 95.87% classification accuracy, thus outperforming recent developed methods for AD diagnosis.

  13. Exception handling for sensor fusion

    NASA Astrophysics Data System (ADS)

    Chavez, G. T.; Murphy, Robin R.

    1993-08-01

    This paper presents a control scheme for handling sensing failures (sensor malfunctions, significant degradations in performance due to changes in the environment, and errant expectations) in sensor fusion for autonomous mobile robots. The advantages of the exception handling mechanism are that it emphasizes a fast response to sensing failures, is able to use only a partial causal model of sensing failure, and leads to a graceful degradation of sensing if the sensing failure cannot be compensated for. The exception handling mechanism consists of two modules: error classification and error recovery. The error classification module in the exception handler attempts to classify the type and source(s) of the error using a modified generate-and-test procedure. If the source of the error is isolated, the error recovery module examines its cache of recovery schemes, which either repair or replace the current sensing configuration. If the failure is due to an error in expectation or cannot be identified, the planner is alerted. Experiments using actual sensor data collected by the CSM Mobile Robotics/Machine Perception Laboratory's Denning mobile robot demonstrate the operation of the exception handling mechanism.

  14. Using beta binomials to estimate classification uncertainty for ensemble models.

    PubMed

    Clark, Robert D; Liang, Wenkel; Lee, Adam C; Lawless, Michael S; Fraczkiewicz, Robert; Waldman, Marvin

    2014-01-01

    Quantitative structure-activity (QSAR) models have enormous potential for reducing drug discovery and development costs as well as the need for animal testing. Great strides have been made in estimating their overall reliability, but to fully realize that potential, researchers and regulators need to know how confident they can be in individual predictions. Submodels in an ensemble model which have been trained on different subsets of a shared training pool represent multiple samples of the model space, and the degree of agreement among them contains information on the reliability of ensemble predictions. For artificial neural network ensembles (ANNEs) using two different methods for determining ensemble classification - one using vote tallies and the other averaging individual network outputs - we have found that the distribution of predictions across positive vote tallies can be reasonably well-modeled as a beta binomial distribution, as can the distribution of errors. Together, these two distributions can be used to estimate the probability that a given predictive classification will be in error. Large data sets comprised of logP, Ames mutagenicity, and CYP2D6 inhibition data are used to illustrate and validate the method. The distributions of predictions and errors for the training pool accurately predicted the distribution of predictions and errors for large external validation sets, even when the number of positive and negative examples in the training pool were not balanced. Moreover, the likelihood of a given compound being prospectively misclassified as a function of the degree of consensus between networks in the ensemble could in most cases be estimated accurately from the fitted beta binomial distributions for the training pool. Confidence in an individual predictive classification by an ensemble model can be accurately assessed by examining the distributions of predictions and errors as a function of the degree of agreement among the constituent submodels. Further, ensemble uncertainty estimation can often be improved by adjusting the voting or classification threshold based on the parameters of the error distribution. Finally, the profiles for models whose predictive uncertainty estimates are not reliable provide clues to that effect without the need for comparison to an external test set.

  15. Statistical analysis of nonlinearly reconstructed near-infrared tomographic images: Part I--Theory and simulations.

    PubMed

    Pogue, Brian W; Song, Xiaomei; Tosteson, Tor D; McBride, Troy O; Jiang, Shudong; Paulsen, Keith D

    2002-07-01

    Near-infrared (NIR) diffuse tomography is an emerging method for imaging the interior of tissues to quantify concentrations of hemoglobin and exogenous chromophores non-invasively in vivo. It often exploits an optical diffusion model-based image reconstruction algorithm to estimate spatial property values from measurements of the light flux at the surface of the tissue. In this study, mean-squared error (MSE) over the image is used to evaluate methods for regularizing the ill-posed inverse image reconstruction problem in NIR tomography. Estimates of image bias and image standard deviation were calculated based upon 100 repeated reconstructions of a test image with randomly distributed noise added to the light flux measurements. It was observed that the bias error dominates at high regularization parameter values while variance dominates as the algorithm is allowed to approach the optimal solution. This optimum does not necessarily correspond to the minimum projection error solution, but typically requires further iteration with a decreasing regularization parameter to reach the lowest image error. Increasing measurement noise causes a need to constrain the minimum regularization parameter to higher values in order to achieve a minimum in the overall image MSE.

  16. Contextual Advantage for State Discrimination

    NASA Astrophysics Data System (ADS)

    Schmid, David; Spekkens, Robert W.

    2018-02-01

    Finding quantitative aspects of quantum phenomena which cannot be explained by any classical model has foundational importance for understanding the boundary between classical and quantum theory. It also has practical significance for identifying information processing tasks for which those phenomena provide a quantum advantage. Using the framework of generalized noncontextuality as our notion of classicality, we find one such nonclassical feature within the phenomenology of quantum minimum-error state discrimination. Namely, we identify quantitative limits on the success probability for minimum-error state discrimination in any experiment described by a noncontextual ontological model. These constraints constitute noncontextuality inequalities that are violated by quantum theory, and this violation implies a quantum advantage for state discrimination relative to noncontextual models. Furthermore, our noncontextuality inequalities are robust to noise and are operationally formulated, so that any experimental violation of the inequalities is a witness of contextuality, independently of the validity of quantum theory. Along the way, we introduce new methods for analyzing noncontextuality scenarios and demonstrate a tight connection between our minimum-error state discrimination scenario and a Bell scenario.

  17. 29 CFR 510.23 - Agricultural activities eligible for minimum wage phase-in.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Agricultural activities eligible for minimum wage phase-in. 510.23 Section 510.23 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION... FAIR LABOR STANDARDS ACT IN PUERTO RICO Classification of Industries § 510.23 Agricultural activities...

  18. 33 CFR 164.74 - Towline and terminal gear for towing astern.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of a record of the towline's initial minimum breaking strength as determined by the manufacturer, by a classification (“class”) society authorized in § 157.04 of this chapter, or by a tensile test that... the towline's minimum breaking strength as determined by a class society authorized in § 157.04 of...

  19. 33 CFR 164.74 - Towline and terminal gear for towing astern.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of a record of the towline's initial minimum breaking strength as determined by the manufacturer, by a classification (“class”) society authorized in § 157.04 of this chapter, or by a tensile test that... the towline's minimum breaking strength as determined by a class society authorized in § 157.04 of...

  20. Rank preserving sparse learning for Kinect based scene classification.

    PubMed

    Tao, Dapeng; Jin, Lianwen; Yang, Zhao; Li, Xuelong

    2013-10-01

    With the rapid development of the RGB-D sensors and the promptly growing population of the low-cost Microsoft Kinect sensor, scene classification, which is a hard, yet important, problem in computer vision, has gained a resurgence of interest recently. That is because the depth of information provided by the Kinect sensor opens an effective and innovative way for scene classification. In this paper, we propose a new scheme for scene classification, which applies locality-constrained linear coding (LLC) to local SIFT features for representing the RGB-D samples and classifies scenes through the cooperation between a new rank preserving sparse learning (RPSL) based dimension reduction and a simple classification method. RPSL considers four aspects: 1) it preserves the rank order information of the within-class samples in a local patch; 2) it maximizes the margin between the between-class samples on the local patch; 3) the L1-norm penalty is introduced to obtain the parsimony property; and 4) it models the classification error minimization by utilizing the least-squares error minimization. Experiments are conducted on the NYU Depth V1 dataset and demonstrate the robustness and effectiveness of RPSL for scene classification.

  1. Comparison of two Classification methods (MLC and SVM) to extract land use and land cover in Johor Malaysia

    NASA Astrophysics Data System (ADS)

    Rokni Deilmai, B.; Ahmad, B. Bin; Zabihi, H.

    2014-06-01

    Mapping is essential for the analysis of the land use and land cover, which influence many environmental processes and properties. For the purpose of the creation of land cover maps, it is important to minimize error. These errors will propagate into later analyses based on these land cover maps. The reliability of land cover maps derived from remotely sensed data depends on an accurate classification. In this study, we have analyzed multispectral data using two different classifiers including Maximum Likelihood Classifier (MLC) and Support Vector Machine (SVM). To pursue this aim, Landsat Thematic Mapper data and identical field-based training sample datasets in Johor Malaysia used for each classification method, which results indicate in five land cover classes forest, oil palm, urban area, water, rubber. Classification results indicate that SVM was more accurate than MLC. With demonstrated capability to produce reliable cover results, the SVM methods should be especially useful for land cover classification.

  2. 12 CFR 1229.2 - Determination of a Bank's capital classification.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Determination of a Bank's capital classification. 1229.2 Section 1229.2 Banks and Banking FEDERAL HOUSING FINANCE AGENCY ENTITY REGULATIONS CAPITAL... than the minimum required under this paragraph or make a determination for one or more Banks without...

  3. Multiple Signal Classification for Determining Direction of Arrival of Frequency Hopping Spread Spectrum Signals

    DTIC Science & Technology

    2014-03-27

    42 4.2.3 Number of Hops Hs . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.2.4 Number of Sensors M... 45 4.5 Standard deviation vs. Ns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.6 Bias...laboratory MTM multiple taper method MUSIC multiple signal classification MVDR minimum variance distortionless reposnse PSK phase shift keying QAM

  4. Gender classification in children based on speech characteristics: using fundamental and formant frequencies of Malay vowels.

    PubMed

    Zourmand, Alireza; Ting, Hua-Nong; Mirhassani, Seyed Mostafa

    2013-03-01

    Speech is one of the prevalent communication mediums for humans. Identifying the gender of a child speaker based on his/her speech is crucial in telecommunication and speech therapy. This article investigates the use of fundamental and formant frequencies from sustained vowel phonation to distinguish the gender of Malay children aged between 7 and 12 years. The Euclidean minimum distance and multilayer perceptron were used to classify the gender of 360 Malay children based on different combinations of fundamental and formant frequencies (F0, F1, F2, and F3). The Euclidean minimum distance with normalized frequency data achieved a classification accuracy of 79.44%, which was higher than that of the nonnormalized frequency data. Age-dependent modeling was used to improve the accuracy of gender classification. The Euclidean distance method obtained 84.17% based on the optimal classification accuracy for all age groups. The accuracy was further increased to 99.81% using multilayer perceptron based on mel-frequency cepstral coefficients. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  5. On the Discriminant Analysis in the 2-Populations Case

    NASA Astrophysics Data System (ADS)

    Rublík, František

    2008-01-01

    The empirical Bayes Gaussian rule, which in the normal case yields good values of the probability of total error, may yield high values of the maximum probability error. From this point of view the presented modified version of the classification rule of Broffitt, Randles and Hogg appears to be superior. The modification included in this paper is termed as a WR method, and the choice of its weights is discussed. The mentioned methods are also compared with the K nearest neighbours classification rule.

  6. A classification of errors in lay comprehension of medical documents.

    PubMed

    Keselman, Alla; Smith, Catherine Arnott

    2012-12-01

    Emphasis on participatory medicine requires that patients and consumers participate in tasks traditionally reserved for healthcare providers. This includes reading and comprehending medical documents, often but not necessarily in the context of interacting with Personal Health Records (PHRs). Research suggests that while giving patients access to medical documents has many benefits (e.g., improved patient-provider communication), lay people often have difficulty understanding medical information. Informatics can address the problem by developing tools that support comprehension; this requires in-depth understanding of the nature and causes of errors that lay people make when comprehending clinical documents. The objective of this study was to develop a classification scheme of comprehension errors, based on lay individuals' retellings of two documents containing clinical text: a description of a clinical trial and a typical office visit note. While not comprehensive, the scheme can serve as a foundation of further development of a taxonomy of patients' comprehension errors. Eighty participants, all healthy volunteers, read and retold two medical documents. A data-driven content analysis procedure was used to extract and classify retelling errors. The resulting hierarchical classification scheme contains nine categories and 23 subcategories. The most common error made by the participants involved incorrectly recalling brand names of medications. Other common errors included misunderstanding clinical concepts, misreporting the objective of a clinical research study and physician's findings during a patient's visit, and confusing and misspelling clinical terms. A combination of informatics support and health education is likely to improve the accuracy of lay comprehension of medical documents. Published by Elsevier Inc.

  7. An extension of the receiver operating characteristic curve and AUC-optimal classification.

    PubMed

    Takenouchi, Takashi; Komori, Osamu; Eguchi, Shinto

    2012-10-01

    While most proposed methods for solving classification problems focus on minimization of the classification error rate, we are interested in the receiver operating characteristic (ROC) curve, which provides more information about classification performance than the error rate does. The area under the ROC curve (AUC) is a natural measure for overall assessment of a classifier based on the ROC curve. We discuss a class of concave functions for AUC maximization in which a boosting-type algorithm including RankBoost is considered, and the Bayesian risk consistency and the lower bound of the optimum function are discussed. A procedure derived by maximizing a specific optimum function has high robustness, based on gross error sensitivity. Additionally, we focus on the partial AUC, which is the partial area under the ROC curve. For example, in medical screening, a high true-positive rate to the fixed lower false-positive rate is preferable and thus the partial AUC corresponding to lower false-positive rates is much more important than the remaining AUC. We extend the class of concave optimum functions for partial AUC optimality with the boosting algorithm. We investigated the validity of the proposed method through several experiments with data sets in the UCI repository.

  8. Radial orbit error reduction and sea surface topography determination using satellite altimetry

    NASA Technical Reports Server (NTRS)

    Engelis, Theodossios

    1987-01-01

    A method is presented in satellite altimetry that attempts to simultaneously determine the geoid and sea surface topography with minimum wavelengths of about 500 km and to reduce the radial orbit error caused by geopotential errors. The modeling of the radial orbit error is made using the linearized Lagrangian perturbation theory. Secular and second order effects are also included. After a rather extensive validation of the linearized equations, alternative expressions of the radial orbit error are derived. Numerical estimates for the radial orbit error and geoid undulation error are computed using the differences of two geopotential models as potential coefficient errors, for a SEASAT orbit. To provide statistical estimates of the radial distances and the geoid, a covariance propagation is made based on the full geopotential covariance. Accuracy estimates for the SEASAT orbits are given which agree quite well with already published results. Observation equations are develped using sea surface heights and crossover discrepancies as observables. A minimum variance solution with prior information provides estimates of parameters representing the sea surface topography and corrections to the gravity field that is used for the orbit generation. The simulation results show that the method can be used to effectively reduce the radial orbit error and recover the sea surface topography.

  9. Force and Directional Force Modulation Effects on Accuracy and Variability in Low-Level Pinch Force Tracking.

    PubMed

    Park, Sangsoo; Spirduso, Waneen; Eakin, Tim; Abraham, Lawrence

    2018-01-01

    The authors investigated how varying the required low-level forces and the direction of force change affect accuracy and variability of force production in a cyclic isometric pinch force tracking task. Eighteen healthy right-handed adult volunteers performed the tracking task over 3 different force ranges. Root mean square error and coefficient of variation were higher at lower force levels and during minimum reversals compared with maximum reversals. Overall, the thumb showed greater root mean square error and coefficient of variation scores than did the index finger during maximum reversals, but not during minimum reversals. The observed impaired performance during minimum reversals might originate from history-dependent mechanisms of force production and highly coupled 2-digit performance.

  10. Validation of the Kp Geomagnetic Index Forecast at CCMC

    NASA Astrophysics Data System (ADS)

    Frechette, B. P.; Mays, M. L.

    2017-12-01

    The Community Coordinated Modeling Center (CCMC) Space Weather Research Center (SWRC) sub-team provides space weather services to NASA robotic mission operators and science campaigns and prototypes new models, forecasting techniques, and procedures. The Kp index is a measure of geomagnetic disturbances for space weather in the magnetosphere such as geomagnetic storms and substorms. In this study, we performed validation on the Newell et al. (2007) Kp prediction equation from December 2010 to July 2017. The purpose of this research is to understand the Kp forecast performance because it's critical for NASA missions to have confidence in the space weather forecast. This research was done by computing the Kp error for each forecast (average, minimum, maximum) and each synoptic period. Then to quantify forecast performance we computed the mean error, mean absolute error, root mean square error, multiplicative bias and correlation coefficient. A contingency table was made for each forecast and skill scores were computed. The results are compared to the perfect score and reference forecast skill score. In conclusion, the skill score and error results show that the minimum of the predicted Kp over each synoptic period from the Newell et al. (2007) Kp prediction equation performed better than the maximum or average of the prediction. However, persistence (reference forecast) outperformed all of the Kp forecasts (minimum, maximum, and average). Overall, the Newell Kp prediction still predicts within a range of 1, even though persistence beats it.

  11. Review of medication errors that are new or likely to occur more frequently with electronic medication management systems.

    PubMed

    Van de Vreede, Melita; McGrath, Anne; de Clifford, Jan

    2018-05-14

    Objective. The aim of the present study was to identify and quantify medication errors reportedly related to electronic medication management systems (eMMS) and those considered likely to occur more frequently with eMMS. This included developing a new classification system relevant to eMMS errors. Methods. Eight Victorian hospitals with eMMS participated in a retrospective audit of reported medication incidents from their incident reporting databases between May and July 2014. Site-appointed project officers submitted deidentified incidents they deemed new or likely to occur more frequently due to eMMS, together with the Incident Severity Rating (ISR). The authors reviewed and classified incidents. Results. There were 5826 medication-related incidents reported. In total, 93 (47 prescribing errors, 46 administration errors) were identified as new or potentially related to eMMS. Only one ISR2 (moderate) and no ISR1 (severe or death) errors were reported, so harm to patients in this 3-month period was minimal. The most commonly reported error types were 'human factors' and 'unfamiliarity or training' (70%) and 'cross-encounter or hybrid system errors' (22%). Conclusions. Although the results suggest that the errors reported were of low severity, organisations must remain vigilant to the risk of new errors and avoid the assumption that eMMS is the panacea to all medication error issues. What is known about the topic? eMMS have been shown to reduce some types of medication errors, but it has been reported that some new medication errors have been identified and some are likely to occur more frequently with eMMS. There are few published Australian studies that have reported on medication error types that are likely to occur more frequently with eMMS in more than one organisation and that include administration and prescribing errors. What does this paper add? This paper includes a new simple classification system for eMMS that is useful and outlines the most commonly reported incident types and can inform organisations and vendors on possible eMMS improvements. The paper suggests a new classification system for eMMS medication errors. What are the implications for practitioners? The results of the present study will highlight to organisations the need for ongoing review of system design, refinement of workflow issues, staff education and training and reporting and monitoring of errors.

  12. Stack Number Influence on the Accuracy of Aster Gdem (V2)

    NASA Astrophysics Data System (ADS)

    Mirzadeh, S. M. J.; Alizadeh Naeini, A.; Fatemi, S. B.

    2017-09-01

    In this research, the influence of stack number (STKN) on the accuracy of Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global DEM (GDEM) has been investigated. For this purpose, two data sets of ASTER and Reference DEMs from two study areas with various topography (Bomehen and Tazehabad) were used. The Results show that in both study areas, STKN of 19 results in minimum error so that this minimum error has small difference with other STKN. The analysis of slope, STKN, and error values shows that there is no strong correlation between these parameters in both study areas. For example, the value of mean absolute error increase by changing the topography and the increase of slope values and height on cells but, the changes in STKN has no important effect on error values. Furthermore, according to high values of STKN, effect of slope on elevation accuracy has practically decreased. Also, there is no great correlation between the residual and STKN in ASTER GDEM.

  13. Characterization of the International Linear Collider damping ring optics

    NASA Astrophysics Data System (ADS)

    Shanks, J.; Rubin, D. L.; Sagan, D.

    2014-10-01

    A method is presented for characterizing the emittance dilution and dynamic aperture for an arbitrary closed lattice that includes guide field magnet errors, multipole errors and misalignments. This method, developed and tested at the Cornell Electron Storage Ring Test Accelerator (CesrTA), has been applied to the damping ring lattice for the International Linear Collider (ILC). The effectiveness of beam based emittance tuning is limited by beam position monitor (BPM) measurement errors, number of corrector magnets and their placement, and correction algorithm. The specifications for damping ring magnet alignment, multipole errors, number of BPMs, and precision in BPM measurements are shown to be consistent with the required emittances and dynamic aperture. The methodology is then used to determine the minimum number of position monitors that is required to achieve the emittance targets, and how that minimum depends on the location of the BPMs. Similarly, the maximum tolerable multipole errors are evaluated. Finally, the robustness of each BPM configuration with respect to random failures is explored.

  14. EEG error potentials detection and classification using time-frequency features for robot reinforcement learning.

    PubMed

    Boubchir, Larbi; Touati, Youcef; Daachi, Boubaker; Chérif, Arab Ali

    2015-08-01

    In thought-based steering of robots, error potentials (ErrP) can appear when the action resulting from the brain-machine interface (BMI) classifier/controller does not correspond to the user's thought. Using the Steady State Visual Evoked Potentials (SSVEP) techniques, ErrP, which appear when a classification error occurs, are not easily recognizable by only examining the temporal or frequency characteristics of EEG signals. A supplementary classification process is therefore needed to identify them in order to stop the course of the action and back up to a recovery state. This paper presents a set of time-frequency (t-f) features for the detection and classification of EEG ErrP in extra-brain activities due to misclassification observed by a user exploiting non-invasive BMI and robot control in the task space. The proposed features are able to characterize and detect ErrP activities in the t-f domain. These features are derived from the information embedded in the t-f representation of EEG signals, and include the Instantaneous Frequency (IF), t-f information complexity, SVD information, energy concentration and sub-bands' energies. The experiment results on real EEG data show that the use of the proposed t-f features for detecting and classifying EEG ErrP achieved an overall classification accuracy up to 97% for 50 EEG segments using 2-class SVM classifier.

  15. Minimum Requirements for the CUS (Common User Subsystem) Workstation

    DTIC Science & Technology

    1987-04-20

    PAGE -2- / ’ " I& REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS Unclassified 2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRMBUTION...CLASSIFICATION UNCLASSIID/UNLIMITED r" SAME AS RPT. [ 3 DTIC USERS Unclassified tNM F RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include area codi) 22c OFFICE...Summary 1 1. Introduction 3 1.1 Purpose 3 1.2 Scope 3 1.3 Reference 4 2. Background 5 3 . Minimal WIS Workstation Requirements 8 3.1 Overview 8 4. Overview

  16. Defining functional biomes and monitoring their change globally.

    PubMed

    Higgins, Steven I; Buitenwerf, Robert; Moncrieff, Glenn R

    2016-11-01

    Biomes are important constructs for organizing understanding of how the worlds' major terrestrial ecosystems differ from one another and for monitoring change in these ecosystems. Yet existing biome classification schemes have been criticized for being overly subjective and for explicitly or implicitly invoking climate. We propose a new biome map and classification scheme that uses information on (i) an index of vegetation productivity, (ii) whether the minimum of vegetation activity is in the driest or coldest part of the year, and (iii) vegetation height. Although biomes produced on the basis of this classification show a strong spatial coherence, they show little congruence with existing biome classification schemes. Our biome map provides an alternative classification scheme for comparing the biogeochemical rates of terrestrial ecosystems. We use this new biome classification scheme to analyse the patterns of biome change observed over recent decades. Overall, 13% to 14% of analysed pixels shifted in biome state over the 30-year study period. A wide range of biome transitions were observed. For example, biomes with tall vegetation and minimum vegetation activity in the cold season shifted to higher productivity biome states. Biomes with short vegetation and low seasonality shifted to seasonally moisture-limited biome states. Our findings and method provide a new source of data for rigorously monitoring global vegetation change, analysing drivers of vegetation change and for benchmarking models of terrestrial ecosystem function. © 2016 John Wiley & Sons Ltd.

  17. Evaluation of spatial filtering on the accuracy of wheat area estimate

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Moreira, M. A.; Chen, S. C.; Delima, A. M.

    1982-01-01

    A 3 x 3 pixel spatial filter for postclassification was used for wheat classification to evaluate the effects of this procedure on the accuracy of area estimation using LANDSAT digital data obtained from a single pass. Quantitative analyses were carried out in five test sites (approx 40 sq km each) and t tests showed that filtering with threshold values significantly decreased errors of commission and omission. In area estimation filtering improved the overestimate of 4.5% to 2.7% and the root-mean-square error decreased from 126.18 ha to 107.02 ha. Extrapolating the same procedure of automatic classification using spatial filtering for postclassification to the whole study area, the accuracy in area estimate was improved from the overestimate of 10.9% to 9.7%. It is concluded that when single pass LANDSAT data is used for crop identification and area estimation the postclassification procedure using a spatial filter provides a more accurate area estimate by reducing classification errors.

  18. Maximum likelihood estimation of label imperfections and its use in the identification of mislabeled patterns

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    The problem of estimating label imperfections and the use of the estimation in identifying mislabeled patterns is presented. Expressions for the maximum likelihood estimates of classification errors and a priori probabilities are derived from the classification of a set of labeled patterns. Expressions also are given for the asymptotic variances of probability of correct classification and proportions. Simple models are developed for imperfections in the labels and for classification errors and are used in the formulation of a maximum likelihood estimation scheme. Schemes are presented for the identification of mislabeled patterns in terms of threshold on the discriminant functions for both two-class and multiclass cases. Expressions are derived for the probability that the imperfect label identification scheme will result in a wrong decision and are used in computing thresholds. The results of practical applications of these techniques in the processing of remotely sensed multispectral data are presented.

  19. Simplified Approach Charts Improve Data Retrieval Performance

    PubMed Central

    Stewart, Michael; Laraway, Sean; Jordan, Kevin; Feary, Michael S.

    2016-01-01

    The effectiveness of different instrument approach charts to deliver minimum visibility and altitude information during airport equipment outages was investigated. Eighteen pilots flew simulated instrument approaches in three conditions: (a) normal operations using a standard approach chart (standard-normal), (b) equipment outage conditions using a standard approach chart (standard-outage), and (c) equipment outage conditions using a prototype decluttered approach chart (prototype-outage). Errors and retrieval times in identifying minimum altitudes and visibilities were measured. The standard-outage condition produced significantly more errors and longer retrieval times versus the standard-normal condition. The prototype-outage condition had significantly fewer errors and shorter retrieval times than did the standard-outage condition. The prototype-outage condition produced significantly fewer errors but similar retrieval times when compared with the standard-normal condition. Thus, changing the presentation of minima may reduce risk and increase safety in instrument approaches, specifically with airport equipment outages. PMID:28491009

  20. Optimal plane search method in blood flow measurements by magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Bargiel, Pawel; Orkisz, Maciej; Przelaskowski, Artur; Piatkowska-Janko, Ewa; Bogorodzki, Piotr; Wolak, Tomasz

    2004-07-01

    This paper offers an algorithm for determining the blood flow parameters in the neck vessel segments using a single (optimal) measurement plane instead of the usual approach involving four planes orthogonal to the artery axis. This new approach aims at significantly shortening the time required to complete measurements using Nuclear Magnetic Resonance techniques. Based on a defined error function, the algorithm scans the solution space to find the minimum of the error function, and thus to determine a single plane characterized by a minimum measurement error, which allows for an accurate measurement of blood flow in the four carotid arteries. The paper also comprises a practical implementation of this method (as a module of a larger imaging-measuring system), including preliminary research results.

  1. Time-Coordination Strategies and Control Laws for Multi-Agent Unmanned Systems

    NASA Technical Reports Server (NTRS)

    Puig-Navarro, Javier; Hovakimyan, Naira; Allen, B. Danette

    2017-01-01

    Time-critical coordination tools for unmanned systems can be employed to enforce the type of temporal constraints required in terminal control areas, ensure minimum distance requirements among vehicles are satisfied, and successfully perform coordinated missions. In comparison with previous literature, this paper presents an ampler spectrum of coordination and temporal specifications for unmanned systems, and proposes a general control law that can enforce this range of constraints. The constraint classification presented con- siders the nature of the desired arrival window and the permissible coordination errors to define six different types of time-coordination strategies. The resulting decentralized coordination control law allows the vehicles to negotiate their speeds along their paths in response to information exchanged over the communication network. This control law organizes the different members in the fleet hierarchically per their behavior and informational needs as reference agent, leaders, and followers. Examples and simulation results for all the coordination strategies presented demonstrate the applicability and efficacy of the coordination control law for multiple unmanned systems.

  2. Standards for the classification of public coal lands

    USGS Publications Warehouse

    Bass, N. Wood; Smith, Henry L.; Horn, George Henry

    1970-01-01

    In order to provide uniformity in the classification of coal lands in the public domain, certain standards have been prepared from time to time by the U.S. Geological Survey. The controlling factors are the depth, quality, and thickness of the coal beds. The first regulations were issued April 8, 1907; others followed in 1908, 1909, and 1913. Except for minor changes in 1959, the regulations of 1913, which were described in U.S. Geological Survey Bulletin 537, have been the guiding principles for coal-land classification. Changes made herein from the standards previously used are: (1) a maximum depth of 6,000 feet instead of 5,000 feet, (2) a maximum depth of 1,000 feet instead of 500 feet for coals of minimum thickness, (3) use of Btu (British thermal unit) values for as-received foal instead of air-dried, and (4) a minimum Btu value of 4,000 for as-received coal instead of 8,000 for air-dried. An additional modification is that the maximum thickness of 8 feet which was designated in the Classification Chart for Coal Lands in 1959 is changed to 6 feet. The effect of these changes will be the classification of a greater amount of the withdrawn land as coal land than was done under earlier regulations.

  3. Misclassification Errors in Unsupervised Classification Methods. Comparison Based on the Simulation of Targeted Proteomics Data

    PubMed Central

    Andreev, Victor P; Gillespie, Brenda W; Helfand, Brian T; Merion, Robert M

    2016-01-01

    Unsupervised classification methods are gaining acceptance in omics studies of complex common diseases, which are often vaguely defined and are likely the collections of disease subtypes. Unsupervised classification based on the molecular signatures identified in omics studies have the potential to reflect molecular mechanisms of the subtypes of the disease and to lead to more targeted and successful interventions for the identified subtypes. Multiple classification algorithms exist but none is ideal for all types of data. Importantly, there are no established methods to estimate sample size in unsupervised classification (unlike power analysis in hypothesis testing). Therefore, we developed a simulation approach allowing comparison of misclassification errors and estimating the required sample size for a given effect size, number, and correlation matrix of the differentially abundant proteins in targeted proteomics studies. All the experiments were performed in silico. The simulated data imitated the expected one from the study of the plasma of patients with lower urinary tract dysfunction with the aptamer proteomics assay Somascan (SomaLogic Inc, Boulder, CO), which targeted 1129 proteins, including 330 involved in inflammation, 180 in stress response, 80 in aging, etc. Three popular clustering methods (hierarchical, k-means, and k-medoids) were compared. K-means clustering performed much better for the simulated data than the other two methods and enabled classification with misclassification error below 5% in the simulated cohort of 100 patients based on the molecular signatures of 40 differentially abundant proteins (effect size 1.5) from among the 1129-protein panel. PMID:27524871

  4. Calibration of remotely sensed proportion or area estimates for misclassification error

    Treesearch

    Raymond L. Czaplewski; Glenn P. Catts

    1992-01-01

    Classifications of remotely sensed data contain misclassification errors that bias areal estimates. Monte Carlo techniques were used to compare two statistical methods that correct or calibrate remotely sensed areal estimates for misclassification bias using reference data from an error matrix. The inverse calibration estimator was consistently superior to the...

  5. Mapping gully-affected areas in the region of Taroudannt, Morocco based on Object-Based Image Analysis (OBIA)

    NASA Astrophysics Data System (ADS)

    d'Oleire-Oltmanns, Sebastian; Marzolff, Irene; Tiede, Dirk; Blaschke, Thomas

    2015-04-01

    The need for area-wide landform mapping approaches, especially in terms of land degradation, can be ascribed to the fact that within area-wide landform mapping approaches, the (spatial) context of erosional landforms is considered by providing additional information on the physiography neighboring the distinct landform. This study presents an approach for the detection of gully-affected areas by applying object-based image analysis in the region of Taroudannt, Morocco, which is highly affected by gully erosion while simultaneously representing a major region of agro-industry with a high demand of arable land. Various sensors provide readily available high-resolution optical satellite data with a much better temporal resolution than 3D terrain data which lead to the development of an area-wide mapping approach to extract gully-affected areas using only optical satellite imagery. The classification rule-set was developed with a clear focus on virtual spatial independence within the software environment of eCognition Developer. This allows the incorporation of knowledge about the target objects under investigation. Only optical QuickBird-2 satellite data and freely-available OpenStreetMap (OSM) vector data were used as input data. The OSM vector data were incorporated in order to mask out plantations and residential areas. Optical input data are more readily available for a broad range of users compared to terrain data, which is considered to be a major advantage. The methodology additionally incorporates expert knowledge and freely-available vector data in a cyclic object-based image analysis approach. This connects the two fields of geomorphology and remote sensing. The classification results allow conclusions on the current distribution of gullies. The results of the classification were checked against manually delineated reference data incorporating expert knowledge based on several field campaigns in the area, resulting in an overall classification accuracy of 62%. The error of omission accounts for 38% and the error of commission for 16%, respectively. Additionally, a manual assessment was carried out to assess the quality of the applied classification algorithm. The limited error of omission contributes with 23% to the overall error of omission and the limited error of commission contributes with 98% to the overall error of commission. This assessment improves the results and confirms the high quality of the developed approach for area-wide mapping of gully-affected areas in larger regions. In the field of landform mapping, the overall quality of the classification results is often assessed with more than one method to incorporate all aspects adequately.

  6. Classification and recognition of dynamical models: the role of phase, independent components, kernels and optimal transport.

    PubMed

    Bissacco, Alessandro; Chiuso, Alessandro; Soatto, Stefano

    2007-11-01

    We address the problem of performing decision tasks, and in particular classification and recognition, in the space of dynamical models in order to compare time series of data. Motivated by the application of recognition of human motion in image sequences, we consider a class of models that include linear dynamics, both stable and marginally stable (periodic), both minimum and non-minimum phase, driven by non-Gaussian processes. This requires extending existing learning and system identification algorithms to handle periodic modes and nonminimum phase behavior, while taking into account higher-order statistics of the data. Once a model is identified, we define a kernel-based cord distance between models that includes their dynamics, their initial conditions as well as input distribution. This is made possible by a novel kernel defined between two arbitrary (non-Gaussian) distributions, which is computed by efficiently solving an optimal transport problem. We validate our choice of models, inference algorithm, and distance on the tasks of human motion synthesis (sample paths of the learned models), and recognition (nearest-neighbor classification in the computed distance). However, our work can be applied more broadly where one needs to compare historical data while taking into account periodic trends, non-minimum phase behavior, and non-Gaussian input distributions.

  7. Classification of Kiwifruit Grades Based on Fruit Shape Using a Single Camera

    PubMed Central

    Fu, Longsheng; Sun, Shipeng; Li, Rui; Wang, Shaojin

    2016-01-01

    This study aims to demonstrate the feasibility for classifying kiwifruit into shape grades by adding a single camera to current Chinese sorting lines equipped with weight sensors. Image processing methods are employed to calculate fruit length, maximum diameter of the equatorial section, and projected area. A stepwise multiple linear regression method is applied to select significant variables for predicting minimum diameter of the equatorial section and volume and to establish corresponding estimation models. Results show that length, maximum diameter of the equatorial section and weight are selected to predict the minimum diameter of the equatorial section, with the coefficient of determination of only 0.82 when compared to manual measurements. Weight and length are then selected to estimate the volume, which is in good agreement with the measured one with the coefficient of determination of 0.98. Fruit classification based on the estimated minimum diameter of the equatorial section achieves a low success rate of 84.6%, which is significantly improved using a linear combination of the length/maximum diameter of the equatorial section and projected area/length ratios, reaching 98.3%. Thus, it is possible for Chinese kiwifruit sorting lines to reach international standards of grading kiwifruit on fruit shape classification by adding a single camera. PMID:27376292

  8. 45 CFR 286.205 - How will we determine if a Tribe fails to meet the minimum work participation rate(s)?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., financial records, and automated data systems; (ii) The data are free from computational errors and are... records, financial records, and automated data systems; (ii) The data are free from computational errors... records, and automated data systems; (ii) The data are free from computational errors and are internally...

  9. An analysis of metropolitan land-use by machine processing of earth resources technology satellite data

    NASA Technical Reports Server (NTRS)

    Mausel, P. W.; Todd, W. J.; Baumgardner, M. F.

    1976-01-01

    A successful application of state-of-the-art remote sensing technology in classifying an urban area into its broad land use classes is reported. This research proves that numerous urban features are amenable to classification using ERTS multispectral data automatically processed by computer. Furthermore, such automatic data processing (ADP) techniques permit areal analysis on an unprecedented scale with a minimum expenditure of time. Also, classification results obtained using ADP procedures are consistent, comparable, and replicable. The results of classification are compared with the proposed U. S. G. S. land use classification system in order to determine the level of classification that is feasible to obtain through ERTS analysis of metropolitan areas.

  10. Enhancing interferometer phase estimation, sensing sensitivity, and resolution using robust entangled states

    NASA Astrophysics Data System (ADS)

    Smith, James F.

    2017-11-01

    With the goal of designing interferometers and interferometer sensors, e.g., LADARs with enhanced sensitivity, resolution, and phase estimation, states using quantum entanglement are discussed. These states include N00N states, plain M and M states (PMMSs), and linear combinations of M and M states (LCMMS). Closed form expressions for the optimal detection operators; visibility, a measure of the state's robustness to loss and noise; a resolution measure; and phase estimate error, are provided in closed form. The optimal resolution for the maximum visibility and minimum phase error are found. For the visibility, comparisons between PMMSs, LCMMS, and N00N states are provided. For the minimum phase error, comparisons between LCMMS, PMMSs, N00N states, separate photon states (SPSs), the shot noise limit (SNL), and the Heisenberg limit (HL) are provided. A representative collection of computational results illustrating the superiority of LCMMS when compared to PMMSs and N00N states is given. It is found that for a resolution 12 times the classical result LCMMS has visibility 11 times that of N00N states and 4 times that of PMMSs. For the same case, the minimum phase error for LCMMS is 10.7 times smaller than that of PMMS and 29.7 times smaller than that of N00N states.

  11. Maximum-likelihood techniques for joint segmentation-classification of multispectral chromosome images.

    PubMed

    Schwartzkopf, Wade C; Bovik, Alan C; Evans, Brian L

    2005-12-01

    Traditional chromosome imaging has been limited to grayscale images, but recently a 5-fluorophore combinatorial labeling technique (M-FISH) was developed wherein each class of chromosomes binds with a different combination of fluorophores. This results in a multispectral image, where each class of chromosomes has distinct spectral components. In this paper, we develop new methods for automatic chromosome identification by exploiting the multispectral information in M-FISH chromosome images and by jointly performing chromosome segmentation and classification. We (1) develop a maximum-likelihood hypothesis test that uses multispectral information, together with conventional criteria, to select the best segmentation possibility; (2) use this likelihood function to combine chromosome segmentation and classification into a robust chromosome identification system; and (3) show that the proposed likelihood function can also be used as a reliable indicator of errors in segmentation, errors in classification, and chromosome anomalies, which can be indicators of radiation damage, cancer, and a wide variety of inherited diseases. We show that the proposed multispectral joint segmentation-classification method outperforms past grayscale segmentation methods when decomposing touching chromosomes. We also show that it outperforms past M-FISH classification techniques that do not use segmentation information.

  12. Classification accuracy on the family planning participation status using kernel discriminant analysis

    NASA Astrophysics Data System (ADS)

    Kurniawan, Dian; Suparti; Sugito

    2018-05-01

    Population growth in Indonesia has increased every year. According to the population census conducted by the Central Bureau of Statistics (BPS) in 2010, the population of Indonesia has reached 237.6 million people. Therefore, to control the population growth rate, the government hold Family Planning or Keluarga Berencana (KB) program for couples of childbearing age. The purpose of this program is to improve the health of mothers and children in order to manifest prosperous society by controlling births while ensuring control of population growth. The data used in this study is the updated family data of Semarang city in 2016 that conducted by National Family Planning Coordinating Board (BKKBN). From these data, classifiers with kernel discriminant analysis will be obtained, and also classification accuracy will be obtained from that method. The result of the analysis showed that normal kernel discriminant analysis gives 71.05 % classification accuracy with 28.95 % classification error. Whereas triweight kernel discriminant analysis gives 73.68 % classification accuracy with 26.32 % classification error. Using triweight kernel discriminant for data preprocessing of family planning participation of childbearing age couples in Semarang City of 2016 can be stated better than with normal kernel discriminant.

  13. A parametric multiclass Bayes error estimator for the multispectral scanner spatial model performance evaluation

    NASA Technical Reports Server (NTRS)

    Mobasseri, B. G.; Mcgillem, C. D.; Anuta, P. E. (Principal Investigator)

    1978-01-01

    The author has identified the following significant results. The probability of correct classification of various populations in data was defined as the primary performance index. The multispectral data being of multiclass nature as well, required a Bayes error estimation procedure that was dependent on a set of class statistics alone. The classification error was expressed in terms of an N dimensional integral, where N was the dimensionality of the feature space. The multispectral scanner spatial model was represented by a linear shift, invariant multiple, port system where the N spectral bands comprised the input processes. The scanner characteristic function, the relationship governing the transformation of the input spatial, and hence, spectral correlation matrices through the systems, was developed.

  14. The Application of Speaker Recognition Techniques in the Detection of Tsunamigenic Earthquakes

    NASA Astrophysics Data System (ADS)

    Gorbatov, A.; O'Connell, J.; Paliwal, K.

    2015-12-01

    Tsunami warning procedures adopted by national tsunami warning centres largely rely on the classical approach of earthquake location, magnitude determination, and the consequent modelling of tsunami waves. Although this approach is based on known physics theories of earthquake and tsunami generation processes, this may be the main shortcoming due to the need to satisfy minimum seismic data requirement to estimate those physical parameters. At least four seismic stations are necessary to locate the earthquake and a minimum of approximately 10 minutes of seismic waveform observation to reliably estimate the magnitude of a large earthquake similar to the 2004 Indian Ocean Tsunami Earthquake of M9.2. Consequently the total time to tsunami warning could be more than half an hour. In attempt to reduce the time of tsunami alert a new approach is proposed based on the classification of tsunamigenic and non tsunamigenic earthquakes using speaker recognition techniques. A Tsunamigenic Dataset (TGDS) was compiled to promote the development of machine learning techniques for application to seismic trace analysis and, in particular, tsunamigenic event detection, and compare them to existing seismological methods. The TGDS contains 227 off shore events (87 tsunamigenic and 140 non-tsunamigenic earthquakes with M≥6) from Jan 2000 to Dec 2011, inclusive. A Support Vector Machine classifier using a radial-basis function kernel was applied to spectral features derived from 400 sec frames of 3-comp. 1-Hz broadband seismometer data. Ten-fold cross-validation was used during training to choose classifier parameters. Voting was applied to the classifier predictions provided from each station to form an overall prediction for an event. The F1 score (harmonic mean of precision and recall) was chosen to rate each classifier as it provides a compromise between type-I and type-II errors, and due to the imbalance between the representative number of events in the tsunamigenic and non-tsunamigenic classes. The described classifier achieved an F1 score of 0.923, with tsunamigenic classification precision and recall/sensitivity of 0.928 and 0.919 respectively. The system requires a minimum of 3 stations with ~400 seconds of data each to make a prediction. The accuracy improves as further stations and data become available.

  15. Using Gaussian mixture models to detect and classify dolphin whistles and pulses.

    PubMed

    Peso Parada, Pablo; Cardenal-López, Antonio

    2014-06-01

    In recent years, a number of automatic detection systems for free-ranging cetaceans have been proposed that aim to detect not just surfaced, but also submerged, individuals. These systems are typically based on pattern-recognition techniques applied to underwater acoustic recordings. Using a Gaussian mixture model, a classification system was developed that detects sounds in recordings and classifies them as one of four types: background noise, whistles, pulses, and combined whistles and pulses. The classifier was tested using a database of underwater recordings made off the Spanish coast during 2011. Using cepstral-coefficient-based parameterization, a sound detection rate of 87.5% was achieved for a 23.6% classification error rate. To improve these results, two parameters computed using the multiple signal classification algorithm and an unpredictability measure were included in the classifier. These parameters, which helped to classify the segments containing whistles, increased the detection rate to 90.3% and reduced the classification error rate to 18.1%. Finally, the potential of the multiple signal classification algorithm and unpredictability measure for estimating whistle contours and classifying cetacean species was also explored, with promising results.

  16. Unbiased Taxonomic Annotation of Metagenomic Samples

    PubMed Central

    Fosso, Bruno; Pesole, Graziano; Rosselló, Francesc

    2018-01-01

    Abstract The classification of reads from a metagenomic sample using a reference taxonomy is usually based on first mapping the reads to the reference sequences and then classifying each read at a node under the lowest common ancestor of the candidate sequences in the reference taxonomy with the least classification error. However, this taxonomic annotation can be biased by an imbalanced taxonomy and also by the presence of multiple nodes in the taxonomy with the least classification error for a given read. In this article, we show that the Rand index is a better indicator of classification error than the often used area under the receiver operating characteristic (ROC) curve and F-measure for both balanced and imbalanced reference taxonomies, and we also address the second source of bias by reducing the taxonomic annotation problem for a whole metagenomic sample to a set cover problem, for which a logarithmic approximation can be obtained in linear time and an exact solution can be obtained by integer linear programming. Experimental results with a proof-of-concept implementation of the set cover approach to taxonomic annotation in a next release of the TANGO software show that the set cover approach further reduces ambiguity in the taxonomic annotation obtained with TANGO without distorting the relative abundance profile of the metagenomic sample. PMID:29028181

  17. Global land cover mapping: a review and uncertainty analysis

    USGS Publications Warehouse

    Congalton, Russell G.; Gu, Jianyu; Yadav, Kamini; Thenkabail, Prasad S.; Ozdogan, Mutlu

    2014-01-01

    Given the advances in remotely sensed imagery and associated technologies, several global land cover maps have been produced in recent times including IGBP DISCover, UMD Land Cover, Global Land Cover 2000 and GlobCover 2009. However, the utility of these maps for specific applications has often been hampered due to considerable amounts of uncertainties and inconsistencies. A thorough review of these global land cover projects including evaluating the sources of error and uncertainty is prudent and enlightening. Therefore, this paper describes our work in which we compared, summarized and conducted an uncertainty analysis of the four global land cover mapping projects using an error budget approach. The results showed that the classification scheme and the validation methodology had the highest error contribution and implementation priority. A comparison of the classification schemes showed that there are many inconsistencies between the definitions of the map classes. This is especially true for the mixed type classes for which thresholds vary for the attributes/discriminators used in the classification process. Examination of these four global mapping projects provided quite a few important lessons for the future global mapping projects including the need for clear and uniform definitions of the classification scheme and an efficient, practical, and valid design of the accuracy assessment.

  18. Development of the Austrian Nursing Minimum Data Set (NMDS-AT): the third Delphi Round, a quantitative online survey.

    PubMed

    Ranegger, Renate; Hackl, Werner O; Ammenwerth, Elske

    2015-01-01

    A Nursing Minimum Data Set (NMDS) aims at systematically describing nursing care in terms of patient problems, nursing activities, and patient outcomes. In an earlier Delphi study, 56 data elements were proposed to be included in an Austrian Nursing Minimum Data Set (NMDS-AT). To identify the most important data elements of this list, and to identify appropriate coding systems. Online Delphi-based survey with 88 experts. 43 data elements were rated as relevant for an NMDS-AT (strong agreement of more than half of the experts): nine data elements concerning the institution, patient demographics, and medical condition; 18 data elements concerning patient problems by using nursing diagnosis; seven data elements concerning nursing outcomes, and nine data elements concerning nursing interventions. As classification systems, national classification systems were proposed besides ICNP, NNN, and nursing-sensitive indicators. The resulting proposal for an NMDS-AT will now be tested with routine data.

  19. Multiple Spectral-Spatial Classification Approach for Hyperspectral Data

    NASA Technical Reports Server (NTRS)

    Tarabalka, Yuliya; Benediktsson, Jon Atli; Chanussot, Jocelyn; Tilton, James C.

    2010-01-01

    A .new multiple classifier approach for spectral-spatial classification of hyperspectral images is proposed. Several classifiers are used independently to classify an image. For every pixel, if all the classifiers have assigned this pixel to the same class, the pixel is kept as a marker, i.e., a seed of the spatial region, with the corresponding class label. We propose to use spectral-spatial classifiers at the preliminary step of the marker selection procedure, each of them combining the results of a pixel-wise classification and a segmentation map. Different segmentation methods based on dissimilar principles lead to different classification results. Furthermore, a minimum spanning forest is built, where each tree is rooted on a classification -driven marker and forms a region in the spectral -spatial classification: map. Experimental results are presented for two hyperspectral airborne images. The proposed method significantly improves classification accuracies, when compared to previously proposed classification techniques.

  20. Land Cover Analysis by Using Pixel-Based and Object-Based Image Classification Method in Bogor

    NASA Astrophysics Data System (ADS)

    Amalisana, Birohmatin; Rokhmatullah; Hernina, Revi

    2017-12-01

    The advantage of image classification is to provide earth’s surface information like landcover and time-series changes. Nowadays, pixel-based image classification technique is commonly performed with variety of algorithm such as minimum distance, parallelepiped, maximum likelihood, mahalanobis distance. On the other hand, landcover classification can also be acquired by using object-based image classification technique. In addition, object-based classification uses image segmentation from parameter such as scale, form, colour, smoothness and compactness. This research is aimed to compare the result of landcover classification and its change detection between parallelepiped pixel-based and object-based classification method. Location of this research is Bogor with 20 years range of observation from 1996 until 2016. This region is famous as urban areas which continuously change due to its rapid development, so that time-series landcover information of this region will be interesting.

  1. The Differences in Error Rate and Type between IELTS Writing Bands and Their Impact on Academic Workload

    ERIC Educational Resources Information Center

    Müller, Amanda

    2015-01-01

    This paper attempts to demonstrate the differences in writing between International English Language Testing System (IELTS) bands 6.0, 6.5 and 7.0. An analysis of exemplars provided from the IELTS test makers reveals that IELTS 6.0, 6.5 and 7.0 writers can make a minimum of 206 errors, 96 errors and 35 errors per 1000 words. The following section…

  2. Defining and classifying medical error: lessons for patient safety reporting systems.

    PubMed

    Tamuz, M; Thomas, E J; Franchois, K E

    2004-02-01

    It is important for healthcare providers to report safety related events, but little attention has been paid to how the definition and classification of events affects a hospital's ability to learn from its experience. To examine how the definition and classification of safety related events influences key organizational routines for gathering information, allocating incentives, and analyzing event reporting data. In semi-structured interviews, professional staff and administrators in a tertiary care teaching hospital and its pharmacy were asked to describe the existing programs designed to monitor medication safety, including the reporting systems. With a focus primarily on the pharmacy staff, interviews were audio recorded, transcribed, and analyzed using qualitative research methods. Eighty six interviews were conducted, including 36 in the hospital pharmacy. Examples are presented which show that: (1) the definition of an event could lead to under-reporting; (2) the classification of a medication error into alternative categories can influence the perceived incentives and disincentives for incident reporting; (3) event classification can enhance or impede organizational routines for data analysis and learning; and (4) routines that promote organizational learning within the pharmacy can reduce the flow of medication error data to the hospital. These findings from one hospital raise important practical and research questions about how reporting systems are influenced by the definition and classification of safety related events. By understanding more clearly how hospitals define and classify their experience, we may improve our capacity to learn and ultimately improve patient safety.

  3. Fisher classifier and its probability of error estimation

    NASA Technical Reports Server (NTRS)

    Chittineni, C. B.

    1979-01-01

    Computationally efficient expressions are derived for estimating the probability of error using the leave-one-out method. The optimal threshold for the classification of patterns projected onto Fisher's direction is derived. A simple generalization of the Fisher classifier to multiple classes is presented. Computational expressions are developed for estimating the probability of error of the multiclass Fisher classifier.

  4. Automatic discovery of optimal classes

    NASA Technical Reports Server (NTRS)

    Cheeseman, Peter; Stutz, John; Freeman, Don; Self, Matthew

    1986-01-01

    A criterion, based on Bayes' theorem, is described that defines the optimal set of classes (a classification) for a given set of examples. This criterion is transformed into an equivalent minimum message length criterion with an intuitive information interpretation. This criterion does not require that the number of classes be specified in advance, this is determined by the data. The minimum message length criterion includes the message length required to describe the classes, so there is a built in bias against adding new classes unless they lead to a reduction in the message length required to describe the data. Unfortunately, the search space of possible classifications is too large to search exhaustively, so heuristic search methods, such as simulated annealing, are applied. Tutored learning and probabilistic prediction in particular cases are an important indirect result of optimal class discovery. Extensions to the basic class induction program include the ability to combine category and real value data, hierarchical classes, independent classifications and deciding for each class which attributes are relevant.

  5. A Minimum Spanning Forest Based Method for Noninvasive Cancer Detection with Hyperspectral Imaging

    PubMed Central

    Pike, Robert; Lu, Guolan; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2016-01-01

    Goal The purpose of this paper is to develop a classification method that combines both spectral and spatial information for distinguishing cancer from healthy tissue on hyperspectral images in an animal model. Methods An automated algorithm based on a minimum spanning forest (MSF) and optimal band selection has been proposed to classify healthy and cancerous tissue on hyperspectral images. A support vector machine (SVM) classifier is trained to create a pixel-wise classification probability map of cancerous and healthy tissue. This map is then used to identify markers that are used to compute mutual information for a range of bands in the hyperspectral image and thus select the optimal bands. An MSF is finally grown to segment the image using spatial and spectral information. Conclusion The MSF based method with automatically selected bands proved to be accurate in determining the tumor boundary on hyperspectral images. Significance Hyperspectral imaging combined with the proposed classification technique has the potential to provide a noninvasive tool for cancer detection. PMID:26285052

  6. When mental fatigue maybe characterized by Event Related Potential (P300) during virtual wheelchair navigation.

    PubMed

    Lamti, Hachem A; Gorce, Philippe; Ben Khelifa, Mohamed Moncef; Alimi, Adel M

    2016-12-01

    The goal of this study is to investigate the influence of mental fatigue on the event related potential P300 features (maximum pick, minimum amplitude, latency and period) during virtual wheelchair navigation. For this purpose, an experimental environment was set up based on customizable environmental parameters (luminosity, number of obstacles and obstacles velocities). A correlation study between P300 and fatigue ratings was conducted. Finally, the best correlated features supplied three classification algorithms which are MLP (Multi Layer Perceptron), Linear Discriminate Analysis and Support Vector Machine. The results showed that the maximum feature over visual and temporal regions as well as period feature over frontal, fronto-central and visual regions were correlated with mental fatigue levels. In the other hand, minimum amplitude and latency features didn't show any correlation. Among classification techniques, MLP showed the best performance although the differences between classification techniques are minimal. Those findings can help us in order to design suitable mental fatigue based wheelchair control.

  7. Human factors analysis and classification system-HFACS.

    DOT National Transportation Integrated Search

    2000-02-01

    Human error has been implicated in 70 to 80% of all civil and military aviation accidents. Yet, most accident : reporting systems are not designed around any theoretical framework of human error. As a result, most : accident databases are not conduci...

  8. Classification of accelerometer wear and non-wear events in seconds for monitoring free-living physical activity

    PubMed Central

    Zhou, Shang-Ming; Hill, Rebecca A; Morgan, Kelly; Stratton, Gareth; Gravenor, Mike B; Bijlsma, Gunnar; Brophy, Sinead

    2015-01-01

    Objective To classify wear and non-wear time of accelerometer data for accurately quantifying physical activity in public health or population level research. Design A bi-moving-window-based approach was used to combine acceleration and skin temperature data to identify wear and non-wear time events in triaxial accelerometer data that monitor physical activity. Setting Local residents in Swansea, Wales, UK. Participants 50 participants aged under 16 years (n=23) and over 17 years (n=27) were recruited in two phases: phase 1: design of the wear/non-wear algorithm (n=20) and phase 2: validation of the algorithm (n=30). Methods Participants wore a triaxial accelerometer (GeneActiv) against the skin surface on the wrist (adults) or ankle (children). Participants kept a diary to record the timings of wear and non-wear and were asked to ensure that events of wear/non-wear last for a minimum of 15 min. Results The overall sensitivity of the proposed method was 0.94 (95% CI 0.90 to 0.98) and specificity 0.91 (95% CI 0.88 to 0.94). It performed equally well for children compared with adults, and females compared with males. Using surface skin temperature data in combination with acceleration data significantly improved the classification of wear/non-wear time when compared with methods that used acceleration data only (p<0.01). Conclusions Using either accelerometer seismic information or temperature information alone is prone to considerable error. Combining both sources of data can give accurate estimates of non-wear periods thus giving better classification of sedentary behaviour. This method can be used in population studies of physical activity in free-living environments. PMID:25968000

  9. Validation of accelerometer wear and nonwear time classification algorithm.

    PubMed

    Choi, Leena; Liu, Zhouwen; Matthews, Charles E; Buchowski, Maciej S

    2011-02-01

    the use of movement monitors (accelerometers) for measuring physical activity (PA) in intervention and population-based studies is becoming a standard methodology for the objective measurement of sedentary and active behaviors and for the validation of subjective PA self-reports. A vital step in PA measurement is the classification of daily time into accelerometer wear and nonwear intervals using its recordings (counts) and an accelerometer-specific algorithm. the purpose of this study was to validate and improve a commonly used algorithm for classifying accelerometer wear and nonwear time intervals using objective movement data obtained in the whole-room indirect calorimeter. we conducted a validation study of a wear or nonwear automatic algorithm using data obtained from 49 adults and 76 youth wearing accelerometers during a strictly monitored 24-h stay in a room calorimeter. The accelerometer wear and nonwear time classified by the algorithm was compared with actual wearing time. Potential improvements to the algorithm were examined using the minimum classification error as an optimization target. the recommended elements in the new algorithm are as follows: 1) zero-count threshold during a nonwear time interval, 2) 90-min time window for consecutive zero or nonzero counts, and 3) allowance of 2-min interval of nonzero counts with the upstream or downstream 30-min consecutive zero-count window for detection of artifactual movements. Compared with the true wearing status, improvements to the algorithm decreased nonwear time misclassification during the waking and the 24-h periods (all P values < 0.001). the accelerometer wear or nonwear time algorithm improvements may lead to more accurate estimation of time spent in sedentary and active behaviors.

  10. IMPACTS OF PATCH SIZE AND LANDSCAPE HETEROGENEITY ON THEMATIC IMAGE CLASSIFICATION ACCURACY

    EPA Science Inventory

    Impacts of Patch Size and Landscape Heterogeneity on Thematic Image Classification Accuracy.
    Currently, most thematic accuracy assessments of classified remotely sensed images oily account for errors between the various classes employed, at particular pixels of interest, thu...

  11. Sea ice classification using fast learning neural networks

    NASA Technical Reports Server (NTRS)

    Dawson, M. S.; Fung, A. K.; Manry, M. T.

    1992-01-01

    A first learning neural network approach to the classification of sea ice is presented. The fast learning (FL) neural network and a multilayer perceptron (MLP) trained with backpropagation learning (BP network) were tested on simulated data sets based on the known dominant scattering characteristics of the target class. Four classes were used in the data simulation: open water, thick lossy saline ice, thin saline ice, and multiyear ice. The BP network was unable to consistently converge to less than 25 percent error while the FL method yielded an average error of approximately 1 percent on the first iteration of training. The fast learning method presented can significantly reduce the CPU time necessary to train a neural network as well as consistently yield higher classification accuracy than BP networks.

  12. High-density force myography: A possible alternative for upper-limb prosthetic control.

    PubMed

    Radmand, Ashkan; Scheme, Erik; Englehart, Kevin

    2016-01-01

    Several multiple degree-of-freedom upper-limb prostheses that have the promise of highly dexterous control have recently been developed. Inadequate controllability, however, has limited adoption of these devices. Introducing more robust control methods will likely result in higher acceptance rates. This work investigates the suitability of using high-density force myography (HD-FMG) for prosthetic control. HD-FMG uses a high-density array of pressure sensors to detect changes in the pressure patterns between the residual limb and socket caused by the contraction of the forearm muscles. In this work, HD-FMG outperforms the standard electromyography (EMG)-based system in detecting different wrist and hand gestures. With the arm in a fixed, static position, eight hand and wrist motions were classified with 0.33% error using the HD-FMG technique. Comparatively, classification errors in the range of 2.2%-11.3% have been reported in the literature for multichannel EMG-based approaches. As with EMG, position variation in HD-FMG can introduce classification error, but incorporating position variation into the training protocol reduces this effect. Channel reduction was also applied to the HD-FMG technique to decrease the dimensionality of the problem as well as the size of the sensorized area. We found that with informed, symmetric channel reduction, classification error could be decreased to 0.02%.

  13. Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data

    USGS Publications Warehouse

    Wright, C.; Gallant, Alisa L.

    2007-01-01

    The U.S. Fish and Wildlife Service uses the term palustrine wetland to describe vegetated wetlands traditionally identified as marsh, bog, fen, swamp, or wet meadow. Landsat TM imagery was combined with image texture and ancillary environmental data to model probabilities of palustrine wetland occurrence in Yellowstone National Park using classification trees. Model training and test locations were identified from National Wetlands Inventory maps, and classification trees were built for seven years spanning a range of annual precipitation. At a coarse level, palustrine wetland was separated from upland. At a finer level, five palustrine wetland types were discriminated: aquatic bed (PAB), emergent (PEM), forested (PFO), scrub–shrub (PSS), and unconsolidated shore (PUS). TM-derived variables alone were relatively accurate at separating wetland from upland, but model error rates dropped incrementally as image texture, DEM-derived terrain variables, and other ancillary GIS layers were added. For classification trees making use of all available predictors, average overall test error rates were 7.8% for palustrine wetland/upland models and 17.0% for palustrine wetland type models, with consistent accuracies across years. However, models were prone to wetland over-prediction. While the predominant PEM class was classified with omission and commission error rates less than 14%, we had difficulty identifying the PAB and PSS classes. Ancillary vegetation information greatly improved PSS classification and moderately improved PFO discrimination. Association with geothermal areas distinguished PUS wetlands. Wetland over-prediction was exacerbated by class imbalance in likely combination with spatial and spectral limitations of the TM sensor. Wetland probability surfaces may be more informative than hard classification, and appear to respond to climate-driven wetland variability. The developed method is portable, relatively easy to implement, and should be applicable in other settings and over larger extents.

  14. Common component classification: what can we learn from machine learning?

    PubMed

    Anderson, Ariana; Labus, Jennifer S; Vianna, Eduardo P; Mayer, Emeran A; Cohen, Mark S

    2011-05-15

    Machine learning methods have been applied to classifying fMRI scans by studying locations in the brain that exhibit temporal intensity variation between groups, frequently reporting classification accuracy of 90% or better. Although empirical results are quite favorable, one might doubt the ability of classification methods to withstand changes in task ordering and the reproducibility of activation patterns over runs, and question how much of the classification machines' power is due to artifactual noise versus genuine neurological signal. To examine the true strength and power of machine learning classifiers we create and then deconstruct a classifier to examine its sensitivity to physiological noise, task reordering, and across-scan classification ability. The models are trained and tested both within and across runs to assess stability and reproducibility across conditions. We demonstrate the use of independent components analysis for both feature extraction and artifact removal and show that removal of such artifacts can reduce predictive accuracy even when data has been cleaned in the preprocessing stages. We demonstrate how mistakes in the feature selection process can cause the cross-validation error seen in publication to be a biased estimate of the testing error seen in practice and measure this bias by purposefully making flawed models. We discuss other ways to introduce bias and the statistical assumptions lying behind the data and model themselves. Finally we discuss the complications in drawing inference from the smaller sample sizes typically seen in fMRI studies, the effects of small or unbalanced samples on the Type 1 and Type 2 error rates, and how publication bias can give a false confidence of the power of such methods. Collectively this work identifies challenges specific to fMRI classification and methods affecting the stability of models. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. J-Plus: Morphological Classification Of Compact And Extended Sources By Pdf Analysis

    NASA Astrophysics Data System (ADS)

    López-Sanjuan, C.; Vázquez-Ramió, H.; Varela, J.; Spinoso, D.; Cristóbal-Hornillos, D.; Viironen, K.; Muniesa, D.; J-PLUS Collaboration

    2017-10-01

    We present a morphological classification of J-PLUS EDR sources into compact (i.e. stars) and extended (i.e. galaxies). Such classification is based on the Bayesian modelling of the concentration distribution, including observational errors and magnitude + sky position priors. We provide the star / galaxy probability of each source computed from the gri images. The comparison with the SDSS number counts support our classification up to r 21. The 31.7 deg² analised comprises 150k stars and 101k galaxies.

  16. Online clustering algorithms for radar emitter classification.

    PubMed

    Liu, Jun; Lee, Jim P Y; Senior; Li, Lingjie; Luo, Zhi-Quan; Wong, K Max

    2005-08-01

    Radar emitter classification is a special application of data clustering for classifying unknown radar emitters from received radar pulse samples. The main challenges of this task are the high dimensionality of radar pulse samples, small sample group size, and closely located radar pulse clusters. In this paper, two new online clustering algorithms are developed for radar emitter classification: One is model-based using the Minimum Description Length (MDL) criterion and the other is based on competitive learning. Computational complexity is analyzed for each algorithm and then compared. Simulation results show the superior performance of the model-based algorithm over competitive learning in terms of better classification accuracy, flexibility, and stability.

  17. Halftoning Algorithms and Systems.

    DTIC Science & Technology

    1996-08-01

    TERMS 15. NUMBER IF PAGESi. Halftoning algorithms; error diffusions ; color printing; topographic maps 16. PRICE CODE 17. SECURITY CLASSIFICATION 18...graylevels for each screen level. In the case of error diffusion algorithms, the calibration procedure using the new centering concept manifests itself as a...Novel Centering Concept for Overlapping Correction Paper / Transparency (Patent Applied 5/94)I * Applications To Error Diffusion * To Dithering (IS&T

  18. Simulation techniques for estimating error in the classification of normal patterns

    NASA Technical Reports Server (NTRS)

    Whitsitt, S. J.; Landgrebe, D. A.

    1974-01-01

    Methods of efficiently generating and classifying samples with specified multivariate normal distributions were discussed. Conservative confidence tables for sample sizes are given for selective sampling. Simulation results are compared with classified training data. Techniques for comparing error and separability measure for two normal patterns are investigated and used to display the relationship between the error and the Chernoff bound.

  19. Semi-supervised morphosyntactic classification of Old Icelandic.

    PubMed

    Urban, Kryztof; Tangherlini, Timothy R; Vijūnas, Aurelijus; Broadwell, Peter M

    2014-01-01

    We present IceMorph, a semi-supervised morphosyntactic analyzer of Old Icelandic. In addition to machine-read corpora and dictionaries, it applies a small set of declension prototypes to map corpus words to dictionary entries. A web-based GUI allows expert users to modify and augment data through an online process. A machine learning module incorporates prototype data, edit-distance metrics, and expert feedback to continuously update part-of-speech and morphosyntactic classification. An advantage of the analyzer is its ability to achieve competitive classification accuracy with minimum training data.

  20. [Comparison study on sampling methods of Oncomelania hupensis snail survey in marshland schistosomiasis epidemic areas in China].

    PubMed

    An, Zhao; Wen-Xin, Zhang; Zhong, Yao; Yu-Kuan, Ma; Qing, Liu; Hou-Lang, Duan; Yi-di, Shang

    2016-06-29

    To optimize and simplify the survey method of Oncomelania hupensis snail in marshland endemic region of schistosomiasis and increase the precision, efficiency and economy of the snail survey. A quadrate experimental field was selected as the subject of 50 m×50 m size in Chayegang marshland near Henghu farm in the Poyang Lake region and a whole-covered method was adopted to survey the snails. The simple random sampling, systematic sampling and stratified random sampling methods were applied to calculate the minimum sample size, relative sampling error and absolute sampling error. The minimum sample sizes of the simple random sampling, systematic sampling and stratified random sampling methods were 300, 300 and 225, respectively. The relative sampling errors of three methods were all less than 15%. The absolute sampling errors were 0.221 7, 0.302 4 and 0.047 8, respectively. The spatial stratified sampling with altitude as the stratum variable is an efficient approach of lower cost and higher precision for the snail survey.

  1. Minimum Expected Risk Estimation for Near-neighbor Classification

    DTIC Science & Technology

    2006-04-01

    We consider the problems of class probability estimation and classification when using near-neighbor classifiers, such as k-nearest neighbors ( kNN ...estimate for weighted kNN classifiers with different prior information, for a broad class of risk functions. Theory and simulations show how significant...the difference is compared to the standard maximum likelihood weighted kNN estimates. Comparisons are made with uniform weights, symmetric weights

  2. Comparing exposure metrics for classifying ‘dangerous heat’ in heat wave and health warning systems

    PubMed Central

    Zhang, Kai; Rood, Richard B.; Michailidis, George; Oswald, Evan M.; Schwartz, Joel D.; Zanobetti, Antonella; Ebi, Kristie L.; O’Neill, Marie S.

    2012-01-01

    Heat waves have been linked to excess mortality and morbidity, and are projected to increase in frequency and intensity with a warming climate. This study compares exposure metrics to trigger heat wave and health warning systems (HHWS), and introduces a novel multi-level hybrid clustering method to identify potential dangerously hot days. Two-level and three-level hybrid clustering analysis as well as common indices used to trigger HHWS, including spatial synoptic classification (SSC); and 90th, 95th, and 99th percentiles of minimum and relative minimum temperature (using a 10 day reference period), were calculated using a summertime weather dataset in Detroit from 1976 to 2006. The days classified as ‘hot’ with hybrid clustering analysis, SSC, minimum and relative minimum temperature methods differed by method type. SSC tended to include the days with, on average, 2.6 °C lower daily minimum temperature and 5.3 °C lower dew point than days identified by other methods. These metrics were evaluated by comparing their performance in predicting excess daily mortality. The 99th percentile of minimum temperature was generally the most predictive, followed by the three-level hybrid clustering method, the 95th percentile of minimum temperature, SSC and others. Our proposed clustering framework has more flexibility and requires less substantial meteorological prior information than the synoptic classification methods. Comparison of these metrics in predicting excess daily mortality suggests that metrics thought to better characterize physiological heat stress by considering several weather conditions simultaneously may not be the same metrics that are better at predicting heat-related mortality, which has significant implications in HHWSs. PMID:22673187

  3. Optimal number of features as a function of sample size for various classification rules.

    PubMed

    Hua, Jianping; Xiong, Zixiang; Lowey, James; Suh, Edward; Dougherty, Edward R

    2005-04-15

    Given the joint feature-label distribution, increasing the number of features always results in decreased classification error; however, this is not the case when a classifier is designed via a classification rule from sample data. Typically (but not always), for fixed sample size, the error of a designed classifier decreases and then increases as the number of features grows. The potential downside of using too many features is most critical for small samples, which are commonplace for gene-expression-based classifiers for phenotype discrimination. For fixed sample size and feature-label distribution, the issue is to find an optimal number of features. Since only in rare cases is there a known distribution of the error as a function of the number of features and sample size, this study employs simulation for various feature-label distributions and classification rules, and across a wide range of sample and feature-set sizes. To achieve the desired end, finding the optimal number of features as a function of sample size, it employs massively parallel computation. Seven classifiers are treated: 3-nearest-neighbor, Gaussian kernel, linear support vector machine, polynomial support vector machine, perceptron, regular histogram and linear discriminant analysis. Three Gaussian-based models are considered: linear, nonlinear and bimodal. In addition, real patient data from a large breast-cancer study is considered. To mitigate the combinatorial search for finding optimal feature sets, and to model the situation in which subsets of genes are co-regulated and correlation is internal to these subsets, we assume that the covariance matrix of the features is blocked, with each block corresponding to a group of correlated features. Altogether there are a large number of error surfaces for the many cases. These are provided in full on a companion website, which is meant to serve as resource for those working with small-sample classification. For the companion website, please visit http://public.tgen.org/tamu/ofs/ e-dougherty@ee.tamu.edu.

  4. The Human Factors Analysis and Classification System : HFACS : final report.

    DOT National Transportation Integrated Search

    2000-02-01

    Human error has been implicated in 70 to 80% of all civil and military aviation accidents. Yet, most accident reporting systems are not designed around any theoretical framework of human error. As a result, most accident databases are not conducive t...

  5. The Gulliver Effect: The Impact of Error in an Elephantine Subpopulation on Estimates for Lilliputian Subpopulations

    ERIC Educational Resources Information Center

    Micceri, Theodore; Parasher, Pradnya; Waugh, Gordon W.; Herreid, Charlene

    2009-01-01

    An extensive review of the research literature and a study comparing over 36,000 survey responses with archival true scores indicated that one should expect a minimum of at least three percent random error for the least ambiguous of self-report measures. The Gulliver Effect occurs when a small proportion of error in a sizable subpopulation exerts…

  6. A Confidence Paradigm for Classification Systems

    DTIC Science & Technology

    2008-09-01

    methodology to determine how much confi- dence one should have in a classifier output. This research proposes a framework to determine the level of...theoretical framework that attempts to unite the viewpoints of the classification system developer (or engineer) and the classification system user (or...operating point. An algorithm is developed that minimizes a “confidence” measure called Binned Error in the Posterior ( BEP ). Then, we prove that training a

  7. Differences in chewing sounds of dry-crisp snacks by multivariate data analysis

    NASA Astrophysics Data System (ADS)

    De Belie, N.; Sivertsvik, M.; De Baerdemaeker, J.

    2003-09-01

    Chewing sounds of different types of dry-crisp snacks (two types of potato chips, prawn crackers, cornflakes and low calorie snacks from extruded starch) were analysed to assess differences in sound emission patterns. The emitted sounds were recorded by a microphone placed over the ear canal. The first bite and the first subsequent chew were selected from the time signal and a fast Fourier transformation provided the power spectra. Different multivariate analysis techniques were used for classification of the snack groups. This included principal component analysis (PCA) and unfold partial least-squares (PLS) algorithms, as well as multi-way techniques such as three-way PLS, three-way PCA (Tucker3), and parallel factor analysis (PARAFAC) on the first bite and subsequent chew. The models were evaluated by calculating the classification errors and the root mean square error of prediction (RMSEP) for independent validation sets. It appeared that the logarithm of the power spectra obtained from the chewing sounds could be used successfully to distinguish the different snack groups. When different chewers were used, recalibration of the models was necessary. Multi-way models distinguished better between chewing sounds of different snack groups than PCA on bite or chew separately and than unfold PLS. From all three-way models applied, N-PLS with three components showed the best classification capabilities, resulting in classification errors of 14-18%. The major amount of incorrect classifications was due to one type of potato chips that had a very irregular shape, resulting in a wide variation of the emitted sounds.

  8. Legal consequences of the moral duty to report errors.

    PubMed

    Hall, Jacqulyn Kay

    2003-09-01

    Increasingly, clinicians are under a moral duty to report errors to the patients who are injured by such errors. The sources of this duty are identified, and its probable impact on malpractice litigation and criminal law is discussed. The potential consequences of enforcing this new moral duty as a minimum in law are noted. One predicted consequence is that the trend will be accelerated toward government payment of compensation for errors. The effect of truth-telling on individuals is discussed.

  9. Kernel Wiener filter and its application to pattern recognition.

    PubMed

    Yoshino, Hirokazu; Dong, Chen; Washizawa, Yoshikazu; Yamashita, Yukihiko

    2010-11-01

    The Wiener filter (WF) is widely used for inverse problems. From an observed signal, it provides the best estimated signal with respect to the squared error averaged over the original and the observed signals among linear operators. The kernel WF (KWF), extended directly from WF, has a problem that an additive noise has to be handled by samples. Since the computational complexity of kernel methods depends on the number of samples, a huge computational cost is necessary for the case. By using the first-order approximation of kernel functions, we realize KWF that can handle such a noise not by samples but as a random variable. We also propose the error estimation method for kernel filters by using the approximations. In order to show the advantages of the proposed methods, we conducted the experiments to denoise images and estimate errors. We also apply KWF to classification since KWF can provide an approximated result of the maximum a posteriori classifier that provides the best recognition accuracy. The noise term in the criterion can be used for the classification in the presence of noise or a new regularization to suppress changes in the input space, whereas the ordinary regularization for the kernel method suppresses changes in the feature space. In order to show the advantages of the proposed methods, we conducted experiments of binary and multiclass classifications and classification in the presence of noise.

  10. Consequences of land-cover misclassification in models of impervious surface

    USGS Publications Warehouse

    McMahon, G.

    2007-01-01

    Model estimates of impervious area as a function of landcover area may be biased and imprecise because of errors in the land-cover classification. This investigation of the effects of land-cover misclassification on impervious surface models that use National Land Cover Data (NLCD) evaluates the consequences of adjusting land-cover within a watershed to reflect uncertainty assessment information. Model validation results indicate that using error-matrix information to adjust land-cover values used in impervious surface models does not substantially improve impervious surface predictions. Validation results indicate that the resolution of the landcover data (Level I and Level II) is more important in predicting impervious surface accurately than whether the land-cover data have been adjusted using information in the error matrix. Level I NLCD, adjusted for land-cover misclassification, is preferable to the other land-cover options for use in models of impervious surface. This result is tied to the lower classification error rates for the Level I NLCD. ?? 2007 American Society for Photogrammetry and Remote Sensing.

  11. Improved classification accuracy by feature extraction using genetic algorithms

    NASA Astrophysics Data System (ADS)

    Patriarche, Julia; Manduca, Armando; Erickson, Bradley J.

    2003-05-01

    A feature extraction algorithm has been developed for the purposes of improving classification accuracy. The algorithm uses a genetic algorithm / hill-climber hybrid to generate a set of linearly recombined features, which may be of reduced dimensionality compared with the original set. The genetic algorithm performs the global exploration, and a hill climber explores local neighborhoods. Hybridizing the genetic algorithm with a hill climber improves both the rate of convergence, and the final overall cost function value; it also reduces the sensitivity of the genetic algorithm to parameter selection. The genetic algorithm includes the operators: crossover, mutation, and deletion / reactivation - the last of these effects dimensionality reduction. The feature extractor is supervised, and is capable of deriving a separate feature space for each tissue (which are reintegrated during classification). A non-anatomical digital phantom was developed as a gold standard for testing purposes. In tests with the phantom, and with images of multiple sclerosis patients, classification with feature extractor derived features yielded lower error rates than using standard pulse sequences, and with features derived using principal components analysis. Using the multiple sclerosis patient data, the algorithm resulted in a mean 31% reduction in classification error of pure tissues.

  12. Locally Weighted Score Estimation for Quantile Classification in Binary Regression Models

    PubMed Central

    Rice, John D.; Taylor, Jeremy M. G.

    2016-01-01

    One common use of binary response regression methods is classification based on an arbitrary probability threshold dictated by the particular application. Since this is given to us a priori, it is sensible to incorporate the threshold into our estimation procedure. Specifically, for the linear logistic model, we solve a set of locally weighted score equations, using a kernel-like weight function centered at the threshold. The bandwidth for the weight function is selected by cross validation of a novel hybrid loss function that combines classification error and a continuous measure of divergence between observed and fitted values; other possible cross-validation functions based on more common binary classification metrics are also examined. This work has much in common with robust estimation, but diers from previous approaches in this area in its focus on prediction, specifically classification into high- and low-risk groups. Simulation results are given showing the reduction in error rates that can be obtained with this method when compared with maximum likelihood estimation, especially under certain forms of model misspecification. Analysis of a melanoma data set is presented to illustrate the use of the method in practice. PMID:28018492

  13. Error detection and reduction in blood banking.

    PubMed

    Motschman, T L; Moore, S B

    1996-12-01

    Error management plays a major role in facility process improvement efforts. By detecting and reducing errors, quality and, therefore, patient care improve. It begins with a strong organizational foundation of management attitude with clear, consistent employee direction and appropriate physical facilities. Clearly defined critical processes, critical activities, and SOPs act as the framework for operations as well as active quality monitoring. To assure that personnel can detect an report errors they must be trained in both operational duties and error management practices. Use of simulated/intentional errors and incorporation of error detection into competency assessment keeps employees practiced, confident, and diminishes fear of the unknown. Personnel can clearly see that errors are indeed used as opportunities for process improvement and not for punishment. The facility must have a clearly defined and consistently used definition for reportable errors. Reportable errors should include those errors with potentially harmful outcomes as well as those errors that are "upstream," and thus further away from the outcome. A well-written error report consists of who, what, when, where, why/how, and follow-up to the error. Before correction can occur, an investigation to determine the underlying cause of the error should be undertaken. Obviously, the best corrective action is prevention. Correction can occur at five different levels; however, only three of these levels are directed at prevention. Prevention requires a method to collect and analyze data concerning errors. In the authors' facility a functional error classification method and a quality system-based classification have been useful. An active method to search for problems uncovers them further upstream, before they can have disastrous outcomes. In the continual quest for improving processes, an error management program is itself a process that needs improvement, and we must strive to always close the circle of quality assurance. Ultimately, the goal of better patient care will be the reward.

  14. Minimum constitutive relation error based static identification of beams using force method

    NASA Astrophysics Data System (ADS)

    Guo, Jia; Takewaki, Izuru

    2017-05-01

    A new static identification approach based on the minimum constitutive relation error (CRE) principle for beam structures is introduced. The exact stiffness and the exact bending moment are shown to make the CRE minimal for given displacements to beam damages. A two-step substitution algorithm—a force-method step for the bending moment and a constitutive-relation step for the stiffness—is developed and its convergence is rigorously derived. Identifiability is further discussed and the stiffness in the undeformed region is found to be unidentifiable. An extra set of static measurements is complemented to remedy the drawback. Convergence and robustness are finally verified through numerical examples.

  15. Relation between minimum-error discrimination and optimum unambiguous discrimination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiu Daowen; SQIG-Instituto de Telecomunicacoes, Departamento de Matematica, Instituto Superior Tecnico, Universidade Tecnica de Lisboa, Avenida Rovisco Pais PT-1049-001, Lisbon; Li Lvjun

    2010-09-15

    In this paper, we investigate the relationship between the minimum-error probability Q{sub E} of ambiguous discrimination and the optimal inconclusive probability Q{sub U} of unambiguous discrimination. It is known that for discriminating two states, the inequality Q{sub U{>=}}2Q{sub E} has been proved in the literature. The main technical results are as follows: (1) We show that, for discriminating more than two states, Q{sub U{>=}}2Q{sub E} may not hold again, but the infimum of Q{sub U}/Q{sub E} is 1, and there is no supremum of Q{sub U}/Q{sub E}, which implies that the failure probabilities of the two schemes for discriminating somemore » states may be narrowly or widely gapped. (2) We derive two concrete formulas of the minimum-error probability Q{sub E} and the optimal inconclusive probability Q{sub U}, respectively, for ambiguous discrimination and unambiguous discrimination among arbitrary m simultaneously diagonalizable mixed quantum states with given prior probabilities. In addition, we show that Q{sub E} and Q{sub U} satisfy the relationship that Q{sub U{>=}}(m/m-1)Q{sub E}.« less

  16. Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres-Focus on Feature Selection.

    PubMed

    Zawbaa, Hossam M; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander

    2016-01-01

    Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven.

  17. Solving a Higgs optimization problem with quantum annealing for machine learning.

    PubMed

    Mott, Alex; Job, Joshua; Vlimant, Jean-Roch; Lidar, Daniel; Spiropulu, Maria

    2017-10-18

    The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect simulations of the physical processes involved, often resulting in incorrect labelling of background processes or signals (label noise) and systematic errors. Here we use quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, mapped to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers use the excited states in the vicinity of the ground state and demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and classification in neutrino physics.

  18. Solving a Higgs optimization problem with quantum annealing for machine learning

    NASA Astrophysics Data System (ADS)

    Mott, Alex; Job, Joshua; Vlimant, Jean-Roch; Lidar, Daniel; Spiropulu, Maria

    2017-10-01

    The discovery of Higgs-boson decays in a background of standard-model processes was assisted by machine learning methods. The classifiers used to separate signals such as these from background are trained using highly unerring but not completely perfect simulations of the physical processes involved, often resulting in incorrect labelling of background processes or signals (label noise) and systematic errors. Here we use quantum and classical annealing (probabilistic techniques for approximating the global maximum or minimum of a given function) to solve a Higgs-signal-versus-background machine learning optimization problem, mapped to a problem of finding the ground state of a corresponding Ising spin model. We build a set of weak classifiers based on the kinematic observables of the Higgs decay photons, which we then use to construct a strong classifier. This strong classifier is highly resilient against overtraining and against errors in the correlations of the physical observables in the training data. We show that the resulting quantum and classical annealing-based classifier systems perform comparably to the state-of-the-art machine learning methods that are currently used in particle physics. However, in contrast to these methods, the annealing-based classifiers are simple functions of directly interpretable experimental parameters with clear physical meaning. The annealer-trained classifiers use the excited states in the vicinity of the ground state and demonstrate some advantage over traditional machine learning methods for small training datasets. Given the relative simplicity of the algorithm and its robustness to error, this technique may find application in other areas of experimental particle physics, such as real-time decision making in event-selection problems and classification in neutrino physics.

  19. Computational Intelligence Modeling of the Macromolecules Release from PLGA Microspheres—Focus on Feature Selection

    PubMed Central

    Zawbaa, Hossam M.; Szlȩk, Jakub; Grosan, Crina; Jachowicz, Renata; Mendyk, Aleksander

    2016-01-01

    Poly-lactide-co-glycolide (PLGA) is a copolymer of lactic and glycolic acid. Drug release from PLGA microspheres depends not only on polymer properties but also on drug type, particle size, morphology of microspheres, release conditions, etc. Selecting a subset of relevant properties for PLGA is a challenging machine learning task as there are over three hundred features to consider. In this work, we formulate the selection of critical attributes for PLGA as a multiobjective optimization problem with the aim of minimizing the error of predicting the dissolution profile while reducing the number of attributes selected. Four bio-inspired optimization algorithms: antlion optimization, binary version of antlion optimization, grey wolf optimization, and social spider optimization are used to select the optimal feature set for predicting the dissolution profile of PLGA. Besides these, LASSO algorithm is also used for comparisons. Selection of crucial variables is performed under the assumption that both predictability and model simplicity are of equal importance to the final result. During the feature selection process, a set of input variables is employed to find minimum generalization error across different predictive models and their settings/architectures. The methodology is evaluated using predictive modeling for which various tools are chosen, such as Cubist, random forests, artificial neural networks (monotonic MLP, deep learning MLP), multivariate adaptive regression splines, classification and regression tree, and hybrid systems of fuzzy logic and evolutionary computations (fugeR). The experimental results are compared with the results reported by Szlȩk. We obtain a normalized root mean square error (NRMSE) of 15.97% versus 15.4%, and the number of selected input features is smaller, nine versus eleven. PMID:27315205

  20. Metabolite and transcript markers for the prediction of potato drought tolerance.

    PubMed

    Sprenger, Heike; Erban, Alexander; Seddig, Sylvia; Rudack, Katharina; Thalhammer, Anja; Le, Mai Q; Walther, Dirk; Zuther, Ellen; Köhl, Karin I; Kopka, Joachim; Hincha, Dirk K

    2018-04-01

    Potato (Solanum tuberosum L.) is one of the most important food crops worldwide. Current potato varieties are highly susceptible to drought stress. In view of global climate change, selection of cultivars with improved drought tolerance and high yield potential is of paramount importance. Drought tolerance breeding of potato is currently based on direct selection according to yield and phenotypic traits and requires multiple trials under drought conditions. Marker-assisted selection (MAS) is cheaper, faster and reduces classification errors caused by noncontrolled environmental effects. We analysed 31 potato cultivars grown under optimal and reduced water supply in six independent field trials. Drought tolerance was determined as tuber starch yield. Leaf samples from young plants were screened for preselected transcript and nontargeted metabolite abundance using qRT-PCR and GC-MS profiling, respectively. Transcript marker candidates were selected from a published RNA-Seq data set. A Random Forest machine learning approach extracted metabolite and transcript markers for drought tolerance prediction with low error rates of 6% and 9%, respectively. Moreover, by combining transcript and metabolite markers, the prediction error was reduced to 4.3%. Feature selection from Random Forest models allowed model minimization, yielding a minimal combination of only 20 metabolite and transcript markers that were successfully tested for their reproducibility in 16 independent agronomic field trials. We demonstrate that a minimum combination of transcript and metabolite markers sampled at early cultivation stages predicts potato yield stability under drought largely independent of seasonal and regional agronomic conditions. © 2017 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Modified Bat Algorithm for Feature Selection with the Wisconsin Diagnosis Breast Cancer (WDBC) Dataset

    PubMed

    Jeyasingh, Suganthi; Veluchamy, Malathi

    2017-05-01

    Early diagnosis of breast cancer is essential to save lives of patients. Usually, medical datasets include a large variety of data that can lead to confusion during diagnosis. The Knowledge Discovery on Database (KDD) process helps to improve efficiency. It requires elimination of inappropriate and repeated data from the dataset before final diagnosis. This can be done using any of the feature selection algorithms available in data mining. Feature selection is considered as a vital step to increase the classification accuracy. This paper proposes a Modified Bat Algorithm (MBA) for feature selection to eliminate irrelevant features from an original dataset. The Bat algorithm was modified using simple random sampling to select the random instances from the dataset. Ranking was with the global best features to recognize the predominant features available in the dataset. The selected features are used to train a Random Forest (RF) classification algorithm. The MBA feature selection algorithm enhanced the classification accuracy of RF in identifying the occurrence of breast cancer. The Wisconsin Diagnosis Breast Cancer Dataset (WDBC) was used for estimating the performance analysis of the proposed MBA feature selection algorithm. The proposed algorithm achieved better performance in terms of Kappa statistic, Mathew’s Correlation Coefficient, Precision, F-measure, Recall, Mean Absolute Error (MAE), Root Mean Square Error (RMSE), Relative Absolute Error (RAE) and Root Relative Squared Error (RRSE). Creative Commons Attribution License

  2. Simulated rRNA/DNA Ratios Show Potential To Misclassify Active Populations as Dormant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steven, Blaire; Hesse, Cedar; Soghigian, John

    The use of rRNA/DNA ratios derived from surveys of rRNA sequences in RNA and DNA extracts is an appealing but poorly validated approach to infer the activity status of environmental microbes. To improve the interpretation of rRNA/DNA ratios, we performed simulations to investigate the effects of community structure, rRNA amplification, and sampling depth on the accuracy of rRNA/DNA ratios in classifying bacterial populations as “active” or “dormant.” Community structure was an insignificant factor. In contrast, the extent of rRNA amplification that occurs as cells transition from dormant to growing had a significant effect (P < 0.0001) on classification accuracy, withmore » misclassification errors ranging from 16 to 28%, depending on the rRNA amplification model. The error rate increased to 47% when communities included a mixture of rRNA amplification models, but most of the inflated error was false negatives (i.e., active populations misclassified as dormant). Sampling depth also affected error rates (P < 0.001). Inadequate sampling depth produced various artifacts that are characteristic of rRNA/DNA ratios generated from real communities. These data show important constraints on the use of rRNA/DNA ratios to infer activity status. Whereas classification of populations as active based on rRNA/DNA ratios appears generally valid, classification of populations as dormant is potentially far less accurate.« less

  3. Simulated rRNA/DNA Ratios Show Potential To Misclassify Active Populations as Dormant

    DOE PAGES

    Steven, Blaire; Hesse, Cedar; Soghigian, John; ...

    2017-03-31

    The use of rRNA/DNA ratios derived from surveys of rRNA sequences in RNA and DNA extracts is an appealing but poorly validated approach to infer the activity status of environmental microbes. To improve the interpretation of rRNA/DNA ratios, we performed simulations to investigate the effects of community structure, rRNA amplification, and sampling depth on the accuracy of rRNA/DNA ratios in classifying bacterial populations as “active” or “dormant.” Community structure was an insignificant factor. In contrast, the extent of rRNA amplification that occurs as cells transition from dormant to growing had a significant effect (P < 0.0001) on classification accuracy, withmore » misclassification errors ranging from 16 to 28%, depending on the rRNA amplification model. The error rate increased to 47% when communities included a mixture of rRNA amplification models, but most of the inflated error was false negatives (i.e., active populations misclassified as dormant). Sampling depth also affected error rates (P < 0.001). Inadequate sampling depth produced various artifacts that are characteristic of rRNA/DNA ratios generated from real communities. These data show important constraints on the use of rRNA/DNA ratios to infer activity status. Whereas classification of populations as active based on rRNA/DNA ratios appears generally valid, classification of populations as dormant is potentially far less accurate.« less

  4. Regulation of IAP (Inhibitor of Apoptosis) Gene Expression by the p53 Tumor Suppressor Protein

    DTIC Science & Technology

    2005-05-01

    adenovirus, gene therapy, polymorphism, 31 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20...averaged results of three inde- pendent experiments, with standard error. Right panel: Level of p53 in infected cells using the antibody Ab-6 (Calbiochem...with highly purified mitochondria as described in (2). The arrow marks oligomerized BAK. The right _ -. panel depicts the purity of BMH CrosIinked Mito

  5. Computer-aided interpretation approach for optical tomographic images

    NASA Astrophysics Data System (ADS)

    Klose, Christian D.; Klose, Alexander D.; Netz, Uwe J.; Scheel, Alexander K.; Beuthan, Jürgen; Hielscher, Andreas H.

    2010-11-01

    A computer-aided interpretation approach is proposed to detect rheumatic arthritis (RA) in human finger joints using optical tomographic images. The image interpretation method employs a classification algorithm that makes use of a so-called self-organizing mapping scheme to classify fingers as either affected or unaffected by RA. Unlike in previous studies, this allows for combining multiple image features, such as minimum and maximum values of the absorption coefficient for identifying affected and not affected joints. Classification performances obtained by the proposed method were evaluated in terms of sensitivity, specificity, Youden index, and mutual information. Different methods (i.e., clinical diagnostics, ultrasound imaging, magnet resonance imaging, and inspection of optical tomographic images), were used to produce ground truth benchmarks to determine the performance of image interpretations. Using data from 100 finger joints, findings suggest that some parameter combinations lead to higher sensitivities, while others to higher specificities when compared to single parameter classifications employed in previous studies. Maximum performances are reached when combining the minimum/maximum ratio of the absorption coefficient and image variance. In this case, sensitivities and specificities over 0.9 can be achieved. These values are much higher than values obtained when only single parameter classifications were used, where sensitivities and specificities remained well below 0.8.

  6. An Analysis of U.S. Army Fratricide Incidents during the Global War on Terror (11 September 2001 to 31 March 2008)

    DTIC Science & Technology

    2010-03-15

    Swiss cheese model of human error causation. ................................................................... 3  2. Results for the classification of...based on Reason’s “ Swiss cheese ” model of human error (1990). Figure 1 describes how an accident is likely to occur when all of the errors, or “holes...align. A detailed description of HFACS can be found in Wiegmann and Shappell (2003). Figure 1. The Swiss cheese model of human error

  7. A negentropy minimization approach to adaptive equalization for digital communication systems.

    PubMed

    Choi, Sooyong; Lee, Te-Won

    2004-07-01

    In this paper, we introduce and investigate a new adaptive equalization method based on minimizing approximate negentropy of the estimation error for a finite-length equalizer. We consider an approximate negentropy using nonpolynomial expansions of the estimation error as a new performance criterion to improve performance of a linear equalizer based on minimizing minimum mean squared error (MMSE). Negentropy includes higher order statistical information and its minimization provides improved converge, performance and accuracy compared to traditional methods such as MMSE in terms of bit error rate (BER). The proposed negentropy minimization (NEGMIN) equalizer has two kinds of solutions, the MMSE solution and the other one, depending on the ratio of the normalization parameters. The NEGMIN equalizer has best BER performance when the ratio of the normalization parameters is properly adjusted to maximize the output power(variance) of the NEGMIN equalizer. Simulation experiments show that BER performance of the NEGMIN equalizer with the other solution than the MMSE one has similar characteristics to the adaptive minimum bit error rate (AMBER) equalizer. The main advantage of the proposed equalizer is that it needs significantly fewer training symbols than the AMBER equalizer. Furthermore, the proposed equalizer is more robust to nonlinear distortions than the MMSE equalizer.

  8. Movement trajectory smoothness is not associated with the endpoint accuracy of rapid multi-joint arm movements in young and older adults

    PubMed Central

    Poston, Brach; Van Gemmert, Arend W.A.; Sharma, Siddharth; Chakrabarti, Somesh; Zavaremi, Shahrzad H.; Stelmach, George

    2013-01-01

    The minimum variance theory proposes that motor commands are corrupted by signal-dependent noise and smooth trajectories with low noise levels are selected to minimize endpoint error and endpoint variability. The purpose of the study was to determine the contribution of trajectory smoothness to the endpoint accuracy and endpoint variability of rapid multi-joint arm movements. Young and older adults performed arm movements (4 blocks of 25 trials) as fast and as accurately as possible to a target with the right (dominant) arm. Endpoint accuracy and endpoint variability along with trajectory smoothness and error were quantified for each block of trials. Endpoint error and endpoint variance were greater in older adults compared with young adults, but decreased at a similar rate with practice for the two age groups. The greater endpoint error and endpoint variance exhibited by older adults were primarily due to impairments in movement extent control and not movement direction control. The normalized jerk was similar for the two age groups, but was not strongly associated with endpoint error or endpoint variance for either group. However, endpoint variance was strongly associated with endpoint error for both the young and older adults. Finally, trajectory error was similar for both groups and was weakly associated with endpoint error for the older adults. The findings are not consistent with the predictions of the minimum variance theory, but support and extend previous observations that movement trajectories and endpoints are planned independently. PMID:23584101

  9. Object-Based Land Use Classification of Agricultural Land by Coupling Multi-Temporal Spectral Characteristics and Phenological Events in Germany

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Loew, Fabian; Conrad, Christopher

    2015-04-01

    Crop maps based on classification of remotely sensed data are of increased attendance in agricultural management. This induces a more detailed knowledge about the reliability of such spatial information. However, classification of agricultural land use is often limited by high spectral similarities of the studied crop types. More, spatially and temporally varying agro-ecological conditions can introduce confusion in crop mapping. Classification errors in crop maps in turn may have influence on model outputs, like agricultural production monitoring. One major goal of the PhenoS project ("Phenological structuring to determine optimal acquisition dates for Sentinel-2 data for field crop classification"), is the detection of optimal phenological time windows for land cover classification purposes. Since many crop species are spectrally highly similar, accurate classification requires the right selection of satellite images for a certain classification task. In the course of one growing season, phenological phases exist where crops are separable with higher accuracies. For this purpose, coupling of multi-temporal spectral characteristics and phenological events is promising. The focus of this study is set on the separation of spectrally similar cereal crops like winter wheat, barley, and rye of two test sites in Germany called "Harz/Central German Lowland" and "Demmin". However, this study uses object based random forest (RF) classification to investigate the impact of image acquisition frequency and timing on crop classification uncertainty by permuting all possible combinations of available RapidEye time series recorded on the test sites between 2010 and 2014. The permutations were applied to different segmentation parameters. Then, classification uncertainty was assessed and analysed, based on the probabilistic soft-output from the RF algorithm at the per-field basis. From this soft output, entropy was calculated as a spatial measure of classification uncertainty. The results indicate that uncertainty estimates provide a valuable addition to traditional accuracy assessments and helps the user to allocate error in crop maps.

  10. A new classification of glaucomas

    PubMed Central

    Bordeianu, Constantin-Dan

    2014-01-01

    Purpose To suggest a new glaucoma classification that is pathogenic, etiologic, and clinical. Methods After discussing the logical pathway used in criteria selection, the paper presents the new classification and compares it with the classification currently in use, that is, the one issued by the European Glaucoma Society in 2008. Results The paper proves that the new classification is clear (being based on a coherent and consistently followed set of criteria), is comprehensive (framing all forms of glaucoma), and helps in understanding the sickness understanding (in that it uses a logical framing system). The great advantage is that it facilitates therapeutic decision making in that it offers direct therapeutic suggestions and avoids errors leading to disasters. Moreover, the scheme remains open to any new development. Conclusion The suggested classification is a pathogenic, etiologic, and clinical classification that fulfills the conditions of an ideal classification. The suggested classification is the first classification in which the main criterion is consistently used for the first 5 to 7 crossings until its differentiation capabilities are exhausted. Then, secondary criteria (etiologic and clinical) pick up the relay until each form finds its logical place in the scheme. In order to avoid unclear aspects, the genetic criterion is no longer used, being replaced by age, one of the clinical criteria. The suggested classification brings only benefits to all categories of ophthalmologists: the beginners will have a tool to better understand the sickness and to ease their decision making, whereas the experienced doctors will have their practice simplified. For all doctors, errors leading to therapeutic disasters will be less likely to happen. Finally, researchers will have the object of their work gathered in the group of glaucoma with unknown or uncertain pathogenesis, whereas the results of their work will easily find a logical place in the scheme, as the suggested classification remains open to any new development. PMID:25246759

  11. An investigation of reports of Controlled Flight Toward Terrain (CFTT)

    NASA Technical Reports Server (NTRS)

    Porter, R. F.; Loomis, J. P.

    1981-01-01

    Some 258 reports from more than 23,000 documents in the files of the Aviation Safety Reporting System (ASRS) were found to be to the hazard of flight into terrain with no prior awareness by the crew of impending disaster. Examination of the reports indicate that human error was a casual factor in 64% of the incidents in which some threat of terrain conflict was experienced. Approximately two-thirds of the human errors were attributed to controllers, the most common discrepancy being a radar vector below the Minimum Vector Altitude (MVA). Errors by pilots were of a much diverse nature and include a few instances of gross deviations from their assigned altitudes. The ground proximity warning system and the minimum safe altitude warning equipment were the initial recovery factor in some 18 serious incidents and were apparently the sole warning in six reported instances which otherwise would most probably have ended in disaster.

  12. Classification of burn wounds using support vector machines

    NASA Astrophysics Data System (ADS)

    Acha, Begona; Serrano, Carmen; Palencia, Sergio; Murillo, Juan Jose

    2004-05-01

    The purpose of this work is to improve a previous method developed by the authors for the classification of burn wounds into their depths. The inputs of the system are color and texture information, as these are the characteristics observed by physicians in order to give a diagnosis. Our previous work consisted in segmenting the burn wound from the rest of the image and classifying the burn into its depth. In this paper we focus on the classification problem only. We already proposed to use a Fuzzy-ARTMAP neural network (NN). However, we may take advantage of new powerful classification tools such as Support Vector Machines (SVM). We apply the five-folded cross validation scheme to divide the database into training and validating sets. Then, we apply a feature selection method for each classifier, which will give us the set of features that yields the smallest classification error for each classifier. Features used to classify are first-order statistical parameters extracted from the L*, u* and v* color components of the image. The feature selection algorithms used are the Sequential Forward Selection (SFS) and the Sequential Backward Selection (SBS) methods. As data of the problem faced here are not linearly separable, the SVM was trained using some different kernels. The validating process shows that the SVM method, when using a Gaussian kernel of variance 1, outperforms classification results obtained with the rest of the classifiers, yielding an error classification rate of 0.7% whereas the Fuzzy-ARTMAP NN attained 1.6 %.

  13. Comparative assessment of LANDSAT-D MSS and TM data quality for mapping applications in the Southeast

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Rectifications of multispectral scanner and thematic mapper data sets for full and subscene areas, analyses of planimetric errors, assessments of the number and distribution of ground control points required to minimize errors, and factors contributing to error residual are examined. Other investigations include the generation of three dimensional terrain models and the effects of spatial resolution on digital classification accuracies.

  14. Cluster designs to assess the prevalence of acute malnutrition by lot quality assurance sampling: a validation study by computer simulation.

    PubMed

    Olives, Casey; Pagano, Marcello; Deitchler, Megan; Hedt, Bethany L; Egge, Kari; Valadez, Joseph J

    2009-04-01

    Traditional lot quality assurance sampling (LQAS) methods require simple random sampling to guarantee valid results. However, cluster sampling has been proposed to reduce the number of random starting points. This study uses simulations to examine the classification error of two such designs, a 67x3 (67 clusters of three observations) and a 33x6 (33 clusters of six observations) sampling scheme to assess the prevalence of global acute malnutrition (GAM). Further, we explore the use of a 67x3 sequential sampling scheme for LQAS classification of GAM prevalence. Results indicate that, for independent clusters with moderate intracluster correlation for the GAM outcome, the three sampling designs maintain approximate validity for LQAS analysis. Sequential sampling can substantially reduce the average sample size that is required for data collection. The presence of intercluster correlation can impact dramatically the classification error that is associated with LQAS analysis.

  15. Influence of ECG measurement accuracy on ECG diagnostic statements.

    PubMed

    Zywietz, C; Celikag, D; Joseph, G

    1996-01-01

    Computer analysis of electrocardiograms (ECGs) provides a large amount of ECG measurement data, which may be used for diagnostic classification and storage in ECG databases. Until now, neither error limits for ECG measurements have been specified nor has their influence on diagnostic statements been systematically investigated. An analytical method is presented to estimate the influence of measurement errors on the accuracy of diagnostic ECG statements. Systematic (offset) errors will usually result in an increase of false positive or false negative statements since they cause a shift of the working point on the receiver operating characteristics curve. Measurement error dispersion broadens the distribution function of discriminative measurement parameters and, therefore, usually increases the overlap between discriminative parameters. This results in a flattening of the receiver operating characteristics curve and an increase of false positive and false negative classifications. The method developed has been applied to ECG conduction defect diagnoses by using the proposed International Electrotechnical Commission's interval measurement tolerance limits. These limits appear too large because more than 30% of false positive atrial conduction defect statements and 10-18% of false intraventricular conduction defect statements could be expected due to tolerated measurement errors. To assure long-term usability of ECG measurement databases, it is recommended that systems provide its error tolerance limits obtained on a defined test set.

  16. Decision support system for determining the contact lens for refractive errors patients with classification ID3

    NASA Astrophysics Data System (ADS)

    Situmorang, B. H.; Setiawan, M. P.; Tosida, E. T.

    2017-01-01

    Refractive errors are abnormalities of the refraction of light so that the shadows do not focus precisely on the retina resulting in blurred vision [1]. Refractive errors causing the patient should wear glasses or contact lenses in order eyesight returned to normal. The use of glasses or contact lenses in a person will be different from others, it is influenced by patient age, the amount of tear production, vision prescription, and astigmatic. Because the eye is one organ of the human body is very important to see, then the accuracy in determining glasses or contact lenses which will be used is required. This research aims to develop a decision support system that can produce output on the right contact lenses for refractive errors patients with a value of 100% accuracy. Iterative Dichotomize Three (ID3) classification methods will generate gain and entropy values of attributes that include code sample data, age of the patient, astigmatic, the ratio of tear production, vision prescription, and classes that will affect the outcome of the decision tree. The eye specialist test result for the training data obtained the accuracy rate of 96.7% and an error rate of 3.3%, the result test using confusion matrix obtained the accuracy rate of 96.1% and an error rate of 3.1%; for the data testing obtained accuracy rate of 100% and an error rate of 0.

  17. The generalization ability of online SVM classification based on Markov sampling.

    PubMed

    Xu, Jie; Yan Tang, Yuan; Zou, Bin; Xu, Zongben; Li, Luoqing; Lu, Yang

    2015-03-01

    In this paper, we consider online support vector machine (SVM) classification learning algorithms with uniformly ergodic Markov chain (u.e.M.c.) samples. We establish the bound on the misclassification error of an online SVM classification algorithm with u.e.M.c. samples based on reproducing kernel Hilbert spaces and obtain a satisfactory convergence rate. We also introduce a novel online SVM classification algorithm based on Markov sampling, and present the numerical studies on the learning ability of online SVM classification based on Markov sampling for benchmark repository. The numerical studies show that the learning performance of the online SVM classification algorithm based on Markov sampling is better than that of classical online SVM classification based on random sampling as the size of training samples is larger.

  18. Aspen, climate, and sudden decline in western USA

    Treesearch

    Gerald E. Rehfeldt; Dennis E. Ferguson; Nicholas L. Crookston

    2009-01-01

    A bioclimate model predicting the presence or absence of aspen, Populus tremuloides, in western USA from climate variables was developed by using the Random Forests classification tree on Forest Inventory data from about 118,000 permanent sample plots. A reasonably parsimonious model used eight predictors to describe aspen's climate profile. Classification errors...

  19. Multi-template tensor-based morphometry: Application to analysis of Alzheimer's disease

    PubMed Central

    Koikkalainen, Juha; Lötjönen, Jyrki; Thurfjell, Lennart; Rueckert, Daniel; Waldemar, Gunhild; Soininen, Hilkka

    2012-01-01

    In this paper methods for using multiple templates in tensor-based morphometry (TBM) are presented and comparedtothe conventional single-template approach. TBM analysis requires non-rigid registrations which are often subject to registration errors. When using multiple templates and, therefore, multiple registrations, it can be assumed that the registration errors are averaged and eventually compensated. Four different methods are proposed for multi-template TBM. The methods were evaluated using magnetic resonance (MR) images of healthy controls, patients with stable or progressive mild cognitive impairment (MCI), and patients with Alzheimer's disease (AD) from the ADNI database (N=772). The performance of TBM features in classifying images was evaluated both quantitatively and qualitatively. Classification results show that the multi-template methods are statistically significantly better than the single-template method. The overall classification accuracy was 86.0% for the classification of control and AD subjects, and 72.1%for the classification of stable and progressive MCI subjects. The statistical group-level difference maps produced using multi-template TBM were smoother, formed larger continuous regions, and had larger t-values than the maps obtained with single-template TBM. PMID:21419228

  20. A framework for software fault tolerance in real-time systems

    NASA Technical Reports Server (NTRS)

    Anderson, T.; Knight, J. C.

    1983-01-01

    A classification scheme for errors and a technique for the provision of software fault tolerance in cyclic real-time systems is presented. The technique requires that the process structure of a system be represented by a synchronization graph which is used by an executive as a specification of the relative times at which they will communicate during execution. Communication between concurrent processes is severely limited and may only take place between processes engaged in an exchange. A history of error occurrences is maintained by an error handler. When an error is detected, the error handler classifies it using the error history information and then initiates appropriate recovery action.

  1. Minimum risk wavelet shrinkage operator for Poisson image denoising.

    PubMed

    Cheng, Wu; Hirakawa, Keigo

    2015-05-01

    The pixel values of images taken by an image sensor are said to be corrupted by Poisson noise. To date, multiscale Poisson image denoising techniques have processed Haar frame and wavelet coefficients--the modeling of coefficients is enabled by the Skellam distribution analysis. We extend these results by solving for shrinkage operators for Skellam that minimizes the risk functional in the multiscale Poisson image denoising setting. The minimum risk shrinkage operator of this kind effectively produces denoised wavelet coefficients with minimum attainable L2 error.

  2. Discriminant WSRC for Large-Scale Plant Species Recognition.

    PubMed

    Zhang, Shanwen; Zhang, Chuanlei; Zhu, Yihai; You, Zhuhong

    2017-01-01

    In sparse representation based classification (SRC) and weighted SRC (WSRC), it is time-consuming to solve the global sparse representation problem. A discriminant WSRC (DWSRC) is proposed for large-scale plant species recognition, including two stages. Firstly, several subdictionaries are constructed by dividing the dataset into several similar classes, and a subdictionary is chosen by the maximum similarity between the test sample and the typical sample of each similar class. Secondly, the weighted sparse representation of the test image is calculated with respect to the chosen subdictionary, and then the leaf category is assigned through the minimum reconstruction error. Different from the traditional SRC and its improved approaches, we sparsely represent the test sample on a subdictionary whose base elements are the training samples of the selected similar class, instead of using the generic overcomplete dictionary on the entire training samples. Thus, the complexity to solving the sparse representation problem is reduced. Moreover, DWSRC is adapted to newly added leaf species without rebuilding the dictionary. Experimental results on the ICL plant leaf database show that the method has low computational complexity and high recognition rate and can be clearly interpreted.

  3. Robust linear discriminant analysis with distance based estimators

    NASA Astrophysics Data System (ADS)

    Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina

    2017-11-01

    Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.

  4. Computer search for binary cyclic UEP codes of odd length up to 65

    NASA Technical Reports Server (NTRS)

    Lin, Mao-Chao; Lin, Chi-Chang; Lin, Shu

    1990-01-01

    Using an exhaustive computation, the unequal error protection capabilities of all binary cyclic codes of odd length up to 65 that have minimum distances at least 3 are found. For those codes that can only have upper bounds on their unequal error protection capabilities computed, an analytic method developed by Dynkin and Togonidze (1976) is used to show that the upper bounds meet the exact unequal error protection capabilities.

  5. Continuous slope-area discharge records in Maricopa County, Arizona, 2004–2012

    USGS Publications Warehouse

    Wiele, Stephen M.; Heaton, John W.; Bunch, Claire E.; Gardner, David E.; Smith, Christopher F.

    2015-12-29

    Analyses of sources of errors and the impact stage data errors have on calculated discharge time series are considered, along with issues in data reduction. Steeper, longer stream reaches are generally less sensitive to measurement error. Other issues considered are pressure transducer drawdown, capture of flood peaks with discrete stage data, selection of stage record for development of rating curves, and minimum stages for the calculation of discharge.

  6. Software platform for managing the classification of error- related potentials of observers

    NASA Astrophysics Data System (ADS)

    Asvestas, P.; Ventouras, E.-C.; Kostopoulos, S.; Sidiropoulos, K.; Korfiatis, V.; Korda, A.; Uzunolglu, A.; Karanasiou, I.; Kalatzis, I.; Matsopoulos, G.

    2015-09-01

    Human learning is partly based on observation. Electroencephalographic recordings of subjects who perform acts (actors) or observe actors (observers), contain a negative waveform in the Evoked Potentials (EPs) of the actors that commit errors and of observers who observe the error-committing actors. This waveform is called the Error-Related Negativity (ERN). Its detection has applications in the context of Brain-Computer Interfaces. The present work describes a software system developed for managing EPs of observers, with the aim of classifying them into observations of either correct or incorrect actions. It consists of an integrated platform for the storage, management, processing and classification of EPs recorded during error-observation experiments. The system was developed using C# and the following development tools and frameworks: MySQL, .NET Framework, Entity Framework and Emgu CV, for interfacing with the machine learning library of OpenCV. Up to six features can be computed per EP recording per electrode. The user can select among various feature selection algorithms and then proceed to train one of three types of classifiers: Artificial Neural Networks, Support Vector Machines, k-nearest neighbour. Next the classifier can be used for classifying any EP curve that has been inputted to the database.

  7. Variation of Care Time Between Nursing Units in Classification-Based Nurse-to-Resident Ratios: A Multilevel Analysis

    PubMed Central

    Planer, Katarina; Hagel, Anja

    2018-01-01

    A validity test was conducted to determine how care level–based nurse-to-resident ratios compare with actual daily care times per resident in Germany. Stability across different long-term care facilities was tested. Care level–based nurse-to-resident ratios were compared with the standard minimum nurse-to-resident ratios. Levels of care are determined by classification authorities in long-term care insurance programs and are used to distribute resources. Care levels are a powerful tool for classifying authorities in long-term care insurance. We used observer-based measurement of assignable direct and indirect care time in 68 nursing units for 2028 residents across 2 working days. Organizational data were collected at the end of the quarter in which the observation was made. Data were collected from January to March, 2012. We used a null multilevel model with random intercepts and multilevel models with fixed and random slopes to analyze data at both the organization and resident levels. A total of 14% of the variance in total care time per day was explained by membership in nursing units. The impact of care levels on care time differed significantly between nursing units. Forty percent of residents at the lowest care level received less than the standard minimum registered nursing time per day. For facilities that have been significantly disadvantaged in the current staffing system, a higher minimum standard will function more effectively than a complex classification system without scientific controls. PMID:29442533

  8. Variation of Care Time Between Nursing Units in Classification-Based Nurse-to-Resident Ratios: A Multilevel Analysis.

    PubMed

    Brühl, Albert; Planer, Katarina; Hagel, Anja

    2018-01-01

    A validity test was conducted to determine how care level-based nurse-to-resident ratios compare with actual daily care times per resident in Germany. Stability across different long-term care facilities was tested. Care level-based nurse-to-resident ratios were compared with the standard minimum nurse-to-resident ratios. Levels of care are determined by classification authorities in long-term care insurance programs and are used to distribute resources. Care levels are a powerful tool for classifying authorities in long-term care insurance. We used observer-based measurement of assignable direct and indirect care time in 68 nursing units for 2028 residents across 2 working days. Organizational data were collected at the end of the quarter in which the observation was made. Data were collected from January to March, 2012. We used a null multilevel model with random intercepts and multilevel models with fixed and random slopes to analyze data at both the organization and resident levels. A total of 14% of the variance in total care time per day was explained by membership in nursing units. The impact of care levels on care time differed significantly between nursing units. Forty percent of residents at the lowest care level received less than the standard minimum registered nursing time per day. For facilities that have been significantly disadvantaged in the current staffing system, a higher minimum standard will function more effectively than a complex classification system without scientific controls.

  9. Satellite inventory of Minnesota forest resources

    NASA Technical Reports Server (NTRS)

    Bauer, Marvin E.; Burk, Thomas E.; Ek, Alan R.; Coppin, Pol R.; Lime, Stephen D.; Walsh, Terese A.; Walters, David K.; Befort, William; Heinzen, David F.

    1993-01-01

    The methods and results of using Landsat Thematic Mapper (TM) data to classify and estimate the acreage of forest covertypes in northeastern Minnesota are described. Portions of six TM scenes covering five counties with a total area of 14,679 square miles were classified into six forest and five nonforest classes. The approach involved the integration of cluster sampling, image processing, and estimation. Using cluster sampling, 343 plots, each 88 acres in size, were photo interpreted and field mapped as a source of reference data for classifier training and calibration of the TM data classifications. Classification accuracies of up to 75 percent were achieved; most misclassification was between similar or related classes. An inverse method of calibration, based on the error rates obtained from the classifications of the cluster plots, was used to adjust the classification class proportions for classification errors. The resulting area estimates for total forest land in the five-county area were within 3 percent of the estimate made independently by the USDA Forest Service. Area estimates for conifer and hardwood forest types were within 0.8 and 6.0 percent respectively, of the Forest Service estimates. A trial of a second method of estimating the same classes as the Forest Service resulted in standard errors of 0.002 to 0.015. A study of the use of multidate TM data for change detection showed that forest canopy depletion, canopy increment, and no change could be identified with greater than 90 percent accuracy. The project results have been the basis for the Minnesota Department of Natural Resources and the Forest Service to define and begin to implement an annual system of forest inventory which utilizes Landsat TM data to detect changes in forest cover.

  10. Monte Carlo simulation of errors in the anisotropy of magnetic susceptibility - A second-rank symmetric tensor. [for grains in sedimentary and volcanic rocks

    NASA Technical Reports Server (NTRS)

    Lienert, Barry R.

    1991-01-01

    Monte Carlo perturbations of synthetic tensors to evaluate the Hext/Jelinek elliptical confidence regions for anisotropy of magnetic susceptibility (AMS) eigenvectors are used. When the perturbations are 33 percent of the minimum anisotropy, both the shapes and probability densities of the resulting eigenvector distributions agree with the elliptical distributions predicted by the Hext/Jelinek equations. When the perturbation size is increased to 100 percent of the minimum eigenvalue difference, the major axis of the 95 percent confidence ellipse underestimates the observed eigenvector dispersion by about 10 deg. The observed distributions of the principal susceptibilities (eigenvalues) are close to being normal, with standard errors that agree well with the calculated Hext/Jelinek errors. The Hext/Jelinek ellipses are also able to describe the AMS dispersions due to instrumental noise and provide reasonable limits for the AMS dispersions observed in two Hawaiian basaltic dikes. It is concluded that the Hext/Jelinek method provides a satisfactory description of the errors in AMS data and should be a standard part of any AMS data analysis.

  11. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines

    PubMed Central

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J.; Raboso, Mariano

    2015-01-01

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation—based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking—to reduce the dimensions of images—and binarization—to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements. PMID:26091392

  12. Acoustic Biometric System Based on Preprocessing Techniques and Linear Support Vector Machines.

    PubMed

    del Val, Lara; Izquierdo-Fuente, Alberto; Villacorta, Juan J; Raboso, Mariano

    2015-06-17

    Drawing on the results of an acoustic biometric system based on a MSE classifier, a new biometric system has been implemented. This new system preprocesses acoustic images, extracts several parameters and finally classifies them, based on Support Vector Machine (SVM). The preprocessing techniques used are spatial filtering, segmentation-based on a Gaussian Mixture Model (GMM) to separate the person from the background, masking-to reduce the dimensions of images-and binarization-to reduce the size of each image. An analysis of classification error and a study of the sensitivity of the error versus the computational burden of each implemented algorithm are presented. This allows the selection of the most relevant algorithms, according to the benefits required by the system. A significant improvement of the biometric system has been achieved by reducing the classification error, the computational burden and the storage requirements.

  13. Multi-factorial analysis of class prediction error: estimating optimal number of biomarkers for various classification rules.

    PubMed

    Khondoker, Mizanur R; Bachmann, Till T; Mewissen, Muriel; Dickinson, Paul; Dobrzelecki, Bartosz; Campbell, Colin J; Mount, Andrew R; Walton, Anthony J; Crain, Jason; Schulze, Holger; Giraud, Gerard; Ross, Alan J; Ciani, Ilenia; Ember, Stuart W J; Tlili, Chaker; Terry, Jonathan G; Grant, Eilidh; McDonnell, Nicola; Ghazal, Peter

    2010-12-01

    Machine learning and statistical model based classifiers have increasingly been used with more complex and high dimensional biological data obtained from high-throughput technologies. Understanding the impact of various factors associated with large and complex microarray datasets on the predictive performance of classifiers is computationally intensive, under investigated, yet vital in determining the optimal number of biomarkers for various classification purposes aimed towards improved detection, diagnosis, and therapeutic monitoring of diseases. We investigate the impact of microarray based data characteristics on the predictive performance for various classification rules using simulation studies. Our investigation using Random Forest, Support Vector Machines, Linear Discriminant Analysis and k-Nearest Neighbour shows that the predictive performance of classifiers is strongly influenced by training set size, biological and technical variability, replication, fold change and correlation between biomarkers. Optimal number of biomarkers for a classification problem should therefore be estimated taking account of the impact of all these factors. A database of average generalization errors is built for various combinations of these factors. The database of generalization errors can be used for estimating the optimal number of biomarkers for given levels of predictive accuracy as a function of these factors. Examples show that curves from actual biological data resemble that of simulated data with corresponding levels of data characteristics. An R package optBiomarker implementing the method is freely available for academic use from the Comprehensive R Archive Network (http://www.cran.r-project.org/web/packages/optBiomarker/).

  14. Detection of Periodic Leg Movements by Machine Learning Methods Using Polysomnographic Parameters Other Than Leg Electromyography

    PubMed Central

    Umut, İlhan; Çentik, Güven

    2016-01-01

    The number of channels used for polysomnographic recording frequently causes difficulties for patients because of the many cables connected. Also, it increases the risk of having troubles during recording process and increases the storage volume. In this study, it is intended to detect periodic leg movement (PLM) in sleep with the use of the channels except leg electromyography (EMG) by analysing polysomnography (PSG) data with digital signal processing (DSP) and machine learning methods. PSG records of 153 patients of different ages and genders with PLM disorder diagnosis were examined retrospectively. A novel software was developed for the analysis of PSG records. The software utilizes the machine learning algorithms, statistical methods, and DSP methods. In order to classify PLM, popular machine learning methods (multilayer perceptron, K-nearest neighbour, and random forests) and logistic regression were used. Comparison of classified results showed that while K-nearest neighbour classification algorithm had higher average classification rate (91.87%) and lower average classification error value (RMSE = 0.2850), multilayer perceptron algorithm had the lowest average classification rate (83.29%) and the highest average classification error value (RMSE = 0.3705). Results showed that PLM can be classified with high accuracy (91.87%) without leg EMG record being present. PMID:27213008

  15. Detection of Periodic Leg Movements by Machine Learning Methods Using Polysomnographic Parameters Other Than Leg Electromyography.

    PubMed

    Umut, İlhan; Çentik, Güven

    2016-01-01

    The number of channels used for polysomnographic recording frequently causes difficulties for patients because of the many cables connected. Also, it increases the risk of having troubles during recording process and increases the storage volume. In this study, it is intended to detect periodic leg movement (PLM) in sleep with the use of the channels except leg electromyography (EMG) by analysing polysomnography (PSG) data with digital signal processing (DSP) and machine learning methods. PSG records of 153 patients of different ages and genders with PLM disorder diagnosis were examined retrospectively. A novel software was developed for the analysis of PSG records. The software utilizes the machine learning algorithms, statistical methods, and DSP methods. In order to classify PLM, popular machine learning methods (multilayer perceptron, K-nearest neighbour, and random forests) and logistic regression were used. Comparison of classified results showed that while K-nearest neighbour classification algorithm had higher average classification rate (91.87%) and lower average classification error value (RMSE = 0.2850), multilayer perceptron algorithm had the lowest average classification rate (83.29%) and the highest average classification error value (RMSE = 0.3705). Results showed that PLM can be classified with high accuracy (91.87%) without leg EMG record being present.

  16. Effects of stress typicality during speeded grammatical classification.

    PubMed

    Arciuli, Joanne; Cupples, Linda

    2003-01-01

    The experiments reported here were designed to investigate the influence of stress typicality during speeded grammatical classification of disyllabic English words by native and non-native speakers. Trochaic nouns and iambic gram verbs were considered to be typically stressed, whereas iambic nouns and trochaic verbs were considered to be atypically stressed. Experiments 1a and 2a showed that while native speakers classified typically stressed words individual more quickly and more accurately than atypically stressed words during differences reading, there were no overall effects during classification of spoken stimuli. However, a subgroup of native speakers with high error rates did show a significant effect during classification of spoken stimuli. Experiments 1b and 2b showed that non-native speakers classified typically stressed words more quickly and more accurately than atypically stressed words during reading. Typically stressed words were classified more accurately than atypically stressed words when the stimuli were spoken. Importantly, there was a significant relationship between error rates, vocabulary size and the size of the stress typicality effect in each experiment. We conclude that participants use information about lexical stress to help them distinguish between disyllabic nouns and verbs during speeded grammatical classification. This is especially so for individuals with a limited vocabulary who lack other knowledge (e.g., semantic knowledge) about the differences between these grammatical categories.

  17. Automatic classification of diseases from free-text death certificates for real-time surveillance.

    PubMed

    Koopman, Bevan; Karimi, Sarvnaz; Nguyen, Anthony; McGuire, Rhydwyn; Muscatello, David; Kemp, Madonna; Truran, Donna; Zhang, Ming; Thackway, Sarah

    2015-07-15

    Death certificates provide an invaluable source for mortality statistics which can be used for surveillance and early warnings of increases in disease activity and to support the development and monitoring of prevention or response strategies. However, their value can be realised only if accurate, quantitative data can be extracted from death certificates, an aim hampered by both the volume and variable nature of certificates written in natural language. This study aims to develop a set of machine learning and rule-based methods to automatically classify death certificates according to four high impact diseases of interest: diabetes, influenza, pneumonia and HIV. Two classification methods are presented: i) a machine learning approach, where detailed features (terms, term n-grams and SNOMED CT concepts) are extracted from death certificates and used to train a set of supervised machine learning models (Support Vector Machines); and ii) a set of keyword-matching rules. These methods were used to identify the presence of diabetes, influenza, pneumonia and HIV in a death certificate. An empirical evaluation was conducted using 340,142 death certificates, divided between training and test sets, covering deaths from 2000-2007 in New South Wales, Australia. Precision and recall (positive predictive value and sensitivity) were used as evaluation measures, with F-measure providing a single, overall measure of effectiveness. A detailed error analysis was performed on classification errors. Classification of diabetes, influenza, pneumonia and HIV was highly accurate (F-measure 0.96). More fine-grained ICD-10 classification effectiveness was more variable but still high (F-measure 0.80). The error analysis revealed that word variations as well as certain word combinations adversely affected classification. In addition, anomalies in the ground truth likely led to an underestimation of the effectiveness. The high accuracy and low cost of the classification methods allow for an effective means for automatic and real-time surveillance of diabetes, influenza, pneumonia and HIV deaths. In addition, the methods are generally applicable to other diseases of interest and to other sources of medical free-text besides death certificates.

  18. Measures of Linguistic Accuracy in Second Language Writing Research.

    ERIC Educational Resources Information Center

    Polio, Charlene G.

    1997-01-01

    Investigates the reliability of measures of linguistic accuracy in second language writing. The study uses a holistic scale, error-free T-units, and an error classification system on the essays of English-as-a-Second-Language students and discusses why disagreements arise within a rater and between raters. (24 references) (Author/CK)

  19. [Study of inversion and classification of particle size distribution under dependent model algorithm].

    PubMed

    Sun, Xiao-Gang; Tang, Hong; Yuan, Gui-Bin

    2008-05-01

    For the total light scattering particle sizing technique, an inversion and classification method was proposed with the dependent model algorithm. The measured particle system was inversed simultaneously by different particle distribution functions whose mathematic model was known in advance, and then classified according to the inversion errors. The simulation experiments illustrated that it is feasible to use the inversion errors to determine the particle size distribution. The particle size distribution function was obtained accurately at only three wavelengths in the visible light range with the genetic algorithm, and the inversion results were steady and reliable, which decreased the number of multi wavelengths to the greatest extent and increased the selectivity of light source. The single peak distribution inversion error was less than 5% and the bimodal distribution inversion error was less than 10% when 5% stochastic noise was put in the transmission extinction measurement values at two wavelengths. The running time of this method was less than 2 s. The method has advantages of simplicity, rapidity, and suitability for on-line particle size measurement.

  20. Short version of the Depression Anxiety Stress Scale-21: is it valid for Brazilian adolescents?

    PubMed Central

    da Silva, Hítalo Andrade; dos Passos, Muana Hiandra Pereira; de Oliveira, Valéria Mayaly Alves; Palmeira, Aline Cabral; Pitangui, Ana Carolina Rodarti; de Araújo, Rodrigo Cappato

    2016-01-01

    ABSTRACT Objective To evaluate the interday reproducibility, agreement and validity of the construct of short version of the Depression Anxiety Stress Scale-21 applied to adolescents. Methods The sample consisted of adolescents of both sexes, aged between 10 and 19 years, who were recruited from schools and sports centers. The validity of the construct was performed by exploratory factor analysis, and reliability was calculated for each construct using the intraclass correlation coefficient, standard error of measurement and the minimum detectable change. Results The factor analysis combining the items corresponding to anxiety and stress in a single factor, and depression in a second factor, showed a better match of all 21 items, with higher factor loadings in their respective constructs. The reproducibility values for depression were intraclass correlation coefficient with 0.86, standard error of measurement with 0.80, and minimum detectable change with 2.22; and, for anxiety/stress: intraclass correlation coefficient with 0.82, standard error of measurement with 1.80, and minimum detectable change with 4.99. Conclusion The short version of the Depression Anxiety Stress Scale-21 showed excellent values of reliability, and strong internal consistency. The two-factor model with condensation of the constructs anxiety and stress in a single factor was the most acceptable for the adolescent population. PMID:28076595

  1. An intersecting chord method for minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error

    NASA Astrophysics Data System (ADS)

    Liu, Fei; Xu, Guanghua; Zhang, Qing; Liang, Lin; Liu, Dan

    2015-11-01

    As one of the Geometrical Product Specifications that are widely applied in industrial manufacturing and measurement, sphericity error can synthetically scale a 3D structure and reflects the machining quality of a spherical workpiece. Following increasing demands in the high motion performance of spherical parts, sphericity error is becoming an indispensable component in the evaluation of form error. However, the evaluation of sphericity error is still considered to be a complex mathematical issue, and the related research studies on the development of available models are lacking. In this paper, an intersecting chord method is first proposed to solve the minimum circumscribed sphere and maximum inscribed sphere evaluations of sphericity error. This new modelling method leverages chord relationships to replace the characteristic points, thereby significantly reducing the computational complexity and improving the computational efficiency. Using the intersecting chords to generate a virtual centre, the reference sphere in two concentric spheres is simplified as a space intersecting structure. The position of the virtual centre on the space intersecting structure is determined by characteristic chords, which may reduce the deviation between the virtual centre and the centre of the reference sphere. In addition,two experiments are used to verify the effectiveness of the proposed method with real datasets from the Cartesian coordinates. The results indicate that the estimated errors are in perfect agreement with those of the published methods. Meanwhile, the computational efficiency is improved. For the evaluation of the sphericity error, the use of high performance computing is a remarkable change.

  2. Classification accuracy for stratification with remotely sensed data

    Treesearch

    Raymond L. Czaplewski; Paul L. Patterson

    2003-01-01

    Tools are developed that help specify the classification accuracy required from remotely sensed data. These tools are applied during the planning stage of a sample survey that will use poststratification, prestratification with proportional allocation, or double sampling for stratification. Accuracy standards are developed in terms of an “error matrix,” which is...

  3. Comparison of wheat classification accuracy using different classifiers of the image-100 system

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Chen, S. C.; Moreira, M. A.; Delima, A. M.

    1981-01-01

    Classification results using single-cell and multi-cell signature acquisition options, a point-by-point Gaussian maximum-likelihood classifier, and K-means clustering of the Image-100 system are presented. Conclusions reached are that: a better indication of correct classification can be provided by using a test area which contains various cover types of the study area; classification accuracy should be evaluated considering both the percentages of correct classification and error of commission; supervised classification approaches are better than K-means clustering; Gaussian distribution maximum likelihood classifier is better than Single-cell and Multi-cell Signature Acquisition Options of the Image-100 system; and in order to obtain a high classification accuracy in a large and heterogeneous crop area, using Gaussian maximum-likelihood classifier, homogeneous spectral subclasses of the study crop should be created to derive training statistics.

  4. Ensemble of classifiers for confidence-rated classification of NDE signal

    NASA Astrophysics Data System (ADS)

    Banerjee, Portia; Safdarnejad, Seyed; Udpa, Lalita; Udpa, Satish

    2016-02-01

    Ensemble of classifiers in general, aims to improve classification accuracy by combining results from multiple weak hypotheses into a single strong classifier through weighted majority voting. Improved versions of ensemble of classifiers generate self-rated confidence scores which estimate the reliability of each of its prediction and boost the classifier using these confidence-rated predictions. However, such a confidence metric is based only on the rate of correct classification. In existing works, although ensemble of classifiers has been widely used in computational intelligence, the effect of all factors of unreliability on the confidence of classification is highly overlooked. With relevance to NDE, classification results are affected by inherent ambiguity of classifica-tion, non-discriminative features, inadequate training samples and noise due to measurement. In this paper, we extend the existing ensemble classification by maximizing confidence of every classification decision in addition to minimizing the classification error. Initial results of the approach on data from eddy current inspection show improvement in classification performance of defect and non-defect indications.

  5. Brief Report: Investigating Uncertainty in the Minimum Mortality Temperature: Methods and Application to 52 Spanish Cities.

    PubMed

    Tobías, Aurelio; Armstrong, Ben; Gasparrini, Antonio

    2017-01-01

    The minimum mortality temperature from J- or U-shaped curves varies across cities with different climates. This variation conveys information on adaptation, but ability to characterize is limited by the absence of a method to describe uncertainty in estimated minimum mortality temperatures. We propose an approximate parametric bootstrap estimator of confidence interval (CI) and standard error (SE) for the minimum mortality temperature from a temperature-mortality shape estimated by splines. The coverage of the estimated CIs was close to nominal value (95%) in the datasets simulated, although SEs were slightly high. Applying the method to 52 Spanish provincial capital cities showed larger minimum mortality temperatures in hotter cities, rising almost exactly at the same rate as annual mean temperature. The method proposed for computing CIs and SEs for minimums from spline curves allows comparing minimum mortality temperatures in different cities and investigating their associations with climate properly, allowing for estimation uncertainty.

  6. On the statistical assessment of classifiers using DNA microarray data

    PubMed Central

    Ancona, N; Maglietta, R; Piepoli, A; D'Addabbo, A; Cotugno, R; Savino, M; Liuni, S; Carella, M; Pesole, G; Perri, F

    2006-01-01

    Background In this paper we present a method for the statistical assessment of cancer predictors which make use of gene expression profiles. The methodology is applied to a new data set of microarray gene expression data collected in Casa Sollievo della Sofferenza Hospital, Foggia – Italy. The data set is made up of normal (22) and tumor (25) specimens extracted from 25 patients affected by colon cancer. We propose to give answers to some questions which are relevant for the automatic diagnosis of cancer such as: Is the size of the available data set sufficient to build accurate classifiers? What is the statistical significance of the associated error rates? In what ways can accuracy be considered dependant on the adopted classification scheme? How many genes are correlated with the pathology and how many are sufficient for an accurate colon cancer classification? The method we propose answers these questions whilst avoiding the potential pitfalls hidden in the analysis and interpretation of microarray data. Results We estimate the generalization error, evaluated through the Leave-K-Out Cross Validation error, for three different classification schemes by varying the number of training examples and the number of the genes used. The statistical significance of the error rate is measured by using a permutation test. We provide a statistical analysis in terms of the frequencies of the genes involved in the classification. Using the whole set of genes, we found that the Weighted Voting Algorithm (WVA) classifier learns the distinction between normal and tumor specimens with 25 training examples, providing e = 21% (p = 0.045) as an error rate. This remains constant even when the number of examples increases. Moreover, Regularized Least Squares (RLS) and Support Vector Machines (SVM) classifiers can learn with only 15 training examples, with an error rate of e = 19% (p = 0.035) and e = 18% (p = 0.037) respectively. Moreover, the error rate decreases as the training set size increases, reaching its best performances with 35 training examples. In this case, RLS and SVM have error rates of e = 14% (p = 0.027) and e = 11% (p = 0.019). Concerning the number of genes, we found about 6000 genes (p < 0.05) correlated with the pathology, resulting from the signal-to-noise statistic. Moreover the performances of RLS and SVM classifiers do not change when 74% of genes is used. They progressively reduce up to e = 16% (p < 0.05) when only 2 genes are employed. The biological relevance of a set of genes determined by our statistical analysis and the major roles they play in colorectal tumorigenesis is discussed. Conclusions The method proposed provides statistically significant answers to precise questions relevant for the diagnosis and prognosis of cancer. We found that, with as few as 15 examples, it is possible to train statistically significant classifiers for colon cancer diagnosis. As for the definition of the number of genes sufficient for a reliable classification of colon cancer, our results suggest that it depends on the accuracy required. PMID:16919171

  7. Protograph based LDPC codes with minimum distance linearly growing with block size

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.

  8. Use of Log-Linear Models in Classification Problems.

    DTIC Science & Technology

    1981-12-01

    polynomials. The second example involves infant hypoxic trauma, and many cells are empty. The existence conditions are used to find a model for which esti...mates of cell frequencies exist and are in good agreement with the ob- served data. Key Words: Classification problem, log-difference models, minimum 8...variates define k states, which are labeled consecutively. Thus, while MB define cells in their tables by an I-vector Z, we simply take Z to be a

  9. Speech variability effects on recognition accuracy associated with concurrent task performance by pilots

    NASA Technical Reports Server (NTRS)

    Simpson, C. A.

    1985-01-01

    In the present study of the responses of pairs of pilots to aircraft warning classification tasks using an isolated word, speaker-dependent speech recognition system, the induced stress was manipulated by means of different scoring procedures for the classification task and by the inclusion of a competitive manual control task. Both speech patterns and recognition accuracy were analyzed, and recognition errors were recorded by type for an isolated word speaker-dependent system and by an offline technique for a connected word speaker-dependent system. While errors increased with task loading for the isolated word system, there was no such effect for task loading in the case of the connected word system.

  10. Robust Transmission of H.264/AVC Streams Using Adaptive Group Slicing and Unequal Error Protection

    NASA Astrophysics Data System (ADS)

    Thomos, Nikolaos; Argyropoulos, Savvas; Boulgouris, Nikolaos V.; Strintzis, Michael G.

    2006-12-01

    We present a novel scheme for the transmission of H.264/AVC video streams over lossy packet networks. The proposed scheme exploits the error-resilient features of H.264/AVC codec and employs Reed-Solomon codes to protect effectively the streams. A novel technique for adaptive classification of macroblocks into three slice groups is also proposed. The optimal classification of macroblocks and the optimal channel rate allocation are achieved by iterating two interdependent steps. Dynamic programming techniques are used for the channel rate allocation process in order to reduce complexity. Simulations clearly demonstrate the superiority of the proposed method over other recent algorithms for transmission of H.264/AVC streams.

  11. Information management for aged care provision in Australia: development of an aged care minimum dataset and strategies to improve quality and continuity of care.

    PubMed

    Davis, Jenny; Morgans, Amee; Burgess, Stephen

    2016-04-01

    Efficient information systems support the provision of multi-disciplinary aged care and a variety of organisational purposes, including quality, funding, communication and continuity of care. Agreed minimum data sets enable accurate communication across multiple care settings. However, in aged care multiple and poorly integrated data collection frameworks are commonly used for client assessment, government reporting and funding purposes. To determine key information needs in aged care settings to improve information quality, information transfer, safety, quality and continuity of care to meet the complex needs of aged care clients. Modified Delphi methods involving five stages were employed by one aged care provider in Victoria, Australia, to establish stakeholder consensus for a derived minimum data set and address barriers to data quality. Eleven different aged care programs were identified; with five related data dictionaries, three minimum data sets, five program standards or quality frameworks. The remaining data collection frameworks related to diseases classification, funding, service activity reporting, and statistical standards and classifications. A total of 170 different data items collected across seven internal information systems were consolidated to a derived set of 60 core data items and aligned with nationally consistent data collection frameworks. Barriers to data quality related to inconsistencies in data items, staff knowledge, workflow, system access and configuration. The development an internal aged care minimum data set highlighted the critical role of primary data quality in the upstream and downstream use of client information; and presents a platform to build national consistency across the sector.

  12. The pot calling the kettle black: the extent and type of errors in a computerized immunization registry and by parent report.

    PubMed

    MacDonald, Shannon E; Schopflocher, Donald P; Golonka, Richard P

    2014-01-04

    Accurate classification of children's immunization status is essential for clinical care, administration and evaluation of immunization programs, and vaccine program research. Computerized immunization registries have been proposed as a valuable alternative to provider paper records or parent report, but there is a need to better understand the challenges associated with their use. This study assessed the accuracy of immunization status classification in an immunization registry as compared to parent report and determined the number and type of errors occurring in both sources. This study was a sub-analysis of a larger study which compared the characteristics of children whose immunizations were up to date (UTD) at two years as compared to those not UTD. Children's immunization status was initially determined from a population-based immunization registry, and then compared to parent report of immunization status, as reported in a postal survey. Discrepancies between the two sources were adjudicated by review of immunization providers' hard-copy clinic records. Descriptive analyses included calculating proportions and confidence intervals for errors in classification and reporting of the type and frequency of errors. Among the 461 survey respondents, there were 60 discrepancies in immunization status. The majority of errors were due to parent report (n = 44), but the registry was not without fault (n = 16). Parents tended to erroneously report their child as UTD, whereas the registry was more likely to wrongly classify children as not UTD. Reasons for registry errors included failure to account for varicella disease history, variable number of doses required due to age at series initiation, and doses administered out of the region. These results confirm that parent report is often flawed, but also identify that registries are prone to misclassification of immunization status. Immunization program administrators and researchers need to institute measures to identify and reduce misclassification, in order for registries to play an effective role in the control of vaccine-preventable disease.

  13. The pot calling the kettle black: the extent and type of errors in a computerized immunization registry and by parent report

    PubMed Central

    2014-01-01

    Background Accurate classification of children’s immunization status is essential for clinical care, administration and evaluation of immunization programs, and vaccine program research. Computerized immunization registries have been proposed as a valuable alternative to provider paper records or parent report, but there is a need to better understand the challenges associated with their use. This study assessed the accuracy of immunization status classification in an immunization registry as compared to parent report and determined the number and type of errors occurring in both sources. Methods This study was a sub-analysis of a larger study which compared the characteristics of children whose immunizations were up to date (UTD) at two years as compared to those not UTD. Children’s immunization status was initially determined from a population-based immunization registry, and then compared to parent report of immunization status, as reported in a postal survey. Discrepancies between the two sources were adjudicated by review of immunization providers’ hard-copy clinic records. Descriptive analyses included calculating proportions and confidence intervals for errors in classification and reporting of the type and frequency of errors. Results Among the 461 survey respondents, there were 60 discrepancies in immunization status. The majority of errors were due to parent report (n = 44), but the registry was not without fault (n = 16). Parents tended to erroneously report their child as UTD, whereas the registry was more likely to wrongly classify children as not UTD. Reasons for registry errors included failure to account for varicella disease history, variable number of doses required due to age at series initiation, and doses administered out of the region. Conclusions These results confirm that parent report is often flawed, but also identify that registries are prone to misclassification of immunization status. Immunization program administrators and researchers need to institute measures to identify and reduce misclassification, in order for registries to play an effective role in the control of vaccine-preventable disease. PMID:24387002

  14. A New Classification System for Unilateral Cleft Lip and Palate Infants to assist Presurgical Infant Orthopedics.

    PubMed

    Daigavane, P S; Hazarey, P V; Niranjane, P; Vasudevan, S D; Thombare, B R; Daigavane, S

    2015-01-01

    The proposed advantages of pre-surgical naso-alveolar moulding (PNAM) are easy primary lip repair which heals under minimum tension reducing the scar formation and improving the aesthetic results in addition to reshaping of alar cartilage and improvement of nasal symmetry.However, the anatomy and alveolar morphology varies for each cleft child; the procedure for PNAM differs accordingly. In an attempt to categorize unilateral cleft lip and palate cases as per anatomical variations, a new classification system has been proposed. This classification aims to give an insight in unilateral cleft morphology based on which modification in PNAM procedure could be done.

  15. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI

    PubMed Central

    Kang, Sinkyu; Hong, Suk Young

    2016-01-01

    A minimum composite method was applied to produce a 15-day interval normalized difference vegetation index (NDVI) dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) daily 250 m reflectance in the red and near-infrared bands. This dataset was applied to determine lake surface areas in Mongolia. A total of 73 lakes greater than 6.25 km2in area were selected, and 28 of these lakes were used to evaluate detection errors. The minimum composite NDVI showed a better detection performance on lake water pixels than did the official MODIS 16-day 250 m NDVI based on a maximum composite method. The overall lake area detection performance based on the 15-day minimum composite NDVI showed -2.5% error relative to the Landsat-derived lake area for the 28 evaluated lakes. The errors increased with increases in the perimeter-to-area ratio but decreased with lake size over 10 km2. The lake area decreased by -9.3% at an annual rate of -53.7 km2 yr-1 during 2000 to 2011 for the 73 lakes. However, considerable spatial variations, such as slight-to-moderate lake area reductions in semi-arid regions and rapid lake area reductions in arid regions, were also detected. This study demonstrated applicability of MODIS 250 m reflectance data for biweekly monitoring of lake area change and diagnosed considerable lake area reduction and its spatial variability in arid and semi-arid regions of Mongolia. Future studies are required for explaining reasons of lake area changes and their spatial variability. PMID:27007233

  16. Assessing Seasonal and Inter-Annual Variations of Lake Surface Areas in Mongolia during 2000-2011 Using Minimum Composite MODIS NDVI.

    PubMed

    Kang, Sinkyu; Hong, Suk Young

    2016-01-01

    A minimum composite method was applied to produce a 15-day interval normalized difference vegetation index (NDVI) dataset from Moderate Resolution Imaging Spectroradiometer (MODIS) daily 250 m reflectance in the red and near-infrared bands. This dataset was applied to determine lake surface areas in Mongolia. A total of 73 lakes greater than 6.25 km2in area were selected, and 28 of these lakes were used to evaluate detection errors. The minimum composite NDVI showed a better detection performance on lake water pixels than did the official MODIS 16-day 250 m NDVI based on a maximum composite method. The overall lake area detection performance based on the 15-day minimum composite NDVI showed -2.5% error relative to the Landsat-derived lake area for the 28 evaluated lakes. The errors increased with increases in the perimeter-to-area ratio but decreased with lake size over 10 km(2). The lake area decreased by -9.3% at an annual rate of -53.7 km(2) yr(-1) during 2000 to 2011 for the 73 lakes. However, considerable spatial variations, such as slight-to-moderate lake area reductions in semi-arid regions and rapid lake area reductions in arid regions, were also detected. This study demonstrated applicability of MODIS 250 m reflectance data for biweekly monitoring of lake area change and diagnosed considerable lake area reduction and its spatial variability in arid and semi-arid regions of Mongolia. Future studies are required for explaining reasons of lake area changes and their spatial variability.

  17. Bayesian Network Structure Learning for Urban Land Use Classification from Landsat ETM+ and Ancillary Data

    NASA Astrophysics Data System (ADS)

    Park, M.; Stenstrom, M. K.

    2004-12-01

    Recognizing urban information from the satellite imagery is problematic due to the diverse features and dynamic changes of urban landuse. The use of Landsat imagery for urban land use classification involves inherent uncertainty due to its spatial resolution and the low separability among land uses. To resolve the uncertainty problem, we investigated the performance of Bayesian networks to classify urban land use since Bayesian networks provide a quantitative way of handling uncertainty and have been successfully used in many areas. In this study, we developed the optimized networks for urban land use classification from Landsat ETM+ images of Marina del Rey area based on USGS land cover/use classification level III. The networks started from a tree structure based on mutual information between variables and added the links to improve accuracy. This methodology offers several advantages: (1) The network structure shows the dependency relationships between variables. The class node value can be predicted even with particular band information missing due to sensor system error. The missing information can be inferred from other dependent bands. (2) The network structure provides information of variables that are important for the classification, which is not available from conventional classification methods such as neural networks and maximum likelihood classification. In our case, for example, bands 1, 5 and 6 are the most important inputs in determining the land use of each pixel. (3) The networks can be reduced with those input variables important for classification. This minimizes the problem without considering all possible variables. We also examined the effect of incorporating ancillary data: geospatial information such as X and Y coordinate values of each pixel and DEM data, and vegetation indices such as NDVI and Tasseled Cap transformation. The results showed that the locational information improved overall accuracy (81%) and kappa coefficient (76%), and lowered the omission and commission errors compared with using only spectral data (accuracy 71%, kappa coefficient 62%). Incorporating DEM data did not significantly improve overall accuracy (74%) and kappa coefficient (66%) but lowered the omission and commission errors. Incorporating NDVI did not much improve the overall accuracy (72%) and k coefficient (65%). Including Tasseled Cap transformation reduced the accuracy (accuracy 70%, kappa 61%). Therefore, additional information from the DEM and vegetation indices was not useful as locational ancillary data.

  18. Vector quantizer designs for joint compression and terrain categorization of multispectral imagery

    NASA Technical Reports Server (NTRS)

    Gorman, John D.; Lyons, Daniel F.

    1994-01-01

    Two vector quantizer designs for compression of multispectral imagery and their impact on terrain categorization performance are evaluated. The mean-squared error (MSE) and classification performance of the two quantizers are compared, and it is shown that a simple two-stage design minimizing MSE subject to a constraint on classification performance has a significantly better classification performance than a standard MSE-based tree-structured vector quantizer followed by maximum likelihood classification. This improvement in classification performance is obtained with minimal loss in MSE performance. The results show that it is advantageous to tailor compression algorithm designs to the required data exploitation tasks. Applications of joint compression/classification include compression for the archival or transmission of Landsat imagery that is later used for land utility surveys and/or radiometric analysis.

  19. Medication errors: definitions and classification

    PubMed Central

    Aronson, Jeffrey K

    2009-01-01

    To understand medication errors and to identify preventive strategies, we need to classify them and define the terms that describe them. The four main approaches to defining technical terms consider etymology, usage, previous definitions, and the Ramsey–Lewis method (based on an understanding of theory and practice). A medication error is ‘a failure in the treatment process that leads to, or has the potential to lead to, harm to the patient’. Prescribing faults, a subset of medication errors, should be distinguished from prescription errors. A prescribing fault is ‘a failure in the prescribing [decision-making] process that leads to, or has the potential to lead to, harm to the patient’. The converse of this, ‘balanced prescribing’ is ‘the use of a medicine that is appropriate to the patient's condition and, within the limits created by the uncertainty that attends therapeutic decisions, in a dosage regimen that optimizes the balance of benefit to harm’. This excludes all forms of prescribing faults, such as irrational, inappropriate, and ineffective prescribing, underprescribing and overprescribing. A prescription error is ‘a failure in the prescription writing process that results in a wrong instruction about one or more of the normal features of a prescription’. The ‘normal features’ include the identity of the recipient, the identity of the drug, the formulation, dose, route, timing, frequency, and duration of administration. Medication errors can be classified, invoking psychological theory, as knowledge-based mistakes, rule-based mistakes, action-based slips, and memory-based lapses. This classification informs preventive strategies. PMID:19594526

  20. 76 FR 44339 - Office of Biotechnology Activities; Recombinant DNA Research: Action Under the NIH Guidelines for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ...) classification for several common attenuated strains of bacteria and viruses that are frequently used in... establishes the minimum containment level required for experiments subject to the NIH Guidelines. The...

  1. Linear and Order Statistics Combiners for Pattern Classification

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Ghosh, Joydeep; Lau, Sonie (Technical Monitor)

    2001-01-01

    Several researchers have experimentally shown that substantial improvements can be obtained in difficult pattern recognition problems by combining or integrating the outputs of multiple classifiers. This chapter provides an analytical framework to quantify the improvements in classification results due to combining. The results apply to both linear combiners and order statistics combiners. We first show that to a first order approximation, the error rate obtained over and above the Bayes error rate, is directly proportional to the variance of the actual decision boundaries around the Bayes optimum boundary. Combining classifiers in output space reduces this variance, and hence reduces the 'added' error. If N unbiased classifiers are combined by simple averaging. the added error rate can be reduced by a factor of N if the individual errors in approximating the decision boundaries are uncorrelated. Expressions are then derived for linear combiners which are biased or correlated, and the effect of output correlations on ensemble performance is quantified. For order statistics based non-linear combiners, we derive expressions that indicate how much the median, the maximum and in general the i-th order statistic can improve classifier performance. The analysis presented here facilitates the understanding of the relationships among error rates, classifier boundary distributions, and combining in output space. Experimental results on several public domain data sets are provided to illustrate the benefits of combining and to support the analytical results.

  2. Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification.

    PubMed

    Rueckauer, Bodo; Lungu, Iulia-Alexandra; Hu, Yuhuang; Pfeiffer, Michael; Liu, Shih-Chii

    2017-01-01

    Spiking neural networks (SNNs) can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs) can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-pooling, softmax, batch-normalization and Inception-modules. This paper presents spiking equivalents of these operations therefore allowing conversion of nearly arbitrary CNN architectures. We show conversion of popular CNN architectures, including VGG-16 and Inception-v3, into SNNs that produce the best results reported to date on MNIST, CIFAR-10 and the challenging ImageNet dataset. SNNs can trade off classification error rate against the number of available operations whereas deep continuous-valued neural networks require a fixed number of operations to achieve their classification error rate. From the examples of LeNet for MNIST and BinaryNet for CIFAR-10, we show that with an increase in error rate of a few percentage points, the SNNs can achieve more than 2x reductions in operations compared to the original CNNs. This highlights the potential of SNNs in particular when deployed on power-efficient neuromorphic spiking neuron chips, for use in embedded applications.

  3. Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification

    PubMed Central

    Rueckauer, Bodo; Lungu, Iulia-Alexandra; Hu, Yuhuang; Pfeiffer, Michael; Liu, Shih-Chii

    2017-01-01

    Spiking neural networks (SNNs) can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs) can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-pooling, softmax, batch-normalization and Inception-modules. This paper presents spiking equivalents of these operations therefore allowing conversion of nearly arbitrary CNN architectures. We show conversion of popular CNN architectures, including VGG-16 and Inception-v3, into SNNs that produce the best results reported to date on MNIST, CIFAR-10 and the challenging ImageNet dataset. SNNs can trade off classification error rate against the number of available operations whereas deep continuous-valued neural networks require a fixed number of operations to achieve their classification error rate. From the examples of LeNet for MNIST and BinaryNet for CIFAR-10, we show that with an increase in error rate of a few percentage points, the SNNs can achieve more than 2x reductions in operations compared to the original CNNs. This highlights the potential of SNNs in particular when deployed on power-efficient neuromorphic spiking neuron chips, for use in embedded applications. PMID:29375284

  4. 3D multi-view convolutional neural networks for lung nodule classification

    PubMed Central

    Kang, Guixia; Hou, Beibei; Zhang, Ningbo

    2017-01-01

    The 3D convolutional neural network (CNN) is able to make full use of the spatial 3D context information of lung nodules, and the multi-view strategy has been shown to be useful for improving the performance of 2D CNN in classifying lung nodules. In this paper, we explore the classification of lung nodules using the 3D multi-view convolutional neural networks (MV-CNN) with both chain architecture and directed acyclic graph architecture, including 3D Inception and 3D Inception-ResNet. All networks employ the multi-view-one-network strategy. We conduct a binary classification (benign and malignant) and a ternary classification (benign, primary malignant and metastatic malignant) on Computed Tomography (CT) images from Lung Image Database Consortium and Image Database Resource Initiative database (LIDC-IDRI). All results are obtained via 10-fold cross validation. As regards the MV-CNN with chain architecture, results show that the performance of 3D MV-CNN surpasses that of 2D MV-CNN by a significant margin. Finally, a 3D Inception network achieved an error rate of 4.59% for the binary classification and 7.70% for the ternary classification, both of which represent superior results for the corresponding task. We compare the multi-view-one-network strategy with the one-view-one-network strategy. The results reveal that the multi-view-one-network strategy can achieve a lower error rate than the one-view-one-network strategy. PMID:29145492

  5. Automatic classification for mammogram backgrounds based on bi-rads complexity definition and on a multi content analysis framework

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Besnehard, Quentin; Marchessoux, Cédric

    2011-03-01

    Clinical studies for the validation of new medical imaging devices require hundreds of images. An important step in creating and tuning the study protocol is the classification of images into "difficult" and "easy" cases. This consists of classifying the image based on features like the complexity of the background, the visibility of the disease (lesions). Therefore, an automatic medical background classification tool for mammograms would help for such clinical studies. This classification tool is based on a multi-content analysis framework (MCA) which was firstly developed to recognize image content of computer screen shots. With the implementation of new texture features and a defined breast density scale, the MCA framework is able to automatically classify digital mammograms with a satisfying accuracy. BI-RADS (Breast Imaging Reporting Data System) density scale is used for grouping the mammograms, which standardizes the mammography reporting terminology and assessment and recommendation categories. Selected features are input into a decision tree classification scheme in MCA framework, which is the so called "weak classifier" (any classifier with a global error rate below 50%). With the AdaBoost iteration algorithm, these "weak classifiers" are combined into a "strong classifier" (a classifier with a low global error rate) for classifying one category. The results of classification for one "strong classifier" show the good accuracy with the high true positive rates. For the four categories the results are: TP=90.38%, TN=67.88%, FP=32.12% and FN =9.62%.

  6. RFI in hybrid loops - Simulation and experimental results.

    NASA Technical Reports Server (NTRS)

    Ziemer, R. E.; Nelson, D. R.; Raghavan, H. R.

    1972-01-01

    A digital simulation of an imperfect second-order hybrid phase-locked loop (HPLL) operating in radio frequency interference (RFI) is described. Its performance is characterized in terms of phase error variance and phase error probability density function (PDF). Monte-Carlo simulation is used to show that the HPLL can be superior to the conventional phase-locked loops in RFI backgrounds when minimum phase error variance is the goodness criterion. Similar experimentally obtained data are given in support of the simulation data.

  7. Classification of electroencephalograph signals using time-frequency decomposition and linear discriminant analysis

    NASA Astrophysics Data System (ADS)

    Szuflitowska, B.; Orlowski, P.

    2017-08-01

    Automated detection system consists of two key steps: extraction of features from EEG signals and classification for detection of pathology activity. The EEG sequences were analyzed using Short-Time Fourier Transform and the classification was performed using Linear Discriminant Analysis. The accuracy of the technique was tested on three sets of EEG signals: epilepsy, healthy and Alzheimer's Disease. The classification error below 10% has been considered a success. The higher accuracy are obtained for new data of unknown classes than testing data. The methodology can be helpful in differentiation epilepsy seizure and disturbances in the EEG signal in Alzheimer's Disease.

  8. On the Implementation of a Land Cover Classification System for SAR Images Using Khoros

    NASA Technical Reports Server (NTRS)

    Medina Revera, Edwin J.; Espinosa, Ramon Vasquez

    1997-01-01

    The Synthetic Aperture Radar (SAR) sensor is widely used to record data about the ground under all atmospheric conditions. The SAR acquired images have very good resolution which necessitates the development of a classification system that process the SAR images to extract useful information for different applications. In this work, a complete system for the land cover classification was designed and programmed using the Khoros, a data flow visual language environment, taking full advantages of the polymorphic data services that it provides. Image analysis was applied to SAR images to improve and automate the processes of recognition and classification of the different regions like mountains and lakes. Both unsupervised and supervised classification utilities were used. The unsupervised classification routines included the use of several Classification/Clustering algorithms like the K-means, ISO2, Weighted Minimum Distance, and the Localized Receptive Field (LRF) training/classifier. Different texture analysis approaches such as Invariant Moments, Fractal Dimension and Second Order statistics were implemented for supervised classification of the images. The results and conclusions for SAR image classification using the various unsupervised and supervised procedures are presented based on their accuracy and performance.

  9. The Influence of Item Calibration Error on Variable-Length Computerized Adaptive Testing

    ERIC Educational Resources Information Center

    Patton, Jeffrey M.; Cheng, Ying; Yuan, Ke-Hai; Diao, Qi

    2013-01-01

    Variable-length computerized adaptive testing (VL-CAT) allows both items and test length to be "tailored" to examinees, thereby achieving the measurement goal (e.g., scoring precision or classification) with as few items as possible. Several popular test termination rules depend on the standard error of the ability estimate, which in turn depends…

  10. Lexical Errors in Second Language Scientific Writing: Some Conceptual Implications

    ERIC Educational Resources Information Center

    Carrió Pastor, María Luisa; Mestre-Mestre, Eva María

    2014-01-01

    Nowadays, scientific writers are required not only a thorough knowledge of their subject field, but also a sound command of English as a lingua franca. In this paper, the lexical errors produced in scientific texts written in English by non-native researchers are identified to propose a classification of the categories they contain. This study…

  11. Land use surveys by means of automatic interpretation of LANDSAT system data

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Lombardo, M. A.; Novo, E. M. L. D.; Niero, M.; Foresti, C.

    1981-01-01

    Analyses for seven land-use classes are presented. The classes are: urban area, industrial area, bare soil, cultivated area, pastureland, reforestation, and natural vegetation. The automatic classification of LANDSAT MSS data using a maximum likelihood algorithm shows a 39% average error of emission and a 3.45 error of commission for the seven classes.

  12. Anatomical and/or pathological predictors for the “incorrect” classification of red dot markers on wrist radiographs taken following trauma

    PubMed Central

    Kranz, R

    2015-01-01

    Objective: To establish the prevalence of red dot markers in a sample of wrist radiographs and to identify any anatomical and/or pathological characteristics that predict “incorrect” red dot classification. Methods: Accident and emergency (A&E) wrist cases from a digital imaging and communications in medicine/digital teaching library were examined for red dot prevalence and for the presence of several anatomical and pathological features. Binary logistic regression analyses were run to establish if any of these features were predictors of incorrect red dot classification. Results: 398 cases were analysed. Red dot was “incorrectly” classified in 8.5% of cases; 6.3% were “false negatives” (“FNs”)and 2.3% false positives (FPs) (one decimal place). Old fractures [odds ratio (OR), 5.070 (1.256–20.471)] and reported degenerative change [OR, 9.870 (2.300–42.359)] were found to predict FPs. Frykman V [OR, 9.500 (1.954–46.179)], Frykman VI [OR, 6.333 (1.205–33.283)] and non-Frykman positive abnormalities [OR, 4.597 (1.264–16.711)] predict “FNs”. Old fractures and Frykman VI were predictive of error at 90% confidence interval (CI); the rest at 95% CI. Conclusion: The five predictors of incorrect red dot classification may inform the image interpretation training of radiographers and other professionals to reduce diagnostic error. Verification with larger samples would reinforce these findings. Advances in knowledge: All healthcare providers strive to eradicate diagnostic error. By examining specific anatomical and pathological predictors on radiographs for such error, as well as extrinsic factors that may affect reporting accuracy, image interpretation training can focus on these “problem” areas and influence which radiographic abnormality detection schemes are appropriate to implement in A&E departments. PMID:25496373

  13. How Should Children with Speech Sound Disorders be Classified? A Review and Critical Evaluation of Current Classification Systems

    ERIC Educational Resources Information Center

    Waring, R.; Knight, R.

    2013-01-01

    Background: Children with speech sound disorders (SSD) form a heterogeneous group who differ in terms of the severity of their condition, underlying cause, speech errors, involvement of other aspects of the linguistic system and treatment response. To date there is no universal and agreed-upon classification system. Instead, a number of…

  14. Evaluation of the confusion matrix method in the validation of an automated system for measuring feeding behaviour of cattle.

    PubMed

    Ruuska, Salla; Hämäläinen, Wilhelmiina; Kajava, Sari; Mughal, Mikaela; Matilainen, Pekka; Mononen, Jaakko

    2018-03-01

    The aim of the present study was to evaluate empirically confusion matrices in device validation. We compared the confusion matrix method to linear regression and error indices in the validation of a device measuring feeding behaviour of dairy cattle. In addition, we studied how to extract additional information on classification errors with confusion probabilities. The data consisted of 12 h behaviour measurements from five dairy cows; feeding and other behaviour were detected simultaneously with a device and from video recordings. The resulting 216 000 pairs of classifications were used to construct confusion matrices and calculate performance measures. In addition, hourly durations of each behaviour were calculated and the accuracy of measurements was evaluated with linear regression and error indices. All three validation methods agreed when the behaviour was detected very accurately or inaccurately. Otherwise, in the intermediate cases, the confusion matrix method and error indices produced relatively concordant results, but the linear regression method often disagreed with them. Our study supports the use of confusion matrix analysis in validation since it is robust to any data distribution and type of relationship, it makes a stringent evaluation of validity, and it offers extra information on the type and sources of errors. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Bayes-LQAS: classifying the prevalence of global acute malnutrition

    PubMed Central

    2010-01-01

    Lot Quality Assurance Sampling (LQAS) applications in health have generally relied on frequentist interpretations for statistical validity. Yet health professionals often seek statements about the probability distribution of unknown parameters to answer questions of interest. The frequentist paradigm does not pretend to yield such information, although a Bayesian formulation might. This is the source of an error made in a recent paper published in this journal. Many applications lend themselves to a Bayesian treatment, and would benefit from such considerations in their design. We discuss Bayes-LQAS (B-LQAS), which allows for incorporation of prior information into the LQAS classification procedure, and thus shows how to correct the aforementioned error. Further, we pay special attention to the formulation of Bayes Operating Characteristic Curves and the use of prior information to improve survey designs. As a motivating example, we discuss the classification of Global Acute Malnutrition prevalence and draw parallels between the Bayes and classical classifications schemes. We also illustrate the impact of informative and non-informative priors on the survey design. Results indicate that using a Bayesian approach allows the incorporation of expert information and/or historical data and is thus potentially a valuable tool for making accurate and precise classifications. PMID:20534159

  16. Bayes-LQAS: classifying the prevalence of global acute malnutrition.

    PubMed

    Olives, Casey; Pagano, Marcello

    2010-06-09

    Lot Quality Assurance Sampling (LQAS) applications in health have generally relied on frequentist interpretations for statistical validity. Yet health professionals often seek statements about the probability distribution of unknown parameters to answer questions of interest. The frequentist paradigm does not pretend to yield such information, although a Bayesian formulation might. This is the source of an error made in a recent paper published in this journal. Many applications lend themselves to a Bayesian treatment, and would benefit from such considerations in their design. We discuss Bayes-LQAS (B-LQAS), which allows for incorporation of prior information into the LQAS classification procedure, and thus shows how to correct the aforementioned error. Further, we pay special attention to the formulation of Bayes Operating Characteristic Curves and the use of prior information to improve survey designs. As a motivating example, we discuss the classification of Global Acute Malnutrition prevalence and draw parallels between the Bayes and classical classifications schemes. We also illustrate the impact of informative and non-informative priors on the survey design. Results indicate that using a Bayesian approach allows the incorporation of expert information and/or historical data and is thus potentially a valuable tool for making accurate and precise classifications.

  17. Optimization of the ANFIS using a genetic algorithm for physical work rate classification.

    PubMed

    Habibi, Ehsanollah; Salehi, Mina; Yadegarfar, Ghasem; Taheri, Ali

    2018-03-13

    Recently, a new method was proposed for physical work rate classification based on an adaptive neuro-fuzzy inference system (ANFIS). This study aims to present a genetic algorithm (GA)-optimized ANFIS model for a highly accurate classification of physical work rate. Thirty healthy men participated in this study. Directly measured heart rate and oxygen consumption of the participants in the laboratory were used for training the ANFIS classifier model in MATLAB version 8.0.0 using a hybrid algorithm. A similar process was done using the GA as an optimization technique. The accuracy, sensitivity and specificity of the ANFIS classifier model were increased successfully. The mean accuracy of the model was increased from 92.95 to 97.92%. Also, the calculated root mean square error of the model was reduced from 5.4186 to 3.1882. The maximum estimation error of the optimized ANFIS during the network testing process was ± 5%. The GA can be effectively used for ANFIS optimization and leads to an accurate classification of physical work rate. In addition to high accuracy, simple implementation and inter-individual variability consideration are two other advantages of the presented model.

  18. Galaxy Zoo 1: data release of morphological classifications for nearly 900 000 galaxies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linott, C.; Slosar, A.; Lintott, C.

    Morphology is a powerful indicator of a galaxy's dynamical and merger history. It is strongly correlated with many physical parameters, including mass, star formation history and the distribution of mass. The Galaxy Zoo project collected simple morphological classifications of nearly 900,000 galaxies drawn from the Sloan Digital Sky Survey, contributed by hundreds of thousands of volunteers. This large number of classifications allows us to exclude classifier error, and measure the influence of subtle biases inherent in morphological classification. This paper presents the data collected by the project, alongside measures of classification accuracy and bias. The data are now publicly availablemore » and full catalogues can be downloaded in electronic format from http://data.galaxyzoo.org.« less

  19. Probablilistic evaluation of earthquake detection and location capability for Illinois, Indiana, Kentucky, Ohio, and West Virginia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mauk, F.J.; Christensen, D.H.

    1980-09-01

    Probabilistic estimations of earthquake detection and location capabilities for the states of Illinois, Indiana, Kentucky, Ohio and West Virginia are presented in this document. The algorithm used in these epicentrality and minimum-magnitude estimations is a version of the program NETWORTH by Wirth, Blandford, and Husted (DARPA Order No. 2551, 1978) which was modified for local array evaluation at the University of Michigan Seismological Observatory. Estimations of earthquake detection capability for the years 1970 and 1980 are presented in four regional minimum m/sub b/ magnitude contour maps. Regional 90% confidence error ellipsoids are included for m/sub b/ magnitude events from 2.0more » through 5.0 at 0.5 m/sub b/ unit increments. The close agreement between these predicted epicentral 90% confidence estimates and the calculated error ellipses associated with actual earthquakes within the studied region suggest that these error determinations can be used to estimate the reliability of epicenter location. 8 refs., 14 figs., 2 tabs.« less

  20. Spotting East African mammals in open savannah from space.

    PubMed

    Yang, Zheng; Wang, Tiejun; Skidmore, Andrew K; de Leeuw, Jan; Said, Mohammed Y; Freer, Jim

    2014-01-01

    Knowledge of population dynamics is essential for managing and conserving wildlife. Traditional methods of counting wild animals such as aerial survey or ground counts not only disturb animals, but also can be labour intensive and costly. New, commercially available very high-resolution satellite images offer great potential for accurate estimates of animal abundance over large open areas. However, little research has been conducted in the area of satellite-aided wildlife census, although computer processing speeds and image analysis algorithms have vastly improved. This paper explores the possibility of detecting large animals in the open savannah of Maasai Mara National Reserve, Kenya from very high-resolution GeoEye-1 satellite images. A hybrid image classification method was employed for this specific purpose by incorporating the advantages of both pixel-based and object-based image classification approaches. This was performed in two steps: firstly, a pixel-based image classification method, i.e., artificial neural network was applied to classify potential targets with similar spectral reflectance at pixel level; and then an object-based image classification method was used to further differentiate animal targets from the surrounding landscapes through the applications of expert knowledge. As a result, the large animals in two pilot study areas were successfully detected with an average count error of 8.2%, omission error of 6.6% and commission error of 13.7%. The results of the study show for the first time that it is feasible to perform automated detection and counting of large wild animals in open savannahs from space, and therefore provide a complementary and alternative approach to the conventional wildlife survey techniques.

  1. Cluster designs to assess the prevalence of acute malnutrition by lot quality assurance sampling: a validation study by computer simulation

    PubMed Central

    Olives, Casey; Pagano, Marcello; Deitchler, Megan; Hedt, Bethany L; Egge, Kari; Valadez, Joseph J

    2009-01-01

    Traditional lot quality assurance sampling (LQAS) methods require simple random sampling to guarantee valid results. However, cluster sampling has been proposed to reduce the number of random starting points. This study uses simulations to examine the classification error of two such designs, a 67×3 (67 clusters of three observations) and a 33×6 (33 clusters of six observations) sampling scheme to assess the prevalence of global acute malnutrition (GAM). Further, we explore the use of a 67×3 sequential sampling scheme for LQAS classification of GAM prevalence. Results indicate that, for independent clusters with moderate intracluster correlation for the GAM outcome, the three sampling designs maintain approximate validity for LQAS analysis. Sequential sampling can substantially reduce the average sample size that is required for data collection. The presence of intercluster correlation can impact dramatically the classification error that is associated with LQAS analysis. PMID:20011037

  2. Electroencephalography epilepsy classifications using hybrid cuckoo search and neural network

    NASA Astrophysics Data System (ADS)

    Pratiwi, A. B.; Damayanti, A.; Miswanto

    2017-07-01

    Epilepsy is a condition that affects the brain and causes repeated seizures. This seizure is episodes that can vary and nearly undetectable to long periods of vigorous shaking or brain contractions. Epilepsy often can be confirmed with an electrocephalography (EEG). Neural Networks has been used in biomedic signal analysis, it has successfully classified the biomedic signal, such as EEG signal. In this paper, a hybrid cuckoo search and neural network are used to recognize EEG signal for epilepsy classifications. The weight of the multilayer perceptron is optimized by the cuckoo search algorithm based on its error. The aim of this methods is making the network faster to obtained the local or global optimal then the process of classification become more accurate. Based on the comparison results with the traditional multilayer perceptron, the hybrid cuckoo search and multilayer perceptron provides better performance in term of error convergence and accuracy. The purpose methods give MSE 0.001 and accuracy 90.0 %.

  3. Classification of accelerometer wear and non-wear events in seconds for monitoring free-living physical activity.

    PubMed

    Zhou, Shang-Ming; Hill, Rebecca A; Morgan, Kelly; Stratton, Gareth; Gravenor, Mike B; Bijlsma, Gunnar; Brophy, Sinead

    2015-05-11

    To classify wear and non-wear time of accelerometer data for accurately quantifying physical activity in public health or population level research. A bi-moving-window-based approach was used to combine acceleration and skin temperature data to identify wear and non-wear time events in triaxial accelerometer data that monitor physical activity. Local residents in Swansea, Wales, UK. 50 participants aged under 16 years (n=23) and over 17 years (n=27) were recruited in two phases: phase 1: design of the wear/non-wear algorithm (n=20) and phase 2: validation of the algorithm (n=30). Participants wore a triaxial accelerometer (GeneActiv) against the skin surface on the wrist (adults) or ankle (children). Participants kept a diary to record the timings of wear and non-wear and were asked to ensure that events of wear/non-wear last for a minimum of 15 min. The overall sensitivity of the proposed method was 0.94 (95% CI 0.90 to 0.98) and specificity 0.91 (95% CI 0.88 to 0.94). It performed equally well for children compared with adults, and females compared with males. Using surface skin temperature data in combination with acceleration data significantly improved the classification of wear/non-wear time when compared with methods that used acceleration data only (p<0.01). Using either accelerometer seismic information or temperature information alone is prone to considerable error. Combining both sources of data can give accurate estimates of non-wear periods thus giving better classification of sedentary behaviour. This method can be used in population studies of physical activity in free-living environments. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Using high-resolution topography and hyperspectral data to classify tree species at the San Joaquin Experimental Range

    NASA Astrophysics Data System (ADS)

    Dibb, S. D.; Ustin, S.; Grigsby, S.

    2015-12-01

    Air- and space-borne remote sensing instruments allow for rapid and precise study of the diversity of the Earth's ecosystems. After atmospheric correction and ground validation are performed, the gathered hyperspectral and topographic data can be assembled into a stack of layers for land cover classification. Data for this project were collected in multiple field campaigns, including the 2013 NSF NEON California campaign and 2015 NASA SARP campaign. Using hyperspectral and high resolution topography data, 25 discriminatory attributes were processed in Exelis' ENVI software and collected for use in a decision forest to classify the four major tree species (Blue Oak, Live Oak, California Buckeye, and Foothill Pine) at the San Joaquin Experimental Range near Fresno, CA. These attributes include 21 classic vegetation indices and a number of other spectral characteristics, such as color and albedo, and four topographic layers, including slope, aspect, elevation, and tree height. Additionally, a number of nearby terrain classes, including bare earth, asphalt, water, rock, shadow, structures, and grass were created. Fifty training pixels were used for each class. The training pixels for each tree species came from collected GPS points in the field. Ensemble bootstrap aggregation of decision trees was performed in MATLAB, and an arbitrary number of 500 trees were selected to be grown. The tree that produced the minimum out-of-bag classification error (4.65%) was selected to classify the entire scene. Classification results accurately distinguished between oak species, but was suboptimal in dense areas. The entire San Joaquin Experimental Range was mapped with an overall accuracy of 94.7% and a Kappa coefficient 0.94. Finally, the Commission and Omission percentage averages were 5.3% each. A highly accurate map of tree species at this scale supports studies on drought effects, disease, and species-specific growth traits.

  5. In Search of Grid Converged Solutions

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2010-01-01

    Assessing solution error continues to be a formidable task when numerically solving practical flow problems. Currently, grid refinement is the primary method used for error assessment. The minimum grid spacing requirements to achieve design order accuracy for a structured-grid scheme are determined for several simple examples using truncation error evaluations on a sequence of meshes. For certain methods and classes of problems, obtaining design order may not be sufficient to guarantee low error. Furthermore, some schemes can require much finer meshes to obtain design order than would be needed to reduce the error to acceptable levels. Results are then presented from realistic problems that further demonstrate the challenges associated with using grid refinement studies to assess solution accuracy.

  6. Floating-point system quantization errors in digital control systems

    NASA Technical Reports Server (NTRS)

    Phillips, C. L.

    1973-01-01

    The results are reported of research into the effects on system operation of signal quantization in a digital control system. The investigation considered digital controllers (filters) operating in floating-point arithmetic in either open-loop or closed-loop systems. An error analysis technique is developed, and is implemented by a digital computer program that is based on a digital simulation of the system. As an output the program gives the programing form required for minimum system quantization errors (either maximum of rms errors), and the maximum and rms errors that appear in the system output for a given bit configuration. The program can be integrated into existing digital simulations of a system.

  7. A new enhanced index tracking model in portfolio optimization with sum weighted approach

    NASA Astrophysics Data System (ADS)

    Siew, Lam Weng; Jaaman, Saiful Hafizah; Hoe, Lam Weng

    2017-04-01

    Index tracking is a portfolio management which aims to construct the optimal portfolio to achieve similar return with the benchmark index return at minimum tracking error without purchasing all the stocks that make up the index. Enhanced index tracking is an improved portfolio management which aims to generate higher portfolio return than the benchmark index return besides minimizing the tracking error. The objective of this paper is to propose a new enhanced index tracking model with sum weighted approach to improve the existing index tracking model for tracking the benchmark Technology Index in Malaysia. The optimal portfolio composition and performance of both models are determined and compared in terms of portfolio mean return, tracking error and information ratio. The results of this study show that the optimal portfolio of the proposed model is able to generate higher mean return than the benchmark index at minimum tracking error. Besides that, the proposed model is able to outperform the existing model in tracking the benchmark index. The significance of this study is to propose a new enhanced index tracking model with sum weighted apporach which contributes 67% improvement on the portfolio mean return as compared to the existing model.

  8. A Method of Spatial Mapping and Reclassification for High-Spatial-Resolution Remote Sensing Image Classification

    PubMed Central

    Wang, Guizhou; Liu, Jianbo; He, Guojin

    2013-01-01

    This paper presents a new classification method for high-spatial-resolution remote sensing images based on a strategic mechanism of spatial mapping and reclassification. The proposed method includes four steps. First, the multispectral image is classified by a traditional pixel-based classification method (support vector machine). Second, the panchromatic image is subdivided by watershed segmentation. Third, the pixel-based multispectral image classification result is mapped to the panchromatic segmentation result based on a spatial mapping mechanism and the area dominant principle. During the mapping process, an area proportion threshold is set, and the regional property is defined as unclassified if the maximum area proportion does not surpass the threshold. Finally, unclassified regions are reclassified based on spectral information using the minimum distance to mean algorithm. Experimental results show that the classification method for high-spatial-resolution remote sensing images based on the spatial mapping mechanism and reclassification strategy can make use of both panchromatic and multispectral information, integrate the pixel- and object-based classification methods, and improve classification accuracy. PMID:24453808

  9. Measurement uncertainty evaluation of conicity error inspected on CMM

    NASA Astrophysics Data System (ADS)

    Wang, Dongxia; Song, Aiguo; Wen, Xiulan; Xu, Youxiong; Qiao, Guifang

    2016-01-01

    The cone is widely used in mechanical design for rotation, centering and fixing. Whether the conicity error can be measured and evaluated accurately will directly influence its assembly accuracy and working performance. According to the new generation geometrical product specification(GPS), the error and its measurement uncertainty should be evaluated together. The mathematical model of the minimum zone conicity error is established and an improved immune evolutionary algorithm(IIEA) is proposed to search for the conicity error. In the IIEA, initial antibodies are firstly generated by using quasi-random sequences and two kinds of affinities are calculated. Then, each antibody clone is generated and they are self-adaptively mutated so as to maintain diversity. Similar antibody is suppressed and new random antibody is generated. Because the mathematical model of conicity error is strongly nonlinear and the input quantities are not independent, it is difficult to use Guide to the expression of uncertainty in the measurement(GUM) method to evaluate measurement uncertainty. Adaptive Monte Carlo method(AMCM) is proposed to estimate measurement uncertainty in which the number of Monte Carlo trials is selected adaptively and the quality of the numerical results is directly controlled. The cone parts was machined on lathe CK6140 and measured on Miracle NC 454 Coordinate Measuring Machine(CMM). The experiment results confirm that the proposed method not only can search for the approximate solution of the minimum zone conicity error(MZCE) rapidly and precisely, but also can evaluate measurement uncertainty and give control variables with an expected numerical tolerance. The conicity errors computed by the proposed method are 20%-40% less than those computed by NC454 CMM software and the evaluation accuracy improves significantly.

  10. Peculiarities of use of ECOC and AdaBoost based classifiers for thematic processing of hyperspectral data

    NASA Astrophysics Data System (ADS)

    Dementev, A. O.; Dmitriev, E. V.; Kozoderov, V. V.; Egorov, V. D.

    2017-10-01

    Hyperspectral imaging is up-to-date promising technology widely applied for the accurate thematic mapping. The presence of a large number of narrow survey channels allows us to use subtle differences in spectral characteristics of objects and to make a more detailed classification than in the case of using standard multispectral data. The difficulties encountered in the processing of hyperspectral images are usually associated with the redundancy of spectral information which leads to the problem of the curse of dimensionality. Methods currently used for recognizing objects on multispectral and hyperspectral images are usually based on standard base supervised classification algorithms of various complexity. Accuracy of these algorithms can be significantly different depending on considered classification tasks. In this paper we study the performance of ensemble classification methods for the problem of classification of the forest vegetation. Error correcting output codes and boosting are tested on artificial data and real hyperspectral images. It is demonstrates, that boosting gives more significant improvement when used with simple base classifiers. The accuracy in this case in comparable the error correcting output code (ECOC) classifier with Gaussian kernel SVM base algorithm. However the necessity of boosting ECOC with Gaussian kernel SVM is questionable. It is demonstrated, that selected ensemble classifiers allow us to recognize forest species with high enough accuracy which can be compared with ground-based forest inventory data.

  11. Experimental study on an FBG strain sensor

    NASA Astrophysics Data System (ADS)

    Liu, Hong-lin; Zhu, Zheng-wei; Zheng, Yong; Liu, Bang; Xiao, Feng

    2018-01-01

    Landslides and other geological disasters occur frequently and often cause high financial and humanitarian cost. The real-time, early-warning monitoring of landslides has important significance in reducing casualties and property losses. In this paper, by taking the high initial precision and high sensitivity advantage of FBG, an FBG strain sensor is designed combining FBGs with inclinometer. The sensor was regarded as a cantilever beam with one end fixed. According to the anisotropic material properties of the inclinometer, a theoretical formula between the FBG wavelength and the deflection of the sensor was established using the elastic mechanics principle. Accuracy of the formula established had been verified through laboratory calibration testing and model slope monitoring experiments. The displacement of landslide could be calculated by the established theoretical formula using the changing values of FBG central wavelength obtained by the demodulation instrument remotely. Results showed that the maximum error at different heights was 9.09%; the average of the maximum error was 6.35%, and its corresponding variance was 2.12; the minimum error was 4.18%; the average of the minimum error was 5.99%, and its corresponding variance was 0.50. The maximum error of the theoretical and the measured displacement decrease gradually, and the variance of the error also decreases gradually. This indicates that the theoretical results are more and more reliable. It also shows that the sensor and the theoretical formula established in this paper can be used for remote, real-time, high precision and early warning monitoring of the slope.

  12. Land use in the Paraiba Valley through remotely sensed data. [Brazil

    NASA Technical Reports Server (NTRS)

    Dejesusparada, N. (Principal Investigator); Lombardo, M. A.; Novo, E. M. L. D.; Niero, M.; Foresti, C.

    1980-01-01

    A methodology for land use survey was developed and land use modification rates were determined using LANDSAT imagery of the Paraiba Valley (state of Sao Paulo). Both visual and automatic interpretation methods were employed to analyze seven land use classes: urban area, industrial area, bare soil, cultivated area, pastureland, reforestation and natural vegetation. By means of visual interpretation, little spectral differences are observed among those classes. The automatic classification of LANDSAT MSS data using maximum likelihood algorithm shows a 39% average error of omission and a 3.4% error of inclusion for the seven classes. The complexity of land uses in the study area, the large spectral variations of analyzed classes, and the low resolution of LANDSAT data influenced the classification results.

  13. [The electronic use of the NANDA-, NOC- and NIC- classifications and implications for nursing practice].

    PubMed

    Bernhart-Just, Alexandra; Hillewerth, Kathrin; Holzer-Pruss, Christina; Paprotny, Monika; Zimmermann Heinrich, Heidi

    2009-12-01

    The data model developed on behalf of the Nursing Service Commission of the Canton of Zurich (Pflegedienstkommission des Kantons Zürich) is based on the NANDA nursing diagnoses, the Nursing Outcome Classification, and the Nursing Intervention Classification (NNN Classifications). It also includes integrated functions for cost-centered accounting, service recording, and the Swiss Nursing Minimum Data Set. The data model uses the NNN classifications to map a possible form of the nursing process in the electronic patient health record, where the nurse can choose nursing diagnoses, outcomes, and interventions relevant to the patient situation. The nurses' choice is guided both by the different classifications and their linkages, and the use of specific text components pre-defined for each classification and accessible through the respective linkages. This article describes the developed data model and illustrates its clinical application in a specific patient's situation. Preparatory work required for the implementation of NNN classifications in practical nursing such as content filtering and the creation of linkages between the NNN classifications are described. Against the background of documentation of the nursing process based on the DAPEP(1) data model, possible changes and requirements are deduced. The article provides a contribution to the discussion of a change in documentation of the nursing process by implementing nursing classifications in electronic patient records.

  14. One-Class Classification-Based Real-Time Activity Error Detection in Smart Homes.

    PubMed

    Das, Barnan; Cook, Diane J; Krishnan, Narayanan C; Schmitter-Edgecombe, Maureen

    2016-08-01

    Caring for individuals with dementia is frequently associated with extreme physical and emotional stress, which often leads to depression. Smart home technology and advances in machine learning techniques can provide innovative solutions to reduce caregiver burden. One key service that caregivers provide is prompting individuals with memory limitations to initiate and complete daily activities. We hypothesize that sensor technologies combined with machine learning techniques can automate the process of providing reminder-based interventions. The first step towards automated interventions is to detect when an individual faces difficulty with activities. We propose machine learning approaches based on one-class classification that learn normal activity patterns. When we apply these classifiers to activity patterns that were not seen before, the classifiers are able to detect activity errors, which represent potential prompt situations. We validate our approaches on smart home sensor data obtained from older adult participants, some of whom faced difficulties performing routine activities and thus committed errors.

  15. Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data

    NASA Astrophysics Data System (ADS)

    Zhu, Likai; Radeloff, Volker C.; Ives, Anthony R.

    2017-06-01

    Mapping crop types is of great importance for assessing agricultural production, land-use patterns, and the environmental effects of agriculture. Indeed, both radiometric and spatial resolution of Landsat's sensors images are optimized for cropland monitoring. However, accurate mapping of crop types requires frequent cloud-free images during the growing season, which are often not available, and this raises the question of whether Landsat data can be combined with data from other satellites. Here, our goal is to evaluate to what degree fusing Landsat with MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data can improve crop-type classification. Choosing either one or two images from all cloud-free Landsat observations available for the Arlington Agricultural Research Station area in Wisconsin from 2010 to 2014, we generated 87 combinations of images, and used each combination as input into the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to predict Landsat-like images at the nominal dates of each 8-day MODIS NBAR product. Both the original Landsat and STARFM-predicted images were then classified with a support vector machine (SVM), and we compared the classification errors of three scenarios: 1) classifying the one or two original Landsat images of each combination only, 2) classifying the one or two original Landsat images plus all STARFM-predicted images, and 3) classifying the one or two original Landsat images together with STARFM-predicted images for key dates. Our results indicated that using two Landsat images as the input of STARFM did not significantly improve the STARFM predictions compared to using only one, and predictions using Landsat images between July and August as input were most accurate. Including all STARFM-predicted images together with the Landsat images significantly increased average classification error by 4% points (from 21% to 25%) compared to using only Landsat images. However, incorporating only STARFM-predicted images for key dates decreased average classification error by 2% points (from 21% to 19%) compared to using only Landsat images. In particular, if only a single Landsat image was available, adding STARFM predictions for key dates significantly decreased the average classification error by 4 percentage points from 30% to 26% (p < 0.05). We conclude that adding STARFM-predicted images can be effective for improving crop-type classification when only limited Landsat observations are available, but carefully selecting images from a full set of STARFM predictions is crucial. We developed an approach to identify the optimal subsets of all STARFM predictions, which gives an alternative method of feature selection for future research.

  16. Exploring diversity in ensemble classification: Applications in large area land cover mapping

    NASA Astrophysics Data System (ADS)

    Mellor, Andrew; Boukir, Samia

    2017-07-01

    Ensemble classifiers, such as random forests, are now commonly applied in the field of remote sensing, and have been shown to perform better than single classifier systems, resulting in reduced generalisation error. Diversity across the members of ensemble classifiers is known to have a strong influence on classification performance - whereby classifier errors are uncorrelated and more uniformly distributed across ensemble members. The relationship between ensemble diversity and classification performance has not yet been fully explored in the fields of information science and machine learning and has never been examined in the field of remote sensing. This study is a novel exploration of ensemble diversity and its link to classification performance, applied to a multi-class canopy cover classification problem using random forests and multisource remote sensing and ancillary GIS data, across seven million hectares of diverse dry-sclerophyll dominated public forests in Victoria Australia. A particular emphasis is placed on analysing the relationship between ensemble diversity and ensemble margin - two key concepts in ensemble learning. The main novelty of our work is on boosting diversity by emphasizing the contribution of lower margin instances used in the learning process. Exploring the influence of tree pruning on diversity is also a new empirical analysis that contributes to a better understanding of ensemble performance. Results reveal insights into the trade-off between ensemble classification accuracy and diversity, and through the ensemble margin, demonstrate how inducing diversity by targeting lower margin training samples is a means of achieving better classifier performance for more difficult or rarer classes and reducing information redundancy in classification problems. Our findings inform strategies for collecting training data and designing and parameterising ensemble classifiers, such as random forests. This is particularly important in large area remote sensing applications, for which training data is costly and resource intensive to collect.

  17. Analysis of swallowing sounds using hidden Markov models.

    PubMed

    Aboofazeli, Mohammad; Moussavi, Zahra

    2008-04-01

    In recent years, acoustical analysis of the swallowing mechanism has received considerable attention due to its diagnostic potentials. This paper presents a hidden Markov model (HMM) based method for the swallowing sound segmentation and classification. Swallowing sound signals of 15 healthy and 11 dysphagic subjects were studied. The signals were divided into sequences of 25 ms segments each of which were represented by seven features. The sequences of features were modeled by HMMs. Trained HMMs were used for segmentation of the swallowing sounds into three distinct phases, i.e., initial quiet period, initial discrete sounds (IDS) and bolus transit sounds (BTS). Among the seven features, accuracy of segmentation by the HMM based on multi-scale product of wavelet coefficients was higher than that of the other HMMs and the linear prediction coefficient (LPC)-based HMM showed the weakest performance. In addition, HMMs were used for classification of the swallowing sounds of healthy subjects and dysphagic patients. Classification accuracy of different HMM configurations was investigated. When we increased the number of states of the HMMs from 4 to 8, the classification error gradually decreased. In most cases, classification error for N=9 was higher than that of N=8. Among the seven features used, root mean square (RMS) and waveform fractal dimension (WFD) showed the best performance in the HMM-based classification of swallowing sounds. When the sequences of the features of IDS segment were modeled separately, the accuracy reached up to 85.5%. As a second stage classification, a screening algorithm was used which correctly classified all the subjects but one healthy subject when RMS was used as characteristic feature of the swallowing sounds and the number of states was set to N=8.

  18. Extent and Impacts of the Virginia Department of Transportation’s Exception Process for Access Management Design Standards

    DOT National Transportation Integrated Search

    2018-06-01

    The Virginia Department of Transportation (VDOT) Road Design Manual requires that new commercial entrances meet certain minimum spacing standards depending on a facilitys speed limit and functional classification. Landowners, however, may request ...

  19. Classification of Salmonella serotypes with hyperspectral microscope imagery

    USDA-ARS?s Scientific Manuscript database

    Previous research has demonstrated an optical method with acousto-optic tunable filter (AOTF) based hyperspectral microscope imaging (HMI) had potential for classifying gram-negative from gram-positive foodborne pathogenic bacteria rapidly and nondestructively with a minimum sample preparation. In t...

  20. Spelling in Adolescents with Dyslexia: Errors and Modes of Assessment

    ERIC Educational Resources Information Center

    Tops, Wim; Callens, Maaike; Bijn, Evi; Brysbaert, Marc

    2014-01-01

    In this study we focused on the spelling of high-functioning students with dyslexia. We made a detailed classification of the errors in a word and sentence dictation task made by 100 students with dyslexia and 100 matched control students. All participants were in the first year of their bachelor's studies and had Dutch as mother tongue. Three…

  1. Estimation of a cover-type change matrix from error-prone data

    Treesearch

    Steen Magnussen

    2009-01-01

    Coregistration and classification errors seriously compromise per-pixel estimates of land cover change. A more robust estimation of change is proposed in which adjacent pixels are grouped into 3x3 clusters and treated as a unit of observation. A complete change matrix is recovered in a two-step process. The diagonal elements of a change matrix are recovered from...

  2. Curriculum Assessment Using Artificial Neural Network and Support Vector Machine Modeling Approaches: A Case Study. IR Applications. Volume 29

    ERIC Educational Resources Information Center

    Chen, Chau-Kuang

    2010-01-01

    Artificial Neural Network (ANN) and Support Vector Machine (SVM) approaches have been on the cutting edge of science and technology for pattern recognition and data classification. In the ANN model, classification accuracy can be achieved by using the feed-forward of inputs, back-propagation of errors, and the adjustment of connection weights. In…

  3. North American vegetation model for land-use planning in a changing climate: A solution to large classification problems

    Treesearch

    Gerald E. Rehfeldt; Nicholas L. Crookston; Cuauhtemoc Saenz-Romero; Elizabeth M. Campbell

    2012-01-01

    Data points intensively sampling 46 North American biomes were used to predict the geographic distribution of biomes from climate variables using the Random Forests classification tree. Techniques were incorporated to accommodate a large number of classes and to predict the future occurrence of climates beyond the contemporary climatic range of the biomes. Errors of...

  4. Feasibility of Equivalent Dipole Models for Electroencephalogram-Based Brain Computer Interfaces.

    PubMed

    Schimpf, Paul H

    2017-09-15

    This article examines the localization errors of equivalent dipolar sources inverted from the surface electroencephalogram in order to determine the feasibility of using their location as classification parameters for non-invasive brain computer interfaces. Inverse localization errors are examined for two head models: a model represented by four concentric spheres and a realistic model based on medical imagery. It is shown that the spherical model results in localization ambiguity such that a number of dipolar sources, with different azimuths and varying orientations, provide a near match to the electroencephalogram of the best equivalent source. No such ambiguity exists for the elevation of inverted sources, indicating that for spherical head models, only the elevation of inverted sources (and not the azimuth) can be expected to provide meaningful classification parameters for brain-computer interfaces. In a realistic head model, all three parameters of the inverted source location are found to be reliable, providing a more robust set of parameters. In both cases, the residual error hypersurfaces demonstrate local minima, indicating that a search for the best-matching sources should be global. Source localization error vs. signal-to-noise ratio is also demonstrated for both head models.

  5. Bayes Error Rate Estimation Using Classifier Ensembles

    NASA Technical Reports Server (NTRS)

    Tumer, Kagan; Ghosh, Joydeep

    2003-01-01

    The Bayes error rate gives a statistical lower bound on the error achievable for a given classification problem and the associated choice of features. By reliably estimating th is rate, one can assess the usefulness of the feature set that is being used for classification. Moreover, by comparing the accuracy achieved by a given classifier with the Bayes rate, one can quantify how effective that classifier is. Classical approaches for estimating or finding bounds for the Bayes error, in general, yield rather weak results for small sample sizes; unless the problem has some simple characteristics, such as Gaussian class-conditional likelihoods. This article shows how the outputs of a classifier ensemble can be used to provide reliable and easily obtainable estimates of the Bayes error with negligible extra computation. Three methods of varying sophistication are described. First, we present a framework that estimates the Bayes error when multiple classifiers, each providing an estimate of the a posteriori class probabilities, a recombined through averaging. Second, we bolster this approach by adding an information theoretic measure of output correlation to the estimate. Finally, we discuss a more general method that just looks at the class labels indicated by ensem ble members and provides error estimates based on the disagreements among classifiers. The methods are illustrated for artificial data, a difficult four-class problem involving underwater acoustic data, and two problems from the Problem benchmarks. For data sets with known Bayes error, the combiner-based methods introduced in this article outperform existing methods. The estimates obtained by the proposed methods also seem quite reliable for the real-life data sets for which the true Bayes rates are unknown.

  6. A novel diagnosis method for a Hall plates-based rotary encoder with a magnetic concentrator.

    PubMed

    Meng, Bumin; Wang, Yaonan; Sun, Wei; Yuan, Xiaofang

    2014-07-31

    In the last few years, rotary encoders based on two-dimensional complementary metal oxide semiconductors (CMOS) Hall plates with a magnetic concentrator have been developed to measure contactless absolute angle. There are various error factors influencing the measuring accuracy, which are difficult to locate after the assembly of encoder. In this paper, a model-based rapid diagnosis method is presented. Based on an analysis of the error mechanism, an error model is built to compare minimum residual angle error and to quantify the error factors. Additionally, a modified particle swarm optimization (PSO) algorithm is used to reduce the calculated amount. The simulation and experimental results show that this diagnosis method is feasible to quantify the causes of the error and to reduce iteration significantly.

  7. The Power of Neuroimaging Biomarkers for Screening Frontotemporal Dementia

    PubMed Central

    McMillan, Corey T.; Avants, Brian B.; Cook, Philip; Ungar, Lyle; Trojanowski, John Q.; Grossman, Murray

    2014-01-01

    Frontotemporal dementia (FTD) is a clinically and pathologically heterogeneous neurodegenerative disease that can result from either frontotemporal lobar degeneration (FTLD) or Alzheimer’s disease (AD) pathology. It is critical to establish statistically powerful biomarkers that can achieve substantial cost-savings and increase feasibility of clinical trials. We assessed three broad categories of neuroimaging methods to screen underlying FTLD and AD pathology in a clinical FTD series: global measures (e.g., ventricular volume), anatomical volumes of interest (VOIs) (e.g., hippocampus) using a standard atlas, and data-driven VOIs using Eigenanatomy. We evaluated clinical FTD patients (N=93) with cerebrospinal fluid, gray matter (GM) MRI, and diffusion tensor imaging (DTI) to assess whether they had underlying FTLD or AD pathology. Linear regression was performed to identify the optimal VOIs for each method in a training dataset and then we evaluated classification sensitivity and specificity in an independent test cohort. Power was evaluated by calculating minimum sample sizes (mSS) required in the test classification analyses for each model. The data-driven VOI analysis using a multimodal combination of GM MRI and DTI achieved the greatest classification accuracy (89% SENSITIVE; 89% SPECIFIC) and required a lower minimum sample size (N=26) relative to anatomical VOI and global measures. We conclude that a data-driven VOI approach employing Eigenanatomy provides more accurate classification, benefits from increased statistical power in unseen datasets, and therefore provides a robust method for screening underlying pathology in FTD patients for entry into clinical trials. PMID:24687814

  8. A feasibility study in adapting Shamos Bickel and Hodges Lehman estimator into T-Method for normalization

    NASA Astrophysics Data System (ADS)

    Harudin, N.; Jamaludin, K. R.; Muhtazaruddin, M. Nabil; Ramlie, F.; Muhamad, Wan Zuki Azman Wan

    2018-03-01

    T-Method is one of the techniques governed under Mahalanobis Taguchi System that developed specifically for multivariate data predictions. Prediction using T-Method is always possible even with very limited sample size. The user of T-Method required to clearly understanding the population data trend since this method is not considering the effect of outliers within it. Outliers may cause apparent non-normality and the entire classical methods breakdown. There exist robust parameter estimate that provide satisfactory results when the data contain outliers, as well as when the data are free of them. The robust parameter estimates of location and scale measure called Shamos Bickel (SB) and Hodges Lehman (HL) which are used as a comparable method to calculate the mean and standard deviation of classical statistic is part of it. Embedding these into T-Method normalize stage feasibly help in enhancing the accuracy of the T-Method as well as analysing the robustness of T-method itself. However, the result of higher sample size case study shows that T-method is having lowest average error percentages (3.09%) on data with extreme outliers. HL and SB is having lowest error percentages (4.67%) for data without extreme outliers with minimum error differences compared to T-Method. The error percentages prediction trend is vice versa for lower sample size case study. The result shows that with minimum sample size, which outliers always be at low risk, T-Method is much better on that, while higher sample size with extreme outliers, T-Method as well show better prediction compared to others. For the case studies conducted in this research, it shows that normalization of T-Method is showing satisfactory results and it is not feasible to adapt HL and SB or normal mean and standard deviation into it since it’s only provide minimum effect of percentages errors. Normalization using T-method is still considered having lower risk towards outlier’s effect.

  9. Biased visualization of hypoperfused tissue by computed tomography due to short imaging duration: improved classification by image down-sampling and vascular models.

    PubMed

    Mikkelsen, Irene Klærke; Jones, P Simon; Ribe, Lars Riisgaard; Alawneh, Josef; Puig, Josep; Bekke, Susanne Lise; Tietze, Anna; Gillard, Jonathan H; Warburton, Elisabeth A; Pedraza, Salva; Baron, Jean-Claude; Østergaard, Leif; Mouridsen, Kim

    2015-07-01

    Lesion detection in acute stroke by computed-tomography perfusion (CTP) can be affected by incomplete bolus coverage in veins and hypoperfused tissue, so-called bolus truncation (BT), and low contrast-to-noise ratio (CNR). We examined the BT-frequency and hypothesized that image down-sampling and a vascular model (VM) for perfusion calculation would improve normo- and hypoperfused tissue classification. CTP datasets from 40 acute stroke patients were retrospectively analysed for BT. In 16 patients with hypoperfused tissue but no BT, repeated 2-by-2 image down-sampling and uniform filtering was performed, comparing CNR to perfusion-MRI levels and tissue classification to that of unprocessed data. By simulating reduced scan duration, the minimum scan-duration at which estimated lesion volumes came within 10% of their true volume was compared for VM and state-of-the-art algorithms. BT in veins and hypoperfused tissue was observed in 9/40 (22.5%) and 17/40 patients (42.5%), respectively. Down-sampling to 128 × 128 resolution yielded CNR comparable to MR data and improved tissue classification (p = 0.0069). VM reduced minimum scan duration, providing reliable maps of cerebral blood flow and mean transit time: 5 s (p = 0.03) and 7 s (p < 0.0001), respectively). BT is not uncommon in stroke CTP with 40-s scan duration. Applying image down-sampling and VM improve tissue classification. • Too-short imaging duration is common in clinical acute stroke CTP imaging. • The consequence is impaired identification of hypoperfused tissue in acute stroke patients. • The vascular model is less sensitive than current algorithms to imaging duration. • Noise reduction by image down-sampling improves identification of hypoperfused tissue by CTP.

  10. Coherent errors in quantum error correction

    NASA Astrophysics Data System (ADS)

    Greenbaum, Daniel; Dutton, Zachary

    Analysis of quantum error correcting (QEC) codes is typically done using a stochastic, Pauli channel error model for describing the noise on physical qubits. However, it was recently found that coherent errors (systematic rotations) on physical data qubits result in both physical and logical error rates that differ significantly from those predicted by a Pauli model. We present analytic results for the logical error as a function of concatenation level and code distance for coherent errors under the repetition code. For data-only coherent errors, we find that the logical error is partially coherent and therefore non-Pauli. However, the coherent part of the error is negligible after two or more concatenation levels or at fewer than ɛ - (d - 1) error correction cycles. Here ɛ << 1 is the rotation angle error per cycle for a single physical qubit and d is the code distance. These results support the validity of modeling coherent errors using a Pauli channel under some minimum requirements for code distance and/or concatenation. We discuss extensions to imperfect syndrome extraction and implications for general QEC.

  11. Identification of terrain cover using the optimum polarimetric classifier

    NASA Technical Reports Server (NTRS)

    Kong, J. A.; Swartz, A. A.; Yueh, H. A.; Novak, L. M.; Shin, R. T.

    1988-01-01

    A systematic approach for the identification of terrain media such as vegetation canopy, forest, and snow-covered fields is developed using the optimum polarimetric classifier. The covariance matrices for various terrain cover are computed from theoretical models of random medium by evaluating the scattering matrix elements. The optimal classification scheme makes use of a quadratic distance measure and is applied to classify a vegetation canopy consisting of both trees and grass. Experimentally measured data are used to validate the classification scheme. Analytical and Monte Carlo simulated classification errors using the fully polarimetric feature vector are compared with classification based on single features which include the phase difference between the VV and HH polarization returns. It is shown that the full polarimetric results are optimal and provide better classification performance than single feature measurements.

  12. Classifying nursing errors in clinical management within an Australian hospital.

    PubMed

    Tran, D T; Johnson, M

    2010-12-01

    Although many classification systems relating to patient safety exist, no taxonomy was identified that classified nursing errors in clinical management. To develop a classification system for nursing errors relating to clinical management (NECM taxonomy) and to describe contributing factors and patient consequences. We analysed 241 (11%) self-reported incidents relating to clinical management in nursing in a metropolitan hospital. Descriptive analysis of numeric data and content analysis of text data were undertaken to derive the NECM taxonomy, contributing factors and consequences for patients. Clinical management incidents represented 1.63 incidents per 1000 occupied bed days. The four themes of the NECM taxonomy were nursing care process (67%), communication (22%), administrative process (5%), and knowledge and skill (6%). Half of the incidents did not cause any patient harm. Contributing factors (n=111) included the following: patient clinical, social conditions and behaviours (27%); resources (22%); environment and workload (18%); other health professionals (15%); communication (13%); and nurse's knowledge and experience (5%). The NECM taxonomy provides direction to clinicians and managers on areas in clinical management that are most vulnerable to error, and therefore, priorities for system change management. Any nurses who wish to classify nursing errors relating to clinical management could use these types of errors. This study informs further research into risk management behaviour, and self-assessment tools for clinicians. Globally, nurses need to continue to monitor and act upon patient safety issues. © 2010 The Authors. International Nursing Review © 2010 International Council of Nurses.

  13. In-vivo determination of chewing patterns using FBG and artificial neural networks

    NASA Astrophysics Data System (ADS)

    Pegorini, Vinicius; Zen Karam, Leandro; Rocha Pitta, Christiano S.; Ribeiro, Richardson; Simioni Assmann, Tangriani; Cardozo da Silva, Jean Carlos; Bertotti, Fábio L.; Kalinowski, Hypolito J.; Cardoso, Rafael

    2015-09-01

    This paper reports the process of pattern classification of the chewing process of ruminants. We propose a simplified signal processing scheme for optical fiber Bragg grating (FBG) sensors based on machine learning techniques. The FBG sensors measure the biomechanical forces during jaw movements and an artificial neural network is responsible for the classification of the associated chewing pattern. In this study, three patterns associated to dietary supplement, hay and ryegrass were considered. Additionally, two other important events for ingestive behavior studies were monitored, rumination and idle period. Experimental results show that the proposed approach for pattern classification has been capable of differentiating the materials involved in the chewing process with a small classification error.

  14. Accuracy assessment, using stratified plurality sampling, of portions of a LANDSAT classification of the Arctic National Wildlife Refuge Coastal Plain

    NASA Technical Reports Server (NTRS)

    Card, Don H.; Strong, Laurence L.

    1989-01-01

    An application of a classification accuracy assessment procedure is described for a vegetation and land cover map prepared by digital image processing of LANDSAT multispectral scanner data. A statistical sampling procedure called Stratified Plurality Sampling was used to assess the accuracy of portions of a map of the Arctic National Wildlife Refuge coastal plain. Results are tabulated as percent correct classification overall as well as per category with associated confidence intervals. Although values of percent correct were disappointingly low for most categories, the study was useful in highlighting sources of classification error and demonstrating shortcomings of the plurality sampling method.

  15. Hyperspectral image classification based on local binary patterns and PCANet

    NASA Astrophysics Data System (ADS)

    Yang, Huizhen; Gao, Feng; Dong, Junyu; Yang, Yang

    2018-04-01

    Hyperspectral image classification has been well acknowledged as one of the challenging tasks of hyperspectral data processing. In this paper, we propose a novel hyperspectral image classification framework based on local binary pattern (LBP) features and PCANet. In the proposed method, linear prediction error (LPE) is first employed to select a subset of informative bands, and LBP is utilized to extract texture features. Then, spectral and texture features are stacked into a high dimensional vectors. Next, the extracted features of a specified position are transformed to a 2-D image. The obtained images of all pixels are fed into PCANet for classification. Experimental results on real hyperspectral dataset demonstrate the effectiveness of the proposed method.

  16. Void Growth and Coalescence Simulations

    DTIC Science & Technology

    2013-08-01

    distortion and damage, minimum time step, and appropriate material model parameters. Further, a temporal and spatial convergence study was used to...estimate errors, thus, this study helps to provide guidelines for modeling of materials with voids. Finally, we use a Gurson model with Johnson-Cook...spatial convergence study was used to estimate errors, thus, this study helps to provide guidelines for modeling of materials with voids. Finally, we

  17. Neural self-tuning adaptive control of non-minimum phase system

    NASA Technical Reports Server (NTRS)

    Ho, Long T.; Bialasiewicz, Jan T.; Ho, Hai T.

    1993-01-01

    The motivation of this research came about when a neural network direct adaptive control scheme was applied to control the tip position of a flexible robotic arm. Satisfactory control performance was not attainable due to the inherent non-minimum phase characteristics of the flexible robotic arm tip. Most of the existing neural network control algorithms are based on the direct method and exhibit very high sensitivity, if not unstable, closed-loop behavior. Therefore, a neural self-tuning control (NSTC) algorithm is developed and applied to this problem and showed promising results. Simulation results of the NSTC scheme and the conventional self-tuning (STR) control scheme are used to examine performance factors such as control tracking mean square error, estimation mean square error, transient response, and steady state response.

  18. Estimates of the absolute error and a scheme for an approximate solution to scheduling problems

    NASA Astrophysics Data System (ADS)

    Lazarev, A. A.

    2009-02-01

    An approach is proposed for estimating absolute errors and finding approximate solutions to classical NP-hard scheduling problems of minimizing the maximum lateness for one or many machines and makespan is minimized. The concept of a metric (distance) between instances of the problem is introduced. The idea behind the approach is, given the problem instance, to construct another instance for which an optimal or approximate solution can be found at the minimum distance from the initial instance in the metric introduced. Instead of solving the original problem (instance), a set of approximating polynomially/pseudopolynomially solvable problems (instances) are considered, an instance at the minimum distance from the given one is chosen, and the resulting schedule is then applied to the original instance.

  19. Influence of nuclei segmentation on breast cancer malignancy classification

    NASA Astrophysics Data System (ADS)

    Jelen, Lukasz; Fevens, Thomas; Krzyzak, Adam

    2009-02-01

    Breast Cancer is one of the most deadly cancers affecting middle-aged women. Accurate diagnosis and prognosis are crucial to reduce the high death rate. Nowadays there are numerous diagnostic tools for breast cancer diagnosis. In this paper we discuss a role of nuclear segmentation from fine needle aspiration biopsy (FNA) slides and its influence on malignancy classification. Classification of malignancy plays a very important role during the diagnosis process of breast cancer. Out of all cancer diagnostic tools, FNA slides provide the most valuable information about the cancer malignancy grade which helps to choose an appropriate treatment. This process involves assessing numerous nuclear features and therefore precise segmentation of nuclei is very important. In this work we compare three powerful segmentation approaches and test their impact on the classification of breast cancer malignancy. The studied approaches involve level set segmentation, fuzzy c-means segmentation and textural segmentation based on co-occurrence matrix. Segmented nuclei were used to extract nuclear features for malignancy classification. For classification purposes four different classifiers were trained and tested with previously extracted features. The compared classifiers are Multilayer Perceptron (MLP), Self-Organizing Maps (SOM), Principal Component-based Neural Network (PCA) and Support Vector Machines (SVM). The presented results show that level set segmentation yields the best results over the three compared approaches and leads to a good feature extraction with a lowest average error rate of 6.51% over four different classifiers. The best performance was recorded for multilayer perceptron with an error rate of 3.07% using fuzzy c-means segmentation.

  20. Sub-pixel image classification for forest types in East Texas

    NASA Astrophysics Data System (ADS)

    Westbrook, Joey

    Sub-pixel classification is the extraction of information about the proportion of individual materials of interest within a pixel. Landcover classification at the sub-pixel scale provides more discrimination than traditional per-pixel multispectral classifiers for pixels where the material of interest is mixed with other materials. It allows for the un-mixing of pixels to show the proportion of each material of interest. The materials of interest for this study are pine, hardwood, mixed forest and non-forest. The goal of this project was to perform a sub-pixel classification, which allows a pixel to have multiple labels, and compare the result to a traditional supervised classification, which allows a pixel to have only one label. The satellite image used was a Landsat 5 Thematic Mapper (TM) scene of the Stephen F. Austin Experimental Forest in Nacogdoches County, Texas and the four cover type classes are pine, hardwood, mixed forest and non-forest. Once classified, a multi-layer raster datasets was created that comprised four raster layers where each layer showed the percentage of that cover type within the pixel area. Percentage cover type maps were then produced and the accuracy of each was assessed using a fuzzy error matrix for the sub-pixel classifications, and the results were compared to the supervised classification in which a traditional error matrix was used. The overall accuracy of the sub-pixel classification using the aerial photo for both training and reference data had the highest (65% overall) out of the three sub-pixel classifications. This was understandable because the analyst can visually observe the cover types actually on the ground for training data and reference data, whereas using the FIA (Forest Inventory and Analysis) plot data, the analyst must assume that an entire pixel contains the exact percentage of a cover type found in a plot. An increase in accuracy was found after reclassifying each sub-pixel classification from nine classes with 10 percent interval each to five classes with 20 percent interval each. When compared to the supervised classification which has a satisfactory overall accuracy of 90%, none of the sub-pixel classification achieved the same level. However, since traditional per-pixel classifiers assign only one label to pixels throughout the landscape while sub-pixel classifications assign multiple labels to each pixel, the traditional 85% accuracy of acceptance for pixel-based classifications should not apply to sub-pixel classifications. More research is needed in order to define the level of accuracy that is deemed acceptable for sub-pixel classifications.

  1. The impact of registration accuracy on imaging validation study design: A novel statistical power calculation.

    PubMed

    Gibson, Eli; Fenster, Aaron; Ward, Aaron D

    2013-10-01

    Novel imaging modalities are pushing the boundaries of what is possible in medical imaging, but their signal properties are not always well understood. The evaluation of these novel imaging modalities is critical to achieving their research and clinical potential. Image registration of novel modalities to accepted reference standard modalities is an important part of characterizing the modalities and elucidating the effect of underlying focal disease on the imaging signal. The strengths of the conclusions drawn from these analyses are limited by statistical power. Based on the observation that in this context, statistical power depends in part on uncertainty arising from registration error, we derive a power calculation formula relating registration error, number of subjects, and the minimum detectable difference between normal and pathologic regions on imaging, for an imaging validation study design that accommodates signal correlations within image regions. Monte Carlo simulations were used to evaluate the derived models and test the strength of their assumptions, showing that the model yielded predictions of the power, the number of subjects, and the minimum detectable difference of simulated experiments accurate to within a maximum error of 1% when the assumptions of the derivation were met, and characterizing sensitivities of the model to violations of the assumptions. The use of these formulae is illustrated through a calculation of the number of subjects required for a case study, modeled closely after a prostate cancer imaging validation study currently taking place at our institution. The power calculation formulae address three central questions in the design of imaging validation studies: (1) What is the maximum acceptable registration error? (2) How many subjects are needed? (3) What is the minimum detectable difference between normal and pathologic image regions? Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Automated algorithm for mapping regions of cold-air pooling in complex terrain

    NASA Astrophysics Data System (ADS)

    Lundquist, Jessica D.; Pepin, Nicholas; Rochford, Caitlin

    2008-11-01

    In complex terrain, air in contact with the ground becomes cooled from radiative energy loss on a calm clear night and, being denser than the free atmosphere at the same elevation, sinks to valley bottoms. Cold-air pooling (CAP) occurs where this cooled air collects on the landscape. This article focuses on identifying locations on a landscape subject to considerably lower minimum temperatures than the regional average during conditions of clear skies and weak synoptic-scale winds, providing a simple automated method to map locations where cold air is likely to pool. Digital elevation models of regions of complex terrain were used to derive surfaces of local slope, curvature, and percentile elevation relative to surrounding terrain. Each pixel was classified as prone to CAP, not prone to CAP, or exhibiting no signal, based on the criterion that CAP occurs in regions with flat slopes in local depressions or valleys (negative curvature and low percentile). Along-valley changes in the topographic amplification factor (TAF) were then calculated to determine whether the cold air in the valley was likely to drain or pool. Results were checked against distributed temperature measurements in Loch Vale, Rocky Mountain National Park, Colorado; in the Eastern Pyrenees, France; and in Yosemite National Park, Sierra Nevada, California. Using CAP classification to interpolate temperatures across complex terrain resulted in improvements in root-mean-square errors compared to more basic interpolation techniques at most sites within the three areas examined, with average error reductions of up to 3°C at individual sites and about 1°C averaged over all sites in the study areas.

  3. Optimization of multimagnetometer systems on a spacecraft

    NASA Technical Reports Server (NTRS)

    Neubauer, F. M.

    1975-01-01

    The problem of optimizing the position of magnetometers along a boom of given length to yield a minimized total error is investigated. The discussion is limited to at most four magnetometers, which seems to be a practical limit due to weight, power, and financial considerations. The outlined error analysis is applied to some illustrative cases. The optimal magnetometer locations, for which the total error is minimum, are computed for given boom length, instrument errors, and very conservative magnetic field models characteristic for spacecraft with only a restricted or ineffective magnetic cleanliness program. It is shown that the error contribution by the magnetometer inaccuracy is increased as the number of magnetometers is increased, whereas the spacecraft field uncertainty is diminished by an appreciably larger amount.

  4. A real-time heat strain risk classifier using heart rate and skin temperature.

    PubMed

    Buller, Mark J; Latzka, William A; Yokota, Miyo; Tharion, William J; Moran, Daniel S

    2008-12-01

    Heat injury is a real concern to workers engaged in physically demanding tasks in high heat strain environments. Several real-time physiological monitoring systems exist that can provide indices of heat strain, e.g. physiological strain index (PSI), and provide alerts to medical personnel. However, these systems depend on core temperature measurement using expensive, ingestible thermometer pills. Seeking a better solution, we suggest the use of a model which can identify the probability that individuals are 'at risk' from heat injury using non-invasive measures. The intent is for the system to identify individuals who need monitoring more closely or who should apply heat strain mitigation strategies. We generated a model that can identify 'at risk' (PSI 7.5) workers from measures of heart rate and chest skin temperature. The model was built using data from six previously published exercise studies in which some subjects wore chemical protective equipment. The model has an overall classification error rate of 10% with one false negative error (2.7%), and outperforms an earlier model and a least squares regression model with classification errors of 21% and 14%, respectively. Additionally, the model allows the classification criteria to be adjusted based on the task and acceptable level of risk. We conclude that the model could be a valuable part of a multi-faceted heat strain management system.

  5. Validation of the ICU-DaMa tool for automatically extracting variables for minimum dataset and quality indicators: The importance of data quality assessment.

    PubMed

    Sirgo, Gonzalo; Esteban, Federico; Gómez, Josep; Moreno, Gerard; Rodríguez, Alejandro; Blanch, Lluis; Guardiola, Juan José; Gracia, Rafael; De Haro, Lluis; Bodí, María

    2018-04-01

    Big data analytics promise insights into healthcare processes and management, improving outcomes while reducing costs. However, data quality is a major challenge for reliable results. Business process discovery techniques and an associated data model were used to develop data management tool, ICU-DaMa, for extracting variables essential for overseeing the quality of care in the intensive care unit (ICU). To determine the feasibility of using ICU-DaMa to automatically extract variables for the minimum dataset and ICU quality indicators from the clinical information system (CIS). The Wilcoxon signed-rank test and Fisher's exact test were used to compare the values extracted from the CIS with ICU-DaMa for 25 variables from all patients attended in a polyvalent ICU during a two-month period against the gold standard of values manually extracted by two trained physicians. Discrepancies with the gold standard were classified into plausibility, conformance, and completeness errors. Data from 149 patients were included. Although there were no significant differences between the automatic method and the manual method, we detected differences in values for five variables, including one plausibility error and two conformance and completeness errors. Plausibility: 1) Sex, ICU-DaMa incorrectly classified one male patient as female (error generated by the Hospital's Admissions Department). Conformance: 2) Reason for isolation, ICU-DaMa failed to detect a human error in which a professional misclassified a patient's isolation. 3) Brain death, ICU-DaMa failed to detect another human error in which a professional likely entered two mutually exclusive values related to the death of the patient (brain death and controlled donation after circulatory death). Completeness: 4) Destination at ICU discharge, ICU-DaMa incorrectly classified two patients due to a professional failing to fill out the patient discharge form when thepatients died. 5) Length of continuous renal replacement therapy, data were missing for one patient because the CRRT device was not connected to the CIS. Automatic generation of minimum dataset and ICU quality indicators using ICU-DaMa is feasible. The discrepancies were identified and can be corrected by improving CIS ergonomics, training healthcare professionals in the culture of the quality of information, and using tools for detecting and correcting data errors. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Automated Segmentation Errors When Using Optical Coherence Tomography to Measure Retinal Nerve Fiber Layer Thickness in Glaucoma.

    PubMed

    Mansberger, Steven L; Menda, Shivali A; Fortune, Brad A; Gardiner, Stuart K; Demirel, Shaban

    2017-02-01

    To characterize the error of optical coherence tomography (OCT) measurements of retinal nerve fiber layer (RNFL) thickness when using automated retinal layer segmentation algorithms without manual refinement. Cross-sectional study. This study was set in a glaucoma clinical practice, and the dataset included 3490 scans from 412 eyes of 213 individuals with a diagnosis of glaucoma or glaucoma suspect. We used spectral domain OCT (Spectralis) to measure RNFL thickness in a 6-degree peripapillary circle, and exported the native "automated segmentation only" results. In addition, we exported the results after "manual refinement" to correct errors in the automated segmentation of the anterior (internal limiting membrane) and the posterior boundary of the RNFL. Our outcome measures included differences in RNFL thickness and glaucoma classification (i.e., normal, borderline, or outside normal limits) between scans with automated segmentation only and scans using manual refinement. Automated segmentation only resulted in a thinner global RNFL thickness (1.6 μm thinner, P < .001) when compared to manual refinement. When adjusted by operator, a multivariate model showed increased differences with decreasing RNFL thickness (P < .001), decreasing scan quality (P < .001), and increasing age (P < .03). Manual refinement changed 298 of 3486 (8.5%) of scans to a different global glaucoma classification, wherein 146 of 617 (23.7%) of borderline classifications became normal. Superior and inferior temporal clock hours had the largest differences. Automated segmentation without manual refinement resulted in reduced global RNFL thickness and overestimated the classification of glaucoma. Differences increased in eyes with a thinner RNFL thickness, older age, and decreased scan quality. Operators should inspect and manually refine OCT retinal layer segmentation when assessing RNFL thickness in the management of patients with glaucoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Brain fingerprinting classification concealed information test detects US Navy military medical information with P300

    PubMed Central

    Farwell, Lawrence A.; Richardson, Drew C.; Richardson, Graham M.; Furedy, John J.

    2014-01-01

    A classification concealed information test (CIT) used the “brain fingerprinting” method of applying P300 event-related potential (ERP) in detecting information that is (1) acquired in real life and (2) unique to US Navy experts in military medicine. Military medicine experts and non-experts were asked to push buttons in response to three types of text stimuli. Targets contain known information relevant to military medicine, are identified to subjects as relevant, and require pushing one button. Subjects are told to push another button to all other stimuli. Probes contain concealed information relevant to military medicine, and are not identified to subjects. Irrelevants contain equally plausible, but incorrect/irrelevant information. Error rate was 0%. Median and mean statistical confidences for individual determinations were 99.9% with no indeterminates (results lacking sufficiently high statistical confidence to be classified). We compared error rate and statistical confidence for determinations of both information present and information absent produced by classification CIT (Is a probe ERP more similar to a target or to an irrelevant ERP?) vs. comparison CIT (Does a probe produce a larger ERP than an irrelevant?) using P300 plus the late negative component (LNP; together, P300-MERMER). Comparison CIT produced a significantly higher error rate (20%) and lower statistical confidences: mean 67%; information-absent mean was 28.9%, less than chance (50%). We compared analysis using P300 alone with the P300 + LNP. P300 alone produced the same 0% error rate but significantly lower statistical confidences. These findings add to the evidence that the brain fingerprinting methods as described here provide sufficient conditions to produce less than 1% error rate and greater than 95% median statistical confidence in a CIT on information obtained in the course of real life that is characteristic of individuals with specific training, expertise, or organizational affiliation. PMID:25565941

  8. Minimum Bayes risk image correlation

    NASA Technical Reports Server (NTRS)

    Minter, T. C., Jr.

    1980-01-01

    In this paper, the problem of designing a matched filter for image correlation will be treated as a statistical pattern recognition problem. It is shown that, by minimizing a suitable criterion, a matched filter can be estimated which approximates the optimum Bayes discriminant function in a least-squares sense. It is well known that the use of the Bayes discriminant function in target classification minimizes the Bayes risk, which in turn directly minimizes the probability of a false fix. A fast Fourier implementation of the minimum Bayes risk correlation procedure is described.

  9. A visual detection model for DCT coefficient quantization

    NASA Technical Reports Server (NTRS)

    Ahumada, Albert J., Jr.; Watson, Andrew B.

    1994-01-01

    The discrete cosine transform (DCT) is widely used in image compression and is part of the JPEG and MPEG compression standards. The degree of compression and the amount of distortion in the decompressed image are controlled by the quantization of the transform coefficients. The standards do not specify how the DCT coefficients should be quantized. One approach is to set the quantization level for each coefficient so that the quantization error is near the threshold of visibility. Results from previous work are combined to form the current best detection model for DCT coefficient quantization noise. This model predicts sensitivity as a function of display parameters, enabling quantization matrices to be designed for display situations varying in luminance, veiling light, and spatial frequency related conditions (pixel size, viewing distance, and aspect ratio). It also allows arbitrary color space directions for the representation of color. A model-based method of optimizing the quantization matrix for an individual image was developed. The model described above provides visual thresholds for each DCT frequency. These thresholds are adjusted within each block for visual light adaptation and contrast masking. For given quantization matrix, the DCT quantization errors are scaled by the adjusted thresholds to yield perceptual errors. These errors are pooled nonlinearly over the image to yield total perceptual error. With this model one may estimate the quantization matrix for a particular image that yields minimum bit rate for a given total perceptual error, or minimum perceptual error for a given bit rate. Custom matrices for a number of images show clear improvement over image-independent matrices. Custom matrices are compatible with the JPEG standard, which requires transmission of the quantization matrix.

  10. Analysis of the PLL phase error in presence of simulated ionospheric scintillation events

    NASA Astrophysics Data System (ADS)

    Forte, B.

    2012-01-01

    The functioning of standard phase locked loops (PLL), including those used to track radio signals from Global Navigation Satellite Systems (GNSS), is based on a linear approximation which holds in presence of small phase errors. Such an approximation represents a reasonable assumption in most of the propagation channels. However, in presence of a fading channel the phase error may become large, making the linear approximation no longer valid. The PLL is then expected to operate in a non-linear regime. As PLLs are generally designed and expected to operate in their linear regime, whenever the non-linear regime comes into play, they will experience a serious limitation in their capability to track the corresponding signals. The phase error and the performance of a typical PLL embedded into a commercial multiconstellation GNSS receiver were analyzed in presence of simulated ionospheric scintillation. Large phase errors occurred during scintillation-induced signal fluctuations although cycle slips only occurred during the signal re-acquisition after a loss of lock. Losses of lock occurred whenever the signal faded below the minimumC/N0threshold allowed for tracking. The simulations were performed for different signals (GPS L1C/A, GPS L2C, GPS L5 and Galileo L1). L5 and L2C proved to be weaker than L1. It appeared evident that the conditions driving the PLL phase error in the specific case of GPS receivers in presence of scintillation-induced signal perturbations need to be evaluated in terms of the combination of the minimumC/N0 tracking threshold, lock detector thresholds, possible cycle slips in the tracking PLL and accuracy of the observables (i.e. the error propagation onto the observables stage).

  11. Morbidity Assessment in Surgery: Refinement Proposal Based on a Concept of Perioperative Adverse Events

    PubMed Central

    Kazaryan, Airazat M.; Røsok, Bård I.; Edwin, Bjørn

    2013-01-01

    Background. Morbidity is a cornerstone assessing surgical treatment; nevertheless surgeons have not reached extensive consensus on this problem. Methods and Findings. Clavien, Dindo, and Strasberg with coauthors (1992, 2004, 2009, and 2010) made significant efforts to the standardization of surgical morbidity (Clavien-Dindo-Strasberg classification, last revision, the Accordion classification). However, this classification includes only postoperative complications and has two principal shortcomings: disregard of intraoperative events and confusing terminology. Postoperative events have a major impact on patient well-being. However, intraoperative events should also be recorded and reported even if they do not evidently affect the patient's postoperative well-being. The term surgical complication applied in the Clavien-Dindo-Strasberg classification may be regarded as an incident resulting in a complication caused by technical failure of surgery, in contrast to the so-called medical complications. Therefore, the term surgical complication contributes to misinterpretation of perioperative morbidity. The term perioperative adverse events comprising both intraoperative unfavourable incidents and postoperative complications could be regarded as better alternative. In 2005, Satava suggested a simple grading to evaluate intraoperative surgical errors. Based on that approach, we have elaborated a 3-grade classification of intraoperative incidents so that it can be used to grade intraoperative events of any type of surgery. Refinements have been made to the Accordion classification of postoperative complications. Interpretation. The proposed systematization of perioperative adverse events utilizing the combined application of two appraisal tools, that is, the elaborated classification of intraoperative incidents on the basis of the Satava approach to surgical error evaluation together with the modified Accordion classification of postoperative complication, appears to be an effective tool for comprehensive assessment of surgical outcomes. This concept was validated in regard to various surgical procedures. Broad implementation of this approach will promote the development of surgical science and practice. PMID:23762627

  12. Entropy-based gene ranking without selection bias for the predictive classification of microarray data.

    PubMed

    Furlanello, Cesare; Serafini, Maria; Merler, Stefano; Jurman, Giuseppe

    2003-11-06

    We describe the E-RFE method for gene ranking, which is useful for the identification of markers in the predictive classification of array data. The method supports a practical modeling scheme designed to avoid the construction of classification rules based on the selection of too small gene subsets (an effect known as the selection bias, in which the estimated predictive errors are too optimistic due to testing on samples already considered in the feature selection process). With E-RFE, we speed up the recursive feature elimination (RFE) with SVM classifiers by eliminating chunks of uninteresting genes using an entropy measure of the SVM weights distribution. An optimal subset of genes is selected according to a two-strata model evaluation procedure: modeling is replicated by an external stratified-partition resampling scheme, and, within each run, an internal K-fold cross-validation is used for E-RFE ranking. Also, the optimal number of genes can be estimated according to the saturation of Zipf's law profiles. Without a decrease of classification accuracy, E-RFE allows a speed-up factor of 100 with respect to standard RFE, while improving on alternative parametric RFE reduction strategies. Thus, a process for gene selection and error estimation is made practical, ensuring control of the selection bias, and providing additional diagnostic indicators of gene importance.

  13. DMSP SSJ4 Data Restoration, Classification, and On-Line Data Access

    NASA Technical Reports Server (NTRS)

    Wing, Simon; Bredekamp, Joseph H. (Technical Monitor)

    2000-01-01

    Compress and clean raw data file for permanent storage We have identified various error conditions/types and developed algorithms to get rid of these errors/noises, including the more complicated noise in the newer data sets. (status = 100% complete). Internet access of compacted raw data. It is now possible to access the raw data via our web site, http://www.jhuapl.edu/Aurora/index.html. The software to read and plot the compacted raw data is also available from the same web site. The users can now download the raw data, read, plot, or manipulate the data as they wish on their own computer. The users are able to access the cleaned data sets. Internet access of the color spectrograms. This task has also been completed. It is now possible to access the spectrograms from the web site mentioned above. Improve the particle precipitation region classification. The algorithm for doing this task has been developed and implemented. As a result, the accuracies improved. Now the web site routinely distributes the results of applying the new algorithm to the cleaned data set. Mark the classification region on the spectrograms. The software to mark the classification region in the spectrograms has been completed. This is also available from our web site.

  14. 14 CFR 29.1323 - Airspeed indicating system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... minimum practicable instrument calibration error when the corresponding pitot and static pressures are... pitot tube or an equivalent means of preventing malfunction due to icing. [Doc. No. 5084, 29 FR 16150...

  15. Malingering in Toxic Exposure. Classification Accuracy of Reliable Digit Span and WAIS-III Digit Span Scaled Scores

    ERIC Educational Resources Information Center

    Greve, Kevin W.; Springer, Steven; Bianchini, Kevin J.; Black, F. William; Heinly, Matthew T.; Love, Jeffrey M.; Swift, Douglas A.; Ciota, Megan A.

    2007-01-01

    This study examined the sensitivity and false-positive error rate of reliable digit span (RDS) and the WAIS-III Digit Span (DS) scaled score in persons alleging toxic exposure and determined whether error rates differed from published rates in traumatic brain injury (TBI) and chronic pain (CP). Data were obtained from the files of 123 persons…

  16. Robustification and Optimization in Repetitive Control For Minimum Phase and Non-Minimum Phase Systems

    NASA Astrophysics Data System (ADS)

    Prasitmeeboon, Pitcha

    Repetitive control (RC) is a control method that specifically aims to converge to zero tracking error of a control systems that execute a periodic command or have periodic disturbances of known period. It uses the error of one period back to adjust the command in the present period. In theory, RC can completely eliminate periodic disturbance effects. RC has applications in many fields such as high-precision manufacturing in robotics, computer disk drives, and active vibration isolation in spacecraft. The first topic treated in this dissertation develops several simple RC design methods that are somewhat analogous to PID controller design in classical control. From the early days of digital control, emulation methods were developed based on a Forward Rule, a Backward Rule, Tustin's Formula, a modification using prewarping, and a pole-zero mapping method. These allowed one to convert a candidate controller design to discrete time in a simple way. We investigate to what extent they can be used to simplify RC design. A particular design is developed from modification of the pole-zero mapping rules, which is simple and sheds light on the robustness of repetitive control designs. RC convergence requires less than 90 degree model phase error at all frequencies up to Nyquist. A zero-phase cutoff filter is normally used to robustify to high frequency model error when this limit is exceeded. The result is stabilization at the expense of failure to cancel errors above the cutoff. The second topic investigates a series of methods to use data to make real time updates of the frequency response model, allowing one to increase or eliminate the frequency cutoff. These include the use of a moving window employing a recursive discrete Fourier transform (DFT), and use of a real time projection algorithm from adaptive control for each frequency. The results can be used directly to make repetitive control corrections that cancel each error frequency, or they can be used to update a repetitive control FIR compensator. The aim is to reduce the final error level by using real time frequency response model updates to successively increase the cutoff frequency, each time creating the improved model needed to produce convergence zero error up to the higher cutoff. Non-minimum phase systems present a difficult design challenge to the sister field of Iterative Learning Control. The third topic investigates to what extent the same challenges appear in RC. One challenge is that the intrinsic non-minimum phase zero mapped from continuous time is close to the pole of repetitive controller at +1 creating behavior similar to pole-zero cancellation. The near pole-zero cancellation causes slow learning at DC and low frequencies. The Min-Max cost function over the learning rate is presented. The Min-Max can be reformulated as a Quadratically Constrained Linear Programming problem. This approach is shown to be an RC design approach that addresses the main challenge of non-minimum phase systems to have a reasonable learning rate at DC. Although it was illustrated that using the Min-Max objective improves learning at DC and low frequencies compared to other designs, the method requires model accuracy at high frequencies. In the real world, models usually have error at high frequencies. The fourth topic addresses how one can merge the quadratic penalty to the Min-Max cost function to increase robustness at high frequencies. The topic also considers limiting the Min-Max optimization to some frequencies interval and applying an FIR zero-phase low-pass filter to cutoff the learning for frequencies above that interval.

  17. Bolus-dependent dosimetric effect of positioning errors for tangential scalp radiotherapy with helical tomotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lobb, Eric, E-mail: eclobb2@gmail.com

    2014-04-01

    The dosimetric effect of errors in patient position is studied on-phantom as a function of simulated bolus thickness to assess the need for bolus utilization in scalp radiotherapy with tomotherapy. A treatment plan is generated on a cylindrical phantom, mimicking a radiotherapy technique for the scalp utilizing primarily tangential beamlets. A planning target volume with embedded scalplike clinical target volumes (CTVs) is planned to a uniform dose of 200 cGy. Translational errors in phantom position are introduced in 1-mm increments and dose is recomputed from the original sinogram. For each error the maximum dose, minimum dose, clinical target dose homogeneitymore » index (HI), and dose-volume histogram (DVH) are presented for simulated bolus thicknesses from 0 to 10 mm. Baseline HI values for all bolus thicknesses were in the 5.5 to 7.0 range, increasing to a maximum of 18.0 to 30.5 for the largest positioning errors when 0 to 2 mm of bolus is used. Utilizing 5 mm of bolus resulted in a maximum HI value of 9.5 for the largest positioning errors. Using 0 to 2 mm of bolus resulted in minimum and maximum dose values of 85% to 94% and 118% to 125% of the prescription dose, respectively. When using 5 mm of bolus these values were 98.5% and 109.5%. DVHs showed minimal changes in CTV dose coverage when using 5 mm of bolus, even for the largest positioning errors. CTV dose homogeneity becomes increasingly sensitive to errors in patient position as bolus thickness decreases when treating the scalp with primarily tangential beamlets. Performing a radial expansion of the scalp CTV into 5 mm of bolus material minimizes dosimetric sensitivity to errors in patient position as large as 5 mm and is therefore recommended.« less

  18. Research on Remote Sensing Image Classification Based on Feature Level Fusion

    NASA Astrophysics Data System (ADS)

    Yuan, L.; Zhu, G.

    2018-04-01

    Remote sensing image classification, as an important direction of remote sensing image processing and application, has been widely studied. However, in the process of existing classification algorithms, there still exists the phenomenon of misclassification and missing points, which leads to the final classification accuracy is not high. In this paper, we selected Sentinel-1A and Landsat8 OLI images as data sources, and propose a classification method based on feature level fusion. Compare three kind of feature level fusion algorithms (i.e., Gram-Schmidt spectral sharpening, Principal Component Analysis transform and Brovey transform), and then select the best fused image for the classification experimental. In the classification process, we choose four kinds of image classification algorithms (i.e. Minimum distance, Mahalanobis distance, Support Vector Machine and ISODATA) to do contrast experiment. We use overall classification precision and Kappa coefficient as the classification accuracy evaluation criteria, and the four classification results of fused image are analysed. The experimental results show that the fusion effect of Gram-Schmidt spectral sharpening is better than other methods. In four kinds of classification algorithms, the fused image has the best applicability to Support Vector Machine classification, the overall classification precision is 94.01 % and the Kappa coefficients is 0.91. The fused image with Sentinel-1A and Landsat8 OLI is not only have more spatial information and spectral texture characteristics, but also enhances the distinguishing features of the images. The proposed method is beneficial to improve the accuracy and stability of remote sensing image classification.

  19. Learning classification trees

    NASA Technical Reports Server (NTRS)

    Buntine, Wray

    1991-01-01

    Algorithms for learning classification trees have had successes in artificial intelligence and statistics over many years. How a tree learning algorithm can be derived from Bayesian decision theory is outlined. This introduces Bayesian techniques for splitting, smoothing, and tree averaging. The splitting rule turns out to be similar to Quinlan's information gain splitting rule, while smoothing and averaging replace pruning. Comparative experiments with reimplementations of a minimum encoding approach, Quinlan's C4 and Breiman et al. Cart show the full Bayesian algorithm is consistently as good, or more accurate than these other approaches though at a computational price.

  20. Software errors and complexity: An empirical investigation

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Perricone, Berry T.

    1983-01-01

    The distributions and relationships derived from the change data collected during the development of a medium scale satellite software project show that meaningful results can be obtained which allow an insight into software traits and the environment in which it is developed. Modified and new modules were shown to behave similarly. An abstract classification scheme for errors which allows a better understanding of the overall traits of a software project is also shown. Finally, various size and complexity metrics are examined with respect to errors detected within the software yielding some interesting results.

  1. Software errors and complexity: An empirical investigation

    NASA Technical Reports Server (NTRS)

    Basili, V. R.; Perricone, B. T.

    1982-01-01

    The distributions and relationships derived from the change data collected during the development of a medium scale satellite software project show that meaningful results can be obtained which allow an insight into software traits and the environment in which it is developed. Modified and new modules were shown to behave similarly. An abstract classification scheme for errors which allows a better understanding of the overall traits of a software project is also shown. Finally, various size and complexity metrics are examined with respect to errors detected within the software yielding some interesting results.

  2. Video compression of coronary angiograms based on discrete wavelet transform with block classification.

    PubMed

    Ho, B T; Tsai, M J; Wei, J; Ma, M; Saipetch, P

    1996-01-01

    A new method of video compression for angiographic images has been developed to achieve high compression ratio (~20:1) while eliminating block artifacts which leads to loss of diagnostic accuracy. This method adopts motion picture experts group's (MPEGs) motion compensated prediction to takes advantage of frame to frame correlation. However, in contrast to MPEG, the error images arising from mismatches in the motion estimation are encoded by discrete wavelet transform (DWT) rather than block discrete cosine transform (DCT). Furthermore, the authors developed a classification scheme which label each block in an image as intra, error, or background type and encode it accordingly. This hybrid coding can significantly improve the compression efficiency in certain eases. This method can be generalized for any dynamic image sequences applications sensitive to block artifacts.

  3. The effect of covariate mean differences on the standard error and confidence interval for the comparison of treatment means.

    PubMed

    Liu, Xiaofeng Steven

    2011-05-01

    The use of covariates is commonly believed to reduce the unexplained error variance and the standard error for the comparison of treatment means, but the reduction in the standard error is neither guaranteed nor uniform over different sample sizes. The covariate mean differences between the treatment conditions can inflate the standard error of the covariate-adjusted mean difference and can actually produce a larger standard error for the adjusted mean difference than that for the unadjusted mean difference. When the covariate observations are conceived of as randomly varying from one study to another, the covariate mean differences can be related to a Hotelling's T(2) . Using this Hotelling's T(2) statistic, one can always find a minimum sample size to achieve a high probability of reducing the standard error and confidence interval width for the adjusted mean difference. ©2010 The British Psychological Society.

  4. Comparisons of neural networks to standard techniques for image classification and correlation

    NASA Technical Reports Server (NTRS)

    Paola, Justin D.; Schowengerdt, Robert A.

    1994-01-01

    Neural network techniques for multispectral image classification and spatial pattern detection are compared to the standard techniques of maximum-likelihood classification and spatial correlation. The neural network produced a more accurate classification than maximum-likelihood of a Landsat scene of Tucson, Arizona. Some of the errors in the maximum-likelihood classification are illustrated using decision region and class probability density plots. As expected, the main drawback to the neural network method is the long time required for the training stage. The network was trained using several different hidden layer sizes to optimize both the classification accuracy and training speed, and it was found that one node per class was optimal. The performance improved when 3x3 local windows of image data were entered into the net. This modification introduces texture into the classification without explicit calculation of a texture measure. Larger windows were successfully used for the detection of spatial features in Landsat and Magellan synthetic aperture radar imagery.

  5. 46 CFR 8.230 - Minimum standards for a recognized classification society.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... and maintain class rules in the English language for the design, construction and certification of ships and their associated essential engineering systems; (8) Maintain written survey procedures in the English language; (9) Have adequate resources, including research, technical, and managerial staff, to...

  6. 46 CFR 8.230 - Minimum standards for a recognized classification society.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... and maintain class rules in the English language for the design, construction and certification of ships and their associated essential engineering systems; (8) Maintain written survey procedures in the English language; (9) Have adequate resources, including research, technical, and managerial staff, to...

  7. 46 CFR 8.230 - Minimum standards for a recognized classification society.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... and maintain class rules in the English language for the design, construction and certification of ships and their associated essential engineering systems; (8) Maintain written survey procedures in the English language; (9) Have adequate resources, including research, technical, and managerial staff, to...

  8. 5 CFR 330.205 - Agency RPL applications.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... register for positions at the same representative rate and work schedule (full-time, part-time, seasonal... grades or pay levels, appointment type (permanent or time-limited), occupations (e.g., position classification series or career groups), and minimum number of hours of work per week, as applicable. ...

  9. Segmentation methodology for automated classification and differentiation of soft tissues in multiband images of high-resolution ultrasonic transmission tomography.

    PubMed

    Jeong, Jeong-Won; Shin, Dae C; Do, Synho; Marmarelis, Vasilis Z

    2006-08-01

    This paper presents a novel segmentation methodology for automated classification and differentiation of soft tissues using multiband data obtained with the newly developed system of high-resolution ultrasonic transmission tomography (HUTT) for imaging biological organs. This methodology extends and combines two existing approaches: the L-level set active contour (AC) segmentation approach and the agglomerative hierarchical kappa-means approach for unsupervised clustering (UC). To prevent the trapping of the current iterative minimization AC algorithm in a local minimum, we introduce a multiresolution approach that applies the level set functions at successively increasing resolutions of the image data. The resulting AC clusters are subsequently rearranged by the UC algorithm that seeks the optimal set of clusters yielding the minimum within-cluster distances in the feature space. The presented results from Monte Carlo simulations and experimental animal-tissue data demonstrate that the proposed methodology outperforms other existing methods without depending on heuristic parameters and provides a reliable means for soft tissue differentiation in HUTT images.

  10. Analysis and application of classification methods of complex carbonate reservoirs

    NASA Astrophysics Data System (ADS)

    Li, Xiongyan; Qin, Ruibao; Ping, Haitao; Wei, Dan; Liu, Xiaomei

    2018-06-01

    There are abundant carbonate reservoirs from the Cenozoic to Mesozoic era in the Middle East. Due to variation in sedimentary environment and diagenetic process of carbonate reservoirs, several porosity types coexist in carbonate reservoirs. As a result, because of the complex lithologies and pore types as well as the impact of microfractures, the pore structure is very complicated. Therefore, it is difficult to accurately calculate the reservoir parameters. In order to accurately evaluate carbonate reservoirs, based on the pore structure evaluation of carbonate reservoirs, the classification methods of carbonate reservoirs are analyzed based on capillary pressure curves and flow units. Based on the capillary pressure curves, although the carbonate reservoirs can be classified, the relationship between porosity and permeability after classification is not ideal. On the basis of the flow units, the high-precision functional relationship between porosity and permeability after classification can be established. Therefore, the carbonate reservoirs can be quantitatively evaluated based on the classification of flow units. In the dolomite reservoirs, the average absolute error of calculated permeability decreases from 15.13 to 7.44 mD. Similarly, the average absolute error of calculated permeability of limestone reservoirs is reduced from 20.33 to 7.37 mD. Only by accurately characterizing pore structures and classifying reservoir types, reservoir parameters could be calculated accurately. Therefore, characterizing pore structures and classifying reservoir types are very important to accurate evaluation of complex carbonate reservoirs in the Middle East.

  11. Study on Classification Accuracy Inspection of Land Cover Data Aided by Automatic Image Change Detection Technology

    NASA Astrophysics Data System (ADS)

    Xie, W.-J.; Zhang, L.; Chen, H.-P.; Zhou, J.; Mao, W.-J.

    2018-04-01

    The purpose of carrying out national geographic conditions monitoring is to obtain information of surface changes caused by human social and economic activities, so that the geographic information can be used to offer better services for the government, enterprise and public. Land cover data contains detailed geographic conditions information, thus has been listed as one of the important achievements in the national geographic conditions monitoring project. At present, the main issue of the production of the land cover data is about how to improve the classification accuracy. For the land cover data quality inspection and acceptance, classification accuracy is also an important check point. So far, the classification accuracy inspection is mainly based on human-computer interaction or manual inspection in the project, which are time consuming and laborious. By harnessing the automatic high-resolution remote sensing image change detection technology based on the ERDAS IMAGINE platform, this paper carried out the classification accuracy inspection test of land cover data in the project, and presented a corresponding technical route, which includes data pre-processing, change detection, result output and information extraction. The result of the quality inspection test shows the effectiveness of the technical route, which can meet the inspection needs for the two typical errors, that is, missing and incorrect update error, and effectively reduces the work intensity of human-computer interaction inspection for quality inspectors, and also provides a technical reference for the data production and quality control of the land cover data.

  12. Computer program to minimize prediction error in models from experiments with 16 hypercube points and 0 to 6 center points

    NASA Technical Reports Server (NTRS)

    Holms, A. G.

    1982-01-01

    A previous report described a backward deletion procedure of model selection that was optimized for minimum prediction error and which used a multiparameter combination of the F - distribution and an order statistics distribution of Cochran's. A computer program is described that applies the previously optimized procedure to real data. The use of the program is illustrated by examples.

  13. Predictive momentum management for a space station measurement and computation requirements

    NASA Technical Reports Server (NTRS)

    Adams, John Carl

    1986-01-01

    An analysis is made of the effects of errors and uncertainties in the predicting of disturbance torques on the peak momentum buildup on a space station. Models of the disturbance torques acting on a space station in low Earth orbit are presented, to estimate how accurately they can be predicted. An analysis of the torque and momentum buildup about the pitch axis of the Dual Keel space station configuration is formulated, and a derivation of the Average Torque Equilibrium Attitude (ATEA) is presented, for the case of no MRMS (Mobile Remote Manipulation System) motion, Y vehicle axis MRMS motion, and Z vehicle axis MRMS motion. Results showed the peak momentum buildup to be approximately 20000 N-m-s and to be relatively insensitive to errors in the predicting torque models, for Z axis motion of the MRMS was found to vary significantly with model errors, but not exceed a value of approximately 15000 N-m-s for the Y axis MRMS motion with 1 deg attitude hold error. Minimum peak disturbance momentum was found not to occur at the ATEA angle, but at a slightly smaller angle. However, this minimum peak momentum attitude was found to produce significant disturbance momentum at the end of the predicting time interval.

  14. Construction of type-II QC-LDPC codes with fast encoding based on perfect cyclic difference sets

    NASA Astrophysics Data System (ADS)

    Li, Ling-xiang; Li, Hai-bing; Li, Ji-bi; Jiang, Hua

    2017-09-01

    In view of the problems that the encoding complexity of quasi-cyclic low-density parity-check (QC-LDPC) codes is high and the minimum distance is not large enough which leads to the degradation of the error-correction performance, the new irregular type-II QC-LDPC codes based on perfect cyclic difference sets (CDSs) are constructed. The parity check matrices of these type-II QC-LDPC codes consist of the zero matrices with weight of 0, the circulant permutation matrices (CPMs) with weight of 1 and the circulant matrices with weight of 2 (W2CMs). The introduction of W2CMs in parity check matrices makes it possible to achieve the larger minimum distance which can improve the error- correction performance of the codes. The Tanner graphs of these codes have no girth-4, thus they have the excellent decoding convergence characteristics. In addition, because the parity check matrices have the quasi-dual diagonal structure, the fast encoding algorithm can reduce the encoding complexity effectively. Simulation results show that the new type-II QC-LDPC codes can achieve a more excellent error-correction performance and have no error floor phenomenon over the additive white Gaussian noise (AWGN) channel with sum-product algorithm (SPA) iterative decoding.

  15. Cost-effectiveness of the stream-gaging program in North Carolina

    USGS Publications Warehouse

    Mason, R.R.; Jackson, N.M.

    1985-01-01

    This report documents the results of a study of the cost-effectiveness of the stream-gaging program in North Carolina. Data uses and funding sources are identified for the 146 gaging stations currently operated in North Carolina with a budget of $777,600 (1984). As a result of the study, eleven stations are nominated for discontinuance and five for conversion from recording to partial-record status. Large parts of North Carolina 's Coastal Plain are identified as having sparse streamflow data. This sparsity should be remedied as funds become available. Efforts should also be directed toward defining the efforts of drainage improvements on local hydrology and streamflow characteristics. The average standard error of streamflow records in North Carolina is 18.6 percent. This level of accuracy could be improved without increasing cost by increasing the frequency of field visits and streamflow measurements at stations with high standard errors and reducing the frequency at stations with low standard errors. A minimum budget of $762,000 is required to operate the 146-gage program. A budget less than this does not permit proper service and maintenance of the gages and recorders. At the minimum budget, and with the optimum allocation of field visits, the average standard error is 17.6 percent.

  16. Cost effectiveness of the US Geological Survey's stream-gaging programs in New Hampshire and Vermont

    USGS Publications Warehouse

    Smath, J.A.; Blackey, F.E.

    1986-01-01

    Data uses and funding sources were identified for the 73 continuous stream gages currently (1984) being operated. Eight stream gages were identified as having insufficient reason to continue their operation. Parts of New Hampshire and Vermont were identified as needing additional hydrologic data. New gages should be established in these regions as funds become available. Alternative methods for providing hydrologic data at the stream gaging stations currently being operated were found to lack the accuracy that is required for their intended use. The current policy for operation of the stream gages requires a net budget of $297,000/yr. The average standard error of estimation of the streamflow records is 17.9%. This overall level of accuracy could be maintained with a budget of $285,000 if resources were redistributed among gages. Cost-effective analysis indicates that with the present budget, the average standard error could be reduced to 16.6%. A minimum budget of $278,000 is required to operate the present stream gaging program. Below this level, the gages and recorders would not receive the proper service and maintenance. At the minimum budget, the average standard error would be 20.4%. The loss of correlative data is a significant component of the error in streamflow records, especially at lower budgetary levels. (Author 's abstract)

  17. Fast adaptive diamond search algorithm for block-matching motion estimation using spatial correlation

    NASA Astrophysics Data System (ADS)

    Park, Sang-Gon; Jeong, Dong-Seok

    2000-12-01

    In this paper, we propose a fast adaptive diamond search algorithm (FADS) for block matching motion estimation. Many fast motion estimation algorithms reduce the computational complexity by the UESA (Unimodal Error Surface Assumption) where the matching error monotonically increases as the search moves away from the global minimum point. Recently, many fast BMAs (Block Matching Algorithms) make use of the fact that global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the neighboring blocks. We move the search origin according to the motion vectors of the spatially neighboring blocks and their MAEs (Mean Absolute Errors). The computer simulation shows that the proposed algorithm has almost the same computational complexity with DS (Diamond Search), but enhances PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS (Full Search), even for the large motion with half the computational load.

  18. Force-Time Entropy of Isometric Impulse.

    PubMed

    Hsieh, Tsung-Yu; Newell, Karl M

    2016-01-01

    The relation between force and temporal variability in discrete impulse production has been viewed as independent (R. A. Schmidt, H. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979 ) or dependent on the rate of force (L. G. Carlton & K. M. Newell, 1993 ). Two experiments in an isometric single finger force task investigated the joint force-time entropy with (a) fixed time to peak force and different percentages of force level and (b) fixed percentage of force level and different times to peak force. The results showed that the peak force variability increased either with the increment of force level or through a shorter time to peak force that also reduced timing error variability. The peak force entropy and entropy of time to peak force increased on the respective dimension as the parameter conditions approached either maximum force or a minimum rate of force production. The findings show that force error and timing error are dependent but complementary when considered in the same framework with the joint force-time entropy at a minimum in the middle parameter range of discrete impulse.

  19. Geological Carbon Sequestration: A New Approach for Near-Surface Assurance Monitoring

    PubMed Central

    Wielopolski, Lucian

    2011-01-01

    There are two distinct objectives in monitoring geological carbon sequestration (GCS): Deep monitoring of the reservoir’s integrity and plume movement and near-surface monitoring (NSM) to ensure public health and the safety of the environment. However, the minimum detection limits of the current instrumentation for NSM is too high for detecting weak signals that are embedded in the background levels of the natural variations, and the data obtained represents point measurements in space and time. A new approach for NSM, based on gamma-ray spectroscopy induced by inelastic neutron scatterings (INS), offers novel and unique characteristics providing the following: (1) High sensitivity with a reducible error of measurement and detection limits, and, (2) temporal- and spatial-integration of carbon in soil that results from underground CO2 seepage. Preliminary field results validated this approach showing carbon suppression of 14% in the first year and 7% in the second year. In addition the temporal behavior of the error propagation is presented and it is shown that for a signal at the level of the minimum detection level the error asymptotically approaches 47%. PMID:21556180

  20. Analysis of A Drug Target-based Classification System using Molecular Descriptors.

    PubMed

    Lu, Jing; Zhang, Pin; Bi, Yi; Luo, Xiaomin

    2016-01-01

    Drug-target interaction is an important topic in drug discovery and drug repositioning. KEGG database offers a drug annotation and classification using a target-based classification system. In this study, we gave an investigation on five target-based classes: (I) G protein-coupled receptors; (II) Nuclear receptors; (III) Ion channels; (IV) Enzymes; (V) Pathogens, using molecular descriptors to represent each drug compound. Two popular feature selection methods, maximum relevance minimum redundancy and incremental feature selection, were adopted to extract the important descriptors. Meanwhile, an optimal prediction model based on nearest neighbor algorithm was constructed, which got the best result in identifying drug target-based classes. Finally, some key descriptors were discussed to uncover their important roles in the identification of drug-target classes.

  1. Neuro-classification of multi-type Landsat Thematic Mapper data

    NASA Technical Reports Server (NTRS)

    Zhuang, Xin; Engel, Bernard A.; Fernandez, R. N.; Johannsen, Chris J.

    1991-01-01

    Neural networks have been successful in image classification and have shown potential for classifying remotely sensed data. This paper presents classifications of multitype Landsat Thematic Mapper (TM) data using neural networks. The Landsat TM Image for March 23, 1987 with accompanying ground observation data for a study area In Miami County, Indiana, U.S.A. was utilized to assess recognition of crop residues. Principal components and spectral ratio transformations were performed on the TM data. In addition, a layer of the geographic information system (GIS) for the study site was incorporated to generate GIS-enhanced TM data. This paper discusses (1) the performance of neuro-classification on each type of data, (2) how neural networks recognized each type of data as a new image and (3) comparisons of the results for each type of data obtained using neural networks, maximum likelihood, and minimum distance classifiers.

  2. Improved EEG Event Classification Using Differential Energy.

    PubMed

    Harati, A; Golmohammadi, M; Lopez, S; Obeid, I; Picone, J

    2015-12-01

    Feature extraction for automatic classification of EEG signals typically relies on time frequency representations of the signal. Techniques such as cepstral-based filter banks or wavelets are popular analysis techniques in many signal processing applications including EEG classification. In this paper, we present a comparison of a variety of approaches to estimating and postprocessing features. To further aid in discrimination of periodic signals from aperiodic signals, we add a differential energy term. We evaluate our approaches on the TUH EEG Corpus, which is the largest publicly available EEG corpus and an exceedingly challenging task due to the clinical nature of the data. We demonstrate that a variant of a standard filter bank-based approach, coupled with first and second derivatives, provides a substantial reduction in the overall error rate. The combination of differential energy and derivatives produces a 24 % absolute reduction in the error rate and improves our ability to discriminate between signal events and background noise. This relatively simple approach proves to be comparable to other popular feature extraction approaches such as wavelets, but is much more computationally efficient.

  3. Comparison of remote sensing image processing techniques to identify tornado damage areas from Landsat TM data

    USGS Publications Warehouse

    Myint, S.W.; Yuan, M.; Cerveny, R.S.; Giri, C.P.

    2008-01-01

    Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and objectoriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. ?? 2008 by MDPI.

  4. Benchmark data on the separability among crops in the southern San Joaquin Valley of California

    NASA Technical Reports Server (NTRS)

    Morse, A.; Card, D. H.

    1984-01-01

    Landsat MSS data were input to a discriminant analysis of 21 crops on each of eight dates in 1979 using a total of 4,142 fields in southern Fresno County, California. The 21 crops, which together account for over 70 percent of the agricultural acreage in the southern San Joaquin Valley, were analyzed to quantify the spectral separability, defined as omission error, between all pairs of crops. On each date the fields were segregated into six groups based on the mean value of the MSS7/MSS5 ratio, which is correlated with green biomass. Discriminant analysis was run on each group on each date. The resulting contingency tables offer information that can be profitably used in conjunction with crop calendars to pick the best dates for a classification. The tables show expected percent correct classification and error rates for all the crops. The patterns in the contingency tables show that the percent correct classification for crops generally increases with the amount of greenness in the fields being classified. However, there are exceptions to this general rule, notably grain.

  5. Comparison of Remote Sensing Image Processing Techniques to Identify Tornado Damage Areas from Landsat TM Data

    PubMed Central

    Myint, Soe W.; Yuan, May; Cerveny, Randall S.; Giri, Chandra P.

    2008-01-01

    Remote sensing techniques have been shown effective for large-scale damage surveys after a hazardous event in both near real-time or post-event analyses. The paper aims to compare accuracy of common imaging processing techniques to detect tornado damage tracks from Landsat TM data. We employed the direct change detection approach using two sets of images acquired before and after the tornado event to produce a principal component composite images and a set of image difference bands. Techniques in the comparison include supervised classification, unsupervised classification, and object-oriented classification approach with a nearest neighbor classifier. Accuracy assessment is based on Kappa coefficient calculated from error matrices which cross tabulate correctly identified cells on the TM image and commission and omission errors in the result. Overall, the Object-oriented Approach exhibits the highest degree of accuracy in tornado damage detection. PCA and Image Differencing methods show comparable outcomes. While selected PCs can improve detection accuracy 5 to 10%, the Object-oriented Approach performs significantly better with 15-20% higher accuracy than the other two techniques. PMID:27879757

  6. Multicategory nets of single-layer perceptrons: complexity and sample-size issues.

    PubMed

    Raudys, Sarunas; Kybartas, Rimantas; Zavadskas, Edmundas Kazimieras

    2010-05-01

    The standard cost function of multicategory single-layer perceptrons (SLPs) does not minimize the classification error rate. In order to reduce classification error, it is necessary to: 1) refuse the traditional cost function, 2) obtain near to optimal pairwise linear classifiers by specially organized SLP training and optimal stopping, and 3) fuse their decisions properly. To obtain better classification in unbalanced training set situations, we introduce the unbalance correcting term. It was found that fusion based on the Kulback-Leibler (K-L) distance and the Wu-Lin-Weng (WLW) method result in approximately the same performance in situations where sample sizes are relatively small. The explanation for this observation is by theoretically known verity that an excessive minimization of inexact criteria becomes harmful at times. Comprehensive comparative investigations of six real-world pattern recognition (PR) problems demonstrated that employment of SLP-based pairwise classifiers is comparable and as often as not outperforming the linear support vector (SV) classifiers in moderate dimensional situations. The colored noise injection used to design pseudovalidation sets proves to be a powerful tool for facilitating finite sample problems in moderate-dimensional PR tasks.

  7. Remote sensing of submerged aquatic vegetation in lower Chesapeake Bay - A comparison of Landsat MSS to TM imagery

    NASA Technical Reports Server (NTRS)

    Ackleson, S. G.; Klemas, V.

    1987-01-01

    Landsat MSS and TM imagery, obtained simultaneously over Guinea Marsh, VA, as analyzed and compares for its ability to detect submerged aquatic vegetation (SAV). An unsupervised clustering algorithm was applied to each image, where the input classification parameters are defined as functions of apparent sensor noise. Class confidence and accuracy were computed for all water areas by comparing the classified images, pixel-by-pixel, to rasterized SAV distributions derived from color aerial photography. To illustrate the effect of water depth on classification error, areas of depth greater than 1.9 m were masked, and class confidence and accuracy recalculated. A single-scattering radiative-transfer model is used to illustrate how percent canopy cover and water depth affect the volume reflectance from a water column containing SAV. For a submerged canopy that is morphologically and optically similar to Zostera marina inhabiting Lower Chesapeake Bay, dense canopies may be isolated by masking optically deep water. For less dense canopies, the effect of increasing water depth is to increase the apparent percent crown cover, which may result in classification error.

  8. Development and validation of Aviation Causal Contributors for Error Reporting Systems (ACCERS).

    PubMed

    Baker, David P; Krokos, Kelley J

    2007-04-01

    This investigation sought to develop a reliable and valid classification system for identifying and classifying the underlying causes of pilot errors reported under the Aviation Safety Action Program (ASAP). ASAP is a voluntary safety program that air carriers may establish to study pilot and crew performance on the line. In ASAP programs, similar to the Aviation Safety Reporting System, pilots self-report incidents by filing a short text description of the event. The identification of contributors to errors is critical if organizations are to improve human performance, yet it is difficult for analysts to extract this information from text narratives. A taxonomy was needed that could be used by pilots to classify the causes of errors. After completing a thorough literature review, pilot interviews and a card-sorting task were conducted in Studies 1 and 2 to develop the initial structure of the Aviation Causal Contributors for Event Reporting Systems (ACCERS) taxonomy. The reliability and utility of ACCERS was then tested in studies 3a and 3b by having pilots independently classify the primary and secondary causes of ASAP reports. The results provided initial evidence for the internal and external validity of ACCERS. Pilots were found to demonstrate adequate levels of agreement with respect to their category classifications. ACCERS appears to be a useful system for studying human error captured under pilot ASAP reports. Future work should focus on how ACCERS is organized and whether it can be used or modified to classify human error in ASAP programs for other aviation-related job categories such as dispatchers. Potential applications of this research include systems in which individuals self-report errors and that attempt to extract and classify the causes of those events.

  9. General linear codes for fault-tolerant matrix operations on processor arrays

    NASA Technical Reports Server (NTRS)

    Nair, V. S. S.; Abraham, J. A.

    1988-01-01

    Various checksum codes have been suggested for fault-tolerant matrix computations on processor arrays. Use of these codes is limited due to potential roundoff and overflow errors. Numerical errors may also be misconstrued as errors due to physical faults in the system. In this a set of linear codes is identified which can be used for fault-tolerant matrix operations such as matrix addition, multiplication, transposition, and LU-decomposition, with minimum numerical error. Encoding schemes are given for some of the example codes which fall under the general set of codes. With the help of experiments, a rule of thumb for the selection of a particular code for a given application is derived.

  10. Automated spectral classification and the GAIA project

    NASA Technical Reports Server (NTRS)

    Lasala, Jerry; Kurtz, Michael J.

    1995-01-01

    Two dimensional spectral types for each of the stars observed in the global astrometric interferometer for astrophysics (GAIA) mission would provide additional information for the galactic structure and stellar evolution studies, as well as helping in the identification of unusual objects and populations. The classification of the large quantity generated spectra requires that automated techniques are implemented. Approaches for the automatic classification are reviewed, and a metric-distance method is discussed. In tests, the metric-distance method produced spectral types with mean errors comparable to those of human classifiers working at similar resolution. Data and equipment requirements for an automated classification survey, are discussed. A program of auxiliary observations is proposed to yield spectral types and radial velocities for the GAIA-observed stars.

  11. Speaker normalization and adaptation using second-order connectionist networks.

    PubMed

    Watrous, R L

    1993-01-01

    A method for speaker normalization and adaption using connectionist networks is developed. A speaker-specific linear transformation of observations of the speech signal is computed using second-order network units. Classification is accomplished by a multilayer feedforward network that operates on the normalized speech data. The network is adapted for a new talker by modifying the transformation parameters while leaving the classifier fixed. This is accomplished by backpropagating classification error through the classifier to the second-order transformation units. This method was evaluated for the classification of ten vowels for 76 speakers using the first two formant values of the Peterson-Barney data. The results suggest that rapid speaker adaptation resulting in high classification accuracy can be accomplished by this method.

  12. Errors in imaging patients in the emergency setting

    PubMed Central

    Reginelli, Alfonso; Lo Re, Giuseppe; Midiri, Federico; Muzj, Carlo; Romano, Luigia; Brunese, Luca

    2016-01-01

    Emergency and trauma care produces a “perfect storm” for radiological errors: uncooperative patients, inadequate histories, time-critical decisions, concurrent tasks and often junior personnel working after hours in busy emergency departments. The main cause of diagnostic errors in the emergency department is the failure to correctly interpret radiographs, and the majority of diagnoses missed on radiographs are fractures. Missed diagnoses potentially have important consequences for patients, clinicians and radiologists. Radiologists play a pivotal role in the diagnostic assessment of polytrauma patients and of patients with non-traumatic craniothoracoabdominal emergencies, and key elements to reduce errors in the emergency setting are knowledge, experience and the correct application of imaging protocols. This article aims to highlight the definition and classification of errors in radiology, the causes of errors in emergency radiology and the spectrum of diagnostic errors in radiography, ultrasonography and CT in the emergency setting. PMID:26838955

  13. Errors in imaging patients in the emergency setting.

    PubMed

    Pinto, Antonio; Reginelli, Alfonso; Pinto, Fabio; Lo Re, Giuseppe; Midiri, Federico; Muzj, Carlo; Romano, Luigia; Brunese, Luca

    2016-01-01

    Emergency and trauma care produces a "perfect storm" for radiological errors: uncooperative patients, inadequate histories, time-critical decisions, concurrent tasks and often junior personnel working after hours in busy emergency departments. The main cause of diagnostic errors in the emergency department is the failure to correctly interpret radiographs, and the majority of diagnoses missed on radiographs are fractures. Missed diagnoses potentially have important consequences for patients, clinicians and radiologists. Radiologists play a pivotal role in the diagnostic assessment of polytrauma patients and of patients with non-traumatic craniothoracoabdominal emergencies, and key elements to reduce errors in the emergency setting are knowledge, experience and the correct application of imaging protocols. This article aims to highlight the definition and classification of errors in radiology, the causes of errors in emergency radiology and the spectrum of diagnostic errors in radiography, ultrasonography and CT in the emergency setting.

  14. Determination of vigabatrin in plasma by reversed-phase high-performance liquid chromatography.

    PubMed

    Tsanaclis, L M; Wicks, J; Williams, J; Richens, A

    1991-05-01

    A method is described for the determination of vigabatrin in 50 microliters of plasma by isocratic high-performance liquid chromatography using fluorescence detection. The procedure involves protein precipitation with methanol followed by precolumn derivatisation with o-phthaldialdehyde reagent. Separation of the derivatised vigabatrin was achieved on a Microsorb C18 column using a mobile phase of 10 mM orthophosphoric acid:acetonitrile:methanol (6:3:1) at a flow rate of 2.0 ml/min. Assay time is 15 min and chromatograms show no interference from commonly coadministered anticonvulsant drugs. The total analytical error within the range of 0.85-85 micrograms/ml was found to be 7.6% with the within-replicates error of 2.76%. The minimum detection limit was 0.08 micrograms/ml and the minimum quantitation limit was 0.54 micrograms/ml.

  15. Metameric MIMO-OOK transmission scheme using multiple RGB LEDs.

    PubMed

    Bui, Thai-Chien; Cusani, Roberto; Scarano, Gaetano; Biagi, Mauro

    2018-05-28

    In this work, we propose a novel visible light communication (VLC) scheme utilizing multiple different red green and blue triplets each with a different emission spectrum of red, green and blue for mitigating the effect of interference due to different colors using spatial multiplexing. On-off keying modulation is considered and its effect on light emission in terms of flickering, dimming and color rendering is discussed so as to demonstrate how metameric properties have been considered. At the receiver, multiple photodiodes with color filter-tuned on each transmit light emitting diode (LED) are employed. Three different detection mechanisms of color zero forcing, minimum mean square error estimation and minimum mean square error equalization are then proposed. The system performance of the proposed scheme is evaluated both with computer simulations and tests with an Arduino board implementation.

  16. A Minimum Variance Algorithm for Overdetermined TOA Equations with an Altitude Constraint.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romero, Louis A; Mason, John J.

    We present a direct (non-iterative) method for solving for the location of a radio frequency (RF) emitter, or an RF navigation receiver, using four or more time of arrival (TOA) measurements and an assumed altitude above an ellipsoidal earth. Both the emitter tracking problem and the navigation application are governed by the same equations, but with slightly different interpreta- tions of several variables. We treat the assumed altitude as a soft constraint, with a specified noise level, just as the TOA measurements are handled, with their respective noise levels. With 4 or more TOA measurements and the assumed altitude, themore » problem is overdetermined and is solved in the weighted least squares sense for the 4 unknowns, the 3-dimensional position and time. We call the new technique the TAQMV (TOA Altitude Quartic Minimum Variance) algorithm, and it achieves the minimum possible error variance for given levels of TOA and altitude estimate noise. The method algebraically produces four solutions, the least-squares solution, and potentially three other low residual solutions, if they exist. In the lightly overdermined cases where multiple local minima in the residual error surface are more likely to occur, this algebraic approach can produce all of the minima even when an iterative approach fails to converge. Algorithm performance in terms of solution error variance and divergence rate for bas eline (iterative) and proposed approach are given in tables.« less

  17. Dual tasking negatively impacts obstacle avoidance abilities in post-stroke individuals with visuospatial neglect: Task complexity matters!

    PubMed

    Aravind, Gayatri; Lamontagne, Anouk

    2017-01-01

    Persons with perceptual-attentional deficits due to visuospatial neglect (VSN) after a stroke are at a risk of collisions while walking in the presence of moving obstacles. The attentional burden of performing a dual-task may further compromise their obstacle avoidance performance, putting them at a greater risk of collisions. The objective of this study was to compare the ability of persons with (VSN+) and without VSN (VSN-) to dual task while negotiating moving obstacles. Twenty-six stroke survivors (13 VSN+, 13 VSN-) were assessed on their ability to (a) negotiate moving obstacles while walking (locomotor single task); (b) perform a pitch-discrimination task (cognitive single task) and (c) simultaneously perform the walking and cognitive tasks (dual task). We compared the groups on locomotor (collision rates, minimum distance from obstacle and onset of strategies) and cognitive (error rates) outcomes. For both single and dual task walking, VSN+ individuals showed higher collision rates compared to VSN- individuals. Dual tasking caused deterioration of locomotor (more collisions, delayed onset and smaller minimum distances) and cognitive performances (higher error rate) in VSN+ individuals. Contrastingly, VSN- individuals maintained collision rates, increased minimum distance, but showed more cognitive errors, prioritizing their locomotor performance. Individuals with VSN demonstrate cognitive-locomotor interference under dual task conditions, which could severely compromise safety when ambulating in community environments and may explain the poor recovery of independent community ambulation in these individuals.

  18. Reliability, Validity, and Classification Accuracy of the DSM-5 Diagnostic Criteria for Gambling Disorder and Comparison to DSM-IV.

    PubMed

    Stinchfield, Randy; McCready, John; Turner, Nigel E; Jimenez-Murcia, Susana; Petry, Nancy M; Grant, Jon; Welte, John; Chapman, Heather; Winters, Ken C

    2016-09-01

    The DSM-5 was published in 2013 and it included two substantive revisions for gambling disorder (GD). These changes are the reduction in the threshold from five to four criteria and elimination of the illegal activities criterion. The purpose of this study was to twofold. First, to assess the reliability, validity and classification accuracy of the DSM-5 diagnostic criteria for GD. Second, to compare the DSM-5-DSM-IV on reliability, validity, and classification accuracy, including an examination of the effect of the elimination of the illegal acts criterion on diagnostic accuracy. To compare DSM-5 and DSM-IV, eight datasets from three different countries (Canada, USA, and Spain; total N = 3247) were used. All datasets were based on similar research methods. Participants were recruited from outpatient gambling treatment services to represent the group with a GD and from the community to represent the group without a GD. All participants were administered a standardized measure of diagnostic criteria. The DSM-5 yielded satisfactory reliability, validity and classification accuracy. In comparing the DSM-5 to the DSM-IV, most comparisons of reliability, validity and classification accuracy showed more similarities than differences. There was evidence of modest improvements in classification accuracy for DSM-5 over DSM-IV, particularly in reduction of false negative errors. This reduction in false negative errors was largely a function of lowering the cut score from five to four and this revision is an improvement over DSM-IV. From a statistical standpoint, eliminating the illegal acts criterion did not make a significant impact on diagnostic accuracy. From a clinical standpoint, illegal acts can still be addressed in the context of the DSM-5 criterion of lying to others.

  19. Multiple category-lot quality assurance sampling: a new classification system with application to schistosomiasis control.

    PubMed

    Olives, Casey; Valadez, Joseph J; Brooker, Simon J; Pagano, Marcello

    2012-01-01

    Originally a binary classifier, Lot Quality Assurance Sampling (LQAS) has proven to be a useful tool for classification of the prevalence of Schistosoma mansoni into multiple categories (≤10%, >10 and <50%, ≥50%), and semi-curtailed sampling has been shown to effectively reduce the number of observations needed to reach a decision. To date the statistical underpinnings for Multiple Category-LQAS (MC-LQAS) have not received full treatment. We explore the analytical properties of MC-LQAS, and validate its use for the classification of S. mansoni prevalence in multiple settings in East Africa. We outline MC-LQAS design principles and formulae for operating characteristic curves. In addition, we derive the average sample number for MC-LQAS when utilizing semi-curtailed sampling and introduce curtailed sampling in this setting. We also assess the performance of MC-LQAS designs with maximum sample sizes of n=15 and n=25 via a weighted kappa-statistic using S. mansoni data collected in 388 schools from four studies in East Africa. Overall performance of MC-LQAS classification was high (kappa-statistic of 0.87). In three of the studies, the kappa-statistic for a design with n=15 was greater than 0.75. In the fourth study, where these designs performed poorly (kappa-statistic less than 0.50), the majority of observations fell in regions where potential error is known to be high. Employment of semi-curtailed and curtailed sampling further reduced the sample size by as many as 0.5 and 3.5 observations per school, respectively, without increasing classification error. This work provides the needed analytics to understand the properties of MC-LQAS for assessing the prevalance of S. mansoni and shows that in most settings a sample size of 15 children provides a reliable classification of schools.

  20. 46 CFR 8.230 - Minimum standards for a recognized classification society.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... and maintain class rules in the English language for the design, construction and certification of ships and their associated essential engineering systems; (8) Maintain written survey procedures in the... and geographical coverage to carry out all plan review and vessel survey activities associated with...

  1. 46 CFR 8.230 - Minimum standards for a recognized classification society.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... and maintain class rules in the English language for the design, construction and certification of ships and their associated essential engineering systems; (8) Maintain written survey procedures in the... and geographical coverage to carry out all plan review and vessel survey activities associated with...

  2. 21 CFR 886.1050 - Adaptometer (biophotometer).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Adaptometer (biophotometer). 886.1050 Section 886.1050 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... (regeneration of the visual purple) and the minimum light threshold. (b) Classification. Class I (general...

  3. The presence of English and Spanish dyslexia in the Web

    NASA Astrophysics Data System (ADS)

    Rello, Luz; Baeza-Yates, Ricardo

    2012-09-01

    In this study we present a lower bound of the prevalence of dyslexia in the Web for English and Spanish. On the basis of analysis of corpora written by dyslexic people, we propose a classification of the different kinds of dyslexic errors. A representative data set of dyslexic words is used to calculate this lower bound in web pages containing English and Spanish dyslexic errors. We also present an analysis of dyslexic errors in major Internet domains, social media sites, and throughout English- and Spanish-speaking countries. To show the independence of our estimations from the presence of other kinds of errors, we compare them with the overall lexical quality of the Web and with the error rate of noncorrected corpora. The presence of dyslexic errors in the Web motivates work in web accessibility for dyslexic users.

  4. Nineteen hundred seventy three significant accomplishments. [Landsat satellite data applications

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Data collected by the Skylab remote sensing satellites was used to develop applications techniques and to combine automatic data classification with statistical clustering methods. Continuing research was concentrated in the correlation and registration of data products and in the definition of the atmospheric effects on remote sensing. The causes of errors encountered in the automated classification of agricultural data are identified. Other applications in forestry, geography, environmental geology, and land use are discussed.

  5. Cost effectiveness of the stream-gaging program in South Carolina

    USGS Publications Warehouse

    Barker, A.C.; Wright, B.C.; Bennett, C.S.

    1985-01-01

    The cost effectiveness of the stream-gaging program in South Carolina was documented for the 1983 water yr. Data uses and funding sources were identified for the 76 continuous stream gages currently being operated in South Carolina. The budget of $422,200 for collecting and analyzing streamflow data also includes the cost of operating stage-only and crest-stage stations. The streamflow records for one stream gage can be determined by alternate, less costly methods, and should be discontinued. The remaining 75 stations should be maintained in the program for the foreseeable future. The current policy for the operation of the 75 stations including the crest-stage and stage-only stations would require a budget of $417,200/yr. The average standard error of estimation of streamflow records is 16.9% for the present budget with missing record included. However, the standard error of estimation would decrease to 8.5% if complete streamflow records could be obtained. It was shown that the average standard error of estimation of 16.9% could be obtained at the 75 sites with a budget of approximately $395,000 if the gaging resources were redistributed among the gages. A minimum budget of $383,500 is required to operate the program; a budget less than this does not permit proper service and maintenance of the gages and recorders. At the minimum budget, the average standard error is 18.6%. The maximum budget analyzed was $850,000, which resulted in an average standard error of 7.6 %. (Author 's abstract)

  6. Identification and functional characterization of HIV-associated neurocognitive disorders with large-scale Granger causality analysis on resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    Chockanathan, Udaysankar; DSouza, Adora M.; Abidin, Anas Z.; Schifitto, Giovanni; Wismüller, Axel

    2018-02-01

    Resting-state functional MRI (rs-fMRI), coupled with advanced multivariate time-series analysis methods such as Granger causality, is a promising tool for the development of novel functional connectivity biomarkers of neurologic and psychiatric disease. Recently large-scale Granger causality (lsGC) has been proposed as an alternative to conventional Granger causality (cGC) that extends the scope of robust Granger causal analyses to high-dimensional systems such as the human brain. In this study, lsGC and cGC were comparatively evaluated on their ability to capture neurologic damage associated with HIV-associated neurocognitive disorders (HAND). Functional brain network models were constructed from rs-fMRI data collected from a cohort of HIV+ and HIV- subjects. Graph theoretic properties of the resulting networks were then used to train a support vector machine (SVM) model to predict clinically relevant parameters, such as HIV status and neuropsychometric (NP) scores. For the HIV+/- classification task, lsGC, which yielded a peak area under the receiver operating characteristic curve (AUC) of 0.83, significantly outperformed cGC, which yielded a peak AUC of 0.61, at all parameter settings tested. For the NP score regression task, lsGC, with a minimum mean squared error (MSE) of 0.75, significantly outperformed cGC, with a minimum MSE of 0.84 (p < 0.001, one-tailed paired t-test). These results show that, at optimal parameter settings, lsGC is better able to capture functional brain connectivity correlates of HAND than cGC. However, given the substantial variation in the performance of the two methods at different parameter settings, particularly for the regression task, improved parameter selection criteria are necessary and constitute an area for future research.

  7. Effect of grid transparency and finite collector size on determining ion temperature and density by the retarding potential analyzer

    NASA Technical Reports Server (NTRS)

    Troy, B. E., Jr.; Maier, E. J.

    1975-01-01

    The effects of the grid transparency and finite collector size on the values of thermal ion density and temperature determined by the standard RPA (retarding potential analyzer) analysis method are investigated. The current-voltage curves calculated for varying RPA parameters and a given ion mass, temperature, and density are analyzed by the standard RPA method. It is found that only small errors in temperature and density are introduced for an RPA with typical dimensions, and that even when the density error is substantial for nontypical dimensions, the temperature error remains minimum.

  8. Error control techniques for satellite and space communications

    NASA Technical Reports Server (NTRS)

    Costello, Daniel J., Jr.

    1990-01-01

    An expurgated upper bound on the event error probability of trellis coded modulation is presented. This bound is used to derive a lower bound on the minimum achievable free Euclidean distance d sub (free) of trellis codes. It is shown that the dominant parameters for both bounds, the expurgated error exponent and the asymptotic d sub (free) growth rate, respectively, can be obtained from the cutoff-rate R sub O of the transmission channel by a simple geometric construction, making R sub O the central parameter for finding good trellis codes. Several constellations are optimized with respect to the bounds.

  9. New Syndrome Decoding Techniques for the (n, K) Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1983-01-01

    This paper presents a new syndrome decoding algorithm for the (n,k) convolutional codes (CC) which differs completely from an earlier syndrome decoding algorithm of Schalkwijk and Vinck. The new algorithm is based on the general solution of the syndrome equation, a linear Diophantine equation for the error polynomial vector E(D). The set of Diophantine solutions is a coset of the CC. In this error coset a recursive, Viterbi-like algorithm is developed to find the minimum weight error vector (circumflex)E(D). An example, illustrating the new decoding algorithm, is given for the binary nonsystemmatic (3,1)CC.

  10. Simplified Syndrome Decoding of (n, 1) Convolutional Codes

    NASA Technical Reports Server (NTRS)

    Reed, I. S.; Truong, T. K.

    1983-01-01

    A new syndrome decoding algorithm for the (n, 1) convolutional codes (CC) that is different and simpler than the previous syndrome decoding algorithm of Schalkwijk and Vinck is presented. The new algorithm uses the general solution of the polynomial linear Diophantine equation for the error polynomial vector E(D). This set of Diophantine solutions is a coset of the CC space. A recursive or Viterbi-like algorithm is developed to find the minimum weight error vector cirumflex E(D) in this error coset. An example illustrating the new decoding algorithm is given for the binary nonsymmetric (2,1)CC.

  11. Five-way smoking status classification using text hot-spot identification and error-correcting output codes.

    PubMed

    Cohen, Aaron M

    2008-01-01

    We participated in the i2b2 smoking status classification challenge task. The purpose of this task was to evaluate the ability of systems to automatically identify patient smoking status from discharge summaries. Our submission included several techniques that we compared and studied, including hot-spot identification, zero-vector filtering, inverse class frequency weighting, error-correcting output codes, and post-processing rules. We evaluated our approaches using the same methods as the i2b2 task organizers, using micro- and macro-averaged F1 as the primary performance metric. Our best performing system achieved a micro-F1 of 0.9000 on the test collection, equivalent to the best performing system submitted to the i2b2 challenge. Hot-spot identification, zero-vector filtering, classifier weighting, and error correcting output coding contributed additively to increased performance, with hot-spot identification having by far the largest positive effect. High performance on automatic identification of patient smoking status from discharge summaries is achievable with the efficient and straightforward machine learning techniques studied here.

  12. Comparison of machine learning and semi-quantification algorithms for (I123)FP-CIT classification: the beginning of the end for semi-quantification?

    PubMed

    Taylor, Jonathan Christopher; Fenner, John Wesley

    2017-11-29

    Semi-quantification methods are well established in the clinic for assisted reporting of (I123) Ioflupane images. Arguably, these are limited diagnostic tools. Recent research has demonstrated the potential for improved classification performance offered by machine learning algorithms. A direct comparison between methods is required to establish whether a move towards widespread clinical adoption of machine learning algorithms is justified. This study compared three machine learning algorithms with that of a range of semi-quantification methods, using the Parkinson's Progression Markers Initiative (PPMI) research database and a locally derived clinical database for validation. Machine learning algorithms were based on support vector machine classifiers with three different sets of features: Voxel intensities Principal components of image voxel intensities Striatal binding radios from the putamen and caudate. Semi-quantification methods were based on striatal binding ratios (SBRs) from both putamina, with and without consideration of the caudates. Normal limits for the SBRs were defined through four different methods: Minimum of age-matched controls Mean minus 1/1.5/2 standard deviations from age-matched controls Linear regression of normal patient data against age (minus 1/1.5/2 standard errors) Selection of the optimum operating point on the receiver operator characteristic curve from normal and abnormal training data Each machine learning and semi-quantification technique was evaluated with stratified, nested 10-fold cross-validation, repeated 10 times. The mean accuracy of the semi-quantitative methods for classification of local data into Parkinsonian and non-Parkinsonian groups varied from 0.78 to 0.87, contrasting with 0.89 to 0.95 for classifying PPMI data into healthy controls and Parkinson's disease groups. The machine learning algorithms gave mean accuracies between 0.88 to 0.92 and 0.95 to 0.97 for local and PPMI data respectively. Classification performance was lower for the local database than the research database for both semi-quantitative and machine learning algorithms. However, for both databases, the machine learning methods generated equal or higher mean accuracies (with lower variance) than any of the semi-quantification approaches. The gain in performance from using machine learning algorithms as compared to semi-quantification was relatively small and may be insufficient, when considered in isolation, to offer significant advantages in the clinical context.

  13. A classification on human factor accident/incident of China civil aviation in recent twelve years.

    PubMed

    Luo, Xiao-li

    2004-10-01

    To study human factor accident/incident occurred during 1990-2001 using new classification standard. The human factor accident/incident classification standard is developed on the basis of Reason's Model, combining with CAAC's traditional classifying method, and applied to the classified statistical analysis for 361 flying incidents and 35 flight accidents of China civil aviation, which is induced by human factors and occurred from 1990 to 2001. 1) the incident percentage of taxi and cruise is higher than that of takeoff, climb and descent. 2) The dominating type of flight incidents is diverging of runway, overrunning, near-miss, tail/wingtip/engine strike and ground obstacle impacting. 3) The top three accidents are out of control caused by crew, mountain collision and over runway. 4) Crew's basic operating skill is lower than what we imagined, the mostly representation is poor correcting ability when flight error happened. 5) Crew errors can be represented by incorrect control, regulation and procedure violation, disorientation and diverging percentage of correct flight level. The poor CRM skill is the dominant factor impacting China civil aviation safety, this result has a coincidence with previous study, but there is much difference and distinct characteristic in top incident phase, the type of crew error and behavior performance compared with that of advanced countries. We should strengthen CRM training for all of pilots aiming at the Chinese pilot behavior characteristic in order to improve the safety level of China civil aviation.

  14. Content-based multiple bitstream image transmission over noisy channels.

    PubMed

    Cao, Lei; Chen, Chang Wen

    2002-01-01

    In this paper, we propose a novel combined source and channel coding scheme for image transmission over noisy channels. The main feature of the proposed scheme is a systematic decomposition of image sources so that unequal error protection can be applied according to not only bit error sensitivity but also visual content importance. The wavelet transform is adopted to hierarchically decompose the image. The association between the wavelet coefficients and what they represent spatially in the original image is fully exploited so that wavelet blocks are classified based on their corresponding image content. The classification produces wavelet blocks in each class with similar content and statistics, therefore enables high performance source compression using the set partitioning in hierarchical trees (SPIHT) algorithm. To combat the channel noise, an unequal error protection strategy with rate-compatible punctured convolutional/cyclic redundancy check (RCPC/CRC) codes is implemented based on the bit contribution to both peak signal-to-noise ratio (PSNR) and visual quality. At the receiving end, a postprocessing method making use of the SPIHT decoding structure and the classification map is developed to restore the degradation due to the residual error after channel decoding. Experimental results show that the proposed scheme is indeed able to provide protection both for the bits that are more sensitive to errors and for the more important visual content under a noisy transmission environment. In particular, the reconstructed images illustrate consistently better visual quality than using the single-bitstream-based schemes.

  15. Robust Image Regression Based on the Extended Matrix Variate Power Exponential Distribution of Dependent Noise.

    PubMed

    Luo, Lei; Yang, Jian; Qian, Jianjun; Tai, Ying; Lu, Gui-Fu

    2017-09-01

    Dealing with partial occlusion or illumination is one of the most challenging problems in image representation and classification. In this problem, the characterization of the representation error plays a crucial role. In most current approaches, the error matrix needs to be stretched into a vector and each element is assumed to be independently corrupted. This ignores the dependence between the elements of error. In this paper, it is assumed that the error image caused by partial occlusion or illumination changes is a random matrix variate and follows the extended matrix variate power exponential distribution. This has the heavy tailed regions and can be used to describe a matrix pattern of l×m dimensional observations that are not independent. This paper reveals the essence of the proposed distribution: it actually alleviates the correlations between pixels in an error matrix E and makes E approximately Gaussian. On the basis of this distribution, we derive a Schatten p -norm-based matrix regression model with L q regularization. Alternating direction method of multipliers is applied to solve this model. To get a closed-form solution in each step of the algorithm, two singular value function thresholding operators are introduced. In addition, the extended Schatten p -norm is utilized to characterize the distance between the test samples and classes in the design of the classifier. Extensive experimental results for image reconstruction and classification with structural noise demonstrate that the proposed algorithm works much more robustly than some existing regression-based methods.

  16. Assessing the accuracy of the International Classification of Diseases codes to identify abusive head trauma: a feasibility study.

    PubMed

    Berger, Rachel P; Parks, Sharyn; Fromkin, Janet; Rubin, Pamela; Pecora, Peter J

    2015-04-01

    To assess the accuracy of an International Classification of Diseases (ICD) code-based operational case definition for abusive head trauma (AHT). Subjects were children <5 years of age evaluated for AHT by a hospital-based Child Protection Team (CPT) at a tertiary care paediatric hospital with a completely electronic medical record (EMR) system. Subjects were designated as non-AHT traumatic brain injury (TBI) or AHT based on whether the CPT determined that the injuries were due to AHT. The sensitivity and specificity of the ICD-based definition were calculated. There were 223 children evaluated for AHT: 117 AHT and 106 non-AHT TBI. The sensitivity and specificity of the ICD-based operational case definition were 92% (95% CI 85.8 to 96.2) and 96% (95% CI 92.3 to 99.7), respectively. All errors in sensitivity and three of the four specificity errors were due to coder error; one specificity error was a physician error. In a paediatric tertiary care hospital with an EMR system, the accuracy of an ICD-based case definition for AHT was high. Additional studies are needed to assess the accuracy of this definition in all types of hospitals in which children with AHT are cared for. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Modeling habitat dynamics accounting for possible misclassification

    USGS Publications Warehouse

    Veran, Sophie; Kleiner, Kevin J.; Choquet, Remi; Collazo, Jaime; Nichols, James D.

    2012-01-01

    Land cover data are widely used in ecology as land cover change is a major component of changes affecting ecological systems. Landscape change estimates are characterized by classification errors. Researchers have used error matrices to adjust estimates of areal extent, but estimation of land cover change is more difficult and more challenging, with error in classification being confused with change. We modeled land cover dynamics for a discrete set of habitat states. The approach accounts for state uncertainty to produce unbiased estimates of habitat transition probabilities using ground information to inform error rates. We consider the case when true and observed habitat states are available for the same geographic unit (pixel) and when true and observed states are obtained at one level of resolution, but transition probabilities estimated at a different level of resolution (aggregations of pixels). Simulation results showed a strong bias when estimating transition probabilities if misclassification was not accounted for. Scaling-up does not necessarily decrease the bias and can even increase it. Analyses of land cover data in the Southeast region of the USA showed that land change patterns appeared distorted if misclassification was not accounted for: rate of habitat turnover was artificially increased and habitat composition appeared more homogeneous. Not properly accounting for land cover misclassification can produce misleading inferences about habitat state and dynamics and also misleading predictions about species distributions based on habitat. Our models that explicitly account for state uncertainty should be useful in obtaining more accurate inferences about change from data that include errors.

  18. Underwater target classification using wavelet packets and neural networks.

    PubMed

    Azimi-Sadjadi, M R; Yao, D; Huang, Q; Dobeck, G J

    2000-01-01

    In this paper, a new subband-based classification scheme is developed for classifying underwater mines and mine-like targets from the acoustic backscattered signals. The system consists of a feature extractor using wavelet packets in conjunction with linear predictive coding (LPC), a feature selection scheme, and a backpropagation neural-network classifier. The data set used for this study consists of the backscattered signals from six different objects: two mine-like targets and four nontargets for several aspect angles. Simulation results on ten different noisy realizations and for signal-to-noise ratio (SNR) of 12 dB are presented. The receiver operating characteristic (ROC) curve of the classifier generated based on these results demonstrated excellent classification performance of the system. The generalization ability of the trained network was demonstrated by computing the error and classification rate statistics on a large data set. A multiaspect fusion scheme was also adopted in order to further improve the classification performance.

  19. The effect of the atmosphere on the classification of satellite observations to identify surface features

    NASA Technical Reports Server (NTRS)

    Fraser, R. S.; Bahethi, O. P.; Al-Abbas, A. H.

    1977-01-01

    The effect of differences in atmospheric turbidity on the classification of Landsat 1 observations of a rural scene is presented. The observations are classified by an unsupervised clustering technique. These clusters serve as a training set for use of a maximum-likelihood algorithm. The measured radiances in each of the four spectral bands are then changed by amounts measured by Landsat 1. These changes can be associated with a decrease in atmospheric turbidity by a factor of 1.3. The classification of 22% of the pixels changes as a result of the modification. The modified observations are then reclassified as an independent set. Only 3% of the pixels have a different classification than the unmodified set. Hence, if classification errors of rural areas are not to exceed 15%, a new training set has to be developed whenever the difference in turbidity between the training and test sets reaches unity.

  20. Multinomial mixture model with heterogeneous classification probabilities

    USGS Publications Warehouse

    Holland, M.D.; Gray, B.R.

    2011-01-01

    Royle and Link (Ecology 86(9):2505-2512, 2005) proposed an analytical method that allowed estimation of multinomial distribution parameters and classification probabilities from categorical data measured with error. While useful, we demonstrate algebraically and by simulations that this method yields biased multinomial parameter estimates when the probabilities of correct category classifications vary among sampling units. We address this shortcoming by treating these probabilities as logit-normal random variables within a Bayesian framework. We use Markov chain Monte Carlo to compute Bayes estimates from a simulated sample from the posterior distribution. Based on simulations, this elaborated Royle-Link model yields nearly unbiased estimates of multinomial and correct classification probability estimates when classification probabilities are allowed to vary according to the normal distribution on the logit scale or according to the Beta distribution. The method is illustrated using categorical submersed aquatic vegetation data. ?? 2010 Springer Science+Business Media, LLC.

  1. Stretchy binary classification.

    PubMed

    Toh, Kar-Ann; Lin, Zhiping; Sun, Lei; Li, Zhengguo

    2018-01-01

    In this article, we introduce an analytic formulation for compressive binary classification. The formulation seeks to solve the least ℓ p -norm of the parameter vector subject to a classification error constraint. An analytic and stretchable estimation is conjectured where the estimation can be viewed as an extension of the pseudoinverse with left and right constructions. Our variance analysis indicates that the estimation based on the left pseudoinverse is unbiased and the estimation based on the right pseudoinverse is biased. Sparseness can be obtained for the biased estimation under certain mild conditions. The proposed estimation is investigated numerically using both synthetic and real-world data. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. [Effects of residents' care needs classification (and misclassification) in nursing homes: the example of SOSIA classification].

    PubMed

    Nebuloni, G; Di Giulio, P; Gregori, D; Sandonà, P; Berchialla, P; Foltran, F; Renga, G

    2011-01-01

    Since 2003, the Lombardy region has introduced a case-mix reimbursement system for nursing homes based on the SOSIA form which classifies residents into eight classes of frailty. In the present study the agreement between SOSIA classification and other well documented instruments, including Barthel Index, Mini Mental State Examination and Clinical Dementia Rating Scale is evaluated in 100 nursing home residents. Only 50% of residents with severe dementia have been recognized as seriously impaired when assessed with SOSIA form; since misclassification errors underestimate residents' care needs, they determine an insufficient reimbursement limiting nursing home possibility to offer care appropriate for the case-mix.

  3. Effect of filtration of signals of brain activity on quality of recognition of brain activity patterns using artificial intelligence methods

    NASA Astrophysics Data System (ADS)

    Hramov, Alexander E.; Frolov, Nikita S.; Musatov, Vyachaslav Yu.

    2018-02-01

    In present work we studied features of the human brain states classification, corresponding to the real movements of hands and legs. For this purpose we used supervised learning algorithm based on feed-forward artificial neural networks (ANNs) with error back-propagation along with the support vector machine (SVM) method. We compared the quality of operator movements classification by means of EEG signals obtained experimentally in the absence of preliminary processing and after filtration in different ranges up to 25 Hz. It was shown that low-frequency filtering of multichannel EEG data significantly improved accuracy of operator movements classification.

  4. GDF v2.0, an enhanced version of GDF

    NASA Astrophysics Data System (ADS)

    Tsoulos, Ioannis G.; Gavrilis, Dimitris; Dermatas, Evangelos

    2007-12-01

    An improved version of the function estimation program GDF is presented. The main enhancements of the new version include: multi-output function estimation, capability of defining custom functions in the grammar and selection of the error function. The new version has been evaluated on a series of classification and regression datasets, that are widely used for the evaluation of such methods. It is compared to two known neural networks and outperforms them in 5 (out of 10) datasets. Program summaryTitle of program: GDF v2.0 Catalogue identifier: ADXC_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADXC_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 98 147 No. of bytes in distributed program, including test data, etc.: 2 040 684 Distribution format: tar.gz Programming language: GNU C++ Computer: The program is designed to be portable in all systems running the GNU C++ compiler Operating system: Linux, Solaris, FreeBSD RAM: 200000 bytes Classification: 4.9 Does the new version supersede the previous version?: Yes Nature of problem: The technique of function estimation tries to discover from a series of input data a functional form that best describes them. This can be performed with the use of parametric models, whose parameters can adapt according to the input data. Solution method: Functional forms are being created by genetic programming which are approximations for the symbolic regression problem. Reasons for new version: The GDF package was extended in order to be more flexible and user customizable than the old package. The user can extend the package by defining his own error functions and he can extend the grammar of the package by adding new functions to the function repertoire. Also, the new version can perform function estimation of multi-output functions and it can be used for classification problems. Summary of revisions: The following features have been added to the package GDF: Multi-output function approximation. The package can now approximate any function f:R→R. This feature gives also to the package the capability of performing classification and not only regression. User defined function can be added to the repertoire of the grammar, extending the regression capabilities of the package. This feature is limited to 3 functions, but easily this number can be increased. Capability of selecting the error function. The package offers now to the user apart from the mean square error other error functions such as: mean absolute square error, maximum square error. Also, user defined error functions can be added to the set of error functions. More verbose output. The main program displays more information to the user as well as the default values for the parameters. Also, the package gives to the user the capability to define an output file, where the output of the gdf program for the testing set will be stored after the termination of the process. Additional comments: A technical report describing the revisions, experiments and test runs is packaged with the source code. Running time: Depending on the train data.

  5. Ground truth management system to support multispectral scanner /MSS/ digital analysis

    NASA Technical Reports Server (NTRS)

    Coiner, J. C.; Ungar, S. G.

    1977-01-01

    A computerized geographic information system for management of ground truth has been designed and implemented to relate MSS classification results to in situ observations. The ground truth system transforms, generalizes and rectifies ground observations to conform to the pixel size and shape of high resolution MSS aircraft data. These observations can then be aggregated for comparison to lower resolution sensor data. Construction of a digital ground truth array allows direct pixel by pixel comparison between classification results of MSS data and ground truth. By making comparisons, analysts can identify spatial distribution of error within the MSS data as well as usual figures of merit for the classifications. Use of the ground truth system permits investigators to compare a variety of environmental or anthropogenic data, such as soil color or tillage patterns, with classification results and allows direct inclusion of such data into classification operations. To illustrate the system, examples from classification of simulated Thematic Mapper data for agricultural test sites in North Dakota and Kansas are provided.

  6. Cost-effectiveness of the Federal stream-gaging program in Virginia

    USGS Publications Warehouse

    Carpenter, D.H.

    1985-01-01

    Data uses and funding sources were identified for the 77 continuous stream gages currently being operated in Virginia by the U.S. Geological Survey with a budget of $446,000. Two stream gages were identified as not being used sufficiently to warrant continuing their operation. Operation of these stations should be considered for discontinuation. Data collected at two other stations were identified as having uses primarily related to short-term studies; these stations should also be considered for discontinuation at the end of the data collection phases of the studies. The remaining 73 stations should be kept in the program for the foreseeable future. The current policy for operation of the 77-station program requires a budget of $446,000/yr. The average standard error of estimation of streamflow records is 10.1%. It was shown that this overall level of accuracy at the 77 sites could be maintained with a budget of $430,500 if resources were redistributed among the gages. A minimum budget of $428,500 is required to operate the 77-gage program; a smaller budget would not permit proper service and maintenance of the gages and recorders. At the minimum budget, with optimized operation, the average standard error would be 10.4%. The maximum budget analyzed was $650,000, which resulted in an average standard error of 5.5%. The study indicates that a major component of error is caused by lost or missing data. If perfect equipment were available, the standard error for the current program and budget could be reduced to 7.6%. This also can be interpreted to mean that the streamflow data have a standard error of this magnitude during times when the equipment is operating properly. (Author 's abstract)

  7. Augmented GNSS Differential Corrections Minimum Mean Square Error Estimation Sensitivity to Spatial Correlation Modeling Errors

    PubMed Central

    Kassabian, Nazelie; Presti, Letizia Lo; Rispoli, Francesco

    2014-01-01

    Railway signaling is a safety system that has evolved over the last couple of centuries towards autonomous functionality. Recently, great effort is being devoted in this field, towards the use and exploitation of Global Navigation Satellite System (GNSS) signals and GNSS augmentation systems in view of lower railway track equipments and maintenance costs, that is a priority to sustain the investments for modernizing the local and regional lines most of which lack automatic train protection systems and are still manually operated. The objective of this paper is to assess the sensitivity of the Linear Minimum Mean Square Error (LMMSE) algorithm to modeling errors in the spatial correlation function that characterizes true pseudorange Differential Corrections (DCs). This study is inspired by the railway application; however, it applies to all transportation systems, including the road sector, that need to be complemented by an augmentation system in order to deliver accurate and reliable positioning with integrity specifications. A vector of noisy pseudorange DC measurements are simulated, assuming a Gauss-Markov model with a decay rate parameter inversely proportional to the correlation distance that exists between two points of a certain environment. The LMMSE algorithm is applied on this vector to estimate the true DC, and the estimation error is compared to the noise added during simulation. The results show that for large enough correlation distance to Reference Stations (RSs) distance separation ratio values, the LMMSE brings considerable advantage in terms of estimation error accuracy and precision. Conversely, the LMMSE algorithm may deteriorate the quality of the DC measurements whenever the ratio falls below a certain threshold. PMID:24922454

  8. Single-Trial Classification of Multi-User P300-Based Brain-Computer Interface Using Riemannian Geometry.

    PubMed

    Korczowski, L; Congedo, M; Jutten, C

    2015-08-01

    The classification of electroencephalographic (EEG) data recorded from multiple users simultaneously is an important challenge in the field of Brain-Computer Interface (BCI). In this paper we compare different approaches for classification of single-trials Event-Related Potential (ERP) on two subjects playing a collaborative BCI game. The minimum distance to mean (MDM) classifier in a Riemannian framework is extended to use the diversity of the inter-subjects spatio-temporal statistics (MDM-hyper) or to merge multiple classifiers (MDM-multi). We show that both these classifiers outperform significantly the mean performance of the two users and analogous classifiers based on the step-wise linear discriminant analysis. More importantly, the MDM-multi outperforms the performance of the best player within the pair.

  9. Retrieving air humidity, global solar radiation, and reference evapotranspiration from daily temperatures: development and validation of new methods for Mexico. Part I: humidity

    NASA Astrophysics Data System (ADS)

    Lobit, P.; López Pérez, L.; Lhomme, J. P.; Gómez Tagle, A.

    2017-07-01

    This study evaluates the dew point method (Allen et al. 1998) to estimate atmospheric vapor pressure from minimum temperature, and proposes an improved model to estimate it from maximum and minimum temperature. Both methods were evaluated on 786 weather stations in Mexico. The dew point method induced positive bias in dry areas but also negative bias in coastal areas, and its average root mean square error for all evaluated stations was 0.38 kPa. The improved model assumed a bi-linear relation between estimated vapor pressure deficit (difference between saturated vapor pressure at minimum and average temperature) and measured vapor pressure deficit. The parameters of these relations were estimated from historical annual median values of relative humidity. This model removed bias and allowed for a root mean square error of 0.31 kPa. When no historical measurements of relative humidity were available, empirical relations were proposed to estimate it from latitude and altitude, with only a slight degradation on the model accuracy (RMSE = 0.33 kPa, bias = -0.07 kPa). The applicability of the method to other environments is discussed.

  10. Global terrain classification using Multiple-Error-Removed Improved-Terrain (MERIT) to address susceptibility of landslides and other geohazards

    NASA Astrophysics Data System (ADS)

    Iwahashi, J.; Yamazaki, D.; Matsuoka, M.; Thamarux, P.; Herrick, J.; Yong, A.; Mital, U.

    2017-12-01

    A seamless model of landform classifications with regional accuracy will be a powerful platform for geophysical studies that forecast geologic hazards. Spatial variability as a function of landform on a global scale was captured in the automated classifications of Iwahashi and Pike (2007) and additional developments are presented here that incorporate more accurate depictions using higher-resolution elevation data than the original 1-km scale Shuttle Radar Topography Mission digital elevation model (DEM). We create polygon-based terrain classifications globally by using the 280-m DEM interpolated from the Multi-Error-Removed Improved-Terrain DEM (MERIT; Yamazaki et al., 2017). The multi-scale pixel-image analysis method, known as Multi-resolution Segmentation (Baatz and Schäpe, 2000), is first used to classify the terrains based on geometric signatures (slope and local convexity) calculated from the 280-m DEM. Next, we apply the machine learning method of "k-means clustering" to prepare the polygon-based classification at the globe-scale using slope, local convexity and surface texture. We then group the divisions with similar properties by hierarchical clustering and other statistical analyses using geological and geomorphological data of the area where landslides and earthquakes are frequent (e.g. Japan and California). We find the 280-m DEM resolution is only partially sufficient for classifying plains. We nevertheless observe that the categories correspond to reported landslide and liquefaction features at the global scale, suggesting that our model is an appropriate platform to forecast ground failure. To predict seismic amplification, we estimate site conditions using the time-averaged shear-wave velocity in the upper 30-m (VS30) measurements compiled by Yong et al. (2016) and the terrain model developed by Yong (2016; Y16). We plan to test our method on finer resolution DEMs and report our findings to obtain a more globally consistent terrain model as there are known errors in DEM derivatives at higher-resolutions. We expect the improvement in DEM resolution (4 times greater detail) and the combination of regional and global coverage will yield a consistent dataset of polygons that have the potential to improve relations to the Y16 estimates significantly.

  11. Disregarding population specificity: its influence on the sex assessment methods from the tibia.

    PubMed

    Kotěrová, Anežka; Velemínská, Jana; Dupej, Ján; Brzobohatá, Hana; Pilný, Aleš; Brůžek, Jaroslav

    2017-01-01

    Forensic anthropology has developed classification techniques for sex estimation of unknown skeletal remains, for example population-specific discriminant function analyses. These methods were designed for populations that lived mostly in the late nineteenth and twentieth centuries. Their level of reliability or misclassification is important for practical use in today's forensic practice; it is, however, unknown. We addressed the question of what the likelihood of errors would be if population specificity of discriminant functions of the tibia were disregarded. Moreover, five classification functions in a Czech sample were proposed (accuracies 82.1-87.5 %, sex bias ranged from -1.3 to -5.4 %). We measured ten variables traditionally used for sex assessment of the tibia on a sample of 30 male and 26 female models from recent Czech population. To estimate the classification accuracy and error (misclassification) rates ignoring population specificity, we selected published classification functions of tibia for the Portuguese, south European, and the North American populations. These functions were applied on the dimensions of the Czech population. Comparing the classification success of the reference and the tested Czech sample showed that females from Czech population were significantly overestimated and mostly misclassified as males. Overall accuracy of sex assessment significantly decreased (53.6-69.7 %), sex bias -29.4-100 %, which is most probably caused by secular trend and the generally high variability of body size. Results indicate that the discriminant functions, developed for skeletal series representing geographically and chronologically diverse populations, are not applicable in current forensic investigations. Finally, implications and recommendations for future research are discussed.

  12. Decision Making for Borderline Cases in Pass/Fail Clinical Anatomy Courses: The Practical Value of the Standard Error of Measurement and Likelihood Ratio in a Diagnostic Test

    ERIC Educational Resources Information Center

    Severo, Milton; Silva-Pereira, Fernanda; Ferreira, Maria Amelia

    2013-01-01

    Several studies have shown that the standard error of measurement (SEM) can be used as an additional “safety net” to reduce the frequency of false-positive or false-negative student grading classifications. Practical examinations in clinical anatomy are often used as diagnostic tests to admit students to course final examinations. The aim of this…

  13. Analysis and application of minimum variance discrete time system identification

    NASA Technical Reports Server (NTRS)

    Kaufman, H.; Kotob, S.

    1975-01-01

    An on-line minimum variance parameter identifier is developed which embodies both accuracy and computational efficiency. The formulation results in a linear estimation problem with both additive and multiplicative noise. The resulting filter which utilizes both the covariance of the parameter vector itself and the covariance of the error in identification is proven to be mean square convergent and mean square consistent. The MV parameter identification scheme is then used to construct a stable state and parameter estimation algorithm.

  14. Quantizing and sampling considerations in digital phased-locked loops

    NASA Technical Reports Server (NTRS)

    Hurst, G. T.; Gupta, S. C.

    1974-01-01

    The quantizer problem is first considered. The conditions under which the uniform white sequence model for the quantizer error is valid are established independent of the sampling rate. An equivalent spectral density is defined for the quantizer error resulting in an effective SNR value. This effective SNR may be used to determine quantized performance from infinitely fine quantized results. Attention is given to sampling rate considerations. Sampling rate characteristics of the digital phase-locked loop (DPLL) structure are investigated for the infinitely fine quantized system. The predicted phase error variance equation is examined as a function of the sampling rate. Simulation results are presented and a method is described which enables the minimum required sampling rate to be determined from the predicted phase error variance equations.

  15. 78 FR 17155 - Standards for the Growing, Harvesting, Packing, and Holding of Produce for Human Consumption...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ...The Food and Drug Administration (FDA or we) is correcting the preamble to a proposed rule that published in the Federal Register of January 16, 2013. That proposed rule would establish science-based minimum standards for the safe growing, harvesting, packing, and holding of produce, meaning fruits and vegetables grown for human consumption. FDA proposed these standards as part of our implementation of the FDA Food Safety Modernization Act. The document published with several technical errors, including some errors in cross references, as well as several errors in reference numbers cited throughout the document. This document corrects those errors. We are also placing a corrected copy of the proposed rule in the docket.

  16. Use of scan overlap redundancy to enhance multispectral aircraft scanner data

    NASA Technical Reports Server (NTRS)

    Lindenlaub, J. C.; Keat, J.

    1973-01-01

    Two criteria were suggested for optimizing the resolution error versus signal-to-noise-ratio tradeoff. The first criterion uses equal weighting coefficients and chooses n, the number of lines averaged, so as to make the average resolution error equal to the noise error. The second criterion adjusts both the number and relative sizes of the weighting coefficients so as to minimize the total error (resolution error plus noise error). The optimum set of coefficients depends upon the geometry of the resolution element, the number of redundant scan lines, the scan line increment, and the original signal-to-noise ratio of the channel. Programs were developed to find the optimum number and relative weights of the averaging coefficients. A working definition of signal-to-noise ratio was given and used to try line averaging on a typical set of data. Line averaging was evaluated only with respect to its effect on classification accuracy.

  17. Global minimum profile error (GMPE) - a least-squares-based approach for extracting macroscopic rate coefficients for complex gas-phase chemical reactions.

    PubMed

    Duong, Minh V; Nguyen, Hieu T; Mai, Tam V-T; Huynh, Lam K

    2018-01-03

    Master equation/Rice-Ramsperger-Kassel-Marcus (ME/RRKM) has shown to be a powerful framework for modeling kinetic and dynamic behaviors of a complex gas-phase chemical system on a complicated multiple-species and multiple-channel potential energy surface (PES) for a wide range of temperatures and pressures. Derived from the ME time-resolved species profiles, the macroscopic or phenomenological rate coefficients are essential for many reaction engineering applications including those in combustion and atmospheric chemistry. Therefore, in this study, a least-squares-based approach named Global Minimum Profile Error (GMPE) was proposed and implemented in the MultiSpecies-MultiChannel (MSMC) code (Int. J. Chem. Kinet., 2015, 47, 564) to extract macroscopic rate coefficients for such a complicated system. The capability and limitations of the new approach were discussed in several well-defined test cases.

  18. Camera calibration based on the back projection process

    NASA Astrophysics Data System (ADS)

    Gu, Feifei; Zhao, Hong; Ma, Yueyang; Bu, Penghui

    2015-12-01

    Camera calibration plays a crucial role in 3D measurement tasks of machine vision. In typical calibration processes, camera parameters are iteratively optimized in the forward imaging process (FIP). However, the results can only guarantee the minimum of 2D projection errors on the image plane, but not the minimum of 3D reconstruction errors. In this paper, we propose a universal method for camera calibration, which uses the back projection process (BPP). In our method, a forward projection model is used to obtain initial intrinsic and extrinsic parameters with a popular planar checkerboard pattern. Then, the extracted image points are projected back into 3D space and compared with the ideal point coordinates. Finally, the estimation of the camera parameters is refined by a non-linear function minimization process. The proposed method can obtain a more accurate calibration result, which is more physically useful. Simulation and practical data are given to demonstrate the accuracy of the proposed method.

  19. Reducing error and improving efficiency during vascular interventional radiology: implementation of a preprocedural team rehearsal.

    PubMed

    Morbi, Abigail H M; Hamady, Mohamad S; Riga, Celia V; Kashef, Elika; Pearch, Ben J; Vincent, Charles; Moorthy, Krishna; Vats, Amit; Cheshire, Nicholas J W; Bicknell, Colin D

    2012-08-01

    To determine the type and frequency of errors during vascular interventional radiology (VIR) and design and implement an intervention to reduce error and improve efficiency in this setting. Ethical guidance was sought from the Research Services Department at Imperial College London. Informed consent was not obtained. Field notes were recorded during 55 VIR procedures by a single observer. Two blinded assessors identified failures from field notes and categorized them into one or more errors by using a 22-part classification system. The potential to cause harm, disruption to procedural flow, and preventability of each failure was determined. A preprocedural team rehearsal (PPTR) was then designed and implemented to target frequent preventable potential failures. Thirty-three procedures were observed subsequently to determine the efficacy of the PPTR. Nonparametric statistical analysis was used to determine the effect of intervention on potential failure rates, potential to cause harm and procedural flow disruption scores (Mann-Whitney U test), and number of preventable failures (Fisher exact test). Before intervention, 1197 potential failures were recorded, of which 54.6% were preventable. A total of 2040 errors were deemed to have occurred to produce these failures. Planning error (19.7%), staff absence (16.2%), equipment unavailability (12.2%), communication error (11.2%), and lack of safety consciousness (6.1%) were the most frequent errors, accounting for 65.4% of the total. After intervention, 352 potential failures were recorded. Classification resulted in 477 errors. Preventable failures decreased from 54.6% to 27.3% (P < .001) with implementation of PPTR. Potential failure rates per hour decreased from 18.8 to 9.2 (P < .001), with no increase in potential to cause harm or procedural flow disruption per failure. Failures during VIR procedures are largely because of ineffective planning, communication error, and equipment difficulties, rather than a result of technical or patient-related issues. Many of these potential failures are preventable. A PPTR is an effective means of targeting frequent preventable failures, reducing procedural delays and improving patient safety.

  20. A semi-supervised classification algorithm using the TAD-derived background as training data

    NASA Astrophysics Data System (ADS)

    Fan, Lei; Ambeau, Brittany; Messinger, David W.

    2013-05-01

    In general, spectral image classification algorithms fall into one of two categories: supervised and unsupervised. In unsupervised approaches, the algorithm automatically identifies clusters in the data without a priori information about those clusters (except perhaps the expected number of them). Supervised approaches require an analyst to identify training data to learn the characteristics of the clusters such that they can then classify all other pixels into one of the pre-defined groups. The classification algorithm presented here is a semi-supervised approach based on the Topological Anomaly Detection (TAD) algorithm. The TAD algorithm defines background components based on a mutual k-Nearest Neighbor graph model of the data, along with a spectral connected components analysis. Here, the largest components produced by TAD are used as regions of interest (ROI's),or training data for a supervised classification scheme. By combining those ROI's with a Gaussian Maximum Likelihood (GML) or a Minimum Distance to the Mean (MDM) algorithm, we are able to achieve a semi supervised classification method. We test this classification algorithm against data collected by the HyMAP sensor over the Cooke City, MT area and University of Pavia scene.

Top